l3: quantum mechanics - nanohub · l3: quantum mechanics professor mark lundstrom electrical and...

9
Notes for ECE-606: Spring 2013 L3: Quantum Mechanics Professor Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN USA [email protected] 1 1/14/13 Lundstrom ECE-606 S13 2 tetrahedral bonding in the diamond lattice 4 nearest neighbors J. S. Bhosale, Ph.D. defense, 1/11/13 ! = 109.5 !

Upload: others

Post on 25-Sep-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: L3: Quantum Mechanics - nanoHUB · L3: Quantum Mechanics Professor Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN USA lundstro@purdue.edu

Lundstrom ECE-606 S13

Notes for ECE-606: Spring 2013

L3: Quantum Mechanics

Professor Mark Lundstrom Electrical and Computer Engineering

Purdue University, West Lafayette, IN USA [email protected]

1 1/14/13

Lundstrom ECE-606 S13 2

tetrahedral bonding in the diamond lattice

4 nearest neighbors

J. S. Bhosale, Ph.D. defense, 1/11/13

! = 109.5!

Page 2: L3: Quantum Mechanics - nanoHUB · L3: Quantum Mechanics Professor Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN USA lundstro@purdue.edu

Lundstrom ECE-606 S13 3

Anisotropic etching of Si

P. Campbell, P. M.A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62, 243-249 (1987).

Lundstrom ECE-606 S13 4

Anisotropic etching of Si

370 ! 400 µm

24.5% at 1 sun Martin Green Group UNSW – Zhao, et al, 1998

Page 3: L3: Quantum Mechanics - nanoHUB · L3: Quantum Mechanics Professor Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN USA lundstro@purdue.edu

Lundstrom ECE-606 S13 5

motivation for quantum mechanics 1)  Black body radiation (Planck)

2)  Photoelectric effect (Einstein)

3)  Atomic spectra (Bohr)

4)  Wave-particle duality (de Broglie)

E = hf = !!

E = hf = !!

p = !k = h !

Lundstrom ECE-606 S13 6

Schroedinger wave equation KE + PE = E

! x,t( ) = ei kx"#t( )

KE = p2

2m0

!i!!x

" x,t( ) = !k" x,t( )

p! x,t( ) = !k! x,t( )

p ! !

i""x

p p! x,t( )"# $% = !k( )2

! x,t( )

!!2 "2

"x2 # x,t( ) = !k( )2# x,t( )

p2! x,t( ) = "!2 #2

#x2 ! x,t( )

p2

2m0

! x,t( ) = "!2

2m0

#2

#x2 ! x,t( )

= !2k 2

2m0

! x,t( )= KE! x,t( )

Page 4: L3: Quantum Mechanics - nanoHUB · L3: Quantum Mechanics Professor Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN USA lundstro@purdue.edu

Lundstrom ECE-606 S13 7

Schroedinger wave equation

KE( )! x,t( ) + PE! x,t( ) = E! x,t( )

! x,t( ) = ei kx"#t( )

PE =U x( )

! !

i""t

# x,t( ) = !$ # x,t( )

!!2

2m0

"2

"x2 # x,t( ) +U x,t( )# x,t( ) = E# x,t( )

E = ! !

i""t

E! x,t( ) = !" ! x,t( )

!!2

2m0

"2

"x2 # x,t( ) +U x,t( )# x,t( ) = ! !i"# x,t( )

"t

Lundstrom ECE-606 S13 8

Time-independent Schroedinger wave equation

! x,t( ) =" x( )# t( )

!!2

2m0

"2

"x2 # x,t( ) +U x,t( )# x,t( ) = ! !i"# x,t( )

"t

!!2

2m0

"2# x( )"x2 $ t( ) +U x,t( )# x( )$ t( ) = ! !

i"$ t( )"t

# x( )

!!2

2m0

"2# x( )"x2

1# x( ) +U x( ) = ! !

i"$ t( )"t

1$ t( )

“separation of variables”

Page 5: L3: Quantum Mechanics - nanoHUB · L3: Quantum Mechanics Professor Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN USA lundstro@purdue.edu

Lundstrom ECE-606 S13 9

Time independent Schroedinger wave equation

!!2

2m0

"2# x( )"x2

1# x( ) +U x( ) = c

! !

i"# t( )"t

1# t( ) = c

! !

i"# t( )"t

= c# t( )

! x,t( ) =" x( )# t( ) =" x( )e$ i%t

c = !! = E ! !

i"# t( )"t

= !$# t( ) = c# t( )

!!2

2m0

d 2" x( )dx2 +U x( )" x( ) = E" x( )

! = E!

! t( ) = e" i#t

Lundstrom ECE-606 S13 10

Time independent Schroedinger wave equation

!2" x( )!x2 +

2m0

!E #U x( )$% &'" x( ) = 0

!!2

2m0

d 2" x( )dx2

1" x( ) +U x( )

E >U x( )

k 2 =

2m0

!E !U x( )"# $%

! x( ) = Ae± ikx

E <U x( )

!2" x( )!x2 #$ 2" x( ) = 0

! 2 =

2m0

!U x( )" E#$ %&

! x( ) = Ae±"x

Page 6: L3: Quantum Mechanics - nanoHUB · L3: Quantum Mechanics Professor Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN USA lundstro@purdue.edu

Lundstrom ECE-606 S13 11

solutions of the SE

x

E U x( )

E1

! x( ) = Ae± ikx

! x( ) = Ae"#x

! x( ) = Ae+"x

Lundstrom ECE-606 S13 12

quantum effects

1)  Plane waves

2)  Quantum confinement

3)  Quantum reflection and tunneling

4)  Plane waves and quantum confinement

Page 7: L3: Quantum Mechanics - nanoHUB · L3: Quantum Mechanics Professor Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN USA lundstro@purdue.edu

Lundstrom ECE-606 S13 13

Plane waves

d 2! x( )dx2 +

2m0

!E "U0#$ %&! x( ) = 0

d 2! x( )dx2 + k 2! x( ) = 0

! x( ) = Ae± ikx

! x( ) = 1

Leikx (normalized in 1D)

Lundstrom ECE-606 S13 14

particle in a box

x0 W

U = 0

d 2! (x)dx2

+ k2! = 0

! (x) = sin knx

!n =!2kn

2

2m* =!2n2" 2

2m*W 2

!1

!2EF

light mass narrow width ! high subband energy

k2 = 2m

*E!2

!U x( )

Page 8: L3: Quantum Mechanics - nanoHUB · L3: Quantum Mechanics Professor Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN USA lundstro@purdue.edu

Lundstrom ECE-606 S13 15

carrier densities

x0 W

U = 0

!1

!2EF

W0

classical

n(x)

x

quantum mechanical

n(x)!" * x( )" x( )

!U x( )

Lundstrom ECE-606 S13 16

triangular quantum well

!

x

U(x) = qExx

x

! (x)

x =2Ei

3qE

! (x) : Airy functions

! 1

!i =3hqEx

4 2m*i + 3 4( )"

#$

%

&'

2 /3

i = 1,2,3,...

!U x( )

Page 9: L3: Quantum Mechanics - nanoHUB · L3: Quantum Mechanics Professor Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN USA lundstro@purdue.edu

Lundstrom ECE-606 S13 17

quantum effects

1)  Plane waves

2)  Quantum confinement

3)  Quantum reflection and tunneling

4)  Plane waves and quantum confinement