phase-locked loops for chemical control of oscillation ...hinze/slides-ilmenau-pll.pdf phase-locked...

58
Motivation PLL Scheme Core Oscillator Signal Comparator Global Feedback Simul. Studies Generalisation Prospectives Phase-locked Loops for Chemical Control of Oscillation Frequency A prototype of biological clocks and their entrainment by light? Thomas Hinze 1,2 Benedict Schau 1 Christian Bodenstein 1 1 Friedrich Schiller University Jena Department of Bioinformatics at School of Biology and Pharmacy Modelling Oscillatory Information Processing Group 2 Saxon University of Cooperative Education, Dresden {thomas.hinze,christian.bodenstein}@uni-jena.de Phase-locked Loops for Chemical Control of Oscillation Frequency T. Hinze, B. Schau, C. Bodenstein

Upload: others

Post on 14-Dec-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Phase-locked Loops for Chemical Control of Oscillation ...hinze/slides-ilmenau-pll.pdf Phase-locked Loops for Chemical Control of Oscillation FrequencyT. Hinze, B. Schau, C. Bodenstein

Motivation PLL Scheme Core Oscillator Signal Comparator Global Feedback Simul. Studies Generalisation Prospectives

Phase-locked Loops for Chemical Control ofOscillation Frequency

A prototype of biological clocks and their entrainment by light?

Thomas Hinze1,2 Benedict Schau1 Christian Bodenstein1

1Friedrich Schiller University JenaDepartment of Bioinformatics at School of Biology and Pharmacy

Modelling Oscillatory Information Processing Group2Saxon University of Cooperative Education, Dresden

{thomas.hinze,christian.bodenstein}@uni-jena.de

Phase-locked Loops for Chemical Control of Oscillation Frequency T. Hinze, B. Schau, C. Bodenstein

Page 2: Phase-locked Loops for Chemical Control of Oscillation ...hinze/slides-ilmenau-pll.pdf Phase-locked Loops for Chemical Control of Oscillation FrequencyT. Hinze, B. Schau, C. Bodenstein

Motivation PLL Scheme Core Oscillator Signal Comparator Global Feedback Simul. Studies Generalisation Prospectives

Human Daily Rhythm: Trigger and Control System

www.wikipedia.org

Phase-locked Loops for Chemical Control of Oscillation Frequency T. Hinze, B. Schau, C. Bodenstein

Page 3: Phase-locked Loops for Chemical Control of Oscillation ...hinze/slides-ilmenau-pll.pdf Phase-locked Loops for Chemical Control of Oscillation FrequencyT. Hinze, B. Schau, C. Bodenstein

Motivation PLL Scheme Core Oscillator Signal Comparator Global Feedback Simul. Studies Generalisation Prospectives

Chronobiology

science of biological rhythms and clock systems

βιοζ

life

λογοζ

science

rhythm

ρυθµοζ

χρονοζ

time

Phase-locked Loops for Chemical Control of Oscillation Frequency T. Hinze, B. Schau, C. Bodenstein

Page 4: Phase-locked Loops for Chemical Control of Oscillation ...hinze/slides-ilmenau-pll.pdf Phase-locked Loops for Chemical Control of Oscillation FrequencyT. Hinze, B. Schau, C. Bodenstein

Motivation PLL Scheme Core Oscillator Signal Comparator Global Feedback Simul. Studies Generalisation Prospectives

Circadian Clock• Sustained biochemical oscillation (endogenous rhythm)• Free-running period close to but typically not exactly 24

hours persisting under constant environmental conditions(e.g. permanent darkness DD or permanent light LL)

• Entrainment – adaptation to external stimuli(e.g. light-dark cycles induced by sunlight)

• Temperature compensation within a physiological range• Reaction systems with at least one feedback loop

perturbation

concentration

substrate

time

=⇒ Biological counterpart of frequency control systemPhase-locked Loops for Chemical Control of Oscillation Frequency T. Hinze, B. Schau, C. Bodenstein

Page 5: Phase-locked Loops for Chemical Control of Oscillation ...hinze/slides-ilmenau-pll.pdf Phase-locked Loops for Chemical Control of Oscillation FrequencyT. Hinze, B. Schau, C. Bodenstein

Motivation PLL Scheme Core Oscillator Signal Comparator Global Feedback Simul. Studies Generalisation Prospectives

Circadian Clock• Sustained biochemical oscillation (endogenous rhythm)• Free-running period close to but typically not exactly 24

hours persisting under constant environmental conditions(e.g. permanent darkness DD or permanent light LL)

• Entrainment – adaptation to external stimuli(e.g. light-dark cycles induced by sunlight)

• Temperature compensation within a physiological range• Reaction systems with at least one feedback loop

perturbation

concentration

substrate

time

=⇒ Biological counterpart of frequency control systemPhase-locked Loops for Chemical Control of Oscillation Frequency T. Hinze, B. Schau, C. Bodenstein

Page 6: Phase-locked Loops for Chemical Control of Oscillation ...hinze/slides-ilmenau-pll.pdf Phase-locked Loops for Chemical Control of Oscillation FrequencyT. Hinze, B. Schau, C. Bodenstein

Motivation PLL Scheme Core Oscillator Signal Comparator Global Feedback Simul. Studies Generalisation Prospectives

Circadian Clock• Sustained biochemical oscillation (endogenous rhythm)• Free-running period close to but typically not exactly 24

hours persisting under constant environmental conditions(e.g. permanent darkness DD or permanent light LL)

• Entrainment – adaptation to external stimuli(e.g. light-dark cycles induced by sunlight)

• Temperature compensation within a physiological range• Reaction systems with at least one feedback loop

perturbation

concentration

substrate

time

=⇒ Biological counterpart of frequency control systemPhase-locked Loops for Chemical Control of Oscillation Frequency T. Hinze, B. Schau, C. Bodenstein

Page 7: Phase-locked Loops for Chemical Control of Oscillation ...hinze/slides-ilmenau-pll.pdf Phase-locked Loops for Chemical Control of Oscillation FrequencyT. Hinze, B. Schau, C. Bodenstein

Motivation PLL Scheme Core Oscillator Signal Comparator Global Feedback Simul. Studies Generalisation Prospectives

Circadian Clock• Sustained biochemical oscillation (endogenous rhythm)• Free-running period close to but typically not exactly 24

hours persisting under constant environmental conditions(e.g. permanent darkness DD or permanent light LL)

• Entrainment – adaptation to external stimuli(e.g. light-dark cycles induced by sunlight)

• Temperature compensation within a physiological range• Reaction systems with at least one feedback loop

perturbation

concentration

substrate

time

=⇒ Biological counterpart of frequency control systemPhase-locked Loops for Chemical Control of Oscillation Frequency T. Hinze, B. Schau, C. Bodenstein

Page 8: Phase-locked Loops for Chemical Control of Oscillation ...hinze/slides-ilmenau-pll.pdf Phase-locked Loops for Chemical Control of Oscillation FrequencyT. Hinze, B. Schau, C. Bodenstein

Motivation PLL Scheme Core Oscillator Signal Comparator Global Feedback Simul. Studies Generalisation Prospectives

Circadian Clock• Sustained biochemical oscillation (endogenous rhythm)• Free-running period close to but typically not exactly 24

hours persisting under constant environmental conditions(e.g. permanent darkness DD or permanent light LL)

• Entrainment – adaptation to external stimuli(e.g. light-dark cycles induced by sunlight)

• Temperature compensation within a physiological range• Reaction systems with at least one feedback loop

perturbation

concentration

substrate

time

=⇒ Biological counterpart of frequency control systemPhase-locked Loops for Chemical Control of Oscillation Frequency T. Hinze, B. Schau, C. Bodenstein

Page 9: Phase-locked Loops for Chemical Control of Oscillation ...hinze/slides-ilmenau-pll.pdf Phase-locked Loops for Chemical Control of Oscillation FrequencyT. Hinze, B. Schau, C. Bodenstein

Motivation PLL Scheme Core Oscillator Signal Comparator Global Feedback Simul. Studies Generalisation Prospectives

Circadian Clock• Sustained biochemical oscillation (endogenous rhythm)• Free-running period close to but typically not exactly 24

hours persisting under constant environmental conditions(e.g. permanent darkness DD or permanent light LL)

• Entrainment – adaptation to external stimuli(e.g. light-dark cycles induced by sunlight)

• Temperature compensation within a physiological range• Reaction systems with at least one feedback loop

perturbation

concentration

substrate

time

=⇒ Biological counterpart of frequency control systemPhase-locked Loops for Chemical Control of Oscillation Frequency T. Hinze, B. Schau, C. Bodenstein

Page 10: Phase-locked Loops for Chemical Control of Oscillation ...hinze/slides-ilmenau-pll.pdf Phase-locked Loops for Chemical Control of Oscillation FrequencyT. Hinze, B. Schau, C. Bodenstein

Motivation PLL Scheme Core Oscillator Signal Comparator Global Feedback Simul. Studies Generalisation Prospectives

General Scheme of a Simple Control Loop

u(t) = C(D(w(t),y(t)))

controller

actuator

plant

sensor

x(t) = P(v(t))

y(t) = F(x(t))v(t) = A(u(t))

stimulus

external

system output

v(t)

u(t)y(t)

w(t)

x(t)

Phase-locked Loops for Chemical Control of Oscillation Frequency T. Hinze, B. Schau, C. Bodenstein

Page 11: Phase-locked Loops for Chemical Control of Oscillation ...hinze/slides-ilmenau-pll.pdf Phase-locked Loops for Chemical Control of Oscillation FrequencyT. Hinze, B. Schau, C. Bodenstein

Motivation PLL Scheme Core Oscillator Signal Comparator Global Feedback Simul. Studies Generalisation Prospectives

Frequency Control using Phase-locked Loop

coupledone or several

elementary oscillator(s)

local feedback(s)

global feedback path

damping and delay)(loop filter for

affectsfrequency

signaltuning

signal comparator

frequency deviation)(phase difference or

signaloutput

signalerror

(reference)stimuliexternal

Adapted from T. Hinze, M. Schumann, C. Bodenstein, I. Heiland, S. Schuster. Biochemical Frequency Controlby Synchronisation of Coupled Repressilators: An In-silico Study of Modules for Circadian Clock Systems.Computational Intelligence and Neuroscience 2011:262189, 2011

Phase-locked Loops for Chemical Control of Oscillation Frequency T. Hinze, B. Schau, C. Bodenstein

Page 12: Phase-locked Loops for Chemical Control of Oscillation ...hinze/slides-ilmenau-pll.pdf Phase-locked Loops for Chemical Control of Oscillation FrequencyT. Hinze, B. Schau, C. Bodenstein

Motivation PLL Scheme Core Oscillator Signal Comparator Global Feedback Simul. Studies Generalisation Prospectives

Combine Reaction Network Modules

affectsfrequency

signaltuning

signaloutput

signalerror

(reference)stimuliexternal

networkcandidate 1

networkcandidate 1

oscillatorcandidate 1

T. Hinze, C. Bodenstein, I. Heiland, S. Schuster. Capturing Biological Frequency Control of Circadian Clocks byReaction System Modularization. ISSN 0926-4981, ERCIM News 85:27-29, 2011

Phase-locked Loops for Chemical Control of Oscillation Frequency T. Hinze, B. Schau, C. Bodenstein

Page 13: Phase-locked Loops for Chemical Control of Oscillation ...hinze/slides-ilmenau-pll.pdf Phase-locked Loops for Chemical Control of Oscillation FrequencyT. Hinze, B. Schau, C. Bodenstein

Motivation PLL Scheme Core Oscillator Signal Comparator Global Feedback Simul. Studies Generalisation Prospectives

Mass-action Reaction Kinetics at a GlanceModeling Temporal Behaviour of Chemical Reaction Networks

Assumption: number of effective reactantcollisions Z proportional toreactant concentrations(Guldberg 1867)

A + B k−→ C . . . . ZC ∼ [A] and ZC ∼ [B], soZC ∼ [A] · [B]

Production rate generating C:vprod([C]) = k · [A] · [B]

Consumption rate of C: . . . . . .vcons([C]) = 0d [C]d t = vprod([C])− vcons([C])

d [C]d t = k · [A] · [B]

Initial conditions: [C](0), [A](0), [B](0)to be set

Phase-locked Loops for Chemical Control of Oscillation Frequency T. Hinze, B. Schau, C. Bodenstein

Page 14: Phase-locked Loops for Chemical Control of Oscillation ...hinze/slides-ilmenau-pll.pdf Phase-locked Loops for Chemical Control of Oscillation FrequencyT. Hinze, B. Schau, C. Bodenstein

Motivation PLL Scheme Core Oscillator Signal Comparator Global Feedback Simul. Studies Generalisation Prospectives

Mass-action Reaction Kinetics at a GlanceModeling Temporal Behaviour of Chemical Reaction Networks

Assumption: number of effective reactantcollisions Z proportional toreactant concentrations(Guldberg 1867)

A + B k−→ C . . . . ZC ∼ [A] and ZC ∼ [B], soZC ∼ [A] · [B]

Production rate generating C:vprod([C]) = k · [A] · [B]

Consumption rate of C: . . . . . .vcons([C]) = 0d [C]d t = vprod([C])− vcons([C])

d [C]d t = k · [A] · [B]

Initial conditions: [C](0), [A](0), [B](0)to be set

Phase-locked Loops for Chemical Control of Oscillation Frequency T. Hinze, B. Schau, C. Bodenstein

Page 15: Phase-locked Loops for Chemical Control of Oscillation ...hinze/slides-ilmenau-pll.pdf Phase-locked Loops for Chemical Control of Oscillation FrequencyT. Hinze, B. Schau, C. Bodenstein

Motivation PLL Scheme Core Oscillator Signal Comparator Global Feedback Simul. Studies Generalisation Prospectives

Mass-action Reaction Kinetics at a GlanceModeling Temporal Behaviour of Chemical Reaction Networks

Assumption: number of effective reactantcollisions Z proportional toreactant concentrations(Guldberg 1867)

A + B k−→ C . . . . ZC ∼ [A] and ZC ∼ [B], soZC ∼ [A] · [B]

Production rate generating C:vprod([C]) = k · [A] · [B]

Consumption rate of C: . . . . . .vcons([C]) = 0d [C]d t = vprod([C])− vcons([C])

d [C]d t = k · [A] · [B]

Initial conditions: [C](0), [A](0), [B](0)to be set

Phase-locked Loops for Chemical Control of Oscillation Frequency T. Hinze, B. Schau, C. Bodenstein

Page 16: Phase-locked Loops for Chemical Control of Oscillation ...hinze/slides-ilmenau-pll.pdf Phase-locked Loops for Chemical Control of Oscillation FrequencyT. Hinze, B. Schau, C. Bodenstein

Motivation PLL Scheme Core Oscillator Signal Comparator Global Feedback Simul. Studies Generalisation Prospectives

Mass-action Reaction Kinetics at a GlanceModeling Temporal Behaviour of Chemical Reaction Networks

Assumption: number of effective reactantcollisions Z proportional toreactant concentrations(Guldberg 1867)

A + B k−→ C . . . . ZC ∼ [A] and ZC ∼ [B], soZC ∼ [A] · [B]

Production rate generating C:vprod([C]) = k · [A] · [B]

Consumption rate of C: . . . . . .vcons([C]) = 0d [C]d t = vprod([C])− vcons([C])

d [C]d t = k · [A] · [B]

Initial conditions: [C](0), [A](0), [B](0)to be set

Phase-locked Loops for Chemical Control of Oscillation Frequency T. Hinze, B. Schau, C. Bodenstein

Page 17: Phase-locked Loops for Chemical Control of Oscillation ...hinze/slides-ilmenau-pll.pdf Phase-locked Loops for Chemical Control of Oscillation FrequencyT. Hinze, B. Schau, C. Bodenstein

Motivation PLL Scheme Core Oscillator Signal Comparator Global Feedback Simul. Studies Generalisation Prospectives

Mass-action Reaction Kinetics at a GlanceModeling Temporal Behaviour of Chemical Reaction Networks

Assumption: number of effective reactantcollisions Z proportional toreactant concentrations(Guldberg 1867)

A + B k−→ C . . . . ZC ∼ [A] and ZC ∼ [B], soZC ∼ [A] · [B]

Production rate generating C:vprod([C]) = k · [A] · [B]

Consumption rate of C: . . . . . .vcons([C]) = 0d [C]d t = vprod([C])− vcons([C])

d [C]d t = k · [A] · [B]

Initial conditions: [C](0), [A](0), [B](0)to be set

Phase-locked Loops for Chemical Control of Oscillation Frequency T. Hinze, B. Schau, C. Bodenstein

Page 18: Phase-locked Loops for Chemical Control of Oscillation ...hinze/slides-ilmenau-pll.pdf Phase-locked Loops for Chemical Control of Oscillation FrequencyT. Hinze, B. Schau, C. Bodenstein

Motivation PLL Scheme Core Oscillator Signal Comparator Global Feedback Simul. Studies Generalisation Prospectives

Mass-action Reaction Kinetics at a GlanceModeling Temporal Behaviour of Chemical Reaction Networks

Assumption: number of effective reactantcollisions Z proportional toreactant concentrations(Guldberg 1867)

A + B k−→ C . . . . ZC ∼ [A] and ZC ∼ [B], soZC ∼ [A] · [B]

Production rate generating C:vprod([C]) = k · [A] · [B]

Consumption rate of C: . . . . . .vcons([C]) = 0d [C]d t = vprod([C])− vcons([C])

d [C]d t = k · [A] · [B]

Initial conditions: [C](0), [A](0), [B](0)to be set

Phase-locked Loops for Chemical Control of Oscillation Frequency T. Hinze, B. Schau, C. Bodenstein

Page 19: Phase-locked Loops for Chemical Control of Oscillation ...hinze/slides-ilmenau-pll.pdf Phase-locked Loops for Chemical Control of Oscillation FrequencyT. Hinze, B. Schau, C. Bodenstein

Motivation PLL Scheme Core Oscillator Signal Comparator Global Feedback Simul. Studies Generalisation Prospectives

Mass-action Kinetics: General ODE ModelChemical reaction system

a1,1S1 + a2,1S2 + . . .+ an,1Snk1−→ b1,1S1 + b2,1S2 + . . .+ bn,1Sn

a1,2S1 + a2,2S2 + . . .+ an,2Snk2−→ b1,2S1 + b2,2S2 + . . .+ bn,2Sn

...

a1,hS1 + a2,hS2 + . . .+ an,hSnkh−→ b1,hS1 + b2,hS2 + . . .+ bn,hSn,

results in ordinary differential equations (ODEs)

d [Si ]

d t=

h∑ν=1

(kν · (bi,ν − ai,ν) ·

n∏l=1

[Sl ]al,ν

)with i = 1, . . . ,n.

Phase-locked Loops for Chemical Control of Oscillation Frequency T. Hinze, B. Schau, C. Bodenstein

Page 20: Phase-locked Loops for Chemical Control of Oscillation ...hinze/slides-ilmenau-pll.pdf Phase-locked Loops for Chemical Control of Oscillation FrequencyT. Hinze, B. Schau, C. Bodenstein

Motivation PLL Scheme Core Oscillator Signal Comparator Global Feedback Simul. Studies Generalisation Prospectives

Mass-action vs. Saturation KineticsKinetics Activation (rate law) Repression (rate law)

Mass-action(no saturation)

v = k · [S]−

Michaelis-Menten(saturation)

v = K · [S]T+[S]

v = K ·(

1− [S]T+[S]

)

Higher-Order Hill(saturation)

v = K · [S]n

T+[S]nv = K ·

(1− [S]n

T+[S]n

)

• Michaelis Menten: Typical enzyme kinetics• Higher-order Hill (n ≥ 2): Typically for gene expression

using sigmoidal transfer function

Phase-locked Loops for Chemical Control of Oscillation Frequency T. Hinze, B. Schau, C. Bodenstein

Page 21: Phase-locked Loops for Chemical Control of Oscillation ...hinze/slides-ilmenau-pll.pdf Phase-locked Loops for Chemical Control of Oscillation FrequencyT. Hinze, B. Schau, C. Bodenstein

Motivation PLL Scheme Core Oscillator Signal Comparator Global Feedback Simul. Studies Generalisation Prospectives

Plant: Controllable Core Oscillator

coupledone or several

elementary oscillator(s)

local feedback(s)

global feedback path

damping and delay)(loop filter for

affectsfrequency

signaltuning

signal comparator

frequency deviation)(phase difference or

signaloutput

signalerror

(reference)stimuliexternal

Adapted from T. Hinze, M. Schumann, C. Bodenstein, I. Heiland, S. Schuster. Biochemical Frequency Controlby Synchronisation of Coupled Repressilators: An In-silico Study of Modules for Circadian Clock Systems.Computational Intelligence and Neuroscience 2011:262189, 2011

Phase-locked Loops for Chemical Control of Oscillation Frequency T. Hinze, B. Schau, C. Bodenstein

Page 22: Phase-locked Loops for Chemical Control of Oscillation ...hinze/slides-ilmenau-pll.pdf Phase-locked Loops for Chemical Control of Oscillation FrequencyT. Hinze, B. Schau, C. Bodenstein

Motivation PLL Scheme Core Oscillator Signal Comparator Global Feedback Simul. Studies Generalisation Prospectives

Controllable Goodwin-type Core Oscillator

a, A,

translation

transportation transcriptional inhibition

Z

X

k5

k4,K

4

k6,K

6

Y

k3

K1

k2,K

2

time (days)

subs

trat

e co

ncen

trat

ion

X Y Z

k6 (nM/h)

perio

d le

ngth

afte

r tr

ansi

ent p

hase

(h)

k4 (nM/h)

perio

d le

ngth

afte

r tr

ansi

ent p

hase

(h)

k2 (nM/h)

perio

d le

ngth

afte

r tr

ansi

ent p

hase

(h)

T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster. Chemical Analog Computers for Clock FrequencyControl Based on P Modules. Proceedings of the Twelfth International Conference on Membrane Computing,to appear within series Lecture Notes in Computer Science, Springer Verlag, 2011

Phase-locked Loops for Chemical Control of Oscillation Frequency T. Hinze, B. Schau, C. Bodenstein

Page 23: Phase-locked Loops for Chemical Control of Oscillation ...hinze/slides-ilmenau-pll.pdf Phase-locked Loops for Chemical Control of Oscillation FrequencyT. Hinze, B. Schau, C. Bodenstein

Motivation PLL Scheme Core Oscillator Signal Comparator Global Feedback Simul. Studies Generalisation Prospectives

Core Oscillator: Dynamical Behaviour

˙[X ] =a

A + K1[Z ]2− k2[X ]

K2 + [X ]

˙[Y ] = k3[X ]− k5[Y ]− k4[Y ]

K4 + [Y ]

˙[Z ] = k5[Y ]− k6[Z ]

K6 + [Z ]

B. Schau. Reverse-Engineering circadianer Oszillationssysteme als Frequenzregelkreise mitNachlaufsynchronisation. Diploma thesis, 2011

Phase-locked Loops for Chemical Control of Oscillation Frequency T. Hinze, B. Schau, C. Bodenstein

Page 24: Phase-locked Loops for Chemical Control of Oscillation ...hinze/slides-ilmenau-pll.pdf Phase-locked Loops for Chemical Control of Oscillation FrequencyT. Hinze, B. Schau, C. Bodenstein

Motivation PLL Scheme Core Oscillator Signal Comparator Global Feedback Simul. Studies Generalisation Prospectives

Affecting Frequency by Degradation Rate of Z

k6

perio

d le

ngth

(h)

• Velocity parameter k6 of Z degradation notably influencesoscillation frequency

• Period control coefficients assigned to each reactionquantify influence on frequency

T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster. Chemical Analog Computers for Clock FrequencyControl Based on P Modules. Proceedings of the Twelfth International Conference on Membrane Computing,to appear within series Lecture Notes in Computer Science, Springer Verlag, 2011

Phase-locked Loops for Chemical Control of Oscillation Frequency T. Hinze, B. Schau, C. Bodenstein

Page 25: Phase-locked Loops for Chemical Control of Oscillation ...hinze/slides-ilmenau-pll.pdf Phase-locked Loops for Chemical Control of Oscillation FrequencyT. Hinze, B. Schau, C. Bodenstein

Motivation PLL Scheme Core Oscillator Signal Comparator Global Feedback Simul. Studies Generalisation Prospectives

Controller: Signal Comparator

coupledone or several

elementary oscillator(s)

local feedback(s)

global feedback path

damping and delay)(loop filter for

affectsfrequency

signaltuning

signal comparator

frequency deviation)(phase difference or

signaloutput

signalerror

(reference)stimuliexternal

Adapted from T. Hinze, M. Schumann, C. Bodenstein, I. Heiland, S. Schuster. Biochemical Frequency Controlby Synchronisation of Coupled Repressilators: An In-silico Study of Modules for Circadian Clock Systems.Computational Intelligence and Neuroscience 2011:262189, 2011

Phase-locked Loops for Chemical Control of Oscillation Frequency T. Hinze, B. Schau, C. Bodenstein

Page 26: Phase-locked Loops for Chemical Control of Oscillation ...hinze/slides-ilmenau-pll.pdf Phase-locked Loops for Chemical Control of Oscillation FrequencyT. Hinze, B. Schau, C. Bodenstein

Motivation PLL Scheme Core Oscillator Signal Comparator Global Feedback Simul. Studies Generalisation Prospectives

Signal Comparator: Multiplication Unit

0

1

2

3

4

5

6

7

0 10 20 30 40 50 60 70 80 90 100

su

bstr

ate

co

nce

ntr

atio

n

time

X1

X2

Y

X1

k2

k1

X2

Y

˙[X1] = 0˙[X2] = 0˙[Y ] = k1[X1][X2]− k2[Y ]

ODE solution for asymptotic steady state in case of k1 = k2:[Y ](∞) = lim

t→∞

(1− e−k1t

)· ([X1](t) · [X2](t)) = [X1](0) · [X2](0)

Input-output mapping: [Y ] = [X1] · [X2]

T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster. Chemical Analog Computers for Clock FrequencyControl Based on P Modules. Proceedings of the Twelfth International Conference on Membrane Computing,to appear within series Lecture Notes in Computer Science, Springer Verlag, 2011

Phase-locked Loops for Chemical Control of Oscillation Frequency T. Hinze, B. Schau, C. Bodenstein

Page 27: Phase-locked Loops for Chemical Control of Oscillation ...hinze/slides-ilmenau-pll.pdf Phase-locked Loops for Chemical Control of Oscillation FrequencyT. Hinze, B. Schau, C. Bodenstein

Motivation PLL Scheme Core Oscillator Signal Comparator Global Feedback Simul. Studies Generalisation Prospectives

Comparing Phases: Mathematical Background

Output of core oscillator ω = 2π/τ :

y(t) = y(t + τ) = A0 +∞∑

n=1

An cos(nωt + ϕn)

Input of external reference signal ω′ = 2π/τ ′:

z(t) = z(t + τ ′) = A′0 +∞∑

n=1

A′n sin(nω′t + ϕ′n)

For simplicity we assume that all higher harmonics areremoved by a filter.

Phase-locked Loops for Chemical Control of Oscillation Frequency T. Hinze, B. Schau, C. Bodenstein

Page 28: Phase-locked Loops for Chemical Control of Oscillation ...hinze/slides-ilmenau-pll.pdf Phase-locked Loops for Chemical Control of Oscillation FrequencyT. Hinze, B. Schau, C. Bodenstein

Motivation PLL Scheme Core Oscillator Signal Comparator Global Feedback Simul. Studies Generalisation Prospectives

Comparing Phases by Multiplication

Multiplication module:

x = k(z(t)y(t)− x) limk→∞

x(t) = z(t)y(t)

Output of multiplication:

z(t)y(t) = A′0A0 + A′0A1 cos(ωt + ϕ1) + A0A′1 sin(ω′t + ϕ′1)

+A′1A1

2(sin((ω′ − ω)t + ϕ′1 − ϕ1) + sin((ω′ + ω)t + ϕ′1 + ϕ1)

)Low frequency term (ω′ ≈ ω) carries the phase-differenceinformation: φ′ − φ.

Phase-locked Loops for Chemical Control of Oscillation Frequency T. Hinze, B. Schau, C. Bodenstein

Page 29: Phase-locked Loops for Chemical Control of Oscillation ...hinze/slides-ilmenau-pll.pdf Phase-locked Loops for Chemical Control of Oscillation FrequencyT. Hinze, B. Schau, C. Bodenstein

Motivation PLL Scheme Core Oscillator Signal Comparator Global Feedback Simul. Studies Generalisation Prospectives

Actuator: Global Feedback with Low-pass Filter

coupledone or several

elementary oscillator(s)

local feedback(s)

global feedback path

damping and delay)(loop filter for

affectsfrequency

signaltuning

signal comparator

frequency deviation)(phase difference or

signaloutput

signalerror

(reference)stimuliexternal

Adapted from T. Hinze, M. Schumann, C. Bodenstein, I. Heiland, S. Schuster. Biochemical Frequency Controlby Synchronisation of Coupled Repressilators: An In-silico Study of Modules for Circadian Clock Systems.Computational Intelligence and Neuroscience 2011:262189, 2011

Phase-locked Loops for Chemical Control of Oscillation Frequency T. Hinze, B. Schau, C. Bodenstein

Page 30: Phase-locked Loops for Chemical Control of Oscillation ...hinze/slides-ilmenau-pll.pdf Phase-locked Loops for Chemical Control of Oscillation FrequencyT. Hinze, B. Schau, C. Bodenstein

Motivation PLL Scheme Core Oscillator Signal Comparator Global Feedback Simul. Studies Generalisation Prospectives

Low-pass Filter as Global Feedback• Desensibilise global feedback by

signal smoothing, damping, and delay• Eliminate high-frequency oscillations by a low-pass filter

Simple linear reaction cascade forms a low-pass filter.Samoilov et al. J Phys Chem 106, 2002

B. Schau. Reverse-Engineering circadianer Oszillationssysteme als Frequenzregelkreise mitNachlaufsynchronisation. Diploma thesis, 2011

Adjust kinetic parameters to obtain desired filtering.Phase-locked Loops for Chemical Control of Oscillation Frequency T. Hinze, B. Schau, C. Bodenstein

Page 31: Phase-locked Loops for Chemical Control of Oscillation ...hinze/slides-ilmenau-pll.pdf Phase-locked Loops for Chemical Control of Oscillation FrequencyT. Hinze, B. Schau, C. Bodenstein

Motivation PLL Scheme Core Oscillator Signal Comparator Global Feedback Simul. Studies Generalisation Prospectives

Low-pass Filter as Global Feedback• Desensibilise global feedback by

signal smoothing, damping, and delay• Eliminate high-frequency oscillations by a low-pass filter

Simple linear reaction cascade forms a low-pass filter.Samoilov et al. J Phys Chem 106, 2002

B. Schau. Reverse-Engineering circadianer Oszillationssysteme als Frequenzregelkreise mitNachlaufsynchronisation. Diploma thesis, 2011

Adjust kinetic parameters to obtain desired filtering.Phase-locked Loops for Chemical Control of Oscillation Frequency T. Hinze, B. Schau, C. Bodenstein

Page 32: Phase-locked Loops for Chemical Control of Oscillation ...hinze/slides-ilmenau-pll.pdf Phase-locked Loops for Chemical Control of Oscillation FrequencyT. Hinze, B. Schau, C. Bodenstein

Motivation PLL Scheme Core Oscillator Signal Comparator Global Feedback Simul. Studies Generalisation Prospectives

Low-pass Filter as Global Feedback• Desensibilise global feedback by

signal smoothing, damping, and delay• Eliminate high-frequency oscillations by a low-pass filter

Simple linear reaction cascade forms a low-pass filter.Samoilov et al. J Phys Chem 106, 2002

B. Schau. Reverse-Engineering circadianer Oszillationssysteme als Frequenzregelkreise mitNachlaufsynchronisation. Diploma thesis, 2011

Adjust kinetic parameters to obtain desired filtering.Phase-locked Loops for Chemical Control of Oscillation Frequency T. Hinze, B. Schau, C. Bodenstein

Page 33: Phase-locked Loops for Chemical Control of Oscillation ...hinze/slides-ilmenau-pll.pdf Phase-locked Loops for Chemical Control of Oscillation FrequencyT. Hinze, B. Schau, C. Bodenstein

Motivation PLL Scheme Core Oscillator Signal Comparator Global Feedback Simul. Studies Generalisation Prospectives

Low-pass Filter

X2

X3

kn

Ykn−1

k3

X1

k2

k1

Xn−1

X

kn+1

time (days)

subs

trat

e co

ncen

trat

ion

[Y]

time (days)

subs

trat

e co

ncen

trat

ion

[X]

˙[X1] = k1[X ]− k2[X1]˙[X2] = k2[X1]− k3[X2]

...˙[X n−1] = kn−1[Xn−2]− kn[Xn−1]

˙[Y ] = kn[Xn−1]− kn+1[Y ]T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster. Chemical Analog Computers for Clock FrequencyControl Based on P Modules. Proceedings of the Twelfth International Conference on Membrane Computing,to appear within series Lecture Notes in Computer Science, Springer Verlag, 2011

Phase-locked Loops for Chemical Control of Oscillation Frequency T. Hinze, B. Schau, C. Bodenstein

Page 34: Phase-locked Loops for Chemical Control of Oscillation ...hinze/slides-ilmenau-pll.pdf Phase-locked Loops for Chemical Control of Oscillation FrequencyT. Hinze, B. Schau, C. Bodenstein

Motivation PLL Scheme Core Oscillator Signal Comparator Global Feedback Simul. Studies Generalisation Prospectives

Low-pass Filter: Bode Plot as Characteristic Curve

frequency in 1/s

cutoff frequency

slope

mag

nitu

de in

dB

Magnitude dB = 10 · lg(

amplitude of output signalamplitude of input signal

)• Signals affected by smoothing delay throughout cascade• Oscillation waveform harmonisation into sinusoidal shape• Global filter parameters:

passband damping, cutoff frequency, slope

Phase-locked Loops for Chemical Control of Oscillation Frequency T. Hinze, B. Schau, C. Bodenstein

Page 35: Phase-locked Loops for Chemical Control of Oscillation ...hinze/slides-ilmenau-pll.pdf Phase-locked Loops for Chemical Control of Oscillation FrequencyT. Hinze, B. Schau, C. Bodenstein

Motivation PLL Scheme Core Oscillator Signal Comparator Global Feedback Simul. Studies Generalisation Prospectives

Model of a Chemical Frequency Control Based on PLL

low−pass filter

core oscillator characteristic curve

Bode plot

comparator[Y] = [E][Z]

signal

core

oscillator

filter

low−pass

plant

actuator

con

tro

ller

[F](t)

[Z](t)

external stimulus [E](t) a, A,

transfer functionscaled tuning signal

[D] = [U]+[F]*ae

ae =

Y

k3

X

k5

k4,K

4

k6,K

6

X2

X3

l 5

E

m1

K1

k 8

k 8

k 7

k 7

k 7

U

F

l4

l3

X1

l2

l1

X4

Z

D

F

Z

XY

k2,K

2

mag

nitu

de (

dB)

frequency (1/s)

k6 (nM/h)

perio

d le

ngth

afte

r tr

ansi

ent p

hase

(h)

length of 0.61 days)

cutoff frequency: 0.000019 1/s(corresponds to period

T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster. Chemical Analog Computers for Clock FrequencyControl Based on P Modules. Proceedings of the Twelfth International Conference on Membrane Computing,to appear within series Lecture Notes in Computer Science, Springer Verlag, 2011

Phase-locked Loops for Chemical Control of Oscillation Frequency T. Hinze, B. Schau, C. Bodenstein

Page 36: Phase-locked Loops for Chemical Control of Oscillation ...hinze/slides-ilmenau-pll.pdf Phase-locked Loops for Chemical Control of Oscillation FrequencyT. Hinze, B. Schau, C. Bodenstein

Motivation PLL Scheme Core Oscillator Signal Comparator Global Feedback Simul. Studies Generalisation Prospectives

Period Lengths subject to Constant External Stimulus

constant external stimulus [E]

perio

d le

ngth

(h) o

f sig

nal [

Z]

T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster. Chemical Analog Computers for Clock FrequencyControl Based on P Modules. Proceedings of the Twelfth International Conference on Membrane Computing,to appear within series Lecture Notes in Computer Science, Springer Verlag, 2011

Phase-locked Loops for Chemical Control of Oscillation Frequency T. Hinze, B. Schau, C. Bodenstein

Page 37: Phase-locked Loops for Chemical Control of Oscillation ...hinze/slides-ilmenau-pll.pdf Phase-locked Loops for Chemical Control of Oscillation FrequencyT. Hinze, B. Schau, C. Bodenstein

Motivation PLL Scheme Core Oscillator Signal Comparator Global Feedback Simul. Studies Generalisation Prospectives

Time to Entrainment to Different Period Lengths

period length (h) of external stimulus [E]

time

to e

ntra

inm

ent (

days

) of s

igna

l [Z]

Natural period of core oscillator: 24.2hT. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster. Chemical Analog Computers for Clock FrequencyControl Based on P Modules. Proceedings of the Twelfth International Conference on Membrane Computing,to appear within series Lecture Notes in Computer Science, Springer Verlag, 2011, accepted

Phase-locked Loops for Chemical Control of Oscillation Frequency T. Hinze, B. Schau, C. Bodenstein

Page 38: Phase-locked Loops for Chemical Control of Oscillation ...hinze/slides-ilmenau-pll.pdf Phase-locked Loops for Chemical Control of Oscillation FrequencyT. Hinze, B. Schau, C. Bodenstein

Motivation PLL Scheme Core Oscillator Signal Comparator Global Feedback Simul. Studies Generalisation Prospectives

Time to Entrainment to Different Initial Phase Shifts

initial phase shift (°) between external stimulus [E] and core oscillator output [Z]

time

to e

ntra

inm

ent (

days

) of s

igna

l [Z]

external stimulus' period length24h 26'24h

worst case

best case

Entrainment reached within convergence interval 1minT. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster. Chemical Analog Computers for Clock FrequencyControl Based on P Modules. Proceedings of the Twelfth International Conference on Membrane Computing,to appear within series Lecture Notes in Computer Science, Springer Verlag, 2011

Phase-locked Loops for Chemical Control of Oscillation Frequency T. Hinze, B. Schau, C. Bodenstein

Page 39: Phase-locked Loops for Chemical Control of Oscillation ...hinze/slides-ilmenau-pll.pdf Phase-locked Loops for Chemical Control of Oscillation FrequencyT. Hinze, B. Schau, C. Bodenstein

Motivation PLL Scheme Core Oscillator Signal Comparator Global Feedback Simul. Studies Generalisation Prospectives

Best Case and Worst Case Entrainment

time (days)

perio

d le

ngth

(h) o

f sig

nal [

Z]

external stimulus' period length and initial phase shift24h and 325°24h and 245°

Entrainment reached within convergence interval 1minT. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster. Chemical Analog Computers for Clock FrequencyControl Based on P Modules. Proceedings of the Twelfth International Conference on Membrane Computing,to appear within series Lecture Notes in Computer Science, Springer Verlag, 2011

Phase-locked Loops for Chemical Control of Oscillation Frequency T. Hinze, B. Schau, C. Bodenstein

Page 40: Phase-locked Loops for Chemical Control of Oscillation ...hinze/slides-ilmenau-pll.pdf Phase-locked Loops for Chemical Control of Oscillation FrequencyT. Hinze, B. Schau, C. Bodenstein

Motivation PLL Scheme Core Oscillator Signal Comparator Global Feedback Simul. Studies Generalisation Prospectives

Perturbed Core Oscillator

Unperturbed core oscillator at constant external signal A′0:

dXdt

= F(X)

with limit cycle solution X0(t) = X0(t + τ).Perturbed core oscillator:

dXdt

= F(X) + ε sin (. . . ) kl∂F∂kl

(X).

Since ε is small the amplitude of the limit cycle is not affectedand we can reduce the model to the phase dynamics!

Phase-locked Loops for Chemical Control of Oscillation Frequency T. Hinze, B. Schau, C. Bodenstein

Page 41: Phase-locked Loops for Chemical Control of Oscillation ...hinze/slides-ilmenau-pll.pdf Phase-locked Loops for Chemical Control of Oscillation FrequencyT. Hinze, B. Schau, C. Bodenstein

Motivation PLL Scheme Core Oscillator Signal Comparator Global Feedback Simul. Studies Generalisation Prospectives

Amplitude and Phase

Granada & Herzel. PLoS ONE 4(9): e7057, 2009

We can assign each point on the limit cycle X0 a specific phasevalue φ.

Phase-locked Loops for Chemical Control of Oscillation Frequency T. Hinze, B. Schau, C. Bodenstein

Page 42: Phase-locked Loops for Chemical Control of Oscillation ...hinze/slides-ilmenau-pll.pdf Phase-locked Loops for Chemical Control of Oscillation FrequencyT. Hinze, B. Schau, C. Bodenstein

Motivation PLL Scheme Core Oscillator Signal Comparator Global Feedback Simul. Studies Generalisation Prospectives

Phase Reduction (Kuramoto 1984)

Demir et al. IEEE Transactions on circuits and systems 47(5):655-674, 2000

Oscillator phase dynamics:dφdt

= ω + εPRCl(φ) sin(φ′ − φ+ ϕlpf

).

PRCl is the 2π-periodic phase response curve of kl.

Phase-locked Loops for Chemical Control of Oscillation Frequency T. Hinze, B. Schau, C. Bodenstein

Page 43: Phase-locked Loops for Chemical Control of Oscillation ...hinze/slides-ilmenau-pll.pdf Phase-locked Loops for Chemical Control of Oscillation FrequencyT. Hinze, B. Schau, C. Bodenstein

Motivation PLL Scheme Core Oscillator Signal Comparator Global Feedback Simul. Studies Generalisation Prospectives

Phase Response Curve

http://en.wikipedia.org/wiki/Phase_response_curve

Phase-locked Loops for Chemical Control of Oscillation Frequency T. Hinze, B. Schau, C. Bodenstein

Page 44: Phase-locked Loops for Chemical Control of Oscillation ...hinze/slides-ilmenau-pll.pdf Phase-locked Loops for Chemical Control of Oscillation FrequencyT. Hinze, B. Schau, C. Bodenstein

Motivation PLL Scheme Core Oscillator Signal Comparator Global Feedback Simul. Studies Generalisation Prospectives

Phase Difference

Phase difference ψ between oscillator and external signal:

ψ = φ− φ′

dψdt

= ω − ω′ − εPRCl(φ′ + ψ) sin

(ψ − ϕlpf

)ψ is a slowly changing variable compared to φ′ = ω′t , thereforewe may average the perturbation over one external cycle andconsider ψ on the slow time scale:

1τ ′

∫ τ ′

0PRCl(φ

′(t) + ψ) dt = −Cτl ,

where Cτl = kl/τ

∂τ∂kl

is the period control coefficient.

Phase-locked Loops for Chemical Control of Oscillation Frequency T. Hinze, B. Schau, C. Bodenstein

Page 45: Phase-locked Loops for Chemical Control of Oscillation ...hinze/slides-ilmenau-pll.pdf Phase-locked Loops for Chemical Control of Oscillation FrequencyT. Hinze, B. Schau, C. Bodenstein

Motivation PLL Scheme Core Oscillator Signal Comparator Global Feedback Simul. Studies Generalisation Prospectives

Phase Difference

Phase difference equation:dψdt

=ω − ω′

ε+ Cτ

l sin(ψ − ϕlpf

)Phase-locking corresponds to (stable) steady-state solutions ψ0of this equation:

φ(t) = φ′(t) + ψ0.

Phase locking exists in a region enclosed by:

ε± = ∓(ω − ω′

) 1Cτ

l,

the so called Arnold tongue.

Phase-locked Loops for Chemical Control of Oscillation Frequency T. Hinze, B. Schau, C. Bodenstein

Page 46: Phase-locked Loops for Chemical Control of Oscillation ...hinze/slides-ilmenau-pll.pdf Phase-locked Loops for Chemical Control of Oscillation FrequencyT. Hinze, B. Schau, C. Bodenstein

Motivation PLL Scheme Core Oscillator Signal Comparator Global Feedback Simul. Studies Generalisation Prospectives

Arnold Tongue

B. Schau. Reverse-Engineering circadianer Oszillationssysteme als Frequenzregelkreise mitNachlaufsynchronisation. Diploma thesis, 2011

Phase-locked Loops for Chemical Control of Oscillation Frequency T. Hinze, B. Schau, C. Bodenstein

Page 47: Phase-locked Loops for Chemical Control of Oscillation ...hinze/slides-ilmenau-pll.pdf Phase-locked Loops for Chemical Control of Oscillation FrequencyT. Hinze, B. Schau, C. Bodenstein

Motivation PLL Scheme Core Oscillator Signal Comparator Global Feedback Simul. Studies Generalisation Prospectives

Phase Lag

The phase lag can be easily determined from the derivedequation. For example consider ω = ω′ and Cτ

l < 0, the stablesolution then is:

ψ0 = ϕlpf .

That means the phase lag is completely determined by thelow-pass filter.

Phase-locked Loops for Chemical Control of Oscillation Frequency T. Hinze, B. Schau, C. Bodenstein

Page 48: Phase-locked Loops for Chemical Control of Oscillation ...hinze/slides-ilmenau-pll.pdf Phase-locked Loops for Chemical Control of Oscillation FrequencyT. Hinze, B. Schau, C. Bodenstein

Motivation PLL Scheme Core Oscillator Signal Comparator Global Feedback Simul. Studies Generalisation Prospectives

Conclusions• Chemical frequency control can utilise PLL• Prototypic modelling example for

entrainment of circadian clockworks• Chemical processing units in minimalistic manner• Variety of chemical implementations• Modularisation in (bio)chemical reaction systems

Some open questions• Identification of in-vivo counterparts• Replacement of individual processing units

(like different core oscillators)• Balancing advantages and limitations of the PLL approach• Inclusion of temperature entrainment (by Arrhenius terms)• Alternative concepts of frequency control

Phase-locked Loops for Chemical Control of Oscillation Frequency T. Hinze, B. Schau, C. Bodenstein

Page 49: Phase-locked Loops for Chemical Control of Oscillation ...hinze/slides-ilmenau-pll.pdf Phase-locked Loops for Chemical Control of Oscillation FrequencyT. Hinze, B. Schau, C. Bodenstein

Motivation PLL Scheme Core Oscillator Signal Comparator Global Feedback Simul. Studies Generalisation Prospectives

Conclusions• Chemical frequency control can utilise PLL• Prototypic modelling example for

entrainment of circadian clockworks• Chemical processing units in minimalistic manner• Variety of chemical implementations• Modularisation in (bio)chemical reaction systems

Some open questions• Identification of in-vivo counterparts• Replacement of individual processing units

(like different core oscillators)• Balancing advantages and limitations of the PLL approach• Inclusion of temperature entrainment (by Arrhenius terms)• Alternative concepts of frequency control

Phase-locked Loops for Chemical Control of Oscillation Frequency T. Hinze, B. Schau, C. Bodenstein

Page 50: Phase-locked Loops for Chemical Control of Oscillation ...hinze/slides-ilmenau-pll.pdf Phase-locked Loops for Chemical Control of Oscillation FrequencyT. Hinze, B. Schau, C. Bodenstein

Motivation PLL Scheme Core Oscillator Signal Comparator Global Feedback Simul. Studies Generalisation Prospectives

Conclusions• Chemical frequency control can utilise PLL• Prototypic modelling example for

entrainment of circadian clockworks• Chemical processing units in minimalistic manner• Variety of chemical implementations• Modularisation in (bio)chemical reaction systems

Some open questions• Identification of in-vivo counterparts• Replacement of individual processing units

(like different core oscillators)• Balancing advantages and limitations of the PLL approach• Inclusion of temperature entrainment (by Arrhenius terms)• Alternative concepts of frequency control

Phase-locked Loops for Chemical Control of Oscillation Frequency T. Hinze, B. Schau, C. Bodenstein

Page 51: Phase-locked Loops for Chemical Control of Oscillation ...hinze/slides-ilmenau-pll.pdf Phase-locked Loops for Chemical Control of Oscillation FrequencyT. Hinze, B. Schau, C. Bodenstein

Motivation PLL Scheme Core Oscillator Signal Comparator Global Feedback Simul. Studies Generalisation Prospectives

Conclusions• Chemical frequency control can utilise PLL• Prototypic modelling example for

entrainment of circadian clockworks• Chemical processing units in minimalistic manner• Variety of chemical implementations• Modularisation in (bio)chemical reaction systems

Some open questions• Identification of in-vivo counterparts• Replacement of individual processing units

(like different core oscillators)• Balancing advantages and limitations of the PLL approach• Inclusion of temperature entrainment (by Arrhenius terms)• Alternative concepts of frequency control

Phase-locked Loops for Chemical Control of Oscillation Frequency T. Hinze, B. Schau, C. Bodenstein

Page 52: Phase-locked Loops for Chemical Control of Oscillation ...hinze/slides-ilmenau-pll.pdf Phase-locked Loops for Chemical Control of Oscillation FrequencyT. Hinze, B. Schau, C. Bodenstein

Motivation PLL Scheme Core Oscillator Signal Comparator Global Feedback Simul. Studies Generalisation Prospectives

Conclusions• Chemical frequency control can utilise PLL• Prototypic modelling example for

entrainment of circadian clockworks• Chemical processing units in minimalistic manner• Variety of chemical implementations• Modularisation in (bio)chemical reaction systems

Some open questions• Identification of in-vivo counterparts• Replacement of individual processing units

(like different core oscillators)• Balancing advantages and limitations of the PLL approach• Inclusion of temperature entrainment (by Arrhenius terms)• Alternative concepts of frequency control

Phase-locked Loops for Chemical Control of Oscillation Frequency T. Hinze, B. Schau, C. Bodenstein

Page 53: Phase-locked Loops for Chemical Control of Oscillation ...hinze/slides-ilmenau-pll.pdf Phase-locked Loops for Chemical Control of Oscillation FrequencyT. Hinze, B. Schau, C. Bodenstein

Motivation PLL Scheme Core Oscillator Signal Comparator Global Feedback Simul. Studies Generalisation Prospectives

Conclusions• Chemical frequency control can utilise PLL• Prototypic modelling example for

entrainment of circadian clockworks• Chemical processing units in minimalistic manner• Variety of chemical implementations• Modularisation in (bio)chemical reaction systems

Some open questions• Identification of in-vivo counterparts• Replacement of individual processing units

(like different core oscillators)• Balancing advantages and limitations of the PLL approach• Inclusion of temperature entrainment (by Arrhenius terms)• Alternative concepts of frequency control

Phase-locked Loops for Chemical Control of Oscillation Frequency T. Hinze, B. Schau, C. Bodenstein

Page 54: Phase-locked Loops for Chemical Control of Oscillation ...hinze/slides-ilmenau-pll.pdf Phase-locked Loops for Chemical Control of Oscillation FrequencyT. Hinze, B. Schau, C. Bodenstein

Motivation PLL Scheme Core Oscillator Signal Comparator Global Feedback Simul. Studies Generalisation Prospectives

Conclusions• Chemical frequency control can utilise PLL• Prototypic modelling example for

entrainment of circadian clockworks• Chemical processing units in minimalistic manner• Variety of chemical implementations• Modularisation in (bio)chemical reaction systems

Some open questions• Identification of in-vivo counterparts• Replacement of individual processing units

(like different core oscillators)• Balancing advantages and limitations of the PLL approach• Inclusion of temperature entrainment (by Arrhenius terms)• Alternative concepts of frequency control

Phase-locked Loops for Chemical Control of Oscillation Frequency T. Hinze, B. Schau, C. Bodenstein

Page 55: Phase-locked Loops for Chemical Control of Oscillation ...hinze/slides-ilmenau-pll.pdf Phase-locked Loops for Chemical Control of Oscillation FrequencyT. Hinze, B. Schau, C. Bodenstein

Motivation PLL Scheme Core Oscillator Signal Comparator Global Feedback Simul. Studies Generalisation Prospectives

Conclusions• Chemical frequency control can utilise PLL• Prototypic modelling example for

entrainment of circadian clockworks• Chemical processing units in minimalistic manner• Variety of chemical implementations• Modularisation in (bio)chemical reaction systems

Some open questions• Identification of in-vivo counterparts• Replacement of individual processing units

(like different core oscillators)• Balancing advantages and limitations of the PLL approach• Inclusion of temperature entrainment (by Arrhenius terms)• Alternative concepts of frequency control

Phase-locked Loops for Chemical Control of Oscillation Frequency T. Hinze, B. Schau, C. Bodenstein

Page 56: Phase-locked Loops for Chemical Control of Oscillation ...hinze/slides-ilmenau-pll.pdf Phase-locked Loops for Chemical Control of Oscillation FrequencyT. Hinze, B. Schau, C. Bodenstein

Motivation PLL Scheme Core Oscillator Signal Comparator Global Feedback Simul. Studies Generalisation Prospectives

Conclusions• Chemical frequency control can utilise PLL• Prototypic modelling example for

entrainment of circadian clockworks• Chemical processing units in minimalistic manner• Variety of chemical implementations• Modularisation in (bio)chemical reaction systems

Some open questions• Identification of in-vivo counterparts• Replacement of individual processing units

(like different core oscillators)• Balancing advantages and limitations of the PLL approach• Inclusion of temperature entrainment (by Arrhenius terms)• Alternative concepts of frequency control

Phase-locked Loops for Chemical Control of Oscillation Frequency T. Hinze, B. Schau, C. Bodenstein

Page 57: Phase-locked Loops for Chemical Control of Oscillation ...hinze/slides-ilmenau-pll.pdf Phase-locked Loops for Chemical Control of Oscillation FrequencyT. Hinze, B. Schau, C. Bodenstein

Motivation PLL Scheme Core Oscillator Signal Comparator Global Feedback Simul. Studies Generalisation Prospectives

Conclusions• Chemical frequency control can utilise PLL• Prototypic modelling example for

entrainment of circadian clockworks• Chemical processing units in minimalistic manner• Variety of chemical implementations• Modularisation in (bio)chemical reaction systems

Some open questions• Identification of in-vivo counterparts• Replacement of individual processing units

(like different core oscillators)• Balancing advantages and limitations of the PLL approach• Inclusion of temperature entrainment (by Arrhenius terms)• Alternative concepts of frequency control

Phase-locked Loops for Chemical Control of Oscillation Frequency T. Hinze, B. Schau, C. Bodenstein

Page 58: Phase-locked Loops for Chemical Control of Oscillation ...hinze/slides-ilmenau-pll.pdf Phase-locked Loops for Chemical Control of Oscillation FrequencyT. Hinze, B. Schau, C. Bodenstein

Motivation PLL Scheme Core Oscillator Signal Comparator Global Feedback Simul. Studies Generalisation Prospectives

Acknowledgements

Department of Bioinformatics at School of Biology and PharmacyFriedrich Schiller University Jena

Jena Centre forBioinformatics

Research Initiative inSystems Biology

European MolecularComputing Consortium

Phase-locked Loops for Chemical Control of Oscillation Frequency T. Hinze, B. Schau, C. Bodenstein