subsidies’ unintended inequities: how dynamic finance addresses “just rewards” dilemma

18
18 th International Symposium on Ethics, Business and Society, IESE Business School, Barcelona, Spain, June 30 to July 1, 2014 1 Subsidies’ unintended inequities: How dynamic finance addresses “just rewards” dilemma Ricardo G Barcelona King’s College, London, [email protected] Bernardo M Villegas University of Asia and the Pacific, Philippines Energy subsidies uncannily work against policy’s avowed intentions of wide scale renewable energy deployment. Perversely, technologyspecific subsidies encourage investments in “expensive” technologies where consumers de facto underwrite the costs differences. Consequently, investing firms retain excess returns while assuming limited financial risks. Consumers respond by coaxing the regulator a posteriori to cut subsidies to rebalance “just rewards” commensurate to firms’ risktaking. This paper suggests that a dynamic approach to corporate finance better addresses “just rewards” dilemma. This is feasible when optimisation is undertaken as a portfolio decision under flexibility conditions. Hence, by leaving firms to respond strategically according to their resource endowment and aspirations, a more equitable route becomes available. The competitive market allocates through a pricing mechanism benefits, risks and burdens among firms and consumers. Key words: Energy subsidies, carbon tax, floor power price 1. Introduction Corporate finance is premised on rational human behaviour that ignores explicit considerations of ethical and moral values. Under this positivist construct, the economic dimension follows utilitarian notion where returns (or future cash flows) are traded against risks (or deviations from expected outcome) 1 . In turn, regulation apportions economic externalities to stakeholders through the state’s coercive power to tax 2 . Within this context, “just rewards” follow that risktaking is compensated with commensurate returns. The translation to practice is proving problematic. Within the narrow remit of capital budgeting, marginal theory of value produces unintended inequities. This happens when firms appropriate returns that are divorced from the financial risks that they assume. To illustrate this phenomenon, we examine the case of subsidies to renewable energy and the role that financial analysis may have played in perpetuating inequitable outcomes. 1 John R Hicks (1946). Value and capital. (2 nd edition). London: Oxford University Press. 2 George J Stigler (1971). “The theory of economic regulation”. The Bell Journal of Economics and Management Science, 2(1), 321.

Upload: iese

Post on 30-Mar-2023

0 views

Category:

Documents


0 download

TRANSCRIPT

18th  International  Symposium  on  Ethics,  Business  and  Society,  IESE  Business  School,  Barcelona,  Spain,  June  30  to  July  1,  2014    

1  

Subsidies’  unintended  inequities:  How  dynamic  finance  addresses  “just  rewards”  dilemma  

 Ricardo  G  Barcelona  –  King’s  College,  London,  [email protected]  

Bernardo  M  Villegas  –  University  of  Asia  and  the  Pacific,  Philippines      

Energy  subsidies  uncannily  work  against  policy’s  avowed  intentions  of  wide  scale   renewable   energy   deployment.   Perversely,   technology-­‐specific  subsidies   encourage   investments   in   “expensive”   technologies   where  consumers   de   facto   underwrite   the   costs   differences.   Consequently,  investing  firms  retain  excess  returns  while  assuming  limited  financial  risks.  Consumers  respond  by  coaxing  the  regulator  a  posteriori  to  cut  subsidies  to  rebalance   “just   rewards”   commensurate   to   firms’   risk-­‐taking.   This   paper  suggests   that   a   dynamic   approach   to   corporate   finance   better   addresses  “just   rewards”  dilemma.   This   is   feasible  when  optimisation   is   undertaken  as  a  portfolio  decision  under  flexibility  conditions.  Hence,  by   leaving  firms  to   respond   strategically   according   to   their   resource   endowment   and  aspirations,   a   more   equitable   route   becomes   available.   The   competitive  market  allocates  through  a  pricing  mechanism  benefits,  risks  and  burdens  among  firms  and  consumers.              

Key  words:  Energy  subsidies,  carbon  tax,  floor  power  price    

1.   Introduction    Corporate   finance   is   premised   on   rational   human   behaviour   that   ignores   explicit  considerations   of   ethical   and   moral   values.   Under   this   positivist   construct,   the  economic  dimension  follows  utilitarian  notion  where  returns  (or  future  cash  flows)  are  traded   against   risks   (or   deviations   from   expected   outcome)1 .   In   turn,   regulation  apportions  economic  externalities  to  stakeholders  through  the  state’s  coercive  power  to  tax2.  Within  this  context,  “just  rewards”  follow  that  risk-­‐taking  is  compensated  with  commensurate  returns.      The  translation  to  practice   is  proving  problematic.  Within  the  narrow  remit  of  capital  budgeting,   marginal   theory   of   value   produces   unintended   inequities.   This   happens  when   firms   appropriate   returns   that   are   divorced   from   the   financial   risks   that   they  assume.  To  illustrate  this  phenomenon,  we  examine  the  case  of  subsidies  to  renewable  energy  and  the  role  that  financial  analysis  may  have  played  in  perpetuating  inequitable  outcomes.        

                                                                                                               1  John  R  Hicks  (1946).  Value  and  capital.  (2nd  edition).  London:  Oxford  University  Press.  2  George   J   Stigler   (1971).   “The   theory   of   economic   regulation”.   The   Bell   Journal   of   Economics   and  Management  Science,  2(1),  3-­‐21.  

18th  International  Symposium  on  Ethics,  Business  and  Society,  IESE  Business  School,  Barcelona,  Spain,  June  30  to  July  1,  2014    

2  

Subsidies3  are   seen   as   sine   qua   non   to   wide   scale   renewable   energy   deployment.  Recognised   for   their   social   benefits   in   reducing  pollution,   renewable   energy’s   higher  private  costs   (i.e.  capital  spend)  when  compared  to   fossil   fuel   technologies  are  often  compensated  through  subsidies.  While  “social  compensation”  represents  an  accepted  wisdom   in   energy   investment   and  policy   circles4,   policy   outcomes  often   fall   short   of  objectives5.  Increasingly,  renewable  energy  returns  are  dependent  to  varying  extent  on  subsidies.  In  effect,  firms  assume  less  financial  risks,  with  subsidies  that  consumers  de  facto  underwrite  underpinning  their  “secure  cash  flows”.    This  phenomenon   raises  a   fundamental  question:  Why  energy   subsidies  often   fail   to  achieve  policy  objectives,  while  perpetuating  inequitable  resource  allocation?    Corporate   finance   inadvertently   participates   in   subsidies’   unintended   inequities  through  the  practices  followed  in  capital  budgeting.  This  occurs  at  two  levels:  One,  in  setting  subsidies  as   static  “social   compensation”  consistent  with   the  grid  price  parity  premise;  and  two,   in   incorrectly  evaluating  energy   investments  optimised  as  discrete  investments.    Subsidies  are  set  following  grid  price  parity  logic.  This  takes  the  differences  in  life  cycle  costs  of  energy  (LCOEs)6,  calculated  under  static  price  assumptions,  between  fossil  fuel  and   renewable   energy   technologies.   Inadvertently,   subsidies   over-­‐compensate  renewable  energy  when  actual  output  prices  are  above  their  LCOEs  (or  vice  versa).      Capital  budgeting,  employing  net  present  values  (NPVs),  follows  a  pecking  order  when  ranking   competing   opportunities   from   highest   to   lowest   positive   values.   The   logic  suggests   that  capital   is   committed   first   to   the  highest  NPV  project,  with   investments  continuing   to  be  made  until   the   final  marginal   sum   is   committed7.   Two  assumptions  underpin  this  pecking  order.  One,  the  investment  performs  according  to  plan;  and  two,  greater   returns   certainty   equate   to   lower   risks,   hence   increasing   value   when   cash  flows  are  discounted  at  lower  rates.  For  renewable  energy,  subsidies  are  said  to  reduce  the  investing  firms’  financial  risks.          Under   a   static   and   unchanging   world,   NPVs   may   correctly   rank   the   opportunities  according  to  their  financial  merits,  given  that  certainty  in  outcomes  effectively  reduces  risks.  However,  under  dynamic  markets,  the  pecking  order  falls  apart  no  sooner  than                                                                                                                  3  Broadly  applied  to  incentives  and  subsidies  to  renewable  energy  aimed  at  encouraging  adoption.  The  forms   used   in   energy  markets   are   outlined   in   Enzensberger,   N.,  Wietschel,  M.   and   Rentz,   O.   (2002).  “Policy  instruments  fostering  wind  energy  projects  –  A  multi-­‐perspective  evaluation  approach”.  Energy  Policy,  30(9),  793-­‐801.      4  Stern,   N.   (2006).   The   economics   of   climate   change:   The   Stern   review.   Cambridge,   United   Kingdom:  Cambridge  University  Press.  5  Toke,   D.,   Breukers,   S.,   and   Wolsink,   M.   (2008).   “Wind   power   deployment   outcomes:   How   can   we  account  for  the  differences?”  Renewable  and  Sustainable  Energy  Reviews,  12(4),  1129-­‐1147.  6  A   detailed   calculation   methodology   is   provided   in   Roth,   I.F.   and   Ambs,   L.L.   (2004).   “Incorporating  externalities  into  a  full  cost  approach  to  electric  power  generation  life  cycle  costing”.  Energy,  29,  2125-­‐2144.  7  John   R.   Graham   and   Campbell   R.   Harvey   (2001):   “The   theory   and   practice   of   corporate   finance:  Evidence  from  the  field”.  Journal  of  Financial  Economics,  60  (2/3),  187-­‐243.    

18th  International  Symposium  on  Ethics,  Business  and  Society,  IESE  Business  School,  Barcelona,  Spain,  June  30  to  July  1,  2014    

3  

the   first   encounter   with   volatilities.   In   the   process,   firms   would   either   prefer  investments   with   low   volatilities,   or   require   greater   guarantees   of   secure   returns  before   committing   their   capital.   The   latter   is   achieved   by   higher   subsidies,   or  transferring  risks  to  consumers  through  take-­‐or-­‐pay  contracts.    Applied  to  energy  investments,  proven  fossil  fuel  technologies  are  preferred  for  their  predictable   cash   returns.  While   this   comes  at   the  expense  of   renewable  energy,   the  consequences  to  technology  choices  run  counter  to  the  “social  compensation”  notion.  Subsidies   deter   technology   innovation,   while   reversing   the   benefits   from   “learning  curve”  effects8  where  lower  costs  follow  wider  deployment.  When  cost  reductions  fail  to  materialise,  “social  compensation”  will  have  to  rise  to  make  up  for  the  higher  costs  differences.      In   an   imperfect   market   economy,   “what   moves   us,   reasonably   enough,   is   not   the  realisation  that  the  world  falls  short  of  being  completely  just  –  which  few  of  us  expect  –   but   that   there   are   clearly   remediable   injustices   around   us   which   we   want   to  eliminate”9.  Energy  subsidies,  and  its  implications  for  capital  allocation,  appear  to  be  a  place  to  start.      Technology-­‐specific   subsidies   are   predicated   on   endowing   a   government   with   a  foresight   (that   it   does   not   possess)   to   identify  a   priori   technological   champions   that  deserve   support.   This   abdicates   a   firm’s   risk-­‐taking   to   the   government   and   hence,  questions  the  investing  firm’s  rights  to  retain  any  excess  returns  from  subsidies.      In  this  paper,  we  posit  that  grid  price  parity  principles  render  indeterminate  a  “correct”  setting   of   subsidies   when   energy   prices   are   volatile.   This   leads   to   uncertainty   of  benefits   resulting   in   low   deployment   rates   while   increasing   rent-­‐extraction  opportunities.   Capital   budgeting   suffers   from   a   similar   malaise.   When   proven  technologies  are  preferred,   technological   innovations   such  as  advances   in   renewable  energy  will   experience   greater   difficulties   in   being   adopted.   A   dynamic   approach   to  finance   better   addresses   the   “just   rewards”   dilemma.   When   optimisation   is  undertaken  as  a  portfolio  decision  under  flexible  conditions,  renewable  energy’s  hedge  value   against   rising   fuel   prices   can   be   explicitly   evaluated.   This   is   combined   with  carbon   taxation   as   pricing   signal   to   adopt   non-­‐polluting   technologies.   Consequently,  firms   retain   their   right   to   decide   on   their   technology   choices   informed   by   their  resources  endowment,  portfolio  aspirations  and  capabilities.  In  the  process,  renewable  energy   technologies   are   adopted   or   discarded   based   on   their   economic   and  technological   virtues,   when   the   costs   of   pollution   are   fully   internalised.   Operating  under   competitive  markets,  with   a   dynamic   approach   to   finance   correctly   informing  the   firm’s   technology   decisions   and   policy,   a   more   equitable   route   to   resource  allocation  becomes  feasible.    

                                                                                                               8  Cliff   Chen,   Ryan  Wiser   and   Mark   Bollinger   (2007).  Weighing   costs   and   benefits   of   state   renewable  portfolio  standards:  A  comparative  analysis  of  state-­‐level  policy  impact  projections.  Berkeley,  California:  Ernest  Orlando  Lawrence  Berkeley  National  Laboratory,  Berkeley,  LBNL-­‐62580.  9  Sen,  A.K.  (2009).  The  idea  of  justice.  Cambridge,  Massachusetts:  Harvard  University  Press.  

18th  International  Symposium  on  Ethics,  Business  and  Society,  IESE  Business  School,  Barcelona,  Spain,  June  30  to  July  1,  2014    

4  

2.     Resource  allocation  and  subsidies  How   societies   allocate   scarce   resources   often   start  with   some   notion   of   distributive  justice.   In   one   form   or   another,   scarce   resources  may   be   allocated   according   to   an  accepted   concept   of   equity,   equality   and   need   as   values   within   a   community.   The  importance   of   one   value   over   another   may   vary   in   its   emphasis   over   time10  while  contending  with  the  competing  needs  or  claims  by  individuals11.      There   appears   to   be   at   least   two   schools   of   thoughts   that   dominate   the   debate   in  distributive   justice   literature.   One   is   represented   by   a   utilitarian   notion   popular   in  economic   theory,   and   the   other   is   a   philosophical   strand   on  what   constitutes   a   just  society.  While   generally   agreeing  on   the   values  of   equity,   equality   and  needs   as   the  foundation  for  a  just  society,  they  differ  on  what  it  is  that  they  are  aiming  to  allocate  that  satisfies  their  notions  of  fairness.      The  debate  on  “just  rewards”  is  skewed  by  a  utilitarian  bias  for  quantification  towards  allocating   outputs   based   on   some   notions   of   fairness12.   In   this   context,   traditional  finance   discipline   considers   economics   as   a   strict   allocation   problem,   where   the  behaviour   of   economic   actors   is   assumed   to   be   selfish   and   rational”13.   Altruistic  motives   are   inconsequential   to   the   profit   optimisation   function.   Hence,   output   is  allocated   devoid   of   moral   or   ethical   values   according   to   their   marginal   utility  irrespective  of  their  social  consequences.    The   “view   that   a   person   is   actuated   only   by   self-­‐interest   is   persistent   in   economic  models.   This   view   is   not   very   realistic”14.   This   observation   led   Sen   to   propose   an  egalitarian  view  of   justice  based  on  capability15.  This  takes   into  account  the  ability  to  function  in  various  ways  –  to  be  mobile,  to  understand  the  world  around  them,  and  to  have  a  social   life  –  is  predicated  on  access  to  resources.  Optimisation  of  benefits  and  the   just   allocation   of   resources   are   predicated   on   individual   responsibility16  where   a  just  society  is  characterised  by  an  “equality  of  access  to  advantage”17.              The  debates  on  energy  policies,  where  subsidies  and  social  choice  loom  large,  follow  a  similar  divide  as  to  what  subsidies  are  attempting  to  equalise.  Specifically:    

                                                                                                               10  Deutsch,  M.  (1975).  “Equity,  equality  and  need:  What  determines  which  value  will  be  used  as  the  basis  of  distributive  justice?”.  Journal  of  Social  Issues,  31(3),  137-­‐149.          11  Roemer,  J.E.  (1998).  Theories  of  distributive  justice.  Massachusetts:  Harvard  University  Press.    12  Rawls,  J.  (1999).  A  theory  of  justice,  revised  edition.  Cambridge,  Massachusetts:  Harvard  University  Press.  13  Aloy  Soppe  (2004).  “Sustainable  corporate  finance”.  Journal  of  Business  Ethics,  3(1/2),  213-­‐224.    14  Sen,   A.K.   (1977).   “Rational   fools:   A   critique   of   the   behavioural   foundations   of   economic   theory”.  Philosophy  and  Public  Affairs,  6(4),  317-­‐344.  15  Sen,  A.K.  (1979).  “Equality  of  what?”.  The  Tanner  Lecture  on  Human  Values.  Stanford  University:  May  22,  1979.      16  Dworkin,   R.   (1981).   “What   is   equality?   Part   1:   Equality   of   welfare,   Part   2:   Equality   of   Resources”  Philosophy  and  Public  Affairs,  10,  185-­‐246  and  283-­‐245.  17  Cohen,  G.A.   (1997).   “Where   the  action   is:  On   the   site  of  distributive   justice”.  Philosophy  and  Public  Affairs,  26(1),  3-­‐30.  

18th  International  Symposium  on  Ethics,  Business  and  Society,  IESE  Business  School,  Barcelona,  Spain,  June  30  to  July  1,  2014    

5  

1. Level  technology  playing  field  is  achieved  by  equalising  costs  through  grid  price  parity  that  favours  specific  subsidies  to  “technology  champions”;      

2. Evolutionary   technology   adaptation   equalises   access   by   maximising   viable  technologies  through  a  pricing  mechanism  such  as  carbon  taxation.  

 Within   a  market   economy,   subsidies   result   in   differentiated   pricing   that   flatters   the  returns   of   preferred   technologies.   In   contrast,   carbon   taxation   maintains   unified  pricing.   The   influence   on   financial   allocation   of   benefits   and   risks   are   not  inconsequential.  While   subsidies’   tiered  pricing   in   theory  directs   capital   to   preferred  technologies,   they   seldom   achieve   the   outcomes 18  that   financial   theories   would  predict.      Carbon   taxation   is   a   political   hot   potato   that   politics   prefer   to   treat   with   benign  neglect.   However,   its   simplicity   and   progressive   nature   has   its   appeal.   Generally,  higher  income  groups  tend  to  consume  more  carbon  intensive  products.      

2.1     The  paradox  of  energy  subsidies:  How  unintended  inequities  happen    Subsidies   set   out   to   level   the   technology   playing   field   by   equalising   the   costs  differences   between   fossil   fuel   and   renewable   energy.   Through   the   grid   price   parity  logic,   this  works   by   “guaranteeing”  minimum   returns   to   investing   firms   in   preferred  technologies   (i.e.  wind,   solar   or   other   renewable   energy   sources)19.   Implicitly,   policy  assumes   that   when   costs   are   equalised,   investments   would   be   committed   to  renewable  energy  following  capital  budgeting’s  pecking  order.    When  input  costs  (i.e.   fuel)  and  power  prices  are  fixed,  the  equalisation  function   is  a  straightforward   arithmetical   application   of   a   difference   equation.   However,   dynamic  energy  markets  produce  volatile  prices  that  render  the  calculation  indeterminate  when  infinite   number   of   results   occurs.   As   benefits   become   uncertain20,   the   unintended  effects  tend  to  distort  the  notion  of  “just  rewards”.  Specifically:    

1. Subsidies   spiral:   Boom-­‐bust   investment   cycles   exaggerate   the   equipment  supply   imbalances21  that   reverse   the   declining   costs   attributed   to   “learning  curve   effects”.   As   equipment   prices   escalate,   higher   subsidies   are   required.  When   acceded,   higher   subsidies   could   fuel   another   equipment   price   spiral,  farther  worsening  the  costs  differences.        

2. Capital   inefficiency:   As   subsidies   spiral,   policy-­‐supported   renewable   energy  offers  increasingly  attractive  returns  secured  by  subsidies.  This  result  in  firms  to  

                                                                                                               18  IPCC.   (2011).  Summary   for   policy  makers.   In   IPCC   Special   Report   on   Renewable   Energy   Sources   and  Climate  Change  Mitigation.  Cambridge,  United  Kingdom:  Cambridge  University  Press.  19  Brown,  M.   (2001).   “Market   failures  and  barriers  as  a  basis   for   clean  energy  policies”.  Energy  Policy,  29(14),  1197-­‐1207.    20  Jaffe,   A.B.   and   Stavins,   R.N.   (1994).   “The   energy   paradox   and   the   diffusion   of   conservation  technology”.  Resource  and  Energy  Economics,  16,  91-­‐122.        21  Chen,  C.,  Wiser,  R.  and  Bollinger,  M.  (2007).  Energy  status  report.  Sacramento,  California:  California  Energy  Commission.  

18th  International  Symposium  on  Ethics,  Business  and  Society,  IESE  Business  School,  Barcelona,  Spain,  June  30  to  July  1,  2014    

6  

appropriates   excess   returns   from   “expensive   technologies”   while   assuming  limited  financial  risks.          

 3. Innovation   deterrent:   Rising   equipment   prices   when   supplies   tighten   deter  

innovation   to   reduce   costs.  Higher   deployment   could   produce   excess   returns  for  equipment  manufacturers,  as  they  occurred  from  2001  -­‐  200922.    

 Consumers   respond  by  coaxing   regulator   to  cut  subsidies  as  a  way  of   reigning   in   the  investing   firm’s   excess   returns,   as   they   did   in   Spain   and   Germany23.   The   affected  investing   firm   considers   such   change,   often   resulting   from   changing   government  priorities,   as   heightened   regulatory   risks.   In   the   process,   capital   flight   occurs   or  investments   come   to   a   stand   still,   with   equipment   manufacturers   experiencing  demand-­‐induced  price  collapse.      In  reality,  a  firm’s  heavy  reliance  on  subsidies  effectively  abdicates  the  exercise  of  their  technology   choice   to  a  government   (erroneously)  bestowed  with   foresight  on   future  technological  evolution.  Clearly,  this  is  far  from  a  realistic  view.  What  actually  occurs  is  restraining   the   tendency   to   accumulate   with   repeated   adaptation   of   regulations.  Without   these   restraints,   the   allocation   problem   would   be   resolved   by   ever-­‐rising  demand   for   subsidies.  As   subsidies  dominate   returns,   the  provision  of   a  public   good  (i.e.  pollution  reducing  technology)  is  overwhelmed  by  the  opportunity  to  extract  more  economic  rent.        

2.2     Carbon  pricing  as  a  resource  allocation  signal    Carbon   taxation   implies   a   subtle   shift   in   the   regulator’s   function.   From   being   the  promoter   of   “technology   champions”,   carbon   taxes   are   aimed   at   penalising   known  polluting  technologies.  When  retaining  a  unified  price  for  energy  output,  the  choice  of  technology  solutions  is  largely  left  with  investing  firms.  This  follows  Sen’s  “equality  of  access  to  capability”  argument24.      In   this   context,   carbon   taxation   serves   two  purposes:   a)   as   a  penalty   for   pollution25,  and  b)  as  an  inducement  to  substitute  “dirty”  with  “clean”  technology26.  In  their  more  recent   forms,   the   appropriate   level   of   carbon   taxes   is   relaxed   to   fall   below   Pigou’s  prescribed  equality  to  the  cost  of  marginal  environmental  damage27.  This  holds  some  promise   for   reframing   carbon   taxation   as   an   explicit   pricing   signal   that   takes   into  

                                                                                                               22  Mark  Bollinger  and  Ryan  Wiser  (2011).  Understanding  trends  in  wind  turbine  prices  over  past  decade.  Berkeley,  California:  Ernest  Orlando  Lawrence  Berkeley  National  Laboratory.  23  Global  Sustainability  Institute.  (2011).  “Fiscal  deficit  forces  Spain  to  slash  renewable  energy  subsidies”.  Subsidies  Watch,  40,  September  2011.  24  Sen  (2009)  supra  9.  25  Goodstein,   E.   (2003).   “The   death   of   Pigouvian   tax?   Policy   implications   from   the   double   dividend  debate”.  Land  Economics,  79(3),  402-­‐414.        26  Baumol,  W.J.  and  Oates,  W.E.  (1975).  The  theory  of  environmental  policy.  New  Jersey:  Prentice  Hall.    27  Fullerton,   D.   (1997).   “Environmental   levies   and   distortionary   taxation:   A   comment”.   The   American  Economic  Review,  87(1),  245-­‐251.    

18th  International  Symposium  on  Ethics,  Business  and  Society,  IESE  Business  School,  Barcelona,  Spain,  June  30  to  July  1,  2014    

7  

account   the   influence  on  adoption  of  market   structures,   technological  evolution  and  carbon  emissions.        Renewable   energy   adoption   is   a   form   of   technological   innovation   that   can   be  evaluated   within   the   context   of   technological   systems28.   This   involves   applying   a  portfolio   perspective,   where   renewable   energy   is   added   to   extant   fossil-­‐fuel-­‐dominated   supplies.   The   innovation   and   technology   diffusion   processes   could   occur  through   individual   and   collective   actions29  of   firms,   with   the   government   playing   an  enabling  but  dynamic  role  through  taxation30.      The   resource-­‐recombination   perspective   provides   a   framework   for   examining   the  question   of   how   the   returns   from   innovation   are   appropriated   by   firms.   Demand  effects   are   transmitted   through   energy   prices,   while   supply   factors   arises   from  technological   evolution   and   experience 31 .   Within   this   construct,   slow   market  adjustments  occur  when  market  and   support   regimes  are   stable32.   In   contrast,   rapid  adaptation  happens  when  disruptions  render  a  market  unpredictable33.  In  this  context,  flexibility   is   required   in   the   production   system   in   order   to   re-­‐allocate   the   resources  smoothly  and  without  cost  escalation34.        The  strategic   tension  arises  when  a   firm’s  early  commitment  sets   in  motion  network  benefits   such   as   learning   curve   effects 35 .   The   exercising   firm   cannot   exclusively  appropriate   these  collective  benefits.  Hence,  as  capacity  costs  decline  when   learning  curve  effects  operate,  early  adopters  bear  the  costs  of  innovation  while  late  adopters  reap  the  benefits   from  expanded  diffusion.  Strategically,   these  uncertainties  demand  of  firms  the  managerial  capabilities  to  correctly  exercise  their  strategic  options.      Incorporating  these  dynamics  in  evaluating  the  financial  returns,  uncorrelated  costs  of  fossil  fuel  and  renewable  energy  technologies  when  combined  results  in  diversification  benefits.  That  is,  as  energy  costs  and  prices  interact,  zero-­‐fuel-­‐costs  renewable  energy  provides  a  hedge  against  rising  fuel  costs.                                                                                                                      28  Jacobson,  S.  and  Bergek,  A.   (2004).  “Transforming   the  energy  sector:  The  evolution  of   technological  systems  in  renewable  energy  technology”.  Industrial  and  Corporate  Change,  13(5),  815-­‐849.    29  Gallagher,   K.S.,   Grübler,   A.,   Kuhl,   L.,   Nemet,   G.   and   Wilson,   C.   (2012).   “The   energy   technology  innovation  system”.  Annual  Review  of  Environment  and  Resources,  37,  137-­‐162.  30  Lewis,  J.I.  and  Wiser,  R.H.  (2007).  “Fostering  a  renewable  energy  technology  industry:  An  international  comparison  of  wind  industry  policy  support  mechanisms”.  Energy  Policy,  35(3),  1844-­‐1857.  31  Verdolini,  E.  and  Galeotti,  M.   (2011).  “At  home  and  abroad:  An  empirical  analysis  of   innovation  and  diffusion   in   energy   technologies”.   Journal   of   Environmental   Economics   and  Management,   61(2),   119-­‐134.  32  Luiten,  E.,   Lente,  H.V.  and  Blok,  K.   (2006).   “Slow   technologies  and  government   intervention:  Energy  efficiency  in  industrial  process  technologies”.  Technovation,  26,  1029-­‐1044.        33  Jaffe,   A.B.,   Newell,   R.G.   and   Stavins,   R.N.   (2005).   “A   tale   of   two   market   failures:   Technology   and  environmental  policy”.  Ecological  Economics,  54(2-­‐3),  164-­‐174.    34  Eliasson,  G.  and  Taymaz,  E.  (2002).  “Institutions,  entrepreneurship,  economic  flexibility  and  growth  –  Experiments   on   an   evolutionary   micro-­‐to-­‐macro   model”.   In   Canner,   U.   (ed).   Economic   evolution,  learning  and  complexity.  Berlin-­‐Heidelberg:  Springer-­‐Verlag.  35  Watanabe,  C.,  Nagamatsu,  A.  and  Griffy-­‐Brown,  C.  (2003).  “Behavior  of  technology  in  reducing  prices  of   innovative   goods   –   An   analysis   of   the   governing   factors   of   variance   of   PV   module   prices”.  Technovation,  23,  423-­‐436.    

18th  International  Symposium  on  Ethics,  Business  and  Society,  IESE  Business  School,  Barcelona,  Spain,  June  30  to  July  1,  2014    

8  

Carbon   taxes   increase   power   prices   that   raise   renewable   energy’s   returns,   while  reducing   fossil   fuel   technologies’   earnings.   When   examined   under   a   technology  system,  the  setting  of  carbon  taxes  is  dependent  as  to  how  (a)  firms  interact  and  deal  with  uncertainties,  (b)  networks  benefits  induce  or  hinder  adoption  decisions,  and  (c)  institutions  act  to  influence  connectivity  through  a  market,  or  incentive  structures  and  demand  through  policy  actions.    This  dynamic  approach   contrasts  with   the   social  notion  of   subsidies.  While   subsidies  pre-­‐judge  (often  incorrectly)  a  technology  champion,  influenced  by  a  utilitarian  bias  to  equalise   returns   or   costs,   carbon   taxes   establish   a   power   price   level   to   allow   equal  market   access   to   viable   and   competing   renewable   energy.   When   decisions   on  technology   choice   are   left   with   firms,   the   consequences   of   their   decisions   (gains   or  losses)  could  justifiably  accrue  to  the  investing  firms.  Hence,  carbon  taxation  conforms  to  the  “just  rewards”  notion  that  the  application  of  subsidies  distorts.    

3.     Findings    We   use   energy  market   data36  to   empirically   test   through   simulations   how   grid   price  parity  fulfils  the  costs  equality  and  returns  predictability  criteria.  The  standardised  data  facilitates   cross-­‐technology  comparisons,  particularly  when  applied   to  calculating   the  life  cycle  costs  of  energy  (LCOEs).      Portfolio   returns   are   estimated   from   the   technology  mix,   using   data   from   LCOEs   as  costs  inputs,  applying  residual  returns  (or  economic  value  added)  calculations37.  These  results   are   then   contrasted   with   the   outcomes   using   carbon   taxation,   through   its  influence   on   pricing,   in   addressing   the   appropriation   of   returns   of   mixed   energy  technologies  portfolios.      Whenever   appropriate,   we   compare   the   outcomes   of   subsidies   under   a   coal   or   gas  system.   As   power   markets   liberalised,   combined   cycle   gas   turbines   (CCGTs)  progressively   replaced   coal   as   the   technology   that   sets   the   market   price.   For   this  reason,   gas   is   used   as   the   reference   technology   for   estimating   cost   differences  with  renewable  energy  following  the  grid  price  parity  logic.      

3.1     Flawed  logic  of  grid  price  parity  leads  to  green  paradox  The   required   subsidies   rise   with   the   costs   of   renewable   energy,   where   “expensive”  solar   is   subsidised   to   a   greater   extent   than   “cheaper”   wind   power.   Hydro   and  geothermal,   while   considered   as   renewable   energy,   usually   do   not   benefit   from  subsidies,  given  that  they  are  considered  as  part  of  the  mainstream  supplies.    

                                                                                                               36  EIA  –  Energy  Information  Administration  (2011).  The  electricity  market  module  of  the  National  Energy  Modelling   System:  Model   documentation   report.   July   2011.  Washington,  D.C.:  US   Energy   Information  Administration.    37  Residual   returns   are   returns   over   and   above   the   firm’s   costs   of   capital.   Detailed   residual   income  formula  are  shown  in  McCormack,  J.L.  and  Vytheeswaran,  J.  (1998):  “How  to  use  EVA  in  the  oil  and  gas  industry”.  Journal  of  Applied  Corporate  Finance,  11  (3),  2422–2437.    

18th  International  Symposium  on  Ethics,  Business  and  Society,  IESE  Business  School,  Barcelona,  Spain,  June  30  to  July  1,  2014    

9  

Under  regulated  markets,  where  energy  costs  and  power  prices  are  fixed  or   indexed,  grid   price   parity   is   readily   calculated.   However,   with   deregulation   comes   dynamic  pricing   influenced  by  periodic  supplies  and  demand  that  make  energy  prices  volatile.  This  is  where  grid  price  parity  logic  falls  apart:  as  energy  prices  change,  while  zero-­‐fuel-­‐cost  renewable  energy’s  LCOEs  remain  stable,  the  resulting  grid  price  parity  becomes  uncertain  or  indeterminate.            Let   us   illustrate   this   by   simulating   two   systems   –   a   coal-­‐   and   gas-­‐dominated   power  system  where  the  price  setting  supply  corresponds  to  mid-­‐merit  coal  or  CCGT  capacity.  The   simulation   results   shown   in   Table   1   highlight   the   problems   encountered   when  energy  prices  are  volatile.  

Table  1.  Grid  price  parity  subsidies  –  Coal  and  gas  systems  

   These  problems  are  encountered  in  two  aspects:    

1. Power  pricing  variability  makes  the  “correct”  subsidies  dependent  on  the  level  of   power   prices,   given   that   renewable   energy’s   LCOEs   tend   to   be   constant.  Hence,  at  different  power  prices,  the  required  levels  would  differ.    

2. Price-­‐setting   system   introduces   a   systemic   bias   where   gas   systems   tend   to  experience  lower  power  prices  than  coal  systems,  hence  presenting  a  tougher  pricing  environment  for  renewable  energy  adoption.    

 Policy   setting   faces   a   number   of   administrative   conundrums.   In   attempting   to   track  power  price  changes,  subsidies  need  to  vary  with  power  prices.  This  is  a  flexibility  that  is   not   conferred   to   the   administrative   and   political   processes   involved   in   setting  subsidies38.      Let  us  first  consider  the  effects  of  market  deregulation  on  technology  choice.  When  a  wholesale   power   market   is   introduced,   firms   lose   the   certainty   of   fixed   prices   that  allow   them   to  earn   stable   returns.  At   the   same   time,  CCGT  emerges   as   a  more   cost  effective   substitute   to   coal,  with   gas   as   a   fuel   that   varies  positively  with   coal   prices.  This   results   in  higher   (i.e.   cost   efficiency)  but   stable   (i.e.   correlated   costs  with  price-­‐

                                                                                                               38  Stenzel,  T.  and  Frenzel,  A.  (2008).  “Regulating  technological  change  –  The  strategic  reactions  of  utility  companies  towards  subsidy  policies  in  the  German,  Spanish  and  UK  electricity  markets”.  Energy  Policy,  36,  2645-­‐2657.    

18th  International  Symposium  on  Ethics,  Business  and  Society,  IESE  Business  School,  Barcelona,  Spain,  June  30  to  July  1,  2014    

10  

setting   supplies)   returns.   Over   time,   CCGT   replaces   coal   including   their   price-­‐setting  role.            The   resulting   subsidies   would   substantially   increase   under   a   gas-­‐dominated   system.  Take  for  example  an  efficient  onshore  wind  portfolio,  Wind  M1,  the  required  subsidies  increase  by  275%  under  very  low  (-­‐-­‐)  power  prices,  while  also  needing  subsidies  at  low  (-­‐)  prices  that  they  otherwise  do  not  need  under  a  coal-­‐dominated  system.    We   can  now  examine  how  grid  price  parity   is   set   in  practice,  with  our   simulation  of  how  power  price  variations  render  the  benefits  uncertain  in  Table  2.    Policy  sets  grid  price  parity  by  assuming  a  certain  fuel  price.  With  the  resulting  LCOEs  for   fossil   fuel,   in   this   case   mid-­‐merit   CCGTs   for   a   gas-­‐dominated   system,   specific  subsidies   for   renewable   energy   are   set.   This   is   equivalent   to   fixing   energy   prices   by  legislative  fiat  while  ignoring  their  inherent  volatility.            We  tested  the  implied  burden  to  consumers  by  calculating  what  multiples  of  prevailing  power  price  the  specific  subsidies  represent  under  different  price  scenarios.  Oil  prices  are  used  as  proxy   for   fuel  prices  given  their  positive  and  significant  correlations  with  gas.    

Table  2  –  Subsidies  as  multiples  of  power  price  –  Gas  system  

     Assuming   that   policy   picked   $70/bbl   as   their   reference   oil   price,   they   would   set   a  subsidy   that   is   an   affordable   1%   of   power   price   for   a   more   efficient   onshore   wind  portfolio  (0.01x  or  $0.006/kWh).  When  this   is  fixed,  and  oil  prices  go  up  to  $126/bbl,  investing  firms  would  continue  to  collect  subsidies  even  though  none  is  required  given  that  power  prices  are  above  onshore  wind’s  LCOEs.  Conversely,  when  oil  price  falls  to  $42/bbl,   they   would   need   to   collect   the   equivalent   of   40%   (or   $0.0184/kWh)   of  prevailing   power   price,   resulting   in   a   shortfall   of   $0.0124/kWh   which   is   twice   the  subsidy  assumed  by  policy.          

18th  International  Symposium  on  Ethics,  Business  and  Society,  IESE  Business  School,  Barcelona,  Spain,  June  30  to  July  1,  2014    

11  

Repeating   the   calculations   for   other   renewable   energy   technologies,   the   same  conclusions  are  reached.  Solar  power  remains  exorbitant  at  all  oil  price  levels  in  spite  of  the  sharp  falls  in  panel  costs  experienced  since  2008.        Applying   specific   subsidies   to   technology   champions   result   in   a   two-­‐tier   power  price  market.  One  price  is  applied  to  fossil  fuel  supplies  (often  lower)  while  another  is  paid  to   renewable   energy   (often   higher).   In   the   absence   of   consumer   choice,   the   higher  power   prices   used   to   fund   the   payment   of   subsidies   are   imposed   on   consumers.   In  effect,   consumers   de   facto   underwrite   any   excess   returns   that   investing   firms  appropriate.    The   inadvertent   generosity  of   subsidies  poses  questions   about   an   imbalance  of   risks  and  returns  for  renewable  energy.  By  assuming  minimal  risk,  guaranteed  high  returns  are   captured  by   firms.   This   places  policy  under   some   strain:  When  power  prices   are  low,   renewable  energy’s  prices  will  appear  exorbitant   in  comparison,  given  that   they  will   significantly   exceed   the   prevailing   market   prices   for   power.   Conversely,   when  power   prices   are   high,   returns   from   renewable   energy   increase   substantially.   Under  this   scenario,   the   regulators   are   under   pressure   to   claw-­‐back   “excessive”   returns   to  satisfy  a  policy  imperative  for  “fairness”.    

3.3     Energy  markets  are  different  …  and  why  they  matter    Subsidies  and  carbon  taxation  are  often  set  independently  of  market  structures,  while  ignoring  the  influence  of  competitor’s  actions  on  an  investing  firm’s  decisions.  Naively,  renewable  energy  markets  are  judged  as  attractive  when  their  subsidies  or  carbon  tax  are   higher   (or   vice   versa).   However,   this   approach   fails   to   explain   a   paradox,  where  markets   with   higher   subsidies   or   carbon   taxes   do   not   always   achieve   higher  investments.    Part  of   the  answer   lies   in  how   firms  discriminate   their   investment   thresholds,  which  coincide  with  a   value  at  which  a   firm   is  prepared   to   commit   capital.   Following  Sen’s  “equality  of  access   to   capability”  argument,  policy   support   is   reframed   to  create   the  conditions   under   which   a   maximum   number   of   renewable   energy   technologies  become  viable  with  a  minimum  of  subsidies.      To  address  this  question,  let  us  examine  how  investing  firms  respond  to  opportunities  relative   to   their  market   position  using  option-­‐game-­‐theoretic   logic39.  Under  dynamic  markets,  when  firms  invest,  their  actions  often  elicit  responses  from  competitors  that  are  often  non-­‐cooperative.  These  competing  actions  lead  firms  to  pre-­‐empt,  to  follow  or  to  differentiate  their  strategies  on  technology  selection  according  to  their  portfolio  aspiration.          

                                                                                                               39  A  detailed  explanation  of  the  methodology  is  found  in  Chevalier-­‐Roignant,  B.  and  Trigeorgis,  L.  (2011).  Competitive   strategy:   Options   and   games.   Cambridge,   Massachusetts:   Massachusetts   Institute   of  Technology  Press.  

18th  International  Symposium  on  Ethics,  Business  and  Society,  IESE  Business  School,  Barcelona,  Spain,  June  30  to  July  1,  2014    

12  

Figure  1.  Strategic  option  premium  factor  and  number  of  players  

   Carbon   taxes   are   analysed   as   providing   “bridging   values”   that   encourage   firms   to  switch  decisions  from  inaction  to  expansion.  This  shifts  the  policy  approach  previously  followed  under  grid  price  parity  principles:  By  focusing  on  bridging  a  value  gap,  carbon  taxes  are  set  with  the  view  that  a  maximum  number  of  renewable  energy  technologies  become   viable   at   the   prescribed   level.   Without   preferring   specific   technologies,  innovations   are   encouraged   so   that   an   optimal   portfolio   mix   is   achieved   consistent  with  the  power  price  expectations.    Grenadier’s  proposition40  formalises  an  investment  threshold  equivalent  to  the  option  premium   factors   as   a   multiple   of   the   capital   spend   (or   exercise   price).   That   is,   if  subsidies   or   carbon   taxes   are   applied   so   as   to   switch   firms’   commitment   over   to  renewable   energy,   then   estimating   the   value   at   which   such   switching   will   occur  becomes   relevant.   The   relationship   between   the   option   premium   factor   and   the  number  of  players  are  shown  in  Figure  1.    Following  Grenadier’s  logic,  a  monopolist  (i.e.  single  player)  would  wait  until  the  pay-­‐offs  are  sufficiently  high  before  exercising   its  option  to  commit.  Hence,  a  monopolist  would   defer   commitment   by   taking   advantage   of   a   deferral   value.   Our   simulation  suggests   a   multiple   of   twice   the   payoffs   as   an   appropriate   threshold,   which   is  consistent   with   the   findings   in   the   real   options   literature41.   However,   when   a   new  player   presents   the   prospect   of   pre-­‐emption,   this   non-­‐cooperative   action   presents  strategic  uncertainty  that  imposes  a  risk  on  the  deferral  of  commitments42.  As  a  result,  

                                                                                                               40  Grenadier,   S.R.   (2002).   “Option   exercise   games:   An   application   to   the   equilibrium   investment  strategies  of  firms”.  The  Review  of  Financial  Studies,  15(3),  691-­‐721.  41  For  example,  refer  to  McDonald,  R.  and  Siegel,  D.  (1986).  “The  value  of  waiting  to  invest”.  Quarterly  Journal  of  Economics,  101,  707-­‐727,  and  Majd,  S.  and  Pindyck,  R.   (1987).   “Time  to  build,  option  value  and  investment  decisions”.  Journal  of  Financial  Economics,  18,  7-­‐28.    42  Fundenberg,   D.   and   Tirole,   J.   (1985).   “Pre-­‐emption   and   rent   equalisation   in   the   adoption   of   new  technology”.  Review  of  Economic  Studies,  52,  383-­‐401.    

18th  International  Symposium  on  Ethics,  Business  and  Society,  IESE  Business  School,  Barcelona,  Spain,  June  30  to  July  1,  2014    

13  

firms  may  choose  to  exercise  their  option  to  expand  at  a  lower  option  premium43.  This  explains  the  diminishing  option  premium  values  as  more  players  are  added.    A   firm’s  ability   to  deal  with  strategic  uncertainty,  and   the  effects  of   the  actions   they  take,  are  considered  as  resulting  from  a  game44.  To  analyse  how  strategic  uncertainty  influence   the   firm’s   behaviour,   we   consider   two   firms   F1   and   F2,   behaving   as   non-­‐cooperative   players   competing   to   supply   a   given   quantity.   They   share   an   option   to  expand  to  meet  market  growth  with  fossil   fuel  or  renewable  energy.  Consistent  with  the  expected   time   it   takes   to   increase  capacity   in  most  power  sources,  a  decision   to  expand  can  be  exercised  within  the  next  two  years,  to  capture  half  of  the  new  market  if  both  firms  expand,  or  the  whole  new  market  if  only  one  firm  expands.  This  gives  the  firm   a   window   of   two   years,   on   a   four-­‐years   development   phase   to   abandon   the  investment  should  power  price  expectations  adversely  affect  their  pay-­‐offs.      Our  simulation  results  in  Table  3  focus  on  the  required  pay-­‐offs  under  different  market  structures   by   applying   Grenadier’s   proposition.   Taking   the   fossil   fuel   only   as   a  reference  portfolio,   the  pay-­‐offs   thresholds   are   calculated.   This   is   then   compared   to  the   pay-­‐offs   achieved   by   firms,   starting  with   an   initial   endowment   of   coal   or   CCGTs  supplies,   expanding   with   renewable   energy.   A   lower   pay-­‐off   from   the   renewable  energy-­‐diversified  portfolios  imply  a  need  for  public  support,  which  could  be  satisfied  by   imposing   carbon   taxes   sufficiently   high   to   close   the   option   premium   gap.   Higher  pay-­‐offs   would   yield   zero   required   carbon   taxes.   For   completeness,   expansion   with  coal  or  CCGTs  would  achieve  similar  results  as  the  fossil  fuel  reference  value.    

Table  3.  Market  structures  and  implied  carbon  tax    

       

                                                                                                               43  Mason,   R.   and   Weeds,   H.   (2000).   “Networks,   options   and   pre-­‐emption”.   Discussion   Papers   in  Economics  and  Econometrics,  41,  University  of  Southampton,  United  Kingdom.  44  The   discussion   is   adapted   from   a   more   extensive   analysis   in   Barcelona,   R.   G.   (2013).   Technology  choices   under   the   green   paradox:   Portfolio,   flexibility   and   competition   effects.   Unpublished   doctoral  dissertation,  London:  King’s  College,  London.    

18th  International  Symposium  on  Ethics,  Business  and  Society,  IESE  Business  School,  Barcelona,  Spain,  June  30  to  July  1,  2014    

14  

Competition  facilitates  the  reduction  of  carbon  taxes.  That  is,  when  a  monopolist  faces  no   threat  of  pre-­‐emption,   they  would   rather  wait  until   the  option  value   is   twice   the  competitive  market’s  level,  often  induced  by  rising  prices  as  supplies  tighten.  Under  a  gas   system,   a  monopolist   firm   F1   or   F2  would   require   a   value   increase   from   carbon  taxes  of  $1,247  mln  to  exercise  its  option  to  commit  to  geothermal  power.  For  onshore  wind,   the   carbon   tax   threshold   is   higher,   a   value   increase   of   $2,152   mln   for   a  monopolist,   while   falling   to   $424   mln   under   a   duopoly.   That   is,   the   threat   of   pre-­‐emption   encourages   earlier   exercise   of   the   investment   by   partially   foregoing   a  monopoly  rent.    A   similar   coal-­‐gas   divide   is   observed   as   we   highlighted   in   our   grid   price   parity  simulation,  with  specific  policy  implications:    

1. Market  structures:  Subsidies  under  grid  price  parity  to  a  monopolist  compound  the   monopoly   rent,   while   remaining   ineffective   if   set   below   the   option  premium  gap.  

 2. Policy  focus:  Under  monopolistic  structures,  increasing  competition  rather  than  

handing   out   more   subsidies   could   prove   more   effective   in   encouraging  investments.  

 Carbon  taxes  benefit  from  retaining  a  unified  pricing  for  power  that  simplifies  capital  allocation  within   a   functioning  market   economy.   Carbon   taxes   offer   the   prospect   of  differentiating  according   to   the  emission   levels  of   fossil   fuel   technologies,   implying  a  better   allocation   of   penalties   that   is   technically   verifiable.   As   a   result,   by   correctly  internalising  pollution  costs,   technological   innovations  are  encouraged   in  a)   reducing  fossil   fuel   emissions;   or   b)   enhancing   capital   cost   efficiency   of   renewable   energy   to  accelerate  substitution  of  fossil  fuel  technologies.    When   renewable   energy’s   portfolio   hedge   value   is   considered,   the   economic   and  political   concerns   in   introducing   carbon   taxes   are   less   daunting.   With   sufficient  competitive   pressures,   the   appropriate   carbon   taxes   to   effect   renewable   energy  deployment   are   sufficiently   low  where   they  are  only  needed  when  power  prices   fall  below  their  historic  trend.      Mechanisms   to   address   the   effects   of   carbon   taxes   on   low-­‐income   consumers   and  competitiveness   of   adopting   vs   non-­‐adopting   markets   are   discussed   in   a   previously  published  paper45.   In  summary,  precedents   in  Australia  and  British  Columbia,  Canada  have   experimented   by   re-­‐allocating   carbon   tax   proceeds   to   fund   price   discounts   to  poor  consumers  affected  by  power  price  increases.  Scandinavia  is  a  successful  example  of   how   heavy   carbon   taxes   result   in   high   levels   of   renewable   energy   adoption   and  technological   innovations.  Adopting  countries  may  consider  using   the   trade   tariffs  as  mechanism   for   clawing   back   free   riders’   “costs   advantage”   from   non-­‐application   of  carbon  taxes.                                                                                                                            45  Refer   to  Barcelona,  R.G.   (2012).   “Failed  with  subsidies?  –  Try  CO2   tax!”.  Renewable  Energy  Law  and  Policy  Review,  2,  121-­‐130.  

18th  International  Symposium  on  Ethics,  Business  and  Society,  IESE  Business  School,  Barcelona,  Spain,  June  30  to  July  1,  2014    

15  

3.3     What  happens  when  policy  aims  to  equalise  access  to  opportunities?      Viewed   as   part   of   a   technology   system,   the   introduction   of   renewable   energy  potentially  disrupts  the  economic  and  strategic  value  of  assets.  Fossil   fuel-­‐dominated  systems   encourage   firms   to   focus   on   cost   efficiency   in   order   to  maximise   despatch  under   a   merit   order   based   on   a   marginal   cost   priority.   That   is,   the   lowest   cost  producers  are  asked  to  supply  ahead  of  more  expensive  supplies.  When  the  competing  supplies   are   entirely  met   by   fossil   fuel   technologies,   the  merit   order   is   likely   to   call  upon   CCGTs   ahead   of   coal,  with   the  most   efficient   CCGTs   likely   to   achieve   a   higher  utilisation  rate.  Hence,  they  achieve  greater  returns.    When   zero-­‐fuel-­‐cost   renewable   energy   supplies   are   introduced,   their   low   marginal  costs  allow  them  to  displace  fossil  fuel  supplies  whenever  they  are  available.  This  is  the  operative   phrase   for   intermittent   wind   and   solar   power,   although   this   qualification  does  not  apply  to  geothermal  or  hydropower.  Consequently,  with  renewable  energy’s  increasing  proportion  of  supplies,  power  prices  would  tend  to  fall46  in  the  absence  of  any  distortions  from  subsidies.      This  phenomenon  introduces  strategic  and  market  uncertainties  for  investing  firms.  A  status   quo   expansion  with   fossil   fuel   technologies  would   incur   returns   erosion   from  lower   power   prices   if   competing   firms   choose   to   diversify   into   renewable   energy.  Subsidies  compound  this  dilemma  by  encouraging   investment   in   the  more  expensive  renewable   energy   technologies,   such   as   solar   power,   while   ignoring   the   long   term  effects   on   power   prices   once   the   subsidies   are   removed.   Recalling   the   uncertain  benefits  of  subsidies,  this  policy  approach  appears  to  inflict  penalties  all  round.          Sen’s  “equality  of  access  to  capabilities”  notion  could  transform  the  policy  approach  to  one   of   setting   a   “floor”   power   price   through   carbon   taxes.   Schematically,   Figure   2  illustrates   the   comparative   pay-­‐offs   using   residual   returns   under   uncertain   power  prices.              

Figure  2:  Carbon  tax  as  “floor”  revenue  for  price-­‐flexible  supplies  

 

   

                                                                                                               46  Botterud,  A.  and  Korpås,  M.  (2007).  “A  stochastic  dynamic  model  for  optimal  timing  of  investments  in  new  generation  capacity   in   restructured  power  systems”.  Electrical  Power  &  Energy  Systems,  29,  163-­‐174.      

18th  International  Symposium  on  Ethics,  Business  and  Society,  IESE  Business  School,  Barcelona,  Spain,  June  30  to  July  1,  2014    

16  

In  the  absence  of  “floor”  price  and  volume  flexibility,  power  supplies  would  earn  the  revenues   derived   from   the   prevailing   prices   and   volume.   Hence,   losses   would   be  incurred  when  power  prices  fall  below  a  given  threshold  (i.e.  minimum  required  power  price  for  positive  returns).  To  cushion  against  such   losses,  the  manager  could  choose  not   to   supply,   hence   incurring   zero   returns   by   not   supplying   for   a   given   period.  Alternatively,  a  “floor”  price  would  eliminate  the  possibility  of  a  loss  when  set  above  a  threshold  that  complies  with  a  positive  returns  condition.  In  effect,  when  power  prices  are  below  the  “floor”  price,  the  supplied  power  earns  the  fixed  “floor”  price.      The  “floor”  price  is  provided  by  the  carbon  tax  when  there  is  managerial  flexibility  to  vary   the   power   prices,  which   a   functioning   energy  market  would   provide.   This   price  flexibility   satisfies   the   notion   that   when   firms   are   given   equal   access   to   an   energy  market’s  opportunities,  they  would  likely  optimise  their  choice  of  technologies.  More  likely,   rent-­‐extraction   is   constrained   by   competitors’   actions   when   subsidies   do   not  flatter,  hence  distort,  the  returns  from  preferred  technologies.          Under  a  floor  pricing  system,  a  minimum  price  is  set  through  carbon  tax  for  renewable  energy,  while  no  cap  is  applied  to  power  prices.  This  is  the  prevailing  system  in  Spain,  where   above   a   certain   power   price   threshold,   renewable   energy   “loses”   its   feed-­‐in  tariffs  and  receives  the  prevailing  market  price  for  power.  In  effect,  renewable  energy  is   provided   with   floor   revenues,   while   reaping   unconstrained   benefits   from   higher  prices.   As   illustrated   in   Table   4,   when   power   price   floors   are   established,   thereby  eliminating  “losses”  below  the  high  power  price  (+)  threshold,  onshore  wind  pay-­‐offs  substantially   increase   to   achieve   expected   returns   on   a   par   with   geothermal   and  hydro.   In   contrast,   geothermal   and   hydro   do   not   benefit   as  much   as   onshore   wind  does  from  power  price  floors  as  both  technologies  are  already  viable  without  the  need  for  any  subsidies  or  carbon  tax,  except,  for  geothermal,  when  expected  power  prices  fall  below  a  low  price  scenario  (-­‐)  under  a  gas  system.    

Table  4.  Floor  pricing  –  Coal  and  gas  systems  

   

18th  International  Symposium  on  Ethics,  Business  and  Society,  IESE  Business  School,  Barcelona,  Spain,  June  30  to  July  1,  2014    

17  

The  ability  to  estimate  the  strategic  pay-­‐offs  (SPOe)  provide  a  common  framework  for  policy   and   the   investing   firms   to   reconcile   their   strategic   objectives.   While   our  simulation   appears   to   suggest   investing   firms   to   disproportionately   appropriate  returns,  policy  could  vary  carbon  taxes  so  as  to  influence  the  pace  of  deployment  and  retention  of  returns.  By  reducing  the  carbon  taxes,  policy  may  signal  to  influence  in  the  way  supplies  mix  are  rebalanced  through  power  pricing.            In   the   process,   policy’s   role   is   transformed   into   an   active   economic   agent   that  facilitates   renewable   energy   deployment,   while   leaving   investing   firms   to   take   risks  and   justifiably  appropriate   returns   that  are  consistent  with   their   risk-­‐taking.  By  using  power   pricing   as   a   preferred   policy   mechanism,   distortions   from   subsidies   are  minimised   that   potentially   avoid   favouring   the   more   expensive   renewable   energy  technologies  such  as  solar  power.        

4.     Conclusions  When   the   question   “who   pays,   who   benefits”   is   posed,   the   “common   wisdom”   on  energy  subsidies   that  comes   to  be  accepted   in   investment  and  policy  circles  needs  a  rethink.   Far   from   satisfying   policy   criteria   for   fairness,   subsidies   often   fail   to   meet  substantive   aspects   of   equity,   equality   or   needs.   The   exceptions   pertain   to   enabling  persons  in  extreme  poverty  to  meaningfully  participate  in  socio-­‐economic  pursuits.      To  a   large  extent,   the   limited   remit  of   capital  budgeting   is   contributory   to   subsidies’  unintended   inequities.   When   uncertainties   and   competitors’   actions   are   explicitly  considered,   and   the   effects   of   strategic   moves   are   evaluated   as   portfolio   decisions  under   flexible  conditions,   the  notion  of   “just   rewards”  are   reconciled  with   the   firms’  risk-­‐taking  that  justifies  commensurate  returns.        Grid  price  parity  principles,  when  applied  as  the  bases  for  setting  “correct”  subsidies,  are   alluring   for   their   conceptual   simplicity.   They   work   best   when   energy   prices   are  fixed,   either   contractually   or   by   legislative   fiat.   Our   simulation   shows   that   when  subsidies  are  fixed  under  assumed  fuel  costs,  the  “correct”  levels  under-­‐  or  over-­‐shoot  the  required  levels  when  energy  prices  are  volatile.  Consequently,  subsidies  contribute  disproportionately   to   returns   of   investing   firms   while   reducing   the   same   firms’  financial  risks.      This   phenomenon   is   problematic   for   equitable   resource   allocation.   Differentiated  subsidies  give  more  to  “expensive”  solar  than  “cheaper”  wind  power  to  equalise  their  costs   (or   returns)   with   fossil   fuel   technologies.   Potentially,   investing   firms   may   be  tempted  to  maximise  the  recovery  of  subsidies  as  “secure”  returns  that  inadvertently  encourage   rent-­‐extraction.   Consumers   are   unlikely   to   stand   for   this   apparent  misallocation  of  benefits   and   risks,   raising   the  prospect  of   a   consumer  backlash   that  could  ultimately  lead  to  cuts  in  subsidies  in  order  to  rebalance  “just  rewards”.      When   firms   over-­‐rely   on   subsidies,   they   abdicate   their   risk-­‐taking   role   that   justifies  their   appropriation   of   returns.   This   poses   an   irreconcilable   dilemma   for   firms   and  policy:   If   firms   take  minimal   financial   risks,   because   subsidies   are   supposed   to   have  secured   their   returns,   then   the   firms’   rights   to   appropriate   returns   above  a  notional  

18th  International  Symposium  on  Ethics,  Business  and  Society,  IESE  Business  School,  Barcelona,  Spain,  June  30  to  July  1,  2014    

18  

risk  free  rate  are  hardly  defensible.  Perhaps,  for  these  reasons,  subsidies  often  fail  to  meet   policy   objectives   given   the   inherent   disequilibrium   that   jeopardises   their  sustainability.    Carbon  taxation  maximises  access  to  a  range  of  viable  energy  technologies  by  asserting  their   influence   on   energy   pricing.   The   level   of   carbon   taxes   gives   the   appropriate  pricing   signals,   firms   may   respond   by   changing   the   mix   in   order   to   optimise   their  portfolios.  In  effect,  technology  choices  are  not  predetermined  when  portfolio  hedge,  the   firm’s   position   within   a   given   market   (i.e.   monopolist   or   price-­‐taker),   and   their  uncertainties  are  taken  into  account.  Thus,  by  focusing  on   influencing  energy  pricing,  carbon   taxation   offers   the   prospect   of   differentiating   penalties   for   pollution   to  verifiable  emissions  from  fossil  fuel  technologies.  As  a  result,  when  pollution  costs  are  fully   internalised,   innovations  could  occur  in  reducing  carbon  emissions  or  renewable  energy’s  capital  costs.  The  risk-­‐taking  exercised  by  investing  firms  through  their  explicit  choice   of   technologies   avoids   the   irreconcilable   dilemmas   previously   observed   as  occurring  for  subsidies.      Indirectly,   consumption   of   carbon-­‐emissions-­‐intensive   goods   often   rises   with  increasing  income.  With  carbon  taxes  applied  on  the  consumption  of  such  goods,  the  resulting  burden  is  more  likely  placed  on  those  with  higher  income.      Carbon  taxation  could  be  modified  as  a  “floor”  power  price  while  retaining  managerial  flexibility   on   volume   despatch   and   pricing   of   supplies.  When   set   above   a  minimum  power   price   threshold,   losses   for   renewable   energy   could   be   avoided   arising   from  lower  prices.  Our  simulation  highlights  these  observations:  When  “floor”  power  prices  are   at   an   appropriate   level,   renewable-­‐energy-­‐diversified   portfolios   achieve   higher  returns  than  fossil-­‐fuel-­‐only  portfolios.  The  differences  imply  foregone  values  incurred  by  non-­‐diversifying  firms.  Potentially,  as  these  value  differences  widen,  fossil-­‐fuel-­‐only  portfolios  may  take  this  cue  to  diversify  into  renewable  energy.            When   policy   uses   pricing   signals   to   influence   renewable   energy   adoption,   while  consciously   working   within   the   context   of   the   firms’   investment   decision   criteria,  resource  allocation  could   follow  a  more  equitable   route   feasible  under  a   functioning  market  economy.  Consequently,   carbon   taxation  may  be  periodically  varied   to  adapt  to   changing   market   circumstances   that   impact   firms’   values   and   the   pace   of  technological  evolution.      Within  the  context  of  energy’s  oligopolistic  markets,  regulatory  actions  could  achieve  greater   influence   by   dismantling   the   barriers   to   competition.   For   renewable   energy  deployment,  competitive  markets  require   less  regulatory  support  when  firms  are   left  to  strategically  respond  according  to  their  resource  endowment  and  aspirations.