advanced cmos devices and reliability - ufrgs · 2013-05-19 · advanced cmos devices and...

117
BEN KACZER, IMEC ADVANCED CMOS DEVICES AND RELIABILITY BEN KACZER UFRGS 2013 Tutorial

Upload: others

Post on 11-Mar-2020

31 views

Category:

Documents


0 download

TRANSCRIPT

BEN KACZER, IMEC

ADVANCED CMOS DEVICES AND RELIABILITY

BEN KACZER

UFRGS 2013 Tutorial

BEN KACZER, IMEC BEN KACZER, IMEC

OUTLINE

CMOS FEOL trends

Why reliability

Examples of FET degradation mechanisms

TDDB

BTI

2

BEN KACZER, IMEC 3

time

strain

USJ

silicide

>130 90-65-45

Strain, USJ (F,C co-implant, …)

Performance

22-15

FinFET

Multi-gate

45-32/28 High-k, Metal Gate

FUSI

Gate-first

Gate-last

??

Ge/IIIV

III-V, CNT, VFET TFET, NW, graphene…

nanowires Tunnel FET

<15 VFET

SCALING ROADMAP : VARIETY OF ARCHITECTURES ON THE HORIZON

BEN KACZER, IMEC

EXPLOSION OF MATERIAL AND DEVICE TECHNOLOGY OPTIONS

4

Ge/III-V

Strain

Metal gates

FinFET

High k

HP-Logic

LP-Logic

Flash-FG

DR

AM

RR

AM

Flash-CT

BEN KACZER, IMEC BEN KACZER, IMEC

POWER SUPPLY VOLTAGE EVOLUTION

0.00

1.00

2.00

3.00

4.00

5.00

6.00

0.010.101.0010.00Supp

ly v

olta

ge (

V)

Gate length (µm)

Power supply voltage is saturating at about 1V due to non-scaling of subthreshold slope

Constant voltage

Constant voltage

7

BEN KACZER, IMEC

ELECTRIC FIELDS IN OXIDE AND IN SILICON INCREASE

Third scaling period: renewed constant voltage scaling due to non-scaling subthreshold slope has new implications on reliability !

8

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1.0E+08

0.010.101.0010.00

Ele

ctri

c fie

ld (

V/c

m)

Gate length (um)

Eox Esi

70-80’s 90’s 00’s

BEN KACZER, IMEC BEN KACZER, IMEC

POWER DENSITY INCREASES DUE TO NON-SCALING SUBTHRESHOLD SLOPE

Power density will soon be dominated by static power !

leakddstat

effswingdddyn

IVP:Static

fCVVP:Dynamic

⋅=

⋅⋅⋅⋅α=

Almost all reliability problems are accelerated by Temperature !

D. Cox, IRPS Tutorial 2004

9

BEN KACZER, IMEC

NO TWO IDENTICALLY FABRICATED TRANSISTORS ARE ALIKE ANYMORE

These time-zero variations require adaptations in circuit design to account for statistical spread in device parameters

10

The established simulation paradigm

Physical gate length 22nm

Physical gate length 9nm = 30x30x30

atoms

100

Asenov et al., IEDM 2008

σVT ~ 1/(WL)1/2

BEN KACZER, IMEC BEN KACZER, IMEC

OUTLINE

CMOS FEOL trends

Why reliability

Examples of FET degradation mechanisms

TDDB

BTI

11 BEN KACZER

BEN KACZER, IMEC BEN KACZER, IMEC

Reliability is an essential aspect of all products and technologies

12

IS RELIABILITY IMPORTANT ?

BEN KACZER, IMEC BEN KACZER, IMEC

WHY RELIABILITY TESTING As fabricated

Record performance!

Insufficient reliability: field returns, loss of profit, credibility, market share... Devices cannot be tested for years (corresponding to field use) accelerated testing needed!

VD

I D

E.g., a month later

Performance degraded! VD

I D

13

BEN KACZER, IMEC BEN KACZER, IMEC

ACCELERATED TESTING (IN FEOL) TYPICALLY DONE WITH V AND/OR T

Operating conditions Accelerated conditions

Log

time-

to-fa

ilure

10 years

Correct projection to operating conditions only possible if same mechanism at accelerated and operating conditions acceleration laws understood!

14

BEN KACZER, IMEC BEN KACZER, IMEC

STOCHASTIC NATURE OF RELIABILITY MECHANISMS: A FRACTION OF DEVICES WILL FAIL!

Operating conditions Accelerated conditions

Log

time-

to-fa

ilure

10 years

Again, the distribution can be correctly described only if underlying mechanism understood!

As dimensions get smaller, distributions become wider (courtesy of T. Grasser)

15

BEN KACZER, IMEC BEN KACZER, IMEC 16

RELIABILITY MUST BE PART OF EVERY (TECHNOLOGY) SPECIFICATION!

Example: 1 out of 10,000 chips (100ppm) allowed to fail in 10 years at operating conditions.

BEN KACZER, IMEC BEN KACZER, IMEC

“CLASSICAL” APPROACH TO RELIABILITY ASSESSMENT

failure data statistics

develop predictive reliability models

accelerated testing/model

reliability test structures

failure mechanisms

Reliability engineer Designer

Novel approaches needed to design reliable circuits with unreliable components: Reliability Aware Design (RAD)

17

BEN KACZER, IMEC

RELIABILITY AND RECENT CMOS FEOL TRENDS • New (3D) device architectures • New “exotic” materials (high-k gate dielectrics, metal gates, high-mobility substrates)

• Downscaling of devices toward atomic dimensions (variability) • Supply voltages are not correspondingly reduced Reexamination of known “old” degradation mechanisms in new materials and architectures required Revision of existing and need for novel characterization techniques New reliability lifetime assessment methodologies Reliability cannot be guaranteed at technology level: Reliability-Aware Design

18

BEN KACZER, IMEC BEN KACZER, IMEC

OUTLINE

CMOS FEOL trends

Why reliability

Examples of FET degradation mechanisms

TDDB

BTI

19

BEN KACZER, IMEC BEN KACZER, IMEC

TIME-DEPENDENT DIELECTRIC BREAKDOWN (TDDB)

Electrical stress = Additional gate oxide leakage paths (TDDB) + FET intrinsic parameters change (“BTI”)

G

S DW

G

S DW

G

S DW

G

S DW

G

S DW

1

2

3 5

1 2 3 4 5

wear-out 4

20

10 -14

10 -12

10 -10

10 -8

10 -6

10 -4

5 4 3 2 1 0 Gate Voltage (V)

Fresh

SILC

SBD HBD

BEN KACZER, IMEC

CHANNEL HOT CARRIER (CHC) DEGRADATION

21

h e

hole current

Electrons and/or holes in the channel of a MOSFET gain high energy under influence of large electrical fields in the Si at the drain. They are injected into the oxide causing interface traps to be created and charges to be trapped in the oxide

Bravaix et al., IRPS 2009

BEN KACZER, IMEC BEN KACZER, IMEC

POSITIVE / NEGATIVE BIAS TEMPERATURE INSTABILITY (BTI)

0

5

10

15

20

25

0 500 1000 1500 2000 time (s)

-∆V t

h (m

V)

T = 125 oC VG,stress = -2 V VG,relax = 0 V

stress relaxation

0V

0V

0V VG

22

Example: PFET at Negative gate Bias (and typically at elevated Temperature) pFET Vth starts shifting (shows Instability) NBTI

Charging of interface and oxide defects ∆Vth and ∆μ

0.0

0.2

0.4

0.6

0.8

1.0

6 8 10 12 14 16 18

|VG-V

th| [

V]

Tinv (≈EOT+4Å) [Å]

EOT = 1nm

SiGe

Franco et al., IEDM 2010

ITRS

Critical issue in sub 1 nm oxides

BEN KACZER, IMEC BEN KACZER, IMEC

OUTLINE

CMOS FEOL trends

Why reliability

Examples of FET degradation mechanisms

TDDB • Overview / Phases of BD

• SILC • SBD & impact of position • Wear-out and HBD

BTI

23

BEN KACZER, IMEC 24 BEN KACZER, IMEC

V

Gate

Si substrate

(GIST OF) GATE OXIDE BREAKDOWN

I

t t BD

D. R. Wolters, Ph.D. Thesis, 1985

40 nm SiO2

Gate oxide breakdown = catastrophic failure

24

BEN KACZER, IMEC BEN KACZER, IMEC

PHASES OF GATE DIELECTRIC BREAKDOWN

Electrical stress = Additional gate oxide leakage paths (TDDB) + FET intrinsic parameters change (“BTI”)

G

S DW

G

S DW

G

S DW

G

S DW

G

S DW

1

2

3 5

1 2 3 4 5

wear-out 4

10 -14

10 -12

10 -10

10 -8

10 -6

10 -4

5 4 3 2 1 0 Gate Voltage (V)

Fresh

SILC

SBD HBD

Cru

pi e

t al.,

TED

199

8 25

BEN KACZER, IMEC 26 BEN KACZER, IMEC

SINGLE TRAP CONDUCTION PATH

Additional leakage path = Trap-assisted tunneling with energy loss (Takagi et al., TED 46(2), 1999). This is Stress-Induced Leakage Current = SILC.

e-

VG

n+-type gate

p-type substrate

dielectric

1 0- 1 12

4

1 0- 1 02

4

1 0- 92

4

1 0- 8

1 01 5 1 01 6 1 01 7 1 01 8 1 01 9

p .Do t [c m-3]

Ielmini et al., TED 49 (11), 2002

• Steady-state SILC increase is proportional to neutral oxide trap density

• Trap near the middle between interfaces = highest conductivity

De Blauwe et al., TED 45(8), 1998

26

BEN KACZER, IMEC 27 BEN KACZER, IMEC

TWO COMPENSATING TRENDS IN ULTRA-THIN OXIDE SILC

Trend 1: trap generation rate drastically drops (figure) ▸ Less conductive paths through the oxide

Trend 2: conductivity per trap increases drastically ▸ Tunnel distance decreases and current rises exponentially ▸ Each trap contributes more to the total SILC

Stat

his e

t al.,

IED

M 1

998

Trap

gen

erat

ion

rate

27

BEN KACZER, IMEC 28 BEN KACZER, IMEC

THE CHANGING APPEARANCE OF SILC

SILC

time

many smallcontributions

oxide

gate

substratee-

SILC

time

few largecontributions

oxidegate

substratee-

Capacitortop view

SILC and

individual trap

components

Capacitorcross

section

SILC

time

many smallcontributions

SILC

time

many smallcontributions

oxide

gate

substratee-

oxide

gate

substratee-

SILC

time

few largecontributions

SILC

time

few largecontributions

oxidegate

substratee-

oxidegate

substratee-

Capacitortop view

SILC and

individual trap

components

Capacitorcross

section

Thick / large device Thin / small device Abrupt current increase of about 250nA = creation of single trap conduction path = ‘discrete’ SILC event This is NOT a breakdown

28

BEN KACZER, IMEC 29 BEN KACZER, IMEC

TWO-TRAP CONDUCTION PATH

Percolation path with trap-assisted tunneling

▸ this is Anomalous Stress-Induced Leakage Current = a-SILC (non-volatile memories) (Okada et al., IEDM 2001, Degraeve et al., IEDM 2001) In thick oxide: moving bits in flash memory

▸ this is Micro-Breakdown (Cellere et al., TED 49(8), 2002) or pre-Breakdown (Degraeve et al., IEDM 2001)

2-trap path

capacitor top view e-

VG

n+-type gate

p-type substrate

dielectric

29

BEN KACZER, IMEC BEN KACZER, IMEC

OUTLINE

CMOS FEOL trends

Why reliability

Examples of FET degradation mechanisms

TDDB • Overview / Phases of BD

• SILC • SBD & impact of position • Wear-out and HBD

BTI

30

BEN KACZER, IMEC 31 BEN KACZER, IMEC

CONDUCTION PATH = SOFT BREAKDOWN = SMALL GATE CURRENT INCREASE

•1st SBD observation (in 2 nm SiO2): Farmer et al., APL 52, p. 1749 (1988)

• Localized current flow through lowered barrier

• Model: ‘quantum point contact’ Suñé, IEDM 2000

• This is a soft breakdown, aka quasi-BD (Lee, IEDM 1994), partial BD, B-mode SILC (Okada, VLSI 1997).

e-

VG

n+-type gate

p-type substrate

dielectric

<1 %-step detection mandatory in automatic tester or, use smaller areas or, use a noise-based detection (Roussel et al., TDMR 1(2), 2001)

11.4x10-6 11.211.010.810.610.410.210.0

ga

te c

urr

en

t (A

)

302520151050time (s)

2 percent

5 percent

soft breakdown

nmos transistorL x W = 1 x 100 µm2

Vg = 4.4 V

tox =2.4 nm

31

BEN KACZER, IMEC BEN KACZER, IMEC

0

40

80

120

0 0.5 1.0 1.5 VD (V)

I D (µ

A)

G

S D W

Weff = 120 nm VG = 0, 0.15 .. 1.5 V

NO SIGNIFICANT EFFECT ON FET CHARACTERISTICS AT THE MOMENT OF SBD

Kaczer et al., IRPS, p. 79 (2004)

32

Already in Weir et al., IEDM, p. 73 (1997)

Circuits will generally work after SBD! Gerrer et al., ESSCIRC 2009

BEN KACZER, IMEC BEN KACZER, IMEC

TIME-TO-SOFT BREAKDOWN = STATISTICALLY DISTRIBUTED PARAMETER

Time-to-breakdown is Weibull distributed Monomodal Weibull distribution is described as:

( ) ( )( ) ( ) ( )ηβ−β=−−⇒

η

−−=β

lntlnF1lnlntexp1tF

-4-3-2-101

ln(-l

n(1-

F))

102 3 4 5 6 7

1002 3 4 5 6 7

1000tBD (s)

VG=4.4V

A=1.5e-08cm2

T=298CEOT=2.4nm

η=63%-value

β=slope

33

-5

-4

-3

-2

-1

0

1

ln(-ln

(1-F

))

0.012 4 6 8

0.12 4 6 8

1normalized Q BD

4.6 117.5

tox= 2.4 nm 3.4

-5

-4

-3

-2

-1

0

1

ln(-ln

(1-F

))

0.012 4 6 8

0.12 4 6 8

1normalized Q BD

4.6 117.5

tox= 2.4 nm 3.4

-5

-4

-3

-2

-1

0

1

ln(-ln

(1-F

))

-5

-4

-3

-2

-1

0

1

ln(-ln

(1-F

))

0.012 4 6 8

0.12 4 6 8

1normalized Q BD

4.64.6 11117.57.5

tox= 2.4 nmtox= 2.4 nm 3.43.4

dttJQ BDt

GBD ∫= 0)(

BEN KACZER, IMEC BEN KACZER, IMEC 34

TDDB STATISTICAL DISTRIBUTION IS LINKED TO NUMBER OF TRAPS IN PERCOLATION PATH

Weibull slope increases with oxide thickness can be used to identify the breaking layer in a multilayer (high-k) stack

Not very precise or decisive for thin layers

Very indirect monitor

14

12

10

8

6

4

2

0W

eibu

ll sl

ope

121086420Physical layer thickness (nm)

SiO2CVS with VG > 0 V

Thick oxide

Thin oxide

BEN KACZER, IMEC 35 BEN KACZER, IMEC 35

DETERMINATION OF THE MAXIMUM APPLICABLE GATE VOLTAGE

Combined effect of temperature acceleration and statistical scaling (depends on β!) This extrapolation is only valid for soft breakdown Voltage power-law more accurate than exponential also in high-k Wu & Suñe, TED 2009

Soft BD

Deg

raev

e et

al.,

VLS

I 199

9

Temperature 0.6 V

percentile ~0.3 V

area ~0.25 V 10 years

BEN KACZER, IMEC BEN KACZER, IMEC

G

S D W

G

S D W

G

S D W

0 L x

s is a monotonically increasing function of x.

R. Degraeve, IRPS (2001)

0 < s < 1 s ≅ 0 s ≅ 1

IMPACT OF BREAKDOWN POSITION ON FET — PRINCIPLE OF POSITION DETERMINATION

DS

D

IIIs+

≡Evaluate after BD in accumulation

Wu et al., IEDM, p. 187 (1998) Pompl et al., IRPS, p.82 (1999)

Yang et al., IEDM, p.453 (1999) 36

BEN KACZER, IMEC BEN KACZER, IMEC

EQUIVALENT ELECTRICAL CIRCUIT FOR FET AFTER BD

37

D S

W

G

FS

Rpath

BS

FD

BD F

FS, FD gate lengths, BS, BD base lengths a function of BD position

Rpath independent of BD position

G

S D W

Explains varying FET behavior following BD Kaczer et al., TED 49, p. 507 (2002)

BEN KACZER, IMEC BEN KACZER, IMEC 38

OTHER USES OF BD POSITION DETERMINATION

FinFETs: Crupi et al., TED 53, p. 2351 (2006) Non-uniform oxide stress: Crupi et al., EDL 24, p. 278 (2003) Processing issues: Kauerauf et al., SISC (2004) Uniformity of GOX stress in accumulation and inversion: Crupi et al., TDMR 3, p. 8 (2003) Impact of BD position on BD wear-out: Pey et al., IRPS, p. 221 (2007) Also B. Linder et al., IRPS, p. 403 (2003) Correlation of successive BD’s and 1 and 2D: Alam et al., p. 151, IEDM 2002; p. 415, IEDM2005; TED 55, p. 3150 (2008)

These 2 cases are equivalent in 1D

x x eastsouth

west north

gate bulk

1 μm

Kac

zer e

t al.,

IPFA

200

7

BEN KACZER, IMEC BEN KACZER, IMEC

OUTLINE

CMOS FEOL trends

Why reliability

Examples of FET degradation mechanisms

TDDB • Overview / Phases of BD

• SILC • SBD & impact of position • Wear-out and HBD

BTI

39

BEN KACZER, IMEC 40 BEN KACZER, IMEC

CONDUCTION PATH + THERMAL DAMAGE = HARD BREAKDOWN

Mass transport and Si regrowth in the breakdown spot Lei Jun Tang et al., TDMR 4(1), 2004

Localized current flow through resistor (+diode) Kaczer et al., TED 49(3) 2002

VG

n+-type gate

p-type substrate

dielectric

capacitor top view

hard breakdown

40

BEN KACZER, IMEC 41 BEN KACZER, IMEC

PHASES OF DEGRADATION AND WEAR OUT IN THIN OXIDES

1. SBD: Weibull (βSBD,ηSBD)

2. Wearout: assume Weibull (βwo,ηwo)

3. Runaway

HBD

RS-limited

41

BEN KACZER, IMEC 42 BEN KACZER, IMEC

DETAILED STRUCTURE OF THE WEAR OUT PHASE

In some cases the wear out phase is clearly observable by the increased ‘digital’ noise (Digital Breakdown)

J.S. Suehle et al., IRPS 2004

Kaczer et al., IEDM 2004 0

500

1000

100 101 102 103 104

trs (s)

gate

cur

rent

(A

) • Analog breakdown rate increases with lower Rs (e.g. in Metal gates) • Can be “arrested” by limited current supply (e.g. from previous stage)

ln(10)( ) log( ) ... log( ) ( )grs g

s s

VI t t C t D V

a R R= + + ≡ +

Alam et al., IEDM 2000; Linder et al., VLSI 2001; Monsieur et al., IRPS 2003; Kaczer et al., IRPS 2004

42

BEN KACZER, IMEC 43 BEN KACZER, IMEC 43

HARDNESS OF BREAKDOWN DEPENDS ON GATE ELECTRODE

Post-BD current through BD path depends on gate material

Gate current run-away is positive feed back process controlled by electron ‘supply’ in the gate

metal gate hard BD

poly-Si gate soft BD

Duschl et al., IRPS, p. 632 (2005).

BEN KACZER, IMEC 44 BEN KACZER, IMEC

-3

-2

-1

0

1

ln(-l

n(1-

F))

12 4 6

102 4 6

1002 4 6

1000time-to-breakdown (s)

VG=2.2V0.9 nm EOT SiO2/HfO2

A=1.25e-09cm2

HBD βHBD=~1.2SBD βSBD=~0.7

HBD IS NOT WEIBULL DISTRIBUTED!

If HBD is fitted with Weibull, β will be too high erroneous conclusions can be drawn

TDDB data meaningful if BD detection criterion given

t

I

44

With limited data, hard breakdown resembles Weibull distribution

Degraeve et al., IRPS 2006 Kerber et al., IRPS 2007

BEN KACZER, IMEC 45 BEN KACZER, IMEC

virgin device 1st SBD

COMPETING FOR HBD: A TRIATHLON …

In statistics described by series rule of reliability

2nd SBD

3rd SBD

1st HBD

faster swimmer can be overtaken by even faster biker!

time

SBD HBD

STA

RT Winner

competitor 1

competitor 2

45

P. J. Roussel et al., Microelectron. Eng. 84, 1925 (2007)

BEN KACZER, IMEC 46 BEN KACZER, IMEC

ALL-IN-ONE RELIABILITY PREDICTION

Region 1 = breakdown-free Region 2 = multiple soft breakdown ▸ Contours = relative leakage current increase DI/I0 after 10 years ▸ NOTE: current increase for individual small transistor can be substantial!

Region 3 = Hard breakdown (taking multiple SBD into account) ▸ Contours = lifetime for 0.01% failures

0.001

2

46

0.01

2

46

0.1

Area

(cm

2 )

1.41.31.21.11.0Voltage (V)

10 8.477 s =10 years10 8 s

10 7 s 10 6 s

10 5 s

10 4 s

Region 3Region 1

Region 23x

10-6

10- 43x

10-5

10-5

0.001

2

46

0.01

2

46

0.1

Area

(cm

2 )

1.41.31.21.11.0Voltage (V)

10 8.477 s =10 years10 8 s

10 7 s 10 6 s

10 5 s

10 4 s

Region 3Region 1

Region 23x

10-6

10- 43x

10-5

10-5

SiO2/HfO2 EOT=0.9 nm

46

Sahhaf et al., IEDM 2007

BEN KACZER, IMEC BEN KACZER, IMEC

OUTLINE CMOS FEOL trends

Why reliability

Examples of FET degradation mechanisms

TDDB

BTI • Overview / BTI components

• Technological remedies

• NBTI recoverable component and AC stress

• BTI in deeply scaled devices

• Observing properties of individual defects

• Impact of individual defects on FET characteristics

• Constructing and projecting ∆Vth distributions

• Combining time-dependent and time-0 variabilities

• Defect-centric circuit simulation framework

47

BEN KACZER, IMEC 48 BEN KACZER, IMEC

BIAS AND TEMPERATURE STRESS: TYPICAL DURING FET OPERATION

VDD

0V VDD

0

5

10

15

20

25

0 500 1000 1500 2000 time (s)

-∆V t

h (m

V)

T = 125 oC VG,stress = -2 V

0V

0V

0V negative VG

Example: PFET Vth at Negative gate Bias (and typically at elevated Temperature) starts shifting (shows Instability) NBTI

Charging of interface and oxide defects ∆Vth and ∆μ 48

BEN KACZER, IMEC BEN KACZER, IMEC

NBTI (pFET) PBTI (nFET)

Positive oxide charge (negative Vth shift)

Negative oxide charge (positive Vth shift)

Interface states (mobility, transconductance,

subthreshold-slope degradation) Mahapatra, IEDM 2003 Mitani et al., ECS 2005

Garros et al., ICICDT 2010

X

(but observed in sub 1nm EOT)

Generally at substrate interface

Generally trapping in high-k

BTI: CHARGED OXIDE BULK AND INTERFACE STATES

49

Zafar et al., VLSI 2006 Mahapatra, TDMR 2007

Kerber et al., TED 55, 3175 (2008) Aoulaiche et al., IRPS 2009

BEN KACZER, IMEC 50 BEN KACZER, IMEC

EXAMPLE OF BTI LIFETIME EXTRAPOLATION

▸ Failure Criterion: ∆Vth = 30mV at T = 125◦C ▸ Minimized relaxation: tsense_delay = 2ms ▸ Stress experiment at different voltages (VGstress > VDD)

Estimate lifetime Power Law extrapolation at 10 Years

50

VGstress-Vth0=-1.25V

BEN KACZER, IMEC 51 BEN KACZER, IMEC

BTI IS A SERIOUS RELIABILITY PROBLEM

Ultra-Thin EOT high-k gate stacks with overdrive below the required 0.7V for 10 years

nMOS - PBTI pMOS - NBTI 1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0PB

TI V

g ov

erdr

ive

at 1

0yea

rs (V

)

1.61.20.80.40.0EOT (nm)

Hf-based GdHfO Zr-based

target: 0.7V

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0 NB

TI V

g ov

erdr

ive

at 1

0yea

rs (V

) 1.6 1.2 0.8 0.4 0.0

EOT (nm)

target: 0.7V

Si substrate

51

Cou

rtes

y of

Cho

and

Fra

nco,

imec

BEN KACZER, IMEC BEN KACZER, IMEC

“MINOR” COMPLICATION: THRESHOLD VOLTAGE SHIFT STARTS RELAXING IMMEDIATELY AFTER STRESS REMOVED

0

5

10

15

20

25

0 500 1000 1500 2000 time (s)

∆V t

h (m

V)

T = 125 oC VG,stress = -2 V VG,relax = 0 V

stress relaxation

52

Crucial issue for all BTI measurements and interpretation!

Observed in p/nFETs, P/NBTI, DC and AC stress... Alam, IEDM 2003; Kerber et al., TED 2008; Kaczer et al., IRPS 2008

BEN KACZER, IMEC 54 BEN KACZER, IMEC

BTI DEGRADATION RELAXES “DISPERSIVELY” OVER MANY TIME SCALES: µSECONDS OR LESS TO DAYS

10-3 10-1 101 103 105

relaxation time trelax (s)

“DC” MSM

Fast MSM

Ultra-Fast MSM

On-the-fly

Extended MSM

Different measurement techniques to attack the problem

MSM = Measure-Stress-Measure

10-5

degr

adat

ion ∆V

th

54

BEN KACZER, IMEC BEN KACZER, IMEC

RELAXATION INCOMPLETE: PERMANENT DEGRADATION

0

10

20

30

40

50

10-3 10-1 101 103 105

relaxation time trelax (s)

∆V t

h (m

V)

“Permanent”

R(tstress, trelax) R(t s

tres

s, t re

lax =

0)

1.4 nm SiON pFET tstress = 100 s

T = 125 oC

Most common interpretation: Relaxation component – discharging of oxide defects Permanent component – generated interface states

55

see

Ran

gan

et a

l., IR

PS 2

003

BEN KACZER, IMEC BEN KACZER, IMEC

OUTLINE CMOS FEOL trends

Why reliability

Examples of FET degradation mechanisms

TDDB

BTI • Overview / BTI components

• Technological remedies

• NBTI recoverable component and AC stress

• BTI in deeply scaled devices

• Observing properties of individual defects

• Impact of individual defects on FET characteristics

• Constructing and projecting ∆Vth distributions

• Combining time-dependent and time-0 variabilities

• Defect-centric circuit simulation framework

60 BEN KACZER

BEN KACZER, IMEC BEN KACZER, IMEC

PBTI CONTROLLED BY CHARGE TRAPPING IN HIGH-K

10-4

10-3

10-2

10-1

100

1 Eox (MV cm-1)

ΔV t

h (V)

2 5 10

ref La ref

La

T = 125 oC trelax = 10-3 s

lines: tstress = 10 years symbols: tstress = 6x103 s

• Group III elements compensate unpaired electrons around oxygen vacancy in HfO2

• Similar effect caused by N (Xiong & Robertson, JAP 2006; Sahhaf et al., EDL 2010)

Kac

zer e

t al.,

INFO

S 20

09

61

Reference

With La

Liu

and

Rob

erts

on, A

PL 2

009

Significant reduction of PBTI is observed in nFETs with Lanthanum VTh0-adjusting layer

BEN KACZER, IMEC 63 BEN KACZER, IMEC

SIGE PFETS WITH BURIED CHANNEL PROMISE SUPERIOR PERFORMANCE OVER SI

∆EV

Si SiGe Si SiO2 HfO2

MG

63

To reduce NBTI: • Increase Ge fraction • Increase QW thickness • Reduce Si cap thickness Fr

anco

et a

l., IR

PS 2

010,

IE

DM

201

0 M

itard

et a

l., IE

DM

201

0

BEN KACZER, IMEC 64 BEN KACZER, IMEC

0

0.2

0.4

0.6

0.8

1

1.2

1.4

6 8 10 12 14 16 18

Max

. |V G

-Vth

| for

10Y

[V]

Tinv [Å]

Ultra-Thin EOT

0123456789

6 8 10 12 14 16 18 M

ax. E

ox fo

r 10Y

[MV/

cm]

Tinv [Å]

THIN Si CAP IMPROVES NBTI LIFETIME WHILE SCALING TINV

▸ Enables Tinv scaling while improving NBTI reliability ▸ Same trend consistently observed on SiGe, Ultra-Thin

EOT SiGe, and pure Ge channels

Si cap thinner

thicker

0.65nm

1nm

1.3nm 2nm

Si cap thinner

thicker

0.65nm

1.3nm

2nm

1nm SiGe

Si

0.6nm

1nm

1.7nm

0.6nm

1nm

1.7nm

J. Franco et al. IEDM 2010

64

BEN KACZER, IMEC 65 BEN KACZER, IMEC

Thin Si cap: channel carriers (EF) ‘miss’ part of the oxide defects

SiGeLOWER ∆NOT MODEL: REDUCED INTERACTION WITH OXIDE DEFECTS

SiGe Si SiO2 HfO2 Si

EF EVS

MG

▸ Less defects, located on the gate side, are energetically favorable for holes ▸ Stronger field acceleration due to ‘unaccessible’ traps becoming ‘accessible’

R ↓

J. F

ranc

o et

al.

IED

M 2

011

65

BEN KACZER, IMEC 66 BEN KACZER, IMEC

Thick Si cap: channel carriers (EF) ‘see’ all the oxide defects

EF

EVS

SiGe Si SiO2 HfO2 Si MG

SiGeLOWER ∆NOT MODEL: REDUCED INTERACTION WITH OXIDE DEFECTS

▸ Less defects, located on the gate side, are energetically favorable for holes ▸ Stronger field acceleration due to ‘unaccessible’ traps becoming ‘accessible’

R ↓

J. F

ranc

o et

al.

IED

M 2

011

66

BEN KACZER, IMEC 68 BEN KACZER, IMEC

UNIFIED PICTURE: THE ENERGY ALIGNMENT BETWEEN CARRIER AND OXIDE DEFECTS

CONTROLS BTI MECHANISMS

▸ nMOSFET PBTI: improved reliability shifting up the defect energy level by inserting Gd (Dy, La) in the high-k

▸ pMOSFET NBTI: improved reliability shifting up the channel Fermi level by using a (Si)Ge channel

68

BEN KACZER, IMEC BEN KACZER, IMEC

OUTLINE CMOS FEOL trends

Why reliability

Examples of FET degradation mechanisms

TDDB

BTI • Overview / BTI components

• Technological remedies

• NBTI recoverable component and AC stress

• BTI in deeply scaled devices

• Observing properties of individual defects

• Impact of individual defects on FET characteristics

• Constructing and projecting ∆Vth distributions

• Combining time-dependent and time-0 variabilities

• Defect-centric circuit simulation framework

69

BEN KACZER, IMEC BEN KACZER, IMEC

COMMON PROPERTY OF NBTI RELAXATION (RATE) AND LOW-F (“1/F”) NOISE: STATES WITH WIDELY DISTRIBUTED TIME SCALES

tstress = 100 s Vstress = -2V T = 125 oC

0

10

20

30

40

50

60

70

10-3 10-1 101 103 105 trelax (s)

ΔV t

h (m

V)

10-8

10-6

10-4

10-2

100

-dΔ

V th /

dt (V

s-1 )

10-16

10-15

10-14

10-13

10-12

10-11

10-10

10-9

100 101 102 103 104 105

frequency (Hz) S V

G (V

2 Hz-

1 )

SiON T = 25 oC

unstressed

VG = -0.3 V

VG = -0.6 V

NBTI relaxation & rate low-f noise (same device)

70

Both 1/f noise and R component higher in nitrided oxides Kapila et al., IEDM 2008; Kaczer et al., IRPS 2009

BEN KACZER, IMEC BEN KACZER, IMEC 71

… …

LEARNING FROM NOISE: TWO ATTRIBUTES ESSENTIAL FOR CAPTURING BTI RELAXATION BEHAVIOR

C = 100 ... 10N C = 100 ... 10N

low-f noise (1) Many time scales distributed RC

components

NBTI relaxation (1) + (2) Different charging (capture) and

discharging (emission) of each state

Kac

zer e

t al.,

IR

PS 2

008,

200

9

capture time constant (s)

emis

sion

tim

e co

nsta

nt (s

)

Rei

sing

er e

t al.,

IR

PS 2

010

BEN KACZER, IMEC 72 BEN KACZER, IMEC

PFET AC NBTI: (FAST) SEQUENCE OF STRESS AND RELAX PHASES

0

10

20

30

40

50

100 102 104 106 108 1010

frequency (Hz)

ΔV t

h (m

V)

DC

T = 125 C tstress = 1000 s VS = VD = VB = Vcc = 2 V

AC NBTI: Vselect = 2 V DC NBTI: Vselect = 0 V VG = 0 V

AC degradation ~ DC degradation / 2.

• AC BTI degradation lower than DC • appears f-independent up to GHz

72

|VG|

tstress relax stress relax …

Zhu et al., IRW 2002 Abadeer, IRPS 2003

Alam, IEDM 2003 Chakravarthi et al., IRPS

2004

Fernandez et al., IEDM 2006

BEN KACZER, IMEC BEN KACZER, IMEC

0

20

40

60

80

100

0 20 40 60 80 100 Duty Factor

ΔV t

h = R

(t rel

ax) +

P (

mV)

Vstress = -2.0V fstress = 10 kHz tstress = 6000 s trelax = 10-3 ( ), 10-2, … , 104

s T = 125 oC

relaxation

DISTINCTIVE SHAPE OF AC NBTI ΔVTH DEPENDENCE ON STRESS DUTY FACTOR

• Shape with “plateau” due to recoverable component • Correct model must reproduce this shape

DC

73

BEN KACZER, IMEC BEN KACZER, IMEC

DUTY FACTOR DEPENDENCE OF THE RECOVERABLE COMPONENT REPRODUCED BY EQUIVALENT CIRCUIT

74

Kaczer et al., IRPS 2008

0 1 2 3 4 5 6 7

0 20 40 60 80 100 Duty Factor

R(t r

elax

, tst

ress

= 6

000)

(a.u

.)

Vstress = 1 a.u. trelax = 10-3, 10-2, … , 104

a.u.

relaxation

Experiment Equivalent circuit simulation

• Distinctive shape of Duty Factor dependence cannot be explained by the classical Reaction-Diffusion model • The shape is controlled by the recoverable component

0

20

40

60

80

100

0 20 40 60 80 100Duty Factor

ΔV t

h=

R(t r

elax

) + P

(m

V) Vstress = -2.0Vfstress = 10 kHztstress = 6000 strelax = 10-3 ( ), 10-2, … , 104 sT = 125 oC

relaxation

DC

BEN KACZER, IMEC BEN KACZER, IMEC

OUTLINE CMOS FEOL trends

Why reliability

Examples of FET degradation mechanisms

TDDB

BTI • Overview / BTI components

• Technological remedies

• NBTI recoverable component and AC stress

• BTI in deeply scaled devices

• Observing properties of individual defects

• Impact of individual defects on FET characteristics

• Constructing and projecting ∆Vth distributions

• Combining time-dependent and time-0 variabilities

• Defect-centric circuit simulation framework

76

BEN KACZER, IMEC

DEEPLY-SCALED DEVICE OPERATION IS AFFECTED BY INDIVIDUAL DEFECTS

77

In deeply-downscaled technologies, only a handful of random defects will be present in each device

Not = 1012 cm-2 NT ~ 10 if device area = 10 x 100 nm2

Cou

rtesy

of M

. Bin

a, T

UW

ien

Number of charged defects will be increasing with operating time time-dependent variability in addition to time-0 variability

BEN KACZER, IMEC BEN KACZER, IMEC

INDIVIDUAL DEFECTS RESULT IN TIME-DEPENDENT VARIABILITY

78

• Individual defects behave stochastically • Individual defects have considerable relative impact on device • These time-dependent variations require adaptations in circuit design to account for time-dependent statistical distributions of device parameters

Large devices

Large Transistor 280 x 720 nm2

NT = 800 traps

Lifetime

Gra

sser

et a

l., IE

DM

201

0

(c)

lifetime (s)

Occ

urre

nce

Lifetime

Small device 35 x 90 nm2

NT = 12 traps

Lifetime

BEN KACZER, IMEC

DEEPLY SCALED DEVICES: INDIVIDUAL EMISSION EVENTS VISIBLE IN NBTI RELAXATION TRACES

relaxation time

-ΔV

th (m

V)

10-3 10-1 101 103 105

Large pFET

[Asenov] 0

10

20

30

40

50

60

relaxation time (s)

-ΔV

th (m

V)

10-3 10-1 101

70 × 90 nm2 pFET …

τn-1 τ1 τ2 τn-2 τn Kac

zer e

t al.,

IRPS

200

9

79

BEN KACZER, IMEC

IN GENERAL, EACH DEFECT CHARACTERIZED BY • capture time τc • emission time τe • impact on device (∆Id or ∆Vth,...) • occupancy (0 or 1) at given time (covers BTI, RTN, ... easily extensible to other mechanisms)

(size of bubble represents impact)

80

Example: defects in 3 different devices

τe(V, T)

τ c(V

,T)

τe(V, T)

τ c(V

,T)

τe(V, T)

τ c(V

,T)

EACH DEVICE CHARACTERIZED BY • number of defects NT with above properties

Depend on • spatial position • energy position • lattice relax. energy • ...

Kaczer et al., IRPS 2011

BEN KACZER, IMEC

EXTENDED MEASURE-STRESS-MEASURE (eMSM): EFFICIENT WAY OF OBSERVING MOST DEFECTS

~ log stress time degr

adat

ion

(~to

tal Δ

Vth

)

Example: 3 deeply-scaled devices

81

~ log relaxation time degr

adat

ion

(~to

tal Δ

Vth

)

τe(VL, T)

τ c(V

H,T

)

τe(VL, T) τ c

(VH,T

) τe(VL, T)

τ c(V

H,T

) tstress

trelax

BEN KACZER, IMEC

NBTI AND RTN: TWO SIDES OF THE SAME COIN

82

Random Telegraph Noise (steady-state)

NBTI relaxation transient (perturbation/non-steady-state)

S D + + + + + +

+ + + +

0

10

20

30

40

10-3 10-2 10-1 100

-ΔV

th (m

V)

time (s)

tstress = 1900 s 101 102 103

+ + + + + +

+ +

S D

-15 -10 -5 0 5

10 15

0 100 200 300 400

time (s)

tstress = 0 s ΔV

th (m

V)

B. Kaczer et al., IRPS 2009 & 2010

BEN KACZER, IMEC

RTN, BTI STRESS AND BTI RECOVERY UNDERSTOOD WITHIN THE SAME “UNIFIED” PICTURE

T. Grasser et al., IEDM 2010

Assume 5 defects with different time constants present in a single device

VG=VTH VG=VSTRESS

RTN (steady-state)

BTI stress (perturbation)

BTI recovery (relaxation)

Noise under cyclo-stationary conditions: G. I. Wirth et al., IEDM 2009 83

BEN KACZER, IMEC BEN KACZER, IMEC

OUTLINE CMOS FEOL trends

Why reliability

Examples of FET degradation mechanisms

TDDB

BTI • Overview / BTI components

• Technological remedies

• NBTI recoverable component and AC stress

• BTI in deeply scaled devices

• Observing properties of individual defects

• Impact of individual defects on FET characteristics

• Constructing and projecting ∆Vth distributions

• Combining time-dependent and time-0 variabilities

• Defect-centric circuit simulation framework

85

BEN KACZER, IMEC

EXPERIMENTAL SETUP

-0.1V

n-Si

L×W = 70×90 nm2 tSTRESS

VSTRESS

V

G (V

)

time (s)

DC or AC stress

86 BEN KACZER time (s)

sour

ce c

urre

nt I s

(µA

)

tRELAX

tSTRESS

I S (µ

A)

time (s)

• Initial IS-VG used to convert ∆IS to ∆Vth

M. T

oled

ano

et a

l., IR

PS 2

011

B. K

acze

r et a

l., IR

PS 2

005

& 2

008

BEN KACZER, IMEC

CAPTURE AND EMISSION TIMES ARE STOCHASTIC VARIABLES

∆VTH ~ 22mV !

∆VTH

(mV)

Relaxation time (s) C

ount

Emission time (s)

<τemission> = 11.1 s

Toledano et al., IRPS 2011 87

Example: repeated emission from a single defect

BEN KACZER

BEN KACZER, IMEC BEN KACZER, IMEC

HfSiO

3.7mV

1.5mV CONSTRUCTING THE DEFECT SPECTRUM

88

aka “Time Dependent Defect Spectroscopy” (TDDS) map

Grasser et al., IRPS 2010

BEN KACZER, IMEC BEN KACZER, IMEC

CONSTRUCTING THE DEFECT SPECTRUM 2

89

3.7mV 1.5mV

2.1mV

1.5mV

As steps reappear in multiple traces, clusters begin to form

BEN KACZER, IMEC BEN KACZER, IMEC

CONSTRUCTING THE DEFECT SPECTRUM 3

90

3.7mV 1.6mV

1.7mV

As more steps are added, clusters begin to form, identifying each trap by its “fingerprint”

BEN KACZER, IMEC BEN KACZER, IMEC

#1 #2

#3

#4

Every defect is characterized by step height ∆Vth and emission time Cluster intensity indicates defect occupancy

MULTIPLE DEFECTS CAN BE CHARACTERIZED SIMULTANEOUSLY

Toledano et al., INFOS 2011 91

BEN KACZER, IMEC

EMISSION AND CAPTURE TIMES EXTRACTED, OBSERVED TO BE VOLTAGE DEPENDENT

Increasing VSTRESS, τcH decreases (easier to charge)

τeH increases (more difficult to emit)

τcH = 3.2 s

τcH = 25.5 s τeH = 150 s

Tole

dano

-Luq

ue e

t al.,

IRPS

201

1

92

A

Important for circuit simulations with varying voltages

BEN KACZER, IMEC

SINGLE TRAP OCCUPANCY AFTER “AC” WORKLOAD CAN BE DESCRIBED

Occupancy Pc

Stress Time (s)

Duty Factor

+−−

+= t

VVVVVP

cece

eC )(

1)(

1exp1)()(

)(ττττ

τ

Note: lines not fits to data, calculated purely from DC τ values!

Toledano-Luque et al., IRPS 2011

Waveform: a sequence of constant V’s

93

BEN KACZER, IMEC BEN KACZER, IMEC

OUTLINE CMOS FEOL trends

Why reliability

Examples of FET degradation mechanisms

TDDB

BTI • Overview / BTI components

• Technological remedies

• NBTI recoverable component and AC stress

• BTI in deeply scaled devices

• Observing properties of individual defects

• Impact of individual defects on FET characteristics

• Constructing and projecting ∆Vth distributions

• Combining time-dependent and time-0 variabilities

• Defect-centric circuit simulation framework

96

BEN KACZER, IMEC

STATISTICS OF ΔVTH’S DUE TO SINGLE TRAPPED CHARGES EXTRACTED: EXP DISTRIBUTED

97

0 10 20 30 40 50 60

relaxation time (s)

-ΔV t

h (m

V)

10-3 10-1 101

1( , )

thV

thef V

η

ηη

∆−

∆ =

100

101

102

0 10 20 30 40

occu

rren

ce

-ΔVth (mV)

tstress = 1900 s

η = 4.75 mV

η (V) = expectation value = average shift per elementary charge

B. Kaczer et al., IRPS 2010, EDL 2010

BEN KACZER, IMEC

CAUSE: RANDOM DOPANT FLUCTUATIONS IN THE CHANNEL

Channel current non-uniform: flows via percolation paths

http

://w

ww.

ibib

lio.o

rg/e

-not

es/P

erc/

cont

our.h

tm

One “lucky” TRAP can cause an important decrease of drain current ( VTH) !!

Source

Drain IDS

Source

Drain IDS

e.g.

Ghe

tti e

t al.,

TED

200

9

Note: lower substrate doping smaller of effect of TRAP 98

BEN KACZER, IMEC

SCALING OF η

WLNt Ainv

α

η ≅Average shift per q:

0

2

4

6

8

10

-1.0 -0.5 0.0 0.5 1.0 1.5

η(m

V)

VB (V)

1.8 nm 2.1 nm

(b)

Scales with tinv and NA (via VB)

xd (VB)

η (m

V)

101

10-1

100

103 104

A = (2Hfin+W)L (nm2)

A-1

η0

Scales reciprocally with gate area

99

J. Franco et al., IRPS 2012 & 2013

BEN KACZER, IMEC

“ULTIMATE” RELIABILITY EXPERIMENT: A FET ID-VG WITH AND W/OUT A SINGLE CHARGED TRAP

100

Franco et al., IRPS 2012, EDL 2012

0

1

2

3

4

5

6

7

-1.1 -0.9 -0.7 -0.5 -0.3 -0.

I D[u

A]

VG [V]

FreshCharged

∆Vth(VG)

Note apparent transconductance increase after trapping event

.10

10

20

30

40

-1.1 -0.9 -0.7 -0.5 -0.3 -0.1∆

V th

[mV]

VG [V]

V th0

BEN KACZER, IMEC BEN KACZER, IMEC

PATTERN OBSERVED IN BEHAVIOR BASED ON THE DISTANCE FROM CRITICAL SPOT

Trap

Bukhori et al., IIRW 2010, Franco et al., IRPS 2012

r

0

1

2

3

4

5

6

-0.8 -0.6 -0.4 -0.2 0 0.2-∆V t

h/∆

V th_

char

ge_s

heet

VG-Vth0 (V)

r=24 [nm] r=20r=16 r=12r=8 r=4r=0

- ∆

V th (V

G)

(a.u

.)

101

BEN KACZER, IMEC BEN KACZER, IMEC

OUTLINE CMOS FEOL trends

Why reliability

Examples of FET degradation mechanisms

TDDB

BTI • Overview / BTI components

• Technological remedies

• NBTI recoverable component and AC stress

• BTI in deeply scaled devices

• Observing properties of individual defects

• Impact of individual defects on FET characteristics

• Constructing and projecting ∆Vth distributions

• Combining time-dependent and time-0 variabilities

• Defect-centric circuit simulation framework

102

BEN KACZER, IMEC

PARADIGM SHIFT IN RELIABILITY PREDICTIONS

Instead of averages, lifetime distributions projected

103

~ log stress time degr

adat

ion

(~to

tal Δ

Vth

)

Past (large devices)

~ log stress time degr

adat

ion

(~to

tal Δ

Vth

)

Present (small devices)

“Classical” reliability Time-Dependent Variability

BEN KACZER, IMEC

CONSTRUCTING TOTAL DEVICE-TO-DEVICE ΔVTH DISTRIBUTION

1) Exponential distribution of ΔVth steps due to a single defect

100

101

102

0 10 20 30 40

occu

rren

ce

-ΔVth (mV)

tstress = 1900 s

η = 4.75 mV

η

ηthV

theVf

∆−

=∆ )(

104

D

S

D

S

D

S

D

S

D

S

Kac

zer e

t al.,

ED

L 20

10 2) Poisson distribution of the average number of defects NT

(note: NT = W L Not)

BEN KACZER, IMEC BEN KACZER, IMEC

-3

-2

-1

0

1

2

3

4

0 40 80 120 160-ΔVth (mV)

0.010.1131030507090979999.999.99

BTI STATISTICS FULLY DESCRIBED BY IMPACT PER DEFECT η AND NUMBER OF ACTIVE DEFECTS NT

∆Γ−=∆ ∑∞

=

)/,(!

1!

),(0, ηηη thn

nN

thN Vnnn

nNe

VH TT

T

ΔVT

H

η = ⟨single defect impact⟩ NT(t) = ⟨# of active defects

per device⟩

-3

-2

-1

0

1

2

3

4

0 40 80 120 160

prob

it(F

N)

-ΔVth (mV)

0.010.1131030507090979999.999.99

percentile

NT = 1, 2, .., 20

η ≈ 4 mVNT = 6NT = 9NT = 14

B. Kaczer et al., IRPS 2010; data: V. Huard et al., IRPS 2008

Q

uant

ile

Known statistics all moments can be derived

illustration

105

BEN KACZER, IMEC BEN KACZER, IMEC

CONVERTING BETWEEN MINDSETS

Design

Average shift ⟨ΔVth⟩ Variability σ∆Vth

)(2)(2 tVt thVth∆=∆ ησ

)()( tNtV Tth η=∆2

2)(2)(

Vth

thT

tVtN

∆=

σ

)(2

2

tVth

Vth

∆= ∆ση )(2)( 22 tNt TVth

ησ =∆

• Time-dependent variability increases with degradation • Time (degradation kinetics) can be taken out of the equation • Note factor of “2” rigorously derived

Hua

rd e

t al.,

IRPS

200

8; K

acze

r et a

l., IR

PS 2

010;

Ker

ber &

Nig

am, I

RPS

201

3

Technology

Avrg. number of defects NT

Average impact per defect η

Time-dependent variability

106

BEN KACZER, IMEC

NT OR ⟨ΔVTH⟩ EXTRACTED AS A FUNCTION OF TIME AND VOLTAGE

NT at 10 years

Toledano et al., VLSI 2011

107

BEN KACZER, IMEC

A FRACTION OF DEEPLY-SCALED DEVICES EXCEEDS FAILURE CRITERIA AT LOWER OVERDRIVES

M. T

oled

ano

et a

l., V

LSI 2

011

median

108

BEN KACZER, IMEC BEN KACZER, IMEC

OUTLINE CMOS FEOL trends

Why reliability

Examples of FET degradation mechanisms

TDDB

BTI • Overview / BTI components

• Technological remedies

• NBTI recoverable component and AC stress

• Defect properties

• Observing properties of individual defects

• Impact of individual defects on FET characteristics

• Constructing and projecting ∆Vth distributions

• Combining time-dependent and time-0 variabilities

• Defect-centric circuit simulation framework

109

BEN KACZER, IMEC BEN KACZER, IMEC

TIME-DEPENDENT VAR ADDS TO TIME-0 VARIABILITY

WLNt Aox

VTH∝2

Initial VTH0 variability Time-dependent ∆VTH variability

( ) ( )tVt THVTH∆=∆ ησ 22

Stress Time

∫∞

∆−=0

/,, )()()(00

dVVHVVgVKTHTHTH VTHVTH ηησ

( ) ( )tVVtV TH0THTH ∆+=

total Vth distribution

Kuhn et al., TED 2011

LxW = 35x90 nm2

tstress

110

BEN KACZER, IMEC BEN KACZER, IMEC

• Independently of technology, σVTH0 and σ∆VTH are correlated

INITIAL & TIME-DEPENDENT VARIABILITY ARE CORRELATED

WLNt Aox

VTH∝2

( ) ( )tVt THVTH∆=∆ ησ 22

WLNt Aox∝η

where

Same sources of channel variability (RDF, MGG, LER, etc.) responsible

Tole

dano

et a

l., V

LSI 2

013

• Time-dependent variability can be predicted from time-0 var allows benchmarking existing and future technologies

111

pFET

BEN KACZER, IMEC BEN KACZER, IMEC

0

5

10

15

20

25

30

35

40

0 20 40 60 80 100

from slide 48

IMPACT OF TIME DEPENDENT VARIABILITY INCREASES WITH OPERATION

total σ

0

5

10

15

20

25

30

35

40

45

0 10 20 30 40

σ ∆Vt

h[m

V]

σVth0 [mV]

=∆Vth 100mV

50mV

25mV

6mV

~tst

ress

|⟨∆Vth⟩| (mV) ~ operating timeα

σ (m

V) σVth0

σ∆Vth (t) with η = 3.4 mV

)(2)(2 tVt THVTH∆=∆ ησ

Fran

co e

t al.,

IRPS

201

3

ησ ×≅ mV20020THVEmpirical relation (pFET):

Derived from H-statistics: 22

0mV100)(

)(THTH V

THV

tVt σσ

∆≅∆Observed correlation (pFET):

112

BEN KACZER, IMEC BEN KACZER, IMEC

OUTLINE CMOS FEOL trends

Why reliability

Examples of FET degradation mechanisms

TDDB

BTI • Overview / BTI components

• Technological remedies

• NBTI recoverable component and AC stress

• BTI in deeply scaled devices

• Observing properties of individual defects

• Impact of individual defects on FET characteristics

• Constructing and projecting ∆Vth distributions

• Combining time-dependent and time-0 variabilities

• Defect-centric circuit simulation framework

114

BEN KACZER, IMEC

THE DEFECT-CENTRIC PICTURE

115

~ log stress time degr

adat

ion

(~to

tal Δ

Vth

)

τe(V, T) τ c

(V,T

) τe(V, T)

τ c(V

,T)

τe(V, T)

τ c(V

,T)

Example: 3 deeply-scaled devices

Failure spec circuit dependent! Reliability-Aware Design

BEN KACZER, IMEC BEN KACZER, IMEC

FETs IN STANDARD CIRCUIT NETLIST INSTANTIATED WITH INDIVIDUAL TRAPS

A

B

X

116

BEN KACZER, IMEC BEN KACZER, IMEC

THE CIRCUIT IS SOLVED WITH INDIVIDUAL DEFECT BIAS-TIME (I.E., WORKLOAD) DEPENDENCES

A

B

X

117

BEN KACZER, IMEC

SIMULATION FRAMEWORK BASED ON EXISTING INDUSTRY-STANDARD TOOLS

B. K

acze

r, S.

Mah

ato,

V. V

aldu

ga d

e Alm

eida

Cam

argo

,

M

. Tol

edan

o-Lu

que,

Ph.

J. R

ouss

el, T

. Gra

sser

, F. C

atth

oor,

P.

Dob

rovo

lny,

P. Z

uber

, G. W

irth,

G. G

roes

enek

en,

IRPS

201

1

Circuit (standard netlist + model card)

FET model (BSIM4/Verilog-A)

Control script (perl)

Trap & sim parameters (config file)

HSPICE or SPECTRE

+ Verilog-A

INPU

T O

UTP

UT

Circuits (enhanced netlists)

Circuit performance

metrics

Trap kinetics

118

BEN KACZER, IMEC

SIMULATION FRAMEWORK BASED ON EXISTING INDUSTRY-STANDARD TOOLS

Kac

zer e

t al.,

IRPS

201

1

Circuit (standard netlist + model card)

FET model (BSIM4/Verilog-A)

Control script (perl)

Trap & sim parameters (config file)

HSPICE or SPECTRE

+ Verilog-A

INPU

T O

UTP

UT

Circuits (enhanced netlists)

Circuit performance

metrics

Trap kinetics

test an INV: transient analysis simulator lang=spectre include "L90_SPHVT10_V102.lib.scs" section=tt ahdl_include "bsim4_spectre.va" include "logicgates.sub" .. SetTemp alter param=temp value=temperature // Circuit Installation X1and3 (vddCell g vddCell out vddBulk) AND3 // Power Supplies VvddBulk (vddBulk 0) vsource type=dc dc=vddBulk VvssBulk (vssBulk 0) vsource type=dc dc=vssBulk VvQ ( g 0 ) vsource dc=vlo type=pulse val0=vlo val1=vhi period=1n delay=0.4n rise=0.01n fall=0.01n width=0.49n VvddCell ( vddCell 0 ) vsource type=dc dc=vddCell VvssCell ( vssCell 0 ) vsource type=dc dc=vssCell ..

119 BEN KACZER

BEN KACZER, IMEC

SIMULATION FRAMEWORK BASED ON EXISTING INDUSTRY-STANDARD TOOLS

Kac

zer e

t al.,

IRPS

201

1

Circuit (standard netlist + model card)

FET model (BSIM4/Verilog-A)

Control script (perl)

Trap & sim parameters (config file)

HSPICE or SPECTRE

+ Verilog-A

INPU

T O

UTP

UT

Circuits (enhanced netlists)

Circuit performance

metrics

Trap kinetics

#Start the file spice_file = and3.scs USE store_inputs Monte = 1 internal_monte=1 language = spectre #transistor parameters vth0_mean_pmos = -0.25 vth0_sd_pmos = 0.05 vth0_mean_nmos = 0.25 vth0_sd_nmos = 0.05 #Traps density# pmos_trap_density_sio2 = 9e10 nmos_trap_density_sio2 = 5e10 nmos_trap_density_hk = 2e10 #standard transistor definition wp=90nm lp=70nm wn=90nm ln=70nm #input history start_time=0 ..

120

BEN KACZER, IMEC

SIMULATION FRAMEWORK BASED ON EXISTING INDUSTRY-STANDARD TOOLS

Kac

zer e

t al.,

IRPS

201

1

Circuit (standard netlist + model card)

FET model (BSIM4/Verilog-A)

Control script (perl)

Trap & sim parameters (config file)

HSPICE or SPECTRE

+ Verilog-A

INPU

T O

UTP

UT

Circuits (enhanced netlists)

Circuit performance

metrics

Trap kinetics

.. Nmnmos3_X1nand_X1and3 (_X1nand_X1and3_midnode vddCell 0 0) bsim4_va type=1 l=80nm w=100nm*1*2 vth0=0.224068372498511 Ntraps=8 VH=0.8 VL=0 len=8 DeltaVth=[ 0.00021502392265272 0.00129168432396303 0.0047480549849773 0.0011596499954241 0.0018326350216282 0.00177542424038912 0.00122528625484488 0.00193559032206868 ] tcH=[ 0.0034617748767338 2.9514020629307e-11 2.35108924858284e-07 7.50085687666976e-10 1.34632779405625e-06 1.09448440801564e-12 4.64052202957496e-11 1.53225235524155e-06 ] tcL=[ 100000000 100000000 100000000 100000000 100000000 100000000 100000000 100000000 ] teH=[ 0.304046922519998 2.77299758745423e-06 1.0359818715254 0.00901532692412415 0.000905011102154941 2.86728323688865e-06 0.000135952087963774 0.018531074298117 ] teL=[ 0.00185336582376316 4.43992015382931e-08 0.0144582180307964 0.000171466248546535 4.396634106273e-07 2.76627004569314e-08 4.38821936112408e-07 0.000238047697343963 ] ic_trap=[ 0 0 0 0 0 0 0 0 ] device_seed=1301500415 ..

121

BEN KACZER, IMEC

SIMULATION FRAMEWORK BASED ON EXISTING INDUSTRY-STANDARD TOOLS

Kac

zer e

t al.,

IRPS

201

1

Circuit (standard netlist + model card)

FET model (BSIM4/Verilog-A)

Control script (perl)

Trap & sim parameters (config file)

HSPICE or SPECTRE

+ Verilog-A

INPU

T O

UTP

UT

Circuits (enhanced netlists)

Circuit performance

metrics

Trap kinetics

+−−

+= tP

vcvevcve

vpvp

,,,,

,,

11exp1ττττ

τ

/* File's brief description: This is the include file to simulate the defect trapping and detrapping of NBTI model & Calculate the total occupancy of defects. */ /********************************** START: Modified by Swaraj for NBTI***********************************/ Vth=Vth+IC_DeltaVthNbti; //Modified Vth due to inicial NBTI defect......Swaraj if(analysis("tran")) begin //$strobe(" \nNew TimeStep"); SimTime_new=$abstime; if(SimTime_new >= SimTime_old)begin TimeStep=SimTime_new-SimTime_old; // $strobe("Simulation Time Step=%e", TimeStep); SimTime_old=SimTime_new; end ...

122

BEN KACZER, IMEC

SIMULATION FRAMEWORK BASED ON EXISTING INDUSTRY-STANDARD TOOLS

Kac

zer e

t al.,

IRPS

201

1

Circuit (standard netlist + model card)

FET model (BSIM4/Verilog-A)

Control script (perl)

Trap & sim parameters (config file)

HSPICE or SPECTRE

+ Verilog-A

INPU

T O

UTP

UT

Circuits (enhanced netlists)

Circuit performance

metrics

Trap kinetics

0 1 2 3 4 5 normalized delay

1.0

1.1

1.2

1.3

1.4

norm

aliz

ed p

ower

0.9

ts (s) = 10-8 s

ts (s) = 108 s

123

BEN KACZER, IMEC

0.0

0.8

V in

(V)

0.0

0.8

V in,

Vou

t (V)

495

t s =

108

s

515 8495 4515 8515 ps 4495

Vin Vout Vin Vout Vin Vout 2.33 ps 2.23 ps 2.18 ps

SIMULATION FRAMEWORK ALLOWS TO FOLLOW BOTH FAST AND SLOW DEFECTS

VDD

* Vin Vout 0 2 4 6 8 10 ns

0.0

0.3

V th

(V)

0.0

0.8

V in,

Vou

t (V)

495 515 8495 4515 8515 ps 4495

Vin Vout Vin Vout Vin Vout 1.56 ps 1.92 ps 1.94 ps

t s =

10-

8 s

Kaczer et al., IRPS 2011

124

BEN KACZER, IMEC

32-BIT SRAM BIT SLICE WORKLOAD DEPENDENCE ANALYZED WITHIN THE SIMULATION FRAMEWORK

Vdd

Vss

Qbar

WLBLBarWWL

WLBL

WWL

Q

RLBL

RWL

D. Rodopoulos et al., ICICDT 2011

Other applications of framework: V. V. A. Camargo et al., IEEE T. VLSI Systems, 2013

Khan, Hamdioui et al., DDECS 2012, DFT 2012

H. Kukner et al., EuroMicro 2012

125

BEN KACZER, IMEC 126

CIRCUIT SIMULATION FRAMEWORK “V2”

Transistor dimensions

CET map

Workload

NT

Ratio active

NT_active

ΔVth distribution

∫∫

∫∫

-3

-2

-1

0

1

2

3

4

0 40 80 120 160

prob

it(F

N)

-ΔVth (mV)

0.010.1131030507090979999.999.99

percentile

NT = 1, 2, .., 20

η ≈ 4 mVNT = 6NT = 9NT = 14

P. Weckx et al., IRPS 2013

BEN KACZER, IMEC 127

ΔVTH DISTRIBUTION INSERTED INTO EACH FET: EXAMPLE SRAM CELL

CDF4

CDF1 CDF2

CDF6 CDF5

CDF3

•The CDFs can be combined with time-zero variability

BEN KACZER, IMEC

SNM DISTRIBUTIONS CAN BE PROJECTED AS A FUNCTION OF OPERATING TIME

128

45 nm 32 nm

22 nm 16 nm

P. W

eckx

et a

l., IR

PS 2

013

BEN KACZER, IMEC

IMPACT OF VARIOUS WORKLOAD SCENARIOS CAN BE SIMULATED

129

50%

60%

70%

80%

90%

µ [%

]

45 nm 32 nm22 nm 16 nm

0%

10%

20%

30%

σ/µ

[%]

45 nm 32 nm22 nm 16 nm

10-5 10-3 10-1 1-10-1 1-10-3 1-10-5 10-5 10-3 10-1 1-10-1 1-10-3 1-10-5

Duty Factor (DF) Duty Factor (DF)

Results can be combined with expected SRAM usage distributions Bansal et al., IRPS 2012

P. Weckx et al., IRPS 2013

BEN KACZER, IMEC 130 BEN KACZER, IMEC

SUMMARY

• Reviewed the basics of • TDDB (SILC, Soft BD, progressive wear-out, Hard BD...) • and N and PBTI (Interface vs. bulk, Recoverable and

Permanent components, DC and AC stress...)

• Time-dependent (in addition to time-zero) variability will occur in future nm-sized technologies: • the “defect-centric” perspective provides basis for

understanding and mitigating reliability issues at appropriate level

130

BEN KACZER, IMEC 132 BEN KACZER, IMEC 132

THERE ARE ONLY TWO KINDS OF PEOPLE

1) Those who cannot extrapolate …