development of comprehensive techniques for coastal site characterisation: part...

10
Copyright © 20xx by ASME Proceedings of The 13th International Conference on Environmental Remediation and Radioactive Waste Management ICEM2010 October 3-7, 2010, Tsukuba, Japan Tadafumi Niizato Japan Atomic Energy Agency Horonobe, Hokkaido, Japan Kenji Amano Japan Atomic Energy Agency Horonobe, Hokkaido, Japan Kunio Ota Japan Atomic Energy Agency Tokai, Ibaraki, Japan Takanori Kunimaru Japan Atomic Energy Agency Mizunami, Gifu, Japan Bill Lanyon Nagra Wettingen, Switzerland W. Russell Alexander Bedrock Geosciences Auenstein, Switzerland DEVELOPMENT OF COMPREHENSIVE TECHNIQUES FOR COASTAL SITE CHRACTERISATION (3) CONCEPTUALISATION OF LONG-TERM GEOSPHERE EVOLUTION ABSTRACT A critical issue for building confidence in the long-term safety of geological disposal is to demonstrate the stability of the geosphere, taking into account its likely future evolution. An ongoing collaborative programme aims to establish com- prehensive techniques for characterising the overall evolution of coastal sites through studying the palaeohydrogeological evolution in the coastal system around the Horonobe area, Hokkaido, northern Japan. Information on natural events and processes related to the palaeohydrogelogical evolution of the area have been integrated into the chronological tables and conceptual models that indicates the temporal and spatial se- quences of the events and processes, such as climatic and sea- level changes, palaeogeography, and geomorphological and geological evolution in the area. The methodology for concep- tualisation of the geosphere evolution will be applied to other analogous coastal areas on Japan’s western seaboard to pro- duce comprehensive techniques to support understanding the geosphere evolution of potential coastal sites for deep geologi- cal repositories. Keywords: Geological disposal of radioactive waste, long-term geosphere evolution, palaeohydrogeology, coastal site, Japan, Horonobe INTRODUCTION A critical issue for building confidence in the long-term safety of geological disposal is to demonstrate the stability of the geosphere, taking into account its likely future evolution. This stability is broadly defined as the persistence of Thermal- Hydrological-Mechanical-Chemical conditions considered favourable for the long-term safety of a geological repository []. The geosphere is slowly, but constantly, evolving so that stability, in this case, does not imply that steady-state condi- tions exist. Stability, in terms of deep disposal, means that any changes will not significantly impact on the long-term safety of the repository. In general, an understanding of the site evolution is gained by studying the palaeohydrogeological evolution of the area, defining temporal and spatial changes of various characteris- tics, events, and processes over geological time [2]. The site palaeohydrogeology refers to natural events and processes that have occurred in the past and contributed to the present state of the geosphere, which include sub-surface processes (e.g. crus- tal movement, diagenesis, etc.) and earth-surface processes (e.g. climatic and sea-level changes, geomorphological processes, etc.). An understanding of the palaeohydrogeological evolution of the site provides the firm foundation to describe the likely future evolution of the site. In this study (see also [3-4]), the current status for the con- ceptualisation of the long-term geosphere evolution of coastal sites on the western seaboard of Japan is based on data from the Horonobe Underground Research Laboratory (Horonobe Proceedings of the ASME 13th International Conference on Environmental Remediation and Radioactive Waste Management ICEM2010 October 3-7, 2010, Tsukuba, Japan ICEM2010- 00 Copyright © 2010 by ASME

Upload: independent

Post on 16-Nov-2023

0 views

Category:

Documents


0 download

TRANSCRIPT

Copyright©20xxbyASME

Proceedings of The 13th International Conference on Environmental Remediation and Radioactive Waste Management

ICEM2010October 3-7, 2010, Tsukuba, Japan

Tadafumi NiizatoJapan Atomic Energy AgencyHoronobe, Hokkaido, Japan

Kenji AmanoJapan Atomic Energy AgencyHoronobe, Hokkaido, Japan

Kunio OtaJapan Atomic Energy Agency

Tokai, Ibaraki, Japan

Takanori KunimaruJapan Atomic Energy Agency

Mizunami, Gifu, Japan

Bill LanyonNagra

Wettingen, Switzerland

W. Russell AlexanderBedrock GeosciencesAuenstein, Switzerland

DEVELOPMENT OF COMPREHENSIVE TECHNIQUES FOR COASTAL SITE CHRACTERISATION (3) CONCEPTUALISATION OF LONG-TERM GEOSPHERE

EVOLUTION

ABSTRACTAcritical issueforbuildingconfidence in the long-term

safetyofgeologicaldisposalistodemonstratethestabilityofthegeosphere, takingintoaccountits likelyfutureevolution.Anongoingcollaborativeprogrammeaimstoestablishcom-prehensivetechniquesforcharacterisingtheoverallevolutionofcoastalsites throughstudying thepalaeohydrogeologicalevolution in thecoastal systemaround theHoronobearea,Hokkaido,northernJapan.Informationonnaturaleventsandprocessesrelatedtothepalaeohydrogelogicalevolutionoftheareahavebeen integrated into thechronological tablesandconceptualmodelsthat indicatesthetemporalandspatialse-quencesoftheeventsandprocesses,suchasclimaticandsea-levelchanges,palaeogeography,andgeomorphologicalandgeologicalevolutioninthearea.Themethodologyforconcep-tualisationofthegeosphereevolutionwillbeappliedtootheranalogouscoastalareasonJapan’swesternseaboard topro-ducecomprehensivetechniquestosupportunderstandingthegeosphereevolutionofpotentialcoastalsitesfordeepgeologi-calrepositories.

Keywords:Geologicaldisposalofradioactivewaste,long-termgeosphereevolution,palaeohydrogeology,coastalsite,Japan,Horonobe

INTRODUCTIONAcritical issueforbuildingconfidence in the long-term

safetyofgeologicaldisposalistodemonstratethestabilityofthegeosphere, takingintoaccountits likelyfutureevolution.This stability is broadly defined as the persistence of Thermal-Hydrological-Mechanical-Chemical conditions consideredfavourableforthelong-termsafetyofageologicalrepository[�].Thegeosphere isslowly,butconstantly,evolvingsothatstability, in thiscase,doesnot implythatsteady-statecondi-tionsexist.Stability,intermsofdeepdisposal,meansthatanychanges will not significantly impact on the long-term safety of therepository.

Ingeneral,anunderstandingofthesiteevolutionisgainedbystudyingthepalaeohydrogeologicalevolutionof thearea,defining temporal and spatial changes of various characteris-tics,events,andprocessesovergeological time[2].Thesitepalaeohydrogeologyreferstonaturaleventsandprocessesthathaveoccurredinthepastandcontributedtothepresentstateofthegeosphere,whichincludesub-surfaceprocesses(e.g.crus-talmovement,diagenesis,etc.)andearth-surfaceprocesses(e.g.climaticandsea-levelchanges,geomorphologicalprocesses,etc.).Anunderstandingofthepalaeohydrogeologicalevolutionof the site provides the firm foundation to describe the likely futureevolutionofthesite.

Inthisstudy(seealso[3-4]),thecurrentstatusforthecon-ceptualisationofthelong-termgeosphereevolutionofcoastalsitesonthewesternseaboardofJapanisbasedondatafromtheHoronobeUndergroundResearchLaboratory(Horonobe

Proceedings of the ASME 13th International Conference on Environmental Remediation and Radioactive Waste Management

ICEM2010 October 3-7, 2010, Tsukuba, Japan

ICEM2010-40052

Copyright © 2010 by ASME

2

Copyright©20xxbyASME

URL;Fig.�)projectof the JapanAtomicEnergyAgency(JAEA). This corresponds to the first to third steps of a geo-synthesismethodologyfortheunderstandingofthegeosphereevolutioninapotentialrepositorysitewhichisdescribedelse-whereintheseproceedings[4].

TheHoronobeURLprojectisagenericprojectconductedbyJAEAtoenhanceconfidencein thereliabilityofkeydis-posal technologyby investigationsof,andwithin, thedeepgeologicalenvironmentof thesedimentaryformationsin theHoronobearea,Hokkaido,northernJapan(see[6],fordetails).Theprojectisproceedinginthreeoverlappingphases,“PhaseI:Surface-basedinvestigation”,“PhaseII:Construction”,and“PhaseIII:Operation”,extendingoveraperiodofabout20years[6].Thefollowinggeoscientific information ismainlybasedontheresultsofthePhaseIinvestigationoftheproject.

NATURAL EVENTS AND PROCESSESThePhaseIinvestigationsforthegeosphereevolutionhave

beenperformedbytheapplicationofageosynthesismethodol-ogy with the development of geosynthesis data flow diagrams [4, 6-8]. The geoscientific data have currently been synthesized intooneconceptualmodelforalikelyfutureevolutionoftheHoronobeareaover the time-scaleof theglacial-interglacialcycles(ca.�00k.y.).Thistemporalscalewaschosenasitmarksthe likely last significant change to the palaeohydrogeology of thearea,beginningfromthemostrecentsea-levelminimum(e.g.LastGlacialMaximum)whichwouldhaveled toasig-nificant change to the salinity of the Sea of Japan (see discus-sionbelow).Asnoted inAmanoetal. [3]andOtaetal. [4],

Figure 1. Present Geography of Northern Hokkaido Shaded relief map is after [5].

theconstantlychangingsea-leveloftheSeaofJapanoverthisperiod would have had a significant impact on the site hydroge-ology, impacting both groundwater fluxes and hydrochemistry. Changesinhydrogeologicalheads,assea-levelroseandfell,would impact flow across the study area just as sea-level would directly impact the chemistry of the infiltrating surface waters, changingfromfreshtosalinetofreshasthesealevelroseandfell.

Groundwater flow simulation and particle-tracking analyses implythat,apartfromshallowwaterlessthanca.75mdeep,thegroundwaterresidencetimewouldbeintheorderofafewmillionsofyears[8].Thisissupportedbyhydrochemicalstud-ieswhichindicate that thedeepNa-Cl-HCO3dominant typegroundwaterisinferredtobeoffossilseawateroriginbasedonisotopicsignaturesandthegroundwaterageestimatedbyHeandClradioisotopesisolderthan�.5Ma([6],[9]).Therefore,geoscientific informationshouldbecollectedin theorderofmillionsofyearsforthedescriptionofthegeosphereevolutionintheHoronobearea.

Physical Geography in the Horonobe AreaTheHoronobearea is situated in theeasternpartof the

TenpokuSedimentaryBasin(e.g.[�0])anditsgeologyisdomi-natedbyNeogenetoQuaternarysedimentarysequences.Thesite lithostratigraphy, inascendingorder,consistsof theSoya(alternatingbedsofconglomerate,sandstone,andmudstone,intercalatedwithcoalseams),Onishibetsu(sandstoneinterca-latedwithconglomerateandmudstone),Masuporo(alternating

Figure 2. Geological Map of Northern Hokkaido This map is partly modified from [14].

Copyright © 2010 by ASME

3

Copyright©20xxbyASME

bedsofconglomerate, sandstone,andmudstone),Wakkanai(diatomaceousandsiliceousshale),Koetoi(diatomaceousandsiliceouspebblymudstone),Yuchi (fine- tomedium-grainedsandstone),andSarabetsu(alternatingbedsofconglomerate,sandstone,andmudstone,intercalatedwithcoalseams)Forma-tions,(e.g.[��-�4];Fig.2).Theseformationsareunconform-ablyoverlainbyterracedeposits,alluvium,andlagoonaldepos-its(unconsolidateddepositsofgravel,sand,andmud).Thefoldandthrustsystemwithin thebasinhasanorth tosouth trendandawestwardvergence(e.g.[�5]).Intheareacurrentlyabovesea-level, the basin has two main faults and one main fault zone called(fromeast towest) theHoronobeandOmagariFaults,andSarobetsuFaultZone, respectively([��], [�6]).Of thesefaults,thecurrentlyactivestructureistheSarabetsuFaultZonewith deep-seated and ramp-flat geometry of low-angle thrusts (i.e.detachments).Inaddition,existingstudies(marineseismicandgeologicalsurveys)indicatethatthreemajorfaultandfoldsystemswithnorthtosouthtrendarelocatedtothewestoftheHoronobearea(SeaofJapan)[�7].Thegrowthstructuresofthefold-and-thrustbeltofnorthernHokkaido,indicatedbyseismicreflectionprofiles,suggest that theongoingEWcompressivetectonics (neotectonics) in thewesternpartof theHoronobeareabeganintheLatePliocene(Tables�and2).Itcanbealsopointedout that thepresentgeomorphologicaldistributionofuplandsand lowlands reflects thegeological structuresandlithologiesofthearea(Figs.�and2).

Basedonstratigraphicandsedimentalogicalanalyses, the

structuraldevelopmentoftheregionhasresultedinwestwardmigrationofthedepositionalareaintheTenpokuBasin([��],[�8]). Inaddition, thedistributionofmicro-earthquakehypo-centers,activestructure locations,andQuaternarysedimentsindicatesthat,atpresent,activetectonicsareconcentratedinthewesternpartoftheHoronobearea[��].

Theareahasawidespreaddistributionofmarineterracede-posits,whicharecorrelatedtothemarineoxygenisotopestages(MIS)7through5.5.Column5ofTable�showsthepalaeoge-ographyofthearea,fromMIS5.5(ca.�25ka)tothepresent,onthebasisoftheageanddistributionofthesedeposits,globalsea-levelchanges,andsea-floor topography[��].Theformershorelinesof interglacialstages(e.g.MIS5.5)haveextendedca.�2kmlandwardfromthatatpresentshoreline.Incontrast,shorelinesofglacialstages(e.g.MIS2)wereuptoca.50kmfurther seaward.This extensivemigrationof the shorelinecausedbyglacial-interglacialcyclesisattributedtothegentleslope of sea-floor topography to the west of the Horonobe area.

Additionally,keynaturalphenomenawhichhavepotentialimpacts on geosphere evolution can be identified and these in-clude:

-Distributionoffossilperiglacialwedges,suggestingthatnorthernHokkaidowaslocatedatthenorthernmarginofthe discontinuous permafrost zone during the maximum coldstageoftheLastGlacialStage[�9].

-Therelationshipbetweengeologyandgeomorphology(hillmorphology,drainagepattern,etc.)suggeststhatgeomor-phologicalprocessesaredifferentforeachgeologicalfor-mation[6].

-Changesinporosityofthesedimentaryformationsduetoconsolidationduringburialhavealsochangedtheirhy-draulicconductivityandmass transportproperties.Thisphenomenonwillproceedonatimeframeoftensofthou-sandstomillionsofyears.

TwoperiodsofmountainglacierdevelopmentarereportedinthemountainrangeofHokkaidoatca.50-40and20-�0kabasedongeomorphologicalevidence([20];Table�).However,intheHoronobearea,thereisnogeomorphologicalevidenceofpast glacial influence.

Palaeogeography of the Sea of JapanBasedon themicrofossilbiochronology,agesof igneous

rocks,palaeobathymetryestimatedfromthebenthicforaminif-eralandthemolluscanassemblages,andtheregionalcorrela-tionof theterrestrialandmarinesediments, thenorthernpartoftheSeaofJapanhadbeenconnectedtootherseas[23],suchas the Pacific Ocean, where the cold current could flow into the SeabetweenearlyLateMiocene(ca.�0Ma)and3.5Ma[24].BasedonthepalaeogeographicmapofIijimaandTada[23],theTsushimaStraitwouldappeartohavebeenabovesealeveldur-ingthesameperiod.

Currently, the Tsushima Warm Current flows into the Sea of JapanthroughtheTsushimaStraitwithca.�30mwaterdepth

125˚ E 135˚ E 145˚ E

35˚N

45˚N

55˚N

Hokkaido

Korea

Mamiya Strait(ca. -15 m)

Soya Strait(ca. -55 m)

Tsugaru Strait(ca. -130 m)

Tsushima Strait

(ca. -130 m)

Tokyo

Tsushima CurrentKuroshio CurrentOyashio Current

Kyoto

Sea of Japan Pafic

Ocean

Sea of

Okhotsk

-10,000-8,000-6,000-4,000-2,000-1,000-200-1000land

Wat

er d

epth

1

2

3

123

Figure 3. Present Geography and Surface Ocean Currents around Sea of Japan

Bathymetric data and generalized oceanic currents are after [21] and [22], respectively.

Copyright © 2010 by ASME

4

Copyright©20xxbyASME

inthepresenthighstandconditions(Fig.3).Thiscompareswithpastglacial lowstandsofup to -�50±�0mover the last500k.y.(e.g. [25])when thestraitssurrounding theSeaofJapanemergedabovesealevelandtheSeabecamealmost isolated.Atthispoint,thesalinityofthesurfaceseawater(mixedlayer;ca.�50to200mdeep)oftherestrictedSeaofJapanprobablydecreasedduetoexcessinputoffreshwateroverevaporationandlimitedre-supplyofsalinewaterthroughthestraits[26-27].

Estimatedsalinityof thesurfaceseawaterduring the lastglacialperiodisca.28‰,assumingthesalinityofthesurfacewaterwas thesameaspresent(34‰)andthe injectedfreshwaterwas-�5‰[26].TheisolationoftheSeaoccurredperiod-icallyduringtheglacialperiods,atleastsince800ka[27]andit ispossible that theSeabecameevenfresherduringMIS�0andMIS�2 (ca.340kaand434ka, respectively)whensealevelsdroppedto-�50±�0maroundtheworld[25].Notethatsea-levelshigherthanpresenthavealsobeenreported(seere-views[28-29])with+7±4matMIS5.5andupto+20mduringMIS��.3(ca.406ka).AlloftheinformationdescribedaboveissummarisedinTable�(forthepast�30k.y.)andTable2(forthepast2.6m.y.).

CONCEPTUALISATIONInformationonnaturaleventsandprocesseshasbeeninte-

gratedintoachronologicalconceptualmodelwhichindicatesspace-timesequencesof theeventsandprocesses in theareaovergeological time.Spatial scale for theconceptualisationisca.�00kmintheEast-WestdirectionthroughthelocationsoftheURLandoftheboreholeinvestigationsonthecoast intheHoronobearea.Temporalconceptualisationsover the lastseveralhundredthousandyearsfocusedonthechangescausedbyearth-surfaceprocessesthroughtheglacial-interglacialcycleandover thelastfewmillionyearsarefocusedonthespatialandtemporalchangesofthegeospherecausedbysub-surfaceprocesses.Regarding theconceptualisation in thefuturegla-cialperiod(Fig.4), itassumes thatfuturenaturaleventsandprocesseswillbehavemuchastheydidinthepast.Fromtheviewpointoftheevolutionoftheregionalhydrochemistry,theHoronobeareaisdividedintothreesub-areas(sea,coastal,andhillareas:Fig.4).Themainchangetothesesub-areasoverthelast2�4kahasbeentheoscillationofthepositionofthecoastinresponsetosea-levelchanges.Clearly,thebiggestimpactofthisoscillationwillbechangesinthechemistry(frommarinetofresh and back) of the infiltrating surface waters [3].

Atopographicallydrivengroundwater flowwouldbeex-pectedsince�.5±0.�Ma(Fig.5),whenthepresentlocationoftheSoyaHillwasconsideredtohavebeenatareasonablyhighaltitudebasedonaprovenanceanalysisoftheSarabetsuForma-tion[��].

DESCRIPTION OF UNCERTAINTIESInbuildingpalaeohydrogeologicalmodels,itmustbeunder-

stoodthatdata(andconceptualisation)uncertaintieshavetobe

Sarabetsu Fm.

Yuchi Fm.

Koetoi Fm.

Wakkanai Fm.

Shoreline

<Sea area> <Coastal area> <Hill area>

EastWest

Direction of groundwater flow

Active fault

Low activityfault

Sarobetsu Lowland

Sarobetsu Anticline

Hokushin

Sea level

Present

FaultFault

Sea level

Fault Fault

Sea level

PermafrostWeathering

Sea-level change

Fracture Fracture

Uplift

Permafrost

Weathering

Sea level

Denudation(sedimentation)

Uplift

Climate

Regional uplift

Future glacial period

past glacial period e.g. MIS 2

past interglacialperiod, e.g. MIS5.5

Tim

e

Figure 4. Conceptualisation for the Hydrogeological Evolution in the Horonobe Area through the Glacial-

interglacial CycleThe natural phenomena underlined in figure are those considered

important for developing the geosphere evolution in the area.

consideredindetail(cf.[32]).Whatisperhapsdifferentfrommost scientific analysis is that the uncertainty in palaeohydro-geologymustbeconsideredin4-dimensionalspace.TherearealsodifferencesbetweenthedegreeofuncertaintyindatafortheSeaofJapanareawhencompared to theHoronobearea.First,thedatadensityismuchgreateraroundHoronobeandsoconceptualuncertaintyisgenerallymuchless.Second,thecon-fidence in the data around Horonobe is generally greater as the programmehasfollowedastate-of-the-artQMS(qualityman-agement system; e.g. [33]) whereas it is often difficult to assess thequalityofdatafortheSeaofJapan,especiallyforolderaca-demicpublications.Asanexample,theparametersbuildingthis4-DvolumefortheSeaofJapanwouldinclude:

-Inhomogeneousnatureofspatialdistributionofupliftandsubsidence

-Variationsintherateofupliftandsubsidence-Heightofmountainrangeinthepastperiod-Rechargerate-Changesinporosityandhydraulicconductivityovergeo-

logicaltime-Uncertaintiesaboutsea-levelsintheSeaofJapan-Uncertaintiesabout locationofformershorelinethrough

thepastglacial-interglacialcycles-Variations inseawaterchemistry(especiallysalinityand

Copyright © 2010 by ASME

5

Horo

nobe

are

a

pres

ent;

0 m

MIS

1

?

MIS

2?

MIS

4 

~3

MIS

5

?

Clim

atic

and

geo

logi

cal e

vent

s an

d pr

oces

ses

Late Glacial LIGPostglacial

Jom

ontra

ns-

gres

sion

Kenb

uchi

Stad

ial(Ig

aras

hi et

a

l. [41

])

Totta

betsu

Sta

dial

- Max

imum

exp

ansio

n of

alpi

ne g

lacier

re

ache

d do

wn to

1,

500

m a

bove

se

a-lev

el(S

awag

aki

et a

l. [20

])

Poro

shiri

Stad

ial- M

axim

um e

xpan

sion

of a

lpine

glac

ier

reac

hed

down

to

750

m a

bove

se

a-lev

el(S

awag

aki

et a

l. [20

])

Anth

ropo

geni

cse

a-le

vel r

ising

; 1.

8±0.

5 m

m/y

r(a

fter 1

961;

IPCC

[4

2])

+3 to

4 m

(Sak

aguc

hi,e

t al.

[43]

)

Annu

al p

recip

itatio

n; c

a.1,

300 ~

1,60

0 m

m (

Aug.~

Nov.,

2005

)*Av

erag

e an

nual

air

tem

p.**

; 5.9

o C・J

an. a

vera

ge a

ir te

mp.

**; -

7.7o C

・Aug

. ave

rage

air

tem

p.**

; 19.

4o C *O

ta e

t al.

[6]

**

Wea

ther

con

ditio

n of

Hor

onob

e

To

wn (1

998-

2005

)Se

a-su

rface

tem

p.(S

ST);

+5 o C

warm

er

than

pre

sent

(mol

lusc

an fo

ssil i

n no

rther

n Ho

kkai

do; M

atsu

shim

a &

Ohs

him

a [4

7])

Air t

emp.

; +1

to +

2 o C

warm

er th

an

pres

ent(

Umits

u [3

7])

Air t

emp.

; -2

to -3

o C c

olde

r tha

n th

e pr

esen

t (Um

itsu

[37]

)

- 40

m(S

akag

uchi

, et a

l. [4

3])

- 40

m (S

akag

uchi

, et a

l. [4

3])

Max

. -15

0 m

bas

ed o

n th

e di

strib

utio

n of

san

d-la

yer

on th

e se

a-bo

ttom

sur

face

of

Sea

of J

apan

(Ikeh

ara

et a

l. [4

4])

-127

±30

m b

ased

on

the

anal

ysis

of s

edim

ent c

ore

in S

ea o

f Jap

an(O

ba [4

5])

Inte

rsta

dial

; ca.

-20

mSt

adia

l; ca

. -50

m→

glob

al-s

cale

sea

-leve

l ch

ange

(Sid

dall e

t al.

[28]

)

+7±4

m b

ased

on

mul

ti-pr

oxy

inve

stig

atio

ns

usin

g se

dim

ent c

ore

colle

cted

off

Cent

ral

Japa

n(O

ba e

t al.

[46]

)

< M

IS5.

5 >

Isot

opic

tem

para

ture

: +2

o C w

arm

er

than

pre

sent

(Vo

stok

ice

core

in

Anta

rctic

a;Pe

tit e

t al.

[50]

)Av

erag

e ai

r tem

p. (C

entra

l and

Ea

ster

n Eu

rope

, Pol

len

anal

ysis;

Ve

lichk

o et

al.

[51]

)・T

he w

arm

est m

onth

: +2

to O

Cwa

rmer

than

pre

sent

・The

col

dest

mon

th;

+2 to

+10

o Cwa

rmer

than

pre

sent

Tem

pera

te(in

terg

lacia

l)Co

ld (g

lacia

l)W

arm

(inte

rsta

dial

)Co

ol (s

tadi

al)

Pala

eoge

ogra

phy

Sedi

men

tatio

n/ D

enud

atio

n

Regi

onal

tect

onics

Saro

bets

uLo

wlan

d&

Saro

bets

uAn

ticlin

e

Faul

ting

Tect

onics

Uplift

/Sub

siden

ce

SarobetsuLowland

ca. 5,000 years ago;Coastal sand dunes in the Sarobetsu Lowland(Kitazawa [54])ca. 1,900 to 670 years ago; southward migration of the river mouth of Teshio River (Kitazawa & Tokiwa [55])

Land

 Se

aHo

rono

be T

own

Fig.

Pre

sent

geo

grap

hy a

roun

d th

e Ho

rono

be

Soya

and

Mam

iya S

trait

were

land

ar

ea in

the

Last

Gla

cial M

axim

um.

Pres

ent w

ater

dep

th

・Soy

a St

rait;

ca.

-55

m ・

Mam

iya S

trait;

ca.

-4 to

-20

m

MIS

5.5

20 k

m

MIS

2 (L

GM

) 20 k

m

MIS

120

km

Pres

ent

20 k

m

Holocene EarlyWeichselian

lowstand

highstand

MIS

5.5

(or5

e)

km

Horo

nobe

Kenb

uchi

43o N

45o N14

0o E14

4o E

100

0

Suba

rctic

con

ifero

us fo

rest

(Lar

ix gm

elin

i)

Gla

cier,

bare

gro

und,

and

gr

ass

field

(alp

ine

zone

)O

pen

taig

a &

step

pe (L

arix

gmel

ini &

Pin

us P

umila

)

Step

peFo

ssil p

erigl

acial

we

dge

(Niiz

ato

et a

l. [1

1])

Pacif

icPl

ate

Plat

e bo

unda

ry 

& m

ain fa

ult

Plat

e m

otion

(mm

/yr)

(micr

oplat

e)

12

82

10

7

5

Amur

ian

Plat

e

Okh

otsk

Plat

e

020

0

km

Kuril

forea

rc

slive

r

40oN45

oN

150o E

140o E

135o E

Fig.

Pre

sent

tect

onic

setti

ng in

and

aro

und

Hokk

aido

(pla

te m

otio

n an

d its

vel

ocity

are

afte

r W

ei &

Sen

o [5

7])

ka

Hokushin district

SarobetsuAnticline

Marine Oxygen Isotope Stages; MIS(Martinson et al. [38])

(Gibbard & Kolfschoten [36]Umitsu [37]

Eemian

Atlantic (Hypsithermal

interval)

144°

E14

6°E46

°N

42°N

142°

E

Soya

Stra

itSea

of

Okh

otsk

Sea

of

Japa

nMamiyaStrait

Hokk

aido

140°

E

50°N

Sakh

alin

Horo

nobe

48°N

52°N

44°N

Fig.

Veg

etat

ion

of th

e La

st G

laci

al M

axim

um in

Ho

kkai

do w

ith lo

catio

ns o

f fos

sil p

erig

laci

al

wed

ges

(Igar

ashi

[49]

; Miu

ra &

Hira

kawa

[19]

)

< 14

to 1

2 ka

>An

nual

pre

cipita

tion*

: -75

0 to

-1,0

00 m

m lo

wer t

han

the

pres

ent

Aver

age

annu

al a

ir te

mp.

*: -8

o C c

olde

r tha

n pr

esen

t・J

an. a

ir te

mp.

*: -1

2o Cco

lder

than

pre

sent

・Aug

. air

tem

p.*:

-6o C

col

der

than

pre

sent

*The

se e

stim

ation

s are

bas

ed

on a

poll

en a

nalys

is of

pea

t lay

er in

the

Horo

nobe

are

a *N

iizat

o et

al. [

48]

< 42

to 1

2 ka

>Di

scon

tinuo

uspe

rmaf

rost

(nor

ther

n pa

rt of

Ho

kkai

do)

(Miu

ra &

Hira

kawa

[1

9])

Deve

lopm

ent o

f di

scon

tinuo

uspe

rmaf

rost

with

ca.

20

m in

thick

ness

in

Hor

onob

e ar

ea

(Niiz

ato

et a

l. [1

1])

Kenb

uchi

Bas

in:i

ncre

ase

in D

ahur

ian

larc

h an

d de

crea

se o

f Sak

halin

fir

(Igar

ashi

et a

l. [4

1])

Horo

nobe

: dec

reas

e in

the

num

bers

of D

ahur

ian la

rch

and

subs

tant

ial in

crea

se o

f Be

tula

(ca.

12k

a; N

iizat

oet

al. [

48])

Kenb

uchi

Bas

in:

Sign

ifican

t dro

p in

the

num

bers

of D

ahur

ian

larc

h an

d Si

beria

n pi

ne

(Igar

ashi

et a

l. [4

1])

Horo

nobe

:Ste

ppe

with

Da

huria

n la

rch(

14 to

13

ka;N

iizat

o et

al.

[48]

)

Kenb

uchi

Bas

in: S

tepp

e wi

th o

pen

Sibe

rian

dwar

f pi

ne fo

rest

(25

to 1

6 ka

;Ig

aras

hi e

t al.

[41]

)

< M

IS5.

5 >

Ishi

kari

Plai

n: C

ool

tem

pera

te fo

rest

of

Oak

, elm

, and

wal

nut

(war

mer

and

wet

ter

cond

ition

than

pre

sent

;Ig

aras

hi [5

2])

Pan-

mixe

d fo

rest

(mos

aic-

like

mixe

d fo

rest

with

br

oad-

leaf

ed a

nd c

onife

r-ou

s tre

es; I

gara

shi [

49])

Late Weichselian Middle Weichselian

Alle

rød

Bøllin

g

Youn

ger

Drya

s

Old

est

Drya

s

Old

erDr

yas

Downward erosion by river: 0.3 to 0.8 m/k.y. (Depth of dissection valley on MIS5.5 marine terrace by geomorphometry)

Sedimentation rate: 6.6 m/k.y. (Sedimentation curve after LGM in the Sarobetsu Lowland) (Horonobe-Rise [53])

Denudation rate : 0.17 to 0.66m/k.y. in the past 1.3 m.y. (Present altitude of the past marine sediment (Wakkanai Fm. & Koetoi Fm. ;Ota et al. [6])*Hokushin district have been an land area since 1.3 Ma (Niizato et al. [11])

East

-Wes

t co

mpr

es-

sive

stre

ss o

btai

ned

by b

oreh

ole

surv

ey

and

GPS

mea

sure

-m

ent(

Ota

et a

l. [6

])

Activity of Sarobetsu Fault Zone in the coastal zone of Horonobe area. Average rate of slip: over 0.7m/k.y., Recurrence interval: 4 to 8 k.y. (The Headquarters for Earthquake Research Promotion [16]).

Subsidence rate: same as sedimentation rate after LGM ? (Sarobetsu Lowland)

The

tect

onic

belt

of e

aste

rn m

argi

n of

Ja

pan

Sea

(Tai

ra [5

6])

LGM

East

-Wes

t com

pres

sive

stre

ss

caus

ed b

y in

tera

ctio

n be

twee

n Am

uria

n an

d O

khot

sk P

late

s sin

ce 2

.3 M

a. (T

aira

[56]

)

Ishi

kari

Tect

onic

zone

s I a

nd V

I(O

ka &

Igar

ashi

[13]

)

Uplift rate: 0.3 m/k.y. based on the altitude & age of MIS5.5 marine terrace (Ota et al. [6])

Tabl

e 1.

Nat

ural

Eve

nts

and

Proc

esse

s in

the

Coas

tal F

ield

in th

e Ho

rono

be A

rea,

Hok

kaid

o, J

apan

sin

ce 1

30 k

a

L

GM

; Las

t Gla

cial M

axim

um, L

IG; L

ast I

nter

glac

ial.

< 85

to 2

0 ka

>No

inflo

w of

war

m T

suhi

ma

Curre

nt in

to S

ea o

f Ja

pan

(Oba

et a

l. [2

6])

Age

Pres

ent

5 ~

7.8

(ca.

7 in

Ja

pan)

ca. 1

0

ca.1

0

~ 1

1

ca.1

1

~ 11

.8

ca.1

1.8

~

12.1

ca.1

2 

~ 1

3

ca.2

0

ca.1

5

30 42

ca.7

0

~ 11

0

ca.1

10

~13

0

Clim

ate

Sea-

leve

l (m

eter

to th

e pr

esen

t)Cl

imat

ic co

nditio

nVe

geta

tion

Perm

afro

st &

pe

rigla

cial

envir

onm

ent

Glo

bal-s

cale

Sea

-leve

lHo

kkai

do

Present sea-level = 0 m

Sea-levelcurve

(Gibbard & Kolfschoten [36];Umitsu [37])

(Miller et al.,[40])

Glacial -interglacial cycle

(Umitsu [37] Machida,et al. [39])

Pollen zone of northern Europe

Copyright © 2010 by ASME

6

Clim

atic

and

geol

ogica

leve

nts

and

proc

esse

sPa

laeog

eogr

aphy

Sedim

enta

tion

/Den

udat

ionTe

ctonic

sUp

lift/S

ubsid

ence

Age/

Epoc

hCl

imat

e

(Oxg

en is

otop

ic-ba

sed

sea-

leve

l est

imat

e;

Mille

r et a

l. [4

0])

Glo

bal-s

cale

Old

uvai

Gau

ss

33.

54

4.5

5

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

JaramilloMatsuyamaBrunhes

MIS

labe

l‘Ta

rant

ian’

‘Ioni

an’

Cala

bria

n

Gel

asia

n

Inter

natio

nal

Comm

ission

on

Stra

tigra

phy

[42]

Pleistocene

ka

Plio

cene

Piac

enzia

n

-100

Mid-Pleistocene Transition (MPT)Mid-Brunhes Event (MBE)

41-k.y. obliquity cycles of glacial and interglacial (since ca. 2.8 Ma)100-k.y. high-amplitude cycles of glacial and interglacial

Deve

lopm

ent o

f NNW

-SSE

tre

nding

trou

ghs a

nd ri

dges

dur

ing

the

depo

sition

al pe

riod

of W

akka

nai

Fm. (

and

Koet

oi Fm

.?) d

ue to

the

displa

cem

ent o

f Om

agar

i and

Ho

rono

be F

aults

(Fuk

usaw

a [1

2]).

2.3

Ma

Yasu

e et

al.[

66]

Denudation of diatomaceous mudstone (Koetoi Fm.) and siliceous mudstone (Wakkanai Fm.) in the western part of Soya Hill (Niizato et al. [11])

cent

re o

f Hor

onob

e

Uplift rate: 0.17 to 0.66m/k.y. in the past 1.3 m.y., based on the present altitude of the past marine sediment (Wakkanai & Koetoi Fm.;Ota et al. [6])

Denudation rate = Uplift rate: 0.17 to 0.66m/k.y. in the past 1.3 m.y. (Ota et al. [6])

Depth of the lower limit of Sarabetsu Fm.: 625 m (The Headquarters for Earthquake Research Promotion [16])to 800 m (Oka& Igarashi [13])

Subsidence rate: 0.65m/k.y. in the past 1.7 m.y. (Oka & Igarashi [13])

Wastward migration of a depositional area of Sarabetsu Fm. (Yasue et al. [18] & Niizato et al. [11])

Hokushin

Hokushin

Toikanbetsu

SarobetsuLowland

SarobetsuLowland

Lago

onal

& F

luvial

Enba

ymen

t &

Lag

oona

l

Shall

ow m

arine

ex.F

ukus

awa

[12]

Cold

Cold

War

mW

arm

-100

Present sea-level = 0m

Table

2. N

atur

al Ev

ents

and

Proc

esse

s in

the

Coas

tal F

ield

in th

e Ho

rono

be a

rea,

Hok

kaido

, Jap

an si

nce

2600

ka

Palaeo-magnetism

Mar

ine

Isot

ope

Stag

es

(Lisi

ecki

& Ra

ymo

[58]

)

ka

2588

1806781

126

11.7

Sedimentaryenvironment

Faulting

Clim

atic

cond

ition

Last Glacial Maximum sea-level

-50

+20

0

-50

+20

0

-100

-50

0+2

0

highstand

lowstand

Takikawa-Honbetsu molluscan fauna(cold water species;Suzuki [61])

Development of permafrost during the glacial period(Miura & Hirakawa [19]

for Last Glacial period)

Japan Sea diatom minimum interval→Significant decrease of bioproductivity (Koizumi [59]; Koya [62])

Sea-

leve

l cur

ve

Formation of a land bridge which enable the immigration of Mammals from Asian continent to Japanese Islands (Kawamura [63]; Yoshikawa et al. [64])

Significant decrease in inflow of Tsushima Warm Current into Sea

of Japan (Koizumi [59])Under the influence of cold surface water (Koizumi [24])

Setana molluscan fauna (cold water species;Suzuki [60]; Oka & Igarashi [10])

?Palaeo-

environment

Sea

of J

apan

Holocene

Pala

e-on

tolo

gy

north

ern

Hokk

aido

Hokk

aido

cold

warm Cycles of vegetational change from cool temperate broad-leaved forest zone to subalpine forest zone.

Present*Climatic conditions inferred from polynological evidence

(Oka & Igarashi [10])

Begining of growth of the anticline near the Omagari Fault (Ishii et al. [65])

?

1.5

Ma

1.3

Ma

Depo

sition

of

fine-

grain

ed sa

nd

(Yuc

hi F

m.)

Depo

sition

of g

rave

l, sa

nd, m

ud, a

nd co

al (S

arab

etsu

Fm

.)ex

. Oka

&

Igar

ashi

[10]

&

[13]

Depo

sition

of d

iatom

a-ce

ous m

ud (K

oeto

i Fm

.)

2.3

Ma

( Yas

ue e

t al.

[66]

)

Shall

ow m

arine

ex. O

ka &

Igar

ashi

[1

0]

Perio

dic is

olatio

n of

Se

a of

Japa

nca

used

by g

lacio

-eu

static

sea-

level

chan

ge(T

ada

[27]

)

Glac

ial lo

wsta

nds;

Sea

of Ja

pan

beca

me

almos

t isola

ted

and

salin

ity o

f sur

face

wa

ter d

ecre

ase

(28

per m

il at L

GM

; Oba

[2

6])p

roba

bly d

ue to

ex

cess

inpu

t of f

resh

wa

ter o

ver e

vapo

ra-

tion

(Tad

a [2

7])

Regionaltectonics

Fig.

Pre

sent

geo

grap

hy a

roun

d th

e Se

a of

Japa

n (B

athy

met

ric d

ata

is af

ter

GEB

CO O

ne m

itute

Grid

[21]

).W

hite

area

; Con

tinen

tal s

helf s

hallo

wer

than

-200

m w

ater

dep

th.

2.4M

a

Depositional age of the lower most part of Sarabetsu Fm.(Oka & Igarashi [10] & [13];

Niizato et al. [11])

East-West compressive stress caused by interaction between Amurian and Okhotsk Plates since 2.3 Ma (Taira [56]; see Table 1

for present tectonic setting around Hokkaido).

24

56

7

9 1112

14

37

104

10

1617

Horo

nobe

area

(mod

ified

from

Yas

ue e

t al.

[18]

& N

iizat

o et

al.

[11]

)

Sea o

f

Japa

n

Tsus

hima

Stra

it(-1

30 m

)

*Max

imum

wate

r dep

ths i

n th

e Se

a of

Ja

pan

are

in pa

rent

hese

s.

Mam

iya S

trait

(ca.

-15

m)

Tuga

ru S

trait

(ca.

-130

m)

Soya

Stra

it(c

a. -5

5 m

)

ca.3

Ma

ca.2

Ma

10 km

ca.1

Ma

Pres

ent

Inte

rglac

ial

Paleo-Teshio Mts.

Toikanbetsu

Ubushi

Paleo-Soya Hill

Paleo

-To

ikanb

etsu

Rive

r

Tesh

io

Rive

r

N

S o y a H i l l

10 km14

2°30

’E

Area

of t

he

dia

gram

45°30’N

141°

30’E

45°00’N

Copyright © 2010 by ASME

7

Copyright©20xxbyASME

stableisotopes)-Degreeofcoverageofthepermafrost(i.e.justhowdiscon-

tinuousisdiscontinuous?)aroundthenorthernendoftheSeaofJapan

and,ofcourse, the4thdimension,namelyuncertaintiesabout theactual timingof theseevents.Workonestablishingthedegreeofuncertainty in themainparameters iscurrentlyongoing,butitisinstructivetoconsideronehereindetail:sa-linity.Salinityisafavouredtoolofpalaeohydrogeologistsbe-causeitisarelativelystableparameter,littlealteredbyreactionofgroundwaterwiththehostrock.Thisfacthasbeenusedbyresearchersaroundtheworldtoelucidatetheimpactofclimateandsea-levelchangeatcoastalsites(e.g.[34]).ForexampleatPosiva’sOlkiluotositeandSKB’sForsmarkandLaxemarsites,changesinthesalinityofthenearbyBalticSeaoverthelast�25k.y.havebeenusedtointerprettheevolutionofthehydrochem-istryofthesesitesinquitesomedetail.

This is somewhat more difficult for the Sea of Japan as two ofthefourstraits(TsushimaandTugaru;Fig.3)whichsupplyPacific seawater to this enclosed basin have sill depths (ca. -130 m)which liewithin theerrormarginof the likelymaximumlowstandoverthelast�25kiloyears.Clearly,thiscouldhaveasignificant impact on the assumed salinity of the Sea of Japan and therefore on the salinity of infiltrating surface waters on Ja-pan’swesternseaboard.However,intheHoronobearea,whichwouldhavebeensome50kmtotheeastofthislowshoreline,the infiltrating surface water would have been freshwater and it

wouldhaveremainedsountilthenexttransgression.Thisbeingthecase,itisperhapsbettertovisualisetheover-

alluncertaintyasa4-Dvolumeofuncertaintywherethedegreeofuncertaintygenerally increaseswithdistanceaway fromthedata-rich,QMS-influencedenclavearound theHoronobeURLandwithtime(bothforwardsandbackwards)awayfromthe present day. Perhaps the most difficult part of this process isadequatelyaddressingthepaucityofQMSinformationforareasawayfromtheURL–howcanthedatabeweightedincomparisonwiththatfromHoronobe?ThisisanovelapproachinJapanesepalaeohydrogeology,butisonewhichwillundoubt-edlybeutilisedmoreinthefutureaspotentialrepositorysitesare investigated indetail,beginningwith theolder,possiblynon-qualityassureddataavailableintheliteratureandcompar-ingthiswithdatabeingproducedinrealtimebytheinvestiga-tionprogramme.

CONCLUSIONSAnunderstandingofapalaeohydrogeologicalevolutionof

apotentialrepositorysiteprovidesthefirmfoundationtode-scribethelikelyfutureevolutionofthesiteandtosupportanidentification of scenarios that illustrate the range of possibili-tiesfor theevolutionof thegeologicaldisposalsystemunderconsideration.Theevolutiondescribedinthispaperisfocusedon thegeosphere,which isoneof thesystem-components inthegeologicaldisposalsystem.Todescribethewholesystembehaviour, it isnecessarytocollectandtointegratetheinfor-

Present shoreline

Continental shelf

LGM shoreline = present shelf break

Cr

CrCr

Geomorphic profile (Vertical : Horizontal

= 20 : 1)

Horonobe URL

10 k

m

Vertical movement = 1,500 m/3 m.y. in the whole areaHorizontal movement = 4,250 m/3 m.y. in the whole area

Detachment

ca. 1 Ma: Deposition of Sarabetsu Fm.

ca. 2 Ma: Deposition of Yuchi Fm.

ca.3 Ma: Deposition of Koetoi Fm.

10 km

0

500

ground surface

Present

A A’

Base of formationsSarabetsu Fm. (including Alluvium and Terrace deposits)Yuchi Fm.

Koetoi Fm.Wakkanai Fm.Miocene Series

Cr: Cretaceous System

Fault

met

re

HokushinSoya Hill

Toi-kanbetsu

Om-F.Horo-F.

Figure 5. Conceptualisation for the Evolution of Geological Structure since ca. 3 Ma along A-A’ lineThis conceptualisation takes into consideration of a conservation of bed length in the cross section along the A-A’ line. See Fig. 1 for A-A’ line.

Present geological cross section is based on [30]. Horizontal and vertical movements are after [31], and Tables 1 and 2, respectively. Om-F.: Omagari Fault, Horo-F.: Horonobe Fault.

Copyright © 2010 by ASME

8

Copyright©20xxbyASME

mationabouteverysystem-componentasfaraspossible,andtoconstructaconsistentconceptualmodelfortheevolutionofthewholesystem.Therefore, inthefuture, itwillbenecessarytocombinethepalaeohydrogeologicalapproachwithaframeworkforexaminationof the long-termsafetyofaHLWrepository[35].Suchatotalassessmentmethodologywillsupportbuild-ing confidence in a safety case of a HLW geological disposal systeminacoastalenvironment.

ACKNOWLEDGEMENTSWearegratefultoProf.K.HirakawaofHokkaidoUniver-

sityformanyhelpfulsuggestionsandencouragementduringthe course of this work. The first author (T. N.) also thank Prof. T.ToyoshimaofNiigataUniversityandDr.K.-I.YasueofJAEAfortheirsuggestionsonthegeologicalevolutionof theHoronobearea.

NOMENCLATURE ka kilo-annum;�03yearsbeforethepresent(theageof

astrataorthetimeofageologicalevent)k.y. kilo(�03)years(thedurationofanintervalofgeo-

logictime)

Ma Mega-annum;�06yearsbeforethepresent(theageofastrataorthetimeofageologicalevent)

m.y. millions(�06)ofyears(thedurationofanintervalofgeologictime)

REFERENCES[�]NuclearEnergyAgency(NEA),2009,“Stabilityandbuff-

eringcapacityof thegeospherefor long-termisolationofradioactivewaste:applicationtocrystallinerock”,Workshop Proceedings, Manchester, United Kingdom, 13-15 Novem-ber 2009,OECD,pp.9-4�.

[2]Chapman,N.A.andMcEwen,T.J.,�993,“Theapplicationofpalaeohydrogeologicalinformationtorepositoryperform-anceassessment”,Proceedings of an NEA workshop, Pal-aeohydrogeological methods and their applications, Paris, France, 9-11 November 1992,pp.23-35.

[3] Amano, K., Niizato, T., Yokota, H., Ota, K., Lanyon B. and AlexanderW.R.,20�0a,“DevelopmentofComprehensiveTechniquesforCoastalSiteCharacterisation(2)Integratedpalaeohydrogeologicalapproachfordevelopmentofsiteev-olutionmodels”,Proceedings of 13th International Confer-ence on Environmental and Radioactive Waste Management (ICEM2010), Tsukuba, Japan, 3-7 October 2010,ASME,ICEM20�0-40048.

[4] Ota, K., Amano, K., Niizato, T., Alexander W.R. and Yamanaka,Y., 20�0, “DevelopmentofComprehensiveTechniquesforCoastalSiteCharacterisation(�)StrategicOverview”,Proceedings of 13th International Conference on Environmental and Radioactive Waste Management

(ICEM2010), Tsukuba, Japan, 3-7 October 2010,ASME,ICEM20�0-40056.

[5]GeographicalSurveyInstitute(GSI),200�,“DigitalMap50mGrid(Elevation)NIPPON-I”.

[6]Ota,K.Abe,H.,Yamaguchi,T.etal.,2007,“HoronobeUndergroundResearchLaboratoryProject -SynthesisofPhaseI investigations200�-2005volume"Geoscientificresearch"”,JapanAtomicEnergyAgencyTechnicalReport,JAEA-Research2007-044.(JE)

[7]NationalCooperativefortheDisposalofRadioactivewaste,�997,“GeosyntheseWellenberg�996,ErgebnissederUn-tersuchungsphasenIundII”,NTB96-0�,Nagra,Wettingen,Switzerland. (in German with English abstract)

[8] Niizato, T., Yasue, K.I., Kurikami, H., et al., 2009, “Syn-thesizing geoscientific data into a site model for perform-anceassessment:astudyofthelong-termevolutionofthegeologicalenvironmentsinandaroundtheHoronobeURL,Hokkaido,northernJapan”,Proceedings of third AMIGO workshop, Approaches and challenges for the use of geo-logical information in the safety case for deep disposal of radioactive waste, Nancy, France, 15-17 April 2008,pp.222-234.

[9]Hama,K.,Kunimaru,T.,Metcalfe,R.,etal.,2007,“Thehydrogeochemistryofargillaceousrockformationsat theHoronobeURLsite,Japan”,Physics and Chemistry of the Earth,vol.32,pp.�70-�80.

[�0]Oka,T.andIgarashi,Y.,�993,“Plio-Pleistocene in theToikanbetsuTectonicBasin,northernHokkaido-sedimen-taryfaciesandpollenstratigraphy-”,Jour. Geol. Soc. Ja-pan,vol.99,pp.365-389.(JE)

[11] Niizato, T., Funaki, Y. and Yasue, K., 2007, “Palaeogeogra-phyandgeologicalevolutionsincetheLatePlioceneinandaroundtheHoronobearea,northernHokkaido”,Jour. Geol. Soc. Japan,vol.��3,Supplement,pp.��9-�35.(J)

[�2]Fukusawa,H.�989,“DepositionalschemeofNeogenebeddedsiliceous rocks inanactiveupwellingarea -onWakkanaiFormation,northernHokkaido,Japan”,In: Taira, A. and Masuda, F. eds. Sedimentary facies in the active plate margin,TERAPUB,pp.395-4�9.

[13] Oka, T. and Igarashi, Y., 1997, “Latest Cenozoic forma-tionsinthenorthernpartofTeshioPlain,Hokkaido–Sedi-mentaryfaciesandpollenstratigraphy–”,In: Kawamura, M., Oka, T. and Kondo, T. eds., Commem. Vol. Prof. Kato, M.,pp.34�-365.(JE)

[�4]Takahasi,K.,Fukusawa,H.,Wada,N.,etal.,�984,“Neo-genestratigraphyandpaleogeographyintheareaalongtheseaofJapanofnorthernHokkaido”,Earth Science,vol.38,pp.299-3�3.(JE)

[�5]Ogura,N.andKamon,M.,�992,“Thesubsurfacestruc-turesandhydrocarbonpotentialsintheTenpokuandHaboroarea, thenorthernHokkaido, Japan”,Journal of Japa-nese association for petroleum technology,vol.57,no.3�,pp.295-320.(JE)

Copyright © 2010 by ASME

9

Copyright©20xxbyASME

[�6]TheHeadquarters forEarthquakeResearchPromotion,2007,“Long-termevaluationoftheSarobetsuFaultZone”,ReportoftheHeadquartersforEarthquakeResearchPromo-tion.(J)

[�7]Okamura,Y.,Kuramoto,S.,Satoh,M.,�998,“ActivestructuresandtheirrelationtoearthquakesalongtheeasternmarginoftheJapanSea”,Bulletin of the Geological Survey of Japan,vol.49(�),pp.�-�8.(JE)

[18] Yasue, K., Ishii, E. and Niizato, T., 2005, “Neotectonics of theTenpokuSedimentaryBasininnorthernHokkaido,Ja-pan:acaseofHoronobearea”,Abstracts of the HOKUDAN International Synposium on Active Faulting -Research on active faulting of mitigate seismic hazards: the state of the art-, Hokudan, Japan, January 17th-24th 2005,pp.�76-�77.

[�9]Miura,H.andHirakawa,K.,�995,“Originoffossilper-iglacialwedgesinnorthernandeasternHokkaido,Japan”,Journal of Geography,vol.�04,pp.�89-224.(JE)

[20]Sawagaki,T.Aoki,T.,Hasegawa,H.,etal.,2004,“LateQuaternaryglaciationsinJapan”,In: Ehlers, J. and Gibbard, P.L. eds., Quaternary glaciations- extent and chronology (Development of Quaternary Science 2), part III,Elsevier,pp.2�7-225.

[2�]GEBCOOneMinuteGrid:“TheGEBCOOneMinuteGrid”,version2.0,http://www.gebco.net.

[22]NationalAstronomicalObservatory,2007,“ChronologicalScientific Tables (Rika Nenpyo) 2008”, Maruzen Co. Ltd., �034p.(J)

[23] Iijima,A. andTada,R., �990, “EvolutionofTertiarysedimentarybasinsofJapaninreferencetoopeningoftheJapanSea”,Jour. Fac. Sci. Univ. Tokyo, Sec. II,vol.22,pp.�2�-�7�.

[24] Koizumi, I., 1992, “Biostratigraphy and paleoceanogra-phyoftheJapanSeabasedondiatoms:ODPLeg�27”,In: Tsuchi, R. and Ingle Jr., J.C. eds., Pacific Neogene: Envi-ronment, Evolution and Events,UniversityofTokyoPress,pp.�5-24.

[25]Rabineau,M.,Berné,S.,Olivet,J.-L.,Aslanian,D.,Guillo-cheau,F.andJosep,P.,2006,“PaleosealevelsreconsideredfromdirectobservationofpaleoshorelinepositionduringGlacialMaxima(forthelast500,000yr)”,Earth Planet. Sci. Lett.,vol.252,pp.��9-�37.

[26] Oba, T., Kato, M., Kitazato, H. et al., 1991, “Paleoenvi-ronmentalchangesintheJapanSeaduringthelast85,000years”,Paleoceanography,vol.6,pp.499-5�8.

[27]Tada,R.,�994,“PaleoceanographicevolutionoftheJapanSea”,Palaeogeography, Palaeoclimatology, Palaeoecology,vol.�08,pp.487-508.

[28]Siddall,M.,Chappell,J.andPotter,E.-K.,2007,“Eustaticsealevelduringpast interglacials”,In: Sirocko, F., Claus-sen, M., Sánchez Goñi, M.F. and Litt, T. eds., The climate of past interglacials (Developments in Quaternary Science 7),Elsevier,pp.75-92.

[29]Oba,T.andBanakar,V.K.,2007,“Comparisonof inter-

glacialwarmeventssincetheMarineOxygenIsotopeStage��”, The Quaternary Research,vol.46,pp.223-234.

[30]Tokiwa,T.,Asamori,K.,Hiraga,N.,etal.,20�0a,“Re-lationshipbetweenhypocentraldistributionandgeologi-cal structure in theHoronobearea,northernHokkaido,Japan”, Proceedings of 13th International Conference on Environmental and Radioactive Waste Management (ICEM2010), Tsukuba, Japan, 3-7 October 2010,ASME,ICEM20�0-40054.

[31] Tokiwa, T., Asamori, K., Niizato, T., et al., 2010b, “An at-tempt to evaluate horizontal crustal movement by geodetic andgeologicalapproach in theHoronobearea,northernHokkaido,Japan”,Proceedings of 13th International Confer-ence on Environmental and Radioactive Waste Management (ICEM2010), Tsukuba, Japan, 3-7 October 2010,ASME,ICEM20�0-40�89.

[32]PADAMOT,2005a,“PADAMOT:ProjectOverviewRe-port”,PADAMOT Project – EU FP5 Contract No FIKW-CT2001-20129 Technical Report Summary. CEC, Luxem-bourg.

[33]Amano,K.,Kunimaru,T.,Ota,K.andAlexanderW.R.,20�0b,“Hydrochemistryof thegroundwatersfromJAEA’sHoronobeURL�. fieldmanual foron-siteandoff-sitepractices”,JapanAtomicEnergyAgencyTechnicalReport,JAEA-Research(inpress).(JE)

[34]PADAMOT,2005b,“ApplicationofMineralogical,Pet-rologicalandGeochemicalTools forEvaluating thePal-aeohydrogeologicalEvolutionof thePADAMOTStudySites”,PADAMOT Project - EU FP5 Contract No. FIKW-CT2001-20129 Technical Report WP2. CEC, Luxembourg.

[35]Kawamura,M.,Ohi,T.,Makino,H.,etal.,2006,“Studyonevaluationmethodforpotential impactsofnaturalphe-nomenaonaHLWdisposalsystem”,Proceedings of East Asia Forum on Radwaste Management Conference (2006 EAFORM Conference),pp.350-367.

[36]Gibbard,P.andKolfschoten,T.van.2004,“ThePleis-toceneandHoloceneEpochs”,In: Gradstein, F. M. et al., 2004, A geologic time scale.CambridgeUniversityPress,pp.44�-452.

[37]Umitsu,M.,�994,“LateQuaternaryenvironmentandlandformevolutionof riverinecoastal lowlands”,KokonShoin,270p.(J)

[38]Martinson,D.G.,Pisias,N.G.,Hays,J.D.,etal.,�987,“Agedatingandtheorbitaltheoryoficeages:Developmentofahigh-resolution0to300,000yearchronostratigraphy”,Qua-ternary Research,vol.27,pp.�-29.

[39] Machida, S., Iguchi, M., Kaizuka, S., et al. eds., 1981, “The encyclopediaofgeomorphology”,NinomiyaShotenpub-lishers,767p.(J)

[40] Miller, K.G., Kominz, M.A., Browning, J.V., et al., 2005, “The Phanerozoic record of global sea-level change”, Sci-ence,vol.3�2,pp.�293-�298.

[4�]Igarashi,Y.,Igarashi,T.,Daimaru,H.,etal.,�993,“Veg-

Copyright © 2010 by ASME

�0

Copyright©20xxbyASME

etationhistoryofKenbuchiBasinandFuranoBasin inHokkaido,northJapan,since32,000yrsBP”,The Quater-nary Research,vol.32,pp.89-�05.(JE)

[42]InternationalCommissiononStratigraphy,2009,“Interna-tionalstratigraphicchart”,August,2009.

[43]Sakaguchi,Y.,Kashima,K.andMatsubara,A.,�985,“HolocenemarinedepositsinHokkaidoandtheirsedimen-taryenvironments”,Bulletin of the Department of Geogra-phy, University of Tokyo,vol.�7,pp.�-�7.

[44]Ikehara,K.,Katayama,H.andMaekawa,T.,�999,“Seabottomdepositsfromoff-TeshiototheSoyastrait”,In: Ike-hara, K. and Okamura, Y. eds., Study on the environmental change in the western offshore area of Hokkaido and the activity of active faults in the sea area,pp.65-80.(J)

[45]Oba,T.,�988,“Commentforsealevelchange”,The Qua-ternary Research,vol.26,pp.243-250.(JE)

[46]Oba,T.,Irino,T.,Yamamoto,M.,etal.,2006,“Paleocea-nographicchangeoffcentralJapansince the last�44,000yearsbasedonhigh-resolutionoxygenandcarbonisotoperecords”,Global and Planetary Change,vol.53,pp.5-20.

[47]Matsushima,Y.andOhshima,K.,�974,“Littoralmollus-canfaunaoftheHoloceneclimaticoptimum(5,000-6,000.BP.) in Japan”, The Quaternary Research , vol.�3,pp.�35-�59.(JE)

[48] Niizato, T. Igarashi, T., Yasue, K., et al., 2010, “Geomor-phologyandvegetationduringthelateLastGlacialMaxi-mumintheHoronobearea,Hokkaido,northernJapan”.(inprep.)

[49]Igarashi,Y.,�99�,“Holoceneforestandclimatechange”,In: Ono, Y. and Igarashi, Y. eds., Natural history of Hokkai-do - Travelling through Ice Age Forest -.HokkaidoUniver-sityPress,pp.�8�-205.(J)

[50] Petit, J.R., Jouzel, J., Raynaud, D., et al., 1999, “Climate andatmospherichistoryofthepast420,000yearsfromtheVostokicecore,Antarctica”,Nature,vol.399,pp.429-436.

[5�]Velichko,A.A.,Novenko,E.Y.,Zelikson,E.M.,2007,“Comparativeanalysisofvegetationandclimatechangesduring theEemian interglacial incentralandeasternEu-rope”,In: Sirocko, F., Claussen, M., Sánchez Goñi, M.F. and Litt, T. eds., The climate of past interglacials (Developments in Quaternary Science 7),Elsevier,pp.255-264.

[52]Igarashi,T.�994,“QuaternaryforestandclimatehistoryofHokkaido,Japan,frommarinesediments”,Quaternary Sci-ence Reviews,vol.�3,pp.335-344.

[53]HoronobeResearchInstitutefor thesubsurfaceenviron-ment (HoronobeRISE),2007,“HoronobeRISEresearchreportfor the2006fiscalyear”,HoronobeRISENorthernAdvancementCentreforScience&Technology,297p.(J)

[54] Kitazawa, T. 2009, “Arrangement and age of the coastal sanddunesintheTeshioPlain”,Abstracts of 2009 Sedimen-tological Society of Japan Annual Meeting, Osaka, Japan, 27-30 March 2009,P�3.(J)

[55] Kitazawa, T. and Tokiwa, T., 2010, “Ground penetrating

radarsurveyandOSLdatingaroundriver-mouthbaroftheTeshio”,Abstracts of 2010 Sedimentological Society of Japan Annual Meeting, Ibaraki, Japan, 26-29 March 2010,P�3.(J)

[56]Taira,A.,2002,“Crustalmovementintheeasternmarginof theJapanSeaand tectonicsofJapanese Islands”, In Ohtake, M., Taira, A. and Ota, Y. eds., Active faults and seismo-tectonics of the eastern margin of the Japan Sea,UniversityofTokyoPress,pp.3-�5.(J)

[57]Wei,D.AndSeno,T.,�998,“DeterminationoftheAmu-rianplatemotion”,In: Flower, M., Chung, S.L., Lo, C.H., Lee, T.Y. eds., Mantle Dynamics and Plate Interaction in East Asia (Geodynamic Series, no.27),pp.337-346.

[58] Lisiecki, L.E. and Raymo, M.E., 2005, “A Plio-Pleistocene stack of 57 globally distributed benthic δ�8Orecords”,Paleoceanography,vol.20,PA�003.

[59] Koizumi, I., 2008, “History of the Earth”, Asakura-Sho-ten,�43p.(J)

[60] Suzuki, A., 1991, “Sedimentary environment of the Se-tanaFormationinthePirika-Hanaishiarea,southwesternHokkaido”,Jour. Geol. Soc. Japan,vol.97,pp.329-344.(JE)

[61] Suzuki, A., 1997, “Faunal characteristics of the Takikawa-HonbetsuFauna”,In: Kawamura, M., Oka, T. and Kondo, T. (eds.), Commem. Vol. Prof. M. Kato,pp.63-70.(JE)

[62]Koya,K.,�999MS,“LatePliocene-Pleistocenepaleocea-nographicstudybasedondiatomassemblageoftheJapanSeacores(ODPLeg�27)”,Dr.thesisatGraduateSchoolSci.,HokkaidoUniv.,69p.

[63]Kawamura,Y.,�998,“ImmigrationofmammalsintotheJapaneseIslandsduringtheQuaternary”,The Quaternary Research,vol.37,pp.25�-257.(JE)

[64]Yoshikawa,S.,Kawamura,Y.andTaruno,H.,2007,“Landbridgeformationandproboscideanimmigration into theJapaneseIslandsduringtheQuaternary”,Jour. Geoscienc-es, Osaka City Univ.,vol.50,pp.�-6.

[65]Ishii,E.,Yasue,K.,Ohira,H.,etal.,2008,“InceptionofanticlinegrowthneartheOmagariFault,northernHokkai-do,Japan”,Jour. Geol. Soc. Japan,vol.��4,pp.286-299.(JE)

[66]YasueK.,Akiba,F.,Ohira,H.,etal,2006,“TheupperPliocene diatom zone and fission-track age of the upper KoetoiFormationaroundtheSarobetsuanticline,northernHokkaido”,Jour. Geol. Soc. Japan,vol.��2,pp.284-293.(JE)

*(J);inJapanese,(JE);inJapanesewithEnglishabstract

Copyright © 2010 by ASME