afp technical review - cern indico

27
AFP technical review A.Sbrizzi on behalf of the AFP collabora4on 1 QCD and Forward Physics at the LHC ECT* Trento A. Sbrizzi 18/04/2014

Upload: khangminh22

Post on 07-May-2023

1 views

Category:

Documents


0 download

TRANSCRIPT

AFP  technical  review  A.Sbrizzi  on  behalf  of  the  AFP  collabora4on  

1  

QCD

 and

 Forward  Ph

ysics  a

t  the

 LH

C  -­‐  ECT

*  Tren

to  -­‐  A.  Sbrizz

i  18/04/2014  

Introduction  •  The  aim  of  this  talk  is  to  review  the  status  and  the  recent  technical  developments  of  the  AFP  project.  

•  Main  items  covered:  •  The  AFP  Roman  Pots  •  The  AFP  Tracking  System  •  The  AFP  Timing  detector  

•  All  the  material  presented  in  this  talk  comes  from  the  recent  Technical  Review  (hSps://indico.cern.ch/event/309138)  and  the  Atlas  Upgrade  Week  (hSps://indico.cern.ch/event/275132).    

2  

QCD

 and

 Forward  Ph

ysics  a

t  the

 LH

C  -­‐  ECT

*  Tren

to  -­‐  A.  Sbrizz

i  18/04/2014  

ATLAS  Forward  Detectors  

3  

QCD

 and

 Forward  Ph

ysics  a

t  the

 LH

C  -­‐  ECT

*  Tren

to  -­‐  A.  Sbrizz

i  18/04/2014  

AFP  is  unique  opportunity  to  enrich  the  ATLAS  forward  physics  program.  

ZDC  140m  

Proton  /  Ion  remnants:  γ,  π0,  n     AFP  206m-­‐214m  Diffractive  protons  

LUCID  ~17m  Proton  remnants  and  low  pT  particles   ALFA  

237m-­‐241m  Elastic  protons  

AFP  location  

4  

QCD

 and

 Forward  Ph

ysics  a

t  the

 LH

C  -­‐  ECT

*  Tren

to  -­‐  A.  Sbrizz

i  18/04/2014  

 

206  m  

 

214  m  

placed  between  QRL  and  far  beam  pipe  

QRL  

AFP  Roman  Pot  stations  •  Roman  Pots:  movable  UHV  insert  entering  the  beam  aperture  with  thin  ‘floor’  and  entry/exit  windows.  •  Exis4ng  technology  (ATLAS/ALFA,  CMS/TOTEM),  less  concern  for  LHC  •  Profit  form  ALFA  and  TOTEM  opera4onal  exper4se  

5  

QCD

 and

 Forward  Ph

ysics  a

t  the

 LH

C  -­‐  ECT

*  Tren

to  -­‐  A.  Sbrizz

i  18/04/2014  

vertical  up  

horizontal  to  QRL  

beam

 

sensors  

beam  diff.  p  

RP  –  parking  position  

sensors  measurement  position  

thin  

•  Horizontal  Roman  Pots  are  needed.  •  The  plan  is  to  use  TOTEM  RP  design  with  small  modifica4ons.  

Upward  trend  due  to  ATLAS  crossing  angle  

AUW - AFP Plans - RP

AFP RP Station - Plans Station UHV hardware: “RP Station” ‒ Drawings from TOTEM ‒ Construction: Vakuum Praha ‒ Assembly @ CERN Station Support: “Table” ‒ Modify TOTEM drawings •  single station only

‒ Construction: VP

Floor Plate: “Plate” ‒ modify for ATLAS location •  Keep Plate size to accommodate Vertical Station in future

‒ Construction: VP? CERN? 09Apr2014 6

AUW - AFP Plans - RP 09Apr2014 7

‘Roman Pot’, can be moved in or out of the beam pipe aperture.

Circulating LHC beam

LHC Beam Pipe UHV Flange

UHV Bellows allow horizontal motion of the Roman Pot

Note: AFP pot needs a flat INSIDE floor !

Roman Pot ‒ TOTEM Design

vacuum compensation

system

AFP Technical Matters

RP Status • Ordered / received raw 316LN material from CERN Store & manufacturer for 2 Prototype Pots ‒ TOTEM Design drawing still needs to be adapted for AFP: urgent ! ‒ As soon as material arrives at SBU, we will start machining of Flange, Tube, Bottom Cup (part with thin windows and floor) •  one Mock-up without thin windows •  one full prototype •  thin windows: milling & EDM

• will discuss with USATLAS management this week (AUW)regarding 100 k$ (CORE) US R&D proposal for AFP … ‒ would cover RP Prototypes & ToF Prototype

08Apr2014 8

•  TCL6  will  be  necessary  for  very  high-­‐luminosity  running  aeer  LS2.  •  It  allows  to  open  TCL5  which  would  otherwise  kill  the  signal.  

•  TCL6  before  LS2  necessary  to  study  near-­‐beam  environment  at  high  lumi.    

 

•  Main  ques4on:  does  TCL6  impact  ALFA?  •  ALFA  runs  are  at  β*=90  m:  TCL6  can  stay  open.  S4ll  possible  splash?  •  AFP  runs  at  β*=0.55  m:  TCL6  is  closed  and  ALFA  out.  S4ll  effect  on  ALFA?  

•  Possible  TCL6  installa4on  already  in  LS1  is  currently  under  discussion.  •  ECR:  LHC-­‐LJ-­‐EC-­‐0040  (2014-­‐03-­‐17).  Need  MC  simula4ons  to  take  decisions.  

The  TCL6  collimator  

9  

QCD

 and

 Forward  Ph

ysics  a

t  the

 LH

C  -­‐  ECT

*  Tren

to  -­‐  A.  Sbrizz

i  18/04/2014  

AFP-­‐ALFA,  high  β*  •  Physics:  elas4cs  and  diffrac4on  •  β*=90m  elas4c  protons  measured  by  ALFA  do  not  scaSer  into  AFP  •  low-­‐ξ  diffrac4on  would  be  only  seen  in  ALFA,  not  by  AFP.  •  ξ>0.03  diffrac4on  is  beSer  seen  in  AFP  (ε  =  100%)  than  ALFA  (ε  <30%).  

•  Background:  effect  in  ALFA  of  diffrac4ve  protons  showering  in  AFP  •  Total  interac4on  probability  in  AFP  is  8.3%  at  the  thin  windows.  •  Protons  interac4ng  in  the  floor(s)  will  be  lost  to  both  detectors.  

10  

QCD

 and

 Forward  Ph

ysics  a

t  the

 LH

C  -­‐  ECT

*  Tren

to  -­‐  A.  Sbrizz

i  18/04/2014  

5σ = 2.9mm

5σ = 4.4mm

For  detailed  AFP  acceptance  studies,  see  Maciej’s  talk  

AFP-­‐ALFA,  low  β*  •  β*=0.55  m  runs  with  reduced  luminosity  •  ALFA  coverage  is  small  compared  to  AFP's  almost  100%  coverage,  and  there  is  no  good  reason  to  run  ALFA  

11  

QCD

 and

 Forward  Ph

ysics  a

t  the

 LH

C  -­‐  ECT

*  Tren

to  -­‐  A.  Sbrizz

i  18/04/2014  

10σ = 1.8mm

10σ = 3.7mm

For  detailed  AFP  acceptance  studies,  see  Maciej’s  talk  

The  problem  of  the  RF  losses  •  The  high  temperature  observed  in  Run1  in  the  ALFA  and  TOTEM  Roman  Pots  lead  to  an  op4miza4on  of  the  design  to  reduce  the  RF  losses.  

•  When  the  beam  is  passing  through  a  cavity,  part  of  its  energy  is  dissipated  on  its  walls  producing  heat.  Hea4ng  depends  on  the  characteris4cs  of  the  cavity  and  on  the  beam  power  spectrum  (<  1.2  GHz  at  LHC).  

12  

A.Sbrizzi  -­‐  A

FP  Project  M

ini-­‐R

eview  

2014

 

N.  Minafra  for  the  TOTEM  collabora4on,  CERN-­‐TOTEM-­‐NOTE-­‐2013-­‐003.  

Design  optimization  

•  From  a  Box  RP  to  a  Cylindrical  RP  •  More  space  for  detectors  •  Smaller  cavity  between  pot  and  flange  •  Resonance  @  0.5  GHz  due  to  2.5  mm  gap  

13  

A.Sbrizzi  -­‐  A

FP  Project  M

ini-­‐R

eview  

2014

 

Need  for  Ferrite  rings  •  Ferrite  is  needed  to  dump  the  resonance  due  to  the  2.5  mm  gap.  

•  The  design  of  the  surface  of  the  ferrite  has  been  op4mized  to  reduce  effect  on  the  vacuum.  

14  

A.Sbrizzi  -­‐  A

FP  Project  M

ini-­‐R

eview  

2014

 

Results  of  the  RF  simulations  

15  

A.Sbrizzi  -­‐  A

FP  Project  M

ini-­‐R

eview  

2014

 

Which  detectors  do  we  need  in  the  RP?  •  AFP  is  studying  the  possible  integra4on  of  Tracker  and  Timing  Detector  in  a  cylindrical  RP.  This  will  reduce  the  costs  (going  from  3  to  2  RPs).  

•  The  4ming  detector  is  crucial  for  AFP  to  reduce  background  at  high  luminosity  where  mul4ple  interac4ons  in  the  same  bunch  crossing  occurs.  But  for  this  we  need  to  push  the  4ming  resolu4on  to  the  limit.  

16  

QCD

 and

 Forward  Ph

ysics  a

t  the

 LH

C  -­‐  ECT

*  Tren

to  -­‐  A.  Sbrizz

i  18/04/2014  

Time-­‐of-­‐Flight  Detector  (ToF)  •  L-­‐shaped  cerenkov  Quartz  BAR  is  a  compact  solu4on  (5x9  cm)  for  a  RP.  •  The  L-­‐shaped  light  guide  has  been  upgraded  with  a  parallel  cut  on  the  edge  to  increase  the  light  yield  (<20  ps  resolu4on?).  

17  

QCD

 and

 Forward  Ph

ysics  a

t  the

 LH

C  -­‐  ECT

*  Tren

to  -­‐  A.  Sbrizz

i  18/04/2014  

A.Brandt,  AUW,  April  2014.  

•  16  ch/side,  4  layers  (depths  in  x)  •  2  rows  (depths  in  z)  •  2  y  measures  (+/-­‐)  [the  2arms]  •  Can  be  tested  at  high  luminosity  •  Possibility  of  32  ch/side  (for  10  ps?)  

Simulation  of  the  LQBAR  •  Tuned  LQBAR  based  detector  has  2-­‐3  4mes  more  light  in  the  same  4me  window  as  the  QBAR!    Will  test  this  summer.    

18  

QCD

 and

 Forward  Ph

ysics  a

t  the

 LH

C  -­‐  ECT

*  Tren

to  -­‐  A.  Sbrizz

i  18/04/2014  

QBAR  (15  cm)  LQBAR  (3+12  cm)    LQBAR  with    parallel  cut  y=0.1  and  30°  taper  

A.Brandt,  AUW,  April  2014.  

Improvement  of    MCP-­‐PMT  Lifetime  •  UTA  developed  with  Arradiance+Photonis  a  special  phototube  for  proton  rates  in  the  5-­‐10  MHz  /pixel  range.  

•  UTA  tested  for  Photonis  a  new  life  4me  approach,  involving  an  ac4ve  ion  barrier  which  results  in  a  large  improvement  of  life4me.  

•  Reduced  pixel  size  +  lower  gain  +  ion  suppression  -­‐>  live  up  to  200  z-­‐1  

19  

QCD

 and

 Forward  Ph

ysics  a

t  the

 LH

C  -­‐  ECT

*  Tren

to  -­‐  A.  Sbrizz

i  18/04/2014  

A.Brandt,  AUW,  April  2014.  

The  Silicon  Tracker  

20  

QCD

 and

 Forward  Ph

ysics  a

t  the

 LH

C  -­‐  ECT

*  Tren

to  -­‐  A.  Sbrizz

i  18/04/2014  

21  

QCD

 and

 Forward  Ph

ysics  a

t  the

 LH

C  -­‐  ECT

*  Tren

to  -­‐  A.  Sbrizz

i  18/04/2014  

Si  Tracker  integration  in  the  RP  

22  

QCD

 and

 Forward  Ph

ysics  a

t  the

 LH

C  -­‐  ECT

*  Tren

to  -­‐  A.  Sbrizz

i  18/04/2014  

Si  Tracker  technology  

23  

QCD

 and

 Forward  Ph

ysics  a

t  the

 LH

C  -­‐  ECT

*  Tren

to  -­‐  A.  Sbrizz

i  18/04/2014  

24  

QCD

 and

 Forward  Ph

ysics  a

t  the

 LH

C  -­‐  ECT

*  Tren

to  -­‐  A.  Sbrizz

i  18/04/2014  

AFP Technical Matters

AFP Project Summary Red ?? ≡ uncovered costs; to be covered by new collaborators/ATLAS?

08Apr2014 25

Project Prototype (2014) Production (2015) Total Manpower RP +Cooling

79.9 KCHF 63.3 (CZR,SBU) 16.6 ?? Table,

RF Test

430.1 KCHF 93.9 (CZR,SBU) 336.2 ?? Stations,

BPMs, Vac, Cables

510 KCHF 157.2 OK 352.8 ??

2.8 Assembly 1.0 Design 0.8 Cooling

SiD +DAQ

72.6 ?? Cards

95.0 ?? Cables

501 KCHF 340 OK 72.6 ?? Cards 95.0 ?? Cables

8.2 All tasks ?? Cards/

Cage

ToF +Trigger

59.7 KCHF 59.6 (UTA,UAE,

SBU,UNM,OkSU)

236.4 KCHF 192.8 (UTA,UAE,SBU,

UNM,OkSU) 43.6 ?? Cables, DCS

296 KCHF 252.4 OK 43.6 ??

8.3 All tasks

UnCov’d Cost Profile

89.2 ?? (2014)

474.8 ?? (2015)

564.0 ?? (43%)

Note: TCL6 not included

AFP Technical Matters

2014 AFP Milestones •  Jan 24: Physics Review: passed • Mar 25-26: Technical Review: successful, no show stopper •  Apr 14: TDR Start; end: early September ‒ Jan-Jul: Prepare Beam Test Results for TDR: •  DESY Jan 2014 and earlier: AFP Silicon sensor test beam: preliminary results on the edgeless sensor and inhomogeneous irradiation effects on efficiency were presented by S.Grinstein. To be published.

•  FNAL May-Jun 2014: Final test of LQbar design: p.e. yield, timing resolution, cross talk, etc. using the standard AFP electronics. Results, including PMT lifetime, rate, and previous Qbar beam test results to be published.

•  Apr 2014: Irradiation results to be published in an internal AFP note. • May 7: AFP Kick-off (before EB approval) • May 9: EB approval (EB #180) •  Jun 20: CB approval (ATLAS WEEK) • Oct: LHCC approval • Nov 17-23: Integration Beam Test, together with ALFA.

08Apr2014 26

Concluding  remarks  •  The  huge  efforts  done  by  the  AFP  collabora4on  in  the  last  years  with  the  fundamental  support  of  the  ALFA  collabora4on  lead  to  the  approval  of  the  physics  program  and  to  a  successful  technical  review  in  ATLAS.    

•  First  RP  prototype  ready  by  mid-­‐October  for  the  November  Test  Beam.  •  Schedule  compa4ble  with  Xmas  2015  installa4on.    

27  

QCD

 and

 Forward  Ph

ysics  a

t  the

 LH

C  -­‐  ECT

*  Tren

to  -­‐  A.  Sbrizz

i  18/04/2014  

Despite  of  this,  we  got  very  bad  news  yesterday:      NSF  will  not  to  support  AFP  at  Stoney  Brook.  

 If  situa4on  will  not  change,  there  will  be  strong  consequences  on  several  cri4cal  areas  of  AFP  (ToF,  Roman  Pots,  DAQ,  Trigger).  A  further  delay  in  the  schedule  of  AFP  will  push  ATLAS  out  of  the  forward  physics  programs  at  LHC.