literatur - springer978-3-322-80054-1/1.pdf · literatur [1] adams, r. a.: ... lecture notes in...

11
Literatur [1] Adams, R. A.: Sobolev Spaces. Academic Press, New York, London, 1975. [2] Axelsson, 0.: Iterative Solution Methods. Cambridge University Press, Cam- bridge, 1994. [3] Axelsson, 0., Barker, V. A.: Finite Element Solution of Boundary Value Problems: Theory and Computation. Academic Press, Orlando, 1984. [4] Aziz, A., Babuska, 1.: On the angle condition in the finite element method. SIAM J. Numer. Anal. 13 (1976) 214-226. [5] Babuska, I.: The finite element method with Lagrangian multipliers. Numer. Math. 20 (1973) 179-192. [6] Barrett, R. et al.: Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods. SIAM, Philadelphia, 1993. [7] Bebendorf, M.: Effiziente numerische Losung von Randintegralgleichungen unter Verwendung von Niedrigrang-Matrizen. Dissertation, Universitat des Saarlandes, Saarbriicken, 2000. [8] Bebendorf, M.: Approximation of boundary element matrices. Numer. Math. 86 (2000) 565-589. [9] Bebendorf, M., Rjasanow, S.: Adaptive low-rank approximation of colloca- tion matrices. Computing 70 (2003) 1-24. [10] Bergh, J., Lofstrom, J.: Interpolation Spaces. An Introduction. Springer, Berlin, New York, 1976. [11] Bjl1lrstad, P., Gropp, W., Smith, B.: Domain Decomposition. Parallel Multile- vel Methods for Elliptic Partial Differential Equations. Cambridge University Press, 1996. [12] Braess, D.: Finite Elemente. Springer, Berlin, 1991. [13] Bramble, J. H.: The Lagrange multiplier method for Dirichlet's problem. Math. Compo 37 (1981) 1-11.

Upload: donga

Post on 30-Aug-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

Literatur

[1] Adams, R. A.: Sobolev Spaces. Academic Press, New York, London, 1975.

[2] Axelsson, 0.: Iterative Solution Methods. Cambridge University Press, Cam­bridge, 1994.

[3] Axelsson, 0., Barker, V. A.: Finite Element Solution of Boundary Value Problems: Theory and Computation. Academic Press, Orlando, 1984.

[4] Aziz, A., Babuska, 1.: On the angle condition in the finite element method. SIAM J. Numer. Anal. 13 (1976) 214-226.

[5] Babuska, I.: The finite element method with Lagrangian multipliers. Numer. Math. 20 (1973) 179-192.

[6] Barrett, R. et al.: Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods. SIAM, Philadelphia, 1993.

[7] Bebendorf, M.: Effiziente numerische Losung von Randintegralgleichungen unter Verwendung von Niedrigrang-Matrizen. Dissertation, Universitat des Saarlandes, Saarbriicken, 2000.

[8] Bebendorf, M.: Approximation of boundary element matrices. Numer. Math. 86 (2000) 565-589.

[9] Bebendorf, M., Rjasanow, S.: Adaptive low-rank approximation of colloca­tion matrices. Computing 70 (2003) 1-24.

[10] Bergh, J., Lofstrom, J.: Interpolation Spaces. An Introduction. Springer, Berlin, New York, 1976.

[11] Bjl1lrstad, P., Gropp, W., Smith, B.: Domain Decomposition. Parallel Multile­vel Methods for Elliptic Partial Differential Equations. Cambridge University Press, 1996.

[12] Braess, D.: Finite Elemente. Springer, Berlin, 1991.

[13] Bramble, J. H.: The Lagrange multiplier method for Dirichlet's problem. Math. Compo 37 (1981) 1-11.

354 Literatur

[14] Bramble, J. H., Pasciak, J. E.: A preconditioning technique for indefi­nite systems resulting from mixed approximations of elliptic problems. Math. Compo 50 (1988) 1-17.

[15] Bramble, J. H., Pasciak, J. E., Steinbach, 0.: On the stability of the 12 projection in Hl(O). Math. Compo 71 (2002) 147-156.

[16] Bramble, J. H., Pasciak, J. E., Xu, J.: Parallel multilevel preconditioners. Math. Compo 55 (1990) 1-22.

[17] Bramble, J. H., Zlamal, M.: Triangular elements in the finite element method. Math. Compo 24 (1970) 809-820.

[18] Brenner, S., Scott, R. L.: The Mathematical Theory of Finite Element Me­thods. Springer, New York, 1994.

[19] Breuer, J.: Wavelet-Approximation der symmetrischen Variationsformu­Herung von Randintegralgleichungen. Diplomarbeit, Mathematisches Insti­tut A, Universitat Stuttgart, 2001.

[20] Carstensen, C., Kuhn, M., Langer, U.: Fast parallel solvers for symmetric boundary element domain decomposition methods. Numer. Math. 79 (1998) 321-347.

[21] Ciarlet, P. G.: The Finite Element Method for Elliptic Problems. North­Holland, 1978.

[22] Clement, P.: Approximation by finite element functions using local regulari­zation. RAIRO Anal. Numer. R-2 (1975) 77-84.

[23] Costabel, M.: Symmetric methods for the coupling of finite elements and boundary elements. In: Boundary Elements IX (C. A. Brebbia, G. Kuhn, W. L. Wendland eds.), Springer, Berlin, pp. 411-420, 1987.

[24] Costabel, M.: Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal. 19 (1988) 613-626.

[25] Costabel, M., Stephan, E. P.: Boundary integral equations for mixed boun­dary value problems in polygonal domains and Galerkin approximations. In: Mathematical Models and Methods in Mechanics. Banach Centre Publ. 15, PWN, Warschau, pp. 175-251, 1985.

[26] Dahmen, W., ProBdorf, S., Schneider, R.: Wavelet approximation methods for pseudodifferential equations I: Stability and convergence. Math. Z. 215 (1994) 583-620.

Literatur 355

[27] Dahmen, W., Prof3dorf, S., Schneider, R: Wavelet approximation methods for pseudodifferential equations II: Matrix compression and fast solution. Adv. Comput. Math. 1 (1993) 259-335.

[28] Dautray, R, Lions, J. L.: Mathematical Analysis and Numerical Methods for Science and Technology. Volume 4: Integral Equations and Numerical Methods. Springer, Berlin, 1990.

[29] Duvaut, G., Lions, J. L.: Inequalities in Mechanics and Physics. Springer, Berlin, 1976.

[30] Fix, G. J., Strang, G.: An Analysis of the Finite Element Method. Prentice Hall Inc., Englewood Cliffs, 1973.

[31] Fortin, M.: An analysis of the convergence of mixed finite element methods. RA.I.RO. Anal. Numer. 11 (1977) 341-354.

[32] Fox, L., Huskey, H. D., Wilkinson, J. H.: Notes on the solution of algebraic linear simultaneous equations. Quart. J. Mech. Appl. Math. 1 (1948) 149-173.

[33] Giebermann, K.: Schnelle Summationsverfahren zur numerischen Losung von Integralgleichungen fur Streuprobleme im JR3. Dissertation, Universitat Karlsruhe, 1997.

[34] Gradshteyn, I. S., Ryzhik, I. M.: Table of Integrals, Series, and Products. Academic Press, New York, 1980.

[35] Greengard, L.: The Rapid Evaluation of Potential Fields in Particle Systems. The MIT Press, Cambridge, MA, 1987.

[36] Greengard, L., Rokhlin, V.: A fast algorithm for particle simulations. J. Com­put. Phys. 73 (1987) 325-348.

[37] Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Pitman, Boston, 1985.

[38] Haase, G.: Parallelisierung numerischer Algorithmen fur partielle Differenti­algleichungen. B. G. Teubner, Stuttgart, Leipzig, 1999.

[39] Hackbusch, W.: Iterative Losung grof3er schwachbesetzter Gleichungssyste­me. B. G. Teubner, Stuttgart, 1993.

[40] Hackbusch, W.: Theorie und Numerik elliptischer Differentialgleichungen. B. G. Teubner, Stuttgart, 1996.

[41] Hackbusch, W.: A sparse matrix arithmetic based on 1i-matrices. I. Intro­duction to 1i-matrices. Computing 62 (1999) 89-108.

356 Literatur

[42] Hackbusch, W., Nowak, Z. P.: On the fast matrix multiplication in the boun­dary element method by panel clustering. Numer. Math. 54, 463-491 (1989).

[43] Boundary Elements: Implementation and Analysis of Advanced Algorithms. Notes on Numerical Fluid Mechanics 54, Vieweg, Braunschweig, 1996.

[44] Han, H.: The boundary integro-differential equations of three-dimensional Neumann problem in linear elasticity. Numer. Math. 68 (1994) 269-281.

[45] Harbrecht, H.: Wavelet Galerkin schemes for the boundary element method in three dimensions. Dissertation, TU Chemnitz, 2001.

[46] Hestenes, M., Stiefel, E.: Methods of conjugate gradients for solving linear systems. J. Res. Nat. Bur. Stand 49 (1952) 409-436.

[47] Hormander, L.: The Analysis of Linear Partial Differential Operators I, Springer, Berlin, 1983.

[48] Hsiao, G. C., Stephan, E. P., Wendland, W. L.: On the integral equation method for the plane mixed boundary value problem of the Laplacian. Math. Meth. Appl. Sci. 1 (1979) 265-321.

[49] Hsiao, G. C., Wendland, W. L.: A finite element method for some integral equations of the first kind. J. Math. Anal. Appl. 58 (1977) 449-481.

[50] Jung, M., Langer, U.: Methode der finiten Elemente fur Ingenieure. B. G. Teubner, Stuttgart, Leipzig, Wiesbaden, 2001.

[51] Jung, M., Steinbach, 0.: A finite element-boundary element algorithm for inhomogeneous boundary value problems. Computing 68 (2002) 1-17.

[52] Kupradze, V. D.: Three-dimensional problems of the mathematical theory of elasticity and thermoelasticity. North-Holland, Amsterdam, 1979.

[53] Kythe, P. K.: Fundamental Solutions for Differential Operators and Appli­cations. Birkhauser, Boston, 1996.

[54] Ladyzenskaja, O. A.: Funktionalanalytische Untersuchungen der Navier­Stokesschen Gleichungen. Akademie-Verlag, Berlin, 1965.

[55] Ladyzenskaja, O. A., Ural'ceva, N. N.: Linear and quasilinear elliptic equa­tions. Academic Press, New York, 1968.

[56] Lage, C., Schwab, C.: Wavelet Galerkin algorithms for boundary integral equations. SIAM J. Sci. Comput. 20 (1999) 2195-2222.

[57] U. Langer, Parallel iterative solution of symmetric coupled fe/be equations via domain decomposition. Contemp. Math. 157 (1994) 335-344.

Literatur 357

[58] Maue, A. W.: Zur Formulierung eines allgemeinen Beugungsproblems durch eine Integralgleichung. Z. f. Physik 126 (1949) 601-618.

[59] McLean, W.: Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, 2000.

[60] McLean, W., Steinbach, 0.: Boundary element preconditioners for a hyper­singular boundary integral equation on an intervall. Adv. Comput. Math. 11 (1999) 271-286.

[61] McLean, W., Tran, T.: A preconditioning strategy for boundary element Galerkin methods. Numer. Meth. Part. Diff. Eq. 13 (1997) 283-30l.

[62] Necas, J.: Les Methodes Directes en Theorie des Equations Elliptiques. Mas­son, Paris und Academia, Prag, 1967.

[63] Nedelec, J. C.: Integral equations with non integrable kernels. Int. Eq. Ope­rator Th. 5 (1982) 562-572.

[64] Of, G.: Die Multipolmethode fur Randintegralgleichungen. Diplomarbeit, Mathematisches Institut A, Universitat Stuttgart, 200l.

[65] Of, G., Steinbach, 0.: A fast multipole boundary element method for a mo­dified hypersingular boundary integral equation. In: Analysis and Simulation of Multifield Problems (W. L. Wendland, M. Efendiev eds.), Lecture Notes in Applied and Computational Mechanics 12, Springer, Heidelberg, 2003, pp. 163-169.

[66] Plemelj, J.: Potentialtheoretische Untersuchungen. Teubner, Leipzig, 1911.

[67] ProBdorf, S., Silbermann, B.: Numerical Analysis for Integral and Related Operator Equations. Birkhauser, Basel, 1991.

[68] Quarteroni, A., Valli, A.: Domain Decomposition Methods for Partial Diffe­rential Equations. Oxford Science Publications, 1999.

[69] Reidinger, B., Steinbach, 0.: A symmetric boundary element method for the Stokes problem in multiple connected domains. Math. Meth. Appl. Sci. 26 (1993) 77-93.

[70] Rudin, W.: Functional Analysis. McGraw-Hill, New York, 1973.

[71J Saad, Y., Schultz, M. H.: A generalized minimal residual algorithm for sol­ving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7 (1985) 856-869.

[72J Sauer, T., Xu, Y.: On multivariate Lagrange interpolation. Math. Compo 64 (1995) 1147-1170.

358 Literatur

[73] Sauter, S. A.: Variable order panel clustering. Computing 64 (2000) 223-261.

[74] Schatz, A. H., Thomee, V., Wendland, W. L.: Mathematical Theory of Finite and Boundary Element Methods. Birkhauser, Basel, 1990.

[75] Schneider, R.: Multiskalen- und Wavelet-Matrixkompression: Analysisba­sierte Methoden zur effizienten Losung groBer vollbesetzter Gleichungssyste­me. Advances in Numerical Mathematics. B. G. Teubner, Stuttgart, 1998.

[76] Schwab, C.: p- and hp-Finite Element Methods. Theory and Applications in Solid and Fluid Mechanics. Clarendon Press, Oxford, 1998.

[77] Scott, L. R., Zhang, S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Compo 54 (1990) 483-493.

[78] Steinbach, 0.: Fast evaluation of Newton potentials in boundary element methods. East-West J. Numer. Math. 7 (1999) 211-222.

[79] Steinbach, 0.: On the stability of the L2 projection in fractional Sobolev spaces. Numer. Math. 88 (2001) 367-379.

[80] Steinbach, 0.: On a generalized L2 projection and some related stability estimates in Sobolev spaces. Numer. Math. 90 (2002) 775-786.

[81] Steinbach, 0.: Stability estimates for hybrid coupled domain decomposition methods. Lecture Notes in Mathematics 1809, Springer, Heidelberg, 2003.

[82] Steinbach, 0., Wendland, W L.: The construction of some efficient precon­ditioners in the boundary element method. Adv. Comput. Math. 9 (1998) 191-216.

[83] Steinbach, 0., Wendland, W. L.: On C. Neumann's method for second order elliptic systems in domains with non-smooth boundaries. J. Math. Anal. Appl. 262 (2001) 733-748.

[84] Triebel, H.: Hohere Analysis. Verlag Harri Deutsch, Frankfurt/M., 1980.

[85] Tyrtyshnikov, E. E.: Mosaic-skeleton approximations. Calcolo 33 (1996) 47-57.

[86] Verchota, G.: Layer potentials and regularity for the Dirichlet problem for Laplace's equation in Lipschitz domains. J. Funct. Anal. 59 (1984) 572-611.

[87] Vladimirov, V. S.: Equations of Mathematical Physics. Marcel Dekker, New York, 1971.

Literatur 359

[88J van der Vorst, H. A.: Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 13 (1992) 631-644.

[89J Walter, W.: Einfuhrung in die Theorie der Distributionen. BI Wissenschafts­verlag, Mannheim, 1994.

[90J Wendland, W. L.: Elliptic Systems in the Plane. Pitman, London, 1979.

[91J Wendland, W. L.: Boundary Element Topics. Springer, Heidelberg, 1997.

[92J Wendland, W. L., Zhu, J.: The boundary element method for three-dimensional Stokes flow exterior to an open surface. Mathematical and Com­puter Modelling 15 (1991) 19-42.

[93J Wloka, J.: Funktionalanalysis und Anwendungen. Walter de Gruyter, Berlin, 1971.

[94] Wloka, J.: Partielle Differentialgleichungen. B. G. Teubner, Stuttgart, 1982.

[95] Xu, J.: An introduction to multilevel methods. In: Wavelets, multilevel me­thods and elliptic PDEs. Numer. Math. Sci. Comput., Oxford University Press, New York, 1997, pp. 213-302.

[96] Yosida, K.: Functional Analysis. Springer, Berlin, Heidelberg, 1980.

Index

Coo(O), CO'(O), 25 Ck,I«O), 26 HS(r),41 HS(fo), HS(fo), 43 HS(O), HS(O), Ho(O), 39 H;w(f),43 H;(O), 71 H;1/2(r), 132

Hy2(r), 137 HH2(f), 140 Lioc(O), 28 Lp(O), Loo(O), 27 L2,o(0), 83 W;(0),30 V(O), V'(O), 35 S(IRd), S'(IR~), 36

A-orthogonale Vektoren, 271 Ableitung

distributionelle, 35 verallgemeinerte, 29

Airysche Spannungsfunktion, 19, 97 Ansatzraum

konformer, 174 konstanter, 216, 245 linearer, 200, 221, 257 quadratischer, 207

Approximation der Linearform, 177 des Operators, 178

Approximationseigenschaft, 176,205, 208, 220, 224

Aubin-Nitsche-Trick, 227, 248, 258

BBL Bedingung, 183 benachbarte Elemente, 189, 214

Bessel-Potential, 38 Bettische Formel

Erste, 16 Zweite, 18

Bilinearform Elastostatik, 16 Potentialgleichung, 13 Stokes-System, 23

Calder6n-Projektor, 130 Cauchy-Daten, 90 CG Verfahren, 275

nach Bramble/Pasciak, 305 vorkonditioniertes, 278

Clement-Operator, 210 Cluster

zulassiges, 311 Clusterbaum, 310

D arstellungsformel Elastostatik, 96 Laplace, 89 Stokes-System, 101, 105

Differentialgleichung Bi-Laplace, 18 Laplace-Operator, 13, 106 Lineare Elastostatik 15 149 , , Stokes-System, 22, 158

Differentialoperator, 11 direkte Methode, 161 Dirichlet-Neumann-Abbildung, 142,

171 Distribution, 35 Doppelschichtpotential, 118, 155

adjungiertes, 114, 151 partielle Integration, 157

Index

Dualitatsprodukt, 27, 42 Dualraum,31 Durchmesser, 188, 214

ebener Spannungszustand, 19 ebener Verschiebungszustand, 20 Einfachschichtpotential, 112, 150 Elastizitatsmodul, 15 elliptisch, 12, 50

Fernfeld, 311 finites Element, 187 Formfunktion

Bubble-, 199 konstante, 195 lineare, 196 quadratische, 198

formregular, 189, 215 Fourier-Transformation, 36 Fundamentallosung, 90

Laplace-Operator, 96 Lineare Elastostatik, 99 Stokes-System, 102

Galerkin-Bubnov-Formulierung, 175 Galerkin-Orthogonalitat, 175, 180, 185 Galerkin-Petrov-Formulierung, 180 Gebietszerlegung, 346 gleichma6ig elliptisch, 12 global gleichma6ig, 189 Gram-Schmidt-Orthogonalisierung, 273 Greensche Formel

Erste, 13 Zweite, 13

Haar-Wavelets,333 hierarchische Matrizen, 312 Hookesches Gesetz, 15 hypersingularer Operator, 121, 156

partielle Integration, 124, 127, 157

Indexmenge, 187 indirekte Methode, 162 inkompressibel, 21

Interpolation, 202 inverse Ungleichung

globale, 202, 222, 225 lokale, 197, 222

Kanten,187 Kapazitat, 135

logarithmische, 135 Kern, 53 Knoten, 187,213 Konditionszahl, 276

361

BEM Steifigkeitsmatrix, 251,260 FEM Steifigkeitsmatrix, 232

konjugierte Vektoren, 271 konjugiertes Gradientenverfahren, 275 Konormalenableitung

Elastostatik, 16 Potentialgleichung, 13 Stokes-System, 24

Kontraktion, 142 Kornsche Ungleichung

Erste,78 Zweite,79

Kriterium von Fortin, 181, 186

Losbarkeitsbedingung, 14, 18, 22, 53 Losungsmannigfaltigkeit, 55 Lagrange

-Funktional, 58 -Multiplikator, 57, 68, 238

Lame-Konstanten, 16 Lastvektor, 232, 250 Lemma

von Bramble-Hilbert, 33, 45 von Cea, 176 von Lax-Milgram, 50 von Schur, 290 von Strang, 178, 179

Lipschitz-Gebiet, 26 lokal gleichma6ig, 189

Maschenweite globale, 189, 213 lokale, 188, 213

362

maximal zulassig, 311 Momentenbedingung, 333 Multiindex, 25 Multilevel-Operator, 288

N ahfeld, 311 natiirliche Dichte, 135, 137 Neumannsche Reihe, 163, 168 Newton-Potential, 106 Normaquivalenz, 195

Oberfiachenrotation, 126 Operatorgleichung, 46 orthogonales Komplement, 53 Orthogonalraum, 53

Projektion Hl_, 204 HU-, 220, 223 L2-, 203, 216, 223

Quasi-Interpolationsoperator, 210 Querkontraktionszahl, 15

Radius, 189 Randbedingungen

Dirichlet-', 14 Gleit-,24 Neumann-, 14 Robin-,14

Randelement, 212 Randspannungsoperator, 17 Randwertproblem

Dirichlet, 65, 79, 162, 226, 245, 307, 346

gemischtes, 73, 83, 169, 263 im AuBenraum, 172 Neumann, 70, 81, 165, 235, 256 Robin, 75, 171, 269

Referenzelement, 190, 193, 214 Reihenentwicklung

ACA, 324 Fundamentallosung, 320 Taylor-Reihe, 317

Riesz-Abbildung, 50 Rotation, 21

Sattelpunktproblem, 57 Satz

Index

closed range theorem, 53 Darstellungssatz von Riesz, 48 Einbettungssatz, 31 Interpolationssatz, 40 inverser Spursatz, 44 Normierungssatz, 31 Spursatz, 44 von GauB-Ostrogradski, 12

Schur-Komplement-System, 299,351 Skalierungsbedingung, 71, 83 Sobolev-Raum, 30 Sobolev-Slobodeckii-Norm, 30, 42 Somigliana-Identitat, 149 Spannungsfunktion von Airy, 19, 97 Spannungstensor, 15 Sprungbedingung

adj. Doppelschichtpotential, 117 Doppelschichtpotential, 120 Einfachschichtpotential, 114

Spur, 12 Stabilitatsbedingung, 55, 60, 68, 164

diskrete, 180, 183, 240, 281, 285 Stokes-Problem, 85

Starrkorperbewegungen, 17, 21 Steifigkeitsmatrix, 231, 250, 259

lokale, 234 Steklov-Poincare Operator, 141, 265 symmetrische Approximation, 266 symmetrische Formulierung, 170, 263

'frager einer Funktion, 25

Ungleichung Erste Kornsche, 78 von Cauchy-Schwarz, 28, 291 von Holder, 27 von Minkowski, 27 von Poincare, 33 Zweite Kornsche, 79

Index

Unterteilung, 187, 212 formregulare, 189 global gleichmaf3ige, 189, 214 lokal gleichmaf3ige, 189, 214 zulassige, 188, 213

Variationsformulierung, 46 Verzerrungstensor, 15

Volumen, 188, 213 Vorkonditionierung, 277, 279

mit Integraloperatoren, 282 Multilevel-, 286

Zerlegung der Eins, 236 zulassig

maximal, 311

363