ih - dl.lib.uom.lk

36
References 1. Australian/ New Zealand Standard, AS/NZS 1170. 2: 2002: Structural design actions."-Part 2: Wind actions" 2. Bowles J.E (1988), "Foundation Analysis and Design" McGraw-Hill Book Company-New York, 1003p. 3. British Standard, BS 8110: part 1:1985: "Codes of practice for Structural use of concrete". 4. British Standard, BS 6399: part 1:1996: "Codes of practice for dead and 1mposed \oads". 5. Building Authority Hong Kong, Code of Practice on Wind Effects Hong Kong 1993 6. Chang, F. K., "Human Response to Motion in Tall Buildings" J. Struct. Div., A.S.C.E. 99, 1973,pp. 1259-1272 7. Design of buildings for high winds Sri Lanka, Ministry of Local government, Housing and Construction, July 1980. 8. Dharmawardana, T.G.D.T., (2003), "Tall building case base", Thesis for the Degree of master of Engineering. 9. Iyengar, H.S., (1972)," Preliminary Design and Optimization of Tall Buildings", Proceedings,International Conference on Tall Buildings, Lehigh University., Vol. II. 10. Jayachandran P, Design of Tall Buildings- Preliminary Design and Optimization" International Conference on Tall Buildings and Industrial Structures, PSG College of Technology, Coimbatore, India, January 2003, Keynote Lecture. 11. Jayasinghe, M.T.R. Wind Loads for Tall Buildings in Sri Lanka., Full day seminar on Structural Design for Wind loading, organised by Society of Structural Engineers Sri lanka, 16 January 2008, Cinnamon Grand Hotel, Colombo, Sri Lanka. 12. Manual for the design of reinforced concrete building structures, 2nd edition (2002), The Institution of Structural Engineers, The Institution of Civil Engineers, London, United Kingdom, pp. 15-20. 13. Mendis, P., Jayasinghe, M.T.R, Course notes on Advanced concrete Tecnologies for Tall Buildings of short course organised by University of Moratuwa, Sri Lanka, 06th and ih December 1996. 83 j ; 1 '! I

Upload: others

Post on 25-Mar-2022

11 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ih - dl.lib.uom.lk

References

1. Australian/ New Zealand Standard, AS/NZS 1170. 2: 2002: Structural design actions."-Part 2: Wind actions"

2. Bowles J.E (1988), "Foundation Analysis and Design" McGraw-Hill Book

Company-New York, 1003p.

3. British Standard, BS 8110: part 1:1985: "Codes of practice for Structural use

of concrete".

4. British Standard, BS 6399: part 1:1996: "Codes of practice for dead and

1mposed \oads".

5. Building Authority Hong Kong, Code of Practice on Wind Effects Hong

Kong 1993

6. Chang, F. K., "Human Response to Motion in Tall Buildings" J. Struct. Div.,

A.S.C.E. 99, 1973,pp. 1259-1272

7. Design of buildings for high winds Sri Lanka, Ministry of Local government,

Housing and Construction, July 1980.

8. Dharmawardana, T.G.D.T., (2003), "Tall building case base", Thesis for the

Degree of master of Engineering.

9. Iyengar, H.S., (1972)," Preliminary Design and Optimization of Tall

Buildings", Proceedings,International Conference on Tall Buildings, Lehigh

University., Vol. II.

10. Jayachandran P, Design of Tall Buildings- Preliminary Design and

Optimization" International Conference on Tall Buildings and Industrial

Structures, PSG College of Technology, Coimbatore, India, January 2003,

Keynote Lecture.

11. Jayasinghe, M.T.R. Wind Loads for Tall Buildings in Sri Lanka., Full day

seminar on Structural Design for Wind loading, organised by Society of

Structural Engineers Sri lanka, 16 January 2008, Cinnamon Grand Hotel,

Colombo, Sri Lanka.

12. Manual for the design of reinforced concrete building structures, 2nd edition

(2002), The Institution of Structural Engineers, The Institution of Civil

Engineers, London, United Kingdom, pp. 15-20.

13. Mendis, P., Jayasinghe, M.T.R, Course notes on Advanced concrete

Tecnologies for Tall Buildings of short course organised by University of

Moratuwa, Sri Lanka, 06th and ih December 1996.

83

~--

j ~""'

~.'\ ; 1

'! I

Page 2: ih - dl.lib.uom.lk

14. Ranasinghe, A. , Jayasinghe, M.T.R. (2007) ,Dynamic behaviour of concrete

framed High rise buildings subjected to lateral loads, Thesis for the Degree of

master of engineering.

15. Rombach G.A.(2004) "Finite Element design of concrete structures- Practical

Problems and their solutions", Thomas Telford Ltd,285p

16. Sap2000 version 12.0,(2008), Integrated Softwear for structural Analysis and

Design- Analysis Reference Manual, Computers and Structures

Inc.l995,University Avenue, Berkeley, California 94704 USA.

17. Yamada, M and Goto, T,(1975) "The Criteria to Motions in Tall Buildings",

Proc. Pan-Pacific Tall Buildings Conference, Haweii, pp. 233-244

18. Scholl, R.E. (1975), "Effects Prediction Guidelines for Structures Subjected to

Lateral Loads," Report No.JAB-99-115, URS/ Blume Engineers, San

Francisco.

19. Smith, P.R.,( 1991 ), " The movement of people and goods", In Handbook of

Arcithitectural Technology, edited by J .Cowan, Van Nostrand Reinhold, New

York, pp.423-440.

20. Taranath, B. S. (1988), "Structural Analysis and Design of Tall Buildings",

McGreaw-Hill Book Company-New York, USA, 739p.

21. Taranath, B. S. (2004), "Wind and Earthquake Resistant Buildings Structural

Analysis and Design", Marcel Dekker, Cimarron Road, Monticello, New York

12701, USA, 892p

84

t~-: ... ~\\ ~·~

\'\ l ~ -~".! ' , " I

I I

Page 3: ih - dl.lib.uom.lk

Appendix A

Calculations - Determination of structural form of 40 storeyed

building with soft zoning lift arrangement

Appendix A. 1

Initial member sizing

A c

Figure A.1 General arrangement plan-40 storey building

The section dimensions of slabs and beams are selected so that the deflection criterion

could be satisfied.

Slab thickness

Select thickness as 200mm.

Clear cover to R/F =20mm

Effective depth (Assuming rlfbars of 10mm <t>) = 200-20- 1212

= 174mm

Span I Effective depth

Basic (Span I Eff. depth) for continuous slabs

Required modification factor for tension rlf

= 90001174

= 51.72

= 26

= 51.72126

= 1.99

This can be easily achieved. Therefore, use slab thickness of 200 mm

85

1.1'!'

i~..::-:.,\< '>~

. '" ', :\. ,_ ~

" f '! I

Page 4: ih - dl.lib.uom.lk

Beam dimensions

Select depth as 750mm.

Clear cover to R/F =25mm

Effective depth (assuming r/fbars and links of32mm <D and lOmm <D)

= 750- 10 - 25 - 32/2

Long span I effective depth

This is a reasonable value.

Also select beam width as 350mm

= 699 mm

= 9000/699 = 12.9

Therefore, use beam dimensions of750x350 (mm x mm)

Column dimensions

Select, floor to floor height= 3.6 m

Considering a typical internal column loaded from a tributary area of 9m x 9m,

Selfweight of slab = 8 x9 X 0.2 X 24 = 345.6 kN

Weight of finishes and services(1.5 kN/m2) = 8 x9 x 1.5

Weight of partitions ( 1.0 kN/m2) = 8 x9 x 1

108 kN

72.0 kN

Weight of beams = (8+9) x 0.35 x (0.75-0.2) x 24 = 78.54 kN

Total dead load = 613 .14 kN

Imposed Loads ( 2.5 kN/m2) = 8 x 9 x 2.5 = 180 kN

Considering imposed load reduction of 50%,

Design load per floor= 1.4 x 613.14 + 1.6 x180 x 0.5 = 1002.4kN

As lateral loads are carried by shear walls, frames of a high-rise structure primarily

carry vertical loads.

31st to 40th floor

Trial column size from 41st to 501h floor = 750 mm x 750 mm

Total column load at 41 51 floor= 10 x1002.4 + 0.752 x 2.85 x 9 x24 xl.4

= 10077 kN

86

~. ~~

'>(t

\'\ " f I

I

Page 5: ih - dl.lib.uom.lk

L\ssuming columns are axially loaded primarily and Grade 40 concrete with tor steel

r, f ( fy = 460 N/mm2) percentage of 2.5% of gross cross section,

N = 0.35 Ac feu+ 0.67 Asc fy

N = 0.35 (A- Asc )x 40 + 0.67 Asc) 460

N = 14.0 A+ 294.2 Asc

N = 14.0 A+ 294.2 X 0.025 A

A= N /21.355

= 10077 X 1000/21.355

= 471880 mm2

Therefore, required column size is 687 mm x 687 mm

i.e. assumed size of 750 mm x 750 mm is satisfactory.

21st to 301h floor

Trial column size from 31st to 40111 floor = 900 mm x 900 mm

Total load at 31 51 floor = 10077+(10x1002.4 + 0.9x0.9x2.85x10x24x1.4)

=20178kN

Assuming columns are axially loaded primarily and Grade 50 concrete with tor steel

r/f (fv = 460 N/mm2) percentage of 2.5% of gross cross section.

N = 0.35 Ac feu+ 0.67 Asc fy

N = 0.35 (A- Asc )x 50+ 0.67 Asc) 460

N = 17.5 A+ 290.7 Asc

N = 17.5 A+ 290.7 X 0.025 A

A =N /24.77

= 20178 X 1000/24.77

= 814614 mm2

Therefore, required column size is 902 mm x 902 mm

i.e. assumed size of 900 mm x 900 mm is satisfactory.

11 st to 20111 floor

Trial column size from ground to 21st floor = 1100 mm x 1100 mm

Total load at 21st floor = 20 178+(1 Ox1 002.4 + 1.12x2.85x1 Ox24x1.4)

= 30318 kN

87

:] ~~

~'~\ ', ~~.

"" ~ " r .,

I

Page 6: ih - dl.lib.uom.lk

Assuming columns are axially loaded primarily and Grade 50 concrete with tor steel

r/f (f~ = 460 N/mm2) percentage of 2.5% of gross cross section,

N = 0.35 Ac feu+ 0.67 Asc fy

N = 0.35 (A- Asc )x 50+ 0.67 Asc) 460

N = 17.5 A+ 290.7 Asc

N = 17.5 A+ 290.7 x 0.025 A

A= N /24.77

= 30318 X 1000/24.77

= 1223980 mm2

Therefore, required column size is 1106 mm x 1106 mm

i.e. assumed size of 1100 mm x 1100 mm is satisfactory.

Ground to 101h floor

Trial column size from ground to 11 111 floor = 1300 mm x 1300 mm

Total load at 11 111 floor = 30318+(10x1002.4 + 1.32x2.85x10x24x1.4)

= 40504 kN

Assuming columns are axially loaded primarily and Grade 50 concrete with tor steel

r/f (fy = 460 N/mm2) percentage of 2.5% of gross cross section,

N = 0.35 Ac feu+ 0.67 Asc fy

N = 0.35 (A- Asc )x 50+ 0.67 Asc) 460

N= 17.5 A+290.7 Asc

N = 17.5 A+ 290.7 x 0.025 A

A= N /24.77

= 40504 X 1000/24.77

= 1635197 mm2

Therefore, required column size is 1279 mm x 1279 mm

i.e. assumed size of 1300 mm x 1300 mm is satisfactory.

88

~*-, ... .,. __

:·~

~'\. ~· t " . /

~.~t

I

Page 7: ih - dl.lib.uom.lk

Appendix A.2

Design of lifts using soft zoning technique and staircase

The calculation is carried out the method describe in Smith P.R. 1991.

Design of lifts

Number of floors

Floor to floor height

Floor area at each floor level

= 40

=3.6m

• 2 =41 x30= 1230m

Using Soft Zoning Arrangement where all the lift shafts starting at ground floor level

are continued to the top most floor, but operating system is divided into zones as

follows.

Select the zoning arrangement for the lifts in the following manner:

Lift G-1 0 -7 Gr. floor- 1oth floor -7 serves for 10 upper floors

Lift 11-20

Lift 21-30

Lift 31-40

-7 Gr. floor- 20th floor -7 serves for 10 upper floors

Express travelling from Gr. floor to 11th floor

-7 Gr. floor- 30th floor -7 serves for 10 upper floors

Express travelling from Gr. floor to 21st floor

-7 Gr. floor- 40th floor -7 serves for 10 upper floors

Express travelling from Gr. floor to 31st floor

It was decided that lift speed is either equal or more than 4.0 ms-1• Also it was

assumed that lifts reach the maximum speed of 6.0 ms- 1 during express travel length.

Lift G -10

Assuming population density of 10 m2 per person and useful floor area percentage is

75%,

Number of floors served

Total number of people per floor

Total number of occupants

89

= 10

= (1230 X 0.75/10)

= 92

= 10 X 92

$;. f' ·~ '"' ', :\ ~"- ~

"! I

Page 8: ih - dl.lib.uom.lk

Considering population handled in 5 minutes is 12%,

5 minutes peak demand = 1 Ox92x 12/1 00

= 110

Selecting 16 passenger lifts of 4 ms-1 speed for 10 floors,

Interval between cars (select)

Round trip time (RTT)

Number of lifts

Lift 11-20

Number of floors served

Total number of occupants

= 35s

= 100 s

= 100/35

= 2.85

Use 3 Nos of lifts

= 10

= 10 X 92

Similar to calculation for previous lift and selecting 16 passenger lifts of 4 ms-1 speed

for 1 0 floors,

5 minutes peak demand

Interval between cars (select)

Round trip time (RTT)

= 110

= 35s

= 100 s

Total RTT

Number of lifts

100 + (3.6x11x2/6) = 113.2 s

Lift 21 -30

Number of floors served

= 113.2/35

= 3.23

Use 3 Nos of lifts

= 10

Total number of occupants = 1 0 x 92

Similar to calculation for previous lift and selecting 16 passenger lifts of 4 ms -1 speed

for 10 floors,

5 minutes peak demand

Interval between cars (select)

= 110

= 35 s

Round trip time (RTT) = 100 s

Total RTT = 100 + (3.6x21x2/6) = 125.2 s

Number of lifts = 125.2/35

= 3.57

Use 3 Nos of lifts

90

;:'!!~ <i,.: ..

:~- .. ,\\ , ;·~. . ,, ', :'\; ,_ I "· '!

I

Page 9: ih - dl.lib.uom.lk

Lift 31 - 40

Number of floors served = 10

Total number of occupants = 10 X 92

Similar to calculation for previous lift and selecting 16 passenger lifts of 4 ms- 1 speed

for 1 0 floors,

5 minutes peak demand

Interval between cars (select)

Round trip time (RTT)

= 110

= 35 s

= 100 s

Total RTT 100 + (3.6x31x2/6) = 1 s

Number of lifts

Arrangement of Lifts is as follows.

= 137.2/35

= 3.9

Use 4 Nos oflifts

Ground to lOth floor = 3 Nos. 16 Passenger Lifts

11th to 20th floor

21st to 30th floor

31st to 40th floor

= 3 Nos. 16 Passenger Lifts

= 3 Nos. 16 Passenger Lifts

= 4 Nos. 16 Passenger Lifts

Ground to 40th floor 1 service lift

Hence total number of lift is 14 numbers

Note: All lifts are express from ground floor to the lower most level for which it is

servmg.

Design of staircase

Staircase and landing width = 1500 mm

Rise = 150 mm

hread = 250 mm

Total No. of steps

No. of steps per flight

Therefore, flight length

= 3600/150 = 24

= (24/2)- 1 = 11

= 11 x250 = 2750mm

Thus, total internal space required for the staircase is 2.7m x 4.25m

91

~.\ "~· (- i II •• ,. ~ f

i I

Page 10: ih - dl.lib.uom.lk

Appendix B

Calculations - Determination of structural form of 50 storeyed

building with soft zoning lift arrangement

Appendix B. 1

Initial member sizing

31-40 ;'!yFT

ni:4o !!LIFT ~~ 31-40,. '!!LIFT li ... ,-... ''21- 36' i':LIFT

:i;zi~io' !LIFT

,, zrio' :run

G­LIFT

LIFT

SIFfo',i!

41.50\ LIFT ·''

41-so:'i LIFT .·

41-50 i LIFT

11. 2Q1

f

LIFT'!

. :i's LIFT{11-20i1111-20

!iLIFT )LIFT !1 LIFT

c

C/L

D

Figure B.l General arrangement plan- 50 storey building

The section dimensions of slabs and beams are selected so that the deflection criterion

could be satisfied.

Slab thickness

Select thickness as 200mm.

Clear cover to RIF = 20 mm

Effective depth (Assuming rlfbars of lOmm ct>) = 200-20- 1212

Span I Effective depth

= 174mm

= 9000/174

= 51.72

Basic (Span I Eff. depth) for continuous slabs = 26

92

~"''

~~- ~·

-~

' ;. . " r .,

I

Page 11: ih - dl.lib.uom.lk

Required modification factor for tension r/f = 51.72/26

= 1.99

This can be easily achieved. Therefore, use slab thickness of 200 mm

Beam dimensions

Select depth as 750mm.

Clear cover to RJF = 25 mm

Effective depth (Assuming r/f bars and links of 3 2mm <D and 1 Omm <D )

= 750- 10 - 25 - 32/2

= 699 mm

Long Span I Effective depth

This is a reasonable value.

= 9000/699 = 12.9

Also select beam width as 350mm

Therefore, use beam dimensions of 750x350 (mm x mm)

Column dimensions

Floor to floor height= 3.6 m

Considering a typical internal column loaded from a tributary area of 9m x 9m,

Self weight of slab = 9 x9 X 0.2 X 24 = 388.8 kN

Weight of finishes and services(1.5 kN/m2) = 9 x9 x 1.5 121.5 kN

81.0 kN Weight of partitions ( 1.0 kN/m2) = 9 x9 x 1

Weight of beams

Total dead load

Imposed Loads ( 2.5 kN/m2)

= (9+9) X 0.35 X (0.75-0.2) X 24 = 83.16 kN

= 674.46 kN

= 9 X 9 X 2.5 = 202.5 kN

Considering imposed load reduction of 50%,

Design load per floor= 1.4 x 674.46 + 1.6 x 202.5 x 0.5 = 1106.25 kN

As lateral loads are carried by shear walls, frames of a high-rise structure primarily

carry vertical loads.

93

;:;..,-, ~ ... ·:

,_ ~

" i

Page 12: ih - dl.lib.uom.lk

41st to soth floor

Trial column size from 41st to 50th floor

Total column load at 41 51 floor

= 750 mm x 750 mm

= 10 x1106.25 + 0.752 x 2.85 x 9 x24

x1.4

11547.3kN

Assuming columns are axially loaded primarily and Grade 40 concrete with tor steel

rlf (fy = 460 N/mm2) percentage of 2.5% of gross cross section,

N = 0.35 Ac feu+ 0.67 Asc fy

N = 0.35 (A- Asc )x 40 + 0.67 Asc) 460

N = 14.0 A+ 294.2 Asc

N = 14.0 A+ 294.2 X 0.025 A

A=N /21.355

= 11547.3 X 1000/21.355

= 540729.8 mm2

Therefore, required column size is 735 mm x 735 mm

I.e. assumed size of 750 mm x 750 mm is satisfactory.

31st to 40th floor

Trial column size from 31st to 40th floor

Total load at 31st floor

= 1000 mm x 1000 mm

= 11547.3+(10x1106.25

+ 1.02x2.85x1 Ox24x1.4)

= 25389 kN

Assuming columns are axially loaded primarily and Grade 50 concrete with tor steel

r/f (f, = 460 N/mm2) percentage of2.5% of gross cross section,

N = 0.35 Ac feu+ 0.67 Asc fy

N = 0.35 (A- Asc )x 50+ 0.67 Asc) 460

N= 17.5A+290.7Asc

N = 17.5 A+ 290.7 x 0.025 A

A= N /24.77

= 25389 X 1000/24.77

= 1024990 mm2

Therefore, required column size is 1012mmx1012mm

i.e. assumed size of 1000 mm x 1000 mm is satisfactory.

94

,, ,,

·~ ):~ ;t ~ \,

~-~' ~" ~

" r ., I

Page 13: ih - dl.lib.uom.lk

21st to 30th floor

Trial column size from ground to 21st floor = 1200 mm x 1200 mm

Total load at 21 51 t1oor = 25389+(10x1106.25 + 1.22x2.85x10x24x1.4)

= 37830 kN

Assuming columns are axially loaded primarily and Grade 50 concrete with tor steel

r/f (fy = 460 N/mm2) percentage of 2.5% of gross cross section,

N = 0.35 Ac feu+ 0.67 Asc fy

N = 0.35 (A- Asc )x 50+ 0.67 Asc) 460

N= 17.5A+290.7Asc

N = 17.5 A+ 290.7 X 0.025 A

A =N /24.77

= 37830 X 1000/24.77

= 1527251 mm2

Therefore, required column size is 1235 mm x 1235 mm

i.e. assumed size of 1200 mm x 1200 mm is satisfactory.

11 st to 20th floor

Trial column size from ground to 11th floor = 1450 mm x 1450 mm

Total load at 11 1h floor = 37830+(10x1106.25 + 1.452x2.85x10x24x1.4)

= 50906 kN

Assuming columns are axially loaded primarily and Grade 50 concrete with tor steel

r/f (fy = 460 N/mm2) percentage of2.5% of gross cross section,

N = 0.35 Ac feu+ 0.67 Asc fy

N = 0.35 (A - Asc )X 50+ 0.67 Asc) 460

N = 17.5 A+ 290.7 Asc

N = 17.5 A+ 290.7 X 0.025 A

A= N /24.77

= 50906 X 1000/24.77

= 2055141 mm2

Therefore, required column size is 1434 mm x 1434 mm

i.e. assumed size of 1450 mm x 1450 mm is satisfactory.

95

~.~"'1

~~-· '"., ,, ~ ~·~ ~ ,~,

:1" "':\;: ,_ ~

"l I

Page 14: ih - dl.lib.uom.lk

Ground to lOth floor

Trial column size from ground to ground floor = 1600 mm x 1600 mm

fotalload at ground floor= 50906+(10x1106.25 + 1.62x2.85x10x24x1.4)

= 64420 kN

Assuming columns are axially loaded primarily and Grade 50 concrete with tor steel

r/f (fy = 460 N/mm2) percentage of 2.5% of gross cross section,

N = 0.35 Ac feu+ 0.67 Asc fy -

N = 0.35 (A- Asc )x 50+ 0.67 Asc) 460

N = 1 7. 5 A + 2 90.7 Asc

N = 17.5 A+ 290.7 X 0.025 A

A= N /24.77

= 64420 X 1000/24.77

= 2600725 mm2

Therefore, required column size is 1612 mm x 1612 mm

i.e. assumed size of 1600 mm x 1600 mm is satisfactory

Appendix B.2

Design of lifts using soft zoning technique and staircase

Design of lifts

Number of floors

Floor to floor height

Floor area at each floor level

=50

=3.6m

= 36x45 = 1620 m2

Using Soft Zoning Arrangement where all the lift shafts starting at ground floor level

are continued to the top most floor, but operating system is divided into zones as

follows.

Select the zoning arrangement for the lifts in the following manner:

Lift G-10 ~Gr. floor- lOth floor~ serves for 10 upper floors

Lift 11-20 ~ Gr. floor- 20th floor ~ serves for 10 upper floors

96

r~. ~, ,~ t ". ;.

Page 15: ih - dl.lib.uom.lk

Express travelling from Gr. floor to 11th floor

Lift 21-30 ~ Gr. floor- 30th floor ~ serves for 10 upper floors st Express travelling from Gr. floor to 21 floor

Lift 31-40 ~ Gr. floor- 401h floor ~ serves for 10 upper floors

Lift 41-50

st Express travelling from Gr. floor to 31 floor

~ Gr. floor- 50th floor ~ serves for 10 upper floors

Express travelling from Gr. floor to 41st floor

It was decided that lift speed is either equal or more than 4.0 ms- 1• Also it was

assumed that lifts reach the maximum speed of 6.0 ms- 1 during express travel length.

Lift G -10

Assuming population density of 10 m2 per person and useful floor area percentage is

75%,

Number of floors served

Total number of people per floor

Total number of occupants

= 10

= (1620 X 0.75/10)

= 122

= 10 X 122

Considering population handled in 5 minutes is 12%,

5 minutes peak demand = 10x122x121100

= 146

Selecting 20 passenger lifts of 4 ms-1 speed for 10 floors,

Interval between cars (select)

Round trip time (RTT)

Number of lifts

Lift 11-20

Number of floors served

Total number of occupants

97

= 35 s

= 105 s

= 105/35

=3

Use 3 Nos of lifts

= 10

= 10 X 122

P:. ~~ \'\. .. ~

:!> • ' I

I

Page 16: ih - dl.lib.uom.lk

Similar to calculation for pervious lift and selecting 20 passenger lifts of 4 ms- 1 speed

for 1 0 floors,

5 minutes peak demand

Interval between cars (select)

Round trip time (R TT)

= 10x122x12/100

= 146

= 35s

= 105 s

Total RTT 105 + (3.6x11x2/6) = 118.2 s

Number of lifts = 118.2/35

= 3.37

Use 3 Nos of lifts

Lift 21 -30

Number of floors served = 10

Total number of occupants = 10 x 122

Similar to calculation for previous lift and selecting 20 passenger lifts of 4 ms- 1 speed

for 1 0 floors,

5 minutes peak demand

Interval between cars (select)

= 146

= 35 s

Round trip time (RTT) = 105 s

Total RTT = 105 + (3.6x21x2/6) = 130.2 s

Number of lifts

Lift 31 - 40

Number of floors served

= 130.2/35

= 3.72

Use 3 Nos of lifts

= 10

Total number of occupants = 1 0 x 122

Similar to calculation for previous lift and selecting 20 passenger lifts of 4 ms- 1 speed

for 10 floors,

5 minutes peak demand

Interval between cars (select)

Round trip time (RTT)

= 147

= 35 s

= 105 s

Total RTT

Number of lifts

105 + (3 .6x31 x2/6) = 142.2 s

= 142.2/35

= 4.05

Use 4 Nos of lifts

98

,,

~.'\ : f:,~' ; ~ " . /

I

Page 17: ih - dl.lib.uom.lk

Lift 41 -50

Number of floors served = 10

Total number of occupants = 10 X 122

Similar to calculation for previous lift and selecting 20 passenger lifts of 4 ms- 1 speed

for 1 0 floors,

5 minutes peak demand

Interval between cars (select)

Round trip time (R TT)

= 147

= 35 s

= 105 s

Total RTT

Number of lifts

105 + (3.6x41x2/6) = 154.2 s

= 154.4/35

=4.4

Use 4 Nos of lifts

Arrangement of Lifts is as follows.

Ground to lOth floor = 3 Nos. 20 Passenger Lifts

11 111 to 20th floor

21st to 301h floor

31st to 40th floor

41st to 50th floor

= 3 Nos. 20 Passenger Lifts

= 3 Nos. 20 Passenger Lifts

= 4 Nos. 20 Passenger Lifts

= 4 Nos. 20 Passenger Lifts

Ground to 401h floor = 1 No. Service Lifts

Hence total number of lift is 18 numbers

Note: All lifts are express from ground floor to the lower most level for which it is

servmg.

99

~'1 ~-..... ~ ,'\

J!t~· ~\

" ' ., I

Page 18: ih - dl.lib.uom.lk

Design of staircase

Select,

Staircase and landing width = 1500 mm

Rise = 150 mm

Thread = 250 mm

Total No. of steps = 36001150 = 24

No. of steps per flight = (24/2)- 1 = 11

Therefore, flight length = 11 x 250 = 2750 mm

Thus, total internal space required for the staircase is 2. 7m x 4.25m

100

~~. ~-, ;. k " . ,I I

I

Page 19: ih - dl.lib.uom.lk

Appendix C

Calculation- Borehole data, initial design of pile capacities, modulus

of subgrade reaction of soil and soil spring constant

Appendix C.l

Pile capacities and diameters

This case study is carried out based on a site near Kollupitiya, Colombo 03, Sri Lanka,

soil investigation borehole data is given in Table C.1

Table C.1 Borehole data (SPT values)

SPT Values

DEPTH BH1 BH2 BH3 BH4

2 7 5 2 4

4 8 6 5 3

6 13 12 8 7

8 10 14 12 15

10 12 16 17 16

12 15 12 14 13

14 18 10 13 12

16 15 19 23 19

18 17 20 21 23

20 14 17 25 29

22 18 23 18 21

24 15 28 23 24

26 32 38 31 43

28 45 50 50 49

30 50 50 50 50

Assumed recommended end bearing capacity is 7.5 N/mm2 (this value is in a higher

margin of normally in Sri Lankan practice for end bearing capacity of rock)

It is assumed that the piles are end bearing piles for the preliminary sizing of pile.

Hence pile capacities for deferent piles sizes and are shown in Table C.2.

101

~-~-, \'\ ' 1: " . /

I

Page 20: ih - dl.lib.uom.lk

Table C.2 Capacities of end bearing piles under deferent rock end bearing stresses

Capacity of End Bearing Piles (kN)

Pile Dia (mm) 5 N/mm2 7.5 N/mm2 8 N/mm2

1000 3927 5890 6283

I I

1200 5655 8482 9048 I I

1500 8836 13254 14137

1800 12723 19085 " 20358

Appendix C.2

Calculation of modulus of subgrade reaction and soil spring constant

of pile segment.

Calculation of modulus of subgrade reaction of soil(K) is calculated the method

proposed by Vesic (1961) as described in Chapter 2.5.2.2. The equation Eq 2.10 is

adopted for the calculation of modulus of subgrade reacrion. The spring constant of .•·

pile segments is calculated by using the Eq. 2.12 as described in Chapter 2.5.5. The

calculation is shown in Table C.3.

102

; ___ ~'~' ~. '\

'"" t , f "! I

Page 21: ih - dl.lib.uom.lk

Tab

le C

.3 C

alcu

lati

on o

f m

odul

us o

f su

bgra

de r

eact

ion

and

soil

spr

ing

cons

tant

of

pile

seg

men

ts.

Cal

cula

tion

soi

l sp

rin

g co

nst

ant

Soi

l sp

ring

con

stan

t P

ile

diam

eter

S

econ

d m

omen

t o

f in

erti

a o

f pi

le

Poi

sson

's r

atio

E

last

ic m

odul

us o

f so

il

Ela

stic

mod

ulus

of

pile

mat

eria

l( co

ncre

te)

Seg

men

t le

ngth

of p

ile(

spri

ng s

paci

ng)

SP

T V

alue

s (f

rom

bor

e ho

le d

ata)

Dep

th

BH

1 B

H2

BH

3 B

H4

2 7

5 2

4

4 8

6 5

3

6 13

12

8

7

8 10

14

12

15

10

12

16

17

16

12

15

12

14

13

14

18

10

13

12

16

15

19

23

19

18

17

20

21

23

20

14

17

25

29

22

18

23

18

21

24

15

28

23

24

26

32

38

31

43

28

45

50

50

49

30

50

50

50

50

ks

0 Ip

~ Es

Ep

B Ave

rage

S

PT

4.

5 5.

5 10

.0

12.8

15

.3

13.5

13

.3

19.0

20

.3

21.3

20

.0

22.5

c3

6.0

48.5

50

.0

1.5

m

~=

BxKJ

3.

9760

78

mm

4 0.

35

650N

(N

-S

PT

val

ue)

2.60

E+

07

kN/m

m2

2 m

Es

2925

35

75

6500

82

87.5

99

12.5

87

75

8612

.5

1235

0 13

162.

5 13

812.

5 13

000

1462

5 23

400

3152

5 32

500

103

K

(kN

/m2

)

1036

.2

1287

.9

2461

.2

3202

.2

3887

.7

3406

.8

3338

.5

4933

.3

5285

.8

5569

.2

5215

.1

5924

.9

9858

.5

1361

5.6

1407

2.4

••,r

·j·

.7-:J ~;

.....

Vi-

, ...

'~'<

... "1

'" ~·

B

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

ks

2072

25

76

4922

64

04

7775

68

14

6677

98

67

1057

2 11

138

1043

0 11

850

1971

7 27

231

2814

5

Rou

nd o

f V

alue

ofk

s (k

N/m

) 20

00

2500

50

00

6400

78

00

6800

67

00

9900

10

600

1110

0 10

400

1180

0 19

800

2720

0 28

150

Page 22: ih - dl.lib.uom.lk

Pile cap dimensions

Table C.4 Reinforced Concrete Designer's Handbook, (Reynolds C. E.)

Number of pile>

2

3

4

5

Notation:

X

DimcusiOtt'> <':If ptle ~.:ap

"f~ _.t...,.

J~ "".

,~ . ~--x ·+ ~~J~

it'~ 1)". +JlJ~

hp - diameter of pile

a, b - dimensions of column;

T ll'n~ilo~ for;;e to t;.e re~i~ ttd by r>ri nfon:tment Negle.;tmg size Taking :;it..:: ()[ ~lumn

t>f column into cnnsider:uic•n

Nl 4&

;\'1

')d

Nl B;j

Nl lOJ

N 12i,/'ll' a>)

N ,. ~ l'ar-.1llelto X ·X: 'j6ij(4f• ;- b1

- Ju l

"' 'i&l;i121' - b') Parallel to Y- 'r'

Par;.nel w x .. :o.· N,cw -.., 1 ) 24/.,

PamlleltQ }'. 1'"· ,...

24!J(311 -· hl}

N f'araltel to X. X: : ·-- (IF - 11

1 \

30/J'

P•uallel !o f. i'; N

Jol.Pfl - bl l

a- spacing factor of piles (normally between 2 and 3 depending on ground

conditions)

104

;; .. -

~

~ ;~. fl-

f <_'t

' "' .

Page 23: ih - dl.lib.uom.lk

Appendix D

Wind load calculation

~-~~-.:e

Tatie jJ

WIND lOAD CALCULA TOIN

AS/NZS1170.2

Locaton: Reg·on 6

Catt:u at'<>n

Tu•an: s.t!>u•ban te~·n fcv a ~r·ro:on Topog-aphy: G•ound sope e'!Z than t :nzofo• g•eate- than 5krn 'n a- O:tro·onE.

r:frnens'Drts: WXlth

&•eadth

4$ rn ~rn

Kroangu a• c•o'!'£ >-ect'on

He::;ta 1$0 m e.u r..ta,io•ax! 'sEast ·'A~st Re:nfo~ced coocrete const•uct'on: cwtain .,.,.,.-, fa~ade on a· tou•tacas !:Wi!'ytr;:quance.s, f\l"' 0.25S6 Mode shapesarefineM {k= 1.0)

Ave•age bu>:f rg dertsty = 160 kglm'

4Sm

< .. "'": ~m

'•"'.,,

::.>\

18> m

''··L--------'

Regiooof wind sp€ed IA::co•o:.ng tot~ su:Ai:ng cooeot AuEt•a ::a {OC~ t~ Wuctu•e sl\ou d be treated as

arA:i ove'li· st-u<:u' a Leve. 3. HJ?oce take av<rag!: rKu~er<:e nte•va. R, fo•

•esponEeea(jua.to L00\'!?3'>. !"om Tat>e 3.1. V:.oc = 38 rrh Fo• e<Pcu ston or a<:cee'i!ton!. ttse a 5-'j•eM ~ectum PJi!'<Xl t~ten, v$

105

CUt l>ut

·'

= 23 rrv's

f.':;.··' v, ,.t

• :!< •

Page 24: ih - dl.lib.uom.lk

~~<e Cit <:ti:at ·on

S« 3.32 IWmd di~ction multiplier Fe· e, M • = o. 9S fo• O\'!?~U' n · ng b r<:eo..s

fo· Et'1.icto•a £1!.!ta-n fo• a d •ect:Onli

io!Ate 4.1.4

M o " LO fo·

Terrain. he jght multiplier : = h = 180 m for 1'!?· <an Cateo~ry

1.14 M,,., = M~"•·.l ::

Shielding

4

The-~? a-e no othE" be< fo· a d·roon..s.

ot g-eate• ·n any d·-~·-ron. Take lv\ ::: 1.0

Topography Topo:grapy lv\lif p(J.?r ;:;; M,::: M., "' LO

Site wmd s{H!€d ::: \'~ X M• X I>.\""' X fv\ Ste w·nd !prod for a a··ect:Ons fo•overa· cad.: ood I'Y'.a·n

V.t<;f :: 35. X 0.95 X .LI.4 ;: LO

Fe• accae-aton cacet:.afoll! {$,e-vk:~?at>: 'tvL V.t•i ::: 2B :>: l..O X 1.14 X U.)

R>t v. •• s: = .35 ); l..O X U.4 X LO

Design Wind Speed Fe• a v/r.:l w rd 5-prod~.

X M.,

!?t

X 1.0 = 4l.ts mls

)' 1.0 = 31.92: mls

X l..O = 43.32 rws

v ..... = v ...... 4U5 mls C\<e'i! oadsand m:frut•uctu•a-

31.92 mls iK:t~?~?rat':>n 4332 f!Vs

Aerodynamic shape fiu:tor fpres~s

T 5.2A Wndward wa:.: 0.8 fo• varyng z T 52 B l€'e' • ..a~dw3.: {r •• ::vma to 53rn wa !: -o.s r 52 B L~1..a•dwa <E !~o·ma· to 56rn wa l .0.45 T 52 c Sdewa ..s .0.65 T 53 A Roof: -13

sec. Area redoctlcm frx:tar 5.4 2 fo• e ernent g•eater than 1rorn: in a•ea on •oof o• s·d-ewa: 5

1

r Hi ILa<:ol preSSl.lre foctors a= m n:rnom of 0.2 x s-s = 112 m o~ 100 m m t ngt<butary ar~s fo• .oca: p~es..sc•efuctors:

106

K. :: 0.8

a ::: 112 m 025 a1 = 3L:i5 m~

a' "' 125.4

OJt Pot

!f\

:,~· "-,\ '·

r ,·;;.

~ ;~l ;; ~ \.

~ f I I

Page 25: ih - dl.lib.uom.lk

~-~-e: .. e"~:e

53

T£.i

S.K 3.7

cacu~:On

can be con:Sde-Eil to be ~ffert:\'E')' saa oo. :::: .0.2 o• o

Adion cmnbmtkm ft:K:tw K, = 1.0

D yoomk response factor c..,," to be obtaneil f•om S!N::f.::H: £.2..2 fo· <long-w~nd :€'S.pon:.~ c.,·' c.,., to ~ ol>tiinM as a p:ooua t·om s«t<>n l>.32 to· c·os.s-w nil ·e~nse

colcuJofion ofo!ong-wind c .tpr

Tu'bu:ance 'nten:.'t;• at Z= h, ~ = 0.143 lte"an catego;-y si Bl

BaA::kgrourwi f:mor, B, s • $.the tO be COnS de' Eil

& = ----:~_:_ ___ .....

+ --~.:.!_.:.:::~£ i L,

L, = B5 [...!:._ ] c;~ = 85 [ 1~ ]0~ = i 75.\)SC\2 m 10 10

Fe· b = 45 fl1, $ = 100 !fo• bil~ ben<! ng

i B, =

1 + v[ 0 26!180-0)1

+0.4€tl45j1

11.5

= 0,8515 =

Ri' b :: 36 m, £. :: 100 !for ba~ ben<! ng momf:!lt)

i !1., ::

1 + v[ 026(180-0!1 +0.45(3-6)1

11~

:: 0.817!>5

H, = 1.0

~ = V[ 2 ogiSOOnd ::: v[ 2og{500{020l]

:::: 3.17

~ = :U.7

sh~~oof:mor, s g,v :::: 3,7

107

CtltPut

i ~~ ~'

,'·t •• \

' :!> •

Page 26: ih - dl.lib.uom.lk

\~~'~

s :; [ 1 +

35nh{i+"' 1 * .::v~f

v .... , S:m •mucton facto•,

Cal cu at ·on

l

l [ 1 +-""-"·······

s " l

v ....

[ 1 . ' ""'"' 1 [ 1. + •. ,., ->··· v • .,.t v., .••

fO' b = 45 m

]

s ~ -----------------------------------------------------------------( 1 + .J,...-,..,.,_""""·n·i,.~o•~t""~~tP".,.__Jtt

4L2. ·~~5 1

-2.70945)

::: 0.0529

Fo~ b = 35 rn 1

s = ----------------_...,..----LS!O.:B )!i80)!1+!3. 71(0. 143!!

412 [ 1 + - " ]( l+ ' " "41.15"

::: 1.

6.983 H Bt\756 l = o.oro5

~au:yfre:pwy, N

N n,t,.,(1 +

=--- " 0.25 X 11!H 1.+ 3.7 X 0.1.4

"~·-' 4U54

::: H-5213

nN E, :-· "' 0.054

[1+

{, of .st 'lictu -a <l a rn p.· ng to cf' f<:a ) :taka as o.m ! tail> ;;, s. 2)

i 2l .If "< "<:i'_ .. , \, + ' 'i\ "'v B, + _;;;.. ___ J

-------------------~-----l+2g<,J~

fO• b = 45 m 2

1 + zx 0143 v{ 2 1 X 3.7 X 0.8.515 + 3.17 X 005 X 0.1 }

\.~,"' -1 + 2 X 3 7 X O.i43

"' 0.9140

108

Q.rt ll'llt

~ :_~. r:-' . '\

• ~ .

Page 27: ih - dl.lib.uom.lk
Page 28: ih - dl.lib.uom.lk

Tab

le D

. I C

alcu

lati

on o

f win

d fo

rce

per

unit

are

a-

40 s

tore

y bu

ildi

ng (

Gro

und

floo

r to

I i

11 fl

oor)

WIN

O lO

AD

CA

LC

UL

AT

ION

to

AS

/NZ

S1

17

0.1

No

of

Stt

:xye

s

He

gh

t o

f bu

ild

ing

F

loo

r to

flo

or

he

igh

t

Wid

th o

f b

uil

din

g

Bre

ath

of

Bui

ldin

g T

err

ain

Ca

teg

ory

Re

gio

n

v}f

Ma

jo.9

sl M

,

K,

J0.80J

K

,

lh

10.1

43

I g

, L3

2421

~J

S{m

) M

.._""

' v,.

....o

~';;ht 0

0 7

50

0

27

.07

5

EL6

0

.75

00

2

7.0

75

7.2

{)

75

00

2

7.0

75

10

.8

0. 7

SC>:

J 27

J37

S

14

.4

07

50

0

27

07

5

18

0

7SC>

::l

27 0

75

21

.6

07

58

0

27

36

4

25

.2

0.7

76

0

28

.01

4

28

3

0.7

94

0

28

.66

3

32

4

0&

12

0

29

31

3

36

0

.33

00

2

9.9

63

39

.6

08

4&

0

::k

)61

3

43

.2

03

66

0

31

.26

3

46

,8

0.8

39

8

32

.12

~T4

0.9

01

3

32

.53

6

54

0

.91

23

3

2,9

52

57

.6

0.9

24

3

33 3

68

61 2

0

93

53

3

3 7

34

-

~

. M,~

J1.0

0J

K,

p.oof

H

, p.o

ol t .

• ! 1

661

B,

Sa

d:g

rou

nd

Fa

cto

r

41 wd~

3)

vr<f

tn

0.6

78

3

0.6

34

9

0.6

33

1

0&

39

9

0.6

3.0

0

0.6

95

0

06

92

9

0.7

00

2

0.6

97

&

07

05

4

0.7

02

8

07

10

7

0.7

07

9

07

16

1

0.7

13

0

0.7

21

5

0.7

18

1

0.7

27

0

0.7

23

3

07

32

6

0.7

23

6

07

38

2

07

33

3

07

43

9

0 7

39

1

0.7

49

7

0.7

44

5

0.7

55

5

07

49

9

0.7

61

4

0 7

55

3

07

67

4

0 76

.07

07

73

4

07

66

1

07

79

4

FO

R

40

S

TO

RY

EO

BU

ILD

ING

Acco

rdin

g t

o A

S 1

17

0.4

-1

99

3 Clau~ 6

24

fu

nd

am

en

tal p

eri

od

(T

o)"

' H

/45

Fir

st M

od

e o

fVlb

rati

oo

(n

0) =

(1/T

0)

M,,

~1

.~

Kp 1u~

!lv ~

~ jo

o~

s S

ize

Fa

cto

r

41

Vf'd

-1h

3)

V[d

th

(),0

25

0

0.0

31

3

0.0

25

0

00

31

3

0.0

25

0

Ct0

013

0.0

25

0

0.0

31

3

00

25

0

00

31

3

00

25

0

00

31

3

00

25

5

0.0

31

3

0.0

26

5

0.0

33

.?

00

27

5

00

34

2

00

28

5

00

35

5

0.0

29

5

0.03

67

00

:;(}

6

00

:37

9

0 0

31

&

0.0

39

2

0.0

33

0

0.04

\.."'9

00

33

7

O.O

t17

00

34

4

0.0

42

5

0 0

35

1

00

43

3

00

35

3

00

44

1

c,..

Win

dw

ard

s w

alls

C,.

Le

ew

ard

:s w

alls n

orm

a! t

o

c,..,

Le

ew

ard

s w

alls n

orm

a! t

o

forc

e

05p~;,xV"""~

6xC,rx

p,·

. =

1.

2

=

C,_..

, X K

. X

K,

X I(

X

N

f,

c~ .•

Dyn

am

ic F

att

er

4l

V£d

'th

:0

W-~h

2.9

87

0

,04

3

0.9

14

5

09

17

3

2.9

37

0

,01

3

0.9

16

0

0.9

19

3

2.5

&7

0

.04

3

0.9

17

5

0.9

20

9

2.9

&7

0

.04

3

0.9

19

0

0_

92

24

2.9

37

{)

04

3

09

20

5

09

24

0

.2.9

37

0.0

43

0

92

20

0

92

56

2.9

56

0

.04

4

09

23

6

0.9

27

4

2.8

37

0

.04

4

0.9

25

5

0.9

29

4

2.3

22

0

.04

5

0.9

27

3

09

31

3

2.7

59

0

04

6

09

29

1

09

33

4

2.6

99

0

04

6

0.9

31

0

09

35

4

2 6

42

0

.04

7

09

32

9

09

37

4

2.5

87

0.

():;

8 0

93

43

0

93

95

2.5

13

o

():;

9 0

.93

63

0

.94

17

2.4

36

O

.Ot9

0

.93

86

(l

94

37

24

54

0

05

0

09

40

3

09

45

6

2.4

24

0

05

0

09

42

1

09

47

&

2 3

94

0

.05

0

09

43

9

0.9

49

6

110

<1

Hz

Th

e

sh

ou

ld b

e d

ete

rmin

ed

c,.,.,

C;.,.

~

41

m

wam

30

m

wa

l! ~

. 4

(kN

/m')

Fo

rce

pe

r U

nit

Are

a

\f{r

.A/!

1\ct

"T,.'

J::>

4

1

Vi-f'l~~~d

0.2

57

4

0.2

57

8

0 2

58

3

0.2

58

7

02

59

1

02

59

5

02

65

6

0.2

78

9

02

92

&

03

6

0.3

21

0

0 3

35

7

03

50

8

0.3

71

1

0.3

31

5

0 3

92

1

0 40

"'23

04

13

7

.• :. '4

-.~'1

: :;-J

·~

11 ~

· "'<

~"'

....

. .!l

'r

'!'""

l.ee~rci!.

-0.1

75

9

-0.1

75

9

-0.1

75

9

-0.1

75

9

-01

75

9

-0.1

75

'9

-01

79

7

-0.1

83

3

-01

97

2

~\l2062

-0.2

15

5

~02249

~0.2346

-(},

24

76

-0.2

54

1

-02

&0

5

·0.2

67

2

-0.2

73

9

!l"'

S-\c

ie

To

tal

0.4

33

4

0.4

33

3

0.4

34

2

0.4

34

6

0.4

35

0

0.4

35

5

0.4

45

3

0.4

67

2

0.4

89

7

0-5

12

8

0.5

36

4

0.5

60

6

0.5

SS

4

0.6

18

7

0.6

35

6

0.6

52

7

0.6

]1)0

0.6

87

6

forc

e p

er

Un

it A

rea

Vftrl~"'"f".;,':t-:;,

30

rr5

"-d

'"!:

Vi\

tt-.

3¥•N

d Le

oe-.v

;., .. :

:h

To

tal

0.2

53

3

-0.1

50

6

0.4

08

9

0 2

53

8

-0 1

50&

0

.40

94

0.2

59

2

-0.1

50

6

0.4

09

8

02

59

7

-0.1

50

6

0.4

10

3

02

G0

1

-01

50

6

0.4

10

7

0 26

C6

·OlS

OG

0

.41

12

02

66

7

-01

53

8

0.4

20

S

0 2

30

1

-01

61

2

0.4

41

3

0.2

93

8

-0.1

6&

8

0.4

62

6

o.;;x

;.so

-01

76

5

0.4

34

5

0 3

22

5

-0.1

84

4

o.50

69 I

0

33

73

-0

19

25

0

.52

99

0.3

52

6

-0.2

00

ft

0.5

53

4

0.3

73

1

-0.2

12

0

0.5

35

0

03

33

6

-0.2

17

5

0.6

01

1

0 3'

943

-0 2

23

1

0.6

17

4

0 4

05

1

-0 2

28

7

0.6

33

9

0 4

16

2

~0.2345

0.6

50

7

Page 29: ih - dl.lib.uom.lk

Tab

le 0

.2 C

alcu

lati

on o

f w

ind

forc

e pe

r un

it a

rea

-40

sto

rey

buil

ding

(18

111 fl

oor

to 3

5111

floo

r)

WIN

D L

OA

D C

ALC

ULA

T!O

N to~NZS1170 .2

No

of

Sto

rye

s

He

g h

t o

f bu

ild

ing

F

loo

r to

fl•X

>r

he

igh

t

Wid

th o

f b

uild

ing

Elf e

ath

of

Bu

ildin

g

Te

rra

in C

ate

go

ry

Re

gio

n

v~

M"

10.951

M

,

K, ~

K,

jo.1

43

1 g

• 1 s

:z4-~1s

1

S{m

} M

"-""

IV

......

(I

Me'

;ht

&4

.3

36.4

&1

3& 7

21

3&

93

1

37 2

23

37

,43

7

37

,64

5

37

.&5

3

38.0

&1

11.00)

M

, 11.

001

K,

11.oo1

H

, 11.

001

L,

11

66

1

B,

B-a

ckgr

ound

Fa

cto

r

41

VF

d:h

D

vr

--=t

t~-

O.u

15

0

78

55

o_n?

O

0.7

91

&

07

32

4

07

97

8

87

3

0.8

03

9

.79

31

0

.81

01

79

84

0

.31

63

0.8

22

5

o_ro

ss

0&

28

7

0.&

:13

3

08

34

3

OJ1

133

oa~s

0,3

23

6

03

46

7

08

23

1

03

52

4

0 8

32

5

-I

---

--I

3S .. 2

&91

~-

--~

3S

47

7

03

4

38

68

5

FOR

4

0

ST

OR

YE

D B

UIL

DIN

G

Acc

ord

ing

to

AS

11

70

.4-1

99

3 C

lau

9:

f> 2.

4 F

un

da

me

nta

l pe

rio

d (

To

F

H/4

6

~s

~Hz

Fkst

Mo

de

of V

ibra

tio

n (

n 0

) =

(1/T

0)

M,.

ILO

OI

K ~

fLOOI

g

. [!

!]

z 10.

051

s

00

39

5

0.0

43

4

0.0

39

3

0.0

48

3

00

40

3

00

49

5

0.0

40

Z

oosr

o 0

04

12

00

44

2

00

5<

10

C""

Win

dw

ard

s w

aH

s

C;>e

Le

ew

ard

sw

aH

s n

orm

alt

o

Le

ew

ard

s w

alls

nor

ma!

to

Fo

rce

0

.5r,

.. X

V,,.

/.G X

r ~.

1 ') ·"-

c~i\

0 C

,..,

X 1<

.. X K

< X

K X

Kc

N

IE,

cw,

Dy

nam

ic F

atte

r

4!.

\'1--

:!V.

?D

Vid

h

09

45

7

09

51

&

0.9

47

5

0.35

3&

0.9

49

3

0.9

55

6

0.9

51

0

0.95

7&

0.9

52

7

0.3

59

5

2.2

50

0

.05

2

0.9

54

3

0.9

61

4

09

55

9

0.9&

32

0.9

57

5

0.9

65

1

09

59

1

09

&7

0

09

60

&

0.9

63

3

0.9

62

1

0.97

0&

0.9

63

5

0.9

72

3

0.9&

4&

0.9

73

9

0.0

54

0

96

60

0

97

55

--

0.0

54

0

96

72

0.

.977

0 --

0.0

55

0

96

83

0

97

34

--

0.0

55

0.

9&92

0

.97

97

2 0

91

10

05

5

0.9

70

1

nser

e

111

<1

Hz

Th

e

sho

uld

be

de

term

ine

d

41

m wa~

30

m

wa

ll

c...~

Fo

rce

pe

r U

nit

Are

a

~

ilrM

~or

-r_.

-. t

::>

41.

T

S'-c

i-e

vrn~a"d

~~v,Q.:"dt,

0,4

24

3

-0.2

80

7

0.4

3&

0

... (}2

87

6

0.7

23

5

0.4

47

3

-0.2

94

5

0.7

41

9

0.4

58

2

-0.3

01

1

0.7

59

3

0.4

65

S

-0.3

05

6

0.7

7'1

3

0.4

73

4

-{}

31

00

0

.7&

34

0.4

&1

1

-0.3

14

5

0.7

95

6

0.4

88

&

-03

19

1

0.8

07

9

0.4

96

6

-03

23

6

0.&

20

2

0.5

04

5

~03232

0.8

32

7

0.5

12

0

-0 3

32

6

0.8

44

7

0.5

18

5

~\13364

0.8

54

9

0 5

25

0

-0.3

40

1

0.8

65

1

0.5

31

5

~0_3439

0.8

75

0.5

33

0

-0. 3

4,;

l 0

.88

5

0.5

44

5

-0.3

51

5

0.8

96

0

0.5

51

0

-0.3

55

3

0.9

06

3

0.4

33

3

0.4

50

3

0.4&

13

0.4&

91

0.4

76

9

0.4&

47

0.4

82

7

0.5

00

7

o.so

sa

0 5

16

6

0 5

23

3

0.5

5&

9

-0.2

4&2

0.6

84

9

-0.2

52

1

0.7

02

4

-02

57

3

0.7

19

1

-0.2

61

6

0.7

30

&

-02

65

4

0.7

42

3

-0.2

69

2

0.7

54

0

-<l2

73

1

0.7

65

8

-0.2

uO

0

.71

77

-0 2

31

0

0.7

S9

7

-0.2

84

7

0.0

01

3

-02

&7

9

0.8

11

2

-0.3

04

1

0.8

61

1

0 5

57

5

-0.3

59

2

0.9

1&

6 I

0 5

63

6 I

-03

07

41

{M

.!711

.,:·*·

~",' "

.:.1!,

It'

-. "'""

~··

Page 30: ih - dl.lib.uom.lk

Tab

le D

.3 C

alcu

lati

on o

f win

d fo

rce

per

unit

are

a -

40 s

tore

y bu

ildi

ng (3

6th

floo

r to

40t

h fl

oor)

WIN

D to

AD

CA

LCU

LA T

!ON

to

AS

/NZ

S1

17

0.2

FO

R

40

S

TO

RY

ED

BU

ILD

ING

No

of

Sto

rve

s -

m

Acc

ord

ing

to

AS

1170

4 ·

199

3 C

!au9

e 6

.2 4

F

un

da

me

:nta

lpe

r!o

d(T

.,)=

H

/46

H

eg

ht o

f bu

ild

ing

F

loo

r to

floo

r h

eig

ht

Wid

th o

f b

uild

ing

F

irst

l'v1

ode

ofV

UJr

ati

on

(n

0)

=(1

/T,:;

) [3

13Js

~Hz

<1

Hz

Th

e

sho

uld

be

de

term

ine

d

Bre

ath

of

Bu

ildin

g

Te

rra

in C

ate

go

ry

Re

gio

n

v~

Me

(o.<:~

sl M

,

K.

Jo.801

K

c

I-~

10.1

43

I g

.

S(m

) M~-

l-'c

\;t'

·t

1.0

77

4

38

,39

3

10

03

1

39

10

1

1.0

88

9

39

.30

9

10

94

6

39

51

7

1.1

00

4

39

.72

4

rn

Cit

y C

en

ter

Ne

ar to

Se

a

3Slm

/s

M,

ll.OOJ

M

. ll.O

OJ

JLoo

l K

, ll.O

OJ

Kp

IL

ool

H,

Jl.OOJ

g

. (!

!]

L,

11&6

1 z

joosl

8,

s B

ack

gro

un

d F

acto

r si

ze F

acto

r

41

\1[-

.ot.h

D

vr

-f'!k

h 41

V

l;d:

th

D

\l~-dh

0.3

52

0

O.S

$4

5

0.0

44

6

0.0

54

4

0.3

53

3

0.3

27

1

0.0

54

3

0.3

55

1

0.3

89

0

00

55

3

0.3

55

9

03

90

2

00

55

7

0.3

56

2

0.3

90

6

00

46

0

.05

61

C,.

Win

dw

ard

s w

alls

C,.

Le

:ew

ard

s 'N

aHs

no

rma

l to

C,.

Le

:ew

ard

s ov

aHs

no

rma

!to

4

1 m

w

all

30

m

wa

ll

~

Fo

rce

O

. .Sr <

,X V

ce

•. q

X

X C

cf··

(k

N/m

k)

r •..

1.2

kN

/mz

C,_

. X

1\,

X K

, X K

X K

"

N

lEt

cay.,

D

yna

mic

: F

acto

r

41

Vf.

d:t

h

'!;)

V

kdt:

h

20

3)

0.0

55

0

.97

09

0

9$

13

2.0

69

0

.05

5

09

71

5

0.9

32

7

2.0

58

O

.CS

5

0.9

72

0

<19

833

20

tfl

00

56

<

J97

23

0

93

33

2 0

36

0

.05

6

0.9

72

5

0.9

34

:)

112

Fo

rce

pe

r U

nit

Are

a

\*/'

nd

t,.o-

-<r.

;;,'

t:<

4

1

<r,

.:;:d<

e:

\*/'

r-,-

M ;;;

,Md

05

63

9

0.5

70

3

0.5

76

7

0.5

33

0

0.5

39

3

.,:·*'~

-~-J

,:~,

~ ~

·· ~ ,~

,

~ ..

~ 7

.

~,e~~~

To

tal

.{1

36

:0

0.9

27

0

-0.3

66

9

0.9

37

3

-03

70

S

0.9

47

5

~o 3

74

8

0.9

57

8

-03

78

7

0.9

68

0

Fo

rce

pe

r U

nit

Are

a

\&fr

rl No-

-n-~

" to

3

0

T

3-'C

>e

~N~~e

Tot

al

·<1

31

0&

0

.83

11

-03

14

1

0.8

91

0

-03

17

4

0.9

00

9

~o 3

20

8

0.9

10

7

-03

24

2

0.9

20

5

Page 31: ih - dl.lib.uom.lk

Table 0.4 Calculation of wind loads on grid locations as point loads in 40 storey

building

40 STOREY BUILDING- WIND LOADS ON GRIDS

Wind normal to 41m side Wind normal to 30m long side

Storey Height Force per GRIDS Force per GRIDS unit area AIF B/E C/D unit area I I 5 2/4

Ground 0 0.433 6.24 12.48 13.26 0.409 6.62 15.46

I 3.6 0.434 6.25 12.49 13.27 0.409 6.63 15.47

2 7.2 0.434 6.25 12.50 13.29 0.410 6.64 15.49

3 10.8 0.435 6.26 12.52 13.30 " 0.410 6.65 15.51

4 14.4 0.435 6.26 12.53 13.31 0.411 6.65 15.52

5 18 0.435 6.27 12.54 13.33 0.411 6.66 15.54

6 21.6 0.445 6.41 12.82 13.63 0.420 6.81 15.89

7 25.2 0.467 6.73 1:3.46 14.30 0.441 7.15 16.68

8 28.8 0.490 7.05 14.10 14.99 0.463 7.49 17.49

9 32.4 0.513 7.38 14.77 15.69 0.484 7.85 18.31

10 36 0.536 7.72 15.45 16.41 0.507 8.21 19.16

1 1 39.6 0.561 8.07 16.15 17.16 0.530 8.58 20.03

12 43.2 0.585 8.43 16.86 17.91 0.553 8.96 20.92

13 46.8 0.619 8.91 17.82 18.93 0.585 9.48 22.11

14 50.4 0.636 9.15 18.31 19.45 0.601 9.74 22.72

15 54 0.653 9.40 18.80 19.97 0.617 10.00 23.34

16 57.6 0.670 9.65 19.30 20.50 0.634 10.27 23.96

17 61.2 0.688 9.90 19.80 21.04 0.651 10.54 24.59

18 64.8 0.705 10.16 20.32 21.59 0.668 10.82 25.24

19 68.4 0.724 10.42 20.84 22.14 0.685 II. I 0 25.89

20 72 0.742 10.68 21.37 22.70 0.702 11.38• 26.55

21 75.6 0.759 10.93 21.87 23.24 0.719 11.65 27.18

22 79.2 0.771 11.11 22.21 23.60 0.731 11.84 27.62

23 82.8 0.783 11.28 22.56 23.97 0.742 12.02 28.06

24 86.4 0.796 11.46 22.91 24.35 0.754 12.21 28.50

25 90 0.808 11.63 23.27 24.72 0.766 12.41 28.95

26 93.6 0.820 11.81 23.62 25.10 0.778 12.60 29.40

27 97.2 0.833 11.99 23.98 25.48 0.790 12.79 29.85

28 100.8 0.845 12.16 24.33 25.85 0.801 12.98 30.29

29 104.4 0.855 12.31 24.62 26.16 0.811 13.14 30.66

30 108 0.865 12.46 24.92 26.47 0.821 13.30 31.04

31 111.6 0.875 12.61 25.21 26.79 0.831 13.46 31.42

32 115.2 0.886 12.75 25.51 27.10 0.841 13.63 31.79

33 118.8 0.896 12.90 25.81 27.42 0.851 13.79 32.17

34 122.4 0.906 13.05 26.10 27.73 0.861 13.95 32.55

35 126 0.917 13.20 26.40 28.05 0.871 14.11 32.93

36 129.6 0.927 13.35 26.70 28.36 0.881 14.27 33.30

37 133.2 0.937 13.50 26.99 28.68 0.891 14.43 33.68

38 136.8 0.948 13.64 27.29 28.99 0.901 14.59 34.05

39 140.4 0.958 13.79 27.58 29.31 0.911 14.75 34.43

40 144 0.968 13.94 27.88 29.62 0.920 14.91 34.79

113

,)- ~- i

:~ ;~:. ~' . ' " ~

Page 32: ih - dl.lib.uom.lk

Tab

le D

.S C

alcu

lati

on o

f win

d fo

rce

per

unit

are

a-

50 s

tore

y bu

ildi

ng (

Gro

und

floo

r to

1 i11

floo

r)

WIN

D L

OA

D C

ALC

UtA

TIO

N to

AS

/NZ

S11

70.2

FO

R

50

STO

RY

ED

BU

ILD

ING

No

of

Sto

ryes

-

Acc

ord

ing

to

AS

11

70

.4 ·1

99

3 C

!au

:e 6

2.4

fu

nd

am

en

tal p

eri

od

(T

0 )=

H

,/46

s He~ht o

f bu

l!d

ing

F

loo

r to

flo

or

t<ei

g h

t

VV id

tl! o

f bu

iidin

g

&e

at!

! o

f B

uild

ing

Te

rra

in C

ate

go

ry

Reg

ion

Fir

st M

od

e o

f Vib

rati

on

(n

0) "'

(1/T

0)

Hz

<1

Hz

Th

e

sho

uld

be

de

term

ine

d

VA

3Sir

n/s

M,_,

10.

951

M,

M,

ILooJ

M,.

ILo

ol f(,_

. JO

.SOI

K,

JLOOJ

K

, JLO

Oj K

p p.o

ol f"

....

.....,..

... lt

u45

1 H

, Jl.O

OJ

gy ~

g,

Ln I 1

751

' lo

os1

S{m

) B

, s

~';ht

&a

ckg

rou

nd

Fa

cto

r

06

70

:2

0.0

27

S

00

32

2

0.6

74

8

0.02

&0

{}03

27

0.6

79

4

0.0

29

1

00

34

0

06

84

0

0.03

\}2

0.0

35

2

06

33

7

00

31

3

0036

-1-

06

93

5

00

32

4

00

37

7

~.613

06

92

3

06

53

3

0,0

33

5

0.03

9:3

43 2

0

.86

60

31

,263

0

69

69

0

.70

32

0

03

47

{

}0

40

2

46

.3

O.S

S9S

32

,12

0.7

01

6

0.7

08

1

0.0

36

2

0.0

41

3

50

4

09

01

3

32

.53

6

0.7

06

3

07

13

1

00

36

9

0,0

42

&

54

0 9

12

3

32 9

52

0

71

11

0

.71

31

0

03

77

0

.04

36

57

6

0 9

24

3

33

,36

3

07

15

9

07

23

2

0.0

33

4

0.0'

<44

61 2

0

93

53

33

.7S

4 0

72

00

Q

72

83

0

.03

92

0

.04

53

C?e

Win

dw

ard

s w

aHs

Le

ew

ard

swa

Hs

no

rma

lto

Le

ew

ard

s w

alls

no

rma

l to

For

ce

osp,

. xv_·.~x

P<·

1.2

c,. X

K, X

K"

X K

. X. K

9

N

IE,

cdr,

Dyn

am

ic F

act

or

>S W4~ I

31

;

2,5

27

0

0'<

9

0.9

11

4

0.9

13

9

2.S

OO

0.

0'<

9 0

.91

29

0

91

5S

2.44

2 0

.05

0

0.9

14

6

0.9

17

3

2,3

87

0

.05

0

09

16

3

0.9

19

1

2-3

34

0

05

1

09

18

1

09

21

0

2_2S

3 0

.05

2

0.9

15

3

0.9

22

8

2,2

35

0

.05

3

0.3

21

6

09

24

7

2.11

33

0.0

53

0

.92

34

0

.32

66

21~

0.0

54

0

92

53

0

92

86

2.1

03

0

.05

5

0.9

27

0

09

30

4

2 0

76

0

05

5

09

28

7

09

32

2

2.0S

tJ

0.0

56

0

93

03

0

.93

40

2.0

25

0

.05

6

09

32

-J

0.9

35

8

114

<;..~

Cnt

~

45

m

wa

ll

36

m wa~

(kN

/m·)

Fo

rce

per

Un

it A

rea

F

orc

e p

er

Un

it A

rea

\f./MOO-r~ 1

-:•

36

~.::

.. ~e

i.«:'w

;>'<

l> 1

To

tal

-0.1

51!5

I

0.4

13

7

0..3

171

.()

21

55

0 3

31

6

.()

22

49

0.3

46

5

.()2

34

6

0 3

66

6

.02

47

6

0.6

14

2

0,3

67

9

0.3

76

8

.{).

25

41

0

.63

09

0

37

&2

0 3

87

2

.()

26

06

0

.64

73

0

3133

7

0.3

97

3

..0.

2672

0

.66

50

0

39

93

04{X

35

-0 2

73

9

0.6

32

4

04

10

1

.,;~

?:

-7'::i

:.'1

;

It'

-''

1tl

"\r

Page 33: ih - dl.lib.uom.lk

Tab

le D

.6 C

alcu

lati

on o

f win

d fo

rce

per

unit

are

a-

50 s

tore

ys b

uild

ing

(18t

h fl

oor

to 3

5th

floo

r)

WtN

DI.

.OA

D C

AlC

UlA

TIO

N to

AS

/NZ

S1

17

0.2

FO

R

50

ST

OR

YE

D B

UIL

DIN

G

No

of

Sto

ryes

r5

0

Acc

ord

ing

to

AS

11

70

4 ·

19

93

C!a

u9

:;6

.2 4

F

un

da

me

nta

l pe

rio

d (

T 0

)"'

H/4

6

He

gh

t o

f b

uild

ing

fl

oor

to fl

oo

r h

eig

ht

Wid

th o

f b

uild

ing

F

irst

Mo

de

of V

ibra

tion

(n

0) =

(1/T

0)

Hz

< 1

Hz

Th

e C

6,,

, sh

ou

ld b

e d

e:te

rm in

ed

Bre

ath

of

Bu

ildin

g

Te

rra

in C

ateg

ory

Reg

ion

v ..

M,

,0.951

M,

K, ~

K,

In

j0.1

43

I

g,

L3

17

2S

71

S(m

} M

.._""

' v.

,..,e

he

::.;

ht

64

3

0.9

47

4

34

2

&3

4

0.9

58

9

34

61

£

72

0.9

70

4

35

.03

1

75.&

0

.93

12

3

5.4

21

79~2

0.9

38

4

35

&31

82

3

0.9

95

6

35

94

1

36

4

10

02

3

3& 2

01

~

1.01

!Xl

36.4

&1

93

.6

1.0

17

2

36

.72

1

97

.2

1.0<

:44

36

.93

1

lOO

S

1-03

13

37 2

29

10

4.4

1

.03

70

37

43

7

lOS

1

.04

23

3

7.6

45

11

1 6

1

04

36

37

85

3

115.

2:

1.0

54

3

33

.ffi

1

11

33

1

.00

01

38

2&

9

12

2.4

1

0&53

3S

47

7

12&

1

07

16

3&

6&

5

~Near t

o S

ea

m/s

· -~

M

, 11.

001

11.oo1

K

1 11.

oo1

H,

ILOOI

L,

. I 1

75j

B,

Sa

<X

gro

un

d F

act

nr

45

\f/)

ct:h

W

«h

07

25

6

07

33

5

0 73

();;

0

73

37

0.7

35

5

0.7

44

0

0.74

CS

{1

7493

0.7

45

5

07

54

7

0,7S

C6

0.7

60

1

07

55

5

07

&5

6

0.76

<:>5

0

.77

11

0.7

65

6

07

7&

6

0.77

Ci7

0

78

21

Ou

r;;!

0

7F

J7

0..7

&07

0

73

33

0.7

35

7

0.79

6.3

0,7

:Kfl

0

.30

44

0.7

95

6

O.S

C99

0.3

00

4

03

15

5

0 3

05

2

03

20

9

0.3

09

9

03

2&

3

M,,

ILO

OI

Kp

p.ool

gv

13.71

~

loos

j s

Siz

e F

act

or

45

Vl~1h-

V{>

dth

00

39

9

00

4&

1

00

40

7

0.0

47

0

00

41

4

0.0

47

8

0.0

42

1

00

43

6

0.0

42

&

0.0

49

1

0.0

43

1

0.0

49

7

{) 0

43

6

OC

€0

2

() 0

44

{)

0.0

50

7

0.0

44

5

0.0

51

3

0.0

45

0

0.0

51

8

0.0

45

5

OC

€2

3

0.0

45

9

0.0

52

7

00

4&

2

{10

53

2

00

4&

6

O.C

€3&

0.0

47

0

0.0

54

0

00

47

4

00

54

5

0.0

47

3

0.0

54

9

0.0

48

2

OC

€5

3

c.,. W

ind

wa

rds

wa

!!s

C;><

Le

ew

ard

s w

alls

no

rma

!to

Le

ew

ard

s w

alls

no

rma

! to

For

ce

P>·

c,, N

2.oo

:J

1.5

76

1.9

53

1.9

31

1.9

17

1.9

04

lS~

1.S

76

1.3

63

1.3

50

13

38

1.8

27

1.3

17

1 0

07

1.7

93

1. 7

3!1

1 77

&

17

69

05

p,.

xvo

.;,e

xC,i

rx

12

C,..

, X

K. X

K, X

K X

K0

E,

c""·'

D

ynam

>e

Fa

cto

r

>5

Vi->

d"th

35

Vi~h

0/:

67

0

.93

3&

0.

937&

0.{1

57

09

35

5

09

39

4

O.C

€8

0.9

37

2

0.9

41

2

O.C

€3

0.93

8.9

0.9

43

1

0.0

58

0

94

05

0

94

48

0.0

59

0

.94

21

0

.94

66

OC

€9

0

94

33

0

94

83

{).0

59

0.9

45

4

0.9

50

1

OC

5S

0

94

70

0

.95

1S

0.0

60

0

.94

36

0.

953&

0 <X

;O

09

50

0

09

55

3

0()

;0

0.9

51

3

0.9

57

1

0 ()

50

0.9

53

4

0.95

3!1

0.0

51

0

95

49

0

96

GS

0.(

);1

0

.95

64

0

.96

22

0 ()

51

() 9

57

9

0.9&

39

()()

51

0

.95

94

0

96

55

0 ()

;;1

0.9&

00

09

67

2

115

45

m

wa

ll

36

m

v.•a

l!

(kN

/m')

<;. ..

Cn.t

Fo

rce

per

Un

it A

rea

Vt:

n-d-

Nu;

..,;,

t,

15

"f

".i>c

i-e

Vl.:

!":c

4.w:~~

"'~

!.~~~~G

Tot

af

04

19

4

-0 2

30

7

0.7

00

1

0.4

30

4

.0.2

87

6

0.7

18

0

04

41

6

-0.2

94

5

0.7

36

2

(} 4

52

4

.0.3

01

1

0.7

53

5

0.4

59

3

-03

05

&

0.76

lii4

04

£7

3

-0.3

10

0

0.7

77

4

0.4

74

9

-0 3

14

5

0.7

39

5

04

32

6

-0.3

13

1

0.8

01

7

04~4

..0

.32

36

0

.81

40

0.4

96

2

..0.

3232

0

.82

64

0 5

05

7

..0 3

32

6

0.83

811

0.5

12

3

-0.3

3&4

0.8

48

£

OS

:lS

S

-0.3

40

1

0.8

58

9

0 5

25

4

-0.3

43

9

0.8

69

3.

0.5

31

0

..0

34

77

0

.87

97

0.53

&7

-0 3

51

5

0.8

90

2

0.5

45

4

-0 ~553

0.9

00

7

0 5

52

1

-0 3

59

2

0.9

11

3

-~ :J

.~,

It':

''

-·--~-'11!'"

....

forc

ep

er

Un

it A

rea

\!f.

rd:

~v';

'"f'

..,

fc,

36

'r

5~-

ci-e

\*l r

--;;

N ..

.. "d

L~.u;~:·G

Tot

al

0.4

21

1

-02

52

&

0.&

737

04

32

2

-02

58

.3

0.£

91

1

0.4

43

6

-0.2

65

1

0.7

03

6

0.4

54

4

-0.2

71

0

0.7

l54

0 4

61

9

-02

75

0

0:7

9

0.4

69

5

-0.2

79

0

0.71

185

04

77

2

-02

33

1

0.76

{13

0.4

85

0

-0.2

&72

0

.77

21

0.4

32

3

~o 2

s1

3

0.7

84

1

0.5

00

3

-02

95

4

0.7

96

2

0 5

00

5

-0.2

99

4

0.3

07

3.

0.5

15

1

-03

02

7

0.8

17

3

0.5

21

7

-0 3

();1

0

.82

79

I

() 5

23

5

-0 3

03

5

0.3

33

0

0.5

35

2

-0.3

12

9

0.84

.31

0.5

42

0

-0 3

16

3

0.8

58

4

0.5

48

9

-0.3

13

3

0.3

68

7

0 5

55

8

-03

23

2

0.8

79

0

Page 34: ih - dl.lib.uom.lk

Tab

le 0

.7 C

alcu

lati

on o

f win

d fo

rce

per

unit

are

a-

50 s

tore

ys b

uild

ing

(361 h

floo

r to

50111

fl

oor)

WIN

D L

OA

D C

AI.C

ULA

TIO

N t

o A

S/N

ZS

11

70

.l

FOR

5

0

ST

OR

YE

D B

UilD

ING

No

of

Sto

rve

s r-5

0'

Ao

::o

rdin

g t

o A

S 1

17

0.4

-1

99

3 C

lau5

e 6.

2.4

fu

nd

am

en

tal p

eri

od

( T

0 )=

H

/46

.$

H

e{:

ht

of

bu

l!d

lng

F

loo

r to

flo

or

he

igh

t

Wid

th o

f b

uild

ing

Bre

ath

of

Bu

i!d

ing

T

err

ain

Ca

teg

ory

Re

gio

n

Fir

st f\

•1od

e o

f Vib

rati

on

{n

,,)

;(1

/Tc)

H

z <

1Hz

Th

e

.sh

ou

ld b

e d

ete

rmin

ed

v.,

M.,

10.

951

M"

Ka ~

K<

'··

lo.1

43

1

g,

1317~~

S{m

) M

"""'

!V,..

.,o

he ~-

;ht

12

5 6

13

3.2

13

68

14

0.4

14

4

16

2

16

5.6

16

9.2

17

2.8

17

6.4

13

0

~NeartoSea

m/s

M

, 11.

001

p.ool

K,

p.ool

H'

11.001

L

.• I 1

75!

B,

Sa

ck,s

rou

nd

Fa

ctn

r

4S

'+,:t

:,.(c

th

:!>

,.,.d

Oh 1

"" 0.

8.14

4 0

83

16

O.S

lSS

0

.33

68

08

23

1

08

41

9

0.8

27

1

0.8

46

3

0.8

31

0

08

51

4

0.8

55

9

<U>6

00

OS

63

9

---

0.3

67

3

---

02

70

3

0.3

72

9

08

74

9

0.87

&4

\}3

77

3

---

0.8

77

6

M,

11.001

K

., ILO

OJ

Yv ~

~

lo OS

J s

c,. W

ind

wa

rd.s

wa

Hs

Le

ew

ard

s w

a!!

s n

orm

al t

o

C""

Lee

•uar

d.s

wa

lls n

orm

a! t

o

Foc

ce

O.S

p,.

X ll

o.,:_

ex c

t X

p.·

. 1

2

c'11

C~.~ X

~ X

K,

X K

. X K

?

N

IE,

45

m

waW

36

m

wa

a

(kN

/m')

<;., ..

~ ~ . .

Force~ U

nit

Are

a

\'"l

"rc~

u-.,

.-•

b

1-l

fcth

1 v

-r:r

.d.#

;::d

0.9

68

8

0.9

70

3

0.9

82

4

0.9

82

7

0.9

82

5

116

o ss

as

0 5

65

7

05

72

5

0.5

79

4

0.5

86

2

05

93

0

---

05

99

1

0 G

03

61

{

)60

00

06

12

4

0.5

16

7

0.6

21

0

0.6

25

2

06

25

3

0.6

33

4

U·~1

., 'h

-.

-~ J

,".'!

,

It''

'"

-03

Ba

·0.3

51

-0 3

96

3

-0 3

31>8

-O.<

ID14

-04

03

9

-0 4

G65

Fo

rce

pe

r U

nit

Are

a

VI ro

lic•

:.or •

to

3

6

1'f1

S\:M

::

L<,<w•>~<

I T

ota

l

-0.3

26

7 I

O

.SS

94

Page 35: ih - dl.lib.uom.lk

Table 0.8 Calculation of wind loads on grid locations as point loads in 50 storey

building

50 STOREY BUILDING - WIND LOADS ON GRIDS

Wind normal to 45m side Wind normal to 36m side

Storey Height Force per GRIDS Force per GRIDS

Unit Area 1 I 5 2/4 3 Unit Area AIF B/E C/D 1 Ground 0 0.431 7.36 13.95 13.95 0.414 6.70 13.40 13.40

I 3.6 0.431 7.37 13.96 13.96 0.414 6.71 13.42 13.42 1

2 7.2 0.431 7.38 13.98 13.98 0.414 6.71 13.43 13.43 3 10.8 0.432 7.38 13.99 13.99 0.415 6.72 13.44 13.44 4 14.4 0.432 7.39 14.00 14.00 0.415 6.73 13.45 13.45 5 18 0.432 7.40 14.01 14.01 0.416 6.73 13.47 13.47 6 21.6 0.442 7.56 14.33 14.33 0.425 6.88 13.77 13.77 7 25.2 0.464 7.93 15.03 15.03 0.446 7.22 14.45 14.45 8 28.8 0.486 8.32 15.76 15.76 0.467 7.57 15.15 15.15 9 32.4 0.509 8.71 16.50 16.50 0.489 7.93 15.86 15.86 10 36 0.533 9.11 17.26 17.26 0.512 8.30 16.59 16.59 II 39.6 0.557 9.52 18.03 18.03 0.535 8.67 17.34 17.34 12 43.2 0.581 9.94 18.83 18.83 0.559 9.05 18.11 18.11 13 46.8 0.614 10.50 19.90 19.90 0.591 9.57 19.14 19.14 14 50.4 0.631 10.79 20.44 20.44 0.607 9.83 19.66 19.66 15 54 0.648 11.08 20.99 20.99 0.623 10.10 20.19 20.19 16 57.6 0.665 11.37 21.55 21.55 0.640 10.37 20.73 20 73 17 61.2 0.682 11.67 22.11 22.11 0.657 10.64 21.28 21.28 18 64.8 0.700 11.97 22.68 22.68 0.674 10.91 21.83 21.83 19 68.4 0.718 12.28 23.26 23.26 0.691 11.20 22.39 22.39 20 72 0.736 12.59 23.85 23.85 0.709 11.48 22.96 22.96 21 75.6 0.753 12.88 24.41 24.41 0.725 11.75 23.50 23.50 22 79.2 0.765 13.09 24.80 24.80 0.737 11.94 23.88 23.88 23 82.8 0.777 13.29 25.19 25.19 0.749 12.13 24.25 24.25 24 86.4 0.789 13.50 25.58 25.58 0.760 12.32 24.63 2463 25 90 0.802 13.71 25.97 25.97 0.772 12.51 25.02 25.02 26 93.6 0.814 13.92 26.37 26.37 0.784 12.70 25.4). 25.41 27 97.2 0.826 14.13 26.78 26.78 0.796 12.90 25.80 25.80 28 100.8 0.838 14.34 27.16 27.16 0.808 13.09 26.17 26.17 29 104.4 0.849 14.51 27.50 27.50 0.818 13.25 26.50 26.50 30 108 0.859 14.69 27.83 27.83 0.828 13.41 26.82 26.82 31 111.6 0.869 14.86 28.16 28.16 0.838 13.58 27.15 27.15 32 115.2 0.880 15.04 28.50 28.50 0.848 13.74 27.48 27.48 33 118.8 0.890 15.22 28.84 28.84 0.858 13.91 27.81 27.81 34 122.4 0.901 15.40 29.18 29.18 0.869 14.07 28.15 28.15 35 126 0.911 15.58 29.53 29.53 0.879 14.24 28.48 28.48 36 129.6 0.922 15.77 29.87 29.87 0.889 14.41 28.82 28.82 37 133.2 0.933 15.95 30.22 30.22 0.900 14.58 29.16 29.16 38 136.8 0.943 16.13 30.56 30.56 0.910 1475 29.50 29.50 39 140.4 0.954 16.32 30.91 30.91 0.921 14.92 29.84 29.84 40 144 0.965 16.50 31.26 31.26 0.932 15.09 30.18 30.18 41 147.6 0.976 16.69 31.61 31.61 0.942 15.26 30.53 30.53 42 151.2 0.985 16.85 31.92 31.92 0.952 15.41 30.83 30.83 43 154.8 0.992 16.97 32.15 32.15 0.958 15.53 31.05 31 05 44 158.4 0.999 17.09 32.37 32.37 0.965 15.64 31.27 31.27 45 162 1.()06 17.20 32.60 32.60 0.972 15.75 31.49 31.49 46 165.6 1.013 17.32 32.82 32.82 0.979 15.86 31.71 31.71 47 169.2 1.020 17.44 33.04 33.04 0.985 15.96 31.93 31.93 48 172.8 1.027 17.55 33.26 33.26 0.992 16.07 32.14 32.14 49 176.4 1.033 17.67 33.48 33.48 0.999 16.18 32.36 32.36 50 180 1.040 17.78 33.69 33.69 1.005 16.28 32.56 32.56

117

-..;,:. ~,

.~~ . ,· ' "' .

Page 36: ih - dl.lib.uom.lk

Appendix E

SAP model figures

)(X-Y J1Jl<t6t'Z::o·l.2

Figure E.l Pile cap layout (SAP model)

storey building

~3-D View

I I I I r II I I II I I I' I I II I I I I I I d I I I II I I II I I II I I I \ I I II I I I I

Ci?T®J~

Figure E.2 SAP model 3D view of 50

Figure E.3 SAP model 3D view of a piles group ( 4 piles)

118

l~ ~-~·

''

. ; t t ~. i ' .. , ;