天文学概論6

36
天文学概論(第6回) 系外惑星 1 ~異形の惑星たち~ 東京工業大学 佐々木貴教

Upload: noinoi79528

Post on 27-Jun-2015

610 views

Category:

Technology


0 download

TRANSCRIPT

Page 1: 天文学概論6

天文学概論(第6回)

系外惑星 1~異形の惑星たち~

東京工業大学 佐々木貴教

Page 2: 天文学概論6

連絡先❖ Sasaki Takanori Online:http://sasakitakanori.com “佐々木貴教”で検索してもすぐ見つかります 講義資料や参考図書の情報などを掲載します

❖ メール:[email protected] 本講義全体の代表メールアドレス

講義の感想, 質問, 要望, 相談惑星科学全般についての質問研究や研究者についての質問

Page 3: 天文学概論6

系外惑星 1 ~異形の惑星たち~・太陽系外惑星の発見・系外惑星の観測手法(直接&間接)・有名な系外惑星の紹介

次回:系外惑星 2 ~汎惑星形成論~・太陽系形成論から汎惑星形成論へ・系外惑星の多様性の説明・生命を宿す惑星の発見へ向けて

Page 4: 天文学概論6

太陽系外惑星の発見

Page 5: 天文学概論6

太陽系外惑星が見つからない1940~60年代: 白鳥座61番星のまわりに惑星発見? バーナード星のまわりに2つの惑星発見?1989年: アメリカの観測チーム「惑星は検出できなかった」

1995年2月:論文「太陽系は特殊で奇跡的な惑星系である」

1993年: ニュージーランドの観測チーム「惑星は検出できなかった」

1995年8月:論文「太陽系以外に惑星は存在せず」

→ 間違い   → 間違い

Page 6: 天文学概論6

Mayor & Queloz (スイスの観測チーム)人類初の系外惑星検出!ペガサス座51番星の周りに Hot Jupiter が存在!

ところが・・・1995年10月

Page 7: 天文学概論6

太陽系外惑星が続々と見つかる

2009年11月4日現在すでに400個を超える!

Page 8: 天文学概論6

異形の惑星たち(1)

木星地球

内側の軌道に木星を超える巨大惑星

Page 9: 天文学概論6

灼熱の惑星

中心星の熱で高温になり大気が膨張・流出している

“Hot Jupiter”

Page 10: 天文学概論6

異形の惑星たち(2)

木星地球

軌道離心率が高い惑星が多い(楕円軌道を描く惑星が多い)

Page 11: 天文学概論6

極暑・極寒を繰り返す

“Eccentric Planet”

楕円軌道

Page 12: 天文学概論6

地球

惑星質量が地球の数倍~10倍

程度の地球型惑星

異形の惑星たち(3)“Super Earth”

Page 13: 天文学概論6

系外惑星の観測手法

Page 14: 天文学概論6

直接撮像

コロナグラフ:中心星の部分だけを隠す補償光学 (AO):大気による画像の揺らぎを補正

惑星と中心星の光を分離し、惑星を直接撮像する

コロナグラフ 補償光学

総研大ジャーナル  号   

 2006年8月の「冥王星が惑星の仲間から外れる」というニュースは、予想を越える大きな社会的反響を引き起こした。惑星はそれほどに一般の人々にも馴染み深い天体であるからだろう。その数は太陽系の中でこそ8個しかないが、すでに200個を超える数の惑星が太陽系の外で見つかっていることをご存知だろうか。これらは「太陽系外惑星」あるいは「系外惑星」と呼ばれ、主に、惑星の存在が及ぼすさまざまな影響を間接的にとらえること(間接的系外惑星検出)によって、過去10年間に続々と発見されてきた。 惑星は生命をはぐくむための液体の水と酸素が存在しうる場であるため、系外惑星、とくに地球に似た惑星を探す試みは、地球外生命を求めるステップとして、一種の極限宇宙の探索に挑む研究テーマなのである。

系外惑星発見前夜 系外惑星を探す試みは決して新しくない。20世紀初めから中葉にかけてアメリカのバンデカンプらが精力的な観測を行い、太陽に2番目に近いバーナード星に木星クラスの惑星が2個存在すると発表した。ところが、数十年にも及ぶこの観測結果は、別のグループによる観測で否定されてしまった。 1980年代に入って、惑星検出のための観測技術は著しく向上した。しかし、カナダのグループが、最新の手法と口径4mの望遠鏡を12年間用いた観測によっても系外惑星は見つからず、その検出には否定的な雰囲気が漂っていた。 その風向きを一挙に変えたのが、1995

年のスイスのメイヤーとケロッズの発見だった。それは木星質量の半分の惑星が、ペガスス座51番星の周りをわずか4日の周期で公転しているという驚くべきものだった。木星は太陽の周りを12年かけて公転するので、そのあまりの差異に、当時は惑星と違うのではという意見もあった。しかし、他グループによる追観測でもすぐさま確認され、恒星を周回する系外惑星の最初の発見となった。

惑星探査の方法 現在の惑星検出は間接法が主流である。ここでは主要な2つを紹介する(図 )。 惑星の公転運動によって、わずかながら恒星自体がふらつく。この速度変動を、恒星からの光のドップラー効果を利用して測定するのが「ドップラー法」である。メイヤーらが用いたのもこの手法であ

る。太陽系の木星および地球の公転による太陽の速度変動はそれぞれ毎秒13mおよび0.1mで、巨大惑星の検出でさえも数m/秒の精度が必要である。最近では、1m/秒を超える精度(人の歩く速さ!)により地球質量の10倍程度しかない惑星も5例発見されており、系外惑星の9割以上がこの方法で発見されている。 もう1つの検出法は、惑星が恒星の前面を通り過ぎること(トランジット)による明るさの微小変化を検出する「トランジット法」である。木星および地球のトランジットによる太陽の光度変化は、それぞれ約1%および0.01%しかない。これまでに14例が確認されている。観測者から見て惑星の軌道面が視線と一致する偶然が必要なため、一度に多数の星を観測する必要がある。 CCDを備えた口径1m以下の小型望遠

る。系外惑星は、軌道が0.02~6天文単位*、公転周期にして約1日から15年の範囲に分布している(周期の長いほうは観測継続期間によって制限されている)。 0.1天文単位以内の巨大惑星は「ホット・ジュピター」と呼ばれ、周期3日前後のものが多い。主星に近いため、その表面温度は1000°Cを超える。また、太陽系の惑星はほぼ円軌道で太陽を公転するが、系外惑星の軌道の離心率は著しく多様で、0から0.9程度までの広い範囲に分布している。このように、系外惑星は太陽系とは大きく異なる性質をもっており、その原因はまだよく理解されていない。

直接観測に向けて 間接法は惑星からの光を直接検出するわけではないため、どうしても不定性が残る。系外惑星探査の次の重要なステップは直接観測である。 直接撮像観測のためには、①暗い惑星を検出するための高感度、②主星と惑星を見分けるための高解像度、③惑星の近くにある恒星からの明るい光の影響を抑えるための高コントラスト、の3つを同時に実現しなければならない。なかでも最大の問題はコントラストである。惑星からの光は可視光および近赤外波長では恒星からの光の反射が主で、明るさの比

は約100億倍にも達する。中間赤外より長波長では惑星自体の熱放射のため両者の明るさの比は多少緩和されるが、それでも約1000万倍となる。 地上観測の最大の障壁は地球大気の揺らぎが起こすかげろうである。現在、すばる望遠鏡などの口径8~10m級の地上大望遠鏡では、大気揺らぎを時々刻々と補正する補償光学や、明るい恒星を隠すコロナグラフなどを用いて、年齢の若い巨大惑星の検出などが試みられている(図 )。 太陽系の木星のような年齢46億年という成熟した巨大惑星や、現在は間接法でさえも検出ができていない地球型惑星は、次世代の超大型地上望遠鏡でも観測が難しい。そこで、コントラストの向上に焦点を当てた新しいスペースミッション( や / / )が計画されていて2020年ごろの打ち上げを目指している。太陽近傍の恒星を探査し、第2の地球を発見し、生命の指標となりうる地球に似た大気の存在をスペクトルで確認するのがその使命である。 21世紀の最も重要かつ夢のある科学テーマとして、ぜひ多くの若い学生の皆さんがこの問題にチャレンジされることを期待している。

鏡によっても惑星検出が可能なため、トランジット法は教育機関やアマチュアがトライするには最適の方法である。ただし、地上からは地球の大気揺らぎのため、木星型巨大惑星の検出が限界である。 一方、大気揺らぎのない宇宙空間では、トランジット法によって木星型だけでなく地球型の小さい惑星の光度変化をとらえることもできる。2009年打ち上げ予定のケプラー衛星(米国)では数百個の地球型惑星を検出できるかもしれない。

系外惑星の性質 数千個の恒星の探査の結果、太陽に似た恒星の周りで惑星が見つかる頻度は10%程度であることがわかった。今後の観測精度向上により、まだ発見されていない恒星の周りにも惑星が検出される可能性があるので、これは下限値である。そのことを考えれば、恒星に惑星が存在することは、それほど珍しい現象ではないと言ってよいだろう。 惑星の重さとしては、最初は木星質量程度のものが数多く発見されたが、最近では最小で地球質量の6倍程度のものまで見つかっている。しかし、地球型と呼べるほど軽い天体は未発見である。 系外惑星は主星を公転しているが、その軌道は太陽系の惑星とは大きく異な

「認識の宇宙」の拡大

田村元秀総合研究大学院大学助教授天文科学専攻/自然科学研究機構国立天文台助教授

太陽系の外で惑星の発見が続いている。その数は 年余で 個以上に上り、恒星に惑星が存在するのは珍しくないことが明らかにされた。次のステップは従来の間接観測に代わる直接観測で、さらには地球型惑星の発見も期待される。

田村元秀(たむら・もとひで)専門は赤外線天文学、系外惑星探査、宇宙磁場などの偏光観測。すばる望遠鏡用コロナグラフの開発のほか、南アフリカにある

望遠鏡の赤外線 色カメラの開発や各種偏光器の開発にも携わりながら、多数の望遠鏡を用いて観測的研究を進めてきた。現在は、すばる望遠鏡用次期コロナグラフの開発、地球型系外惑星ミッションなどを推進している。

図 補償光学とコロナグラフによる高コントラスト観測の原理

恒星青方偏移した恒星からの光

赤方偏移した恒星からの光

惑星 惑星の軌道(トランジットあり)

明るさ

恒星

惑星

惑星の軌道(トランジットなし)

時間

速さ(毎秒 )

回転の周期

ガイド星

天体

ナトリウム層高度

大気揺らぎ風

望遠鏡

歪んだ波面 補正された波面

可視光 像面マスク瞳面ストップ 検出器

コロナグラフなし コロナグラフあり

制御系

波面センサー

レーザー

可変形鏡

図 系外惑星の間接的検出法ドップラー法(左)とトランジット法(右)。

* 天文単位天文単位は地球~太陽間の平均距離。

Page 15: 天文学概論6

直接撮像成功!

HR 8799

フォーマルハウト

Page 16: 天文学概論6

間接法1:アストロメトリ法恒星と惑星は共に共通重心の周りを回っている → 恒星の重心からのずれを観測

地上望遠鏡による検出は極めて困難

Page 17: 天文学概論6

アストロメトリ法成功!2009年5月 恒星 VB 10 の周りに 恒星と同サイズの惑星検出 現在までで唯一の検出例

恒星 VB 10: 太陽質量の12分の1惑星 VB 10b: 木星質量の6倍

Page 18: 天文学概論6

間接法2:視線速度法恒星が観測者に近づいたり遠ざかったりする → ドップラー効果によって   星の色が周期的に変化 → 恒星の速度の変化を観測

中心星に近く質量の大きい惑星ほど発見しやすい(選択効果)

惑星質量の下限値のみが決定

Page 19: 天文学概論6

1995年 初めての系外惑星発見!

46

1995年!

この後最も多くの系外惑星が本手法で発見されている

51 Pegasi b

Page 20: 天文学概論6

間接法3:トランジット法惑星が恒星の前を通過する際に明るさが変化する → 周期的な明るさの変化(恒星食)を観測

惑星が恒星のちょうど前面を通過する確率は低い

惑星の正確な質量が求まる & 大気成分が検出可能

Page 21: 天文学概論6

Secondary Eclipse惑星が恒星の後ろを通過する際に明るさが変化する → 分光観測により惑星の特徴を観測

惑星の大気成分惑星の昼側の温度惑星の温度分布惑星の熱輸送効率惑星の軌道離心率

わかること

Page 22: 天文学概論6

トランジット法による観測例

HAT-P-7b

Page 23: 天文学概論6

間接法4:重力レンズ法天体の周りでは空間が歪み、光の経路が曲がる → ある恒星の前を別の恒星(惑星)が横切ると   背後の恒星の光が増光される → 惑星による背後の恒星の光の増光を観測

検出確率は低い観測は1回きり

軌道半径1~3AUにある小さな惑星が検出可能

Page 24: 天文学概論6

重力レンズ法による観測例

OGLE-2005-BLG-390

Page 25: 天文学概論6

間接法の種類と特徴のまとめ名称 方法 特徴

アストロメトリ法 恒星の位置のずれ 地上からは難しい

視線速度法(ドップラー法)

恒星の動きの速さこれまでで最も多数の惑星を発見

トランジット法惑星による恒星の食

軌道半径が小さいことが必要

重力レンズ法惑星重力による空間の歪み

検出確率小、軌道半径1~3AU

Page 26: 天文学概論6

手法ごとの惑星発見数

直接撮像:10アストロメトリ法:1視線速度法:314 (376)トランジット法:62重力レンズ法:9パルサータイミング法:7(2009年11月4日現在)

Page 27: 天文学概論6

有名な系外惑星の紹介

Page 28: 天文学概論6

51 Pegasi b

1995年10月人類史上初の系外惑星発見発見者:M. Mayor & D. Queloz軌道長半径=0.052AU公転周期=4.23077日地球からの距離=約50光年典型的な “Hot Jupiter”

Page 29: 天文学概論6

HD 209458b初めてトランジットが観測された系外惑星初めて大気成分が観測された 下層部:ナトリウム 上層部:水素・炭素・酸素表面温度も観測:約1200℃2009年10月 水・メタン・二酸化炭素の 存在も確認された

Page 30: 天文学概論6

HD 189733b史上初の系外惑星の“地図”(表面温度分布図)を得た大気中に初めて水・メタンの存在が示唆された

Page 31: 天文学概論6

Gliese 581b, c, d, e

b:17M地球c:5M地球d:8M地球e:2M地球

Gliese 581d 上では水が液体で存在できるかも!

Habitable Zone

Page 32: 天文学概論6

COROT-7b

2009年9月に確認初めての系外地球型惑星(初めての Super Earth)直径:1.7R地球質量:4.8M地球最も小さな系外惑星表面温度は約1000℃と高く生命は期待できない

COROT-7b

Page 33: 天文学概論6

木星

HD 149026bすばる望遠鏡を用いて佐藤文衛らによって発見巨大な中心核を持つガス惑星(地球の67倍の質量)標準的な惑星形成論では地球の10倍以上の質量の核を持つことは難しい表面温度は約2300℃と過去の観測で最も高温

Page 34: 天文学概論6

OGLE-2005-BLG-390Lb中心星から遠いところを回り表面温度はマイナス220℃

その他

Coku Tau/4最も若い惑星系(約100万年)

SWEEPS-10公転周期わずか10時間

Page 35: 天文学概論6

参考図書

Page 36: 天文学概論6

連絡先❖ Sasaki Takanori Online:http://sasakitakanori.com トップページに講義資料へのリンクを載せておきます 参考図書の紹介とアマゾンへのリンクも載せておきます

❖ メール:[email protected] 本講義全体の代表メールアドレス

講義の感想, 質問, 要望, 相談惑星科学全般についての質問研究や研究者についての質問