teoria inecuaciones

14
 DESIGUALDADES E INECUACIONES DESIGUALDAD Para hablar de la NO IGUALDAD podemos utilizar varios términos o palabras. Como son: distinto y desigual. El término "DISTINTO" (signo ), no tiene apenas importancia en matemáticas y en la vida real. Ejemplos: 4 5, que se lee 4 distinto de 5 (ó 5 distinto de 4) El término "DESIGUALDAD"  si tienen interés en la vida real y por tanto en matemáticas; y se forma con cualquiera de esos cuatro símbolos < > ) (  que" igual o menor " ) (  que" igual o mayor " ) (  que" menor " ) (  que" mayor " . Ejemplos de desigualdade s: a) 5 < 11 b) 2 > –7 c) 0 1 4 3 Las desigualdades tienen un inconveniente al leerse y es que se leen diferente de izquierda a derecha que de derecha a izquierda. Practica con los ejemplos anteriores. Con estos símbolos se construye la relación de orden, ya que dados dos números cualesquiera a y b, siempre se da una de estas condiciones: a es menor que b, a es igual a b, ó a es mayor que b. (a < b) (a = b) (a > b) si unimos si unimos a b a b Para evaluar una desigualdad, sólo podem os decir si es verdadera (V) o falsa (F.  Ej. Completa con V (v erdadero) o F (falso) las siguientes desigu aldades: 5 < 3 _  2 5 ≤  ___  –2 < –5 b b ___ 0,25 < 0,205 a+3 a+8 _  1 5 3  ___ a < a ___ 16 9 8 5  ___ a+b > a ___ 45 10 9 2  >  ___ 2a–1 > 2a+5 ___ 7 19 4 >  ___ 14 , 3 π  ___ Ej Completa con e l símbolo correcto las s iguientes desigua ldades: 3 _ _ 5, 8 ___ 8, 4 _ 20, 6  ___ 35 7 22   ___ π Una desigualdad falsa se puede convertir en verdadera cambiando de sentido  a la desigualdad; eje mp lo: 3>5 es falsa si cam biamos de sentido 3<5, es verdadera; cambiar de sentido  una desigualdad es cambiar el signo que tiene por el contrario. Pág – 1 – 

Upload: matematicaslaunidad

Post on 07-Jul-2015

5.944 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: teoria inecuaciones

5/9/2018 teoria inecuaciones - slidepdf.com

http://slidepdf.com/reader/full/teoria-inecuaciones 1/14

 

DESIGUALDADES E INECUACIONESDESIGUALDAD

Para hablar de la NO IGUALDAD podemos utilizar varios términos o palabras. Como son: distintoy desigual.

El término "DISTINTO" (signo ≠), no tiene apenas importancia en matemáticas y en la vida real.Ejemplos: 4 ≠ 5, que se lee 4 distinto de 5 (ó 5 distinto de 4)

El término "DESIGUALDAD" si tienen interés en la vida real y por tanto en matemáticas; y se

forma con cualquiera de esos cuatro símbolos

<

>

)( que"igualomenor "

)( que"igualomayor "

)( que"menor "

)( que"mayor "

.

Ejemplos de desigualdades:

a) 5 < 11 b) –2 > –7 c) 0 ≤ 1 4 ≥ –3Las desigualdades tienen un inconveniente al leerse y es que se leen diferente de izquierda aderecha que de derecha a izquierda. Practica con los ejemplos anteriores.

Con estos símbolos se construye la relación de orden, ya que dados dos números cualesquiera a y b,siempre se da una de estas condiciones: a es menor que b, a es igual a b, ó a es mayor que b.

(a < b) (a = b) (a > b)si unimos si unimos

a ≤ b a ≥ b

Para evaluar una desigualdad, sólo podemos decir si es verdadera (V) o falsa (F.Ej. Completa con V (verdadero) o F (falso) las siguientes desigualdades:

5 < 3 ___   25 ≤  ___ 

 –2 < –5 ___ b ≥ b ___  

0,25 < 0,205 ___ a+3 ≤ a+8 ___  

15

3≤  ___ a < a ___  

16

9

8

5≥  ___ a+b > a ___  

45

10

9

2 −>−  ___ 2a–1 > 2a+5 ___  

719

4−>  ___  14,3≥π   ___ 

Ej Completa con el símbolo correcto las siguientes desigualdades:

3 ___ –5, –8 ___ –8, –4 ___ –20, 6 ___ 357

22  ___ π 

Una desigualdad falsa se puede convertir en verdadera cambiando de sentido a la desigualdad;ejemplo: 3>5 es falsa si cambiamos de sentido 3<5, es verdadera; cambiar de sentido unadesigualdad es cambiar el signo que tiene por el contrario.

Pág – 1 – 

Page 2: teoria inecuaciones

5/9/2018 teoria inecuaciones - slidepdf.com

http://slidepdf.com/reader/full/teoria-inecuaciones 2/14

 

 PROPIEDADES DE LAS DESIGUALDADES 

De la suma:

Dada la desigualdad 3 < 8, si sumamos 7 a los dos miembros se obtiene 3+7< 8+7, otra desigualdad (en concreto) 10 < 15 del mismo sentido.Dada la desigualdad 3 < 8, si restamos 4 a los dos miembros se obtiene –1 <4, otra del mismo sentido.Dada la desigualdad 3 < 8, si sumamos x y restamos 1 se obtiene 2+x <7+x, otra del mismo sentido.

Del producto

Dada la desigualdad 3 < 8, si multiplicamos ambos miembros por 5 se obtiene15 < 40, otra del mismo sentidoDada la desigualdad 3 < 8, si multiplicamos ambos miembros por –6 seobtiene –18 > –48, otra pero de sentido contrario.Dada la desigualdad 3 < 8, si dividimos ambos miembros por 2 se obtiene

42

3

< , otra del mismo sentido.Dada la desigualdad 3 < 8, si dividimos ambos miembros por –1, se obtiene

 –3 > –8, otra de sentido contrario.

INECUACIÓN DE PRIMER GRADO CON UNA INCÓGNITA

Una inecuación es una desigualdad en la que aparece alguna incógnita en uno o en los dosmiembros de una desigualdad.

Son inecuaciones: 2 + 3x < 5 x2 – 5x + 3 ≥ 0 3x – y > 5y + 4x – 14

Las inecuaciones se clasifican por el grado y las incógnitas que tiene.

Veamos un problema: Encuentra los números que verifican: que el doble menos uno sea mayor que si al número le sumamos 4. Este problema tendría una transcripción algebraica así.

2 x – 1 > x + 4 Vemos que hay muchos números que cumplen esta condición.

Los números 9, 11, 90 y 6 vemos que la hacencierta así como otros muchos números.

Sin embargo, los números 3, –4 no la hacencierta, estos números no cumplen la condición,también hay otros.

Luego nos damos cuenta que la respuesta a unainecuación no es única, existen varias soluciones.

Pág – 2 – 

Si a los dos miembros de una desigualdad se les suma o resta un mismo número o una

expresión algebraica se obtiene otra desigualdad del mismo sentido.

Si los dos miembros de una desigualdad se multiplican o dividen por un número*Mayor que cero se obtiene otra desigualdad del mismo sentido*Menor que cero se obtiene otra desigualdad de sentido contrario.

 Nº Doble menos 1 Nº + 4 cierto9 17 13 SI

11 21 15 SI90 179 94 SI6 11 10 SI3 5 7 NO

 –4 –9 0 NO

Page 3: teoria inecuaciones

5/9/2018 teoria inecuaciones - slidepdf.com

http://slidepdf.com/reader/full/teoria-inecuaciones 3/14

 

En general una inecuación tiene infinitas soluciones.Resolvamos la anterior inecuación (Aplicando las propiedades de las desigualdades)

Sumamos 1 a los dos miembros 2x > x + 4 + 1Restamos x a los dos miembros 2x – x > 4 + 1Reducimos miembros x > 5

Por tanto, la solución de esta inecuación es: x > 5

Inecuación: 2 x – 1 > x + 4 si sustituimos la x por 92·9 – 1 > 9 + 4

17 > 13 que es una desigualdad cierta, y, por tanto, el valor 9 será una solución2·3 – 1 > 3 + 45 > 7 no es cierta la desigualdad, por tanto, el valor 3 no es solución.

* Para resolver una inecuación se transforma en otras más sencillas que sean equivalentes.

* Dos inecuaciones son equivalentes cuando ambas tienen las mismas soluciones.

Las propiedades que permiten transformar inecuaciones en otras más sencillas son las mismas quelas propiedades de las desigualdades, simplemente cambiando la palabra desigualdad por inecuación.

 PROPIEDADES DE LAS INECUACIONES 

De la suma:

Del producto

En la práctica las inecuaciones se resuelven igual que las ecuaciones pero teniendo en cuenta que aveces hay que cambiarla de sentido.

Pág – 3 – 

Las soluciones de una inecuación son los valores que puede tomar la incógnita tales queal sustituirlos en la inecuación la conviertan en una desigualdad cierta,

Si a los dos miembros de una INECUACIÓN se les suma o resta un mismo número ouna expresión algebraica se obtiene otra INECUACIÓN equivalente del mismosentido.

Si los dos miembros de una INECUACIÓN se multiplican o dividen por un número

*mayor que cero se obtiene otra INECUACIÓN equivalente del mismo sentido*menor que cero se obtiene otra INECUACIÓN equivalente a la dada pero desentido contrario.

Se debe cambiar de sentido una inecuación cuando:

* Cambiamos todos los signos de una inecuación (Equivale a multiplicar todos por –1)* Cuando sea negativo y utilicemos: "el que está multiplicando pasa al otro miembro

dividiendo"* A la hora de quitar denominadores en una inecuación cuando el denominador común

es negativo

Page 4: teoria inecuaciones

5/9/2018 teoria inecuaciones - slidepdf.com

http://slidepdf.com/reader/full/teoria-inecuaciones 4/14

 

EJEMPLOS:

sentido.decambiar 

quetenidohemosnoinecuaciónestaen

53

15 resolvemos

153 reducimos

31225 strasponemo

 

=>

>

+>−

+>−

 x

 x

 x x

122x35x

sentidoelcambiadohemosSIinecuaciónestaen

43

12 resolvemos 

123 reducimos 

85174 onemostrasp

17584  paréntesisquitamos

 

−=−

>

<−++−<−

−<−−

−<−−

 x

 x

 x x

 x x

17x52)4(x

119

19

1919

1541229

1242159

26)2(2)53(3

sentidodecambiar quehayno

 6, por miembrosdoslosndomultiplica resdenominadoquitamos

=≤

+≤+−

−+≤−

⋅−+≤−

−+

≤−

 x

 x

 x x x

 x x x

 x x x

2x3

2x

2

53x

negativoes29

 porquecambiar quetenidohemos 29

26

2629

3263182012

6318322012

)2(318)85(412

cambiar quehayno12, por miembrosdoslosndomultiplicaresdenominadoquitamos

−≤

≥−

+−≥−−−

−+≥−−

−+≥+−

−+≥

+−

 x

 x

 x x x x

 x x x x

 x x x x

4

2x

2

3x

3

85xx

 FORMAS DE DAR LA SOLUCIÓN A UNA INECUACIÓN 

a) Según se obtiene en la resolución. 3 ejemplos anteriores: x > 5;  x > – 4; 1≤ x

 b) En forma de intervalos: los mismos anteriores son: (5 , +∞); (–4 , +∞); ( ]1,∞−

c) De forma gráfica, utilizando la recta real

Siempre que resolvamos una inecuación en un sentido, también estamos resolviendo otrainecuación de sentido contrario. Ejem. Si tenemos la inecuación "algo < otro algo"cuya solución es x < 7; la solución de la inecuación "algo> otro algo" es x > 7

 Resolver las siguientes inecuaciones:

1) 11253 +≥− x x 2) )11(2)75(4 +<+− x x x

3) 213

4+<−

− x

 x4) 2

3

14)53(4 +≤

−−+ x

 x x

5)3

55

2)6(2 +−<++ x

 x x 6) )118(6

2

74

5

)34(3+−≥

−−

+ x

 x x

Pág – 4 – 

Page 5: teoria inecuaciones

5/9/2018 teoria inecuaciones - slidepdf.com

http://slidepdf.com/reader/full/teoria-inecuaciones 5/14

 

INECUACIÓN DE PRIMER GRADO CON DOS INCÓGNITAS

Ejemplos de este tipo son: x + y ≤ 0 2x + y > 5 4x – 7y < 11

Para este tipo de inecuación no se puede dar una solución de forma algebraica, sólo se puededar una solución de forma gráfica, para ello se requiere la representación gráfica de funciones.

Es obvio decir que para su resolución la inecuación debe estar simplificada.

La solución es, siempre, un semiplano de los que la gráfica (siempre una línea recta) divideal plano, basta probar con un punto cualquiera de un semiplano para determinar cuál es.

Ejemplo: Resolver la inecuación 2x + y > 5

Para ello representamos sobre unos ejescartesianos la función 2x + y = 5 ó mejor la funciónequivalente  y = 5 – 2x, obtenida de la inecuación.Los puntos dibujados en la recta corresponde a la

igualdad (2x + y = 5 ); la desigualdad > o < esta en unode los dos semiplanos en que la recta divide al plano .Para determinar cuál de los dos semiplanos es larepuesta cogemos un punto cualquiera; el mejor es elorigen ( 0, 0 ) y probamos con él: 2 · 0 + 0 > 5; como noes cierto, el semiplano que contiene al origen no es lasolución, por lo tanto es el otro que aparece sombreado.

Todos los puntos (x,y) situados en el plano sombreado forman parte de la solución de lainecuación, cojamos uno cualquiera: el (3,1) y lo sustituimos en la inecuación: 2 · 3 + 1 > 5 yvemos que es cierto; podemos probar con el punto ( 3’26 , – 0’34 )Si la inecuación esta construida con el símbolo ≥ o ≤ la solución sería un semiplano y además los

 puntos de la recta dibujada. Resolver las siguientes inecuaciones:

1) 63 ≤− y x 2) 13 ≥+ y x

3) 052 >+ y x 4) 543 −<− y x

5) x y x

532

≥−+

6) 123

524 −<

+− x

 y x

Pág – 5 – 

Page 6: teoria inecuaciones

5/9/2018 teoria inecuaciones - slidepdf.com

http://slidepdf.com/reader/full/teoria-inecuaciones 6/14

 

SISTEMAS DE INECUACIONES DE PRIMER GRADO CON UNA INCÓGNITA

Ya que la solución de una inecuación es un conjunto numérico ( x > 3 ). Se pueden resolver sistemas de inecuaciones de primer grado con una incógnita simplemente buscando las solucionescomunes a todas las inecuaciones.

Ejemplo:

><4

9

 x

 x , vemos que las dos inecuaciones tienen en común el conjunto o

intervalo abierto (4 , 9); o sea "todos los números comprendidos entre 4 y 9".

Puedes utilizar las representaciones gráficas de cada inecuación para buscar las solucionescomunes.

La forma de resolver estos sistemas es la siguiente: “Se resuelve cada inecuación individualmente yluego se busca la solución común”

Ejemplo.

Resolver.

<−

>+

(b) 19

(a) 512

 x

 x Resolvemos cadainecuación individualmente

<

>

10:Sol (b)

2:Sol (a)

 x

 x

Que si pensamos un poco vemos que lo que tienen en común son los números mayores que 2 ymenores que 10, o sea, el intervalo (2,10).

Podemos buscar la solución común mediante la representación gráfica sobre la Recta Real, pudiendo hacerse de dos formas I) Marcando los que son (utilizando colores)

II) Borrando los que no son.Con el ejemplo anterior:

De la forma I) La Sol de (a) en azul, y la Sol de (b) en rojo

Los comunes son los números marcados con ambos colores; el intervalo (2 , 10)

De la forma II) tachando

vemos el intervalo (2 , 10)

La forma más elegante es representar las soluciones en forma de intervalos y buscar la

solución común hallando la intersección de ambos.

∞≡<

+ ∞≡>

,10)(- 10:Sol (b)

 )(2, 2:Sol (a)

 x

 xla solución común sería: (2,10),10)(-)(2, =∞∩+ ∞

 Resolver los siguientes sistemas de inecuaciones con una incógnita:

1)

>+

>−

31

573

 x

 x2)

>−

≥−

132

17

 x

 x

3)

>

<−

>

 x

 x

 x

7

2

53

4)

<

−>

−∈

232

)10,6(

 x x

 x

Pág – 6 – 

Page 7: teoria inecuaciones

5/9/2018 teoria inecuaciones - slidepdf.com

http://slidepdf.com/reader/full/teoria-inecuaciones 7/14

 

SISTEMAS DE DOS INECUACIONES DE PRIMER GRADO CON DOSINCÓGNITAS

Igual que en las inecuaciones de primer grado con dos incógnitas sólo se puede dar una solucióngráfica, en los sistemas ocurre lo mismo. Será la intersección de los semiplanos de cada inecuación.

Ejemplo: Resolver el sistema:

<+>−73

02

 y x

 y x

Para ello representamos las funciones  y = 2x en (verde) y lafunción  y = 7 – 3x (en rojo).Buscamos los semiplanos de cada inecuación.La solución del sistema es la intersección de los dos semiplanos, eneste caso la región del plano sombreado.Si el sistema está construido con el símbolo ≥ o ≤ en alguna o enlas dos inecuaciones, la solución sería la región sombreada y además los puntos de la recta dibujada

 bien una o las dos rectas.

Ejemplo: Sistema de inecuaciones:

>+

≥−

253

32

 y x

 y x

En azul la solución del sistema.

Pág – 7 – 

Page 8: teoria inecuaciones

5/9/2018 teoria inecuaciones - slidepdf.com

http://slidepdf.com/reader/full/teoria-inecuaciones 8/14

 

SISTEMAS DE MÁS DE DOS INECUACIONES DE PRIMER GRADO CON DOSINCÓGNITAS

Sólo existe solución gráfica como en las anteriores.

Ejemplo: Sistema de inecuaciones:

<

−≥

 y x

 y

 y

1

2

Ejemplo: Resolver el sistema:

≤+

≤+

∈≥≥

(2) 6032

(1) 363

, ; 0 ; 9

 y x

 y x

 N  y x y x

Representamos todas las inecuaciones en

unos mismos ejes cartesianos y buscamos lo común.

En general es un recinto que puede ser abierto o cerrado.

Pág – 8 – 

Page 9: teoria inecuaciones

5/9/2018 teoria inecuaciones - slidepdf.com

http://slidepdf.com/reader/full/teoria-inecuaciones 9/14

 

INECUACIÓN DE 2º GRADO

* Debes tener en cuenta que decir “ mayor que cero” y decir “positivo” es lo mismo, y decir 

“menor que cero” y decir “negativo” es lo mismo.* Las inecuaciones de 2º grado se resuelven igual ya sea con el símbolo > 0, < 0, ≥ 0 ó ≤ 0

* Hay cuatro formas de resolver la inecuación. Las veremos con un ejemplo.

Resolver la siguiente inecuación: 0452

<

>

+− x x . Punto de partida para todas.

1ª forma y la más recomendada.

Hallamos los valores para la  x que dan el valor cero, esto es, resolvemos la ecuación:0452 =+− x x ; obtenemos dos valores x1 = 1 y  x2 = 4. Para estos valores la expresión 452 +− x x  

toma el valor cero, eso quiere decir que en los demás valores no da cero, esto es, dan positivo ( > 0)o negativo ( < 0); es lo mismo que: “analizar los signos que toma la expresión 452 +− x x ”. Los

 buscamos de una manera gráfica sobre la recta Real representado los valores que dan cero.

La recta Real queda divida en tres intervalos:

I1 = ( – ∞ , 1); I2 = ( 1 , 4 ) I3 = ( 4 , +∞ )

Pues bien, la expresión 452 +− x x siempre toma el mismo signo ( + , – ) en cada uno delos intervalos; basta probar con un valor cualquiera del intervalo para saber el sigo que toma en todoel intervalo,

En el intervalo I1 probamos con x = 0 la expresión toma el valor 4 que es > 0

En el intervalo I2 probamos con x = 2 la expresión toma el valor –2 que es < 0

En el intervalo I3 probamos con x = 5 la expresión toma el valor 19 que es > 0

Que se representa así:

Si estamos resolviendo la inecuación: 0452 >+− x x , la solución sería: ( – ∞ , 1) ∪ ( 4 , +∞ )

Si estamos resolviendo la inecuación: 0452 <+− x x , la solución sería: ( 1 , 4 )

Si estamos resolviendo la inecuación: 0452 ≥+− x x , la solución sería: ( – ∞ , 1 ] ∪ [ 4 , +∞ )

Si estamos resolviendo la inecuación: 0452 ≤+− x x , la solución sería: [ 1 , 4 ]

 NOTA.– A la hora de probar con un valor del intervalo conviene probar con valores exageradoscuando se pueda.

Pág – 9 – 

Page 10: teoria inecuaciones

5/9/2018 teoria inecuaciones - slidepdf.com

http://slidepdf.com/reader/full/teoria-inecuaciones 10/14

 

2ª forma. Es transformarla en un sistema de dos ecuaciones con una incógnita.

Se descompone en factores la expresión 452 +− x x , pues utilizar Ruffini o la ecuación de 2º grado452 +− x x = )4()1( −⋅− x x

* Si la inecuación es 0452 >+− x x , descompuesta en factores queda: 0)4()1( >−⋅− x x y“decimos”: “el producto de dos factores es positivo si ambos son positivos ó ambos negativos” yconstruimos los dos sistemas de inecuaciones siguientes:

Los dos positivos

>−

>−

04

01

 x

 xDe solución x > 4

Los dos negativos

<−

<−

04

01

 x

 xDe solución x < 1

Luego la solución final sería: x < 1 ó x > 4 equivalente a ( – ∞ , 1) ∪ ( 4 , +∞ )

* Si la inecuación es 045

2 <+−x x , descompuesta en factores queda:

0)4()1( <−⋅− x x

y“decimos”: “el producto de dos factores es negativo si uno es positivo y el otro negativo, yviceversa” y construimos los dos sistemas de inecuaciones siguientes:

 positivo-negativo

<−

>−

04

01

 x

 xDe solución: ( 1 , 4 )

negativo-positivo

>−

<−

04

01

 x

 xDe solución Incompatible

Luego la solución final sería: ( 1 , 4 )

Se resuelve de forma análoga si es ≥ 0 ó ≤ 0

3ª forma, recomendada para otros tipos de inecuaciones.

Se descompone en factores la expresión 452 +− x x , puedes utilizar Ruffini o la ecuación de 2º

grado 452 +− x x = )4()1( −⋅− x x

Se analizan gráficamente los signos de cada uno de los factores sobre rectas Reales iguales y luegose analiza el producto.

Signo de ( x – 1 )

Signo de ( x – 4)

Signo de ( x – 1 ) · ( x – 4)

Si estamos resolviendo la inecuación: 0452 >+− x x , la solución sería: ( – ∞ , 1) ∪ ( 4 , +∞ )

Si estamos resolviendo la inecuación: 0452 <+− x x , la solución sería: ( 1 , 4 )

Se resuelve de forma análoga si es ≥ 0 ó ≤ 0

Pág – 10 – 

Page 11: teoria inecuaciones

5/9/2018 teoria inecuaciones - slidepdf.com

http://slidepdf.com/reader/full/teoria-inecuaciones 11/14

 

4ª forma, utilizar la representación gráfica de funciones.

Representamos la función  y x x =+− 452 . Podemos utilizar DERIVE

Si queremos resolver la inecuación: 0452 >+− x x , tenemos que ver ¿quévalores “ x” tienen la “ y” positiva.

Si queremos resolver la inecuación: 0452 <+− x x , tenemos que ver ¿quévalores “ x” tienen la “ y” negativa.

Se resuelve de forma análoga si es ≥ 0 ó ≤ 0

Como vemos en la gráfica los valores x < 1 tienen la y positiva ( > 0 ) y también los valores x > 4.

Y los valores x comprendidos entre 1 y 4 tienen la y negativa. ( < 0 )Observa que los valores para la  x = 1 y  x = 4, la función toma el valor CERO, que son donde lagráfica corta el eje X, y estaríamos resolviendo la ecuación 0452 =+− x x

Ejercicio: Resolver la siguiente inecuación: 012163 2 ≤−− x x

 Por la 1ª forma: Representamos sobre la recta Real los valores que anulan la inecuación, osea, resolvemos la ecuación: 012163 2 =−− x x , cuyas soluciones son  x1 = –2/3 y x2 = 6.Posteriormente analizamos los signos en cada intervalo

Luego la solución de la inecuación es: [ – 2/3 , 6 ]

Ejercicio: Resolver la siguiente inecuación: 0276 2 >+− x x

 Por la 1ª forma: Representamos sobre la recta Real los valores que anulan la inecuación, osea, resolvemos la ecuación: 0276 2 >+− x x , cuyas soluciones son  x1 = 1/2 y  x2 = 2/3.Posteriormente analizamos los signos en cada intervalo

Luego la solución de la inecuación es: ( – ∞ , ½ ) ∪ ( 2/3 , +∞ )

Pág – 11 – 

Page 12: teoria inecuaciones

5/9/2018 teoria inecuaciones - slidepdf.com

http://slidepdf.com/reader/full/teoria-inecuaciones 12/14

 

Ejercicio: Resolver la siguiente inecuación: 025102 >+− x x

  Por la 1ª forma: Representamos sobre la recta Real los valores que anulan lainecuación, o sea, resolvemos la ecuación: 025102 =+− x x , cuyas soluciones son x1 =5 doble. Posteriormente analizamos los signos en cada intervalo

Sólo tenemos dos intervalos, que probando con – 1000 y con + 1000, los dos dan positivo

Luego la solución de la inecuación es: Todos los números Reales menos  x = 5que da el valor CERO. Escrito en matemáticas: { }5−ℜ

Si hubiese sido la inecuación: 025102 ≥+− x x

La solución hubiese sido: “Todos los números Reales”

Si hubiese sido la inecuación: 025102 <+− x x

La solución hubiese sido: “No tendría solución”. Incompatible

Si hubiese sido la inecuación: 025102 ≤+− x x

La solución hubiese sido:  x = 5. Solución única

Ejercicio: Resolver la siguiente inecuación: 026102 >+− x x

  Por la 1ª forma: Representamos sobre la recta Real los valores que anulan lainecuación, o sea, resolvemos la ecuación: 026102 =+− x x , que al resolverla no tieneraíces reales; por lo tanto en la recta Real no podemos representar ningún valor, esto essólo tenemos un intervalo. Probamos con cualquier número de la recta (el cero) yanalizamos el signo que toma; en este caso 26 que es >0 (+)

Luego la solución de la inecuación es: Todos los números Reales Escrito enmatemáticas: ℜ .

Si hubiese sido la inecuación: 026102≥+− x x

La solución hubiese sido: “Todos los números Reales”, ℜ

Si hubiese sido la inecuación: 026102 <+− x x

La solución hubiese sido: “No tendría solución”. Incompatible

Si hubiese sido la inecuación: 026102 ≤+− x x

La solución hubiese sido: “No tendría solución”. Incompatible

Pág – 12 – 

Page 13: teoria inecuaciones

5/9/2018 teoria inecuaciones - slidepdf.com

http://slidepdf.com/reader/full/teoria-inecuaciones 13/14

 

INECUACIÓN RACIONAL O DE GRADO SUPERIOR 

Para este tipo de ejercicios es mejor la 3ª forma.

 Las inecuaciones racionales hay que resolverlas con la expresión CERO en uno de sus miembros,

si no es así se pasan las expresiones algebraicas a un miembro y se realizan las operaciones hastadejarlas como una única fracción algebraica.

Se analizan gráficamente los signos que toma el numerador y denominador, por separado,sobre rectas Reales iguales y luego se analizan los signos del cociente. Para el caso 0 ,0 ≥≤ tenen cuenta que el denominador no puede ser cero.

 Las inecuaciones de grado superior  hay que resolverlas con la expresión CERO en uno de susmiembros, si no es así se pasan las expresiones algebraicas a un miembro y se realizan lasoperaciones hasta dejarlas como una única expresión algebraica. Después se descompone enfactores; se analizan los signos de cada uno de los factores sobre rectas Reales iguales y luego seanalizan los signos del producto.

Ejercicio de racional: Resolver la siguiente inecuación: 0425 >

+−

 x x

  Por la 3ª forma: Se analizan gráficamente los signos que toma el numerador y denominador, por separado, sobre rectas Reales iguales y luego se analizan los signos del cociente.

Signo de ( x – 5)

Signo de (2 x + 4)

Signo de42

5

+

 x

 x

Al estar resolviendo la inecuación: 042

5>

+−

 x

 x, la solución es: (– ∞ , – 2) ∪ (5 , + ∞)

Si hubiese sido la inecuación: 042

5≥

+

 x

 x

La solución hubiese sido: (– ∞ , – 2) ∪ [5 , + ∞)

Si hubiese sido la inecuación: 042

5<

+

 x

 x

La solución hubiese sido: (– 2 , 5)

Si hubiese sido la inecuación: 042

5≤

+

 x

 x

La solución hubiese sido: (– 2 , 5]

Ejercicio de racional: Resolver la siguiente inecuación: 12

6<

+

 x

 x

Sol: 02

8 0

2

26 01

2

6 1

2

6<

+

−⇒<

+

−−−⇒<−

+

−⇒<

+

 x x

 x x

 x

 x

 x

 x,

cuya solución es:  x > – 2

Pág – 13 – 

Page 14: teoria inecuaciones

5/9/2018 teoria inecuaciones - slidepdf.com

http://slidepdf.com/reader/full/teoria-inecuaciones 14/14

 

Ejercicio de grado TRES: Resolver la siguiente inecuación: 012133 >+− x x

  Por la 3ª forma: Descomponemos la expresión en factores, (utilizamos Ruffini) yqueda: )4)(3)(1(12133 +−−=+− x x x x x , cuyas raíces (soluciones de la ecuación)son:  x1 = – 4,  x2 = 1 y  x3 = 3.

Se analizan gráficamente los signos de cada uno de los factores sobre rectas Reales iguales y luegose analiza los signos del producto.

Signo de ( x + 4)

Signo de ( x – 1)

Signo de ( x – 3)

Signo de ( x + 4) ( x – 1) ( x – 3)

Al estar resolviendo la inecuación 012133 >+− x x , la solución es: (– 4 , 1) ∪ (3 , + ∞).

Si hubiese sido la inecuación: 012133 ≥+− x x

La solución hubiese sido: [– 4 , 1]∪ [3 , + ∞)

Si hubiese sido la inecuación: 012133 <+− x x

La solución hubiese sido: (– ∞ , – 4) ∪ (1 , 3)

Si hubiese sido la inecuación: 012133 ≤+− x x

La solución hubiese sido: (– ∞ , – 4] ∪ [1 , 3]

Ejercicio mezcla: Resolver la siguiente inecuación: 01

32

>−

 x

 x

 Por la 3ª forma: Descomponemos en factores y analizamos signos del numerador y denominador.

Signo de ( x – 3)Signo de ( x – 1) ( x + 1)

Signo de1

32 −

 x

 x

Al estar resolviendo la inecuación: 01

32

>−

 x

 x, la solución es: (–1, 1) ∪ (3 , + ∞)

Pág – 14 –