isscc 09 itoh

Upload: alvarometro-presion-fija

Post on 05-Apr-2018

239 views

Category:

Documents


2 download

TRANSCRIPT

  • 7/31/2019 Isscc 09 Itoh

    1/33

    Adaptive Circuitsfor

    the 0.5-V Nanoscale CMOS Era

    Kiyoo Itoh

    Hitachi Ltd., Tokyo, Japan

    ISSCC2009 Keynote

    2009 IEEE International Solid-State Circuits Conference 2009 IEEE

  • 7/31/2019 Isscc 09 Itoh

    2/33

    K. Itoh

    OUTLINE

    1. IntroductionThe 1-V wall

    2. Adaptive Circuits for Memory-Rich LSIsTrends in VminBreakthrough technologiesScenario to the 0.5-V nanoscale era

    3. Adaptive Circuits for Mixed Signal LSIs

    Digital assisted analog design4. Conclusion

    2009 IEEE International Solid-State Circuits Conference 2009 IEEE

  • 7/31/2019 Isscc 09 Itoh

    3/33

    K. Itoh

    The 1-V Wall

    Device feature size, F(nm)800 350 90 45 22 11

    VDD

    Target

    180

    Vmin(RDF)

    543

    2

    1

    0.4

    VDD,Vmin(V)

    0.2

    0.60.8

    MPUs(ISSCC), Vmin: Min. op. VDD

    Power crisis

    RDF: Random Dopant Fluctuation

    2009 IEEE International Solid-State Circuits Conference 2009 IEEE

  • 7/31/2019 Isscc 09 Itoh

    4/33K. Itoh

    What should we do to lower VDD?

    1. Reduce min. operating VDD(Vmin) by reducingLowest necessary Vt(Vt0),

    Intrinsic Vt-variation ( Vt).New devices, circuits, repair etc.

    2. Reduce power-supply noise (Vps)Compact subsystems (small core/chip,3-D chip stack) etc.

    Reducing Vmin is the key. (VminVps)

    2009 IEEE International Solid-State Circuits Conference 2009 IEEE

  • 7/31/2019 Isscc 09 Itoh

    5/33K. Itoh

    OUTLINE

    1. IntroductionThe 1-V wall

    2. Adaptive Circuits for Memory-Rich LSIsTrends in VminBreakthrough technologiesScenario to the 0.5-V nanoscale era

    3. Adaptive Circuits for Mixed Signal LSIs

    Digital assisted analog design4. Conclusion

    2009 IEEE International Solid-State Circuits Conference 2009 IEEE

  • 7/31/2019 Isscc 09 Itoh

    6/33K. Itoh

    Circuits Giving Low-VDDLimitations

    * Most sensitive to Vt

    Vt large largest small

    LW 8F2(av.) 1.5-3F2 15F2

    Count large largest medium

    Inverter SRAM Cell* DRAM SA

    Vt 1/ LW, F: device feature size

    Chip

    Logic block

    RAM block

    Peri. Array

    DL

    cell

    WL

    DL

    2009 IEEE International Solid-State Circuits Conference 2009 IEEE

  • 7/31/2019 Isscc 09 Itoh

    7/33K. Itoh

    Definition ofVmin

    (Vt) VDD/(VDDVt)1.2

    = (Vt0+ Vtmax)/ (Vt0)={(VDDVt0)/(VDDVt0 Vtmax)}1.2

    Vt0: Lowest necessary av.Vt

    VTmax: Max. variation in Vt

    Vmin=VDDfor a fixed=Vt0+ (1 + ) Vtmax

    = 1/( 1/1.21)

    : Tolerable speed

    variation23 for =1.4 1.6

    Inverter SRAM Cell DRAM SAVDD

    DLDL0

    SP

    VDD-vS

    DL

    SN

    DL

    VDD

    2009 IEEE International Solid-State Circuits Conference 2009 IEEE

  • 7/31/2019 Isscc 09 Itoh

    8/33K. Itoh

    High and Unscalable Vt0

    Sub

    thresholdleakage

    (A)

    10-8

    10-710

    -6

    10-510-410-3

    10-210-1100

    101102

    -0.2 0 0.2 0.4 0.6 1

    Tj= 75 C, 130 nm

    Vt0(ext, 25 C)

    Vt0(ext) =Vt0(nA/ m) + 0.3 V

    1-Mgate Logic

    1-Mb SRAM

    64-KDRAM SAs*

    0.8

    HP LP

    HP

    LP

    * contributing to leakage in active standby mode

    HP: high performance, LP: low power

    2009 IEEE International Solid-State Circuits Conference 2009 IEEE

  • 7/31/2019 Isscc 09 Itoh

    9/33K. Itoh

    Vtmax

    K. Itoh et al., p. 68, ESSCIRC2007 K. Takeuchi et al., p. 467, IEDM 2007

    Vtmax= mm circuit count

    =Avt/ LW

    {tox(Vt0+ 0.1 V)}0.5

    Nsub0.25

    For lower Vtmax, use1. Repair

    ECC + Redundancy (m->1/2)

    2. Small technologies

    Circuits toleratingThe largest MOSFET possibleThe lowest Vt0possible

    Small-AvtMOSFETs

    Avt(mV

    m),tOX(nm

    )

    Device feature size, F(nm)

    10

    54

    3

    2

    1

    0.5

    0.4

    0.3

    Avt

    2.5

    1.5

    FD-SOI, EOT = 0.5 nm

    tOX

    250 130 90 65 45 32180

    4.2

    Conv. (tOX )High-k MG (tOX )FD-SOI (Nsub )

    2009 IEEE International Solid-State Circuits Conference 2009 IEEE

  • 7/31/2019 Isscc 09 Itoh

    10/33K. Itoh

    ECC + Redundancy

    RedundantWords

    ECC word with one defectcell corrected by ECC.

    ECC word with two or

    more defect replacedby a redundant word.

    parity

    bits

    data

    bits

    N

    WECC Words

    defective cell replace

    K. Itoh, ESSCIRC2007 Dig., pp. 68-75

    r: repairable %Max r= 0.1%(SRAMs), 0.4%(DRAMs).

    32M 64M 128M 256MSRAM(b)128M 256M 512M 1GDRAM(b)

    m

    3.3

    2.9

    2

    4

    6

    0.1 (SRAM)

    0.01

    0.001%

    r= 0%

    SRAM DRAM

    5.5

    6.0

    0.4 (DRAM)

    1

    5

    3

    2009 IEEE International Solid-State Circuits Conference 2009 IEEE

  • 7/31/2019 Isscc 09 Itoh

    11/33K. Itoh

    Trends in Vmin=Avt/ LW

    LW= 8F2(L), 1.5F2(SRAM), 15F2(DRAM)

    Avt= 1.5 mV m (Hi-k MG, SOI)Avt= 4.2 mV m (Conv.)

    F(nm)Logic (g)

    0.2V

    0.4V

    0.2

    VVt0

    =0.4

    V

    Vmin(V)

    0.2

    2

    1

    0.5

    0.4

    3

    SRAM (b)DRAM (b) 8G

    130 65250180 90 45 32 22 15 11

    32M

    1.3M 5M 20M 80M 320M8M 32M 128M 512M 2G

    128M 512M 2G

    Repair for RAMs

    DRAM

    LogicSRAM

    8G

    320M

    Repair for RAMs

    Vt0=0.

    4V

    0.2V

    0.4V

    0.2V

    DRAM

    LogicSRAM

    130 65250180 90 45 32 22 15 11

    32M

    1.3M 5M 20M 80M8M 32M 128M 512M 2G

    128M 512M 2G

    2009 IEEE International Solid-State Circuits Conference 2009 IEEE

  • 7/31/2019 Isscc 09 Itoh

    12/33

    K. Itoh

    Dynamic S-control 8-T cell

    State-of-the-Art SRAM Cells

    WDL

    VDDWWLRWL

    RDLWDL

    M1

    M2

    VDLor float (W)

    VDD( VDL)

    0

    VDL

    VDD

    STB ACT

    0

    00

    Increased cell-power supply Dynamic S-control

    K. Itoh, p. 132, VLSI Circuits96; H. Akamatsu, p. 14, VLSI Circuits96; F. Hamzaoglu, ISSCC08, p. 376; L. Chang, p. 252, VLSI Circuits9

    2009 IEEE International Solid-State Circuits Conference 2009 IEEE

  • 7/31/2019 Isscc 09 Itoh

    13/33

    K. Itoh

    Reduction in Vminof SRAMs

    6-T cell 6-T cell vs 8-T cell

    8-T, LW F2

    156-185F2

    LW F2

    120F2

    6-T

    LW FW fixedat 90 nm

    11

    Cellsiz

    e(ratio)

    1

    0.5

    0.4

    0.3

    0.2

    0.1130 90 65 45 32 22 15Device feature size, F(nm)

    LW FW fixedat 90 nm

    Vt0=0

    .4V

    0.2V

    LW F2

    SRAM(b)65

    32130 15250 64M 256M16M 1G

    = 1.6, repairAvt= 2.5 mV m

    F(nm)

    3

    0.2

    2

    1

    0.5

    0.4

    0.3

    V

    min(V)

    4M

    LW FW fixedat 90 nm

    2009 IEEE International Solid-State Circuits Conference 2009 IEEE

  • 7/31/2019 Isscc 09 Itoh

    14/33

    K. Itoh

    Breakthrough Technologies

    1. Adaptive devices/circuits(Vmin ) -scalable FinFET

    Dual-VDDdual-Vt0circuit2. Adaptive tech. (Vps )

    with small chip/compact

    subsystem 2-D selection FinFET cell Many-core and chip stack

    The best way to predict the future is to invent it.for reducing Vminand Vps

    0.4

    (a.u.)

    0.2

    0.6

    0.8

    1.2

    1.0

    0.60 0.1 0.2 0.3 0.4 0.5Vt0(V)

    (Vt0+ 0.1 V)0.5

    Vmin= Vt0+ (1+ ) m

    Future Perspectives, ISLPED02, August 2002.

    2009 IEEE International Solid-State Circuits Conference 2009 IEEE

  • 7/31/2019 Isscc 09 Itoh

    15/33

    K. Itoh

    Assumptions forAvt and Vt0=Avt/ LW, > 1 ( : device scaling factor)

    tOX Avt 1/Vt0= 0.4 V

    250 130 90 65 45 32 15Device feature size, F(nm)

    Poly-Si bulk

    Avt

    HP

    10

    54

    3

    2

    1

    0.5

    Avt(mVm

    ),

    tOX(nm

    )

    0.4

    0.3

    High-k MG, FD-SOI

    2.5

    1.5

    FD-SOI, EOT = 0.5 nm

    22 11

    LP

    180

    Avt 1/

    Vt0= 0.2 V

    2009 IEEE International Solid-State Circuits Conference 2009 IEEE

  • 7/31/2019 Isscc 09 Itoh

    16/33

    K. Itoh

    L/

    W/ D G S

    Planar FinFET

    AvtL

    W

    LW

    1/1/

    1/

    1/ 2

    1/

    1/1/

    1

    1

    1/1/

    1/

    1/ 2

    1/

    1/1/

    1

    HP LP HP LP

    L/W

    GS

    D

    > 1, =Avt/ LW

    -Scalable FinFET

    by scaling up the height of fin

    2009 IEEE International Solid-State Circuits Conference 2009 IEEE

  • 7/31/2019 Isscc 09 Itoh

    17/33

    K. Itoh

    and Vminfor HP Designs

    Planar Fin

    SRAM

    Logic

    DRAM

    5040

    3020

    10

    54

    32

    (mV)

    Device feature size, F(nm)45 32 22 15 11

    Repair for RAMs

    Logic

    DRAM

    Logic

    SRAM

    SRAM

    0.49

    0.27

    1

    0.5

    0.4

    0.3

    0.2

    Vmin

    (V)

    F(nm)

    SRAM (b)

    45 32

    128M 256M 512M

    22 15 11

    1G 2GLogic (g) 20M 40M 80M 160M 320M

    DRAM (b) 4G 8G2G1G512M

    2009 IEEE International Solid-State Circuits Conference 2009 IEEE

  • 7/31/2019 Isscc 09 Itoh

    18/33

    K. Itoh

    and Vminfor LP Designs

    100

    45 32 22 15 11Device feature size, F(nm)

    5040

    30

    20

    10

    (mV)

    54

    SRAM

    Logic

    DRAM

    Repair for RAMs

    F(nm)

    SRAM (b)

    45 32

    128M 256M 512M

    22 15 11

    1G 2GLogic (g) 20M 40M 80M 160M 320M

    DRAM (b) 4G 8G2G1G512M

    2

    1

    0.5

    0.4

    0.3

    Vmin(V)

    DRAM

    Logic

    SRAM

    1.41.3Logic

    SRAM

    0.65

    Planar Fin

    2009 IEEE International Solid-State Circuits Conference 2009 IEEE

  • 7/31/2019 Isscc 09 Itoh

    19/33

    K. Itoh

    Dual-VDDDual-Vt0Dynamic Circuit

    45 32 22 15 11Device feature size, F(nm)

    0.65Vt0=0.4V

    Vt0=0V

    FinFETs

    Vminfor dual-VDDdual-Vt0circuit

    0.50.40.3

    0.2

    0.1

    2

    1

    Vmin

    (V)

    0.11

    Logic block

    Logic block

    VDD, VtH VDL, VtL

    Bigger area ofVDLsub-block

    Lower Vmin

    2009 IEEE International Solid-State Circuits Conference 2009 IEEE

  • 7/31/2019 Isscc 09 Itoh

    20/33

    K. Itoh

    Gate-Source Offset Driving

    K. Itoh et al., p. 68, ESSCIRC2007

    0.6

    0.4

    0.2

    Vt(V)-0.4 -0.2 0 0.2 0.4

    VDL(V)

    0

    VDD= 0.6 VVteff=Vt0= 0.3 VVG= 0.3 V

    D E

    Vteff=

    V+Vt Vt0

    VG=VDL Vt

    Stdby Active

    V 0

    VDDVDL

    VDLlow Vt

    VDL

    CK1

    VDD

    M1

    M2

    N

    CK2

    M4

    OUT

    M3

    IN

    low Vt

    2009 IEEE International Solid-State Circuits Conference 2009 IEEE

  • 7/31/2019 Isscc 09 Itoh

    21/33

    K. Itoh

    0.1-V Swing E/D Dynamic Inverter

    Others: E-MOS (Vt= 0.3 V).W(nm)=140(M1,M3),

    420(M2), 280(M4),L=50 nmCL= 4fF+4MOSs.K. Itoh et al., p. 68, ESSCIRC2007

    CK1

    VDLVDD

    M1

    M2

    N

    CK2

    M4

    OUT

    M3

    IN

    Widely applicable to low-powerbuffers and others.

    Vol

    tage(V)

    OUT

    (IN:L)

    0 0.5 1.0 1.5 2.0 2.50

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    3.0

    CK2

    CK1

    N(IN:L)N(IN:H)

    OUT

    (IN:H)

    Time (ns)

    VDL= 0.1 V, VDD= 0.6 VD-MOS (Vt= 0.2 V)

    2009 IEEE International Solid-State Circuits Conference 2009 IEEE

  • 7/31/2019 Isscc 09 Itoh

    22/33

    K. Itoh

    Breakthrough Technologies

    1. Adaptive devices/circuits(Vmin ) -scalable FinFET

    Dual-VDDdual-Vt0circuit2. Adaptive tech. (Vps )

    with small chip/compact

    subsystem 2-D selection FinFET cell Many-core and chip stack

    The best way to predict the future is to invent it.for reducing Vminand Vps

    Future Perspectives, ISLPED02, August 2002.

    0.4

    (a.u.)

    0.2

    0.6

    0.8

    1.2

    1.0

    0.60 0.1 0.2 0.3 0.4 0.5Vt0(V)

    (Vt0+ 0.1 V)0.5

    Vmin= Vt0+ (1+ ) m

    2009 IEEE International Solid-State Circuits Conference 2009 IEEE

  • 7/31/2019 Isscc 09 Itoh

    23/33

    K. Itoh

    2-D Selection DRAM Cell

    Conventional 2-D selection

    512 cells

    SA

    DLMC

    WL

    CD= 512Cd(1)

    WL

    1-T 1-C

    vS CS/CDDL

    CSVDD/0

    CS 1/20 for same vS

    CD = 16Cd+ 32Ci/024Cd(0.05)ifCd= 4Ci/0

    2-T 1-C

    vS CS/CDDL

    WL

    YS

    CS

    DL

    YSWL

    32

    16

    i/0

    2009 IEEE International Solid-State Circuits Conference 2009 IEEE

  • 7/31/2019 Isscc 09 Itoh

    24/33

    K. Itoh

    PL

    WL

    p-subSTI

    SiO2

    n+

    YS

    2-T FinFET DRAM Cell

    A FinFET and FinFET capacitor at the side wall Another FinFET with the gate controlled by buried YS line One DL shared by two cells

    5F2/cell (cf. 6-8F2 for DRAMs, >160F2 for SRAMs)

    DL0 YS0 DL1 YS1 DL2

    cont.

    WL

    PL

    i

    5F

    2F

    2009 IEEE International Solid-State Circuits Conference 2009 IEEE

  • 7/31/2019 Isscc 09 Itoh

    25/33

    K. Itoh

    M L

    C0,0

    C1,0

    C127,0

    C0,1

    C1,1

    C127,1

    C0,127

    C1, 127

    C127,127

    power switch

    Many-Core LSI

    16k cores in the 11-nm generation

    Chip: 10 x 10 mm2

    320 Mg, 8-Gb DRAM

    Small Core: 56 x 56 m2

    20-Kg + others (0.67)512-Kb DRAM (0.33)

    5F2

    cellChallenges:DevelopRedundant circuits/cores

    LN HS power switch etc.

    2009 IEEE International Solid-State Circuits Conference 2009 IEEE

  • 7/31/2019 Isscc 09 Itoh

    26/33

    K. Itoh

    Differentially-Driven Low-Vt0Power Switches

    ProposedConventional

    Large VPS(VDDswing of ND)Int. logic state destroyedSlow recovery of ND

    core

    P. Sw.

    VDD

    SP

    VDD

    VDD

    0

    0

    ND

    highVt0

    Ifioffp= ioffn, ND & NS VDD/2.VPScanceled.

    (differentially-driven ND & NS)

    Int. logic state held

    Fast recovery

    SPioffp

    ioffn Sn

    VDD

    VDD

    0

    0

    0VDD

    VDD/2

    VDD

    ND

    NS

    lowVt0

    2009 IEEE International Solid-State Circuits Conference 2009 IEEE

  • 7/31/2019 Isscc 09 Itoh

    27/33

    K. Itoh

    Simulation Results

    20-kgate coreVDD= 0.5 V, Vt0= 0.2 V, 85 C

    WP= 320 360 nmWn= 240 190 nmL= 50 nm

    VDD

    SPVt0= 0,WP

    ND

    55WP

    100Wn 100Wn

    NS

    Vt0= 0,Wn Sn

    55WP

    Leakage power of 16k cores:1.4 W (standby)

    9.3 W (active, all cores activated)

    0.2

    0.6

    0 100n 200n 300n

    0.3

    0.1

    1.0

    ND

    NS

    1.16 mA

    0.5

    0.18 mA

    0.2 VVN(V)

    mA

    15 ns

    2009 IEEE International Solid-State Circuits Conference 2009 IEEE

  • 7/31/2019 Isscc 09 Itoh

    28/33

    K. Itoh

    Chip Stack

    Interface chip

    9 stacked DRAM chips

    (each 50 m thick)

    TSVBumpTSV: Through

    Silicon Via

    by courtesy of ELPIDA

    2009 IEEE International Solid-State Circuits Conference 2009 IEEE

  • 7/31/2019 Isscc 09 Itoh

    29/33

    K. Itoh

    Scenario to the 0.5-V Era

    RDF: Random Dopant Fluctuation

    Breakthrough

    Device feature size, F(nm)

    800 350 90 45 22

    VDD

    180

    Vmin(RDF)

    54

    3

    2

    1

    0.4

    0.2

    0.6

    0.8

    Power crises

    HP

    MPU(ISSCC), Vmin: Min. op. VDD

    11

    Repair-scalable MOS

    (FinFET)

    Dual-VDDdual-Vt0circuitsTiny DRAM cellMany-core LSIs

    LN HS powergating

    VDD

    ,Vmin(V

    )

    2009 IEEE International Solid-State Circuits Conference 2009 IEEE

  • 7/31/2019 Isscc 09 Itoh

    30/33

    K. Itoh

    Memory-Rich LSI vs. Mixed Signal LSI

    Mixed signal LSI

    DAC/ADC

    Analog

    +

    L/M

    + ++

    comp.

    op-amp

    Vtmax* 0.5 mV 2.3 mV

    20 200

    *Avt= 1.25 mV m, Vt0= 0, 11-nm FinFET, repair for RAMs

    Inv.SRAMcell

    DRAMSA

    LW 8F2 1.5F2 15F2

    Vtmax* 27 mV 34 mV 10 mV

    3000F2 300F2

    Cascodeamp

    Diff.amp

    Count*

    LW

    Count* 640M 2G 128M

    Memory-rich LSILogic block (L)

    RAM block (M)

    Peri. Array

    DL

    cell

    DL

    WL

    2009 IEEE International Solid-State Circuits Conference 2009 IEEE

  • 7/31/2019 Isscc 09 Itoh

    31/33

    K. Itoh

    Digital Assisted Analog Design-Pipeline ADC

    Lower-Vt0MOSBetter signalintegrity

    FinFETSmall VTmax/voffNo body effectSmall sub. noiseHigh-density C

    (large LW)

    High-Q inductor

    VDD/VDHVDD/VDH VDD/VDH

    Vin

    ( VDD) ( VDD) ( VDD) VDD( 0.5 V)

    ADC

    STG1

    D1

    1.9

    D2 Dn

    STG2 STGn Digital

    Cal.

    + +

    DAC

    Vmin Vdyn( 0.5 V)

    Vmin 3Vod+Vdyn0.9-0.7 V

    VDH( VDD) VDD( Vmin)

    0

    vi

    0

    VDD

    VDD

    vi vi

    vo

    op-amp

    Vmin 3Vod 0.4 V

    VDD( Vmin)

    0

    vi vi

    0

    VodVod(.13 V)VDD

    0

    Vod

    comp.

    2009 IEEE International Solid-State Circuits Conference 2009 IEEE

    C l i

  • 7/31/2019 Isscc 09 Itoh

    32/33

    K. Itoh

    Conclusion

    The 1-V wall breached with adaptive circuits.

    The 0.5-V nanoscale era will open the doorto lower power dissipation, if relevant devicesand fabrication processes are developed.

    Disruptive inventions and technologies, whichsome of you may come up with, will makesuch an era an even closer reality.

    2009 IEEE International Solid-State Circuits Conference 2009 IEEE

    For additional multimedia material: See http://For additional multimedia material: See http://www.isscc.orgwww.isscc.org

  • 7/31/2019 Isscc 09 Itoh

    33/33

    p gg

    2009 IEEE International Solid-State Circuits Conference 2009 IEEE