questions of modern cosmology - springer

26
Questions of Modern Cosmology

Upload: khangminh22

Post on 03-May-2023

0 views

Category:

Documents


0 download

TRANSCRIPT

Questions of Modern Cosmology

Mauro D’Onofrio • Carlo BuriganaEditors

Questions ofModern Cosmology

Galileo’s Legacy

123

EditorsMauro D’OnofrioUniversita di PadovaDip. to. di AstronomiaVicolo Osservatorio, 335122 [email protected]

Carlo BuriganaINAF BolognaIst. di Astrofisica Spaziale eFisica Cosmica (IASF)Via Gobetti, 10140129 [email protected]

ISBN 978-3-642-00791-0 e-ISBN 978-3-642-00792-7DOI 10.1007/978-3-642-00792-7Springer Dordrecht Heidelberg London New York

Library of Congress Control Number: 2009928103

c© Springer-Verlag Berlin Heidelberg 2009This work is subject to copyright. All rights are reserved, whether the whole or part of the material isconcerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publicationor parts thereof is permitted only under the provisions of the German Copyright Law of September 9,1965, in its current version, and permission for use must always be obtained from Springer. Violationsare liable to prosecution under the German Copyright Law.The use of general descriptive names, registered names, trademarks, etc. in this publication does notimply, even in the absence of a specific statement, that such names are exempt from the relevant protectivelaws and regulations and therefore free for general use.

Cover design: WMXDesign GmbH

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

In memory of the men and women who spenttheir lives for a science free from prejudices,conditioning, and interferences.

Foreword

This book represents a modern tribute to Galileo. The way in which the authors,Mauro D’Onofrio and Carlo Burigana, illustrate the present understanding of theUniverse through interviews in which physicists, astrophysicists, and cosmologistshighlight their pros and cons on the current models takes our mind immediately toGalileo’s opera “Dialogue over the two world maxima systems”. In the “Dialogue”,three characters are philosophizing on the world “Tolemaic-Aristotelic” systemagainst the innovative “Copernican” system, Salviati, and Simplicio – both scien-tists – and the noble Venetian Sagredo. The latter represents the moderate reader,while Salviati is the spokesman of the Galileian Copernican ideas and Simplicio isthe rigid defender of the traditional and dogmatic “scholastic” doctrine. It is not thecase that Simplicio means “simple” as well as “silly”. But Simplicio is not at allsilly, while is trivial the incapacity of the “scholastic” model to open itself to novel-ties. “Questo modo di filosofare tende alla sovversione di tutta la filosofia naturale,ed al disordinare e mettere in conquasso il cielo e la Terra e tutto l’universo” (Thisway of philosophizing subverts the whole of natural philosophy and puts out of or-der the sky, the earth, and the entire universe) says Simplicio in the first day of theDialogue.

After four centuries, “Questions of Modern Cosmology – Galileo’s Legacy” hasmany more characters, all well known and respected scientists, representing theirviews on the cosmological and astrophysical observations, their interpretations, thecosmological paradigms, and possible alternatives. Is there among them any modernSimplicio or are we all representing Simplicio today? It is up to you reader, as acontemporary Venetian patrician Sagredo, to discover it and to be ready to acceptany new idea; even the one that the Big Bang is not the beginning of everything butjust one among many events.

But looking more deeply at the Copernican model of Galileo’s time, it was abrilliant, but only a phenomenological description of the Solar System. It is after thediscoveries of Kepler’s laws and the interpretation of Newton that the description ofthe Solar System had a full comprehensive physical explanation. In terms of analo-gies between Galileo and today, as is evident from the pages of D’Onofrio’s andBurigana’s book, the current�CDM cosmological model is sufficiently satisfactoryfrom the phenomenological point of view, but the full physical description is stillmissing.

vii

viii Foreword

It may be argued that the most important scientific discoveries in cosmology arereferable to observations and interpretations by the methods of astrophysics and fun-damental physics. In this book, the balance between observational cosmology andthe interpretation of the data is well made in Chaps. 2 and 3. Furthermore, the manyoutstanding contributors interviewed present a complete and exhaustive panoramabetween the present scenario and the future challenges (Chaps. 2, 3, and 5).

The authors have in mind that the scientific method and the way to do withscience is not unique and even the “alternative” ideas are presented without anyobscurantistic bias (Chap. 4 and Concluding remarks).

This book is aimed at students and at colleagues in astrophysics, cosmology, andphysics, and also at any reader interested in this intriguing field of science.

The way to unfold the most recent discoveries and theories in cosmology, viaa number of different voices, makes the book a wonderful story and switches thecuriosity of the reader, pushing him to read page after page to discover the wonderfulpicture of the whole Universe.

Bologna, Nazzareno MandolesiMay 2009

Preface

This book is dedicated to Galileo Galilei, the Italian man who 400 years ago firstpointed a telescope toward the luminous objects visible in the night sky, realizingthe famous astronomical discoveries (published in the “Sidereus Nuncius”), whichwithin few years prompted the first scientific revolution, today known as the “Coper-nican Revolution”. A new vision of the Universe was emerging at that time in thegarden of Galileo in Padova. His life and scientific discoveries are so famous andimportant that during 2009, declared by United Nations the year of Astronomy,astronomers from all countries will celebrate his life through meetings, congresses,workshops, lectures, seminars, and a lot of other activities.

Here, in Italy, the astronomical community is working hard for the 2009 cele-brations of the International Year of Astronomy. In this context, at the beginning of2007, we proposed this book to the Springer publisher to give our personal tributein honor of Galileo. To us, the idea of reviving the Galileo “spirit”, by engagingin a discussion with many contemporary scientists about the state-of-the-art of thepresent day cosmology and the role and character of this science today in our soci-ety, was very attractive. For this reason, we realized a series of interviews with manyastronomers and physicists from all over the world, with the aim of summarizing themost important and significant advances made by cosmology over the past centuryand at the beginning of the new millennium. We have tried to interpret, as well aspossible, the fighting spirit of Galileo, opening the debate to alternative ideas andstrongly favoring the empirical approach to the scientific problems.

We are living in a very strange scientific epoch: theorists are pushing themselvesto the limits of pure speculation in the search of a “Theory of Everything”, able toreconcile quantum mechanics, general relativity, cosmology, and particle physics.At the same time, experimental and observational projects are getting bigger andbetter at demonstrating the existence of the theoretically predicted dark matter anddark energy, which would constitute up to �95% of the energy density, understand-ing the very early stages of the Universe and reconstructing its evolution. In thiscontext, the parallelism/contrast with the situation at Galileo’s time is intriguing. Athis epoch, astronomical observations prompted the Copernican Revolution throughthe discoveries of Jupiter’s satellites, of the phases of Venus, and so on. Today,it is the lack of a firm observational or experimental identification of nonordinary

ix

x Preface

types of matter that may trigger a profound shift of scientific paradigm. It shouldbe recognized, in fact, that we still have to catch the essence of the unknown formsof energy and matter that fill the Universe but escape our theories and experiments,despite the great efforts of recent space missions, extensive observational programsin all frequency bands, and dedicated experiments of fundamental and astroparticlephysics, and, in parallel, the great theoretical work done to explain them in a unifiedvision.

In general, in the simplest currently accepted standard model(s) of cosmology,there are relatively few free parameters required to fit the whole set of available data.They are linked to the density of the different forms of matter and energy, to the ex-pansion rate of the Universe, to the kinds and statistics of primordial perturbations,and to the physical processes that occurred in the early stages of structure formation.The model works very well, but no one knows why some of these parameters havethe values they do.

In addition to this, it is our aim here to discuss another important parallelism be-tween Galileo’s epoch and the present, that is enclosed in the following questions.Galileo was condemned for his ideas and several people fought against the progressof the new scientific vision of the Universe. Are we living with the same things to-day? How much space is there for alternative ideas that may prompt a new scientificrevolution? Are we close to a deeper understanding of the current paradigm or toa new scientific revolution, or rather, are physics and astrophysics going through aprofound crisis?

This book is written, as a collection of interviews, not only for all those peoplewith a solid scientific background in cosmology and particle physics, but also forastronomers and physicists not necessarily expert in these fields of research. Herecan be found the tentative answers of the scientific community to the challengesposed by cosmology to the standard physical paradigms of the last century. Wehope also that it will be of some interest to readers attracted in particular by theway in which our science evolves and reflects on its principles, methods, and self-organization.

Certainly, the selection of the topics addressed by the interviews and the formu-lation of the posed questions reflect in same way our personal views on the mostimportant aspects of modern cosmology. Our choice for this project, however, wasthat of avoiding as much as possible any comment to the single interviews, meritsand responsibilities of which entirely belong to the colleagues who kindly acceptedthem, leaving to ourselves some general remarks for the final chapter.

We hope the reader will be satisfied by the discussion started here.We thank all the colleagues who have kindly accepted to be involved in this

project. We greatly appreciate not only their specific answers to our questions, whichcreated a panoramic view of current cosmology, but also their efforts to enter deeplyinto the spirit of this book, critically discussing the various scientific aspects theyaddressed.

We also thank Matteo Genghini and Enrico Franceschi for their informatic assis-tance that helped us in the exchange of the book material during the various stages ofinteraction with our colleagues. We particularly thank Simone Zaggia for his help in

Preface xi

solving some Latex problems, Marcel Clemens for improving the quality of English,Paola Marziani for her editorial suggestions, and Gabriele Umbriaco for his graphicdesign of the front cover of the book.

We also thank the women in our lives, Simonetta and Marilena, who patientlysustained us throughout the development of this work, and the little Margherita whowants back her daddy Mauro.

Finally, we acknowledge our Springer Editor, Ramon Khanna, for having be-lieved in this project from its beginning.

Venezia, Mauro D’OnofrioMay 2009 Carlo Burigana

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1Mauro D’Onofrio and Carlo Burigana

2 Fundamental Cosmological Observations and DataInterpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7Contributions by Matthias Bartelmann, Charles L. Bennett,Carlo Burigana, Cesare Chiosi, Mauro D’Onofrio,Alan Dressler, Isabella Gioia, Gunther Hasinger,Juan Francisco Macias-Perez, Piero Madau, Paola Marziani,John Mather, Francesca Matteucci, Keith Olive, John Peacock,Wolfgang Reich, Pierre-Marie Robitaille, MichaelRowan-Robinson, Gary Steigman, Matthias Steinmetz,Jack W. Sulentic, Massimo Turatto, and Simon D.M. White2.1 Outline of the Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72.2 From CDM to �CDM Paradigm .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102.3 Type Ia SNe as Probe of the Paradigm Shift . . . . . . . . . . . . . . . . . . . . . . . . . 122.4 SNe Physics and the �CDM Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162.5 Cosmology with Quasars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5.1 The Challenge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222.5.2 Exploiting Quasar Variability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252.5.3 Quasar Diversity and Quasar Evolution . . . . . . . . . . . . . . . . . . . 262.5.4 The Baldwin Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272.5.5 Exploiting the Luminosity-to-Mass Ratio . . . . . . . . . . . . . . . . . 292.5.6 Guessing Further... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.6 The Heretical View on Cosmological Redshifts . . . . . . . . . . . . . . . . . . . . . 332.6.1 On the Wolf Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362.6.2 Anomalies with Quasars? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.7 Cosmological Nucleosynthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422.7.1 Theory of Cosmological Nucleosynthesis . . . . . . . . . . . . . . . . . 422.7.2 Tests of Cosmological Nucleosynthesis . . . . . . . . . . . . . . . . . . . 512.7.3 Alternatives to Standard BBN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.8 CMB Observations and Main Implications . . . . . . . . . . . . . . . . . . . . . . . . . . 562.8.1 The COBE Legacy .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 562.8.2 WMAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

xiii

xiv Contents

2.8.3 Balloon-borne Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 752.8.4 Far-IR Foreground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 772.8.5 Interstellar Medium .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 852.8.6 Radio Foregrounds .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 872.8.7 A Radically Different Point of View on the CMB . . . . . . . . 93

2.9 Cosmological Information from X-Ray Astronomy . . . . . . . . . . . . . . . . 1082.9.1 Evolution of LSS and Nucleosynthesis . . . . . . . . . . . . . . . . . . . . 1082.9.2 Coeval Evolution of Galaxies and Their

Supermassive BHs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1102.10 First Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

2.10.1 Preamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1152.10.2 The Dark Age and the Emergence of Cosmic Structure . . 1172.10.3 High Redshift Quasars and BH Feedback . . . . . . . . . . . . . . . . . 122

2.11 Galaxy Clusters, The Largest Self-gravitatingStructures of the Universe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

2.12 A Multifrequency View of Galaxy Clusters . . . . . . . . . . . . . . . . . . . . . . . . . 1312.12.1 Clusters of Galaxies: An Introduction . . . . . . . . . . . . . . . . . . . . . 1322.12.2 Clusters of Galaxies in X-Rays . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1332.12.3 Clusters of Galaxies as Cosmological Tools. . . . . . . . . . . . . . . 137

2.13 Dark Matter in Modern Cosmology .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1442.13.1 Issues of the CDM Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

2.14 Lensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1522.15 Constraints on the Universe Age from Stellar Evolution . . . . . . . . . . . 159

2.15.1 The Very First Generation: PopIII . . . . . . . . . . . . . . . . . . . . . . . . . 1602.15.2 Ages from Star Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1602.15.3 Ages from Integrated Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

2.16 The Distance Scale, A Road Towards Modern Cosmology .. . . . . . . . 1712.16.1 HST Key Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1742.16.2 Type Ia Supernovae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

References .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

3 Astrophysical Cosmology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203Contributions by Amedeo Balbi, Charles L. Bennett,Martin Bucher, Carlo Burigana, Peter Coles, Mauro D’Onofrio,Ruth Durrer, John Mather, Pavel Naselsky, Francesca Perrotta,Lucia A. Popa, David Spergel, Kandaswamy Subramanian,and Nicola Vittorio3.1 Outline of the Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2033.2 Inflation .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2053.3 Topological Defects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

3.3.1 Imprints on the CMB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2153.3.2 Non-Gaussian Anisotropies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

3.4 Adiabatic vs. Isocurvature Perturbations.. . . . . . . . . . . . . . . . . . . . . . . . . . . . 2223.5 CMB Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

3.5.1 Implications of CMB Spectrum Observations .. . . . . . . . . . . . 225

Contents xv

3.5.2 CMB Anisotropy .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2283.5.3 Cosmological Parameters from WMAP . . . . . . . . . . . . . . . . . . . 2383.5.4 Geometry of the Universe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

3.6 The Ionization History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2453.6.1 Recombination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2463.6.2 Reionization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2543.6.3 Alternative Ionization Histories . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

3.7 Large Scale Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2623.7.1 Baryon Acoustic Oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2683.7.2 Large Scale Structure Through Simulations .. . . . . . . . . . . . . . 270

3.8 Neutrino Physics and Its Cosmological Implications . . . . . . . . . . . . . . . 2733.9 Cosmic Magnetism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

3.9.1 The Magnetic Universe .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279References .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

4 From Galileo to Modern Cosmology: AlternativeParadigms and Science Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 301Contributions by Carlo Burigana, Salvatore Capozziello,Cesare Chiosi, Mauro D’Onofrio, Malcolm Longair,Philip Mannheim, Paola Marziani, Moti Milgrom, Keith Olive,Thanu Padmanabhan, John Peacock, Francesca Perrotta,Luisa Pigatto, Rafael Rebolo, Luigi Secco, Jack W. Sulentic,Gerard t’Hooft, and Simon D.M. White4.1 Outline of the Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3014.2 Remembering Galileo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3034.3 Galileo’s Lesson Today .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3164.4 Tests of General Relativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3194.5 Cosmological Constant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323

4.5.1 Historical Overview.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3234.5.2 The Problem of Theoretical Physics . . . . . . . . . . . . . . . . . . . . . . . 324

4.6 Dark Energy Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3334.6.1 Dark Energy Candidates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3364.6.2 Dark Energy and Inflation Analogies? . . . . . . . . . . . . . . . . . . . . . 342

4.7 Alternatives to Standard Gravity Theories . . . . . . . . . . . . . . . . . . . . . . . . . . . 3434.7.1 MOND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3444.7.2 f .R/ Theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3534.7.3 DE as a Curvature Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3544.7.4 DM as a Curvature Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3594.7.5 Conformal Gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365

4.8 Early Universe: Connecting Particle Physics and Cosmology .. . . . . 3824.9 Constants in Physics? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3864.10 On the Anthropic Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391

4.10.1 Cosmological Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3914.10.2 Modern Cosmology and Center of the Universe . . . . . . . . . . 3924.10.3 The Large Numbers Puzzle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393

xvi Contents

4.10.4 Anthropic Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3944.10.5 Growth of Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3964.10.6 The Fine Tuned Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3974.10.7 Carbon and Oxygen Nucleosynthesis . . . . . . . . . . . . . . . . . . . . . . 398

4.11 Many-Universes .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3994.12 Science and Society and Self-Organization

of Astrophysical Community .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4014.12.1 Comments on Sociological and Economical Influences . . 4014.12.2 Comments on Astrophysical Community

Self-Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4054.13 Boundary Condition for Astrophysics Development:

A Modern Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4134.13.1 Astronomy in the Canaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4154.13.2 Cosmology in the Canaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418

References .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420

5 Next Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429Contributions by Matthias Bartelmann, Charles L. Bennett,Martin Bucher, Carlo Burigana, Massimo Capaccioli,Mauro D’Onofrio, Ruth Durrer, Isabella Gioia,Gunther Hasinger, Charles Lawrence, Giuseppe Longo,Juan Francisco Macias-Perez, Piero Madau, John Mather,John Peacock, Lucia A. Popa, Rafael Rebolo, Wolfgang Reich,Matthias Steinmetz, Massimo Turatto, and Simon D.M. White5.1 Outline of the Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4295.2 New Perspectives from Radio Astronomy .. . . . . . . . . . . . . . . . . . . . . . . . . . 431

5.2.1 New Radio Telescopes Trace the Epoch of Reionization . 4325.3 New Perspectives in CMB Cosmology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435

5.3.1 Ideas for New Spectrum Experiments . . . . . . . . . . . . . . . . . . . . . 4355.3.2 The Future of CMB Experiments: Ground vs. Space? . . . . 4385.3.3 Planck, A Forthcoming Space Mission . . . . . . . . . . . . . . . . . . . . 4395.3.4 Surveys to Map Dust Foreground Emission . . . . . . . . . . . . . . . 4515.3.5 Beyond Planck . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452

5.4 Perspectives from New Galaxy Surveys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4585.4.1 Ground-based Optical Surveys and Related

Technological Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4615.5 New Key Observations Dedicated to the First Structures . . . . . . . . . . . 4735.6 N-Body Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4745.7 Future Perspectives from SNe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4785.8 New Perspectives in High Energy Astrophysics

and Galaxy Clusters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4805.9 Cosmological Expectations from Lensing . . . . . . . . . . . . . . . . . . . . . . . . . . . 4865.10 Future Tests for Topological Defects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489

5.10.1 What are the Characteristics of Lensingby Cosmic Strings? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 490

Contents xvii

5.10.2 Would Cosmic Strings Lead to an ObservableGravitational Wave Background? . . . . . . . . . . . . . . . . . . . . . . . . . . 491

5.11 New Perspectives for Neutrino from Astrophysical Cosmology . . . 493References .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496

6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503Mauro D’Onofrio and C. Burigana

Web Pages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515

Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 521

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 525

List of Authors

Amedeo Balbi Dipartimento di Fisica, Universita di Roma Tor Vergata,Via della ricerca scientifica, 00133 Roma, Italy,e-mail: [email protected]’s contribution in Sect. 3.7.

Matthias Bartelmann Institut fur Theoretische Astrophysik,Universitat Heidelberg, Albert-Uberle-Straße 2, 69120 Heidelberg, Germany,e-mail: [email protected]’s contribution in Sects. 2.14 and 5.9.

Charles L. Bennett Department of Physics and Astronomy,The Johns Hopkins University, 3400 N. Charles Street, Baltimore,MD 21218-2686, USA, e-mail: [email protected]’s contribution in Sects. 2.8.2, 3.7.1, and 5.4.

Martin Bucher Laboratoire de Physique Theorique, Universite Paris-Sud,91405 Orsay, France, e-mail: [email protected]’s contribution in Sects. 3.4 and 5.3.5.

Massimo Capaccioli INAF - Osservatorio Astronomico di Capodimonte,VST Center, Via Moiariello 16, 80131 Napoli, Italy, e-mail: [email protected]’s contribution in Sect. 5.4.1.

Salvatore Capozziello Department of Physics, Universita di Napoli Federico II,Via Cintia, 80126 Napoli, Italy, e-mail: [email protected]’s contribution in Sect. 4.7.2.

Cesare Chiosi Dipartimento di Astronomia, Universia of Padova,Vicolo Osservatorio 3, 35122 Padova, Italy, e-mail: [email protected]’s contribution in Sects. 2.15 and Sects. 4.12.1

Peter Coles School of Physics and Astronomy, Cardiff University,Queen’s Buildings, 5 The Parade, Cardiff CF24 3AA, UK,e-mail: [email protected]’s contribution in Sects. 3.5.2, 3.5.4, and 3.7.2.

xix

xx List of Authors

Alan Dressler Observatories of the Carnegie Institution of Washington,Pasadena, CA 91101, USA, e-mail: [email protected]’s contribution in, Sect. 2.11.

Ruth Durrer Universite de Geneve, Departement de Physique Theorique,24 quai E. Ansermet, 1211 Geneve 4, Switzerland,e-mail: [email protected]’s contribution in, Sect. 3.3 and 5.10.

Isabella Gioia INAF Istituto di Radioastronomia,Via P. Gobetti 101, 40129 Bologna, Italy, e-mail: [email protected]’s contribution in Sects. 2.12 and 5.8.

Gunther Hasinger Max-Planck-Institut fur extraterrestrische Physik,Giessenbachstraße, Postfach 1312, 85741 Garching, Germany,e-mail: [email protected]’s contribution in Sects. 2.9 and 5.8.

Charles R. Lawrence Jet Propulsion Laboratory,4800 Oak Grove Drive, Pasadena, CA 91109, USA,e-mail: [email protected]’s contribution in Sect. 5.3.3.

Malcolm Longair Cavendish Laboratory,Room 918 Rutherford Building, JJ Thomson Avenue, Cambridge CB3 0HE, UK,e-mail: [email protected]’s contribution in Sects. 4.3, 4.4, and 4.5.1.

Giuseppe Longo Department of Physical Sciences, University Federico II,via Cintia 9, 80126 Napoli, Italy, e-mail: [email protected]’s contribution in Sect. 5.4.1.

Juan Francisco Macias-Perez Laboratoire de Physique Subatomique et deCosmologie, 53, rue des Martyrs, 38026 Grenoble Cedex, France,e-mail: [email protected]’s contribution in Sects. 2.8.3–2.8.5 and 5.3.4.

Piero Madau University of California, Santa Cruz,CA 95064, USA, e-mail: [email protected]’s contribution in Sects. 2.10 and 5.5

Philip D. Mannheim Department of Physics, University of Connecticut,Storrs, CT 06269, USA, e-mail: [email protected]’s contribution in Sect. 4.7.5.

Paola Marziani INAF, Osservatorio Astronomico di Padova,Vicolo Osservatorio 5, 35122 Padova, Italy, e-mail: [email protected]’s contribution in Sect. 2.5 and 4.12.1.

John C. Mather Astrophysics Science Division, NASA/GSFC,Code 665, Observational Cosmology, Greenbelt, MD 20771, USA,e-mail: [email protected]’s contribution in Sects. 2.8.1, 3.5.1, and 5.3.1.

List of Authors xxi

Francesca Matteucci Universita degli Studi di Trieste,via G.B. Tiepolo 11, 34131 Trieste, Italy, e-mail: [email protected]’s contribution in Sect. 2.4.

Moti Milgrom Department of Condensed Matter Physics, Weizmann Institute,Rehovot 76100, Israel, e-mail: [email protected]’s contribution in Sects. 4.7 and 4.7.1.

Pavel Naselsky Niels Bohr Institute,Blegdamsvej 17, 2100 Copenhagen, Denmark, e-mail: [email protected]’s contribution in Sect. 3.6.

Keith Olive William I, Fine Theoretical Physics Institute,School of Physics and Astronomy, University of Minnesota, 116 Church Street SE,Minneapolis, MN 55455, USA, e-mail: [email protected]’s contribution in Sects. 2.7.1 and 2.7.2 and 4.9.

Thanu Padmanabhan IUCAA, Post Bag 4, Pune University Campus,Ganeshkhind, Pune 411 007, India, e-mail: [email protected]’s contribution in Sects. 4.5.2, 4.7 and 4.12.1.

John Peacock Institute for Astronomy, Royal Observatory,Blackford Hill, Edinburgh EH9 3HJ, UK, e-mail: [email protected]’s contribution in Sects. 2.2, 4.11, 4.12.1, and Sect. 5.4.

Francesca Perrotta INAF, Osservatorio Astronomico di Trieste,Via G.B. Tiepolo 11, 34131 Trieste, Italy, e-mail: [email protected]’s contribution in Sects. 3.2 and 4.6.

Luisa Pigatto INAF, Osservatorio Astronomico di Padova,Vicolo Osservatorio 5, 35122 Padova, Italy,e-mail: [email protected]’s contribution in Sect. 4.2.

Lucia A. Popa ISS, Institute for Space Sciences,Bucharest-Magurele 76900, Romania, e-mail: [email protected]’s contribution in Sect. 3.8 and 5.11.

Rafael Rebolo Instituto de Astrofisica de Canarias,38200 La Laguna, Tenerife, Spain, e-mail: [email protected]’s contribution in Sects. 4.13 and 5.3.2.

Wolfang Reich Max-Planck-Institut fur Radioastronomie,Auf dem Hugel 69, 53121 Bonn, Germany, e-mail: [email protected]’s contribution in Sects. 2.8.6 and 5.2.

Pierre Marie Robitaille Department of Radiology, The Ohio State University,130 Means Hall, 1654 Upham Drive, Columbus, OH 43210, USA,e-mail: [email protected]’s contribution in Sect. 2.8.7.

xxii List of Authors

Michael Rowan-Robinson Imperial College, Blackett Laboratory,Prince Consort Road, London SW7 2BZ, UK, e-mail: [email protected]’s contribution in Sect. 2.16.

Luigi Secco Dipartimento di Astronomia, Universita di Padova,Vicolo Osservatorio 3, 35122 Padova, Italy, e-mail: [email protected]’s contribution in Sect. 4.10.

David N. Spergel Department of Astrophysical Sciences, Princeton University,Princeton, NJ 08544 USA, e-mail: [email protected]’s contribution in Sect. 3.5.3.

Gary Steigman Department of Physics, The Ohio State University,Columbus, OH 43210, USA, e-mail: [email protected]’s contribution in Sect. 2.7.

Matthias Steinmetz Astrophysical Institute of Potzdam,An der Sternwarte 16, 14482 Potsdam, Germany, e-mail: [email protected]’s contribution in Sect. 2.13.1 and 5.6.

Kandaswamy Subramanian Inter-University Centre for Astronomyand Astrophysics, Post Bag 4, Ganeshkhind, Pune 411 007, India,e-mail: [email protected]’s contribution in Sect. 3.9.

Jack W. Sulentic Department of Physics and Astronomy, University of Alabama,Box 870324, Tuscaloosa AL 35487-0324, USA, e-mail: [email protected]’s contribution in Sects. 2.6 and 4.12.2.

Gerard t’Hooft Spinoza Instituut, Leuvenlaan 4, Postbus 80.195,3508 TD Utrecht, The Netherland, e-mail: [email protected]’s contribution in Sects. 4.8 and 4.12.2.

Massimo Turatto INAF, Osservatorio Astronomico di Catania,Via S. Sofia 78, 95123 Catania, Italy, e-mail: [email protected]’s contribution in Sects. 2.3 and 5.7.

Nicola Vittorio Dipartimento di Fisica, Universita di Roma Tor Vergata,Via della ricerca scientifica, 00133 Roma, Italy,e-mail: [email protected]’s contribution in Sect. 3.5.2.

Simon D.M. White Max Planck Institut fur Astrophysik,Karl Schwarzschild Straße 1, 85740 Garching, Germany,e-mail: [email protected]’s contribution in Sects. 2.13, 4.12.2, and 5.6.

Author’s Acknowledgements

C. Bennett: I acknowledge the WMAP science team for their collective effortsfrom the WMAP concept, through the design, build, launch, mission operations,data analysis, and the public dissemination of the data.

S. Capozziello: I acknowledge Vincenzo Cardone, Sante Carloni, Arturo Stabileand Antonio Troisi for suggestions, comments and results achieved on the presentedtopics.

P. Coles: Most of the work I have described here was done in collaboration withothers. I am particularly grateful to two former students of mine, Patrick Dineen andLung-Yih Chiang, and to a current student Rockhee Sung, for permission to includework we did jointly together.

R. Durrer: I thank Martin Kunz for clarifying discussions and for helping me withFig. 3.5 (in Chap. 3) and Mark Hindmarsh for a constructive conversation on theproblem of string loop size. This work is supported by the Swiss National ScienceFoundation.

I. Gioia: I thank the hospitality of the Institute for Astronomy of the Universityof Hawaii where most of this work was completed. I enjoyed fruitful discussionswith M. Branchesi, L. Feretti, F. Govoni, P. Henry, M. Murgia, B. Tully. I acknowl-edge partial financial support from contracts ASI-INAF I/023/05/0, 088/06/0 andDA-030.

C. Lawrence: The Planck mission has been developed by a large number of peo-ple. I have taken advantage of the work of too many to name individually, but wouldlike to thank J.-L. Puget and N. Mandolesi, the HFI and LFI PIs, respectively, andJ.-M. Lamarre and M. Bersanelli, the HFI and LFI Instrument Scientists, respec-tively, for their essential work on Planck, the many authors of the Planck Bluebookfor a great compilation of the Planck science programme, from which I have bor-rowed freely, and Bill Jones, Dave Pearson, Ben Wandelt, and Martin White for theirhelp with figures and many other things. Any and all mistakes are my responsibilityalone.

xxiii

xxiv Author’s Acknowledgements

G. Longo: Most of the work has been done in collaboration with the VO-Neuralteam and within the frameworks of the VOTech European Consortium and of a 2008bi-lateral Italy–USA agreement sponsored by the Italian Bureau for Foreign Affairs.

J. Mather: The COBE team included the Science Working Group (SWG), over100 supporting scientists and software engineers, and the total team list includedover 1,600 people, mostly at Goddard Space Flight Center and at Ball Aerospacewhere the helium cryostat was made. The SWG membership and their roles (andcurrent affiliations) are as follows: J.C. Mather, GSFC, Project Scientist and FIRASPrincipal Investigator; M.G. Hauser, HST-ScI, DIRBE Principal Investigator; G.F.Smoot, UC Berkeley, DMR Principal Investigator; C.L. Bennett, Johns HopkinsUniversity, DMR Deputy PI; N.W. Boggess, GSFC-ret, Deputy Proj. Scientist; E.S.Cheng, Conceptual Analytics, Deputy Proj. Scientist; E. Dwek, GSFC; S. Gulkis,JPL; M.A. Janssen, JPL; T. Kelsall, GSFC-ret, DIRBE Deputy PI; P.M. Lubin,UCSB; S.S. Meyer, University of Chicago; S.H. Moseley, GSFC; T.L. Murdock,Frontier Technology Inc.; R.A. Shafer, GSFC, FIRAS Deputy PI; R.F. Silverberg,GSFC; R. Weiss, MIT, Chairman of SWG; D.T. Wilkinson, Princeton (deceased);E.L. Wright, UCLA, Data Team Leader. The project manager was Roger Mattson(deceased) and his deputy was Dennis McCarthy.

K. Olive: This work was supported in part by DOE Grant No. DE-FG02-94ER-40823.

L. Secco: I dedicate this contribution to the memory of Prof. Niccolo Dallaportawho has been for me Master in Science and in Life. Prof. N. Dallaporta introducedto me these topics giving the feeling of how much useful is to muse on them in orderto direct the scientific research itself and to realize of what lies beyond it.

G. Steigman: The research of the author is supported at The Ohio State Universityby a grant (DE-FG02-91ER40690) from the U.S. Department of Energy.

M. Turatto: I thank Stefano Benetti ed Enrico Cappellaro for suggestions,comments and continuous discussion on the topics discussed in this book.

Acronyms

ACBAR Arcminute Cosmology Bolometer Array ReceiverACT Atacama Cosmology TelescopeADEPT Advanced Dark Energy Physics TelescopeAKARI Previously known as ASTRO-F or IRIS - InfraRed Imaging

SurveyorALHAMBRA Advanced Large Homogeneous Area Medium Band

Redshift AstronomicalALMA Atacama Large Millimeter/submillimeter ArrayAMR Age Metallicity RelationshipAP Anthropic PrincipleAPM Automatic Plate MeasuringAPS Angular Power SpectrumARGO Astrophysical Radiation with Ground-Based ObservatoryARCADE Absolute Radiometer for Cosmology, Astrophysics,

and Diffuse EmissionASCA Advanced Satellite for Cosmology and AstrophysicsASTRON ASTRonomisch Onderzoek in Nederland (The Netherlands

Foundation for Research in Astronomy)AstroWISE Astronomical Wide-field Imaging System for EuropeBAO Baryonic Acoustic OscillationsBB Black BodyBBN Big Bang NucleosynthesisBH Black HoleBICEP Background Imaging of Cosmic Extragalactic PolarizationBLR Broad Line RegionBOOMERanG Balloon Observations Of Millimetric Extragalactic

Radiation and GeophysicsB-Pol B-Polarization Satellite MissionBRAIN Background RAdiation INterferometerCAIN CAmera INfrarrojaCBI Cosmic Background ImagerCCD Charge Coupled DeviceCCSNe Core–Collapse SNe

xxv

xxvi Acronyms

CDM Cold Dark MatterCERN Conseil Europeen pour la Recherche Nucleaire – European

Organization for Nuclear ResearchCFHT Canada–France–Hawaii TelescopeCFHTLS Canada–France–Hawaii Telescope Legacy SurveyCHANDRA Chandra X-ray Observatory in honor of the late Indian-

American Nobel laureate, Subrahmanyan ChandrasekharC`OVER C` ObserVERCMB Cosmic Microwave BackgroundCMD Color-Magnitude DiagramCMBPol CMB Polarization (Mission)CMR Color-Magnitude RelationCOBE Cosmic Background ExplorerCOBRAS–SAMBA COsmic Background Radiation Anisotropy Satellite –

SAtellite for Measurement of Background AnisotropiesCOMBO17 Classifying Objects by Medium-Band Observations –

a spectrophotometric 17-filter surveyCOSMOGRAIL COSmological MOnitoring of GRAvItational LensesCOSMOSOMAS COSMOlogical Structures On Medium Angular ScalesCOSTAR Corrective Optics Space Telescope Axial ReplacementCPU Central Processing UnitCTA Cherenkov Telescope ArrayCUORE Cryogenic Underground Observatory for Rare EventsCXC Chandra X-ray CenterDASI Degree Angular Scale InterferometerDE Dark EnergyDES Dark Energy SurveyDIRBE Diffuse Infrared Background ExperimentDM Dark MatterDMR Differential Microwave RadiometersDPOSS Digital Palomar Observatory Sky SurveyDUNE Dark UNiverse Explorer(E-)ELT (European) Extremely Large TelescopeEMIR Espectrografo Multiobjeto InfrRrojoENO European Northern ObservatoryeROSITA extended Rontgen Survey with an Imaging Telescope ArrayEOR Epoch of ReonisationESA European Space AgencyESO European Southern ObservatoryESSENCE Equation of State SupErNovae trace Cosmic ExpansionFastICA Fast Independent Component AnalysisFIRAS Far Infrared Absolute SpectrophotometerFIRS Far Infra-Red SurveyFLRW Friedmann–Lamaıtre–Robertson–WalkerFOSA First Order Smoothing Approximation

Acronyms xxvii

FOV Field of ViewFP Fundamental PlaneFWHM Full Width Half MaximumGAIA Global Astrometric Interferometer for AstrophysicsGC Globular ClusterGGC Galactic Globular ClusterGPS Global Positioning SystemGR General RelativityGRB Gamma Ray BurstGROND Gamma-Ray burst Optical/Near-infrared DetectorGUT Grand Unification TheoryHB Horizontal BranchHDF Hubble Deep FieldHDM Hot Dark MatterHEAO High Energy Astrophysical ObservatoryHEGRA High Energy Gamma Rays AstronomyHFI High Frequency InstrumentHRD Hertzsprung–Russell DiagramHST Hubble Space TelescopeHST-ACS Hubble Space Telescope Advanced Camera for SurveyHST-ScI Hubble Space Telescope Science InstituteIAC Instituto de Astrofısica de CanariasICM Intra Cluster MediumIF Isochrone FittingIGEX International Germanium EXperimentIGM Inter Galactic MediumILC Internal Linear CombinationIMF Initial Mass FunctionINTEGRAL International Gamma Ray Astrophysics LaboratoryIRAS Infrared Astronomical SatelliteISM Inter Stellar MediumISW Integrated Sachs–WolfeIVOA International Virtual Observatory AllianceJAXA/ISAS Japan Aerospace Exploration Agency/Institute of Space

and Astronautical ScienceJDEM JointDarkEnergyMissionJPL Jet Propulsion LaboratoryJWST James Webb Space TelescopeKATRIN KArlsruhe TRItium NeutrinoKM3NET km3 NEutrino TelescopeLAMBDA Legacy Archive for Microwave Background Data AnalysisLCOGT Las Cumbres Observatory Global TelescopeLHC Large Hadron ColliderLFI Low Frequency Instrumentlhs left hand side

xxviii Acronyms

LIGO Laser Interferometer Gravitational-Wave ObservatoryLISA Laser Interferometer Space AntennaLOFAR Low Frequency ArrayLOSS Lick Observatory SN SearchLSS Large Scale StructureLSST Large Synoptic Survey TelescopeLWA Long Wavelength ArrayMACHO MAssive Compact Halo ObjectsMAGIC Major Atmospheric Gamma-ray Imaging CherenkovMAX Millimeter wavelength Anisotropy eXperimentMAXIMA Millimeter Anisotropy eXperiment IMaging ArrayMCMC Monte Carlo Markov ChainMEM Maximum Entropy MethodMFD Mean-Field DynamoMHD Magneto Hydro DynamicsMOND MOdified Newtonian DynamicsMSAM Medium-Scale Anisotropy MeasurementsNASA National Aeronautics and Space AdministrationNeXT New X-ray Telescope (Mission)NFPS NOAO Fundamental Plane SurveyNIST National Bureau of StandardsNLS1 Narrow Line Seyfert 1NMR Nuclear Magnetic ResonanceNuStar Nuclear Spectroscopic Telescope ArrayNVO National Virtual ObservatoryOGC Open Galactic ClusterOGLE Optical Gravitational Lensing ExperimentOSIRIS Optical System for Imaging and Low/intermediate-

Resolution Integrated SpectroscopyPanSTARRS Panoramic Survey Telescope And Rapid Response SystemPRONAOS PROgramme National d’AstrOnomie SubmillimetriquePQ Palomar QuestPSB Polarization Sensitive BolometerPSPC Position Sensitive Proportional CountersQAS Quasar Absorption SystemQCD Quantum Cromo DynamicsQED Quantum Electro DynamicsQSO Quasi Stellar ObjectQUaD QUEST at DASIQUEST Q and U Extra-galactic Sub-mm TelescopeQUIJOTE-CMB Q, U, I JOint TEnerife CMBRAVE Radial Velocity ExperimentRGB Red Giant Branchrhs right hand sideROSAT ROentgen SATellite

Acronyms xxix

rpm rounds per minuteSAO Smithsonian Astrophysical ObservatorySAX Satellite per Astronomia XSCUBA Submillimetre Common-User Bolometer ArraySDSS Sloan Digital Sky SurveySED Spectral Energy DistributionSEGUE Sloan Extension for Galactic Understanding and ExplorationSF Star FormationSFR Star Formation RateSHOES Supernovae andH0 for the Dark Energy Equation of StateSIM PQ Space Interferometry Mission Planet QuiquiSIRTF Space Infrared Telescope FacilitySKA Square Kilometer ArraySMICA Spectral Matching Independent Component AnalysisSNAP SuperNova Acceleration ProbeSN SupernovaSNe SupernovaeSNFactory Nearby Supernova FactorySNLS Supernova Legacy SurveySPACE SPectroscopic All-sky Cosmic ExplorerSSP Single Stellar PopulationsSPT South Pole TelescopeSTEP Space Test of the Equivalence PrincipleSVM Service Vehicle ModuleSZA Sunyaev-Zel’dovich ArraySZE Sunyaev-Zel’dovich EffectTeVeS Tensor–Vector–Scalar (theory)THEMIS Telescope Heliographique pour l’Etude du Magnetisme

et des Instabilites SolairesTopHat-BAM TopHat-Balloon-borne Anisotropy MeasurementUKIDSS UKIRT Infrared Deep Sky SurveyUKIRT UK Infrared TelescopeULIRG Ultraluminous Infrared GalaxyVISTA Visible and Infrared Survey Telescope for AstronomyVLA Very Large ArrayVLBI Very Long Baseline InterferometryVLT Very Large TelescopeVSA Very Small ArrayVST VLT Survey TelescopeWFCAM Wide Field CameraWIMP Weak Interacting Massive ParticlesWINGS WIde-field Nearby Galaxy-clusters SurveyWMAP Wilkinson Microwave Anisotropy ProbeXCS XMM Cluster SurveyXLF X-ray Luminosity Function

xxx Acronyms

XEUS X-ray Evolving Universe Spectroscopy (Mission)XMM-Newton X-ray Multi Mirror SatelliteXTF X-ray Temperature Function2dF 2-Degree Field2dFGRS 2-Degree Field Galaxy Redshift Survey