producing effective maintenance strategies to control

16
Resilience Engineering Research Group Producing effective maintenance strategies to control railway risk Claudia Fecarotti and John Andrews Resilience Engineering Research Group The University of Nottingham PSAM 14 – Probabilistic Safety Assessment and Management 16-21 September 2018, UCLA Meyer & Renee Luskin Conference Center, LA

Upload: others

Post on 05-Nov-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

Resilience Engineering Research Group

Producing effective maintenance strategies to control railway risk

ClaudiaFecarottiandJohnAndrewsResilienceEngineeringResearchGroup

TheUniversityofNottingham

PSAM14–ProbabilisticSafetyAssessmentandManagement

16-21September2018,UCLAMeyer&ReneeLuskinConferenceCenter,LA

Resilience Engineering Research Group

Motivations

•  Complexanddiverseportfolioofassets•  Heterogeneity•  Highlyinterconnected(dependencies)•  Expensivetomanage

•  Manyassetsaresafetycritical

•  Maintenanceisvitaltocontroltheriskandmaintainhighlevelsofservice

Resilience Engineering Research Group

Motivations

Need for an effective approach to asset management to run a SAFE,RELIABLEandAFFORDABLErailway

•  Bespokemodelstopredictassetsresponsetomaintenance•  Whole-life/Whole-systemapproach•  Linkassetmaintenancetosystemperformanceandsafety

Resilience Engineering Research Group

Railway Asset Management Framework

RailwayAssetManagementModellingFramework tosupportboth localisedandsystemicoptimaldecisionsoninfrastructuremaintenance

Libraryofmodels

•  Statisticalmodels•  Predictivemodels•  Optimisationmodels

Decisionlevels

•  Infrastructure:asset/section/route/network•  Planningstage:strategic/tactical/operational

Procedurestolinkmodelsforwhole-systemrepresentationandanalysis

Pastdata

Predictivemodels

Futuredata

Optimisationmodels

Optimaldecisions

Resilience Engineering Research Group

Predictive models

•  Assetstatemodelstoassessassetsresponsetomaintenance

•  Serviceprovisionmodeltoevaluatedelaysandjourneycancellations

•  Riskandsafetymodelstoevaluateriskandconsequencesofhazardousevents

EnablepredictionofKPIs

•  Assetsconditions•  Servicereliability•  Safety•  Costs

Resilience Engineering Research Group

Asset State Models DEGRADATIONANDFAILURE

INTERVENTIONSTRATEGIES:•  Inspectiontypeandfrequency•  Levelsofdegradationtriggeringintervention• Componentsreplacementpriortofailure

• Condition• Age• Usage

• Opportunisticmaintenance• Renewal• Enhancement• Resourcesavailability(equipmentandpersonnel)

For any asset management strategy predictdistributionsof:•  Assetconditions

•  Failuremodesprobabilities•  Durationoffailed/degradedstates•  Futureconditions(atanytime)

•  Assetavailability•  Numberofeachinterventiontype•  Assetremaininglife

&

ASSESSANDCOMPAREDIFFERENTMAINTENANCESTRATEGIESTOSUPPORTDECISIONS

Resilience Engineering Research Group

Common modelling technique: Petri nets

•  State-based•  Stochastic•  Simulationfriendly•  Anydistributionoffailuretimes

•  Assetswear-out(increasingfailurerate!earlyreplacementoption)•  Dependencyonpastconditions/events

•  Complexmaintenanceprocesses:•  Servicing,inspection,replacementpriortofailure(basedon;condition,age,use),reactiverepair,refurbishment,renewal

•  Conditionandriskbasedinspection•  Concisestructurecomparedtothecrediblealternatives•  Modularity(Easylinkingtoformthesystemmodel)•  Distributionofoutputsratherthanpointestimates

Resilience Engineering Research Group

Petri nets

PLACEcomponentstate,physicalcondition,logicalcondition

TRANSITIONevent:degradation,failure,repair(immediate,timed-deterministicandstochastic)

TOKEN(numberoftokensineachplacedeterminethestateofthesystematanytime–MARKING=SYSTEMSTATE)Tokensare“consumed”and“produced”wheneventsoccur(transitions“fire”)determininganewsystemstate

W W WF F F

D D D

R

Initialworkingstate Failureoccurs–transitionDfires

Componentisrepaired–transitionRfires

RR

Resilience Engineering Research Group

Track geometry maintenance model

•  4degradedstates

•  Degradedstateaffectingserviceandsafety:•  speedrestriction•  lineclosure

•  Weibulldistributionoftimestodegrade

•  Notasgood-asnewaftermaintenance

Places(conditions):Progressivelevelsofdegradationtriggeringdifferentmaintenanceinterventions

Transitions(events):Degradationbetweenconsecutivestates(Anydistributionoftimestodegrade)

Resilience Engineering Research Group

Track geometry maintenance model

•  4degradedstates

•  Degradedstateaffectingserviceandsafety:•  speedrestriction•  lineclosure

•  Weibulldistributionoftimestodegrade

•  Notasgood-asnewaftermaintenance

Places(conditions):Progressivelevelsofdegradationtriggeringdifferentmaintenanceinterventions

Transitions(events):Degradationbetweenconsecutivestates(Anydistributionoftimestodegrade)

Resilience Engineering Research Group

Track geometry maintenance model

•  4degradedstates•  Degradedstateaffectingserviceandsafety:

•  speedrestriction•  lineclosure

•  Weibulldistributionoftimestodegrade•  Notasgood-asnewaftermaintenance

•  Periodicinspection

•  Currentstatesrevealed

Resilience Engineering Research Group

Track geometry maintenance model

•  4degradedstates•  Degradedstateaffectingserviceandsafety:

•  speedrestriction•  lineclosure

•  Weibulldistributionoftimestodegrade•  Notasgood-asnewaftermaintenance

•  Periodicinspection

•  Currentstatesrevealed:

•  UnrevealedneedforSRandLC(safety)

•  RevealedneedforSRandLC(service)

Resilience Engineering Research Group

Track geometry maintenance model

•  4degradedstates

•  Weibulldistributionoftimestodegrade

•  Notasgood-asnewaftermaintenance

•  Periodicinspection

•  UnrevealedneedforSRandLC(safety)

•  RevealedneedforSRandLC(service)

•  Revealedstatestriggermaintenance

•  Maintenanceeffectiveness

•  Side-effectoftamping

•  Renewalstrategies(e.g.age,pastmaintenance)

Resilience Engineering Research Group

Track geometry maintenance application

Strategy Inspectionperiod(T14)

Meantimetoperformroutinemaintenance

(T10)

Meantimetoperformmaintenancefromspeed

restriction(T11)

Meantimetoperformimmediaterepair

(T12) θ(days) µ(days) σ2(days2) µ(days) σ2(days2) µ(days) σ2(days2)

1 15 20 5 5 1 1 0.1 2 15 20 5 10 2 1 0.1 3 15 30 5 5 1 1 0.1 4 15 30 5 10 2 1 0.1 5 15 40 10 5 1 1 0.1 6 15 40 10 10 2 1 0.1 7 120 20 5 5 1 1 0.1 8 120 20 5 10 2 1 0.1 9 120 30 5 5 1 1 0.1 10 120 30 5 10 2 1 0.1 11 120 40 10 5 1 1 0.1 12 120 40 10 10 2 1 0.1

Table 3 Maintenance strategies.

Whatdoweuseitfor?Toinvestigateassetresponsetomaintenance.

SDop SDrm SDsr SDlc opportunistic

maintenanceispossible(associatedtoplaceP2)

routinemaintenanceisrequired

(associatedtoplaceP3)

SRandemergencyrepairrequired

(associatedtoplaceP4)

LCandimmediaterepairrequired

(associatedtoplaceP5) 1.5 1.8 2.5 3.5

Table 1 SD threshold values for each degraded state

T1 T2 T3 T4 T5 β η β η β η β η β η 1.5 600 1.5 500 1.6 370 1.7 280 1.8 740

Table 2 Weibull parameters associated to each stochastic transition representing degradation

Resilience Engineering Research Group

Track geometry maintenance results

15

16

17

18

19

20

21

1 45

89

133

177

221

265

309

353

397

441

485

529

573

617

661

705

749

793

837

881

925

969

Num

berofinterventio

ns

Number of interventions per lifetime averaged over the number of simulations

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

S11

S12

Numberofsimulations

1414.515

15.516

16.517

17.518

18.519

1 2 3 4 5 6 7 8 9 10 11 12

strategies

NumberofRMinterventions

00.10.20.30.40.50.60.70.80.9

1 2 3 4 5 6 7 8 9 10 11 12

strategies

NumberofSRimposed

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1 2 3 4 5 6 7 8 9 10 11 12strategies

Probabilityofbeeingingoodconditions

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

1 2 3 4 5 6 7 8 9 10 11 12

Strategies

ProbabilityofimposedSR

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0.0016

0.0018

0.002

1 2 3 4 5 6 7 8 9 10 11 12

strategies

ProbabilityofunrevealedneedforSR

Resilience Engineering Research Group

Conclusions and future work

•  Needforasystematicapproachtorailwayassetmanagement:

RailwayAssetManagementModellingFramework

•  Assetstatemodelstopredictassetresponsetomaintenance

•  Modellingtechnique:Petrinet

•  Results(failuremodesprobabilities)areinputtoserviceandsafetymodelsthusenablingtolinkmaintenancetosystemperformanceandsafety

Futurework•  Continuepopulatingtheframework…..