literatur leucite

27
Definition of LEUCITE : a white or gray mineral consisting of a silicate of potassium and aluminum and occurring in igneous rocks THE MINERAL LEUCITE Chemistry: KAlSi 2 O 6 , Potassium Aluminum Silicate Class: Silicates Subclass: Tektosilicates Group: Feldspathoids Uses: mineral specimen and as a minor source of potassium and aluminum. Specimens Leucite is a popular and interesting mineral. Its name comes from the greek word for "white" in allusion to its typical color. At high temperatures, leucite is isometric and will form the isometric trapezohedron crystal form. Interestingly, as leucite cools, the isometric structure becomes unstable and transforms into a tetragonal structure without altering the outward shape. Although the mineral is actually tetragonal, the outward shape is pseudo-isometric and thus the crystal form is actually pseudo-trapezohedral. Leucite is one of the few minerals that forms the unique trapezohedron. The trapezohedron has 24 deltoid shaped faces, where each face occupies one third of the position

Upload: nindy

Post on 28-Oct-2014

121 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Literatur Leucite

Definition of LEUCITE

: a white or gray mineral consisting of a silicate of potassium and aluminum and occurring in

igneous rocks

THE MINERAL LEUCITE

Chemistry: KAlSi2O6, Potassium Aluminum Silicate Class: Silicates Subclass: Tektosilicates Group: Feldspathoids Uses: mineral specimen and as a minor source of

potassium and aluminum. Specimens

Leucite is a popular and interesting mineral. Its name comes from the greek word for "white" in allusion to its typical color. At high temperatures, leucite is isometric and will form the isometric trapezohedron crystal form. Interestingly, as leucite cools, the isometric structure becomes unstable and transforms into a tetragonal structure without altering the outward shape. Although the mineral is actually tetragonal, the outward shape is pseudo-isometric and thus the crystal form is actually pseudo-trapezohedral.

Leucite is one of the few minerals that forms the unique trapezohedron. The trapezohedron has 24 deltoid shaped faces, where each face occupies one third of the position of a single octahedron's face. The minerals of the garnet group and the mineral analcime are the only common minerals that will also form the trapezohedron.

Distinguishing leucite from the garnets and analcime is relatively easy in some cases. The garnets are much harder and usually

Page 2: Literatur Leucite

deeply colored. Leucite has a much lower density and usually has a duller luster than analcime. Also leucite is typically embedded in host rock where as analcime, when displaying good crystals and not massive or granular, is loose or attacted to other minerals in volcanic cavities.

Leucite, KAlSi2O6 is actually distantly related to analcime, NaAlSi2O6-H2O. Leucite is a member of the feldspathoid group of minerals. Analcime, although usually considered azeolite, is sometimes placed in the feldspathoid group since its chemistry and occassional occurrences are similar.

Minerals whose chemistries are close to that of the alkali feldspars but are poor in silica (SiO2) content, are called feldspathoids. Leucite, like other feldspathoids, is found in silica poor rocks containing other silica poor minerals and no quartz. If quartz were present when the melt was crystallizing, it would react with any feldspathoids and form a feldspar..

At one time leucite was used as a source of potassium and aluminum. Probably due to the high aluminum to silicon ratio, its structure is easily destroyed by acids and this frees the aluminum ions.

Leucite, already a pseudomorph from a high temperature phase, commonly is altered to pseudoleucite. Pseudoleucite is not a mineral but a mixture of nepheline, orthoclaseand analcime.

PHYSICAL CHARACTERISTICS:

Color is clear, white or gray, with yellowish and reddish tints possible.

Luster is vitreous or greasy to dull. Transparency: crystals are transparent, translucent to

commonly opaque. Crystal System is isometric; 4/m bar 3 2/m at temperatures

above 605 degrees C, and tetragonal; either 4 2 2 or 4/m, below 605 degrees C.

Crystal Habits include the characteristic trapezohedron (actually pseudo-trapezohedron). Also granular and massive.

Cleavage is absent.

Page 3: Literatur Leucite

Fracture is conchoidal Hardness is 5.5 - 6. Specific Gravity is approximately 2.4 - 2.5 (slightly below

average) Streak is white. Associated

Minerals include olivine, labradorite, augite, biotite, nepheline and other feldspathoids.

Other Characteristics: surface is usually pitted, dull or has a weathered look.

Notable Occurrences include Mt. Vesuvius, Italy; Magnet Cove, Arkansas, Leucite Hills, Wyoming and Litchfield, Maine, USA; Brazil and Hastings Co, Ontario.

Best Field Indicators are crystal habit, density, low hardness, luster and associations.

http://www.galleries.com/Leucite

Page 4: Literatur Leucite

http://www.mindat.org/min-2465.html

Page 5: Literatur Leucite

General Leucite Information Chemical Formula: KAlSi2O6

 Composition: Molecular Weight = 218.25 gm

 Potassium  17.91 %  K    21.58 % K2O

 Aluminum   12.36 %  Al   23.36 % Al2O3

 Silicon    25.74 %  Si   55.06 % SiO2

 Oxygen     43.99 %  O

           ______        ______ 

           100.00 %      100.00 % = TOTAL OXIDE

 Empirical Formula: KAl(Si2O6)

 Environment: Acid volcanic rocks.

 IMA Status: Valid Species (Pre-IMA) 1791

 Locality: Bearpaw Mountains., Montana, USA. Link to MinDat.org Location Data.

 Name Origin: From the Greek leukos - "white."

 Name Pronunciation: Leucite 

 Synonym: Amphigene

 

Leucite Image Images: Leucite

Comments: Large single crystal of dark gray leucite.Location: Roccamonfina, Caserta Province, Campania, Italy. Scale: 20x20x20 mm.© John Betts - Fine Minerals

Leucite Crystallography Axial Ratios: a:c = 1:1.05042

 Cell Dimensions: a = 13.09, c = 13.75, Z = 16; V = 2,356.04 Den(Calc)= 2.46

Page 6: Literatur Leucite

 Crystal System: Tetragonal - DipyramidalH-M Symbol (4/m) Space Group: I 41/a

 X Ray Diffraction: By Intensity(I/Io): 3.266(1), 3.438(0.85), 5.39(0.8),

 Crystal Structure:

Mousedrag1 - LMB Manipulate Structuredrag2 - RMB Resize/RotateKeyboardS - Stereo Pair on/offH - Help ScreenI - Data InfoA - Atoms On/OffP - Polyhedra On/OffB - Bonds On/OffHelp on Above

Mazzi F , Galli E , Gottardi G , American Mineralogist , 61 (1976) p.108-115, The crystal structure of tetragonal leucite 

View Additional jPOWD Structure files for Leucite[1] [2] [3] [4] [5] [6] [7] [8]

 

Physical Properties of Leucite Cleavage: {110} Indistinct

 Color: Colorless, Gray, Yellow gray, White.

 Density: 2.47

 Diaphaneity: Translucent to transparent

 Fracture: Brittle - Conchoidal - Very brittle fracture producing small, conchoidal fragments.

 Habit: Crystalline - Coarse - Occurs as well-formed coarse sized crystals.

 Hardness: 6 - Orthoclase

 Luminescence: Non-fluorescent.

 Luster: Vitreous (Glassy)

 Magnetism: Nonmagnetic

 Streak: white

 

Optical Properties of Leucite Gladstone-Dale: CI meas= -0.006 (Superior) - where the CI = (1-KPDmeas/KC)

CI calc= -0.01 (Superior) - where the CI = (1-KPDcalc/KC)KPDcalc= 0.2072,KPDmeas= 0.2064,KC= 0.2052

Page 7: Literatur Leucite

Ncalc = 1.5 - 1.51

 Optical Data: Isotropic, n=1.508-1.511.

 

Calculated Properties of Leucite Electron Density: Bulk Density (Electron Density)=2.44 gm/cc

note: Specific Gravity of Leucite =2.47 gm/cc.

 Fermion Index: Fermion Index = 0.01Boson Index = 0.99

 Photoelectric: PELeucite = 3.14 barns/electronU=PELeucite x electron= 7.67 barns/cc.

 Radioactivity: GRapi = 255.81 (Gamma Ray American Petroleum Institute Units) Concentration of Leucite per GRapi unit = 0.39 (%)

Estimated Radioactivity from Leucite   - barely detectable 

Leucite Classification Dana Class: 76.02.02.01 (76)Tectosilicate Al-Si Framework

(76.02)Feldspathoids and related species

(76.02.02)Leucite group

76.02.02.01 Leucite KAlSi2O6 I 41/a 4/m

76.02.02.02 Ammonioleucite (NH4,K)AlSi2O6 I 41/a 4/m

 Strunz Class: 09.GB.05 09      - SILICATES (Germanates)

09.G      - Tektosilicates with Zeolitic H2O

09.GB      -Chains of single connected 4-membered rings

09.GB.05 Ammonioleucite (NH4,K)AlSi2O6 I 41/a 4/m

09.GB.05 Analcime NaAlSi2O6•(H2O) P1 1

09.GB.05 Hsianghualite Ca3Li2Be3(SiO4)3F2 I 213 2 3

09.GB.05 Lithosite K6Al4Si8O25•(H2O) P 21 (pseudo ORTH) 2

Page 8: Literatur Leucite

09.GB.05 Leucite KAlSi2O6 I 41/a 4/m

09.GB.05 Pollucite (Cs,Na)2Al2Si4O12•(H2O) I a3d 4/m 3 2/m

09.GB.05 Wairakite CaAl2Si4O12•2(H2O) I2/a 2/m

 

Other Leucite Information References: NAME( Duda&Rejl90) PHYS. PROP.(Enc. of Minerals,2nd ed.,1990) 

OPTIC PROP.(Mason68)

 See Also: Links to other databases for Leucite :1 - Am. Min. Crystal Structure Database2 - Amethyst Galleries' Mineral Gallery3 - Athena4 - EUROmin Project5 - Ecole des Mines de Paris6 - GeoScienceWorld7 - Glendale Community College8 - Google Images9 - Google Scholar10 - Handbook of Mineralogy (MinSocAm)11 - Handbook of Mineralogy (UofA)12 - MinDAT13 - Mineralienatlas (Deutsch)14 - Minerals in Thin Section-University of North Carolina15 - Minerals in Thin Sections-Humboldt State16 - Online Mineral Museum17 - QUT Mineral Atlas18 - Ruff.Info19 - Tradeshop.com - The Rainbow of Gems20 - UCLA - Petrography Thin-Sections21 - WWW-MINCRYST

Search for Leucite using: 

 

   Web  webmineral.com

[ALTAVISTA] [AOL] [bing] [GeoScienceWorld] [HotBot] [Ixquick] 

Leucite Search

Page 9: Literatur Leucite

[MAMMA] [MSN.COM] [Netscape] [Scirus] [Teoma] [Wikipedia] [YAHOO]

Visit our Advertisers for Leucite :

B & L Fine Minerals

Dan Weinrich Fine Minerals

Dan Weinrich Auctions

Excalibur Minerals

Exceptional Minerals

Fabre Minerals

John Betts Fine Minerals

Lapis Mineral Journal

Mineral News

Page 10: Literatur Leucite

Wrights Rock Shop

Translate Leucite Mineral Data :

Ask about Leucite here :Ask-A-Mineralogist from the Mineralogical Society of AmericaMindat.org's Discussion GroupsOriginal Rockhounds Discussion GroupRockhounds Discussion Group on Yahoo GroupsMineral Discussion Forum from Fabre Minerals - also available in Español

Print or Cut-and-Paste your Leucite Specimen Label here :

Leucite

KAlSi2O6 Dana No: 76.02.02.01 Strunz No: 09.GB.05

Locality:

 

Notes:

 

http://webmineral.com/data/Leucite.shtml

Page 11: Literatur Leucite

Leucite : K(AlSi2O6)

Stradner Kogel, Wilhelmsdorf, Bad Gleichenberg, Styria, Austria

Grey Leucite-xl;+ Apatite(white needles), Diopside(green -"-);Picture width: ~10mm;Field collected /by: 2003/ReMi;Collection/photo: ReMi/ReMi

 © ReMi Photo ID: 73509    View Count: 504

Leucite : K(AlSi2O6)

Cascata, Águas da Prata, São Paulo, Brazil

single leucite crystal. Size 2x1,5x1cm. Rafael Hernandes Corrêa-Silva Collection.

 © Brhounds Photo ID: 45120    View Count: 498

Leucite : K(AlSi2O6)

Krušné Hory Mts (Erzgebirge), Karlovy Vary Region, Bohemia (Böhmen; Boehmen), Czech Republic

A 4cm single leucite crystal. Photo is made in 2005.

 © 2005 S.Sayamov Photo ID: 34471    View Count: 693

Leucite : K(AlSi2O6)

Page 12: Literatur Leucite

Radešin Hill, Ústí nad Labem (Aussig), Ústí Region, Bohemia (Böhmen; Boehmen), Czech Republic

Field of view 5mm

 © Petr Fuchs Photo ID: 65207    View Count: 442

Leucite : K(AlSi2O6)

Radešin Hill, Ústí nad Labem (Aussig), Ústí Region, Bohemia (Böhmen; Boehmen), Czech Republic

FOV 3mm

 © Petr Fuchs Photo ID: 134600    View Count: 292

Leucite : K(AlSi2O6)

Lapanouse-de-Sévérac (slag locality), Aveyron, Midi-Pyrénées, France

Field of wiew: 1,5mmCollection & Photo: D.Journet

 © D.JOURNET Photo ID: 340881    View Count: 163

Leucite : K(AlSi2O6)

Page 13: Literatur Leucite

Oberrotweil, Kaiserstuhl, Baden-Württemberg, Germany

Field of view: 6 mm

 © mk Photo ID: 75180    View Count: 529

Leucite : K(AlSi2O6)

Emmelberg, Üdersdorf, Daun, Eifel, Rhineland-Palatinate, Germany

Field of view: 0.8x0.6 mm

 © JDehove Photo ID: 8141    View Count: 3106

Leucite : K(AlSi2O6)

Emmelberg, Üdersdorf, Daun, Eifel, Rhineland-Palatinate, Germany

Leucite from the Emmelberg. Image width: 4 mm. Collection: Willi Schüller, Adenau. Photo: Fred Kruijen

 © Fred Kruijen Photo ID: 359042    View Count: 148

Leucite : K(AlSi2O6)

Page 14: Literatur Leucite

Emmelberg, Üdersdorf, Daun, Eifel, Rhineland-Palatinate, Germany

Field of view: 1.5 x 1.2 mm

http://www.mindat.org/gallery.php?min=2465

Page 15: Literatur Leucite

LeuciteFrom Wikipedia, the free encyclopedia

Leucite

Leucite crystals in a rock from Italy

General

Category tectosilicates

Chemical formula K[AlSi2O6]

Strunz classification 9.GB.05

Crystal symmetry Tetragonal 4/m dipyramidal

Unit cell a = 13.056 Å, c = 13.751 Å; Z = 16

Identification

Color White to grey

Crystal habit Commonly as euhedral, pseudocubic crystals; 

rarely granular, massive

Page 16: Literatur Leucite

Crystal system Tetragonal

Twinning Common and repeated on {110} and {101}

Cleavage Poor on {110}

Fracture Conchoidal

Tenacity Brittle

Mohs scalehardness 5.5 - 6

Luster Vitreous

Diaphaneity Transparent to translucent

Specific gravity 2.45-2.50

Optical properties Uniaxial (+)

Refractive index nω = 1.508 nε = 1.509

Birefringence δ = 0.001

References [1][2]

Leucite is a rock-forming mineral composed of potassium and aluminium tectosilicate K[AlSi2O6]. Crystals have

the form of cubic icositetrahedra but, as first observed by Sir David Brewster in 1821, they are not optically

isotropic, and are therefore pseudo-cubic. Goniometric measurements made byGerhard vom Rath in 1873 led

him to refer the crystals to the tetragonal system. Optical investigations have since proved the crystals to be

still more complex in character, and to consist of several orthorhombic or monoclinic individuals, which are

optically biaxial and repeatedly twinned, giving rise to twin-lamellae and to striations on the faces. When the

crystals are raised to a temperature of about 500 °C they become optically isotropic and the twin-lamellae and

striations disappear, although they reappear when the crystals are cooled again. This pseudo-cubic character

of leucite is very similar to that of the mineral boracite.

Page 17: Literatur Leucite

The crystals are white or ash-grey in colour, hence the name suggested by A. G. Werner in 1701, from

'λευκος', '(matt) white'. They are transparent and glassy when fresh, albeit with a noticeably subdued

'subvitreous' lustre due to the low refractive index, but readily alter to become waxy/greasy and then dull and

opaque; they are brittle and break with a conchoidal fracture. The Mohs hardness is 5.5, and the specific

gravity 2.47. Inclusions of other minerals, arranged in concentric zones, are frequently present in the crystals.

On account of the color and form of the crystals the mineral was early known as white garnet. French authors

in older literature may employ René Just Haüy's name amphigène, but 'leucite' is the only name for this

mineral species that is recognised as official by the International Mineralogical Association.

[edit]Leucite rocks

Rocks containing leucite are scarce, many countries such as England being entirely without them. However,

they are of wide distribution, occurring in every quarter of the globe. Taken collectively, they exhibit a

considerable variety of types and are of great interest petrographically. For the presence of this mineral it is

necessary that the silica percentage of the rock should be low, since leucite is incompatible with

free quartz and reacts with it to form potassium feldspar. Because it weathers rapidly, leucite is most common

in lavas of recent and Tertiary age, which have a fair amount of potassium, or at any rate have potassium equal

to or greater than sodium; if sodium is abundant nepheline occurs rather than leucite.

In pre-Tertiary rocks leucite readily decomposes and changes to zeolites, analcite and other secondary

minerals. Leucite also is rare in plutonic rocksand dike rocks, but leucite syenite and leucite tinguaite bear

witness to the possibility that it may occur in this manner. The rounded shape of its crystals, their white or grey

color, and absence of planar cleavage make the presence of leucite easily determinable in many of these rocks

by inspection, especially when the crystals are large.

Pseudoleucite from São João Alkaline Massif, RJ, Brazil

Page 18: Literatur Leucite

"Pseudoleucites" are rounded areas consisting of feldspar, nepheline, analcite, &c., which have the shape,

composition and sometimes even the outward crystalline shape of leucite; they are probably pseudomorphs or

paramorphs, which have developed from leucite because this mineral is not stable at ordinary temperatures

and can be expected under favorable conditions to undergo spontaneous change into an aggregate of other

minerals. Leucite is very often accompanied by nepheline, sodalite or nosean; other minerals which make their

appearance with some frequency are melanite, garnet and melilite.

The plutonic leucite-bearing rocks are leucite syenite and missourite. Of these the former consists

of orthoclase, nepheline, sodalite, diopside andaegirine, biotite and sphene. Two occurrences are known, one

in Arkansas, the other in Sutherland, Scotland. The Scottish rock has been calledborolanite. Both examples

show large rounded spots in the hand specimens; they are pseudoleucites, and under the microscope prove to

consist of orthoclase, nepheline, sodalite and decomposition products. These have a radiate arrangement

externally, but are of irregular structure at their centres; it is interesting to note that in both rocks melanite is an

important accessory. The missourites are more mafic and consist of leucite, olivine, augite andbiotite; the

leucite is partly fresh partly altered to analcite, and the rock has a spotted character recalling that of the leucite-

syenites. It has been found only in the Highwood Mountains of Montana.

The leucite-hearing dike-rocks are members of the tinguaite and monchiquite groups. The leucite tinguaites are

usually pale grey or greenish in color and consist principally of nepheline, alkali feldspar and aegirine. The

latter forms bright green moss-like patches and growths of indefinite shape, or in other cases scattered acicular

prisms, among the feldspars and nephelines of the ground mass. Where leucite occurs, it is always euhedral in

small, equant, many-sided crystals in the ground mass, or in larger masses which have the same characters as

the pseudoleucites. Biotite occurs in some of these rocks, and melanite also is present. Nepheline decreases in

amount as leucite increases since the abundances of the two reflect the Na:K ratio of the rock. Rocks of this

group are known from Rio de Janeiro, Arkansas, Kola (in Finland), Montana and a few other places.,

In Greenland there are leucite tinguaites with much arfvedsonite, (hornblende) and eudialyte. Wherever they

occur they accompany leucite- and nepheline syenites. Leucite monchiquites are fine-grained dark rocks

consisting of olivine, titaniferous augite and iron oxides, with a glassy ground mass in which small rounded

crystals of leucite are scattered. They have been described from Czechoslovakia.

By far the greater number of the rocks which contain leucite are lavas of Tertiary or recent geological age.

Although these never contain quartz, butfeldspar is usually present, though there are certain groups of leucite

lavas which are non-feldspathic. Many of them also contain nepheline, sodalite, hauyne and nosean; the much

rarer mineral melilite appears also in some examples. The commonest ferromagnesian mineral

is augite (sometimes rich insodium), with olivine in the more basic varieties. Hornblende and biotite occur also,

but are less common. Melanite is found in some of the lavas, as in the leucite syenites.

Page 19: Literatur Leucite

The rocks in which orthoclase (or sanidine) is present in considerable amount are leucite-trachytes, leucite-

phonolites and leucitophvres. Of these groups the two former, which are not sharply distinguished from one

another by most authors, are common in the neighborhood of Rome. They are of trachytic appearance,

containing phenocysts of sanidine, leucite, augite and biotite. Sodalite or hauyne may also be present, but

nepheline is typically absent. Rocks of this class occur also in the tuffs of the Phlegraean Fields, near Naples.

The leucitophyres are rare rocks which have been described from various parts of the volcanic district of the

Rhine (Olbrck. Laacher See, etc.) and from Monte Vulture in Italy. They are rich in leucite, but contain also

some sanidine and often much nepheline with hauyne or nosean. Their pyroxene is principally aegirine or

aegirine-augite; some of them are rich in melanite. Microscopic sections of some of these rocks are of great

interest on account of their beauty and the variety of feldspathoid minerals which they contain.

In Brazil leucitophyres have been found which belong to the Carboniferous period.

Those leucite rocks which contain abundant essential plagioclase feldspar are known as leucite tephrites and

leucite basanites. The former consist mainly of plagioclase, leucite and augite, while the latter contain olivine in

addition. The leucite is often present in two sets of crystals, both porphyritic and as an ingredient of the ground

mass. It is always idiomorphic with rounded outlines. The feldspar ranges from bytownite to oligoclase, being

usually a variety of labradorite; orthoclase is scarce. The augite varies a good deal in chemnistry and optical

character, being green, brown or violet (suggesting high Na and Ti content), but it is rarely high enough in Na

and Fe to qualify as aegirine-augite or aegirine. Among the accessory minerals biotite, brown hornblende,

hauyne, iron oxides and apatite are the commonest; melanite and nepheline may also occur. The ground mass

of these rocks is only occasionally rich in glass. The leucite-tephrites and leucite-basanites of Vesuvius and

Somma are familiar examples of this class of rocks. They are black or ashy-grey in color, often vesicular, and

may contain many large grey phenocysts of leucite. Their black augite and yellow green olivine are also easily

observed in hand specimens. From Volcan Ello, Sardinia and Roccamonfina similar rocks are obtained; they

occur also in Bohemia, in Java, Celebes, Kilimanjaro (Africa) and near Trebizond inAsia Minor.

Leucite lavas from which feldspar is absent are divided into the leucitites and leucite basalts. The latter contain

olivine, the former do not. Pyroxene is the usual ferromagnesian mineral, and resembles that of the tephrites

and basanites. Sanidine, melanite, hauyne and perovskite are frequent accessory minerals in these rocks, and

many of them contain melilite in some quantity, The well-known leucitite of the Capo di Bove, near, Rome, is

rich in this mineral, which forms irregular plates, yellow in the hand specimen, enclosing many small rounded

crystals of leucite. Bracciano and Roccamonfina are other Italian localities for leucitite, and in Java, Montana,

Celebes and New South Wales similar rocks occur, The leucite basalts belong to more basic types and are rich

in olivine and augite. They occur in great numbers in the Rhenish volcanic district (Eifel, Laacher See) and in

Bohemia, and accompany tephrites or leucitites in Java, Montana, Celebes and Sardinia. The peperino of the

neighborhood of Rome is a leucitite tuff.

Page 21: Literatur Leucite

Leucite adalah mineral populer dan menarik. Namanya berasal dari kata yunani yang berarti "putih" dalam kiasan warna yang khas. Pada temperatur tinggi, leucite adalah isometrik dan akan membentuk bentuk kristal isometrik trapezohedron. Menariknya, apabila leucite mendingin, struktur yang isometrik menjadi tidak stabil dan berubah menjadi struktur tetragonal tanpa mengubah bentuk luar.

Meskipun sebenarnya mineral tetragonal, bentuk lahiriahnya adalah pseudo-isometrik dan dengan demikian bentuk kristal sebenarnya adalah pseudo-trapezohedral. Leucite adalah salah satu dari sedikit mineral yang membentuk trapezohedron unik. Trapezohedron memiliki 24 deltoideus berbentuk wajah, di mana setiap wajah menempati sepertiga dari posisi oktahedron satu wajah. Mineral dari kelompok garnet dan mineral analcime adalah satu-satunya mineral yang umum yang berbentuk trapezohedron.Membedakan leucite dari analcime garnet relatif mudah dalam beberapa kasus. Kelompok garnet jauh lebih kompleks dan biasanya sangat berwarna. Leucite memiliki kerapatan yang jauh lebih rendah dan biasanya memiliki luster daripada analcime yang kusam. Leucite, dengan rumus kimia KAlSi2O6 sebenarnya jauh berbeda dengan analcime, NaAlSi2O6-H2O. Leucite adalah anggota kelompok feldspathoid mineral. Analcime, walaupun biasanya dianggap sebagai zeolit, kadang-kadang ditempatkan dalam grup feldspathoid.Mineral kimia yang dekat dengan alkali feldspars tetapi miskin dalam konten silika (SiO2), disebut feldspathoids. Leucite, seperti feldspathoids lain, ditemukan dalam batuan yang mengandung silika miskin dan tidak ada kuarsa. Jika kuarsa hadir ketika lelehan tersebut mengkristal, hal tersebut akan bereaksi dengan membentuk feldspathoids dan feldspar . Pada suatu waktu leucite digunakan sebagai sumber kalium dan aluminium. Mungkin karena aluminium tinggi untuk rasio silikon, strukturnya mudah hancur oleh asam dan membebaskan ion aluminium.

http://aramadzgeo09.blogspot.com/2012/01/1.html

Page 22: Literatur Leucite
Page 23: Literatur Leucite