thermodynamics and kinetics of multi-electron transfer marc koper leiden university

31
Thermodynamics and kinetics of multi- electron transfer Marc Koper Leiden University

Upload: alexis-marilynn-harris

Post on 14-Jan-2016

219 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Thermodynamics and kinetics of multi-electron transfer Marc Koper Leiden University

Thermodynamics and kinetics of multi-electron transfer

Marc Koper

Leiden University

Page 2: Thermodynamics and kinetics of multi-electron transfer Marc Koper Leiden University

Redox reactions of water

E (vs.RHE)

currentdensity

0 1.23

2 H+ + 2 e- → H2

H2 → 2 H+ + 2 e-

diffusion-limitedcurrent

2 H2O → O2 + 4 H+ + 4 e-

O2 + 4 H+ + 4 e- → 2 H2O

diffusion-limitedcurrent

PtNilaccase

RuO2

PSIIplatinumhydrogenase

overpotential

Page 3: Thermodynamics and kinetics of multi-electron transfer Marc Koper Leiden University

Catalysis of multi-step reactions

Practically every (interesting) chemical reaction happens in a series of steps; catalysis is often about optimizing that

sequence

1 e- / 1 step / 0 intermediate

2 e- / 2 steps / 1 intermediate

>2 e- / >2 steps / >1 intermediate

Page 4: Thermodynamics and kinetics of multi-electron transfer Marc Koper Leiden University

Single electron transfer

• Marcus Theory

• Activation energy determined by solvent reorganization energy λ (very difficult quantity to calculate accurately!)

Page 5: Thermodynamics and kinetics of multi-electron transfer Marc Koper Leiden University

Movie of electron transfer

Cl-Cl0

Cl0 + e- Cl-

C.Hartnig, M.T.M.Koper, J.Am.Chem.Soc. 125 (2003) 9840

Page 6: Thermodynamics and kinetics of multi-electron transfer Marc Koper Leiden University

Nonlinear solvent reorganization

Orientation of water depends on charge: strongest change in electrostriction from 0 to -1

Effective radius gets smaller with higher charge

C.Hartnig, M.T.M.Koper, J.Chem.Phys. 115 (2001) 8540

Page 7: Thermodynamics and kinetics of multi-electron transfer Marc Koper Leiden University

What Marcus does not account for

• Proton transfer

• Bond making and bond breaking

• Catalysis

Page 8: Thermodynamics and kinetics of multi-electron transfer Marc Koper Leiden University

Two electron transfer

2 H+ + 2 e- H2

H+ + e- Hads (Volmer)

Hads + H+ + e- H2 (Heyrovsky)

H+ + e- Hads H2 freeenergy

Page 9: Thermodynamics and kinetics of multi-electron transfer Marc Koper Leiden University

Thermodynamics

2 H+ + 2 e- H2 E0 = 0 V

H+ + e- Hads E10 = - ΔGads(H)/e0

Hads + H+ + e- H2 E20 = ΔGads(H)/e0

Thermodynamic restriction: (E10 + E2

0)/2 = E0

Page 10: Thermodynamics and kinetics of multi-electron transfer Marc Koper Leiden University

Potential-determining step

The potential-determining step

is the step with

the least favorable equilibrium potential

The difference in the equilibrium potential of the potential-determining step and the

overall equilibrium potential we will call the thermodynamic overpotential ηT

Page 11: Thermodynamics and kinetics of multi-electron transfer Marc Koper Leiden University

Thermodynamic volcano plot

zero thermodynamic overpotential

descriptor

M.T.M.Koper, H.A.Heering, in pressM.T.M.Koper, E.Bouwman, Angew.Chem.Int.Ed. (2010)

R.Parsons,Trans.Faraday Soc. (1958); H.Gerischer (1958)J.K.Nørskov et al., J.Electrochem.Soc. (2004)

Page 12: Thermodynamics and kinetics of multi-electron transfer Marc Koper Leiden University

Generalization

H+ + e- Hads plus 2 Hads H2 (e-chem)

H+ + 2e- H- plus H- + H+ H2 (hydrogenase)

The optimal electrocatalyst is achieved if each step is thermodynamically neutral.

The H intermediate must bind to the catalyst with a bond strength equal to ½ E(H-H).

Page 13: Thermodynamics and kinetics of multi-electron transfer Marc Koper Leiden University

What about activation barriers?

• Can in principle be estimated with a more sophisticated model

• Contribution of water is constant (to a first approximation) as we vary the catalyst

• Activation barrier follows variations in the thermodynamics because of the Bronsted-Evans-Polanyi (BEP) relationship

δEact = αδEreact

Page 14: Thermodynamics and kinetics of multi-electron transfer Marc Koper Leiden University

“Marcus” model for HER/HOR

• Combines a Hückel-type model for a diatomic molecule with a coupling to the metal electronic levels and a Marcus-type coupling to the solvent

• Calculates approxi- mate activation

barriers

E.Santos, M.T.M.Koper, W.Schmickler, Chem.Phys. 344 (2008) 195

Page 15: Thermodynamics and kinetics of multi-electron transfer Marc Koper Leiden University

Experimental volcano for H2 evolution

J.Greeley, J.K.Nørskov, L.A.Kibler, A.M.El-Aziz, D.M.Kolb, ChemPhysChem 7 (2006) 1032

Page 16: Thermodynamics and kinetics of multi-electron transfer Marc Koper Leiden University

Good catalysts for HOR exist

• Platinum• Hydrogenases (FeFe, FeNi)

• They optimize for the binding of H*/Hads

Page 17: Thermodynamics and kinetics of multi-electron transfer Marc Koper Leiden University

More than 2 electron transfers

O2 + 4 H+ + 4 e- 2 H2O E0 = 1.23 V

O2 + H+ + e- OOHads E10

OOHads + H+ + e- 2 OHads E20

2 OHads + 2 H+ + e- 2 H2O E30

Thermodynamic restriction:

(E10 + E2

0 + 2 E30)/4 = E0

Page 18: Thermodynamics and kinetics of multi-electron transfer Marc Koper Leiden University

Lining up energy levels

O2 OOHads OHads H2Ofreeenergy

Thermodynamic overpotential now dependson the ability of the catalyst to bind oxygenGold: weak oxygen bindingPlatinum: stronger oxygen binding

Page 19: Thermodynamics and kinetics of multi-electron transfer Marc Koper Leiden University

Scaling relationships

F.Abild-Petersen, J.Greeley, F.Studt, P.G.Moses, J.Rossmeisl, T.Munter, T.Bligaard, J.K. Nørskov,

Phys.Rev.Lett. 99 (2007) 016105

Page 20: Thermodynamics and kinetics of multi-electron transfer Marc Koper Leiden University

Thermodynamic volcano plot

Bad news : because of the scaling relationships, we cannot line up the E0’s.

non-zero thermodynamic overpotential

Page 21: Thermodynamics and kinetics of multi-electron transfer Marc Koper Leiden University

Experiment volcano plot ORR

J.Greeley et al. Nature Chem. 1 (2009) 552

Page 22: Thermodynamics and kinetics of multi-electron transfer Marc Koper Leiden University

Pt3Ni and Fe-based catalyst

V.Stamenkovic et al., Science (2007)

M.Lefevre et al. Science (2009)

Page 23: Thermodynamics and kinetics of multi-electron transfer Marc Koper Leiden University

ORR is a difficult case

Man and nature have the same problem:Pt and laccase are good but not perfect

catalysts for the ORR

We need to beat the scaling relationships

Fundamental problem with catalyzing reactions with more than 2 steps and more than 1 intermediate.

Page 24: Thermodynamics and kinetics of multi-electron transfer Marc Koper Leiden University

Mechanism for OER

O2 + 4 H+ + 4 e- 2 H2O E0 = 1.23 V

H2O OHads + H+ + e- E01

OHads Oads + H+ + e- E02

2 Oads O2 Keq

Oads + H2O OOHads + H+ + e- E03

OOHads O2 + H+ + e- E04

Page 25: Thermodynamics and kinetics of multi-electron transfer Marc Koper Leiden University

Volcano plot

non-zero thermodynamic overpotential

J.Rossmeisl et al. J.Electroanal.Chem (2007)

Page 26: Thermodynamics and kinetics of multi-electron transfer Marc Koper Leiden University

Comparsion RuO2 and OEC

J.Rossmeisl, K.Dimitrevskii, P.Siegbahn, J.K.Norskov, J.Phys.Chem.C 111 (2007) 18821

Oads + H2O OOHads + H+ + e- PDS on RuO2 (ηT=0.37 V) and on Loll et al. (ηT=0.32 V)

OOHads O2 + H+ + e- PDS on Ferreira et al. (ηT=0.21 V)

Page 27: Thermodynamics and kinetics of multi-electron transfer Marc Koper Leiden University

Ni-doped RuO2

P.Krtil et al., Electrochim. Acta (2007)

Page 28: Thermodynamics and kinetics of multi-electron transfer Marc Koper Leiden University

Why chlorine electrolysis works

2 Cl- Cl2 + 2 e- E0 =1.36 V

2 H2O O2 + 4 H+ + 4 e- E0 = 1.23 V

Both are catalyzed by RuO2/TiO2

Chlorine electrolysis works thanks to the scaling relationships.

ηT = 0 V

ηT > 0 V

Page 29: Thermodynamics and kinetics of multi-electron transfer Marc Koper Leiden University

Electrocatalytic CO2 reduction

CO2

CO

HCOOH

C2O42-

2e-

2e-

2e-

CH4, C2H4, CxHy

Cu

highoverpotential

aldehyde Calvin cycle

alcohol

fuel?

difficult

Page 30: Thermodynamics and kinetics of multi-electron transfer Marc Koper Leiden University

Conclusions

• Optimizing the binding of key intermediates is the key to a good catalyst

• This is inherently more difficult for 2 or more intermediates than for 1 intermediate (scaling relationships)

• DFT is a useful tool in understanding and screening catalysts

• Can we efficiently and selectively reduce CO2 to something useful?

Page 31: Thermodynamics and kinetics of multi-electron transfer Marc Koper Leiden University

Acknowledgments

• Dirk Heering (Leiden)

• Jan Rossmeisl, Jens Nørskov (Lyngby)

• ELCAT Marie Curie Initial Training Network, http://www.elcat.org.gu.se/

• NWO, NRSC-C