# lic new.pdf

Post on 04-Jun-2018

219 views

Embed Size (px)

TRANSCRIPT

8/14/2019 LIC NEW.pdf

1/69

P.S.R.ENGINEERINGCOLLGE

DEPARTMENTOF ELECTRICALANDELECTRONICSENGINEERING

II YEAR IV SEMESTER

EE 58Linear and Digital Integrated Circuits Laboratory

LAB MANUAL(ACADEMIC YEAR 2012-2013)

8/14/2019 LIC NEW.pdf

2/69

1

P.S.R.ENGINEERING COLLEGE, SIVAKASI-626 140

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

EE2258 Linear and Digital Integrated Circuits LaboratoryCLASS: II YEAR EEE ` SEMESTER: IV

LIST OF EXPERIMENTS

1. APPLICATION OF OP-AMP I

2. APPLICATION OF OP-AMP II

3. APPLICATION OF 555 TIMER I

4. APPLICATION OF 555 TIMER II

5. STUDY OF BASIC GATES

6. IMPLEMENTATION OF BOOLEAN FUNCTIONS

7. IMPLEMENTATION OF ADDER AND SUBTRACTOR

8. CODE CONVERSION

9. PARITY GENERATORS AND CHECKERS

10. MULTIPLEXER AND DEMULTIPLEXER

11. ENCODER AND DECODER

12. REALISATION OF DIFFERENT FLIP-FLOPS USING LOGIC GATES

13. REALISATION OF COUNTERS

14. REALISATION OF SHIFT REGISTERS

15. FREQUENCY MULTIPLICATION USING PHASE LOCKED LOOP

16. VOLTAGE CONTROLLED OSCILLATOR USING 566

STAFF INCHARGE HOD/EEE

8/14/2019 LIC NEW.pdf

3/69

2

CIRCUIT DIAGRAM: (Inverting Summing Amplifier)

DESIGN:

If resistor Ra, Rb, Rc has same value ie; Ra=Rb=Rc=R

We know for an inverting Amplifier ACL = RF / R

Vo = - (Rf/R) x (Va + Vb +Vc)

If the values of Rf and R are made equal, then the equation becomes,

Vo = -(Va + Vb +Vc)

Rm =Ra|| Rb|| Rc|| Rf

OBSERVATIONS:

S.No. Va in Volts Va in Volts Va in Volts Vo in Volts

PIN DIAGRAM:

8/14/2019 LIC NEW.pdf

4/69

3

1. APPLICATIONS OF OP-AMP-I(Inverting Summing Amplifier, Non-Inverting Summing Amplifier and Voltage Follower)

AIM:

To design an inverting amplifier, non-inverting amplifier and voltage follower for the given

specifications using Op-Amp IC 741

REFERENCE BOOKS:

1. Ramakant A.Gayakward, Op-amps and Linear Integrated Circuits, IV edition, Pearson

Education, 2003 / PHI. (2000).

2. D.Roy Choudhary, Sheil B.Jani, Linear Integrated Circuits, II edition, New Age, 2003.

APPARATUS REQUIRED:

S.No Name of the Apparatus Range Quantity

1. Function Generator 20 MHz 1

2. CRO 30 MHz 1

3. Dual RPS 0 30 V 1

4. Op-Amp IC 741 1

5. Bread Board 1

6. Resistors As required

7. Connecting wires and probes As required

THEORY:

INVERTING SUMMING AMPLIFIER

Summing amplifier is a type operational amplifier circuit which can be used to sum signals. The

sum of the input signal is amplified by a certain factor and made available at the output .Any number of

input signal can be summed using an op-amp. The circuit shown is a three input summing amplifier in

the inverting mode.

In the circuit, the input signals Va,Vb,Vc are applied to the inverting input of the op-amp

through input resistors Ra,Rb,Rc. Any number of input signals can be applied to the inverting input in

the above manner. Rf is the feedback resistor. Non inverting input of the op-amp is grounded using

resistor Rm. RL is the load resistor.

8/14/2019 LIC NEW.pdf

5/69

4

CIRCUIT DIAGRAM: (non-Inverting summing Amplifier)

DESIGN:

We know for a Non-inverting Summing Amplifier

Vo = (1+ (Rf/R1)) (( Va+Vb+Vc)/3)

Assume R1=R2=R3=Rf/2=R

V0= (V1+V2+V3)

OBSERVATIONS:

S.No. Va in Volts Va in Volts Va in Volts Vo in Volts

PIN DIAGRAM:

8/14/2019 LIC NEW.pdf

6/69

5

NON-INVERTING SUMMING AMPLIFIER

A non inverting summing amplifier circuit with three inputs is shown above. The voltage inputs

Va, Vb and Vc are applied to non inverting input of the op-amp. Rf is the feedback resistor. The output

voltage of the circuit is governed by the equation;

Vo = (1+ (Rf/R1)) (( Va+Vb+Vc)/3)

VOLTAGE FOLLOWER

A unity gain buffer amplifier may be constructed by applying a full series negative feedback

(Fig. 2) to an op-amp simply by connecting its output to its inverting input, and connecting the signal

source to the non-inverting input (Fig. 3). In this configuration, the entire output voltage ( = 1 in Fig. 2)

is placed contrary and in series with the input voltage. Thus the two voltages are subtracted according to

Kirchhoff's voltage law (KVL) and their difference is applied to the op-amp differential input. Thisconnection forces the op-amp to adjust its output voltage simply equal to the input voltage (V out follows

Vin so the circuit is named op-amp voltage follower).

PRECAUTIONS:

1. Output voltage will be saturated if it exceeds 15V.

PROCEDURE:

1. Connections are given as per the circuit diagram.

2. + Vcc and - Vcc supply is given to the power supply terminal of the Op-Amp IC.

3. By adjusting the amplitude and frequency knobs of the function generator, appropriate

input voltage is applied to the non - inverting input terminal of the Op-Amp.

4. The output voltage is obtained in the CRO and the input and output voltage waveforms are

plotted in a graph sheet.

8/14/2019 LIC NEW.pdf

7/69

6

Voltage Follower:

Model Graph:

Slew Rate=2fVm/106 V/s

.

V0-

+

+Vcc

-Vcc

Vs

741

Vs

Vo at f1

Vo at f2

time

time

time

8/14/2019 LIC NEW.pdf

8/69

7

DISCUSSION QUESTIONS:

1. What do you mean by linear circuits?

2. Define an IC?

3. What is an inverting amplifier?

4. What is the type of feedback employed in the inverting op-amp5. What is a voltage follower?

6. Define a non-inverting amplifier?

7. Give the closed loop gain of an inverting amplifier?

8. What is the gain of a non-inverting amplifier?

RESULT:

The design and testing of the Inv er tin g, Non -inverting amplifier and Voltage Follower is

done and the input and output waveforms were drawn.

8/14/2019 LIC NEW.pdf

9/69

8

CIRCUIT DIAGRAM :( Differentiator)

DESIGN:

Given: fa = ---------------

We know the frequency at which the gain is 0 dB, fa = 1 / (2 Rf C1)

Let us assume C1 = 0.1 F; then

Rf =

Since fb

= 10 fa, f

b= ---------------

We know that the gain limiting frequency fb = 1 / (2 R1 C1)

Hence R1 =

Also since R1C1 = Rf Cf ;

Cf =

OBSERVATIONS:

S.No WaveformsAmplitude

in Volts

Time period

in ms

1. Input Waveform

2. Output Waveform

8/14/2019 LIC NEW.pdf

10/69

9

2. APPLICATIONS OF OP-AMP-II(Differentiator and Integrator)

AIM:

To design a Differentiator circuit for the given specifications using Op-Amp IC 741

REFERENCE BOOKS:

1. Ramakant A.Gayakward, Op-amps and Linear Integrated Circuits, IV edition, Pearson

Education, 2003 / PHI. (2000).

2. D.Roy Choudhary, Sheil B.Jani, Linear Integrated Circuits, II edition, New Age, 2003.

APPARATUS REQUIRED:

S. No Name of the Apparatus Range Quantity

1. AFO 20 MHz 1

2. CRO 30 MHz 1

3. Dual RPS 0 30 V 1

4. Timer IC IC 555 1

5. Bread Board 1

6. Resistors

7. Capacitors

8. Connecting wires and probes As required

THEORY:

Differentiator

The differentiator circuit performs the mathematical operation of differentiation; that is, the

output waveform is the derivative of the input waveform. The differentiator may be constructed

from a basic inverting amplifier if an input resistor R1 is replaced by a capacitor C1. The expression

for the output voltage is given as, Vo = - Rf C1 (dVi /dt)

Here the negative sign indicates that the output voltage is 180 0 out of phase with theinput signal. A resistor Rcomp = Rf is normally connected to the non-inverting input terminal of

the op-amp to compensate for the input bias current. A workable differentiator can be designed by

implementing the following steps:

1. Select fa equal to the highest frequency of the input signal to be differentiated. Then,

assuming a value of C1 < 1 F, calculate the value of Rf.

2. Choose fb = 20 fa and calculate the values of R1 and Cf so that R1C1 = Rf Cf.

3. The differentiator is most commonly used in wave shaping circuits to detect high

frequency components in an input signal and also as a rateofchange detector in FM

modulators.

8/14/2019 LIC NEW.pdf

11/69

10

CIRCUIT DIAGRAM :( INTEGRATOR)

DESIGN:

We know the frequency at which the gain is 0 dB, fa = 1 / (2 Rf Cf)

Therefore Rf =

Since fb = 10 fa, and also the gain limiting frequency fb = 1 / (2 R1Cf)

We get, R1 =

OBSERVATIONS:

S.No WaveformsAmplitude

in Volts

Time period

in ms

1. Input Waveform

2. Output Waveform

Pin diagram:

.

8/14/2019 LIC NEW.pdf

12/69

11

Integrator

A circuit in which the output voltage waveform is the integral of the input voltage waveform

is the integrator. Such a circuit is obtained by using a basic inverting amplifier

configuration if the feedback resistor Rf is replaced by a capacitor Cf . The expression for the

output voltage is given as,

Vo = - (1/Rf C1) Vi dt

Here the negative sign indicates that the output voltage is 180 0 out of phase with the

input signal. Normally between fa and fb the circuit acts as an integrator. Generally, the value of fa

< fb . The input signal will be integrated properly if the Time period T of the signal is larger than

or equal to Rf Cf. That is,

T Rf Cf

The integrator is most commonly used in analog computers and ADC and signal-wave

shaping circuits.

Comparator: (Add Theory)

PROCEDURE:

1. Connections are given as per the circuit diagram.

2. + Vcc and - Vcc supply is given to the power supply terminal of the Op-Amp IC.

3. By adjusting the amplitude and frequency knobs of the function generator, appropriate input

voltage is applied to the inverting input terminal of the Op-Amp.

4. The output voltage is obtained in the CRO and the input and output voltage waveforms are

plotted in a graph sheet.

DISCUSSION QUESTIONS:

1. What is integrator?

2. Write the disadvantages of ideal integrator?

3. Write the application of integrator?

4. Why compensation resistance is needed in integrator and how will you find it values?

5. What is differentiator?

6. Write the disadvantages of ideal differentiator.

7. Write the application of differentiator?

8. Why compensation resistance is needed in differentiator and how will you find it values?

9. Why integrators are preferred over differentiators in analog comparators?

8/14/2019 LIC NEW.pdf

13/69

12

Amplitude

Amplitude

A

mplitude

Amplitude

MODEL GRAPH:

Input Signal

Time Period

Output Signal (Differentiator)

Time Period

Output signal (Integrator)

Time Period

COMPARATOR:

V0+

_

+Vcc

-Vcc

Vref

R

R

Vi

+

RL

741

8/14/2019 LIC NEW.pdf

14/69

13

Model Graph :( Comparator)

OBSERVATIONS:

S.No WaveformsAmplitude

in VoltsTime period

in ms

1. Input Waveform

2. Output Waveform

RESULT:

The design of the Integrator, Differentiator and Voltage Follower circuit was done and the input

and output waveforms were obtained.

time

time

+Vsat

-Vsat

time

time

Vi

Vo

-Vref

+Vsat

-Vsat

Vo

Vi

8/14/2019 LIC NEW.pdf

15/69

14

CIRCUIT DIAGRAM:

DESIGN:

Given f= 4 KHz,

Therefore, Total time period, T = 1/f =

We know, duty cycle = tc / T

Therefore, tc =______ and td = _________

We also know for an astable multivibrator td = 0.69 (R2) C

Therefore, R2 =

tc = 0.69 (R1 + R2) C

Therefore, R1 =

8/14/2019 LIC NEW.pdf

16/69

15

3. TIMER APPLICATIONASTABLE MULTIVIBRATOR

AIM:

To design an astable multivibrator circuit for the given specifications using 555 Timer IC.

REFERENCE BOOKS:

1. Ramakant A.Gayakward, Op-amps and Linear Integrated Circuits, IV edition, Pearson

Education, 2003 / PHI. (2000).

2. D.Roy Choudhary, Sheil B.Jani, Linear Integrated Circuits, II edition, New Age, 2003.

APPARATUS REQUIRED:

S. No Name of the Apparatus Range Quantity

2. CRO 30 MHz 1

3. Dual RPS 0 30 V 1

4. Timer IC IC 555 1

5. Bread Board 1

6. Resistors

7. Capacitors

8. Connecting wires and probes As required

THEORY:

An astable multivibrator, often called a free-running multivibrator, is a rectangular-wave-

generating circuit. This circuit does not require an external trigger to change the state of the

output. The time during which the output is either high or low is determined by two resistors and a

capacitor, which are connected externally to the 555 timer. The time during which the capacitor

charges from 1/3 Vcc to 2/3 Vcc is equal to the time the output is high and is given by,

tc = 0.69 (R1 + R2) C

Similarly the time during which the capacitor discharges from 2/3 Vcc to 1/3 Vcc is equal to

the time the output is low and is given by,

td = 0.69 (R2) C

Thus the total time period of the output waveform is,

T = tc + td = 0.69 (R1 + 2 R2) C

The term duty cycle is often used in conjunction with the astable multivibrator. The duty

cycle is the ratio of the time tc during which the output is high to the total time period T. It is

generally expressed in percentage. In equation form,

% duty cycle = [(R1 + R2) / (R1 + 2 R2)] x 100

8/14/2019 LIC NEW.pdf

17/69

16

PIN DIAGRAM:

OBSERVATIONS:

S.No WaveformsAmplitude

in Volts

Time period

in mstc td

1. Output Voltage , Vo

2. Capacitor voltage , Vc

MODEL GRAPH:

8/14/2019 LIC NEW.pdf

18/69

17

PROCEDURE:

1. Connections are given as per the circuit diagram.

2. + 5V supply is given to the + Vcc terminal of the timer IC.

3. At pin 3 the output waveform is observed with the help of a CRO

4. At pin 6 the capacitor voltage is obtained in the CRO and the V0 and Vc voltage

waveforms are plotted in a graph sheet.

DISCUSSION QUESTIONS:

1. Define Offset voltage.

2. Define duty cycle.

3. Mention the applications of IC555.

4. Give the methods for obtaining symmetrical square wave.

5. What is the other name for monostable multivibrator?6. Explain the operation of IC555 in astable mode..

7. Why negative pulse is used as trigger?

RESULT:

The design of the Astable multivibrator circuit was done and the output voltage and

capacitor voltage waveforms were obtained.

8/14/2019 LIC NEW.pdf

19/69

18

CIRCUIT DIAGRAM:

DESIGN:

Consider VCC = 5V, for given tp

Output pulse width tp = 1.1 RA C

Assume C in the order of microfarads & Find RA

Typical values:

If C=0.1 F , RA = 10k then tp = 1.1 mSec

Trigger Voltage =4 V

8/14/2019 LIC NEW.pdf

20/69

19

4. TIMER APPLICATIONMONOSTABLE MULTIVIBRATOR

AIM:

To design a monostable multivibrator circuit for the given specifications using 555 Timer IC.

REFERENCE BOOKS:

1. Ramakant A.Gayakward, Op-amps and Linear Integrated Circuits, IV edition, Pearson

Education, 2003 / PHI. (2000).

2. D.Roy Choudhary, Sheil B.Jani, Linear Integrated Circuits, II edition, New Age, 2003.

APPARATUS REQUIRED:

S. No Name of the Apparatus Range Quantity

1. AFO 20 MHz 1

2. CRO 30 MHz 1

3. Dual RPS 0 30 V 1

4. Timer IC IC 555 1

5. Bread Board 1

6. Resistors

7. Capacitors

8. Connecting wires and probes As required

THEORY:

A monostable multivibrator often called a one-shot multivibrator is a pulse generating circuit

in which the duration of the pulse is determined by the RC network connected externally to the 555

timer. In a stable or stand-by state the output of the circuit is approximately zero or at logic low

level. When an external trigger pulse is applied, the output is forced to go high

(approx. Vcc). The time during which the output remains high is given by,

tp = 1.1 R1 C

At the end of the timing interval, the output automatically reverts back to its logic low state.

The output stays low until a trigger pulse is applied again. Then the cycle repeats. Thus themonostable state has only one stable state hence the name monostable.

PROCEDURE:

1. Connections are given as per the circuit diagram.

2. + 5V supply is given to the + Vcc terminal of the timer IC.

3. A negative trigger pulse of less than (1/3 VCC) i.e Ground to pin 2 of the 555 IC

4. At pin 3 the output time period is observed with the help of a LED or CRO

5. At pin 6 the capacitor voltage is obtained in the CRO and the V0 and Vc voltage

waveforms are plotted in a graph sheet.

8/14/2019 LIC NEW.pdf

21/69

20

PIN DIAGRAM:

OBSERVATIONS:

S.No Value of R1 Value of C

Time period

Theoretical Practical

1.

2.

MODEL GRAPH:

8/14/2019 LIC NEW.pdf

22/69

21

DISCUSSION QUESTIONS:

1. Explain the operation of IC555 in monostable mode.

2. What is the charging time for capacitor in monostable mode?

3. What are the modes of operation of 555 timers?4. Givethe comparisonbetween combinational circuitsandsequential circuits.

5. What do you mean by present state?

6. Givethe applications of 555timers IC.

RESULT:

The design of the Monostable multivibrator circuit was done and the input and output waveforms

were obtained.

8/14/2019 LIC NEW.pdf

23/69

22

AND GATE OR GATE

LOGIC DIAGRAM:

PIN DIAGRAM OF IC 7408 :

CIRCUIT DIAGRAM:

TRUTH TABLE:

Sl.

No

INPUT OUTPUT

A B Y = A . B

1. 0 0 0

2. 0 1 0

3. 1 0 0

4. 1 1 1

LOGIC DIAGRAM:

PIN DIAGRAM OF IC 7432 :

CIRCUIT DIAGRAM:

TRUTH TABLE:

Sl.

No

INPUT OUTPUT

A B Y = A + B

1. 0 0 0

2. 0 1 1

3. 1 0 1

4. 1 1 1

8/14/2019 LIC NEW.pdf

24/69

23

5. a. STUDY OF BASIC GATES

AIM:

To verify the truth table of basic digital ICs of AND, OR, NOT, NAND, NOR, EX-OR gates.

REFERENCE BOOKS:

1. Raj Kamal, Digital systems-Principles and Design, Pearson education 2nd edition, 2007

2. M. Morris Mano, Digital Design, Pearson Education, 2006

APPARATUS REQUIRED:

S.No Name of the Apparatus Range Quantity

1. Digital IC trainer kit 1

2. AND gate IC 7408 13. OR gate IC 7432 1

4. NOT gate IC 7404 1

5. NAND gate IC 7400 1

6. NOR gate IC 7402 1

7. EX-OR gate IC 7486 1

8. Connecting wires As required

THEORY:

a. AND gate:

An AND gate is the physical realization of logical multiplication operation. It is an electronic circuit

which generates an output signal of 1 only if all the input signals are 1.

b. OR gate:

An OR gate is the physical realization of the logical addition operation. It is an electronic circuit

which generates an output signal of 1 if any of the input signal is 1.

c. NOT gate:

A NOT gate is the physical realization of the complementation operation. It is an electronic circuit

which generates an output signal which is the reverse of the input signal. A NOT gate is also known as

an inverter because it inverts the input.

8/14/2019 LIC NEW.pdf

25/69

24

NOT GATE NAND GATE

LOGIC DIAGRAM:

PIN DIAGRAM OF IC 7404:

CIRCUIT DIAGRAM:

TRUTH TABLE:

Sl.NoINPUT OUTPUT

A Y = A

1. 0 1

2. 1 0

LOGIC DIAGRAM:

PIN DIAGRAM OF IC 7400 :

CIRCUIT DIARAM:

TRUTH TABLE:

Sl.No

INPUT OUTPUT

A B Y = (A . B)

1. 0 0 1

2. 0 1 1

3. 1 0 14. 1 1 0

8/14/2019 LIC NEW.pdf

26/69

25

d. NAND gate:

A NAND gate is a complemented AND gate. The output of the NAND gate will be 0 if all the input

signals are 1 and will be 1 if any one of the input signal is 0.

e. NOR gate:

A NOR gate is a complemented OR gate. The output of the OR gate will be 1 if all the inputs are 0 and

will be 0 if any one of the input signal is 1.

f. EX-OR gate:

An Ex-OR gate performs the following Boolean function,

A B = ( A . B ) + ( A . B )

It is similar to OR gate but excludes the combination of both A and B being equal to one. The exclusive

OR is a function that give an output signal 0 when the two input signals are equal either 0 or 1.

PROCEDURE:

1. Connections are given as per the circuit diagram

2. For all the ICs 7th pin is grounded and 14th pin is given +5 V supply.

3. Apply the inputs and verify the truth table for all gates.

DISCUSSION QUESTIONS:

1. Why NAND & NOR gates are called universal gates?

2. Realize the EX OR gates using minimum number of NAND gates?

3. Give the truth table for EX-NOR (EX-OR+NOT) and realize using NAND gates?

4. Explain the operation of NAND gate when realized using discrete components?

5. In what a region does the transistor is operated such that it behaves like a Switch?

6. What are the logiclow and High levels of TTL ICs and CMOS ICs?

7. Compare TTL logic family with CMOS family?

8. Which logic family is called fastest and which logic family is called low powerdissipated?

9. Explain the operation of OR, NOR gates when realized using discrete Components?

10. Why the transistor operates as NOT gate?

8/14/2019 LIC NEW.pdf

27/69

26

NOR GATE EX-OR GATE

LOGIC DIAGRAM:

PIN DIAGRAM OF IC 7402 :

CIRCUIT DIAGRAM:

TRUTH TABLE:

Sl.NoINPUT OUTPUT

A B Y = (A + B)

1. 0 0 1

2. 0 1 0

3. 1 0 0

4. 1 1 0

LOGIC DIAGRAM

PIN DIAGRAM OF IC 7486 :

CIRCUIT DIAGRAM:

TRUTH TABLE:

Sl.NoINPUT OUTPUT

A B Y = A B

1. 0 0 0

2. 0 1 1

3. 1 0 1

4. 1 1 0

8/14/2019 LIC NEW.pdf

28/69

27

RESULT:

The truth table of all the basic digital ICs were verified.

8/14/2019 LIC NEW.pdf

29/69

28

CIRCUIT DIAGRAM:

8/14/2019 LIC NEW.pdf

30/69

29

5. b. IMPLEMENTATION OF BOOLEAN FUNCTIONS

AIM:

To design the logic circuit and verify the truth table of the given Boolean expression,

F (A, B, C, D) = (0, 1, 2, 5, 8, 9, 10)

REFERENCE BOOKS:

1. Raj Kamal, Digital systems-Principles and Design, Pearson education 2nd edition, 2007

2. M. Morris Mano, Digital Design, Pearson Education, 2006

APPARATUS REQUIRED:

S.No Name of the Apparatus Range Quantity

1. Digital IC trainer kit 1

2. AND gate IC 7408 1

3. OR gate IC 7432 1

4. NOT gate IC 7404 1

5. NAND gate IC 7400 16. NOR gate IC 7402 1

7. EX-OR gate IC 7486 1

8. Connecting wires As required

PROCEDURE:

1. Connections are given as per the circuit diagram

2. For all the ICs 7th pin is grounded and 14th pin is given +5 V supply.

3. Apply the inputs and verify the truth table for the given Boolean expression.

8/14/2019 LIC NEW.pdf

31/69

30

DESIGN:

Given , F (A,B,C,D) = (0,1,2,5,8,9,10)

TRUTH TABLE:

S.NoINPUT OUTPUT

A B C D F=DB+C(B+AD)

1. 0 0 0 0 1

2. 0 0 0 1 1

3. 0 0 1 0 1

4. 0 0 1 1 0

5. 0 1 0 0 0

6. 0 1 0 1 1

7. 0 1 1 0 0

8. 0 1 1 1 0

9. 1 0 0 0 1

10. 1 0 0 1 1

11. 1 0 1 0 1

12. 1 0 1 1 0

13. 1 1 0 0 0

14. 1 1 0 1 0

15. 1 1 1 0 0

16. 1 1 1 1 0

The output function F has four input variables hence a four variable Karnaugh Map is used to obtain a

simplified expression for the output as shown,

From the K-Map,

F = B C + D B + A C D

Since we are using only two input logic gates the above expression can be re-written as,

F = C (B + A D) + D B

Now the logic circuit for the above equation can be drawn.

8/14/2019 LIC NEW.pdf

32/69

31

RESULT:

The truth table of the given Boolean expression was verified.

8/14/2019 LIC NEW.pdf

33/69

32

HALF ADDER

TRUTH TABLE:

Sl.no

Input Output

A B S C

1. 0 0 0 0

2. 0 1 1 0

3. 1 0 1 0

4. 1 1 0 1

From the truth table the expression for sum and carry bits of the output can be obtained as,

Sum, S = A B

Carry, C = A . B

CIRCUIT DIAGRAM:

FULL ADDER

TRUTH TABLE:

Sl.no Input Output

A B C Sum Carry1. 0 0 0 0 0

2. 0 0 1 1 0

3. 0 1 0 1 0

4. 0 1 1 0 1

5. 1 0 0 1 0

6. 1 0 1 0 1

7. 1 1 0 0 1

8. 1 1 1 1 1

8/14/2019 LIC NEW.pdf

34/69

33

6. IMPLEMENTATION OF ADDER AND SUBTRACTORa. HALF ADDER AND FULL ADDER

AIM:

To design and verify the truth table of the Half Adder & Full Adder circuits.

REFERENCE BOOKS:

1. Raj Kamal, Digital systems-Principles and Design, Pearson education 2nd edition, 2007

2. M. Morris Mano, Digital Design, Pearson Education, 2006

APPARATUS REQUIRED:

S.No Name of the Apparatus Range Quantity

1. Digital IC trainer kit 12. AND gate IC 7408 1

3. OR gate IC 7432 1

4. NOT gate IC 7404 1

5. EX-OR gate IC 7486 1

6. Connecting wires As required

THEORY:

The most basic arithmetic operation is the addition of two binary digits. There are four possible

elementary operations, namely,

0 + 0 = 0

0 + 1 = 1

1 + 0 = 1

1 + 1 = 102

The first three operations produce a sum of whose length is one digit, but when the last operation is

performed the sum is two digits. The higher significant bit of this result is called a carry and lower

significant bit is called the sum.

HALF ADDER:

A combinational circuit which performs the addition of two bits is called half adder. The input variables

designate the augend and the addend bit, whereas the output variables produce the sum and carry bits.

FULL ADDER:

A combinational circuit which performs the arithmetic sum of three input bits is called full adder. The

three input bits include two significant bits and a previous carry bit. A full adder circuit can be

implemented with two half adders and one OR gate.

From the truth table the expression for sum and carry bits of the output can be obtained as,

SUM = ABC + ABC + ABC + ABC

CARRY = ABC + ABC + ABC +ABC

8/14/2019 LIC NEW.pdf

35/69

34

Using Karnaugh maps the reduced expression for the output bits can be obtained as,

SUM

SUM = ABC + ABC + ABC + ABC = A B C

CARRY

CARRY = AB + AC + BC

CIRCUIT DIAGRAM:

8/14/2019 LIC NEW.pdf

36/69

35

PROCEDURE:

1. Connections are given as per the circuit diagrams.

2. For all the ICs 7th pin is grounded and 14th pin is given +5 V supply.

3. Apply the inputs and verify the truth table for the half adder and full adder circuits.

RESULT:

The design of the half adder and full adder circuits was done and their truth tables were verified.

8/14/2019 LIC NEW.pdf

37/69

36

HALF SUBTRACTOR

TRUTH TABLE:

S.noInput Output

A B Diff Borr

1. 0 0 0 0

2. 0 1 1 1

3. 1 0 1 0

4. 1 1 0 0

From the truth table the expression for difference and borrow bits of the output can be obtained as,

Difference, DIFF = A B

Borrow, BORR = A. B

CIRCUIT DIAGRAM:

2. FULL SUBTRACTOR

TRUTH TABLE:

S.noInput Output

A B C Diff Borr

1. 0 0 0 0 0

2. 0 0 1 1 1

3. 0 1 0 1 1

4. 0 1 1 0 1

5. 1 0 0 1 0

6. 1 0 1 0 0

7. 1 1 0 0 0

8. 1 1 1 1 1

8/14/2019 LIC NEW.pdf

38/69

37

b. HALF SUBTRACTOR AND FULL SUBTRACTOR

AIM:

To design and verify the truth table of the Half Subtractor & Full Subtractor circuits.

REFERENCE BOOKS:

1. Raj Kamal, Digital systems-Principles and Design, Pearson education 2nd edition, 2007

2. M. Morris Mano, Digital Design, Pearson Education, 2006

APPARATUS REQUIRED:

S.No Name of the Apparatus Range Quantity

1. Digital IC trainer kit 1

2. AND gate IC 7408 1

3. OR gate IC 7432 1

4. NOT gate IC 7404 1

5. EX-OR gate IC 7486 1

6. Connecting wires As required

THEORY:

The arithmetic operation, subtraction of two binary digits has four possible elementary

operations, namely,0 - 0 = 0

0 - 1 = 1 with 1 borrow

1 - 0 = 1

1 - 1 = 0

In all operations, each subtrahend bit is subtracted from the minuend bit. In case of the second operation

the minuend bit is smaller than the subtrahend bit, hence 1 is borrowed.

HALF SUBTRACTOR:

A combinational circuit which performs the subtraction of two bits is called half subtractor. Theinput variables designate the minuend and the subtrahend bit, whereas the output variables produce the

difference and borrow bits.

FULL SUBTRACTOR:

A combinational circuit which performs the subtraction of three input bits is called full

subtractor. The three input bits include two significant bits and a previous borrow bit. A full subtractor

circuit can be implemented with two half subtractors and one OR gate.

From the truth table the expression for difference and borrow bits of the output can be obtained as,

Difference, DIFF= ABC + ABC + ABC + ABC

Borrow, BORR = ABC + ABC + ABC +ABC

8/14/2019 LIC NEW.pdf

39/69

38

Using Karnaugh maps the reduced expression for the output bits can be obtained as,

DIFFERENCE

DIFF = ABC + ABC + ABC + ABC = A B C

BORROW

BORR = AB + AC + BC

CIRCUIT DIAGRAM:

8/14/2019 LIC NEW.pdf

40/69

39

PROCEDURE:

1. Connections are given as per the circuit diagrams.

2. For all the ICs 7th pin is grounded and 14th pin is given +5 V supply.

3. Apply the inputs and verify the truth table for the half subtractor and full subtractor circuits.

DISCUSSION QUESTIONS:

1. What is combinational circuit?

2. What is different between combinational and sequential circuit?

3. What are the gates involved for binary adder?

4. List the properties of Ex-Nor gate?

5. What is expression for sum and carry?

RESULT:

The design of the half subtractor and full subtractor circuits was done and their truth tables were

verified.

8/14/2019 LIC NEW.pdf

41/69

40

DESIGN:

TRUTH TABLE:

4-bit binary 4-bit gray code

B3 B2 B1 B0 G3 G2 G1 G0

0

0

0

0

0

0

0

0

11

1

1

1

1

1

1

0

0

0

0

1

1

1

1

00

0

0

1

1

1

1

0

0

1

1

0

0

1

1

00

1

1

0

0

1

1

0

1

0

1

0

1

0

1

01

0

1

0

1

0

1

0

0

0

0

0

0

0

0

11

1

1

1

1

1

1

0

0

0

0

1

1

1

1

11

1

1

0

0

0

0

0

0

1

1

1

1

0

0

00

1

1

1

1

0

0

0

1

1

0

0

1

1

0

01

1

0

0

1

1

0

From the truth table the expression for the output gray bits are,

G3 (B3, B2, B1, B0) = (8, 9, 10, 11, 12, 13, 14, 15)

G2 (B3, B2, B1, B0) = (4, 5, 6, 7, 8, 9, 10, 11)

G1 (B3, B2, B1, B0) = (2, 3, 4, 5, 9, 10, 11, 12, 13)

G0 (B3, B2, B1, B0) = (1, 2, 5, 6, 9, 10, 13. 14)

Hence obtain the reduced SOP expression using Karnaugh maps as follows,

K-Map for G3:

G3 = B3

K-Map for G2:

8/14/2019 LIC NEW.pdf

42/69

41

7. a. CODE CONVERSION

AIM:

To design, construct and study the performance of different code converters.

REFERENCE BOOKS:

1. Raj Kamal, Digital systems-Principles and Design, Pearson education 2nd edition, 2007.

2. M. Morris Mano, Digital Design, Pearson Education, 2006

APPARATUS REQUIRED:

S.No Name of the Apparatus Range Quantity

1. Digital IC trainer kit 1

2. EX-OR gate IC 7486

3. Connecting wires As required

THEORY:

The availability of large variety of codes for the same discrete elements of information results in

the use of different codes by different systems. A conversion circuit must be inserted between the two

systems if each uses different codes for same information. Thus, code converter is a circuit that makes the

two systems compatible even though each uses different binary code.

The bit combination assigned to binary code to gray code. Since each code uses four bits to

represent a decimal digit. There are four inputs and four outputs. Gray code is a non-weighted code.

The input variable are designated as B3, B2, B1, B0 and the output variables are designated as C3,

C2, C1, Co. from the truth table, combinational circuit is designed. The Boolean functions are obtained

from K-Map for each output variable.

A code converter is a circuit that makes the two systems compatible even though each uses a

different binary code. To convert from binary code to Excess-3 code, the input lines must supply the bit

combination of elements as specified by code and the output lines generate the corresponding bitcombination of code. Each one of the four maps represents one of the four outputs of the circuit as a

function of the four input variables.

A two-level logic diagram may be obtained directly from the Boolean expressions derived by the

maps. These are various other possibilities for a logic diagram that implements this circuit. Now the OR

gate whose output is C+D has been used to implement partially each of three outputs.

8/14/2019 LIC NEW.pdf

43/69

42

K-Map for G1: K-Map for G0:

CIRCUIT DIAGRAM:

4- BIT BINARY TO GRAY CODE CONVERTER

8/14/2019 LIC NEW.pdf

44/69

43

PROCEDURE:

1. Connections are given as per the circuit diagrams.

2. For all the ICs 7th pin is grounded and 14th pin is given +5 V supply.

3. Apply the inputs and verify the truth table for the three bit binary to gray code converter.

DISCUSSION QUESTIONS:

1. List the procedures to convert gray code into binary?

2. Why weighted code is called as reflective codes?

3. What is a sequential code?

4. What is error deducting code?

5. What is ASCII code?

RESULT:

The design of the 4-bit Binary to Gray code converter circuit was done and its truth table was verified.

8/14/2019 LIC NEW.pdf

45/69

44

LOGIC DIAGRAMS:

Odd parity checker:

AB

C

D ODD PARITY

74LS86A

10

9

8

74LS86A

4

5

674LS86A

1

2

3

Even parity checker:

A

B

C

D ODD PARITY EVEN PARITY

74LS86A

10

9

8

74LS86A

4

5

674LS86A

1

2

3

74LS04

1 2

Odd parity generator:

A

A

B

B

C

C

D

D

PARITY BIT

74LS86A

10

9

8

74LS86A

4

5

6

74LS86A

1

2

3

74LS04

1 2

Even parity generator:

A

B

B

A

C

C

D

D

PARITY BIT74LS86A

1

2

3

74LS86A

4

5

6

74LS86A

10

9

8

8/14/2019 LIC NEW.pdf

46/69

45

7. b. PARITY GENERATORS AND CHECKERS

AIM:

To implement the odd and even parity checkers using the logic gates and also to generate the

odd parity and even parity numbers using the generators.

REFERENCE BOOKS:

1. Raj Kamal, Digital systems-Principles and Design, Pearson education 2nd edition, 2007.

2. M. Morris Mano, Digital Design, Pearson Education, 2006.

APPARATUS REQUIRED:

THEORY:

Parity checking is used for error detection in data transmission.

Odd parity checkers:

It counts the number of 1s in the given input and produces a 1 in the output when the number

of 1s is odd.

Even parity checker:

It counts the number of 1s in the given input and produces a 1 in the output when the number

of 1s is even.

Odd parity generators:

It generates an odd parity number. The odd parity checker circuit is used with the inverted

output and also the input bits. So when the input is a 4-bit number then the output of the generator

circuit will have 5 bits which is an odd parity number.

Even parity generator:

It generates an even parity number. The even parity checker circuit is used with the inverted

output and also the input bits. So when the input is a 4-bit number then the output of the generatorcircuit will have 5 bits which is an even parity number.

PROCEDURE:

1. The circuit is implemented using logic gates.

2. The inputs are given as per the truth table.

3. The corresponding outputs are noted.

4. The theoretical and practical values were verified.

Sl.No Component Type Quantity

1 Trainer Kit - 1

2 EX-OR IC7486 1

3 NOT gate IC 7404 1

4 Connecting wires - Required

8/14/2019 LIC NEW.pdf

47/69

46

TRUTH TABLE:

Input Checker output Generator output

A B C D odd even odd even

0 0 0 0 0 1 00001 000000 0 0 1 1 0 00010 00011

0 0 1 0 1 0 00100 00101

0 0 1 1 0 1 00111 00110

0 1 0 0 1 0 01000 01001

0 1 0 1 0 1 01011 01010

0 1 1 0 0 1 01101 01100

0 1 1 1 1 0 01110 01111

1 0 0 0 1 0 10000 10001

1 0 0 1 0 1 10011 10010

1 0 1 0 0 1 10101 10100

1 0 1 1 1 0 10110 10111

1 1 0 0 0 1 11001 11000

1 1 0 1 1 0 11010 11011

1 1 1 0 1 0 11100 11101

1 1 1 1 0 1 11111 11110

DISCUSSION QUESTIONS:

1. What is parity bit?

2. Why parity bit is added to message?

3. What is parity checker?

4. What is odd parity and even parity?

5. What are the gates involved for parity generator?

RESULT:

The odd and even parity checkers are implemented using the logic gates and the odd parity and

even parity numbers are generated using the corresponding generators.

8/14/2019 LIC NEW.pdf

48/69

47

4 X 1 MULTIPLEXER

LOGIC SYMBOL:TRUTH TABLE:

S.no Selection input Output

S1 S2 Y

1. 0 0 I02. 0 1 I13. 1 0 I24. 1 1 I3

PIN DIAGRAM OF IC 7411:

CIRCUIT DIAGRAM:

8/14/2019 LIC NEW.pdf

49/69

48

8. a. MULTIPLEXER AND DEMULTIPLEXER

AIM:

To design and verify the truth table of a 4X1 Multiplexer & 1X4 Demultiplexer.

REFERENCE BOOKS:

1. Raj Kamal, Digital systems-Principles and Design, Pearson education 2nd edition, 2007

2. M. Morris Mano, Digital Design, Pearson Education, 2006

APPARATUS REQUIRED:

S.No Name of the Apparatus Range Quantity

1. Digital IC trainer kit 1

2. OR gate IC 7432 1

3. NOT gate IC 7404 1

4. AND gate ( three input ) IC 7411 1

5. Connecting wires As required

THEORY:

Multiplexing means transmitting a large number of information units over a smaller number of

channels or lines. A digital multiplexer is a combinational circuit that selects binary informationfrom one of many input lines and directs it to a single output line. The selection of particular input

line is controlled by a set of selection lines. Normally, there are 2n input lines and n selection lines

whose bit combinations determines which input is selected.

A multiplexer is called a data selector, since it selects one of many inputs and steers the binary

information to the output line. A Strobe is also provided to allow the designer to disable all output

data until a specified time. Then, by allowing the STROBE to go low, the proper lead can be

selected. This feature is very useful where data might be changing the same time DATA SELECT

leads change. It is a very useful Medium Scale Integration (MSI) function and has a multitude of

applications. It is used for connecting two or more sources to a single destination among the computer

units and it is useful for constructing a common bus system.

A decoder with an enable input can function as a demultiplexer. A Demultiplexer is a circuit that

receives information on a single line and transmits this information on one of 2n possible output lines.

The selection of specific output line is controlled by the bit values of n selection lines. The decoder and

demultiplexer operations are obtained from the same circuit; a decoder with an enable input is referred

to as a decoder / de-multiplexer. The Strobe lead can be used to active or de-active the entire IC,

allowing time for the address lines to change the information is fed to the output. Demultiplexers are

useful anytime information from one source must be fed several places.

8/14/2019 LIC NEW.pdf

50/69

49

1X4 DEMULTIPLEXER

LOGIC SYMBOL: TRUTH TABLE:

CIRCUIT DIAGRAM:

S.no Input Output

S1 S2 Din Y0 Y1 Y2 Y3

1. 0 0 0 0 0 0 0

2. 0 0 1 1 0 0 0

3. 0 1 0 0 0 0 0

4. 0 1 1 0 1 0 0

5. 1 0 0 0 0 0 0

6. 1 0 1 0 0 1 0

7. 1 1 0 0 0 0 0

8. 1 1 1 0 0 0 1

8/14/2019 LIC NEW.pdf

51/69

50

DISCUSSION QUESTIONS:

1. What is multiplexer?

2. What are the applications of multiplexer?

3. What is the difference between multiplexer & demultiplexer?

4. In 2n to 1 multiplexer how many selection lines are there?

5. How to get higher order multiplexers?

6. Impliment full subtractor using demux?

7. Impliment a 8:1 mux using 4:1 muxes?

8. Design full adder using 8:1 Mux Ics?

9. Design a BCD-to- gry code connecter using 8:1 muxes?

10. Draw and explain the design of a32:1 mux using 8:1 MUX and 4:1 MUX?

RESULT:

The design of the 4x1 Multiplexer and 1x4 Demultiplexer circuits was done and their truth tables

were verified.

8/14/2019 LIC NEW.pdf

52/69

51

CIRCUIT DIAGRAM:

Binary Decoder:

OBSERVATIONS:

Inputs Outputs

A B Y3 Y2 Y1 Yo

0

0

1

1

0

1

0

1

0

0

0

1

0

0

1

0

0

1

0

0

1

0

0

0

7408

7408

7408

7

4

0

4

7408

Y0

Y1

Y2

Y3

A A B B

7

4

0

4

8/14/2019 LIC NEW.pdf

53/69

52

8. b. ENCODER AND DECODER

AIM:

To study the operation of Encoder and Decoder circuits using logic gates

REFERENCE BOOKS:

1. Ramakant A.Gayakward, Op-amps and Linear Integrated Circuits, IV edition, Pearson

Education, 2003 / PHI. (2000)

2. D.Roy Choudhary, Sheil B.Jani, Linear Integrated Circuits, II edition, New Age, 2003.

APPARATUS REQUIRED:

S. No Name of the Apparatus Range Quantity

1. Digital IC trainer 12. NOT Gate IC 7404 1

3. OR Gate IC 7432 1

4. AND Gate IC7408 1

5. Bread Board 1

6. NOT Gate IC7404 1

8. Connecting wires and probes As required

THEORY:

DECODER

In digital electronics, a decoder can take the form of a multiple-input, multiple-output logic

circuit that converts coded inputs into coded outputs, where the input and output codes are different e.g.

n-to-2n , binary-coded decimal decoders. Decoding is necessary in applications such as data

multiplexing, 7 segment display and memory address decoding.

The example decoder circuit would be an AND gate because the output of an AND gate is

"High" (1) only when all its inputs are "High." Such output is called as "active High output". If instead of

AND gate, the NAND gate is connected the output will be "Low" (0) only when all its inputs are "High".Such output is called as "active low output".

A slightly more complex decoder would be the n-to-2n type binary decoders. These types of

decoders are combinational circuits that convert binary information from 'n' coded inputs to a maximum

of 2n unique outputs. In case the 'n' bit coded information has unused bit combinations, the decoder may

have less than 2n outputs. 2-to-4 decoder, 3-to-8 decoder or 4-to-16 decoder are other examples.

The input to a decoder is parallel binary number and it is used to detect the presence of a

particular binary number at the input. The output indicates presence or absence of specific number at the

decoder input.

8/14/2019 LIC NEW.pdf

54/69

53

Octal to Binary Encoder:

OBSERVATIONS:

Input Output

D7 D6 D5 D4 D3 D2 D1 D0 A B C

0

0

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

7432

7432

7432

7432

7432

7432

7432

7432

7432

D7 D6 D5 D4 D3 D2 D1 D0

A

B

C

8/14/2019 LIC NEW.pdf

55/69

54

ENCODER

An encoder is a device, circuit, transducer, software program, algorithm or person that converts

information from one format or code to another. The purpose of encoder is standardization, speed,

secrecy, security, or saving space by shrinking size. Encoders are combinational logic circuits and they

are exactly opposite of decoders. They accept one or more inputs and generate a multibit output code.

Encoders perform exactly reverse operation than decoder. An encoder has M input and N output lines.

Out of M input lines only one is activated at a time and produces equivalent code on output N lines. If a

device output code has fewer bits than the input code has, the device is usually called an encoder

PROCEDURE:

1. Make the circuit connections as shown in the figure.

2. Check the corresponding truth table.

RESULT:

The design of the Encoder and Decoder circuit was done and the input and output were obtained

8/14/2019 LIC NEW.pdf

56/69

55

Circuit Diagram:

SR FLIP FLOP:

JK FLIP FLOP:

D FLIP FLOP:

T FLIP FLOP:

74007400

74007400

SQ

CLK

R

Q

7411 7400

74007411

JQ

CLK

K

Q

T

74007400

74007400

Q

Q

CLK

7408

7408

74007400

74007400

DQ

CLK

Q

8/14/2019 LIC NEW.pdf

57/69

56

9. REALISATION OF DIFFERENT FLIP-FLOPS USING LOGIC GATES

AIM:

To verify the characteristic table of RS, D, JK, and T Flip flops.

REFERENCE BOOKS:

1. Raj Kamal, Digital systems-Principles and Design, Pearson education 2nd edition, 2007

2. M. Morris Mano, Digital Design, Pearson Education, 2006

APPARATUS REQUIRED:

S.No Name of the Apparatus Range Quantity

1. Digital IC trainer kit 12. NOR gate IC 7402

3. NOT gate IC 7404

4. AND gate ( three input ) IC 7410

5. NAND gate IC 7400

6. Connecting wires As required

THEORY:

A Flip Flop is a sequential device that samples its input signals and changes its output states

only at times determined by clocking signal. Flip Flops may vary in the number of inputs they possess

and the manner in which the inputs affect the binary states.

RS FLIP FLOP:

The clocked RS flip flop consists of NAND gates and the output changes its state with respect to

the input on application of clock pulse. When the clock pulse is high the S and R inputs reach the second

level NAND gates in their complementary form. The Flip Flop is reset when the R input high and S

input is low. The Flip Flop is set when the S input is high and R input is low. When both the inputs are

high the output is in an indeterminate state.

D FLIP FLOP:

To eliminate the undesirable condition of indeterminate state in the SR Flip Flop when both

inputs are high at the same time, in the D Flip Flop the inputs are never made equal at the same time.

This is obtained by making the two inputs complement of each other.

8/14/2019 LIC NEW.pdf

58/69

57

RS Flip -Flop

Clock

Pulse

Input Present

State (Q)

Next

State(Q+1)S R

1 0 0 0 0

2 0 0 1 13 0 1 0 0

4 0 1 1 0

5 1 0 0 1

6 1 0 1 1

7 1 1 0 X

8 1 1 1 X

JK Flip -Flop

ClockPulse Input PresentState (Q) NextState(Q+1)J K

1 0 0 0 0

2 0 0 1 1

3 0 1 0 0

4 0 1 1 0

5 1 0 0 1

6 1 0 1 1

7 1 1 0 1

8 1 1 1 0

D Flip -Flop

Clock

Pulse

Input

D

Present

State (Q)

Next

State(Q+1)

1 0 0 0

2 0 1 0

3 1 0 1

4 1 1 1

T Flip -Flop

Clock

Pulse

Input

T

Present

State (Q)

Next

State(Q+1)

1 0 0 0

2 0 1 0

3 1 0 1

4 1 1 T

8/14/2019 LIC NEW.pdf

59/69

58

JK FLIP FLOP:

The indeterminate state in the SR Flip-Flop is defined in the JK Flip Flop. JK inputs behave like S

and R inputs to set and reset the Flip Flop. The output Q is NAND with K input and the clock pulse,

similarly the output Q is NAND with J input and the Clock pulse. When the clock pulse is zero both the

AND gates are disabled and the Q and Q output retain their previous values. When the clock pulse is

high, the J and K inputs reach the NOR gates. When both the inputs are high the output toggles

continuously. This is called Race around condition and this must be avoided.

T FLIP FLOP:

This is a modification of JK Flip Flop, obtained by connecting both inputs J and K inputs

together. T Flip Flop is also called Toggle Flip Flop.

DISCUSSION QUESTIONS:

1. What is the difference between Flip-Flop & latch?

2. Give examples for synchronous & asynchronous i/Ps?

3. What are the applications of different Flip-Flops?

4. What is universal flip-flop?

5. What is the advantage of Edge triggering over level triggering?

6. What is the relation between propagation delay & clock frequency of flip-flop?

7. What is race around in flip-flop & how to over come it?

8. What are not allowed inputs for RS flip flop using NAND& NOR gates?9. Connect the J K Flip-Flop into D flip-flop and T flip-flop?

10. List the functions of asynchronous inputs?

RESULT:

The Characteristic tables of RS, D, JK, T flip flops were verified.

8/14/2019 LIC NEW.pdf

60/69

59

J1

K1

Q1

cp1

7

4

7

3

J2

K2

Q2

cp2

7

4

7

3

J3

K3

Q3

cp3

7

4

7

3

Logic 1

+5V

QCQBQA

Clock

ulse

J1

K1

Q1

cp1

7

4

73

J2

K2

Q2

cp2

7

4

73

J3

K3

Q3

cp3

7

4

73

Logic 1

+5V

QCQBQA

Clock

ulse

7408

CIRCUIT DIAGRAM:

Asynchronous 3 bit Binary Counter:

Synchronous 3 bit Binary Counter:

PIN DIAGRAM OF IC 7473: TRUTH TABLES:

BinaryCounters:

clk QC QB QA

1

2

3

4

5

6

7

0

0

0

1

1

1

1

0

1

1

0

0

1

1

1

0

1

0

1

0

1

8/14/2019 LIC NEW.pdf

61/69

60

10. a. REALISATION OF COUNTERS

AIM:

To implement and verify the truth table of an aSynchronous and synchronous decade counter

REFERENCE BOOKS:

1. Raj Kamal, Digital systems-Principles and Design, Pearson education 2nd edition, 2007

2. M. Morris Mano, Digital Design, Pearson Education, 2006

APPARATUS REQUIRED:

S.No Name of the Apparatus Range Quantity

1. Digital IC trainer kit 1

2. JK Flip Flop IC 7473 2

4. AND gate IC 7408 1

5. Connecting wires As required

THEORY:

Asynchronous decade counter is also called as ripple counter. In a ripple counter the flip flop

output transition serves as a source for triggering other flip flops. In other words the clock pulse inputs

of all the flip flops are triggered not by the incoming pulses but rather by the transition that occurs in

other flip flops. The term asynchronous refers to the events that do not occur at the same time. Withrespect to the counter operation, asynchronous means that the flip flop within the counter are not made

to change states at exactly the same time, they do not because the clock pulses are not connected directly

to the clock input of each flip flop in the counter.

DISCUSSION QUESTIONS:

1. What is the modulus counter?

2. How many numbers of flip-flops are there in decade counter?

3. What is up down counter?

4. What is the difference between Register &counter?

5. What is BCD counter?

6. If the counter has n-flip-flops. What is the maximum count?

7. Which flip- flops are used in counter?

8. Design a divide by-96 counter using 7490Ics?

RESULT:

The truth table of the synchronous and asynchronous decade counter was hence verified.

8/14/2019 LIC NEW.pdf

62/69

61

CIRCUIT DIAGRAM:

Serial in Serial out Shift Register:

Parallel in - Serial out Shift Register

D1 Q1

cp1

7

4

7

4

D2 Q2

cp2

7

4

7

4

D3 Q3

cp3

7

4

7

4

D4 Q4

cp4

7

4

7

4

Clock

ulse

D1

Q4

D1 Q1

cp1

7

4

7

4

D2 Q2

cp2

7

4

7

4

D3 Q3

cp3

7

4

7

4

D4 Q4

cp4

7

4

7

4

Clock

pulse

Load/

shift

O/P

7432

7404

D4 D3 D2 D1

7432 7432

7408 7408

8/14/2019 LIC NEW.pdf

63/69

62

10. b. REALISATION OF SHIFT REGISTERS

AIM:

To implement and verify the truth table of a serial in serial out and parallel in parallel out shift

register.

REFERENCE BOOKS:

1. Raj Kamal, Digital systems-Principles and Design, Pearson education 2nd edition, 2007

2. M. Morris Mano, Digital Design, Pearson Education, 2006

APPARATUS REQUIRED:

S.No Name of the Apparatus Range Quantity

1. Digital IC trainer kit 1

2. D Flip Flop IC 7474 2

3. AND Gate IC 7408 1

4. NOT Gate IC7404 1

4. OR Gate IC 7432 1

3. Connecting wires As required

THEORY:

A register capable of shifting its binary information either to the left or to the right is called ashift register. The logical configuration of a shift register consists of a chain of flip flops connected in

cascade with the output of one flip flop connected to the input of the next flip flop. All the flip flops

receive a common clock pulse which causes the shift from one stage to the next.

The Q output of a D flip flop is connected to the D input of the flip flop to the left. Each clock

pulse shifts the contents of the register one bit position to the right. The serial input determines, what

goes into the right most flip flop during the shift. The serial output is taken from the output of the left

most flip flop prior to the application of a pulse. Although this register shifts its contents to its left, if we

turn the page upside down we find that the register shifts its contents to the right. Thus a unidirectional

shift register can function either as a shift right or a shift left register.

8/14/2019 LIC NEW.pdf

64/69

63

PIN DIAGRAM OF IC 7474:

TRUTH TABLE:

For a serial data input of 1101,

S.no Clock

Pulse

Inputs Outputs

D1 D2 D3 D4 Q1 Q2 Q3 Q4

1 1 1 X X X 1 X X X

2 2 1 1 X X 1 1 X X

3 3 0 1 1 X 0 1 1 X

4 4 1 0 1 1 1 0 1 1

5 5 X 1 0 1 X 1 0 1

6 6 X X 1 0 1 X 1 0

7 7 X X X 1 0 X X 1

8 8 X X X X X X X X

For a Parallel data input of 1101,

S.no Clock

Pulse

Inputs Outputs

D1 D2 D3 D4 Q4

1 1 1 1 0 0 1

2 2 1 1 0 0 1

3 3 1 1 0 0 0

4 4 1 1 0 0 1

8/14/2019 LIC NEW.pdf

65/69

64

PROCEDURE:

1. Connections are given as per the circuit diagrams.

2. Apply the input and verify the truth table of the counter.

DISCUSSION QUESTIONS:

1. What are the applications of shift registers?

2. Which flip flop is used in shift register?

3. What is universal shift register?

4. What are different types of shift registers?

5. Which shift gives multiplication by 2?

6. Which shift gives division by 2?

7. Can we use shift register as counter?

8. How timing sequences can be generated using shift registers?9. Explain the working of 4-bit SIPO shift register?

10. What are glitches in digital circuits?

RESULT:

The truth table of a serial in serial out left shift register was hence verified.

8/14/2019 LIC NEW.pdf

66/69

65

CIRCUIT DIAGRAM:

OBSERVATIONS:

Sl.No Input Frequency Output Frequency

MODEL GRAPH:

Input

Vin

Time (ms)

Output

Vo

Time (ms)

NE565

10 7

2

3

9 1 5

8

4

2K

10 F 20 K

0.001F

0.01 F

5

IC 7490

2 3 6 7 10

111

-10V

+10V

10K

4.7K

VCO Output Fo = 5 Fin

TN2222

8/14/2019 LIC NEW.pdf

67/69

66

11. a. FREQUENCY MULTIPLICATION USING PHASE LOCKED LOOP

AIM

To perform the frequency multiplication using phase locked loop (NE 565) and to draw the output

wave form

REFERENCE BOOKS:

1. Ramakant A.Gayakward, Op-amps and Linear Integrated Circuits, IV edition, Pearson

Education, 2003 / PHI. (2000)

2. D.Roy Choudhary, Sheil B.Jani, Linear Integrated Circuits, II edition, New Age, 2003.

APPARATUS REQUIRED:

S. No Name of the Apparatus Range Quantity1. Digital IC trainer

2. PLL NE565 1

3. Decade Counter IC 7490 1

4. Resistor 2K, 4.7K,10K 3

5. Capacitor 0.001F, 0.01F, 10F 3

6. Signal Generator 1

7. POT 20K 1

8. RPS (0-30V) 1

9. Connecting wires and probes As required

THERORY

To use PLL as a multiplier make connections as shown in fig the circuit uses and bit binary

counter 7490 used as a divide by 5 circuit. Set the lip signal at 1 Vpp square wave at 500 HZ vary the

VCO frequency by adjusting the by adjusting the 20k potentiometer till the PLL is locked Measure the

output frequency it should be 5 times the input frequency repeat steps for input frequency of 1 KHZ

Fo=1.2/4R1 C1

PROCEDURE

1. The connections are made as shown in figure

2. we get a output frequency which is in five times of inputs frequency then plot the graph

RESULT

Thus the frequency multiplication using phase locked loop was done and the output

wave forms were drawn.

8/14/2019 LIC NEW.pdf

68/69

67

CIRCUIT DIAGRAM:

PIN DIAGRAM:

The frequency of the output waveforms is approximated by Fo=2(VCC-VC )/ CT RT VCC

INTERNAL DIAGRAM:

8 6

5

2K

10 K

+15V

20 K

4

3

7 1

NE566

0.01 F

8/14/2019 LIC NEW.pdf

69/69

11. b. VOLTAGE CONTROLLED OSCILLATOR USING NE 566

AIM:

To obtain square wave and triangular wave using voltage controlled oscillator

REFERENCE BOOKS:

1. Ramakant A.Gayakward, Op-amps and Linear Integrated Circuits, IV edition, Pearson

Education, 2003 / PHI. (2000)

2. D.Roy Choudhary, Sheil B.Jani, Linear Integrated Circuits, II edition, New Age, 2003.

APPARATUS REQUIRED:

S. No Name of the Apparatus Range Quantity

1. Digital IC trainer 1

2. VCO NE566 14. Resistor 2K, 10K 2

5. Capacitor 0.01F 1

7. POT 20K 1

9. Connecting wires and probes As required

THEORY:

In most cases, the frequency of an oscillator is determined by the time constant RC. However, in

cases or applications such as FM, tone generators, and frequency-shift keying (FSK), the frequency is to

be controlled by means of an input voltage, called the control voltage. This can be achieved in a voltage-

controlled oscillator (VCO). A VCO is a circuit that provides an oscillating output signal (typically of

square-wave or triangular waveform) whose frequency can be adjusted over a range by a dc voltage . An

example of a VCO is the 566 IC unit, that provides simultaneously the square-wave and triangular-wave

outputs as a function of input voltage. The frequency of oscillation is set by an external resistor R 1 and a

capacitor C1 and the voltage Vc applied to the control terminals. Figure shows that the 566 IC unit

contains current sources to charge and discharge an external capacitor Cv at a rate set by an external

resistor R1 and the modulating dc input voltage. A Schmitt trigger circuit is employed to switch the

current sources between charging and discharging the capacitor, and the triangular voltage produced

across the capacitor and square-wave from the Schmitt trigger are provided as outputs through buffer

amplifiers. Both the output waveforms are buffered so that the output impedance of each is 50 f2. Thetypical magnitude of the triangular wave and the square wave are 2.4 Vpeak.to-peak and 5.4Vpeak.to.peak.

PROCEDURE:

1. Connections are made as shown in diagram.