thermomechanical reliability challenges f3difor 3d ...ruihuang/talks/tsv_april2010.pdf · tsv...

26
Thermomechanical Reliability Challenges f 3D I for 3D Interconnects SukKyu Ryu, Kuan H. (Gary) Lu, Qiu Zhao, Xuefeng Zhang, Jay Im, Rui Huang and Paul S. Ho The University of Texas at Austin Financial support from Semiconductor Research Corporation is gratefully acknowledged.

Upload: hoangkhue

Post on 14-Mar-2018

218 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: Thermomechanical Reliability Challenges f3DIfor 3D ...ruihuang/talks/TSV_April2010.pdf · TSV Mechanical Reliability ¾Stress around TSVs: • Keep‐away zone for FEOL • Cracking

Thermomechanical Reliability Challenges f 3D Ifor 3D Interconnects

Suk‐Kyu Ryu, Kuan H. (Gary) Lu, Qiu Zhao, 

Xuefeng Zhang, Jay Im, Rui Huang and Paul S. Ho 

The University of Texas at Austin

Financial support from Semiconductor Research Corporation is gratefully acknowledged. 

Page 2: Thermomechanical Reliability Challenges f3DIfor 3D ...ruihuang/talks/TSV_April2010.pdf · TSV Mechanical Reliability ¾Stress around TSVs: • Keep‐away zone for FEOL • Cracking

Wafer Level 3D Integration

Memory stacks (Samsung)

Mechanical effects:Through silicon vias (TSVs)Wafer thinninggWafer (die) bonding

Philip Garrou, Microelectronic Consultants of NCIntel 300 mm multicore processors

Page 3: Thermomechanical Reliability Challenges f3DIfor 3D ...ruihuang/talks/TSV_April2010.pdf · TSV Mechanical Reliability ¾Stress around TSVs: • Keep‐away zone for FEOL • Cracking

TSV Mechanical Reliability Stress around TSVs:• Keep‐away zone for FEOL• Cracking of silicon

TSV pop‐up Keep‐away zone

Cracking of silicon

Stress at the interfaces:• Debonding TSV pop up

Interfacial d b di• Debonding, TSV pop‐up

Stress inside TSVs:• Plastic deformation

debonding

• Plastic deformation• Stress‐induced voiding• Stress migration

Sources of stress:• Process‐induced stress• Thermal stress BEOL process

TSV stress and reliability depends on both 

• Thermal stress – BEOL process• Packaging induced stress

materials processing and structural design.

Page 4: Thermomechanical Reliability Challenges f3DIfor 3D ...ruihuang/talks/TSV_April2010.pdf · TSV Mechanical Reliability ¾Stress around TSVs: • Keep‐away zone for FEOL • Cracking

Stress and Reliability Analysis of TSV

Analytical solutions• 2D approximation2D approximation• Near‐surface stress distribution by method of superposition

Finite element analysis• Effect of liners/barrier layers• Effect of wafer thicknessEffect of wafer thickness• Effect of elastic mismatch• Effect of nail head

Cu

Fracture analysis• Calculation of ERR

Si

yz

Calculation of ERR• Cohesive crack simulations FEA Model

x

Page 5: Thermomechanical Reliability Challenges f3DIfor 3D ...ruihuang/talks/TSV_April2010.pdf · TSV Mechanical Reliability ¾Stress around TSVs: • Keep‐away zone for FEOL • Cracking

Process Induced Stress Simulation

TEOS/barrier layer deposition400~430ºC TEOS

Cu electroplating @ 30ºCAnnealing @ 200ºC

Si

TiN10 μm

2 μm1 μm

Cooling down to 30ºCCu CMP

TSV di 2

Al

Cu

Capping layer deposition150ºC

TSV diameter: ~2 μm

CVD of TEOS @ 400ºCCritical steps for

interfacial delamination and silicon cracking

Cooling down to 25ºC

5

Page 6: Thermomechanical Reliability Challenges f3DIfor 3D ...ruihuang/talks/TSV_April2010.pdf · TSV Mechanical Reliability ¾Stress around TSVs: • Keep‐away zone for FEOL • Cracking

Thermal Stress: 2D Approximate Solution

( ) TSiCuT Δ−= ααεSi

yr

Thermal Strain:

Uniform thermal stress in Cu via (triaxial):

EE

( )SiCuT

TSV radius = a

Cu

νεσ

νεσσ θ −

−=

−−

==1

,)1(2

Tz

Tr

EETSV radius = a

Tzσ

02

=−

=−= T aE σεσσ

Stress distribution in Si (biaxial):SiCu

0 ,)1(2 2 =

−== zr r

σν

σσ θ

The magnitude of the stresses in the via is independent of the via size.

Tzσ

The stresses in Si decay with the distance (r), with the decay length proportional to the via size (a).

Page 7: Thermomechanical Reliability Challenges f3DIfor 3D ...ruihuang/talks/TSV_April2010.pdf · TSV Mechanical Reliability ¾Stress around TSVs: • Keep‐away zone for FEOL • Cracking

Method of SuperpositionTσ

Si SiCu

Problem A: 

uniform thermal 

x

yrθ

Cu

Tzσ

Tp σ=

stress in Cu

TSV radius = a

Cu

SiCu

zp σProblem B:

3D Stress redistribution near surface

For a high aspect ratio TSV the stress field away from the surfaces can be

Tzp σ=

near surface

For a high aspect‐ratio TSV, the stress field away from the surfaces can be obtained from a 2D plane‐strain solution (Problem A).

The stress field near surface is 3D in general, which can be determined by superimposing an opposite surface loading (Problem B) onto the 2D field (Problem A) to satisfy the boundary conditions at the surface. 

Page 8: Thermomechanical Reliability Challenges f3DIfor 3D ...ruihuang/talks/TSV_April2010.pdf · TSV Mechanical Reliability ¾Stress around TSVs: • Keep‐away zone for FEOL • Cracking

2D Stress Field of Single Via

Normal stress σx Shear stress σxy

(TSV diameter: 20 um)

y

xy

x (MPa)

• Assume stress free at high temperature (reference)

• Cooling from the reference temperature (ΔT = ‐175oC) leads to tensile stresses in the via.the via.

• Around the via, the stress is tensile in the radial direction and compressive in the circumferential direction, both concentrated near the via.

Page 9: Thermomechanical Reliability Challenges f3DIfor 3D ...ruihuang/talks/TSV_April2010.pdf · TSV Mechanical Reliability ¾Stress around TSVs: • Keep‐away zone for FEOL • Cracking

Proximity Effect on Keep‐away ZoneNormal Stress σx Normal Stress σx (MPa)

(μm)

• Proximity of TSVs increases the area with high thermal stress and affect the keep-away zoneand affect the keep-away zone.

9

Page 10: Thermomechanical Reliability Challenges f3DIfor 3D ...ruihuang/talks/TSV_April2010.pdf · TSV Mechanical Reliability ¾Stress around TSVs: • Keep‐away zone for FEOL • Cracking

3D Stress Field near Surface (Problem B)p

Uniform surface pressure over a circular area

SiCu

p

εTT ECu

σ−

==1

TTzp

• Stress decays with the distance from the surface.

• Triaxial stress in the via center (r = 0).

• Radial and circumferential stresses on the surface (z = 0).

• Shear stress at the interface.

⎤⎡

⎤⎡

⎟⎠⎞

⎜⎝⎛

−=⎥

⎤⎢⎣

⎡−

+−==

azfE

zazEr TT

z νε

νεσ

11

)(1)0( 2/322

3

⎥⎥⎦

⎢⎢⎣

++

+

++−

−==== 2/322

2

22 )()21(2

)1(2)0()0(

zaza

za

zErr Tr

ννν

εσσ θ

Page 11: Thermomechanical Reliability Challenges f3DIfor 3D ...ruihuang/talks/TSV_April2010.pdf · TSV Mechanical Reliability ¾Stress around TSVs: • Keep‐away zone for FEOL • Cracking

Stresses near Wafer Surface

SiCu

σrz

SiCu

σr

Contour Stressrzσ

SiCu

Contour Stressrσ

SiCu

Cu SiCu Si

KT 250−=ΔKT 250−=Δ

Concentration of the shear stress at the surface/interface junction

Positive opening stress along Cu/Si interface

Page 12: Thermomechanical Reliability Challenges f3DIfor 3D ...ruihuang/talks/TSV_April2010.pdf · TSV Mechanical Reliability ¾Stress around TSVs: • Keep‐away zone for FEOL • Cracking

FEA: Effect of Wafer Thickness

σrzσr

H/D=10H/D=2

At the Cu/Si interface the opening stress (σ ) decreases but theAt the Cu/Si interface, the opening stress (σr) decreases but the shear stress (σrz) increases as the aspect ratio H/D decreases.

Page 13: Thermomechanical Reliability Challenges f3DIfor 3D ...ruihuang/talks/TSV_April2010.pdf · TSV Mechanical Reliability ¾Stress around TSVs: • Keep‐away zone for FEOL • Cracking

Effect of Liner Interlayer

σr

opening stressp g

Cu Si Cu Si

σσrz

shear stress

Without liner With liner

Page 14: Thermomechanical Reliability Challenges f3DIfor 3D ...ruihuang/talks/TSV_April2010.pdf · TSV Mechanical Reliability ¾Stress around TSVs: • Keep‐away zone for FEOL • Cracking

Potential Fracture Modes of TSVs

Si Si

SiCuCuCu

R‐crack C‐crack Interfacial crack

R‐crack may grow in Si during heating (ΔT > 0) when the circumferential stress is tensile (σ > 0)circumferential stress is tensile (σθ > 0).C‐crack may grows in Si during cooling (ΔT < 0) when the radial stress is tensile (σr > 0). Interfacial crack can grow during both heating and cooling.

Page 15: Thermomechanical Reliability Challenges f3DIfor 3D ...ruihuang/talks/TSV_April2010.pdf · TSV Mechanical Reliability ¾Stress around TSVs: • Keep‐away zone for FEOL • Cracking

Concepts of Fracture Mechanics

Energy release rate (ERR or G): thermodynamic driving force for crack growth, the elastic strain energy released per unit area of the crack; calculated by FEA or other methodsof the crack; calculated by FEA or other methods.

Fracture toughness (Γ): material resistance against cracking, an intrinsic property of the material or interface; measured byan intrinsic property of the material or interface; measured by experiments.

An simple comparison between G and Γ predicts crack growth p p p gor not.

Cohesive zone modeling: use a nonlinear traction-separation relationship to describe the interactions across the interface, i l di k l i d h

15

including crack nucleation and growth.

Page 16: Thermomechanical Reliability Challenges f3DIfor 3D ...ruihuang/talks/TSV_April2010.pdf · TSV Mechanical Reliability ¾Stress around TSVs: • Keep‐away zone for FEOL • Cracking

TSV‐induced R‐crack in SiSi Energy release rate:

( )2 cTE ΔΔαπCu

c

TSV radius = a

( )( ) 32 )/1(18

)(ac

cTEcG+−

ΔΔ=

ναπ

ΔT = 250oCm2 ) 12

The energy release rate for a R-crack increases as the via ΔT = 250 C

Rat

e G

(J/m

8

10a = 50 μm

c ac c eases as t e adiameter increases.

The maximum energy release rate

gy R

elea

se

2

4

6 a = 30 μm

10

occurs at the crack length c = 0.5a:

( ) ETG2

)( απ ΔΔ

Crack Length c (μm)0 10 20 30 40 50

Ener

g

0

2 a = 10 μm( )( )

EaaG 2max 154)(

ν−=

Page 17: Thermomechanical Reliability Challenges f3DIfor 3D ...ruihuang/talks/TSV_April2010.pdf · TSV Mechanical Reliability ¾Stress around TSVs: • Keep‐away zone for FEOL • Cracking

TSV Interfacial DelaminationH ti l (ΔT 0) I t f i l k d i b hHeating cycle (ΔT > 0): Interfacial crack driven by shear stress (σrz); Mode II fracture

TSV pop up

SiC

σrzoxide

TSV pop up

SiCu

r

z

Cooling c cle (ΔT < 0) Crack dri en b both shear stressCooling cycle (ΔT < 0): Crack driven by both shear stress (σrz) and radial stress (σr > 0); mixed mode fracture (Mode I + Mode II)

σrz

z

σr

17

r

z

Page 18: Thermomechanical Reliability Challenges f3DIfor 3D ...ruihuang/talks/TSV_April2010.pdf · TSV Mechanical Reliability ¾Stress around TSVs: • Keep‐away zone for FEOL • Cracking

Via pop‐up upon heating

σ

σmax

δ

0 δc

Γ = σmaxδc/2

Cu TSV subjected to heating up to +400KCohesive interface elements are used to simulate crack initiation and growthCohesive interface elements are used to simulate crack initiation and growthThe simulation results depend on input of interfacial properties (strength and toughness)

Page 19: Thermomechanical Reliability Challenges f3DIfor 3D ...ruihuang/talks/TSV_April2010.pdf · TSV Mechanical Reliability ¾Stress around TSVs: • Keep‐away zone for FEOL • Cracking

Interfacial Delamination during Cooling

Cu TSV subjected to cooling up to ‐400KCohesive interface elements are used to simulate crack initiation and growth 

Page 20: Thermomechanical Reliability Challenges f3DIfor 3D ...ruihuang/talks/TSV_April2010.pdf · TSV Mechanical Reliability ¾Stress around TSVs: • Keep‐away zone for FEOL • Cracking

Energy Release Rate (ERR)

ΔT = 250 K( )2αΔΔ fSS DTE

G

ΔT< 0 : Mode I+II

ΔT = -250 K)1(4 ν−

≈ fSScoolingG

( ) fSSheating DTE

vvG 2

)1(81

ΔΔ−+

≈ α

ΔT > 0: Mode II

The steady‐state ERR sets an upper bound for the crack driving force, which may be used for conservative design.

Page 21: Thermomechanical Reliability Challenges f3DIfor 3D ...ruihuang/talks/TSV_April2010.pdf · TSV Mechanical Reliability ¾Stress around TSVs: • Keep‐away zone for FEOL • Cracking

Effect of TSV Metals

TSV Df = 20 μm Material CTE (ppm/K)

Young’sModulus Poisson’s

RatioTSV Df 20 μm (ppm/K) (GPa) Ratio

Al 20 70 0.35

Cu 17 110 0.35

Ni 13 207 0.31

W 4.4 400 0.28

Si 2.3 130 0.28

( )⎟⎟⎞

⎜⎜⎛ΔΔ TSVfSi Ef

DTEG

α 2( )⎟⎟⎠

⎜⎜⎝

= SiTSVSi

TSVfSSS E

fG νν ,,4

Th ff t f th l i t h d i t th ff t f l tiThe effect of thermal mismatch dominates the effect of elastic mismatch.

Page 22: Thermomechanical Reliability Challenges f3DIfor 3D ...ruihuang/talks/TSV_April2010.pdf · TSV Mechanical Reliability ¾Stress around TSVs: • Keep‐away zone for FEOL • Cracking

Annular TSV

f

i

DD

=ηDiameter ratio:

Steady-State ERR for interfacial delamination:

( ) ( ) ( )222

1)1(4

,,,4

ηα

ννηα

−ΔΔ

≈⎟⎟⎠

⎞⎜⎜⎝

⎛ΔΔ= f

SiTSVTSVfSi

SS

DTEE

EfDTE

G ( ))1(44

ην

η−⎟

⎠⎜⎝

SiTSVSi

SS Ef

Page 23: Thermomechanical Reliability Challenges f3DIfor 3D ...ruihuang/talks/TSV_April2010.pdf · TSV Mechanical Reliability ¾Stress around TSVs: • Keep‐away zone for FEOL • Cracking

TSV with Nail HeadSh b h i f• Shear stress at both interfaces

• Opening stress at the NH/Si interface (heating) 

12

mD f μ6=

KT 400=Δ

Page 24: Thermomechanical Reliability Challenges f3DIfor 3D ...ruihuang/talks/TSV_April2010.pdf · TSV Mechanical Reliability ¾Stress around TSVs: • Keep‐away zone for FEOL • Cracking

TSV pop‐up with nail head

Cu TSV/NH subjected to heating up to +400KCohesive interface elements are used to for both via/Si and NH/Si interfaces

Page 25: Thermomechanical Reliability Challenges f3DIfor 3D ...ruihuang/talks/TSV_April2010.pdf · TSV Mechanical Reliability ¾Stress around TSVs: • Keep‐away zone for FEOL • Cracking

KTHD 25020 Δ

Energy Release Rate

c2

c1

KTmHD pf 250,20 =Δ== μ

c1

Delamination typically initiates from the corner (site of stress concentration) and grows simultaneously along both interfaces.

Page 26: Thermomechanical Reliability Challenges f3DIfor 3D ...ruihuang/talks/TSV_April2010.pdf · TSV Mechanical Reliability ¾Stress around TSVs: • Keep‐away zone for FEOL • Cracking

SummaryThermal expansion mismatch induces stresses in TSV and surround materials. TSV geometry and material combination can generate g y gcomplex 3D stress fields that affects the determination of keep-away zone.I t f i l d l i ti f TSV d b th h ti dInterfacial delamination of TSV can occur under both heating and cooling while r-crack in Si could occur under heating. In both cases, the crack driving force increases with the TSV diameter and scales with the square of thermal loading. The reliability of TSV structure can be improved by optimizing the materials and geometry to reduce the crack driving forcematerials and geometry to reduce the crack driving force.Cohesive zone modeling could be useful in the study of crack nucleation and growth, for which experimental measurements of the

26

interfacial properties (toughness and strength) are needed.