chemical oscillation frequency control ... -...

58
Motivation Reaction Kinetics Processing Units Phase-locked Loop Theory behind PLLs Simulation Studies Prospectives Chemical Oscillation Frequency Control using Phase-locked Loops A prototype of biological clocks and their entrainment by light? Thomas Hinze Christian Bodenstein Benedict Schau Ines Heiland Stefan Schuster Friedrich Schiller University Jena Department of Bioinformatics at School of Biology and Pharmacy Modelling Oscillatory Information Processing Group {thomas.hinze,christian.bodenstein}@uni-jena.de Chemical Oscillation Frequency Control using Phase-locked Loops T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster

Upload: others

Post on 08-Aug-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Chemical Oscillation Frequency Control ... - cmc11.uni-jena.decmc11.uni-jena.de/hinze/slides-rostock.pdf · fthomas.hinze,christian.bodensteing@uni-jena.de Hinze, C. Bodenstein, B

Motivation Reaction Kinetics Processing Units Phase-locked Loop Theory behind PLLs Simulation Studies Prospectives

Chemical Oscillation Frequency Control usingPhase-locked Loops

A prototype of biological clocks and their entrainment by light?

Thomas Hinze Christian Bodenstein

Benedict Schau Ines Heiland Stefan Schuster

Friedrich Schiller University JenaDepartment of Bioinformatics at School of Biology and Pharmacy

Modelling Oscillatory Information Processing Group

{thomas.hinze,christian.bodenstein}@uni-jena.de

Chemical Oscillation Frequency Control using Phase-locked Loops T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster

Page 2: Chemical Oscillation Frequency Control ... - cmc11.uni-jena.decmc11.uni-jena.de/hinze/slides-rostock.pdf · fthomas.hinze,christian.bodensteing@uni-jena.de Hinze, C. Bodenstein, B

Motivation Reaction Kinetics Processing Units Phase-locked Loop Theory behind PLLs Simulation Studies Prospectives

Systems Biology at Friedrich Schiller University Jena

www.uni-jena.de

Chemical Oscillation Frequency Control using Phase-locked Loops T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster

Page 3: Chemical Oscillation Frequency Control ... - cmc11.uni-jena.decmc11.uni-jena.de/hinze/slides-rostock.pdf · fthomas.hinze,christian.bodensteing@uni-jena.de Hinze, C. Bodenstein, B

Motivation Reaction Kinetics Processing Units Phase-locked Loop Theory behind PLLs Simulation Studies Prospectives

Human Daily Rhythm: Trigger and Control System

www.wikipedia.org

Chemical Oscillation Frequency Control using Phase-locked Loops T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster

Page 4: Chemical Oscillation Frequency Control ... - cmc11.uni-jena.decmc11.uni-jena.de/hinze/slides-rostock.pdf · fthomas.hinze,christian.bodensteing@uni-jena.de Hinze, C. Bodenstein, B

Motivation Reaction Kinetics Processing Units Phase-locked Loop Theory behind PLLs Simulation Studies Prospectives

Chronobiology

science of biological rhythms and clock systems

Chemical Oscillation Frequency Control using Phase-locked Loops T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster

Page 5: Chemical Oscillation Frequency Control ... - cmc11.uni-jena.decmc11.uni-jena.de/hinze/slides-rostock.pdf · fthomas.hinze,christian.bodensteing@uni-jena.de Hinze, C. Bodenstein, B

Motivation Reaction Kinetics Processing Units Phase-locked Loop Theory behind PLLs Simulation Studies Prospectives

Circadian Clock• Undamped biochemical oscillation• Free-running period close to but typically not exactly 24

hours persisting under constant environmental conditions(e.g. permanent darkness DD or permanent light LL)

• Entrainment – adaptation to external stimuli(e.g. light-dark cycles induced by sunlight)

• Temperature compensation within a physiological range• Reaction systems with at least one feedback loop

=⇒ Biological counterpart of frequency control systemChemical Oscillation Frequency Control using Phase-locked Loops T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster

Page 6: Chemical Oscillation Frequency Control ... - cmc11.uni-jena.decmc11.uni-jena.de/hinze/slides-rostock.pdf · fthomas.hinze,christian.bodensteing@uni-jena.de Hinze, C. Bodenstein, B

Motivation Reaction Kinetics Processing Units Phase-locked Loop Theory behind PLLs Simulation Studies Prospectives

Circadian Clock• Undamped biochemical oscillation• Free-running period close to but typically not exactly 24

hours persisting under constant environmental conditions(e.g. permanent darkness DD or permanent light LL)

• Entrainment – adaptation to external stimuli(e.g. light-dark cycles induced by sunlight)

• Temperature compensation within a physiological range• Reaction systems with at least one feedback loop

=⇒ Biological counterpart of frequency control systemChemical Oscillation Frequency Control using Phase-locked Loops T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster

Page 7: Chemical Oscillation Frequency Control ... - cmc11.uni-jena.decmc11.uni-jena.de/hinze/slides-rostock.pdf · fthomas.hinze,christian.bodensteing@uni-jena.de Hinze, C. Bodenstein, B

Motivation Reaction Kinetics Processing Units Phase-locked Loop Theory behind PLLs Simulation Studies Prospectives

1. Reaction Kinetics at a Glance• Mass-action Kinetics: Background• Ordinary Differential Equations• Mass-action vs. Saturation Kinetics

2. Processing Units:Components of Chemical Control Loops

3. Phase-locked Loop (PLL):Continuous Frequency Control

4. Theoretical Background of PLLs5. Simulation Studies for

Circadian Clock Systems6. Prospectives

Chemical Oscillation Frequency Control using Phase-locked Loops T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster

Page 8: Chemical Oscillation Frequency Control ... - cmc11.uni-jena.decmc11.uni-jena.de/hinze/slides-rostock.pdf · fthomas.hinze,christian.bodensteing@uni-jena.de Hinze, C. Bodenstein, B

Motivation Reaction Kinetics Processing Units Phase-locked Loop Theory behind PLLs Simulation Studies Prospectives

Mass-action Kinetics: BackgroundModeling Temporal Behaviour of Chemical Reaction Networks

Assumption: number of effective reactantcollisions Z proportional toreactant concentrations(Guldberg 1867)

A + B k−→ C . . . . ZC ∼ [A] and ZC ∼ [B], soZC ∼ [A] · [B]

Production rate generating C:vprod([C]) = k · [A] · [B]

Consumption rate of C: . . . . . .vcons([C]) = 0d [C]d t = vprod([C])− vcons([C])

d [C]d t = k · [A] · [B]

Initial conditions: [C](0), [A](0), [B](0)to be set

Chemical Oscillation Frequency Control using Phase-locked Loops T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster

Page 9: Chemical Oscillation Frequency Control ... - cmc11.uni-jena.decmc11.uni-jena.de/hinze/slides-rostock.pdf · fthomas.hinze,christian.bodensteing@uni-jena.de Hinze, C. Bodenstein, B

Motivation Reaction Kinetics Processing Units Phase-locked Loop Theory behind PLLs Simulation Studies Prospectives

Mass-action Kinetics: BackgroundModeling Temporal Behaviour of Chemical Reaction Networks

Assumption: number of effective reactantcollisions Z proportional toreactant concentrations(Guldberg 1867)

A + B k−→ C . . . . ZC ∼ [A] and ZC ∼ [B], soZC ∼ [A] · [B]

Production rate generating C:vprod([C]) = k · [A] · [B]

Consumption rate of C: . . . . . .vcons([C]) = 0d [C]d t = vprod([C])− vcons([C])

d [C]d t = k · [A] · [B]

Initial conditions: [C](0), [A](0), [B](0)to be set

Chemical Oscillation Frequency Control using Phase-locked Loops T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster

Page 10: Chemical Oscillation Frequency Control ... - cmc11.uni-jena.decmc11.uni-jena.de/hinze/slides-rostock.pdf · fthomas.hinze,christian.bodensteing@uni-jena.de Hinze, C. Bodenstein, B

Motivation Reaction Kinetics Processing Units Phase-locked Loop Theory behind PLLs Simulation Studies Prospectives

Mass-action Kinetics: BackgroundModeling Temporal Behaviour of Chemical Reaction Networks

Assumption: number of effective reactantcollisions Z proportional toreactant concentrations(Guldberg 1867)

A + B k−→ C . . . . ZC ∼ [A] and ZC ∼ [B], soZC ∼ [A] · [B]

Production rate generating C:vprod([C]) = k · [A] · [B]

Consumption rate of C: . . . . . .vcons([C]) = 0d [C]d t = vprod([C])− vcons([C])

d [C]d t = k · [A] · [B]

Initial conditions: [C](0), [A](0), [B](0)to be set

Chemical Oscillation Frequency Control using Phase-locked Loops T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster

Page 11: Chemical Oscillation Frequency Control ... - cmc11.uni-jena.decmc11.uni-jena.de/hinze/slides-rostock.pdf · fthomas.hinze,christian.bodensteing@uni-jena.de Hinze, C. Bodenstein, B

Motivation Reaction Kinetics Processing Units Phase-locked Loop Theory behind PLLs Simulation Studies Prospectives

Mass-action Kinetics: BackgroundModeling Temporal Behaviour of Chemical Reaction Networks

Assumption: number of effective reactantcollisions Z proportional toreactant concentrations(Guldberg 1867)

A + B k−→ C . . . . ZC ∼ [A] and ZC ∼ [B], soZC ∼ [A] · [B]

Production rate generating C:vprod([C]) = k · [A] · [B]

Consumption rate of C: . . . . . .vcons([C]) = 0d [C]d t = vprod([C])− vcons([C])

d [C]d t = k · [A] · [B]

Initial conditions: [C](0), [A](0), [B](0)to be set

Chemical Oscillation Frequency Control using Phase-locked Loops T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster

Page 12: Chemical Oscillation Frequency Control ... - cmc11.uni-jena.decmc11.uni-jena.de/hinze/slides-rostock.pdf · fthomas.hinze,christian.bodensteing@uni-jena.de Hinze, C. Bodenstein, B

Motivation Reaction Kinetics Processing Units Phase-locked Loop Theory behind PLLs Simulation Studies Prospectives

Mass-action Kinetics: BackgroundModeling Temporal Behaviour of Chemical Reaction Networks

Assumption: number of effective reactantcollisions Z proportional toreactant concentrations(Guldberg 1867)

A + B k−→ C . . . . ZC ∼ [A] and ZC ∼ [B], soZC ∼ [A] · [B]

Production rate generating C:vprod([C]) = k · [A] · [B]

Consumption rate of C: . . . . . .vcons([C]) = 0d [C]d t = vprod([C])− vcons([C])

d [C]d t = k · [A] · [B]

Initial conditions: [C](0), [A](0), [B](0)to be set

Chemical Oscillation Frequency Control using Phase-locked Loops T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster

Page 13: Chemical Oscillation Frequency Control ... - cmc11.uni-jena.decmc11.uni-jena.de/hinze/slides-rostock.pdf · fthomas.hinze,christian.bodensteing@uni-jena.de Hinze, C. Bodenstein, B

Motivation Reaction Kinetics Processing Units Phase-locked Loop Theory behind PLLs Simulation Studies Prospectives

Mass-action Kinetics: BackgroundModeling Temporal Behaviour of Chemical Reaction Networks

Assumption: number of effective reactantcollisions Z proportional toreactant concentrations(Guldberg 1867)

A + B k−→ C . . . . ZC ∼ [A] and ZC ∼ [B], soZC ∼ [A] · [B]

Production rate generating C:vprod([C]) = k · [A] · [B]

Consumption rate of C: . . . . . .vcons([C]) = 0d [C]d t = vprod([C])− vcons([C])

d [C]d t = k · [A] · [B]

Initial conditions: [C](0), [A](0), [B](0)to be set

Chemical Oscillation Frequency Control using Phase-locked Loops T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster

Page 14: Chemical Oscillation Frequency Control ... - cmc11.uni-jena.decmc11.uni-jena.de/hinze/slides-rostock.pdf · fthomas.hinze,christian.bodensteing@uni-jena.de Hinze, C. Bodenstein, B

Motivation Reaction Kinetics Processing Units Phase-locked Loop Theory behind PLLs Simulation Studies Prospectives

Mass-action Kinetics: General ODE ModelChemical reaction system

a1,1S1 + a2,1S2 + . . .+ an,1Snk1−→ b1,1S1 + b2,1S2 + . . .+ bn,1Sn

a1,2S1 + a2,2S2 + . . .+ an,2Snk2−→ b1,2S1 + b2,2S2 + . . .+ bn,2Sn

...

a1,hS1 + a2,hS2 + . . .+ an,hSnkh−→ b1,hS1 + b2,hS2 + . . .+ bn,hSn,

results in ordinary differential equations

d [Si ]

d t=

h∑ν=1

(kν · (bi,ν − ai,ν) ·

n∏l=1

[Sl ]al,ν

)with i = 1, . . . ,n.

Chemical Oscillation Frequency Control using Phase-locked Loops T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster

Page 15: Chemical Oscillation Frequency Control ... - cmc11.uni-jena.decmc11.uni-jena.de/hinze/slides-rostock.pdf · fthomas.hinze,christian.bodensteing@uni-jena.de Hinze, C. Bodenstein, B

Motivation Reaction Kinetics Processing Units Phase-locked Loop Theory behind PLLs Simulation Studies Prospectives

Mass-action vs. Saturation KineticsKinetics Activation (rate law) Repression (rate law)

Mass-action(no saturation)

v = k · [S]−

Michaelis-Menten(saturation)

v = K · [S]T+[S]

v = K ·(

1− [S]T+[S]

)

Higher-Order Hill(saturation)

v = K · [S]n

T+[S]nv = K ·

(1− [S]n

T+[S]n

)

• Michaelis Menten: Typical enzyme kinetics• Higher-order Hill (n ≥ 2): Typically for gene expression

using sigmoidal transfer function

Chemical Oscillation Frequency Control using Phase-locked Loops T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster

Page 16: Chemical Oscillation Frequency Control ... - cmc11.uni-jena.decmc11.uni-jena.de/hinze/slides-rostock.pdf · fthomas.hinze,christian.bodensteing@uni-jena.de Hinze, C. Bodenstein, B

Motivation Reaction Kinetics Processing Units Phase-locked Loop Theory behind PLLs Simulation Studies Prospectives

1. Reaction Kinetics at a Glance

2. Processing Units:Components of Chemical Control Loops• Addition• Multiplication• Low-pass Filter• Controllable Goodwin-type Core Oscillator

3. Phase-locked Loop (PLL):Continuous Frequency Control

4. Simulation Studies forCircadian Clock Systems

5. Theoretical Background of PLLs6. Prospectives

Chemical Oscillation Frequency Control using Phase-locked Loops T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster

Page 17: Chemical Oscillation Frequency Control ... - cmc11.uni-jena.decmc11.uni-jena.de/hinze/slides-rostock.pdf · fthomas.hinze,christian.bodensteing@uni-jena.de Hinze, C. Bodenstein, B

Motivation Reaction Kinetics Processing Units Phase-locked Loop Theory behind PLLs Simulation Studies Prospectives

Addition

0

1

2

3

4

5

6

0 10 20 30 40 50 60 70 80 90 100

su

bstr

ate

co

nce

ntr

atio

n

time

X1

X2

Y

X1

k1

k2

k3

X2

Y

˙[X1] = 0˙[X2] = 0˙[Y ] = k1[X1] + k2[X2]− k3[Y ]

ODE solution for asymptotic steady state in case of k1 = k2 = k3:[Y ](∞) = lim

t→∞

(1− e−k1t

)· ([X1](t) + [X2](t)) = [X1](0) + [X2](0)

Transfer function: [Y ] = [X1] + [X2]

T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster. Chemical Analog Computers for Clock FrequencyControl Based on P Modules. Proceedings of the Twelfth International Conference on Membrane Computing,to appear within series Lecture Notes in Computer Science, Springer Verlag, 2011, accepted

Chemical Oscillation Frequency Control using Phase-locked Loops T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster

Page 18: Chemical Oscillation Frequency Control ... - cmc11.uni-jena.decmc11.uni-jena.de/hinze/slides-rostock.pdf · fthomas.hinze,christian.bodensteing@uni-jena.de Hinze, C. Bodenstein, B

Motivation Reaction Kinetics Processing Units Phase-locked Loop Theory behind PLLs Simulation Studies Prospectives

Multiplication

0

1

2

3

4

5

6

7

0 10 20 30 40 50 60 70 80 90 100

su

bstr

ate

co

nce

ntr

atio

n

time

X1

X2

Y

X1

k2

k1

X2

Y

˙[X1] = 0˙[X2] = 0˙[Y ] = k1[X1][X2]− k2[Y ]

ODE solution for asymptotic steady state in case of k1 = k2:[Y ](∞) = lim

t→∞

(1− e−k1t

)· ([X1](t) · [X2](t)) = [X1](0) · [X2](0)

Transfer function: [Y ] = [X1] · [X2]

T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster. Chemical Analog Computers for Clock FrequencyControl Based on P Modules. Proceedings of the Twelfth International Conference on Membrane Computing,to appear within series Lecture Notes in Computer Science, Springer Verlag, 2011, accepted

Chemical Oscillation Frequency Control using Phase-locked Loops T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster

Page 19: Chemical Oscillation Frequency Control ... - cmc11.uni-jena.decmc11.uni-jena.de/hinze/slides-rostock.pdf · fthomas.hinze,christian.bodensteing@uni-jena.de Hinze, C. Bodenstein, B

Motivation Reaction Kinetics Processing Units Phase-locked Loop Theory behind PLLs Simulation Studies Prospectives

Low-pass Filter

X2

X3

kn

Ykn−1

k3

X1

k2

k1

Xn−1

X

kn+1

time (days)

subs

trat

e co

ncen

trat

ion

[Y]

time (days)

subs

trat

e co

ncen

trat

ion

[X]

˙[X1] = k1[X ]− k2[X1]˙[X2] = k2[X1]− k3[X2]

...˙[X n−1] = kn−1[Xn−2]− kn[Xn−1]

˙[Y ] = kn[Xn−1]− kn+1[Y ]T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster. Chemical Analog Computers for Clock FrequencyControl Based on P Modules. Proceedings of the Twelfth International Conference on Membrane Computing,to appear within series Lecture Notes in Computer Science, Springer Verlag, 2011, accepted

Chemical Oscillation Frequency Control using Phase-locked Loops T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster

Page 20: Chemical Oscillation Frequency Control ... - cmc11.uni-jena.decmc11.uni-jena.de/hinze/slides-rostock.pdf · fthomas.hinze,christian.bodensteing@uni-jena.de Hinze, C. Bodenstein, B

Motivation Reaction Kinetics Processing Units Phase-locked Loop Theory behind PLLs Simulation Studies Prospectives

Low-pass Filter: Bode Plot as Characteristic Curve

frequency in 1/s

cutoff frequency

slope

mag

nitu

de in

dB

Magnitude dB = 10 · lg(

amplitude of output signalamplitude of input signal

)• Signals affected by smoothing delay throughout cascade• Oscillation waveform harmonisation into sinusoidal shape• Global filter parameters:

passband damping, cutoff frequency, slope

Chemical Oscillation Frequency Control using Phase-locked Loops T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster

Page 21: Chemical Oscillation Frequency Control ... - cmc11.uni-jena.decmc11.uni-jena.de/hinze/slides-rostock.pdf · fthomas.hinze,christian.bodensteing@uni-jena.de Hinze, C. Bodenstein, B

Motivation Reaction Kinetics Processing Units Phase-locked Loop Theory behind PLLs Simulation Studies Prospectives

Controllable Goodwin-type Core Oscillator

a, A,

translation

transportation transcriptional inhibition

Z

X

k5

k4,K

4

k6,K

6

Y

k3

K1

k2,K

2

time (days)

subs

trat

e co

ncen

trat

ion

X Y Z

k6 (nM/h)

perio

d le

ngth

afte

r tr

ansi

ent p

hase

(h)

k4 (nM/h)

perio

d le

ngth

afte

r tr

ansi

ent p

hase

(h)

k2 (nM/h)

perio

d le

ngth

afte

r tr

ansi

ent p

hase

(h)

T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster. Chemical Analog Computers for Clock FrequencyControl Based on P Modules. Proceedings of the Twelfth International Conference on Membrane Computing,to appear within series Lecture Notes in Computer Science, Springer Verlag, 2011, accepted

Chemical Oscillation Frequency Control using Phase-locked Loops T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster

Page 22: Chemical Oscillation Frequency Control ... - cmc11.uni-jena.decmc11.uni-jena.de/hinze/slides-rostock.pdf · fthomas.hinze,christian.bodensteing@uni-jena.de Hinze, C. Bodenstein, B

Motivation Reaction Kinetics Processing Units Phase-locked Loop Theory behind PLLs Simulation Studies Prospectives

Core Oscillator: Dynamical Behaviour

˙[X ] =a

A + K1[Z ]2− k2[X ]

K2 + [X ]

˙[Y ] = k3[X ]− k5[Y ]− k4[Y ]

K4 + [Y ]

˙[Z ] = k5[Y ]− k6[Z ]

K6 + [Z ]

B. Schau. Reverse-Engineering circadianer Oszillationssysteme als Frequenzregelkreise mitNachlaufsynchronisation. Diploma thesis, 2011

Chemical Oscillation Frequency Control using Phase-locked Loops T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster

Page 23: Chemical Oscillation Frequency Control ... - cmc11.uni-jena.decmc11.uni-jena.de/hinze/slides-rostock.pdf · fthomas.hinze,christian.bodensteing@uni-jena.de Hinze, C. Bodenstein, B

Motivation Reaction Kinetics Processing Units Phase-locked Loop Theory behind PLLs Simulation Studies Prospectives

Core Oscillator: Dynamical Behaviour

k6

perio

d le

ngth

(h)

• Velocity parameter k6 of Z degradation notably influencesoscillation frequency

• Period control coefficients assigned to each reactionquantify influence on frequency

T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster. Chemical Analog Computers for Clock FrequencyControl Based on P Modules. Proceedings of the Twelfth International Conference on Membrane Computing,to appear within series Lecture Notes in Computer Science, Springer Verlag, 2011, accepted

Chemical Oscillation Frequency Control using Phase-locked Loops T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster

Page 24: Chemical Oscillation Frequency Control ... - cmc11.uni-jena.decmc11.uni-jena.de/hinze/slides-rostock.pdf · fthomas.hinze,christian.bodensteing@uni-jena.de Hinze, C. Bodenstein, B

Motivation Reaction Kinetics Processing Units Phase-locked Loop Theory behind PLLs Simulation Studies Prospectives

1. Reaction Kinetics at a Glance2. Processing Units:

Components of Chemical Control Loops

3. Phase-locked Loop (PLL):Continuous Frequency Control• General Scheme of a Simple Control Loop• Scheme of a Phase-locked Loop• Model of a Chemical Frequency Control

Based on PLL

4. Theoretical Background of PLLs5. Simulation Studies for

Circadian Clock Systems6. Prospectives

Chemical Oscillation Frequency Control using Phase-locked Loops T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster

Page 25: Chemical Oscillation Frequency Control ... - cmc11.uni-jena.decmc11.uni-jena.de/hinze/slides-rostock.pdf · fthomas.hinze,christian.bodensteing@uni-jena.de Hinze, C. Bodenstein, B

Motivation Reaction Kinetics Processing Units Phase-locked Loop Theory behind PLLs Simulation Studies Prospectives

General Scheme of a Simple Control Loop

u(t) = C(D(w(t),y(t)))

controller

actuator

plant

sensor

x(t) = P(v(t))

y(t) = F(x(t))v(t) = A(u(t))

stimulus

external

system output

v(t)

u(t)y(t)

w(t)

x(t)

Chemical Oscillation Frequency Control using Phase-locked Loops T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster

Page 26: Chemical Oscillation Frequency Control ... - cmc11.uni-jena.decmc11.uni-jena.de/hinze/slides-rostock.pdf · fthomas.hinze,christian.bodensteing@uni-jena.de Hinze, C. Bodenstein, B

Motivation Reaction Kinetics Processing Units Phase-locked Loop Theory behind PLLs Simulation Studies Prospectives

Scheme of a Phase-locked Loop

e x t e r n a l r e f e r e n c e o s c i l l a t o r r e f e r e n c e

e ( t )

p d ( t )

x ( t )

w i t h p e r i o d �( p ) ,e ( t ) a f f e c t s p l

P h a s e d e t e c t o re . g . M u l t i p l i e r p d ( t ) = f ( t ) * x ( t )

f ( t )

L o o p -f i l t e r

O s c i l l a t o re r r o r s i g n a l : p h a s e d i f f e r e n c e

Chemical Oscillation Frequency Control using Phase-locked Loops T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster

Page 27: Chemical Oscillation Frequency Control ... - cmc11.uni-jena.decmc11.uni-jena.de/hinze/slides-rostock.pdf · fthomas.hinze,christian.bodensteing@uni-jena.de Hinze, C. Bodenstein, B

Motivation Reaction Kinetics Processing Units Phase-locked Loop Theory behind PLLs Simulation Studies Prospectives

Scheme of a Phase-locked Loop

+e ( t )

p d ( t )

x ( t )f ( t )

G o o d w i n -O s c i l l a t o r

+

Chemical Oscillation Frequency Control using Phase-locked Loops T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster

Page 28: Chemical Oscillation Frequency Control ... - cmc11.uni-jena.decmc11.uni-jena.de/hinze/slides-rostock.pdf · fthomas.hinze,christian.bodensteing@uni-jena.de Hinze, C. Bodenstein, B

Motivation Reaction Kinetics Processing Units Phase-locked Loop Theory behind PLLs Simulation Studies Prospectives

Model of a Chemical Frequency Control Based on PLL

low−pass filter

core oscillator characteristic curve

Bode plot

comparator[Y] = [E][Z]

signal

core

oscillator

filter

low−pass

plant

actuator

con

tro

ller

[F](t)

[Z](t)

external stimulus [E](t) a, A,

transfer functionscaled tuning signal

[D] = [U]+[F]*ae

ae =

Y

k3

X

k5

k4,K

4

k6,K

6

X2

X3

l 5

E

m1

K1

k 8

k 8

k 7

k 7

k 7

U

F

l4

l3

X1

l2

l1

X4

Z

D

F

Z

XY

k2,K

2

mag

nitu

de (

dB)

frequency (1/s)

k6 (nM/h)

perio

d le

ngth

afte

r tr

ansi

ent p

hase

(h)

length of 0.61 days)

cutoff frequency: 0.000019 1/s(corresponds to period

T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster. Chemical Analog Computers for Clock FrequencyControl Based on P Modules. Proceedings of the Twelfth International Conference on Membrane Computing,to appear within series Lecture Notes in Computer Science, Springer Verlag, 2011, accepted

Chemical Oscillation Frequency Control using Phase-locked Loops T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster

Page 29: Chemical Oscillation Frequency Control ... - cmc11.uni-jena.decmc11.uni-jena.de/hinze/slides-rostock.pdf · fthomas.hinze,christian.bodensteing@uni-jena.de Hinze, C. Bodenstein, B

Motivation Reaction Kinetics Processing Units Phase-locked Loop Theory behind PLLs Simulation Studies Prospectives

1. Reaction Kinetics at a Glance2. Processing Units:

Components of Chemical Control Loops3. Phase-locked Loop (PLL):

Continuous Frequency Control

4. Theoretical Background of PLLs• Comparing Phases• Extracting Phase-difference Information• Phase Response Curve• Amplitude and Phase: Arnold Tongue

5. Simulation Studies forCircadian Clock Systems

6. Prospectives

Chemical Oscillation Frequency Control using Phase-locked Loops T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster

Page 30: Chemical Oscillation Frequency Control ... - cmc11.uni-jena.decmc11.uni-jena.de/hinze/slides-rostock.pdf · fthomas.hinze,christian.bodensteing@uni-jena.de Hinze, C. Bodenstein, B

Motivation Reaction Kinetics Processing Units Phase-locked Loop Theory behind PLLs Simulation Studies Prospectives

Comparing Phases

Output of core oscillator ω = 2π/τ :

y(t) = y(t + τ) = A0 +∞∑

n=1

An cos(nωt + ϕn)

Input of external reference signal ω′ = 2π/τ ′:

z(t) = z(t + τ ′) = A′0 +∞∑

n=1

A′n sin(nω′t + ϕ′n)

For simplicity we assume that all higher harmonics areremoved by a filter.

Chemical Oscillation Frequency Control using Phase-locked Loops T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster

Page 31: Chemical Oscillation Frequency Control ... - cmc11.uni-jena.decmc11.uni-jena.de/hinze/slides-rostock.pdf · fthomas.hinze,christian.bodensteing@uni-jena.de Hinze, C. Bodenstein, B

Motivation Reaction Kinetics Processing Units Phase-locked Loop Theory behind PLLs Simulation Studies Prospectives

Comparing Phases: Multiplication

Multiplication module:

x = k(z(t)y(t)− x) limk→∞

x(t) = z(t)y(t)

Output of multiplication:

z(t)y(t) = A′0A0 + A′0A1 cos(ωt + ϕ1) + A0A′1 sin(ω′t + ϕ′1)

+A′1A1

2(sin((ω′ − ω)t + ϕ′1 − ϕ1) + sin((ω′ + ω)t + ϕ′1 + ϕ1)

)Low frequency term (ω′ ≈ ω) carries the phase-differenceinformation: φ′ − φ.

Chemical Oscillation Frequency Control using Phase-locked Loops T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster

Page 32: Chemical Oscillation Frequency Control ... - cmc11.uni-jena.decmc11.uni-jena.de/hinze/slides-rostock.pdf · fthomas.hinze,christian.bodensteing@uni-jena.de Hinze, C. Bodenstein, B

Motivation Reaction Kinetics Processing Units Phase-locked Loop Theory behind PLLs Simulation Studies Prospectives

Extract Phase-difference Information: Filtering

Filter out high-frequency terms from x(t). Simple linearsignalling cascade works as a low-pass filter1:

B. Schau. Reverse-Engineering circadianer Oszillationssysteme als Frequenzregelkreise mitNachlaufsynchronisation. Diploma thesis, 2011

Adjust kinetic parameters to obtain desired filtering.

1Samoilov et al. J Phys Chem 106 (2002)Chemical Oscillation Frequency Control using Phase-locked Loops T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster

Page 33: Chemical Oscillation Frequency Control ... - cmc11.uni-jena.decmc11.uni-jena.de/hinze/slides-rostock.pdf · fthomas.hinze,christian.bodensteing@uni-jena.de Hinze, C. Bodenstein, B

Motivation Reaction Kinetics Processing Units Phase-locked Loop Theory behind PLLs Simulation Studies Prospectives

Error Signal and Feedback

Output of cascade:

e(t) = a0 + a1 sin((ω′ − ω)t + ϕ′1 − ϕ1 + ϕlpf )

Weakly (!) feed back the signal to the oscillator, e.g. bychanging the kinetic rate constant of l-th reaction:

k∗l = kl(1 + εe(t)) = kl + klεa0 + klεa1 sin (. . . )

= kl (1 + ε sin (. . . )) .

kl reaction rate at constant external signal A′0. Drop tilde forconvenience.

Chemical Oscillation Frequency Control using Phase-locked Loops T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster

Page 34: Chemical Oscillation Frequency Control ... - cmc11.uni-jena.decmc11.uni-jena.de/hinze/slides-rostock.pdf · fthomas.hinze,christian.bodensteing@uni-jena.de Hinze, C. Bodenstein, B

Motivation Reaction Kinetics Processing Units Phase-locked Loop Theory behind PLLs Simulation Studies Prospectives

Perturbed Core Oscillator

Unperturbed core oscillator at constant external signal A′0:

dXdt

= F(X)

with limit cycle solution X0(t) = X0(t + τ).Perturbed core oscillator:

dXdt

= F(X) + ε sin (. . . ) kl∂F∂kl

(X).

Since ε is small the amplitude of the limit cycle is not affectedand we can reduce the model to the phase dynamics!

Chemical Oscillation Frequency Control using Phase-locked Loops T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster

Page 35: Chemical Oscillation Frequency Control ... - cmc11.uni-jena.decmc11.uni-jena.de/hinze/slides-rostock.pdf · fthomas.hinze,christian.bodensteing@uni-jena.de Hinze, C. Bodenstein, B

Motivation Reaction Kinetics Processing Units Phase-locked Loop Theory behind PLLs Simulation Studies Prospectives

Amplitude and Phase

Granada & Herzel PLoS ONE 4(9): e7057 (2009)

We can assign each point on the limit cycle X0 a specific phasevalue φ.

Chemical Oscillation Frequency Control using Phase-locked Loops T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster

Page 36: Chemical Oscillation Frequency Control ... - cmc11.uni-jena.decmc11.uni-jena.de/hinze/slides-rostock.pdf · fthomas.hinze,christian.bodensteing@uni-jena.de Hinze, C. Bodenstein, B

Motivation Reaction Kinetics Processing Units Phase-locked Loop Theory behind PLLs Simulation Studies Prospectives

Phase Reduction (Kuramoto 1984)

Demir et al. IEEE Transactions on circuits and systems 47:5 (2000) 655-674

Oscillator phase dynamics:dφdt

= ω + εPRCl(φ) sin(φ′ − φ+ ϕlpf

).

PRCl is the 2π-periodic phase response curve of kl.

Chemical Oscillation Frequency Control using Phase-locked Loops T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster

Page 37: Chemical Oscillation Frequency Control ... - cmc11.uni-jena.decmc11.uni-jena.de/hinze/slides-rostock.pdf · fthomas.hinze,christian.bodensteing@uni-jena.de Hinze, C. Bodenstein, B

Motivation Reaction Kinetics Processing Units Phase-locked Loop Theory behind PLLs Simulation Studies Prospectives

Phase Response Curve

http://en.wikipedia.org/wiki/Phase_response_curve

Chemical Oscillation Frequency Control using Phase-locked Loops T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster

Page 38: Chemical Oscillation Frequency Control ... - cmc11.uni-jena.decmc11.uni-jena.de/hinze/slides-rostock.pdf · fthomas.hinze,christian.bodensteing@uni-jena.de Hinze, C. Bodenstein, B

Motivation Reaction Kinetics Processing Units Phase-locked Loop Theory behind PLLs Simulation Studies Prospectives

Phase Difference

Phase difference ψ between oscillator and external signal:

ψ = φ− φ′

dψdt

= ω − ω′ − εPRCl(φ′ + ψ) sin

(ψ − ϕlpf

)ψ is a slowly changing variable compared to φ′ = ω′t , thereforewe may average the perturbation over one external cycle andconsider ψ on the slow time scale:

1τ ′

∫ τ ′

0PRCl(φ

′(t) + ψ) dt = −Cτl ,

where Cτl = kl/τ

∂τ∂kl

is the period control coefficient.

Chemical Oscillation Frequency Control using Phase-locked Loops T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster

Page 39: Chemical Oscillation Frequency Control ... - cmc11.uni-jena.decmc11.uni-jena.de/hinze/slides-rostock.pdf · fthomas.hinze,christian.bodensteing@uni-jena.de Hinze, C. Bodenstein, B

Motivation Reaction Kinetics Processing Units Phase-locked Loop Theory behind PLLs Simulation Studies Prospectives

Phase Difference

Phase difference equation:dψdt

=ω − ω′

ε+ Cτ

l sin(ψ − ϕlpf

)Phase-locking corresponds to (stable) steady-state solutions ψ0of this equation:

φ(t) = φ′(t) + ψ0.

Phase locking exists in a region enclosed by:

ε± = ∓(ω − ω′

) 1Cτ

l,

the so called Arnold tongue.

Chemical Oscillation Frequency Control using Phase-locked Loops T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster

Page 40: Chemical Oscillation Frequency Control ... - cmc11.uni-jena.decmc11.uni-jena.de/hinze/slides-rostock.pdf · fthomas.hinze,christian.bodensteing@uni-jena.de Hinze, C. Bodenstein, B

Motivation Reaction Kinetics Processing Units Phase-locked Loop Theory behind PLLs Simulation Studies Prospectives

Arnold Tongue

B. Schau. Reverse-Engineering circadianer Oszillationssysteme als Frequenzregelkreise mitNachlaufsynchronisation. Diploma thesis, 2011

Chemical Oscillation Frequency Control using Phase-locked Loops T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster

Page 41: Chemical Oscillation Frequency Control ... - cmc11.uni-jena.decmc11.uni-jena.de/hinze/slides-rostock.pdf · fthomas.hinze,christian.bodensteing@uni-jena.de Hinze, C. Bodenstein, B

Motivation Reaction Kinetics Processing Units Phase-locked Loop Theory behind PLLs Simulation Studies Prospectives

Phase Lag

The phase lag can be easily determined from the derivedequation. For example consider ω = ω′ and Cτ

l < 0, the stablesolution then is:

ψ0 = ϕlpf .

That means the phase lag is completely determined by thelow-pass filter.

Chemical Oscillation Frequency Control using Phase-locked Loops T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster

Page 42: Chemical Oscillation Frequency Control ... - cmc11.uni-jena.decmc11.uni-jena.de/hinze/slides-rostock.pdf · fthomas.hinze,christian.bodensteing@uni-jena.de Hinze, C. Bodenstein, B

Motivation Reaction Kinetics Processing Units Phase-locked Loop Theory behind PLLs Simulation Studies Prospectives

1. Reaction Kinetics at a Glance2. Processing Units:

Components of Chemical Control Loops3. Phase-locked Loop (PLL):

Continuous Frequency Control4. Theoretical Background of PLLs

5. Simulation Studies forCircadian Clock Systems• Period Lengths subject to Constant Ext. Stimulus• Time to Entrainment to Different Period Lengths• Time to Entrainment to Different Initial Phase Shift• Best Case and Worst Case Entrainment

6. Prospectives

Chemical Oscillation Frequency Control using Phase-locked Loops T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster

Page 43: Chemical Oscillation Frequency Control ... - cmc11.uni-jena.decmc11.uni-jena.de/hinze/slides-rostock.pdf · fthomas.hinze,christian.bodensteing@uni-jena.de Hinze, C. Bodenstein, B

Motivation Reaction Kinetics Processing Units Phase-locked Loop Theory behind PLLs Simulation Studies Prospectives

Period Lengths subject to Constant External Stimulus

constant external stimulus [E]

perio

d le

ngth

(h) o

f sig

nal [

Z]

T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster. Chemical Analog Computers for Clock FrequencyControl Based on P Modules. Proceedings of the Twelfth International Conference on Membrane Computing,to appear within series Lecture Notes in Computer Science, Springer Verlag, 2011, accepted

Chemical Oscillation Frequency Control using Phase-locked Loops T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster

Page 44: Chemical Oscillation Frequency Control ... - cmc11.uni-jena.decmc11.uni-jena.de/hinze/slides-rostock.pdf · fthomas.hinze,christian.bodensteing@uni-jena.de Hinze, C. Bodenstein, B

Motivation Reaction Kinetics Processing Units Phase-locked Loop Theory behind PLLs Simulation Studies Prospectives

Time to Entrainment to Different Period Lengths

period length (h) of external stimulus [E]

time

to e

ntra

inm

ent (

days

) of s

igna

l [Z]

Natural period of core oscillator: 24.2hT. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster. Chemical Analog Computers for Clock FrequencyControl Based on P Modules. Proceedings of the Twelfth International Conference on Membrane Computing,to appear within series Lecture Notes in Computer Science, Springer Verlag, 2011, accepted

Chemical Oscillation Frequency Control using Phase-locked Loops T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster

Page 45: Chemical Oscillation Frequency Control ... - cmc11.uni-jena.decmc11.uni-jena.de/hinze/slides-rostock.pdf · fthomas.hinze,christian.bodensteing@uni-jena.de Hinze, C. Bodenstein, B

Motivation Reaction Kinetics Processing Units Phase-locked Loop Theory behind PLLs Simulation Studies Prospectives

Time to Entrainment to Different Initial Phase Shifts

initial phase shift (°) between external stimulus [E] and core oscillator output [Z]

time

to e

ntra

inm

ent (

days

) of s

igna

l [Z]

external stimulus' period length24h 26'24h

worst case

best case

Entrainment reached within convergence interval 1minT. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster. Chemical Analog Computers for Clock FrequencyControl Based on P Modules. Proceedings of the Twelfth International Conference on Membrane Computing,to appear within series Lecture Notes in Computer Science, Springer Verlag, 2011, accepted

Chemical Oscillation Frequency Control using Phase-locked Loops T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster

Page 46: Chemical Oscillation Frequency Control ... - cmc11.uni-jena.decmc11.uni-jena.de/hinze/slides-rostock.pdf · fthomas.hinze,christian.bodensteing@uni-jena.de Hinze, C. Bodenstein, B

Motivation Reaction Kinetics Processing Units Phase-locked Loop Theory behind PLLs Simulation Studies Prospectives

Best Case and Worst Case Entrainment

time (days)

perio

d le

ngth

(h) o

f sig

nal [

Z]

external stimulus' period length and initial phase shift24h and 325°24h and 245°

Entrainment reached within convergence interval 1minT. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster. Chemical Analog Computers for Clock FrequencyControl Based on P Modules. Proceedings of the Twelfth International Conference on Membrane Computing,to appear within series Lecture Notes in Computer Science, Springer Verlag, 2011, accepted

Chemical Oscillation Frequency Control using Phase-locked Loops T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster

Page 47: Chemical Oscillation Frequency Control ... - cmc11.uni-jena.decmc11.uni-jena.de/hinze/slides-rostock.pdf · fthomas.hinze,christian.bodensteing@uni-jena.de Hinze, C. Bodenstein, B

Motivation Reaction Kinetics Processing Units Phase-locked Loop Theory behind PLLs Simulation Studies Prospectives

1. Reaction Kinetics at a Glance2. Processing Units:

Components of Chemical Control Loops3. Phase-locked Loop (PLL):

Continuous Frequency Control4. Theoretical Background of PLLs5. Simulation Studies for

Circadian Clock Systems

6. Prospectives• Conclusions and Open Questions• Acknowledgements

Chemical Oscillation Frequency Control using Phase-locked Loops T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster

Page 48: Chemical Oscillation Frequency Control ... - cmc11.uni-jena.decmc11.uni-jena.de/hinze/slides-rostock.pdf · fthomas.hinze,christian.bodensteing@uni-jena.de Hinze, C. Bodenstein, B

Motivation Reaction Kinetics Processing Units Phase-locked Loop Theory behind PLLs Simulation Studies Prospectives

Conclusions• Chemical frequency control can utilise PLL• Prototypic modelling example for

entrainment of circadian clockworks• Chemical processing units in minimalistic manner• Variety of chemical implementations• Modularisation in (bio)chemical reaction systems

Some open questions• Identification of in-vivo counterparts• Replacement of individual processing units

(like different core oscillators)• Balancing advantages and limitations of the PLL approach• Inclusion of temperature entrainment (by Arrhenius terms)• Alternative concepts of frequency control

Chemical Oscillation Frequency Control using Phase-locked Loops T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster

Page 49: Chemical Oscillation Frequency Control ... - cmc11.uni-jena.decmc11.uni-jena.de/hinze/slides-rostock.pdf · fthomas.hinze,christian.bodensteing@uni-jena.de Hinze, C. Bodenstein, B

Motivation Reaction Kinetics Processing Units Phase-locked Loop Theory behind PLLs Simulation Studies Prospectives

Conclusions• Chemical frequency control can utilise PLL• Prototypic modelling example for

entrainment of circadian clockworks• Chemical processing units in minimalistic manner• Variety of chemical implementations• Modularisation in (bio)chemical reaction systems

Some open questions• Identification of in-vivo counterparts• Replacement of individual processing units

(like different core oscillators)• Balancing advantages and limitations of the PLL approach• Inclusion of temperature entrainment (by Arrhenius terms)• Alternative concepts of frequency control

Chemical Oscillation Frequency Control using Phase-locked Loops T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster

Page 50: Chemical Oscillation Frequency Control ... - cmc11.uni-jena.decmc11.uni-jena.de/hinze/slides-rostock.pdf · fthomas.hinze,christian.bodensteing@uni-jena.de Hinze, C. Bodenstein, B

Motivation Reaction Kinetics Processing Units Phase-locked Loop Theory behind PLLs Simulation Studies Prospectives

Conclusions• Chemical frequency control can utilise PLL• Prototypic modelling example for

entrainment of circadian clockworks• Chemical processing units in minimalistic manner• Variety of chemical implementations• Modularisation in (bio)chemical reaction systems

Some open questions• Identification of in-vivo counterparts• Replacement of individual processing units

(like different core oscillators)• Balancing advantages and limitations of the PLL approach• Inclusion of temperature entrainment (by Arrhenius terms)• Alternative concepts of frequency control

Chemical Oscillation Frequency Control using Phase-locked Loops T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster

Page 51: Chemical Oscillation Frequency Control ... - cmc11.uni-jena.decmc11.uni-jena.de/hinze/slides-rostock.pdf · fthomas.hinze,christian.bodensteing@uni-jena.de Hinze, C. Bodenstein, B

Motivation Reaction Kinetics Processing Units Phase-locked Loop Theory behind PLLs Simulation Studies Prospectives

Conclusions• Chemical frequency control can utilise PLL• Prototypic modelling example for

entrainment of circadian clockworks• Chemical processing units in minimalistic manner• Variety of chemical implementations• Modularisation in (bio)chemical reaction systems

Some open questions• Identification of in-vivo counterparts• Replacement of individual processing units

(like different core oscillators)• Balancing advantages and limitations of the PLL approach• Inclusion of temperature entrainment (by Arrhenius terms)• Alternative concepts of frequency control

Chemical Oscillation Frequency Control using Phase-locked Loops T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster

Page 52: Chemical Oscillation Frequency Control ... - cmc11.uni-jena.decmc11.uni-jena.de/hinze/slides-rostock.pdf · fthomas.hinze,christian.bodensteing@uni-jena.de Hinze, C. Bodenstein, B

Motivation Reaction Kinetics Processing Units Phase-locked Loop Theory behind PLLs Simulation Studies Prospectives

Conclusions• Chemical frequency control can utilise PLL• Prototypic modelling example for

entrainment of circadian clockworks• Chemical processing units in minimalistic manner• Variety of chemical implementations• Modularisation in (bio)chemical reaction systems

Some open questions• Identification of in-vivo counterparts• Replacement of individual processing units

(like different core oscillators)• Balancing advantages and limitations of the PLL approach• Inclusion of temperature entrainment (by Arrhenius terms)• Alternative concepts of frequency control

Chemical Oscillation Frequency Control using Phase-locked Loops T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster

Page 53: Chemical Oscillation Frequency Control ... - cmc11.uni-jena.decmc11.uni-jena.de/hinze/slides-rostock.pdf · fthomas.hinze,christian.bodensteing@uni-jena.de Hinze, C. Bodenstein, B

Motivation Reaction Kinetics Processing Units Phase-locked Loop Theory behind PLLs Simulation Studies Prospectives

Conclusions• Chemical frequency control can utilise PLL• Prototypic modelling example for

entrainment of circadian clockworks• Chemical processing units in minimalistic manner• Variety of chemical implementations• Modularisation in (bio)chemical reaction systems

Some open questions• Identification of in-vivo counterparts• Replacement of individual processing units

(like different core oscillators)• Balancing advantages and limitations of the PLL approach• Inclusion of temperature entrainment (by Arrhenius terms)• Alternative concepts of frequency control

Chemical Oscillation Frequency Control using Phase-locked Loops T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster

Page 54: Chemical Oscillation Frequency Control ... - cmc11.uni-jena.decmc11.uni-jena.de/hinze/slides-rostock.pdf · fthomas.hinze,christian.bodensteing@uni-jena.de Hinze, C. Bodenstein, B

Motivation Reaction Kinetics Processing Units Phase-locked Loop Theory behind PLLs Simulation Studies Prospectives

Conclusions• Chemical frequency control can utilise PLL• Prototypic modelling example for

entrainment of circadian clockworks• Chemical processing units in minimalistic manner• Variety of chemical implementations• Modularisation in (bio)chemical reaction systems

Some open questions• Identification of in-vivo counterparts• Replacement of individual processing units

(like different core oscillators)• Balancing advantages and limitations of the PLL approach• Inclusion of temperature entrainment (by Arrhenius terms)• Alternative concepts of frequency control

Chemical Oscillation Frequency Control using Phase-locked Loops T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster

Page 55: Chemical Oscillation Frequency Control ... - cmc11.uni-jena.decmc11.uni-jena.de/hinze/slides-rostock.pdf · fthomas.hinze,christian.bodensteing@uni-jena.de Hinze, C. Bodenstein, B

Motivation Reaction Kinetics Processing Units Phase-locked Loop Theory behind PLLs Simulation Studies Prospectives

Conclusions• Chemical frequency control can utilise PLL• Prototypic modelling example for

entrainment of circadian clockworks• Chemical processing units in minimalistic manner• Variety of chemical implementations• Modularisation in (bio)chemical reaction systems

Some open questions• Identification of in-vivo counterparts• Replacement of individual processing units

(like different core oscillators)• Balancing advantages and limitations of the PLL approach• Inclusion of temperature entrainment (by Arrhenius terms)• Alternative concepts of frequency control

Chemical Oscillation Frequency Control using Phase-locked Loops T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster

Page 56: Chemical Oscillation Frequency Control ... - cmc11.uni-jena.decmc11.uni-jena.de/hinze/slides-rostock.pdf · fthomas.hinze,christian.bodensteing@uni-jena.de Hinze, C. Bodenstein, B

Motivation Reaction Kinetics Processing Units Phase-locked Loop Theory behind PLLs Simulation Studies Prospectives

Conclusions• Chemical frequency control can utilise PLL• Prototypic modelling example for

entrainment of circadian clockworks• Chemical processing units in minimalistic manner• Variety of chemical implementations• Modularisation in (bio)chemical reaction systems

Some open questions• Identification of in-vivo counterparts• Replacement of individual processing units

(like different core oscillators)• Balancing advantages and limitations of the PLL approach• Inclusion of temperature entrainment (by Arrhenius terms)• Alternative concepts of frequency control

Chemical Oscillation Frequency Control using Phase-locked Loops T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster

Page 57: Chemical Oscillation Frequency Control ... - cmc11.uni-jena.decmc11.uni-jena.de/hinze/slides-rostock.pdf · fthomas.hinze,christian.bodensteing@uni-jena.de Hinze, C. Bodenstein, B

Motivation Reaction Kinetics Processing Units Phase-locked Loop Theory behind PLLs Simulation Studies Prospectives

Conclusions• Chemical frequency control can utilise PLL• Prototypic modelling example for

entrainment of circadian clockworks• Chemical processing units in minimalistic manner• Variety of chemical implementations• Modularisation in (bio)chemical reaction systems

Some open questions• Identification of in-vivo counterparts• Replacement of individual processing units

(like different core oscillators)• Balancing advantages and limitations of the PLL approach• Inclusion of temperature entrainment (by Arrhenius terms)• Alternative concepts of frequency control

Chemical Oscillation Frequency Control using Phase-locked Loops T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster

Page 58: Chemical Oscillation Frequency Control ... - cmc11.uni-jena.decmc11.uni-jena.de/hinze/slides-rostock.pdf · fthomas.hinze,christian.bodensteing@uni-jena.de Hinze, C. Bodenstein, B

Motivation Reaction Kinetics Processing Units Phase-locked Loop Theory behind PLLs Simulation Studies Prospectives

Acknowledgements

Department of Bioinformatics at School of Biology and PharmacyFriedrich Schiller University Jena

Jena Centre forBioinformatics

Research Initiative inSystems Biology

German FederalMinistry of Educationand Research,project no. 0315260A

Chemical Oscillation Frequency Control using Phase-locked Loops T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster