non-idealities of switched capacitor filter design

Upload: hariprasathv

Post on 04-Apr-2018

279 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/29/2019 Non-Idealities of Switched Capacitor Filter Design

    1/19

    Non-Ideal Effects in Switched-Capacitor Filter

    Hari Prasath

    March 11, 2009

    http://find/http://goback/
  • 7/29/2019 Non-Idealities of Switched Capacitor Filter Design

    2/19

    Non-Ideal Switch

    Charge Injection and Clock-Feedthrough

    Switch-Performance

    Opamp Offset Voltage

    Finite Gain,BandwidthFinite Bandwidth

    Slew Rate

    CDS

    CLS

    http://find/
  • 7/29/2019 Non-Idealities of Switched Capacitor Filter Design

    3/19

    VinRon Ron

    Ron Ron

    C

    VinC

    1

    2 1

    1

    1

    2

    2

    2

    +

    C

    +

    C

    Figure: Switch Model

    H(z) = (1 eT

    4RonC )2Z1

    1 Z1

    Reference:

    Analog MOS Integrated Circuits for Signal Processing- Roubik Gregorian and Gabor C. Temes.

    http://find/
  • 7/29/2019 Non-Idealities of Switched Capacitor Filter Design

    4/19

    Vin Vin

    Vin Vin

    Vdd

    Vdd

    Cboot

    C

    C

    CC

    C

    1

    1

    1

    1

    1

    1

    11b 1b

    1b

    1b

    1b

    1b1b

    1b

    Vin

    Sampling Switch

    Figure: Different Sampling Switches

    http://find/
  • 7/29/2019 Non-Idealities of Switched Capacitor Filter Design

    5/19

    Switch - Performance

    A single tone at3

    64 fs. 64-point DFT was performed at theoutput of each switch.Switch 2nd(dB) 3rd(dB) 4rd (dB) 5th(dB)

    NMOS + Dummy -47.2 -58.23 -70.432 -81.7Trans + Dummy -65.2 -86.5 -94.6 -94.8

    Bootstrap + Dummy -86.08 -109.7 -118.8 -114.1

    Vinj,error =15L2fc

    = 0.825mV

    Overlap capacitance estimate is 0.43 fF. For a 600 fF capacitorClock-Feedthrough 1 mV.

    http://find/
  • 7/29/2019 Non-Idealities of Switched Capacitor Filter Design

    6/19

    Transient Response of Switches

    2.36 2.37 2.38 2.39 2.4 2.41 2.42

    x 107

    0.946

    0.948

    0.95

    0.952

    0.954

    0.956

    0.958

    0.96

    Time in second(s)

    Voltage(V)

    Sample and Hold Output and Charge Injection

    Input

    Tx + Dummy

    TxGate

    NMOS

    Bootstrap +Dummy

    Bootstrap

    NMOS +Dummy

    http://find/
  • 7/29/2019 Non-Idealities of Switched Capacitor Filter Design

    7/19

    +

    ++

    +Voff

    Voff

    Vin

    Vo1Vo2

    1 1

    1

    1

    1

    22

    2

    2

    2 2

    1

    1C1

    5C2

    4C1

    6C23C2

    C1C2

    Figure: Low Q Structure

    VoffK1 + (Vo1 Voff)K4C1 = 0VoffK5 + (Vo1 Voff)K6 = Vo2K5

    Reference: Analog MOS Integrated Circuits for Signal Processing

    - Roubik Gregorian and Gabor C. Temes.

    http://find/http://goback/
  • 7/29/2019 Non-Idealities of Switched Capacitor Filter Design

    8/19

    Filter Offset Voltage

    Similar Calculation. Start from first opamp and move towards thefilter output.

    Vo1 = (1 +C2

    C3)Voff = 3mV

    Vo2 = Voff = 1mV

    Vo3 = VoffK1,2

    K4,2(Vo1 Voff) = 0.254mV

    Vo4 = (Vo5 Voff)K6,3

    K5,3 Voff = 0.05mV

    Vo5 = Voff K1,3K4,3

    = 2.04mV

    Ki,j represents the coefficient i in the section j.Reference: Analog MOS Integrated Circuits for Signal Processing

    - Roubik Gregorian and Gabor C. Temes.

    http://find/
  • 7/29/2019 Non-Idealities of Switched Capacitor Filter Design

    9/19

    Simulation Result

    0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

    x 106

    4

    3

    2

    1

    0

    1

    2

    3x 10

    3

    Time in second(s)

    Voltage(V)

    Steady State Filter Response with Opamp Offset

    Vo1

    Vo2

    Vo3

    Vo4

    V05

    2.95 mV

    2.2 mV

    0.254 mV

    0.05 mV

    1 mV

    Figure: Individual Stage Offset Voltage

    http://find/http://goback/
  • 7/29/2019 Non-Idealities of Switched Capacitor Filter Design

    10/19

    Effect of Finite Gain

    +

    C1

    C2

    1

    1

    2

    2

    -V/A

    Vin

    V

    C1 C2

    1

    2

    Vin[n-1]C1 V[n-1](1+1/A)

    C1

    C2

    V[n-1/2](1/A) V[n-1/2](1+1/A)C2

    1 2 1 22

    Figure: Finite Gain

    http://find/
  • 7/29/2019 Non-Idealities of Switched Capacitor Filter Design

    11/19

    Finite Gain Effect continued..

    Making an approximation Z 1 + sT, we get

    H(s) =

    C1C2T

    s+ C1C2AT

    s s+

    Pre-Distort Poles to compensate for the gain error.DC-Gain of1000, 5 MHz passband and 100 MHz sampling rate gives anapproximate =

    20000.

    Pole Ideal Pre-Distorted

    1,2 -0.0168

    0.1650i -0.0160

    0.1650i3,4 -0.0575 0.1151i -0.0570 0.1151i

    5 -0.0848 -0.0840

    Reference: Analog MOS Integrated Circuits for Signal Processing

    - Roubik Gregorian and Gabor C. Temes.

    http://find/
  • 7/29/2019 Non-Idealities of Switched Capacitor Filter Design

    12/19

    0.05 0.1 0.15 0.2 0.25 0.3

    1.4

    1.2

    1

    0.8

    0.6

    0.4

    0.2

    0

    0.2

    0.4

    Normalized frequency rad/s

    MagnitudeindB

    Predistorted and Ideal Response

    Figure: Predistorted and Ideal Response - Passband

    http://find/
  • 7/29/2019 Non-Idealities of Switched Capacitor Filter Design

    13/19

    Effect of Finite Gain on Pole-Q

    The effect of finite DC-gain changes s to s+. The Denominatorin the biquadratic transfer function changes to

    s2 + (0Q

    + 1 + 2)s+ (2 +

    01Q

    + 12)

    Variation in Passband ripple due to variation in Q is

    1 2 1

    A0

    Rp = 1 + 2QA0

    http://find/
  • 7/29/2019 Non-Idealities of Switched Capacitor Filter Design

    14/19

    Finite Gain Effect Continued...

    1 1.5 2 2.5 3 3.5 4 4.5

    x 106

    0.3

    0.25

    0.2

    0.15

    0.1

    0.05

    0

    0.05

    0.1

    Frequency in Hertz

    MagnitudeindB

    Effect of Finite Gain

    Increasing Adc

    http://find/
  • 7/29/2019 Non-Idealities of Switched Capacitor Filter Design

    15/19

    Finite Bandwidth EffectFinite Gain and bandwidth effect is modelled for an Integrator.Single-pole amplifier is assumed with finite DC Gain.

    Finite Bandwidth causes signal dependant settling error.

    Vo(Z)

    Vi(Z)=

    1

    1 Z1

    Vo(Z)

    Vi(Z)=

    1

    1 (1 1Adc)Z1

    Where = (1 k(1 e0T/2))e0T/2,k=feedback factor. 0 -unity gain bandwidth.

    0T

    2 1

    Reference: Finite Amplifier Gain and Bandwidth Effects inSwitched-Capacitor Filters. Gabor C. Temes. JSSC, Vol. SC-15,No :3, June-1980.

    http://find/
  • 7/29/2019 Non-Idealities of Switched Capacitor Filter Design

    16/19

    Figure: Effect of Finite Bandwidth

    Eff f Sl R

    http://find/
  • 7/29/2019 Non-Idealities of Switched Capacitor Filter Design

    17/19

    Effect of Slew-RateMaximum Slope based Slew-Rate limit

    Sr 0.3V/ns

    5.1 5.12 5.14 5.16 5.18 5.2

    x 107

    0.44

    0.46

    0.48

    0.5

    0.52

    0.54

    0.56

    0.58

    0.6

    0.62

    Time in second(s)

    MagnitudeinVoltage(V)

    Effect of Slew Rate

    Figure: Effect of Slew-Rate

    CDS

    http://find/
  • 7/29/2019 Non-Idealities of Switched Capacitor Filter Design

    18/19

    CDS

    +

    C2

    C3

    C1Vin

    2

    1

    1

    1

    2

    1

    1

    C1 C2 C3

    Vin(n-1) +V0(n-1)/A V0(n-1)(1+1/A) V0(n-1)

    V0(n-1/2)(1/A)2 V0(n-1)(1+1/A) V0(n-1/2)(1+1/A)

    1 Vin(n) +V0(n)/A V0(n)(1+1/A) V0(n)

    C

    Figure: CDS-Integrator

    Reference: Switched-Capacitor Integrators with Low Finite-GainSensitivity. K. Haug, F. Maloberti and Gabor C. Temes.

    C l t d L l Shifti I t t

    http://find/
  • 7/29/2019 Non-Idealities of Switched Capacitor Filter Design

    19/19

    Correlated Level Shifting Integrator

    +

    VinC1

    C2

    CCLS

    Sample

    +

    C2

    CCLSC1

    Estimate

    +

    C2

    CCLSC1

    Level Shift

    http://find/http://goback/