references - dl.lib.uom.lk

114
119 References 1. Ansys 12.1 User Manual, Ansys Inc, 2009 2. Australian and New Zealand standards: Structural design actions Part 2: wind actions; AS/NZS 1170.2:2002, Standards Australia. 3. Australian standards: Structural design actions Part 2: wind actions; AS 1170.2:1989, Standards Australia 4. Becker, S., Lienhart, H., Durst, F., Flow around the three dimension obstacles in boundary layer, Journal of Wind Engineering and Industrial Aerodynamics, Vol. 90, pp. 265-279, 2002 5. Blocken, B., Carmeliet, J., Stathopoulos, T., CFD evaluation of the wind speed conditions in passages between buildings — effect of wall-function roughness modifications on the atmospheric boundary layer flow. Journal of Wind Engineering and Industrial Aerodynamics, 2007(a). 6. Blocken, B., Stathopoulos, T., Carmeliet, J., CFD simulation of the atmospheric boundary layer–wall function problems. Atmospheric Environment. 41 (2), 2007(b), pg 238–252 7. British Standard: Eurocode 1: Actions on Structures – Part1- 4: General actions - wind actions; BS EN 1991-1-4:2005 , British Standard Institution, London 8. British Standard: Loading for building- Part 2: Code of Practice for wind loads; BS 6399- 2:1997, British Standard Institution, London 9. Building Code of Australia (BCA), Australian Building Codes Board, 2007 10. Caracoglia, L., Jones, P. J., Analysis of full-scale wind and pressure measurements on a low-rise building, Journal of Wind Engineering and Industrial Aero Dynamics, 97, 2009, pp 157 –173 11. Caracoglia, L., Sangree, R. H., Jones, P. J., Schafer, B. W., Interpretation of full-scale strain data from wind pressures on a low-rise structure, Journal of Wind Engineering and Industrial Aero Dynamics, 96, 2008, pp 2363 –2382 12. Charney, F. A., Wind drift serviceability limit state design for multi storey building, Journal of Wind Engineering and Industrial Aero Dynamics, 36, 1990, pp 203–212

Upload: others

Post on 16-Oct-2021

11 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: References - dl.lib.uom.lk

119

References

1. Ansys 12.1 User Manual, Ansys Inc, 2009

2. Australian and New Zealand standards: Structural design actions Part 2: wind

actions; AS/NZS 1170.2:2002, Standards Australia.

3. Australian standards: Structural design actions Part 2: wind actions; AS

1170.2:1989, Standards Australia

4. Becker, S., Lienhart, H., Durst, F., Flow around the three dimension obstacles

in boundary layer, Journal of Wind Engineering and Industrial Aerodynamics,

Vol. 90, pp. 265-279, 2002

5. Blocken, B., Carmeliet, J., Stathopoulos, T., CFD evaluation of the wind speed

conditions in passages between buildings — effect of wall-function roughness

modifications on the atmospheric boundary layer flow. Journal of Wind

Engineering and Industrial Aerodynamics, 2007(a).

6. Blocken, B., Stathopoulos, T., Carmeliet, J., CFD simulation of the

atmospheric boundary layer–wall function problems. Atmospheric

Environment. 41 (2), 2007(b), pg 238–252

7. British Standard: Eurocode 1: Actions on Structures – Part1- 4: General

actions - wind actions; BS EN 1991-1-4:2005 , British Standard Institution,

London

8. British Standard: Loading for building- Part 2: Code of Practice for wind

loads; BS 6399- 2:1997, British Standard Institution, London

9. Building Code of Australia (BCA), Australian Building Codes Board, 2007

10. Caracoglia, L., Jones, P. J., Analysis of full-scale wind and pressure

measurements on a low-rise building, Journal of Wind Engineering and

Industrial Aero Dynamics, 97, 2009, pp 157 –173

11. Caracoglia, L., Sangree, R. H., Jones, P. J., Schafer, B. W., Interpretation of

full-scale strain data from wind pressures on a low-rise structure, Journal of

Wind Engineering and Industrial Aero Dynamics, 96, 2008, pp 2363 –2382

12. Charney, F. A., Wind drift serviceability limit state design for multi storey

building, Journal of Wind Engineering and Industrial Aero Dynamics, 36,

1990, pp 203–212

Page 2: References - dl.lib.uom.lk

120

13. Chen, X., Kareem, A., Validity of Wind Load Distribution based on High

Frequency Force Balance Measurements, Journal of Structural Engineering,

June 2005, pp 984 – 987

14. Clarke, A.G, Swane, R.A, Schneider, L.M, Shaw, P.J.R, Technical assistance

to Sri Lanka on Cyclone Resistant Construction, Vol 1, Part 1 -4, 1979

15. Cook, N. J., Designer guide to wind loading of building structures,

Butterworth, 1985

16. Cook, N. J., Wind loading, A practical guide to BS 6399-2 Wind loads for

buildings, Thomas Telford, 1999

17. Cooney R.C., King, A.B. , Serviceability criteria of buildings, 1988

18. COST Action 732, Quality assurance and improvement of micro-scale

meteorological models, 2007

19. Cowan, I.R., Castro, I.P., and Robins, A.G., Numerical considerations for

simulations of flow and dispersion around buildings, Journal of Wind

Engineering and Industrial Aerodynamics, Vol. 67 & 68, pp. 535-545, 1997

20. CP 3 Chapter V: 1972, Code of Basic data for the design of buildings chapter

V. Loading, Part 2. Wind Loads, British Standard Institution, London

21. Cvitan, L., Determining wind gusts using mean hourly wind speed,

GEOFIZIKA, Vol 20, 2003, pp 63 – 73

22. Database of natural disasters in Sri Lanka, Web site URL:

www.desinventar.lk, last accessed on 03/08/2010

23. Dyrbye, C., Hansen, S., O., Wind Loads on Structures, John Wiley & Sons,

1999

24. Franke, J., Recommendations of the cost action c14 on the use of CFD in

predicting pedestrian wind environment. In: The 4th International Symposium

on Computational Wind Engineering, Japan Association for Wind

Engineering, Japan, 2006,pp. 529–532

25. Fu, J. Y., Li, Q. S., Wu, J. R., Xiao, Y. Q., Song, L. L, Field measurements of

boundary layer wind characteristics and wind-induced responses of super-tall

buildings, Journal of Wind Engineering and Industrial Aero Dynamics, 96,

2008, pp 1332 –1358

26. Goliger, A. M., South African wind loading specifications: The Euro way? ,

Journal of Wind Engineering and Industrial Aero Dynamics, 95, 2007, pp

1053 – 1064

Page 3: References - dl.lib.uom.lk

121

27. Gu, M., Zhou, X. Y., An approximation method for resonant response with

coupling modes of structures under wind action, Journal of Wind Engineering

and Industrial Aero Dynamics, 97, 2009, pp 573 – 580

28. Holmes, J. D., Effective static wind load distribution in wind enginnering,

Journal of Wind Engineering and Industrial Aero Dynamics, 90, 2002, pp 91 –

109

29. Holmes, J. D., Wind loading of structures (Second Edition), Taylor and

Francis, 2007

30. Ilgin, H. E., Gunel, M. H., The Role of Aerodynamic Modifications in the

Form of Tall Buildings Against Wind Excitation, METU Journal of Faculty of

Architecture, vol 2, 2007, pp 17 – 25

31. Irwin, A.W. Human Response to Dynamics Motion of Structures, The

Structural Engineer, London, 1978

32. Irwin, P. A., Wind engineering challenges of the new generation of super-tall

buildings, Journal of Wind Engineering and Industrial Aero Dynamics, 97,

2009, pp 328 –334

33. Kappos, A. J., Dynamic loading and design of structures, Spon press, London.

34. Karunaratne, S.A., High rise buildings in Colombo (Structural Engineer’s

View), Proceedings of the international conference on “Advances in

Continuum Mechanics, Materials Science, Nano science and Nano

technology: Dedicated to Professor Munidasa P. Ranaweera”, University of

Peradeniya, Sri Lanka, 2008. pp 291- 302

35. Kasperski, M., Specification of the design wind load—A critical review of

code concepts, Journal of Wind Engineering and Industrial Aero Dynamics,

97, 2009, pp 335 –357

36. Kijewski, T., Kareem. A., Dynamic wind effects, A comparative study of

provision in codes and standards with wind tunnel data, 2001

37. Kolouske, V., Pirner, M., Fischer, O., Naprstek, J., Wind effects on civil

engineering structures, Elsevier, 1984

38. Kwok, K. C. S., Hitchcock P. A., Burton, D. B, Perception of vibration and

occupant comfort in wind-excited tall buildings, Journal of Wind Engineering

and Industrial Aero Dynamics, 97, 2009, pp 368 –380

39. Kwok, K.C.S., Campbell, S., Hitchcock, P.A., “Dynamic characteristic and

wind-induced response of two high-rise residential buildings during typhoon”,

Page 4: References - dl.lib.uom.lk

122

Journal of Wind Engineering and Industrial Aero Dynamics, 93, 2005, pp

461–485

40. Lu, L. T., Chiang, W. L., Tang, J. P., Liu, M. Y., Cheng, C. W., “Active

control for a benchmark building under wind excitations”, Journal of Wind

Engineering and Industrial Aero Dynamics, 91, 2003, pp 469–493

41. Mendis, P., Ngo, T., Hariots, N., Hira, A., Samali, B., Cheung, J., Wind

Loading on Tall buildings, EJSE special issue; Loading on structures, 2007. pp

41-54

42. Naval research laboratory, Web site URL:www.nrlmry.navy.mil, Last

accessed on 28/07/2010

43. Ngo, T. T., Letchford C. W., Experimental study of topographic effects on

gust wind speed, Journal of Wind Engineering and Industrial Aero Dynamics,

97, 2009, pp 426 – 438

44. Pagnini, L., Reliability analysis of wind-excited structures, Journal of Wind

Engineering and Industrial Aero Dynamics, 98, 2010, pp 1 –9

45. Pantelides, C. P., “Active control of wind excited buildings”, Journal of Wind

Engineering and Industrial Aero Dynamics, 36, 1990, pp 189–202

46. Pham, L., Actions on structures: Regulations and Standards, EJSE special

issue: Loading on Structures, 2007, pp 4 - 8

47. Premachandra, W.R.N.R., “Study of new wind loading code to be adopting on

Sri Lanka”, M.Sc Thesis, Graduate school, Kasetsart University, 2008

48. Reddy J.N., An introduction to finite element method, 3 rd edition, McGraw-

Hill, 2005

49. Report on the Calibration of Euro code for wind loading (BS EN 1991 - 4) and

its UK National Annex against the current UK wind code (BS 6399: Part

2:1997)

50. Richards, P. J., Hoxey, R. P., Appropriate boundary condition for

computational wind engineering models using k – ε turbulence models,

Journal of wind engineering and industrial aerodynamics, 46 & 47, 1993, pg

145 -153

51. Sachs, P., Wind forces in Engineering, 2nd edition, Pergamon Press, 1978

52. Simiu, E., Sadek, F., Riley, M. A., Discussion of “Definition of Wind Profiles

in ASCE 7” by Yin Zhou and Ahsan Kareem, Journal of Structural

Engineering, November 2003, pp 1564 – 1565

Page 5: References - dl.lib.uom.lk

123

53. Simiu, E., Scanlan, R. H., Wind effects on Structures, John Willey & Sons,

1978.

54. Tominagaa,Y., Mochida, A., Yoshiec, R., Kataokad, H., Nozue, T.,

Yoshikawa, M., Shirasawa, T., AIJ guidelines for practical applications of

CFD to pedestrian wind environment around buildings , Journal of wind

engineering and industrial aerodynamics, 96, 2008, pg 1749 – 1761

55. Vickery, P.J., Masters, F. J., Powell, M. D., Wadhera, D., Hurricane hazard

modeling: The past, present, and future, Journal of Wind Engineering and

Industrial Aero Dynamics, 97, 2009, pp 392 –405

56. Walshaw, D., Anderson, C. W., A model for extreme wind gusts, Journal of

Applied Statistics, 49, Part 4, 2000, pp 499 – 508

57. Weggel, J., R., Maximum Daily Wind Gust Related to Mean Daily Wind

Speed, Journal of Structural Engineering, April 1999, pp 465 – 468

58. Wijeratne, M.D., Jayasinghe, M.T.R., “Wind loads for high-rise buildings

constructed in Sri Lanka”, Transactions Part 2- Institution of Engineers, Sri

Lanka, 1998, pp 58-69.

59. Yang, W., Quan, Y., Jin, X., Tamura, Y., Gu, M., Influences of equilibrium

atmosphere boundary layer and turbulence parameter on wind loads of low-

rise buildings, Journal of wind engineering and industrial aerodynamics, 96,

2008, pg 2080 – 2092

60. Zhang, L. L., Li, J., Peng, Y., Dynamic response and reliability analysis of tall

buildings subject to wind loading, Journal of Wind Engineering and Industrial

Aero Dynamics, 96, 2008, pp 25–40

61. Zhou, Y., Kareem, A., Closure to “Definition of Wind Profiles in ASCE 7” by

Yin Zhou and Ahsan Kareem, Journal of Structural Engineering, November

2003, pp 1565 – 1566

Page 6: References - dl.lib.uom.lk

125  

APPENDIX A

A.1.0 Design of 48 m Height Building

A.1.1 Determination of storey height

It is assumed that beam slab construction is used.

Head room = 3.0m

Slab thickness = 200mm

Beam depth = 600mm

Beam width = 400mm or with of the column whichever is less

Space for services and ceiling = 300mm

Below the beam soffit level.

Total floor height = 3.0+0.6m+0.3m=3.9m

Use a floor height = 3.1 + 0.6 + 0.3 = 4.0m

Use a floor height of 4.0m

The building layout in plan

A.1.2 Determination of number person per floor

Consider 25% area allocated for the services. Therefore the rentable area is about 75% of

the total area of the building.

The area allocated for each person is 10 m2.

The population handled in 5 minutes is 14%

Average interval between two lifts is 35 seconds

The car speed is equal 4ms-1.

The population per floor = 13510

75.03060 persons per floor

It is decided to use hard zoning arrangement where the lifts starting at ground floor and

continue to the upper most floor.

Page 7: References - dl.lib.uom.lk

126  

A.1.3 Determination of numbers of lifts

Total population in 1st floor to 12th floor = 162012135 persons

The lift system is designed for a five minute peak minute capacity. The peak capacity is

assumed as 10% of the total population in these floors.

Population handled in five minute period = 162162010.0 persons

Capacity of the lift cars is selected as 20 passengers with 2ms-1 speed, which will give an

average interval of about 30 seconds.

The round trip time for 3.6m floor to floor height) = 115 S.

Time required to travel additional distance = (2 x 0.4 x 12) / 2 = 4.8S

Total round trip time = 115 + 4.8S=119.8 S

Thus, the number of lift required is 119.8/30 = 4. four lifts cars can be used to serve the

12 floors.

Figure A.1: Approximate size of the lift shafts

 

A 1.4 Stair case

The stair case selected has a width of 1.5m, a rise of 0.15m, a thread of 0.30m. Thus, the

number of steps required is 22, giving a flight length of 3.3m and a landing width of 1.5

m. Total internal space required for staircase is 3.0 x 4.8m.

2400

mm

150mm 150mm

2550mm

 24 Passenger Lift 

Page 8: References - dl.lib.uom.lk

127  

A 1.5 Lateral load resisting system

Lateral load stiffness is provided by using shear walls in the service core of the building.

the length of the shear wall parallel to the 60 m wall is 48 m and parallel to the 30 m wall

is 6.0m.

The main feature of the wall arrangement selected that a considerable attention has been

paid to ensure the structure will be proportionate non-twisting as far as possible.

A.1.6 Selection of section dimensions

The section dimensions for slabs and beams are selected so that deflection

criterion could be satisfied.

It is assumed that the flexural and shear resistance required will be provided by

using sufficient amount of reinforcement.

A.1.6.1 Selection of slab thickness

Slab thickness has been selected as 0.175m. This gives an effective depth of about

0.144m with 25mm cover and 12mm diameter reinforcement.

2.40144

6000

mm

mm

eptheffectived

Span

The deflection criterion could be easily satisfied for continuous slabs for the above ratio

with high yield steel reinforcement (20x1.68=43.68)

A 1.6.2 Selection of beam dimensions

The depth selected is 600mm. this gives an effective depth of about 550mm.

Span /effective depth for 6m long beam = 91.10550

6000

mm

mmwhich is reasonable value.

The width of the beam is 400mm.

A 1.6.3 Selection of column dimensions

In this building lateral loads are carried by shear walls, the frame primarily carry the

vertical loads. In the lower stories, the effect of moment transferred from the beams will

have little influence on the amount of reinforcement since the column sizes required to

Page 9: References - dl.lib.uom.lk

128  

resist heavy axial loads increases significantly. Thus, the column sizes are selected by

considering them as axially loaded members with 1%, 1.5% and 2% reinforcement.

The grade of concrete will have a considerable effect on the size of the column.

Therefore, two grades, grade 40 and 50 concrete have been used for the calculation.

A typical internal column carries a load from 6m x 5m area. The loads are evaluated

below.

Self weight of slab = kN15124175.056

Weight of finishes at 0.5kN/m2 kN185.066

Weight of partition at 1.0kN/ m2 kN360.166

Weight of services at 1.0 kN/ m2 kN360.166

Weight of beam (0.6m x 0.375m) kN8.640.24375.06.0]66[

Imposed load on the slab at 2.5kN/m2 kN905.266

Design dead and imposed load on a column form one floor considered

= kN52.514906.18.643636181514.1

Trial column size from ground floor to 12th floor is 600mm x 600mm

Total column load at 12th floor = kN85.67544.1241246.06.01252.514

Total column is axially loaded and the reinforcement ratio is 1.5%

yccuc fAfAN 67.035.0

yccuc fAfAN 015.067.035.0

For Grade 40:

460015.067.04035.0 cc AAN

N = 18.62 Ac with 1.5% r/f

N = 17.08 Ac with 1% r/f

N = 20.16 Ac with 2% r/f

Load at Ground floor with 600mm x 600m columns with 2% reinforcement between

ground floor and 12th = 7257.6kN

Page 10: References - dl.lib.uom.lk

129  

Therefore, from ground floor to 12th floor, 600 mm x 600 mm columns are used.

Shear wall thickness is 300 mm for the entire height of the building.

Page 11: References - dl.lib.uom.lk

130  

Figure A.2: Plan view of the 48 m height building

Page 12: References - dl.lib.uom.lk

131  

A.2.0 Design of 183 m Height Building

A.2.1 Determination of storey height

It is assumed that beam slab construction is used.

Head room = 2.7m

Slab thickness = 200mm

Beam depth = 600mm

Beam width = 400mm or with of the column whichever is less

Space for services and ceiling = 300mm

Below the beam soffit level.

Total floor height = 2.7+0.6m+0.3m=3.6m

Use a floor height = 2.7 + 0.6 + 0.3 = 3.6m

Use a floor height of 3.6

A 2.2 Determination of number person per floor

Consider 25% area allocated for the services. Therefore the rentable area is about 75% of

the total area of the building.

The area allocated for each person is 10 m2.

The population handled in 5 minutes is 14%

Average interval between two lifts is 35 seconds

The car speed is equal 4ms-1.

The population per floor = 10410

75.04630 persons per floor

It is decided to use hard zoning arrangement where the lifts starting at ground floor are

curtailed at a suitable level. The arrangement selected as follows

1st to 20th floor

20th to 35th floor

35th to 50th floor

Page 13: References - dl.lib.uom.lk

132  

A 2.3 Determination of numbers of lifts

A 2.3.1 For the floors between 1st floor and 20th

Total population in 1st floor to 20th floor = 208020104 persons

The lift system is designed for a five minute peak minute capacity. The peak capacity is

assumed as 12% of the total population in these floors.

Population handled in five minute period = 250208012.0 persons

Capacity of the lift cars is selected as 28 passengers, which will give an average interval

of about 26 seconds.

The round trip time is about 175 seconds.

Thus, the number of lift required is 175/26 = 7. Seven lifts cars can be used to serve the

20 floors.

A 2.3.2 For the floors between 20th and 35th

The number of floor served = 15

Since lifts cars serving 1st to 20th floors have been curtailed, the useful area in a floor has

now been increased to 78.5%.

Therefore, the population per floor is given by 10810

785.04630 persons

Total population = 162015108 persons

With 12% of population handled within 5 minutes. 5 minute capacity = 194162012.0

persons

Select 24 capacity lift cars, which give an average interval of 30 seconds. The round trip

time is 145 seconds.

The lift has to travel express 4 ms-1 from ground floor to 20th floor and come back. The

total distance travelled is m14426.320 . The time taken in 144m/4 = 36 seconds

The total round trip time = ondsec18136145

The number of lifts required is 181/30 = 6, thus six lifts should be provided.

A 2.3.3 For the floors between 36th to 50th

A lift of 4ms-1 will be used.

No of floors served including access to roof = 16

Page 14: References - dl.lib.uom.lk

133  

Since lift cars serving 21st to 35th floors have been curtailed. The useful area in a floor has

now been increased to 81.6%.

Therefore, the population per floor is given by 11310

816.04630 persons

Total population = 169515113 persons

With 12% of population handled within 5 minutes. 5 minute capacity = 203169512.0

persons

Select 24 capacity lift cars, which give an average interval of 26 seconds. The round trip

time is 145 seconds

The time taken for express travel is ondssec42626.335

The total round trip time = ondsec18742145

The number of lifts required is 187/30 = 6, thus seven lifts should be provided

Arrangement of lifts is as follows

Ground to 20th floor = 6, 28 passenger lifts + 1 service lift

21st to 35th floor = 6, 24 passenger lifts + 1 service lift

36th to 50th floor = 6, 24 passenger lifts + 1 service lift

 

Figure A.3: Approximate size of the lift shafts

150m150m

2400

mm

150m 150m

2550mm 2850mm

2400

mm

 24 Passenger Lift          28  Passenger 

f

Page 15: References - dl.lib.uom.lk

134  

A.2.4 Stair case

The stair case selected has a width of 1.5m, a rise of 0.15m, a thread of 0.30m. Thus, the

number of steps required is 22, giving a flight length of 3.3m and a landing width of

1.5m. Total internal space required for staircase is 3.0 x 4.8m.

A.2.5 Lateral load resisting system

A.2.5.1 Ground floor to 20th floor

46 m side: The lift shaft walls with a length of (2.55 x 3) = 7.65 and the wall behind the

gents toilet and staircase can be used to resist the lateral loads in X direction.

30 m side: There are four shear walls of length 12.21m and 5.51 m length side wall of

gent toilet resist the wind load acting perpendicular to 30 m side. These shear walls can

be allowed to resist the lateral loads independently or those can be coupled.

A.2.5.2. From 21st floor to 35th floor

46 m side: The shear walls are as for 0-20th floor.

30 m side: The numbers of shear walls have been reduced. But the central shear wall has

been kept to provide sufficient stiffness to the lateral wind load.

A.2.5.3. From 36th to 50th floor

46 m side: The shear walls are as for 0-20th floor

30 m side: The numbers of shear walls have been reduced. But the central shear wall has

been kept to provide sufficient stiffness to the lateral wind load

A.2.6 Selection of section dimensions

The section dimensions for slabs and beams are selected so that deflection

criterion could be satisfied.

It is assumed that the flexural and shear resistance required will be provided by

using sufficient amount of reinforcement.

Page 16: References - dl.lib.uom.lk

135  

A.2.6.1 Selection of slab thickness

Slab thickness has been selected as 0.175m. This gives an effective depth of about

0.144m with 25mm cover and 12mm diameter reinforcement.

2.40144

6000

mm

mm

eptheffectived

Span

The deflection criterion could be easily satisfied for continuous slabs for the above ratio

with high yield steel reinforcement (20x1.68=43.68)

A.2.6.2 Selection of beam dimensions

The depth selected is 600mm. this gives an effective depth of about 550mm.

Span /effective depth for 6m long beam = 91.10550

6000

mm

mmwhich is reasonable value.

The width of the beam is 400mm.

A.2.6.3 Selection of column dimensions

In this building lateral loads are carried by shear walls, the frame primarily carry the

vertical loads. In the lower stories, the effect of moment transferred from the beams will

have little influence on the amount of reinforcement since the column sizes required to

resist heavy axial loads increases significantly. Thus, the column sizes are selected by

considering them as axially loaded members with 1%, 1.5% and 2% reinforcement.

The grade of concrete will have a considerable effect on the size of the column.

Therefore, two grades, grade 40 and 50 concrete have been used for the calculation.

A typical internal column carries a load from 6m x 5m area. The loads are evaluated

below.

Self weight of slab = kN12624175.056

Weight of finishes at 0.5kN/m2 kN155.056

Weight of partition at 1.0kN/ m2 kN300.156

Weight of services at 1.0 kN/ m2 kN300.156

Weight of beam (0.6m x 0.4m) kN36.630.244.06.0]56[

Imposed load on the slab at 2.5kN/m2 kN755.256

Page 17: References - dl.lib.uom.lk

136  

Design dead and imposed load on a column form one floor with only 60% imposed load

considered = kN02.4426.0756.13.633030151264.1

Trial column size from 40th to 49th floor is 600mm x 600mm

Total column load at 40th floor = kN66.48554.124106.36.06.01002.442

Total column is axially loaded and the reinforcement ratio is 1.5%

yccuc fAfAN 67.035.0

yccuc fAfAN 015.067.035.0

For Grade 40:

460015.067.04035.0 cc AAN

N = 18.62 Ac with 1.5% r/f

N = 17.08 Ac with 1% r/f

N = 20.16 Ac with 2% r/f

For Grade 50:

N = 22.12 Ac with 1.5% r/f

N = 20.58 Ac with 1% r/f

N = 23.66 Ac with 2% r/f

Load at 30th floor with 0.7m x 0.7m columns between 30th and 39th = 9868.56kN

Load at 20th floor with 0.8m x 0.8m columns between 20th and 29th = 14862.90kN

Load at 10th floor with 0.9m x 0.9m columns between 10th and 19th = 20262.88kN

Load at Ground floor with 1.0m x 1.0m columns between ground floor and

9th = 25892.68kN

Page 18: References - dl.lib.uom.lk

137  

Table A.1: column sizes at different height levels

Floor Concrete Grade

40 50

1% 1.5% 2% 1% 1.5% 2%

40th floor 533 x533 511 x511 491 x491 486 x486 469 x469 453 x 453

30th floor 760 x760 728 x728 700 x700 692 x692 668 x668 646 x646

20th floor 933 x933 893 x893 859 x859 850 x850 820 x820 793 x793

10th floor 1089x1089 1043x1043 1003x1003 992 x992 957 x957 925 x925

Ground floor 1231x1231 1179x1179 1133x1133 1122x1122 1082x1082 1046x1046

The following sizes have been selected for the columns on the basis above calculation

with grade 50 concrete.

Location Column sizes

Ground floor – 10th floor 1050mm x 1050mm

10th floor to 20th floor 950mm x 950mm

20th floor to 29th floor 800mm x 800mm

30th floor to 39th floor 700mm x 700mm

40th floor to 49th floor 500mm x 500mm

The shear wall thicknesses selected are as follows

Location Shear wall thickness

Ground floor – 20th floor 300mm

21st floor to 35th floor 250mm

36th floor to 50th floor 200mm

 

 

 

 

 

 

Page 19: References - dl.lib.uom.lk

138  

 

 

 A.5: Plan view of the ground floor of 183 m height building

Page 20: References - dl.lib.uom.lk

139  

 

 

 

Figure A.5: Plan view of the 25th floor of 183 m height building

Page 21: References - dl.lib.uom.lk

140  

 

Figure A.6: Plan view of the 46th floor of 183 m height

Page 22: References - dl.lib.uom.lk

141  

APPENDIX B

B.1. Wind Load Calculation for 48m height building

Figure B.1: dimension of the 48 m height building

B.1.1. Wind load calculation of 48m building according to CP3 Chapter V-Part 2: 1972

B.1.1.1. Regional wind speed

According to the report on “Technical Assistance to Sri Lanka on Cyclone Resistant

construction”

From Table 3.1

Post disaster wind speed on Zone 3 is 120 mph (38m/s)

B.1.1.2. Design Wind Speed

321 SSSVV B

Topography factor (S1) = 1.0

Ground roughness, building size and height above ground factor (S2)

Ground roughness 3 – Country with many windbreaks average roof height is about 10 m .

Because of greatest horizontal dimension (60 m) exceeds 50m, building class is Class C

From Table 3 S2 = 1.02

Statistical factor for permanent building S3 = 1.00

60 m 

30m 

48 m 

Page 23: References - dl.lib.uom.lk

142  

Design wind speed = 176.3800.102.10.138 ms

B.1.1.3. Dynamic pressure of the wind 2kVq

22 /40.90176.3860.0 mNq

The load F acting in a direction normal to the individual structural member or cladding

qACCF pipe )(

External pressure coefficient Cpe

h =48m

w = 30m

6.130

48

w

h

6

2

3

w

h

230

60

w

l

4

2

3

w

l

for windward direction and Cpe = -0.4 for Leeward direction

Assume four faces are equally permeable

According to Appendix E in CP 3: Chapter V

3.0piC

B.1.1.4. Wind normal to 60m long wall

Wind force acting on windward wall of building

mheightkNF /04.271000/]6040.901)2.07.0[(

Wind force on leeward wall

mheightkNF /45.321000/]6040.901)2.04.0[(

Total force = 27.04kN – (-32.45kN) = 59.49 kN/m height

B.1.1.5. Wind normal to 30 m long wall

Wind force acting on windward wall of building

mheightkNF /22.161000/]3040.901)2.08.0[(

Wind force on leeward wall

7.0peC

Page 24: References - dl.lib.uom.lk

143  

mheightkNF /11.81000/]3040.901)2.01.0[(

Total force = 16.22kN – (-8.11)kN = 24.33 kN/m height

B.1.2. Wind load calculation of 48m building (BS 6399-2:1997)

B.1.2.1. Dynamic classification of the building

Building height above the base = 48 m

Building type factor Kb = 1

Dynamic augmentation factor Cr = 0.05< 0.25

So BS 6399-2:1997 can be used

B.1.2.2. Design wind speed and dynamic pressure

The site is categorized as in town terrain with an average level of roof tops at least H0=6.0m

Reference roof height Hr= 48 m

If X < 2H0

The effective height He is greater of He=Hr -0.8H0 or He=0.4Hr

He= 48 – 0.8 x 6 = 43.2 or He= 0.4 x 48 = 19.2; He=43.2 m

B.1.2.3.Site wind speed

Vs=Vb x Sa x Sd x Ss x Sp

B.1.2.3.1. Altitude factor Sa

When topography is not considered significant

saS 001.01

s is the site altitude (MSL) = 3m

003.13001.01 aS

B.1.2.3.2. Directional factor Sd

The orientation of the building is ignored. Sd= 1.0

B.1.2.3. 3. Seasonal factor Ss

Page 25: References - dl.lib.uom.lk

144  

For the permanent building SS=1.0

B.1.2.3.4. Probability factor

The standard value of risk Sp=1.0

B.1.2.3.5. Basic wind speed

Vb= 21 ms-1

Vs= 21 x 1.003 x 1 x 1 x 1 = 21.06 ms-1

Normal to 60 m wall Normal to 30 m wall

Figure B.2: Building divided according to division-by-parts rule

B.1.2.4. Effective wind speed

Ve=Vs x Sb

Sb is the terrain and building factor appropriate to the wind direction being considered

Sb = ScTc{1 + (gt x St x Tt) + Sh}

Sc is the fetch factor

Tc is the fetch adjustment factor

Tt is turbulence adjustment factor

gt is gust peak factor

Sh is topographic increment

30m

60 m 

48 m 

30 m 

48m

Page 26: References - dl.lib.uom.lk

145  

From Table 22 and Table 23 by assuming site is within 1 km away from the sea

B.1.2.4.Diagonal dimension

Normal to 30m wall

Hr = 30m; a = 42.43 m; gt = 3.44(Directional wind speed used with standard pressure coefficient and size effect factor )

Hr = 48m; a = 34.99 m; gt = 3.44

Normal to 60m wall a = 76.84 m; gt=3.44

Normal to 30m wall Hr = 30m ;Sb = 1.35 x 0.965{1+ (3.44x 0.132 x 1.06)} = 1.93

Hr = 48m ;Sb = 1.449 x0.982 {1+ (3.44 x 0.119 x 1.006)} = 2.01

Normal to 60m wall Sb = 1.449 x0.982 {1+ (3.44 x 0.119 x 1.006)} = 2.01

B.1.2.5.Effective wind speed

Ve=Vs x Sb

Normal to 30m wall Hr = 30m; Ve = 21.06 x 1.93 = 40.65ms-1

Hr = 48m; Ve = 21.06 x 2.01 = 42.33ms-1

Normal to 60m wall Ve = 21.06 x 2.01 = 42.33 ms-1

B.1.2.6.Dynamic wind pressure

qs = 0.6Ve2

Normal to 30m wall Hr= 30m; qs = 0.6 x 40.652 =991.45 Pa

Hr= 48m; qs = 0.6 x 42.332 =1075.13 Pa

Normal to 60m wall qs = 0.6 x 42.332 =1075.13Pa

B.1.2.7.External pressures

pe= qsCpeCa

B.1.2.7.1.External pressure coefficient Cpe

Wind normal to 30m Cpe,windward = +0.78 , Cpe,Leeward = -0.28

Page 27: References - dl.lib.uom.lk

146  

Wind normal to 60m Cpe,windward = +0.8 , Cpe,Leeward = -0.3

B.1.2.7.2.Size effect factor Ca

Wind normal to 30m Ca=0.85

Wind normal to 60m Ca=0.83

B.1.3. Wind load calculation for 48m building according to BS EN 1991-1-4:2005(E) (Compliance with National Annex for UK)

Building locates in suburban area in zone 3. The terrain is flat and site is 1km away from the shore line.

B.1.3.1. Basic wind speed

From Clause 4.2 Vb = Cdir. Cseason. Vb,0

From N.A.2.4 Vb,0 = Vb,map. Calt

Vb,map – value of the fundamental basic wind velocity 22 ms-1

Calt - Altitude factor ; Calt = 1 + 0.001A (10/Z)0.2 for Z > 10m

Assuming site elevation is 3m above the MSL.

Calt = 1 + 0.001(3) (10/48)0.2 = 1.002

Vb,0 = 22 x 1.002 = 22.04 ms-1

Taking Cdir = 1 and Cseason =1

Vb,0 = 22.04 ms-1

B.1.3.2. Mean wind velocity

From Clause 4.3.1 Vm = Cr(z).C0(z).Vb

From Figure NA.3 Cr(z) = 1.4

Vm = 1.4 x 1 x 22.04 = 30.86 ms-1

B.1.3.3. Effect of neighbouring buildings

From Annex A ; A-4

Assuming the building is more than twice as high as the average height has of the neighbouring structures.

Page 28: References - dl.lib.uom.lk

147  

Then peak velocity pressure at height Zn (Ze = Zn)

Height of the building hhigh < 2 davg

Then r = hhigh = 48m

mrZrx n 24482

1

2

1:

B.1.3.4. Wind turbulence

Clause 4.4 The turbulence intensity Iv(z)

Because of distance upwind to shoreline is 1km

Z- hdis = 48 – 0 = 48m (disturbance height for suburban terrain is 0m)

From Figure NA 5 l(48) = 0.122

B.1.3.5.Peak velocity pressure

Clause 4.5. The peak velocity pressure qp(z) at height z, which includes mean and short – term velocity

From NA.2.17 qp(z) = Ce(z)Ce,Tqb

From Figure NA. 7 Ce(z) = 3.68

Ce,T = 1.0

qp(z) = 3.68 x 0.5 x 1.2 x 1.0 x 22.042

= 1072.56 pa

B.1.3.6.Wind actions

B.1.3.6.1.Wind pressures on surfaces

Clause 5.2 the wind pressure acting on the external surface is We

We =qp(ze).Cpe

The wind pressure acting on the internal surfaces of a structure

Wi=qp(ze).Cpi

Page 29: References - dl.lib.uom.lk

148  

B.1.3.6.2.Pressure coefficient

From Clause 7.2.2

The reference height ze, for windward walls of rectangular plan buildings depend on the aspect ratio h/b

(i) Wind normal to 60m wall

h< b then ze = h=48m qp (z) = qp(ze)

Figure B.3: Pressure distribution when wind flow normal to 60m wall

(ii) Wind normal to 30m wall

Figure B.4: Pressure distribution when wind flow normal to 30m wall

B.1.3.6.3.External pressure coefficient Cpe

From Table 7.1

When wind flow normal to 60m wall

ze= h = 48m

ze= b = 30m

qp(z) = qp(h)

qp(z) = qp(b) 

60 

48 

qp(z) = qp(ze) 

Page 30: References - dl.lib.uom.lk

149  

h < d = 48/30 = 1.6

For windward wall Cpe = +0.8

For Leeward wall Cpe = -0.53

When wind flow normal to 30m wall

h<d = 48/60 = 0.8

For windward wall Cpe = +0.77

For Leeward wall Cpe = -0.45

B.1.3.6.4.Internal pressure coefficient Cpi

From Figure 7.13, Note 2

Cpi is more onerous of +0.2 or -0.3

B.1.3.7. Wind forces

Consider one storey, which has 4.0m storey height

From Clause 5.3

External forces surface

refedsew AwCCF ...,

Internal forces surface

refiiw AwF .,

Friction forces refepfrfr AzqCF ..

B.1.3.7. 1. Structural factors CsCd

The structural factor CsCd should take into account the effect on wind actions from the

non simultaneous occurrence of peak wind pressures on the surfaces (Cs) together with

the effect of the vibrations of the structure due to turbulence (Cd)

The size factor Cs

sv

svs zl

BzlC

.71

).(.71 2

Page 31: References - dl.lib.uom.lk

150  

The dynamic factor Cd

2

22

.71

...21

Bzl

RBzlkC

sv

svpd

Where,

zs – reference height zs = 0.6 (48) = 28.8m > zmin = 5 m

Wind turbulence

Turbulence length scale

tt z

zLzL for z =48 m > zmin = 5 m

Where zt = 200 m Lt=300 m and 61.03.0ln05.067.0

mzL 62.125200

48300

61.0

Non dimensional power spectrum density function SL(z,n)

2

,.,

v

vL

nzSnnzS

=

3/5),(2.101

,8.6

nzf

nzf

L

L

Where zv

zLnf

mL

.

Natural frequency of vibration of the building

958.048

4646

hn

99.3

17.30

62.125.958.0Lf

Then

054.0

)99.3(2.101

99.38.63/5

LS

Page 32: References - dl.lib.uom.lk

151  

From Annex B; B.2.

(2) The background factor B2

For the lack of correlation of the of the pressure on the structure surface

63.02

9.01

1

szL

hbB

50.0

99.91

48609.01

163.0

2

B

Iv(28.8) = 0.142

853.0142.0.71

50.0).142.0.(71

sC

00.1dC

B.1.3.8. External force

For windward direction

We=1098.02(0.8) = 878.42 Pa

For leeward direction

We=1098.02(-0.53) = -581.95 Pa

Total pressure (by considering non simultaneous action)

We,Total =(0.873)[878.42-(-581.95)]=1274.90 Pa

Reference area = 60 x 4 = 240 m2

Fw,e= (0.853)(1)(1274.90)240 = 261 kN

Internal force

Wi = 1098.02(-0.3) = 329.41 Pa

Fw,i = -329.41 x 240 = -79.06 kN

Page 33: References - dl.lib.uom.lk

152  

B.1.3.9. Wind flow normal to 30m wall

buildings is divided in to two parts as shown in figure B.5.

Figure B.5: Building divided according to division-by –parts rule.

B.1.3.9.1. Basic wind speeds

At 30m height = Calt = 1+0.001.(3).(10/30)0.2 = 1.0024

Vb = 22 x 1.0024 = 22.04

B.1.3.9.2. Mean wind velocities

Mean wind velocity at 30m height = 1 x 1.3 x 22.04 = 28.65 ms-1

Mean wind velocity at 48m height = 30.86 ms-1

B.1.3.9.3.Wind turbulence

From Figure NA 5 in N.A. l(48) = 0.122 and l(30) = 0.142

B.1.3.9.4. Peak velocity pressure

At 48m height qp(48) = 1072.56 Pa

At 30m height qp(30) = 3.42 x 0.5 x 1.2 x 22.042 = 996.78 Pa

B.1.3.9.5. External pressure coefficient

h/d = 48/60 = 0.8

ze= h = 48m

ze= b = 30m

Page 34: References - dl.lib.uom.lk

153  

windward wall Cpe = +0.77

Leeward wall Cpe = -0.45

B.1.3.9.6.Wind forces

Consider one storey, which has 4.0m storey height

From Clause 5.3

External forces surface

refedsew AwCCF ...,

Internal forces surface

refiiw AwF .,

Friction forces refepfrfr AzqCF ..

The background factor B2

55.0

99.91

48309.01

163.0

2

B

87.0142.0.71

55.0).142.0.(71

sC

1dC

B.1.3.9.7. External force

For windward direction

At 30m height We=996.78(0.77) = 767.52 Pa

At 48m height We=1072.56(0.77) = 825.87 Pa

For leeward direction

At 30m height We=996.78(-0.45) = -448.55 Pa

At 48m height We=1072.56(-0.45) = -482.65 Pa

Total pressure (by considering non simultaneous action)

At 30m height We,Total =(0.872)[767.52-(-448.55)]=1060.41 Pa

Page 35: References - dl.lib.uom.lk

154  

At 48m height We,Total =(0.872)[825.87-(-482.65)]=1141.03 Pa

Reference area = 30 x 4 = 120 m2

Total force

At 30m height Fw,e= (0.87)(1.00)(1060.41)120 = 110.71 kN

At 48m height Fw,e= (0.87)(1.00)(1141.03)120 = 119.12 kN

Internal force

Wi = 996.78(-0.3) = -299.03 Pa

Fw,i = -299.03 x 120 = -35.88 kN

B.1.4. Wind load calculation for 48m building according to the AS/NZS 1170.2:1989

Height of the building = 48m

Length of the building = 60m

Width of the building = 30 m

553.130

48

width

Height and

A first mode of frequency Hzh

n 1953.048

4646

Therefore no need a dynamic analysis.

B.1.4.1. Design hourly mean wind speed

From Clause 4.2.2.

itscatzz MMMMVV

),(

zV = The design hourly mean wind speed at height z, in meters per second (z = 48m)

V = The basic wind speed = 47 ms-1

zM = An hourly mean wind speed multiplier for a terrain category at height z

Page 36: References - dl.lib.uom.lk

155  

Building locates in sub urban area, therefore terrain category is 3.

zM =1.064

sM = Shielding multiplier

Assume Shielding buildings are in more than 12m distance.

sM =1.0

tM = Topographic multiplier

Building locates in flat land.

Therefore

tM =1.0

iM = structure importance multiplier

Building has post disaster functions

iM = 1.0

143.400.111064.138

msV z

B. 1.4.2. Dynamic Wind Pressure

From Clause 4.3.

3106.0

zz Vq

zq = The free stream hourly mean dynamic wind pressure at height z, in kilopascals

zV = The design hourly mean wind speed at height z, in meters per second

kpaq z 98.01043.406.0 32

B.1.4.3. Horizontal force acting on a building

From Clause 4.4.2

zzepz AqCF

,

Page 37: References - dl.lib.uom.lk

156  

zF = The hourly mean net horizontal force acting on a building or structure at height z

epC , = The pressure coefficients for both windward and leeward surfaces

zq = The free stream hourly mean dynamic wind pressure resulting from

zV , in

kilopascals

zA = The area of a structure or a part of a structure, at height, in square meters

B.1.4.3.1. For wind normal to 30m wall

230

60

b

d

epC , = 0.8 + 0.3 = 1.10

mheightkNFz /34.323098.010.1

B.1.4.3.2.For wind normal to 46m wall

50.060

30

b

d

epC , = 0.8 + 0.5 = 1.3

mheightkNFz /44.766098.03.1

B.1.5. Wind load calculation for 48m building according to AS1170.2:2002

B.1.5.1. Regional wind speed

According to the report on “Technical Assistance to Sri Lanka on Cyclone Resistant

Construction”

From Table 3.1

Post disaster wind speed on Zone2 is 85 mph (38m/s)

Page 38: References - dl.lib.uom.lk

157  

B.1.5.1.1. Wind direction multiplier

According to clause 3.3

Wind direction multiplier for region A 0.1dM for overturning moment and major structural

system for all directions

B.1.5.1.2. Terrain- height multiplier

According to Clause 4.2.1

Terrain category is category 3

From Table 4.1(B)

Z=h=48m, for terrain category 3, 06.13.48, catcatz MM

B.1.5.1.3. Shielding

According to clause 4.3.1

There are no other buildings of greater height in any direction. Therefore 0.1sM for all

directions.

B.1.5.1.4. Topography

According to clause 4.4.1

Topography multiplier 0.1 ht MM

B.1.5.2. Site wind speed

Site wind speed for all directions for overall loads and main structural design

)0.1)(0.1)(06.1)(0.1(38,sitV 40.28ms-1

B.1.5.3. Design wind speed

For all wind directions, the design wind speeds

Page 39: References - dl.lib.uom.lk

158  

` ,, sitdes VV = 40ms-1 (for overall loads and main structure design)

B.1.5.4. Aerodynamic shape factor

B.1.5.4.1. External pressures

From Table 5.2(A)

External pressure coefficient for windward wall 8.0peC (wind speed vary with height)

From Table 5.2(B)

d/b =0.50<1 :Leeward walls (normal to 60m) 5.0peC

d/b = 2 :Leeward walls (normal to 30m) 3.0peC

B.1.5.4.2. Area reduction factors

According to Clause 5.4.2

For tributary area smaller than 10m2 (eg. Glazed curtain wall) 0.1ak

B.1.5.4.3. Local pressure factor (kt) for cladding

a = minimum of 0.2b = 0.2*30 = 6m2 or 183m. a = 6 m2

Limiting tributary areas for local pressure factors = 0.25a2 = 9m2

B.1.5.5. Internal pressures

According to clause 5.3

For Table 5.1(A)

The building can be considered as effectively sealed.

In this case, Cpi = -0.2 or 0.0

B.1.5.6. Action combination factor

Ka = 1.0

Page 40: References - dl.lib.uom.lk

159  

B. 1.5.7.Dynamic response factor

Cdyn =1

B. 1.6 Pressure on the building

B. 1.6.1 Pressure on the 60 m side at 48 m height

q48 m = [+8.0 – (- 0.5)] x (40)2 x 1.0 = 2080 Pa

B. 1.6.2 Pressure on the 30 m side at 48 m height

q48 m = [+8.0 – (- 0.3)] x (40)2 x 1.0 = 1760 -Pa

Page 41: References - dl.lib.uom.lk

160  

APPENDIX C

C. 1.0 Wind pressure calculation for 183 m building

Figure C.1: Dimension of the building

C.1.1 Wind load calculation for 183m tall building using CP 3 Chapter V:1972

Location – sub urban area in zone 3

Ground roughness– Ground roughness 3

Geography – ground slope less than 1 in 20 for greater than 5 kilometers in all direction

Dimension – average roof height 180 meters

Horizontal dimension – 46 meters * 30 meters (rectangular cross section)

Building orientation – major axis is on East - West

Reinforced concrete construction. Curtain wall façade on all four faces.

C.1.1 Regional wind speed

According to the report on “Technical Assistance to Sri Lanka on Cyclone Resistant

construction”

From Table 3.1

Post disaster wind speed on Zone 3 is 120 mph (53.5m/s)

  183m 

  30m

  46 m 

Page 42: References - dl.lib.uom.lk

161  

C.1.2 Design Wind Speed

321 SSSVV B

Topography factor (S1) = 1.0

Ground roughness, building size and height above ground factor (S2)

Ground roughness 3 – Country with many windbreaks average roof height is about 10 m .

Because of height (183m) exceeds 50m, building class is Class C

From Table 3 S2 = 1.172

Statistical factor for permanent building S3 = 1.05

Design wind speed = 183.6505.1172.10.15.53 ms

C.1.3.Dynamic pressure of the wind 2kVq

22 /15.260083.6560.0 mNq

The load F acting in a direction normal to the individual structural member or cladding

qACCF pipe )(

External pressure coefficient Cpe

Considering 21 m wide strip at mid height of 174m

h =174m

w = 30m

8.530

174

w

h

6

2

3

w

h

53.130

46

w

l

2

31

w

l

for windward direction and Cpe = -0.4 for Leeward direction

Assume four faces are equally permeable

According to Appendix E in CP 3: Chapter V

3.0piC

7.0peC

Page 43: References - dl.lib.uom.lk

162  

C.1.4. Wind force acting on building

C.1.4.1. Wind normal to 46 m long wall

Wind force acting on windward wall of building

mheightkNF /61.1191000/]4615.2600)3.07.0[(

Wind force on leeward wall

mheightkNF /96.111000/]4615.2600)3.04.0[(

Total force = 119.61kN – (-11.96kN) = 131.56 kN/m height

C1.4.2.Wind normal to 30 m long wall

Wind force acting on windward wall of building

mheightkNF /00.781000/]3015.2600)3.07.0[(

Wind force on leeward wall

mheightkNF /80.71000/]3015.2600)3.04.0[(

Total force = 78kN -7.80kN = 85.80 kN/m height

C.2 Wind load calculation of 183m building (BS 6399-2:1997)

C.2.1. Dynamic classification of the building

Building height above the base = 183 m

Building type factor Kb = 1

Dynamic augmentation factor Cr = 0.125 < 0.25

So BS 6399-2:1997 can be used

C.2.2.Design wind speed and dynamic pressure

The site is categorized as in suburban terrain with an average level of roof tops at least H0=6.0 m

Reference roof height Hr= 183 m

If X < 2H0

The effective height He is greater of He=Hr -0.8H0 or He=0.4Hr

Page 44: References - dl.lib.uom.lk

163  

He= 183 – 0.8 x 6 = 178.2 or He= 0.4 x 183 = 73.2; He=178.2 m

C.2.3 Site wind speed

Vs=Vb x Sa x Sd x Ss x Sp

C.2.3.1 Altitude factor Sa

When topography is not considered significant

saS 001.01

s is the site altitude (MSL) = 3m

003.13001.01 aS

C.2.3.2 Directional factor Sd

The orientation of the building is ignored. Sd = 1.0

C.2.3.3 Seasonal factor Ss

For the permanent building SS = 1.0

C.2.3.4 Probability factor

The standard value of risk Sp = 1.0

C.2.3.5 Basic wind speed

Vs = Ve/Sb for He =10 m and for country terrain.

Where Ve is 3 second gust velocity for zone 3 = 38 ms-1.

From Table 4 Sb = 1.78

Vs = 38 / 1.78 = 21 ms -1

Page 45: References - dl.lib.uom.lk

164  

Building can be divided into many parts

Normal to 46m wall Normal to 30m wall

Figure C.2: building divided according to division-by-parts rule

C.2.4 Effective wind speed

Ve=Vs x Sb

Sb is the terrain and building factor appropriate to the wind direction being considered

Sb = ScT{1 + (gt x St ) + Sh}

Sc is the fetch factor

gt is gust peak factor

Sh is topographic increment

From Table 22 and Table 23 by assuming site is within 1 km away from the sea

b = 46m

hstrip=18.2m

b =46m

b=46m

b = 30m

hstrip=17.6m

b =30m

b=30m

Page 46: References - dl.lib.uom.lk

165  

C.2.4.1 Diagonal dimension

Normal to 30m wall

Hr = 183 m; a = 42.43 m; gt = 3.44

Hstrip= 153m; a = 34.78 m; gt = 3.44

Normal to 46m wall

Hr = 183m; a = 65.05 m; gt=3.44

Hstrip= 137m; a = 49.47 m; gt = 3.44

Normal to 30m wall Hr = 30m ;Sb = 1.423 x 0.936{1+ (2.730x 0.122 x 1.151)} = 1.843

Hr = 30m ;Sb = 1.423 x 0.936{1+ (2.814 x 0.122 x 1.151)} = 1.858

Normal to 60m wall Sb = 1.423 x 0.936{1+ (2.492x 0.122 x 1.151)} = 1.798

Effective wind speed

Ve=Vs x Sb

C.2.5 Dynamic wind pressure

qs = 0.6Ve2

C. 2.6 External pressures

pe= qsCpeCa

External pressure coefficient Cpe

Wind normal to 30m Cpe,windward = +0.8 , Cpe,Leeward = -0.3

Wind normal to 60m Cpe,windward = +0.8 , Cpe,Leeward = -0.3

Page 47: References - dl.lib.uom.lk

166  

C.2.6.1.Size effect factor Ca

Wind normal to 30m Ca=0.85

Wind normal to 60m Ca=0.83

C.3 Wind load calculation for 183m building according to BS EN 1991-1-4:2005(E)

(Compliance with National Annex for UK) – Zone 1

Building locates in suburban area in zone 3. The terrain is flat and site is 1km away from the

shore line.

C.3.1 Basic wind speed

From Clause 4.2 Vb = Cdir. Cseason. Vb,0

From N.A.2.4 Vb,0 = Vb,map. Calt

Vb,map – value of the fundamental basic wind velocity 22ms-1

Calt - Altitude factor ; Calt = 1 + 0.001A (10/Z)0.2 for Z > 10m

Assuming site elevation is 3m above the MSL.

Calt = 1 + 0.001(3) (10/183)0.2 = 1.002

Vb,0 = 22 x 1.002 = 22.04 ms-1

Taking Cdir = 1 and Cseason =1

Vb,0 = 22.04 ms-1

C.3.2 Mean velocity

From Clause 4.3.1 Vm = Cr(z).C0(z).Vb

From Figure NA.3 Cr(z) = 1.71

Vm = 1.71 x 1 x 22.04 = 37.69 ms-1

Page 48: References - dl.lib.uom.lk

167  

C.3.3 Effect of neighbouring buildings

From Annex A ; A-4

Assuming the building is more than twice as high as the average height has of the neighbouring

structures.

Then peak velocity pressure at height Zn (Ze = Zn)

Height of the building hhigh > 2 davg

Then r = 2.dlarge = 2 x 46 m = 92 m

mrZrx n 46922

1

2

1:

C. 3.4 Wind turbulence

From Clause 4.4 The turbulence intensity Iv(z)

Because of distance upwind to shoreline is 1km and assuming have = 10 m for terrain category 3

From A.5 where 2 .have < x < 6.have hdis is lesser of 1.2 have – 0.2 X or 0.6h

1.2 x 10 – 0.2 x

Z- hdis = 183 – 0 = 183 m (disturbance height for suburban terrain is 0m)

From Figure NA 5 l(183) = 0.13

C.3.5 Peak velocity pressure

From Clause 4.5 The peak velocity pressure qp(z) at height z, which includes mean and short –

term velocity

From NA.2.17 qp(z) = Ce(z)Ce,Tqb

From Figure NA. 7

Ce(z) = 4.21 (At 183 m height)

Page 49: References - dl.lib.uom.lk

168  

Ce,T = 1.0

qp(z) = 4.21 x 0.5 x 1.2 x 1.0 x 22.042

= 1227.03 Pa

C.3.6 Wind actions

C.3.6.1 Wind pressures on surfaces

From Clause 5.2 the wind pressure acting on the external surface is We

We =qp(ze).Cpe

The wind pressure acting on the internal surfaces of a structure

Wi=qp(ze).Cpi

C.3.6.2 Pressure coefficient

From Clause 7.2.2

The reference height ze, for windward walls of rectangular plan buildings depend on the aspect

ratio h/b

(i) Wind normal to 60m wall

b = 46m

hstrip=18.2m

b =46m

b=46m

qp(z)= 

qp(z)= qp(h) 

qp(z)= qp(b) 

Page 50: References - dl.lib.uom.lk

169  

Figure C.3: division-by-parts rule for 183 m building wind flows normal to 46 m wall

h< b then ze = h=48m qp (z) = qp(ze)

(ii) Wind normal to 30m wall

Figure C.4: division-by-parts rule for 183 m building wind flows normal to 30 m wall

C.3.6.2.1 External pressure coefficient Cpe

From Table 7.1

When wind flow normal to 46m side

h / d = 183/30 = 6.1

For windward wall Cpe = +0.80

For Leeward wall Cpe = -0.70

When wind flow normal to 30m wall

h/d = 183/46 = 3.98

For windward wall Cpe = +0.80

b = 30m

hstrip=17.6m

b =30m

b=30m

qp(z)= qp(zstrip) 

qp(z)= qp(h) 

qp(z)= qp(b) 

Page 51: References - dl.lib.uom.lk

170  

For Leeward wall Cpe = -0.65

C.3.6.2.2 Internal pressure coefficient Cpi

From Figure 7.13, Note 2

Assuming that building has all four walls are permeable and impermeable roof.]

Estimated values are 0.69 for 46m wall and 0.81 for 30m wall

Wind flows normal to 46 m wall h/d = 6.1 Cpi = -0.18

Wind flows normal to 30 m wall h/d = 0.8 Cpi = -0. 30

C.3.7 Wind forces

Consider one storey, which has 3.6 m storey height

From Clause 5.3

External forces surface

refedsew AwCCF ...,

Internal forces surface

refiiw AwF .,

Friction forces refepfrfr AzqCF ..

C.3.7.1 Structural factors CsCd

The structural factor CsCd should take into account the effect on wind actions from the non

simultaneous occurrence of peak wind pressures on the surfaces (Cs) together with the effect of

the vibrations of the structure due to turbulence (Cd)

C.3.7.1.1 The size factor Cs

Page 52: References - dl.lib.uom.lk

171  

sv

svs zl

BzlC

.71

).(.71 2

C.3.7.1.2 The dynamic factor Cd

2

22

.71

...21

Bzl

RBzlkC

sv

svpd

Where,

zs – reference height zs = 0.6 (183) = 109.8 m > zmin = 5 m

Wind turbulence

C.3.7.1.3 Turbulence length scale

tt z

zLzL for z =183m > zmin = 5 m

Where zt = 200m Lt=300m and 61.03.0ln05.067.0

mzL 18.284200

183300

61.0

C.3.7.1.4 Non dimensional power spectrum density function SL(z,n)

2

,.,

v

vL

nzSnnzS

=

3/5),(2.101

,8.6

nzf

nzf

L

L

Where zv

zLnf

mL

.

C.3.7.1.5 Natural frequency of vibration of the building

251.0183

4646

hn

Page 53: References - dl.lib.uom.lk

172  

893.1

69.37

18.284.251.0Lf

Then

085.0

)893.1(2.101

893.18.63/5

LS

From Annex B; B.2.

C.3.7.1.6 The background factor B2

For the lack of correlation of the of the pressure on the structure surface

63.02

9.01

1

szL

hbB

C.3.7.1.7 The peak factor (kp)

The ratio of the maximum value of the fluctuating part of the response to its standard deviation

Tv

Tvk p.ln2

6.0.ln2 or kp= 3 whichever is lager

Where v is up-crossing frequency

22

2

,1 RB

Rnv x

But Hzv 08.0

C.3.7.1.8 The resonance response factor (R2)

For allowing turbulence in resonance with the considered vibration made if the structure

51.0

09.208

183469.01

163.0

2

B

Page 54: References - dl.lib.uom.lk

173  

bbhhxsL RRnzSR

..,.

.2 ,1

22

Where,

- Total logarithmic decrement of damping.

For reinforced concrete building = 0.10

SL =0.085

66.7

09.208

893.11836.4,.

6.4 hzf

zL

hsLh

122.0166.72

1

66.7

11

2

11 66.722

22

eeR h

hhh

925.1

09.208

893.1466.4,.

6.4 hzf

zL

bsLb

387.01925.12

1

925.1

11

2

11 925.122

22

eeR b

bbb

198.0387.0.122.0.085.0.10.0.2

22

R

08.0508.020.051.0

20.0958.0

v

3560.3600.508.0ln2

6.0600.508.0ln2 pk

Iv(109.8) = 0.091

889.0091.0.71

51.0).091.0.(71

sC

Page 55: References - dl.lib.uom.lk

174  

063.151.0091.0.71

20.051.0.091.0.560.3.21

dC

C.3.8 External force

At 183 m height

C.3.8.1 For windward direction

We=1988.88(0.8) = 1591.10 Pa

C.3.8.2 For leeward direction

We=1988.88(-0.7) = -1392.22 Pa

C.3.8.3 Total pressure (by considering non simultaneous action)

We,Total =(1)[1591.10-(-1392.22)]=2983.32 Pa

Reference area = 46 x 3.6 = 165.6 m2

Fw,e= (0.889)(1.102)(2983.32)165.6 = 484 kN

C.3.8.4 Internal force

Wi = 1988.88(-0.18) = 358 Pa

Fw,i = -358 x 165.6 = -59.28 kN

C.3.8.5 Friction force

Total area parallel to the wind direction = 2 x 30 x183

= 10980 m2 < 0.4 ATotal

Hence no need to calculate friction forces.

C.3.9 Wind flow normal to 30m wall

Basic wind speed = 30.06 ms-1

Page 56: References - dl.lib.uom.lk

175  

C.3.9.1 Mean wind velocities

Height (m) Cr(z) Velocity (ms-1)

183 1.71 37.69

153 1.64 36.15

135.4 1.62 35.07

117.7 1.57 34.60

100.1 1.55 34.16

82.5 1.52 33.50

64.9 1.46 32.18

47.6 1.38 30.42

30 1.30 28.65

C.3.9.1 Peak velocity pressure

Height (m) Ce(z) Pressure (Pa)

183 4.21 1227.03

153 4.13 1203.72

135.4 4.08 1189.14

117.7 4.04 1177.49

100.1 3.97 1157.08

82.5 3.91 1139.60

64.9 3.81 1110.45

47.6 3.65 1063.82

30 3.42 996.78

C.3.9.2 External pressure coefficient

h/d = 183/60 = 0.8

windward wall Cpe = +0.80

Leeward wall Cpe = -0.65

Page 57: References - dl.lib.uom.lk

176  

C.3.9.3 Wind Forces

Considering one storey, which has 4.0m storey height

From Clause 5.3

External forces surface

refedsew AwCCF ...,

Internal forces surface

refiiw AwF .,

Friction forces refepfrfr AzqCF ..

C.3.9.3.1 The background factor B2

52.0

09.208

183309.01

163.0

2

B

C.3.9.3.2 The resonance factor (R2)

bbhhxsL RRnzSR

..,.

.2 ,1

22

Where =0.01

SL = 0.085

                   h = 7.66 

Rh= 0.122

255.1

09.208

893.1306.4b  

 

506.01255.12

1

255.1

11

2

11 255.122

22

eeR b

bbb

Page 58: References - dl.lib.uom.lk

177  

30.0506.0.122.0.098.0.10.0.2

22

R

08.0579.030.052.0

30.0958.0

v

3596.3600.579.0ln2

6.0600.579.0ln2 pk

891.0091.0.71

52.0).091.0.(71

sC

091.152.0091.0.71

30.052.0.091.0.596.3.21

dC

C.3.9.3.3 External force

For windward direction

At 183m height We=1988.88(0.80) = 1591.10 Pa

For leeward direction

At 183m height We=1988.88 (-0.65) = -1292.77Pa

Total pressure (by considering non simultaneous action)

At 183m height We,Total =(0.962)[1591.10-(-1292.77)]=2774.28 Pa

Reference area = 30 x 3.6 = 108 m2

Total force

At 183m height Fw,e= (0.889)(1.124)(2774.28)108 = 299.39 kN

Internal force

Wi = 1988.88(-0.3) = -596.66 Pa

Page 59: References - dl.lib.uom.lk

178  

Fw,i = -596.66 x 108 = -64.44 kN

Friction force

Total area parallel to the wind direction = 2 x 30 x183

= 10980 m2 < 0.4 ATotal

Hence no need to calculate friction force

C.4 Wind load calculation according to the AS/NZS 1170.2:1989 of 183 m height building

Height of the building = 183m

Length of the building = 46 m

Width of the building = 30 m

5630

180

width

Height and

A first mode of frequency Hzh

n 1251.0183

4646

Therefore this building is wind sensitive and need dynamic analysis.

Figure C.5: segment considered in pressure calculation

10th Floor 

20th Floor 

30th Floor 

40th Floor 

50th Floor 

18m 

54 m  

   90m 

126m 

162m 

Page 60: References - dl.lib.uom.lk

179  

C.4.1 Design hourly mean wind speed

From Clause 4.2.2 itscatzz MMMMVV

),(

zV = The design hourly mean wind speed at height z, in meters per second (z = 183m)

V = The basic wind speed = 38ms-1

zM = An hourly mean wind speed multiplier for a terrain category at height z

Building locates in sub urban area, therefore terrain category is 3.

zM =0.806

sM = Shielding multiplier

Assume Shielding buildings are in more than 12m distance.

sM =1.0

tM = Topographic multiplier

Building locates in flat land.

Therefore

tM =1.0

iM = structure importance multiplier

Building has post disaster functions

iM = 1.1

169.331.111806.038

msV z

C.4.2 Dynamic Wind Pressure at 183 m level

From Clause 4.3. 3106.0

zz Vq

Page 61: References - dl.lib.uom.lk

180  

zq = The free stream hourly mean dynamic wind pressure at height z, in kilopascals

zV = The design hourly mean wind speed at height z, in meters per second

kpaq z 68.01069.336.0 32

C.4.5 Horizontal force acting on a building or structure at height 183m

From Clause 4.4.2 zzepz AqCF

,

zF = The hourly mean net horizontal force acting on a building or structure at height z

epC , = The pressure coefficients for both windward and leeward surfaces

zq = The free stream hourly mean dynamic wind pressure resulting from

zV , in kilopascals

zA = The area of a structure or a part of a structure, at height, in square meters

C.4.5.1 For wind normal to 46m wall

65.046

30

b

d

epC , = 0.8 + 0.5 = 1.3

mheightkNFz /66.404668.03.1

C.4.5.2 For wind normal to 30m wall

53.130

46

b

d

Page 62: References - dl.lib.uom.lk

181  

epC , = 0.8 + 0.39 = 1.19

mheightkNFz /28.243068.019.1

C.4.6 Gust factor calculation

SE

gwBgrG fv222 11

G = a gust factor

r = a roughness factor, twice the longitudinal turbulence intensity at height h

= 286.00.1

143.022

t

v

M

V

vg = a peak factor for upwind velocity fluctuation

= 3.7

B = a background factor

hL

bh 22 64361

1

hL = a measure of the effective turbulence length scale, in meters

= 30.206810

1831000

101000

25.025.0

h

For wind flows normal to 46m wall

B=

641.0

30.2068

4664183361

122

Page 63: References - dl.lib.uom.lk

182  

For wind normal to 30m wall

B= 652.0

30.2068

3064180361

122

w = a factor to account for the second order effects of turbulence intensity

=4

Brgv

For wind normal to 46m wall

w= 211.04

641.0286.07.3

For wind normal to 30m wall

w= 214.04

652.0286.07.3

fg = a peak factor

= ae n3600log2 690.3251.03600log2 e

S = a size factor to account for the correlation of pressure over a structure

=

h

a

h

a

V

bn

V

hn 41

5.31

1

For wind normal to 46m wall

= 097.0

67.41

46251.041

67.41

183251.05.31

1

Page 64: References - dl.lib.uom.lk

183  

For wind normal to 30m wall

= 119.0

67.41

30251.041

67.41

183251.05.31

1

na= the first mode along-wind frequency of the structure

= 0.251 Hz

hV

= the design hourly mean wind speed at height h

N= an effective reduced frequency

= 46.1267.41

30.2068251.0

h

ha

V

Ln

E = a spectrum of turbulence in the approaching wind stream

= 6/522

47.0

N

N

= 087.0

46.122

46.1247.06/52

= the structural damping capacity

= 0.05

SE

gwBgrG fv222 11

C.4.6.1 For wind flow normal to 46m wall

The gust factor 114.205.0

087.0097.0690.3211.01641.07.3286.01

222

G

Page 65: References - dl.lib.uom.lk

184  

cM

C.4.6.2 For wind normal to 30m wall

The gust factor 143.205.0

087.0119.0690.3214.01652.07.3286.01

222

G

C.4.7 Cross - wind response

   

 =the design peak base overturning moment for a structure in cross-wind direction 

fg = a peak factor )3600(log2 ae n in cross wind direction

= 3.690

hq

=the hourly mean dynamic wind pressure at height h in pascal

= 1380 pa

B = the breadth of the structure normal to the wind

30 m for X direction and

45 m for y direction

h= the height of the structure, in meters

= 183 m

k= a mode shape power exponent from representation of the fundamental mode shape

k=1.0 for building with a central core and moment resisting façade.

fsC = the cross- wind force spectrum coefficient generalized for a linear mode

For wind normal to 45m wall h: b: d = 6:1.5:1

15.446251.0

88.47

bn

V

c

and

Turbulence intensity at 2h/3 = 0.159

h: b: d= 6:1:1 and Turbulence intensity 0.12 = Cfs= 0.0015

h: b: d= 6:1:1 and Turbulence intensity 0.20 = Cfs= 0.0051

h: b: d= 6:1:1 and Turbulence intensity 0.16 = Cfs= 0.0033

fs

hfcC

kbhqgM )06.006.1(5.0 2

Page 66: References - dl.lib.uom.lk

185  

h: b: d= 6:2:1 and Turbulence intensity 0.12 = Cfs= 0.0008

h: b: d= 6:2:1 and Turbulence intensity 0.20 = Cfs= 0.0014

h: b: d= 6:2:1 and Turbulence intensity 0.16 = Cfs= 0.0011

h: b: d= 6:1.5:1 and Turbulence intensity 0.16 = Cfs= 0.0022

When wind flow normal to 30m wall h: b: d = 6:1:1.5

36.630251.0

88.47

bn

V

c

and

Turbulence intensity at 2h/3 = 0.159

h: b: d= 6:1:1 and Turbulence intensity 0.12 = Cfs= 0.0075

h: b: d= 6:1:1 and Turbulence intensity 0.20 = Cfs= 0.018

h: b: d= 6:1:1 and Turbulence intensity 0.159 = Cfs= 0.0128

h: b: d= 6:1:2 and Turbulence intensity 0.12 = Cfs= 0.004

h: b: d= 6:1:2 and Turbulence intensity 0.20 = Cfs= 0.006

h: b: d= 6:1:2 and Turbulence intensity 0.16 = Cfs= 0.005

h: b: d= 6:1:1.5 and Turbulence intensity 0.16 = Cfs= 0.0089

= the fraction of critical damping

= 0.05

C.4.7.1 For wind normal to 46m wall

MNmM c 51.155405.0

0025.0)106.006.1(183461380690.35.0 2

C.4.7.2 For wind normal to 30m wall

MNmM c 86.191205.0

0089.0)106.006.1(183301380690.35.0 2

Page 67: References - dl.lib.uom.lk

186  

C.5 Wind load calculation according to the AS/NZS 1170.2:2002 of 183 m height building

Location –Building locates in Zone 3

Terrain – Terrain category3, sub urban area

Geography – ground slope less than 1 in 20 for greater than 5 kilometers in all direction

Dimension – average roof height 183 meters

Horizontal dimension – 46 meters * 30 meters (rectangular cross section)

Building orientation – major axis is on East - West

Reinforced concrete construction. Curtain wall façade on all four faces.

Sway frequencies - Hertznn ca 251.0 . Mode shapes are linear (k=1.0)

Average building density- 350 kgm-3

C.5.1 Regional wind speed

According to the report on “Technical Assistance to Sri Lanka on Cyclone Resistant

Construction”

From Table 3.1

Post disaster wind speed on Zone 3 is 85 mph (38m/s)

For calculation of acceleration, use 5 year return period 133 msVs

C.5.1.1Wind direction multiplier

According to clause 3.3

Wind direction multiplier for region A 0.1dM for overturning moment and major structural

system for all directions

C.5.1.2 Terrain- height multiplier

According to Clause 4.2.1

Terrain category is category 4

From Table 4.1(B)

Z=h=183 m, for terrain category 3, 23.13.183, catcatz MM

Page 68: References - dl.lib.uom.lk

187  

C.5.1.3 Shielding

According to clause 4.3.1

There are no other buildings of greater height in any direction. Therefore 0.1sM for all

directions.

C.5.1.4 Topography

According to clause 4.4.1

Topography multiplier 0.1 ht MM

C.5.1.5 Site wind speed

Site wind speed for all directions for overall loads and main structural design

)0.1)(0.1)(23.1)(0.1(38,sitV 46.74 ms-1

C.5.1.6 Design wind speed

For all wind directions, the design wind speeds

` ,, sitdes VV = 47 ms-1 (for overall loads and main structure design)

C.5.2 Aerodynamic shape factor

C.5.2.1 External pressures

From Table 5.2(A)

External pressure coefficient for windward wall 8.0peC (wind speed vary with height)

From Table 5.2(B)

d/b =0.65<1 :Leeward walls (normal to 46m) 5.0peC

d/b = 1.53 :Leeward walls (normal to 30m) 39.0peC

C.5.2.2 Area reduction factors According to Clause 5.4.2

For tributary area smaller than 10m2 (eg. Glazed curtain wall) 0.1ak

C.5.2.3 Local pressure factor (kt) for cladding a = minimum of 0.2b = 0.2*30 = 6m2 or 183m. a = 6 m2

Limiting tributary areas for local pressure factors = 0.25a2 = 9m2

Page 69: References - dl.lib.uom.lk

188  

C.5.2.4 Internal pressures According to clause 5.3

For Table 5.1(A)

The building can be consider as effectively sealed.

In this case, Cpi = -0.2 or 0.0

C.5.2.5 Action combination factor

Ka = 1.0

C.5.3 Dynamic response factor

Cdyn to be obtained from section 6.2.2 for along-wind response

Cfig,, Cdyn to be obtained as a product from section 6.3.2 for cross wind response.

C.5.3.1 Calculating along wind response

5.022

21

21

hv

lRssvh

dyn lg

SEgHBgI

C

Turbulence intensity (Ih): z = 183 m, terrain category 3 at zone 3

From Table 6.1

Ih = 0.143

Background factor

h

sh

L

bshB

5.022 ]46.0)(26.0[1

1

mh

Lh 17610

18385

1085

25.025.0

For b = 46m, s = 0 (for base bending moment)

Page 70: References - dl.lib.uom.lk

189  

641.0

176

]4646.0)0183(26.0[1

15.022

B

For b = 30m, s = 0 (for base bending moment)

648.0

176

]3046.0)0183(26.0[1

15.022

B

Hs = 1.0

aer ng 600log2 = 167.3251.0600log2 e

Size reduction factor

,

0

,

141

)1(5.31

1

des

hvha

des

hva

V

Igbn

V

IghnS

For normal to 46m wall

064.0

47

143.07.3146251.041

47

)143.07.31(183251.05.31

1

S

For normal to 30 m wall

081.0

47

143.07.3130251.041

47

)143.07.31(183251.05.31

1

S

Reduced frequency

437.1

47

143.07.31176251.01

,

des

hvha

V

IgLnN

070.0

437.18.701

437.1

8.7016

52

6

52

N

NEt -------------------------- )4(2.6Eq

Page 71: References - dl.lib.uom.lk

190  

(Ratio of structural damping to critical) from Table 6.2

05.0

5.022

21

21

hv

lRssvh

dyn Ig

SEgHBgI

C

For breadth 46m

918.0143.07.321

05.0

070.0064.0167.30.1641.07.3143.021

5.022

dynC

For breadth 30m

925.0143.07.321

05.0

070.0081.0167.30.1648.07.3143.021

5.022

dynC

C. 5.4 Pressures on the building

C. 5.4.1 Pressure on the 60 m side at 48 m height

q48 m = [+8.0 – (- 0.5)] x (47)2 x 0.918 = 2636 Pa

C. 5.4.2 Pressure on the 30 m side at 48 m height

q48 m = [+8.0 – (- 0.39)] x (47)2 x 0.925 = 2432 Pa

C.5.5 Crosswind response

C.5.5.1. Wind normal to the 46m face

C.5.5.1.1 Crosswind force spectrum coefficient (Cfs)

Reduced velocity 8.4143.07.314520.0

66

1,

hvc

desn Igbn

VV

Page 72: References - dl.lib.uom.lk

191  

Turbulence intensity

mh

z 1203

1802

3

2 : 160.0hI

Building dimensions are 6:1.5:1

For 6:1:1 and Ih= 0.12 from equation 6.30(7)

632.276.2603.0201.00165.0000406.0log 23410 nnnnfs VVVVC

For 6:1:1 and Ih= 0.20 from equation 6.30(8)

760.136.2384.0141.00125.0000334.0log 23410 nnnnfs VVVVC

For 6:1:1 and Ih= 0.160 by interpolation 196.2log10 fsC

For 6:2:1 and Ih= 0.12 from equation 6.30(9)

036.3000123.002.01

000394.00683.02.3log

42

42

10

nn

nnfs VV

VVC

For 6:2:1 and Ih= 0.20 from equation 6.30(10)

860.2000124.002.01

00037.00637.00.3log

42

42

10

nn

nnfs VV

VVC

For 6:2:1 and Ih= 0.160 by interpolation 948.2log10 fsC

By Interpolation for 6:1.5:1 and Ih= 0.160, 572.2log10 fsC hence Cfs=0.00268

fsk

hv

mrdynfig

C

h

z

Ig

K

d

bgCC

215.1

z

zCC dynfig 00695.0

05.0

00268.0

180143.07.31

1

30

4517.35.1

2

Page 73: References - dl.lib.uom.lk

192  

C.5.5.1.2 Equivalent static wind force

dynfigdesaireq CdCVw 2,5.0

mzkNmzNzweq /545.0/`94.54400695.030662.15.0 2

C.5.5.2 Wind normal to 30m face

C.5.5.2.1 Crosswind force spectrum coefficient (Cfs)

Reduced velocity 194.7143.07.31302.0

66

1,

hvc

desn Igbn

VV ----------- )4(3.6Eq

Turbulence intensity

mh

z 1203

1802

3

2 : 160.0hI

Building dimensions are 6:1:1.5

For 6:1:1 and Ih= 0.12 from equation 6.30(8)

751.176.2603.0201.00165.0000406.0log 23410 nnnnfs VVVVC

For 6:1:1 and Ih= 0.20 from equation 6.30(7)

548.136.2384.0141.00125.0000334.0log 23410 nnnnfs VVVVC

For 6:1:1 and Ih= 0.160 by interpolation 668.1log10 fsC

For 6:1:2 and Ih= 0.12 from equation 6.30(8)

237.2093.4396.00226.0000457.0log 2310 nnnfs VVVC

For 6:1:2 and Ih= 0.20 from equation 6.30(7)

087.282.3363.00197.000038.0log 2310 nnnfs VVVC

For 6:1:2 and Ih= 0.160 by interpolation 162.2log10 fsC

Page 74: References - dl.lib.uom.lk

193  

By Interpolation for 6:1:1.5 and Ih= 0.160, 915.1log10 fsC hence Cfs=0.0122

fsk

hv

mrdynfig

C

h

z

Ig

K

d

bgCC

215.1

z

zCC dynfig 00659.0

05.0

0122.0

180143.07.31

1

45

3017.35.1

2

C.5.5.2.2 Equivalent static wind force

dynfigdesaireq CdCVw 2,5.0

mzkNmzNzweq /775.0/06.77500659.046472.15.0 2

Page 75: References - dl.lib.uom.lk

194  

APPENDIX D

D.1.Along wind Acceleration calculation for 183m height building in Zone 3

D.1.1 Along wind acceleration calculation according to AS 1170.2:1989

For accelerations a 5- year return period could be considered. For Zone 1 1

2,10,5 32 msVcatm

yr

For terrain category 3 and 183 m height 11

3,183,5 8.25806.032 msmsV

catmyr

Alternatively we can use following method

The mean overturning moment

For b= 46m NmM yr6

26

5 1039938

3210563

For b= 30m NmM yr6

26

5 1020838

3210293

The narrow band response component of the gust factor is reasonably approximately by

SEg

rG fr

2

For wind normal to 46m wall

S= 049.0

8.25

46251.041

8.25

183251.05.31

1

For wind normal to 30m wall

= 064.0

8.25

30251.041

8.25

183251.05.31

1

Page 76: References - dl.lib.uom.lk

195  

na= the first mode along-wind frequency of the structure

= 0.251 Hz

hV

= the design hourly mean wind speed at height h

N= an effective reduced frequency

= 12.208.25

30.2068251.0

h

ha

V

Ln

E = a spectrum of turbulence in the approaching wind stream

= 6/522

47.0

N

N

=0.063

= the structural damping capacity

= 0.01

To make a comparison with acceleration criteria, the peak factor has to be evaluated for 10min

167.3251.0600ln2 fg

For wind normal to 46 m wall

The gust factor 503.001.0

063.0049.0167.3286.0

2

G

And

NmM res66 107.20010399503.0

For wind normal to 30m wall

The gust factor 575.001.0

063.0064.0167.3286.0

2

G

And

NmM res66 1012010208575.0

Page 77: References - dl.lib.uom.lk

196  

The base moment due to inertial loading is given by

zdznzzmMh

21

0

1 2

Where m(z) is mass per unit height

z is mode shape.

For a building of constant density and a linear mode shape factor for unit displacement at the top

212

1 231 nbdhM s

= (1/3)350 x 46 x 30 x 1832 x (2π x 0.251)2

= 13276 x 106 Nm (per 1m displacement at the top)

The peak displacement of the fluctuating component of the narrow band response at the top is

1M

Mx res

res

And the peak acceleration is

21

..

2 nxx resres

For wind normal to 46m side

22

6

6..

037.0251.021013276

10201

msx

For wind normal to 30m wall

22

6

6..

022.0251.021013276

10120

msx

Page 78: References - dl.lib.uom.lk

197  

D.1.2 Along wind acceleration calculation according to AS 1170.2:2002

For accelerations a 5- year return period could be considered. For Zone 1 1

2,10,5 32 msVcatm

yr

For terrain category 3 and 180m height Vsit,B = 32 x 1.23 = 39.36 ms-1

According to the Appendix G

Mass per unit height = mkg /1083.43046350 5

0016.00018.01083.4

1835

3.13.1

omh

Hence cross wind acceleration is excessive for this building

Peak along wind acceleration for serviceability

In the along wind direction

2

00 3

hmx

o

resonant component of peak base bending moment

2}{21

3

0

2,,

0

2,,2

EqGzzbhVCzzbzVCIg

SEg

hm

h

zzdeswindwardfigz

h

zdeswindwardfig

hv

rrair

o

Size reduction factor

,

0

,

141

)1(5.31

1

des

hvha

des

hva

V

Igbn

V

IghnS

Page 79: References - dl.lib.uom.lk

198  

For normal to 46m wall

0493.0

36.39

143.07.3146251.041

36.39

)143.07.31(183251.05.31

1

S

For normal to 30 m wall

0636.0

36.39

143.07.3130251.041

36.39

)143.07.31(183251.05.31

1

S

Reduced frequency

71.1

36.39

143.07.31175251.01

,

des

hvha

V

IgLnN

0628.0

35.81

21.5

71.18.701

71.1

8.7016

52

6

52

N

NEt

(Ratio of structural damping to critical) from Table 6.2

For serviceability condition 01.0

Dynamic response factor for resonant response only

5.02

21

2

hv

lRsh

dyn lg

SEgHI

C

For breadth 45m

245.0143.07.321

01.0

0628.00493.0167.30.1143.02

5.02

dynC

Page 80: References - dl.lib.uom.lk

199  

For breadth 30m

278.0143.07.321

01.0

0628.00636.0167.30.1143.02

5.02

dynC

Calculation of resonant base moment

For b=45m

Resonant base moment = MNmMNm 67.184949.0

245.0

74.46

36.3903.1120

2

For b=30m

Resonant base moment = MNmMNm 38.137961.0

278.0

74.46

36.3971.669

2

Peak along wind acceleration

From Equation G2

For45m

2

0

max

00 3

hmx resonant peak base moment = 6

251067.184

1831083.4

3

mgmgms 49.38.9

1000034.0034.0 2

For 30m

2

0

max

00 3

hmx resonant peak base moment = 6

251038.138

1831083.4

3

mgmgms 62.28.9

1000026.0026.0 2

Page 81: References - dl.lib.uom.lk

200  

D.1.3 Along wind acceleration calculation according to BS EN 1191-1-4:2005

The standard deviation xa , of the characteristic along wind acceleration of the structural

point at height z

x

xxsmsvfxa m

zkRzvzlCz

,1

2

,

......

Where

Cf – the force coefficient from Table NA 4

For wind normal to 46m Cf = 1.3

For wind normal to 30m Cf = 1.25

‐ Air density = 1.2 kgm-3

b – Width of the structure; b = 46m wind normal to 46m wall

b = 30m wind normal to 30m wall

lv(zs) = lv(109.8) = 0.091

vm(zs) = vm(28.8) = Cr.vb,0

vb,0 = Calt.Cseason.Cdir.Vmap

Calt = 1 + 0.001(3) (10/28.8)0.2 = 1.002

Vb,0 = 22 x 1.002 = 22.04 ms-1

Taking Cdir = 1 and Cseason =1

Vb,0 = 22.04 ms-1

Clause 4.3.1 Mean velocity

Vm = Cr(z). Cr,T(z).C0(z).Vb

From Figure NA.3 Cr(109.8) = 1.57, Cr,T(z) = 0.96

Vm = 1.57 x 0.96 x 22.04 = 33.22 ms-1

kx – The non dimensional coefficient

Page 82: References - dl.lib.uom.lk

201  

From Annex B

0

2

0

ln1

15.0ln112

zz

zz

ks

s

x

z0 – Roughness length = 0.3m

‐ The exponent of the mode shape

From Annex F ; = 1.0 for building with a central core plus peripheral columns

zs /z0= 109.8 / 0.3 = 366

From Figure B.4; kx = 1.5

From equation

5.1

366ln11

15.0366ln111122

xk

m1,x – along wind fundamental equivalent mass

From Annex F.4.2. because column sizes are changing with the height, we can use average mass over the upper third of the structure h

Weight per meter height =4.14 x 105 kg/m

zx ‐ The fundamental along wind modal shape

zx = 1 for first mode

For wind normal to 60m wall

0152.01083.4

5.168.021.33091.0462.13.15

2

,

zxa

Peak acceleration = xapk ,.

= 3.356 x 0.0152

= 0.051ms-2

Page 83: References - dl.lib.uom.lk

202  

For wind normal to 30m wall

0106.01083.4

5.1758.021.33091.0302.125.15

2

,

zxa

Peak acceleration = xapk ,.

= 3.356 x 0.0106

= 0.036ms-2

D.2.Cross wind Acceleration calculation for 183m height building

D.2.1. Cross wind acceleration calculation according to AS 1170.2:1989

fshf Ck

m

bqgy 24.076.0

5.100

k= a mode shape power exponent from representation of the fundamental mode shape

For building with a central core and moment resisting façade k = 1.0

0m the average mass per unit height of the structure in kilograms per meter

For wind normal to 46m wall

For wind normal to 46m wall h: b: d = 6:1.5:1

23.246251.0

8.25

bn

V

c

and

Turbulence intensity at 2h/3 = 0.159 h: b: d= 6:1:1 and Turbulence intensity 0.12 = Cfs= 0.0006 h: b: d= 6:1:1 and Turbulence intensity 0.20 = Cfs= 0.0023 h: b: d= 6:1:1 and Turbulence intensity 0.159 = Cfs= 0.0014 h: b: d= 6:2:1 and Turbulence intensity 0.12 = Cfs= 0.0003 h: b: d= 6:2:1 and Turbulence intensity 0.20 = Cfs= 0.0007 h: b: d= 6:2:1 and Turbulence intensity 0.159= Cfs= 0.0005 h: b: d= 6:1.5:1 and Turbulence intensity 0.159 = Cfs= 0.0010

Page 84: References - dl.lib.uom.lk

203  

25

200

101.0010.0

0010.0124.076.0

1083.4

468.256.0167.35.1

msy

For wind normal to 30m wall

When wind flow normal to 30m wall h: b: d = 6:1:1.5

43.330251.0

8.25

bn

V

c

and

Turbulence intensity at 2h/3 = 0.159 h: b: d= 6:1:1 and Turbulence intensity 0.12 = Cfs= 0.0010 h: b: d= 6:1:1 and Turbulence intensity 0.20 = Cfs= 0.0040 h: b: d= 6:1:1 and Turbulence intensity 0.16 = Cfs= 0.0025 h: b: d= 6:1:2 and Turbulence intensity 0.12 = Cfs= 0.0010 h: b: d= 6:1:2 and Turbulence intensity 0.20 = Cfs= 0.0018 h: b: d= 6:1:2 and Turbulence intensity 0.16 = Cfs= 0.0014 h: b: d= 6:1:1.5 and Turbulence intensity 0.16 = Cfs= 0.0021

25

200

091.0010.0

0019.0124.076.0

1083.4

308.256.0167.35.1

msy

D.2.1. Cross wind acceleration calculation according to AS 1170.2:2002

Reduced velocity 23.2143.07.3146251.0

36.39

1,

hvc

desn Igbn

VV

Turbulence intensity

mh

z 1223

1832

3

2 : 160.0hI

Building dimensions are 6:1.5:1

For 6:1:1 and Ih= 0.12 from equation 6.30(7)

270.376.2603.0201.00165.0000406.0log 23410 nnnnfs VVVVC

Page 85: References - dl.lib.uom.lk

204  

For 6:1:1 and Ih= 0.20 from equation 6.30(8)

638.236.2384.0141.00125.0000334.0log 23410 nnnnfs VVVVC

For 6:1:1 and Ih= 0.16 by interpolation 954.2log10 fsC

For 6:2:1 and Ih= 0.12 from equation 6.30(9)

174.3000123.002.01

000394.00683.02.3log

42

42

10

nn

nnfs VV

VVC

For 6:2:1 and Ih= 0.20 from equation 6.30(10)

977.2000124.002.01

00037.00637.00.3log

42

42

10

nn

nnfs VV

VVC

For 6:2:1 and Ih= 0.16 by interpolation 075.3log10 fsC

By Interpolation for 6:1.5:1 and Ih= 0.16, 015.3log10 fsC hence Cfs=0.00097

fs

m

hv

desairrC

KIg

V

m

bgy

2

2,

0max

00

1

5.05.1

22

2

5max

00

01.0

00097.01

143.07.31

36.392.15.0

1083.4

167.3465.1

msy

mgmgms 84.118.9

1000116.0116.0 2

Wind normal to 30m face

Reduced velocity 418.3143.07.3130251.0

36.39

1,

hvc

desn Igbn

VV

Page 86: References - dl.lib.uom.lk

205  

Turbulence intensity

mh

z 1203

1802

3

2 : 160.0hI

Building dimensions are 6:1:1:5

For 6:1:1 and Ih= 0.12 from equation 6.30(8)

076.376.2603.0201.00165.0000406.0log 23410 nnnnfs VVVVC

For 6:1:1 and Ih= 0.20 from equation 6.30(7)

479.236.2384.0141.00125.0000334.0log 23410 nnnnfs VVVVC

For 6:1:1 and Ih= 0.20 by interpolation 778.2log10 fsC

For 6:1:2 and Ih= 0.12 from equation 6.30(8)

985.2093.4396.00226.0000457.0log 2310 nnnfs VVVC

For 6:1:2 and Ih= 0.20 from equation 6.30(7)

798.282.3363.00197.000038.0log 2310 nnnfs VVVC

For 6:1:2 and Ih= 0.160 by interpolation 891.2log10 fsC

By Interpolation for 6:1:1.5 and Ih= 0.160, 833.2log10 fsC hence Cfs=0.00146

fs

m

hv

desairrC

KIg

V

m

bgy

2

2,

0max

00

1

5.05.1

22

2

5max

00

01.0

00146.01

143.07.31

36.392.15.0

1083.4

17.3305.1

msy

mgmgms 49.98.9

1000093.0093.0 2

Page 87: References - dl.lib.uom.lk

206  

E.1 Results of maximum forces obtained for wind speed with different return period

E.1.1 Load combination 1.2G+1.2Q+1.2W (wind flow normal to 46 m side) Zone 1 Zone 2 Zone 3

49 ms-1 54 ms-1 54 ms-1 74 ms-1 43 ms-1 47 ms-1 47 ms-1 63 ms-1 33 ms-1 38 ms-1 37 ms-1 50 ms-1

Col

umn

Axial force (kN) 26657 28050 27061 29111 24819 25361 24820 27063 23630 24110 23778 25187 Bending moment (kNm) 1804 1811 1796 1832 1859 1823 1864 1798 1933 1906 1927 1835 Shear force (kN) 921 1154 930 1209 946 930 953 931 978 966 976 935

Bea

m

Shear force (kN) 1690 1795 1740 1825 1658 1678 1675 1745 1634 1630 1631 1672 Bending moment (kNm) 843 891 870 924 825 836 839 873 812 810 810 833

E.1.2 Load combination 1.4G+1.4W (wind flow normal to 46 m side) Zone 1 Zone 2 Zone 3

49 ms-1 54 ms-1 54 ms-1 74 ms-1 43 ms-1 47 ms-1 47ms-1 63 ms-1 33 ms-1 38 ms-1 37 ms-1 50 ms-1

Col

umn

Axial force (kN) 25722 28454 26503 28528 24771 25387 24339 26512 23498 23973 23329 24695 Bending moment (kNm) 1685 1728 1696 1732 1742 1700 1772 1698 1829 1797 1840 1768 Shear force (kN) 870 1242 886 1249 890 872 903 882 928 914 933 903

Bea

m

Shear force (kN) 1607 1709 1633 1719 1569 1594 1551 1639 1526 1537 1532 1566 Bending moment (kNm) 804 918 818 923 783 796 773 821 756 765 760 781

APPEN

DIX

E

Page 88: References - dl.lib.uom.lk

207  

E.1.3 Load combination 1.0G+1.4W (wind flow normal to 46 m side)

Zone 1 Zone 2 Zone 3

49 ms-1 54 ms-1 54 ms-1 74 ms-1 43 ms-1 47 ms-1 47 ms-1 63 ms-1 33 ms-1 38 ms-1 37 ms-1 50 ms-1

Col

umn

Axial force (kN) 19516 22301 20324 22375 18569 19182 18134 20327 17292 17768 17123 18490 Bending moment (kNm) 1223 1266 1234 1270 1207 1217 1214 1236 1272 1240 1283 1206 Shear force (kN) 863 1244 887 1250 624 675 623 703 648 634 653 623

Bea

m

Shear force (kN) 1194 1295 1220 1306 1156 1180 1138 1226 1071 1124 1097 1152 Bending moment (kNm) 639 854 656 859 578 592 569 614 550 561 546 577

E.1.4 only wind load case (wind flow normal to 46 m side)

Zone 1 Zone 2 Zone 3

49 ms-1 54 ms-1 54 ms-1 74 ms-1 43 ms-1 47 ms-1 47 ms-1 63 ms-1 33 ms-1 38 ms-1 37 ms-1 50 ms-1

Col

umn

Axial force (kN) 3565 5953 5953 8453 2721 3267 3267 5976 1584 2008 2001 3710 Bending moment (kNm) 193 326 326 459 148 177 177 324 86 109 98 201 Shear force (kN) 529 892 892 1255 404 485 485 887 235 298 293 544

Bea

m

Shear force (kN) 182 300 300 431 139 166 166 304 81 102 101 189 Bending moment (kNm) 309 519 519 732 236 283 283 518 137 174 171 321

Page 89: References - dl.lib.uom.lk

208  

E.1.5 Load combination 1.2G+1.2Q+1.2W (wind flow normal to 30 m side)

Zone 1 Zone 2 Zone 3

49 ms-1 54 ms-1 54 ms-1 74 ms-1 43 ms-1 47 ms-1 47 ms-1 63 ms-1 33 ms-1 38 ms-1 37 ms-1 50 ms-1

Col

umn

Axial force (kN) 24716 25993 25465 26578 24266 24559 24269 25506 23661 23943 23756 25188 Bending moment (kNm) 1929 1884 1879 1916 1955 1938 1954 1884 1989 1973 1983 1996 Shear force (kN) 1518 1698 1576 1758 969 958 975 992 992 982 989 998

Bea

m

Shear force (kN) 1797 1868 1838 1900 1772 1788 1784 1840 1738 1754 1743 1779 Bending moment (kNm) 904 895 926 934 891 900 903 927 874 882 876 903

E.1.6 Load combination 1.4G+1.4W (wind flow normal to 30 m side)

Zone 1 Zone 2 Zone 3

49 ms-1 54 ms-1 54 ms-1 74 ms-1 43 ms-1 47 ms-1 47 ms-1 63 ms-1 33 ms-1 38 ms-1 37 ms-1 50 ms-1

Col

umn

Axial force (kN) 24665  26156  25099  26212  24141  24482  23903  25140  23434  23764  23390  24761 Bending moment (kNm) 1824  1813  1793  1817  1853  1834  1867  1797  1894  1875  1896  1819 Shear force (kN) 1192 1739 1248 1757 918 957  927 987 944 932 946 977

Bea

m

Shear force (kN) 1716  1799  1740  1801  1686  1705  1673  1742  1647  1665  1645  1721 Bending moment (kNm) 863  907  876  917  848  858  841  877  828  837  826  866 

Page 90: References - dl.lib.uom.lk

209  

E.1.5 Load combination 1.0G+1.4W (wind flow normal to 30 m side)

Zone 1 Zone 2 Zone 3

49 ms-1 54 ms-1 54 ms-1 74 ms-1 43 ms-1 47 ms-1 47 ms-1 63 ms-1 33 ms-1 38 ms-1 37 ms-1 50 ms-1

Col

umn

Axial force (kN) 18249 19739 18683 19796 17725 18066 17489 18724 17018 17348 16974 17687 Bending moment (kNm) 1272 1351 1295 1354 1297 1277 1310 1298 1337 1318 1339 1299 Shear force (kN) 1456 1733 1382 1751 948 993 923 1055 664 652 666 716

Bea

m

Shear force (kN) 1260 1344 1285 1347 1231 1250 1218 1286 1192 1210 1190 1229 Bending moment (kNm) 748 873 702 876 620 629 615 686 599 608 598 618

E.1.8 only wind load case (wind flow normal to 30 m sidel)

Zone 1 Zone 2 Zone 3

49 ms-1 54 ms-1 54 ms-1 74 ms-1 43 ms-1 47 ms-1 47 ms-1 63 ms-1 33 ms-1 38 ms-1 37 ms-1 50 ms-1

Col

umn

Axial force (kN) 2234 3741 3741 5318 1704 2049 2049 3800 989 1323 1323 2332 Bending moment (kNm) 241 380 380 573 184 221 221 409 107 143 143 251 Shear force (kN) 731 1229 1229 1739 557 670 670 1242 324 433 433 762

Bea

m

Shear force (kN) 241 406 406 572 183 213 213 409 103 137 137 242 Bending moment (kNm) 347 587 587 827 265 318 477 531 154 206 206 364

Page 91: References - dl.lib.uom.lk

210  

E.2.0 Total pressure values on 48 m building

E.2.1 Total pressure on 60 m side of 48m building

Pressure (Pa)

Zone 1 Zone 2 Zone 3

Height (m)

CP3 AS 1989

AS 2002

BS EN CP3 AS 1989

AS 2002

BS EN CP3 AS 1989

AS 2002

BS EN

0  700.9 1982.4 1982.4 1806.1 2231.9 531.4 1195.7 1360.1 1375.8 1723.9 347.3 781.6 888.9 924.1 1062.3 4  740.6 1982.4 1982.4 1806.1 2231.9 561.0 1195.7 1360.1 1375.8 1723.8 366.7 781.6 888.9 924.1 1062.3 8  920.5 2136.0 2138.7 1806.1 2231.9 697.3 1256.4 1360.1 1375.8 1723.8 455.8 821.4 888.9 924.1 1062.3 12  1094.3 2321.6 2324.3 1806.1 2231.9 829.0 1376.3 1413.6 1375.8 1723.8 541.9 899.8 923.9 924.1 1062.3 16  1275.2 2561.0 2508.9 1806.1 2231.9 966.0 1523.6 1520.6 1375.8 1723.8 631.5 996.0 993.8 924.1 1062.3

20  1436.3 2788.9 2791.6 1806.1 2231.9 1088.0 1621.1 1618.1 1375.8 1723.8 711.2 1059.8 1057.6 924.1 1062.3 24  1520.9 2938.7 2941.4 1806.1 2231.9 1152.1 1681.7 1678.7 1375.8 1723.8 753.1 1099.4 1097.2 924.1 1062.3 28  1608.3 3094.1 3096.7 1806.1 2231.9 1218.4 1743.8 1740.8 1375.8 1723.8 796.4 1140.0 1137.8 924.1 1062.3 32  1678.9 3255.0 3257.7 1806.1 2231.9 1271.8 1796.7 1793.7 1375.8 1723.8 831.4 1174.6 1172.4 924.1 1062.3 36  1731.3 3421.6 3424.3 1806.1 2231.9 1311.5 1856.1 1836.8 1375.8 1723.8 857.3 1213.4 1200.5 924.1 1062.3 40  1784.6 3593.8 3596.4 1806.1 2231.9 1351.9 1883.6 1880.6 1375.8 1723.8 883.7 1231.3 1229.1 924.1 1062.3 44  1838.8 3664.2 3666.8 1806.1 2231.9 1393.0 1916.8 1913.8 1375.8 1723.8 910.6 1253.1 1250.9 924.1 1062.3 48  1893.9 3735.5 3738.2 1806.1 2231.9 1434.7 1950.5 1936.2 1375.8 1723.8 937.9 1275.1 1265.5 924.1 1062.3

Page 92: References - dl.lib.uom.lk

211  

E.2.2 Total pressure on 30 m side of 48m building

Pressure (Pa) Zone 1 Zone 2 Zone 3 Height (m)

CP3 AS 1989

AS 2002

BS EN CP3 AS 1989

AS 2002

BS EN CP3 AS 1989

AS 2002

BS EN

0  700.9 1407.3  1407.3 1727.0 1938.6 531.4 895.6 1062.0 1315.9 1495.4 347.3 587.4 694.2 885.2 922.6

4  740.6 1407.3  1407.3 1727.0 1938.6 561.0 895.6 1062.0 1315.9 1495.4 366.7 587.4 694.2 885.2 922.6

8  920.5 1566.0  1563.6 1727.0 1938.6 697.3 956.4 1062.0 1315.9 1495.4 455.8 627.1 694.2 885.2 922.6

12  1094.3 1751.6  1749.2 1727.0 1938.6 829.0 1076.3 1115.6 1315.9 1495.4 541.9 705.5 729.2 885.2 922.6

16  1275.2 1991.0  1933.8 1727.0 1938.6 966.0 1223.6 1222.5 1315.9 1495.4 631.5 801.8 799.1 885.2 922.6

20  1436.3 2218.9  2216.5 1727.0 1938.6 1088.0 1321.1 1320.0 1315.9 1495.4 711.2 865.6 862.9 885.2 922.6

24  1520.9 2368.7  2366.3 1727.0 1938.6 1152.1 1381.7 1380.6 1315.9 1495.4 753.1 905.1 902.5 885.2 922.6

28 1608.3 2524.1  2521.6 1727.0 1938.6 1218.4 1443.8 1442.7 1315.9 1495.4 796.4 945.7 943.1 885.2 922.6

32  1678.9 2685.0  2682.6 1873.8 2086.0 1271.8 1496.7 1495.6 1427.4 1609.1 831.4 980.3 977.7 958.7 992.7

36  1731.3 2851.6  2849.2 1873.8 2086.0 1311.5 1556.1 1538.7 1427.4 1609.1 857.3 1019.2 1005.8 958.7 992.7

40 1784.6 3023.8  3021.3 1873.8 2086.0 1351.9 1583.6 1582.5 1427.4 1609.1 883.7 1037.1 1034.4 958.7 992.7

44  1838.8 3094.2  3091.8 1873.8 2086.0 1393.0 1616.8 1615.7 1427.4 1609.1 910.6 1058.8 1056.2 958.7 992.7

48  1893.9 3165.5  3163.1 1873.8 2086.0 1434.7 1650.5 1638.1 1427.4 1609.1 937.9 1080.8 1070.8 958.7 992.7

Page 93: References - dl.lib.uom.lk

212  

E.3.0 Total pressure values of 183 m building

E.3.1 Total pressure on 46 m side of 183 m building

Pressure (Pa) Zone 1 Zone 2 Zone 3 Height (m)

CP3 AS 1989

AS 2002

BS EN CP3 AS 1989

AS 2002

BS EN CP3 AS 1989

AS 2002

BS EN

0     

18 1165.2 1801.4  1897.3 1986.4 2605.8 815.7 1308.5 1165.4  1458.0 1818.3 533.2  962.8  752.4  951.2  1082.1 

36 1530.2 2556.1  2532.9 1986.4 2605.8 1071.2 1588.9 1446.2  1458.0 1818.3 700.2  1143.4  933.8  951.2  1082.1 

54 1759.2 3230.8  3025.8 2078.0 2712.9 1231.4 1746.6 1597.8  1519.2 1893.1 805.0  1245.0  1031.7  991.1  1126.6 

72 1879.6 3774.6  3203.8 2149.5 2791.5 1315.7 1863.6 1687.7  1568.3 1947.9 860.1  1320.4  1089.8  1023.2  1159.2 

90 1992.9 4290.2  3358.7 2223.3 2841.4 1395.0 1966.4 1764.9  1615.2 1982.7 911.9  1386.7  1139.6  1053.7  1180.0 

108 2079.1 4764.3  3495.3 2240.9 2884.3 1455.4 2054.9 1830.2  1628.0 2012.6 951.4  1443.7  1181.8  1062.1  1197.7 

126 2147.8 4795.0  3503.0 2271.3 2927.4 1503.5 2126.9 1875.4  1650.1 2042.5 982.8  1490.1  1211.0  1076.5  1215.5 

144 2217.6 4795.0  3503.0 2310.4 3005.6 1552.4 2201.1 1919.0  1678.5 2097.3 1014.8  1538.0  1239.2  1095.0  1248.1 

162 2288.6 4795.0  3503.0 2310.4 3005.6 1602.0 2270.5 1960.7  1678.5 2097.3 1047.2  1582.6  1266.1  1095.0  1248.1 

183 2763.5 4795.0  3503.0 2310.4 3005.7 1934.5 2729.1 2319.4  1958.3 2446.9 1264.6  1758.6  1499.8  1277.5  1456.2 

Page 94: References - dl.lib.uom.lk

213  

E.3.1 Total pressure on 30 m side of 183 m building

Pressure (Pa)

Zone 1 Zone 2 Zone 3

Height (m)

CP3 AS 1989

AS 2002

BS EN CP3 AS 1989

AS 2002

BS EN CP3 AS 1989

AS 2002

BS EN

0

18 621.8 962.2 1039.2 1285.0 1406.7 435.2 568.8 655.5 943.2 1217.1 252.90 365.89 422.99 615.31 729.86

36 816.5 1462.2 1458.9 1305.2 1501.3 571.6 800.3 840.4 958.0 1299.0 332.13 514.87 542.31 625.07 778.95

54 938.7 1909.2 1784.4 1357.4 1567.1 657.1 930.6 940.2 993.4 1355.9 381.81 598.64 606.73 648.07 813.09

72 1002.9 2269.6 1902.0 1401.8 1608.3 702.1 1027.2 999.4 1022.8 1391.5 407.95 660.83 644.94 667.23 834.43

90 1063.4 2611.2 2004.3 1448.2 1632.9 744.4 1112.1 1050.2 1052.1 1412.9 432.53 715.44 677.73 686.34 847.23

108 1109.4 2925.3 2094.5 1467.2 1661.7 776.6 1185.3 1093.2 1065.9 1437.8 451.24 762.49 705.48 695.39 862.18

126 1146.0 2945.6 2099.6 1475.9 1678.2 802.3 1244.8 1123.0 1072.2 1452.0 466.16 800.76 724.70 699.48 870.71

144 1183.3 2945.6 2099.6 1508.6 1698.8 828.3 1306.1 1151.7 1084.7 1469.8 481.31 840.20 743.20 707.60 881.38

162 1221.2 2945.6 2099.6 1508.6 1731.7 854.8 1363.3 1179.1 1096.0 1498.3 496.71 877.05 760.93 714.97 898.45

183 1474.6 2945.7 2099.6 1508.6 1731.7 1032.3 1648.7 1398.6 1278.6 1748.0 674.77 1060.65 902.53 834.13 1048.19

Page 95: References - dl.lib.uom.lk

214  

E.4.0 Windward and leeward pressure values of 48 m building

E.4.1 windward pressure values on 60 m side of 48 m building

Pressure (Pa) Zone 1 Zone 2 Zone 3 Height (m)

CP3 AS 1989

AS 2002

BS EN CP3 AS 1989

AS 2002

BS EN CP3 AS 1989

AS 2002

BS EN

0  529.3 1119.7  1119.7 2070.3 2218.7 400.9 745.5 913.1  1577.1 1587.6 288.3 487.4 596.9 1028.4 1053.7

4  568.4 1119.7  1119.7 2070.3 2218.7 430.6 745.5 913.1  1577.1 1587.6 309.6 487.4 596.9 1028.4 1053.7

8  748.3 1276.0  1276.0 2070.3 2218.7 566.9 806.4 913.1  1577.1 1587.6 407.6 527.1 596.9 1028.4 1053.7

12  922.2 1461.6  1461.6 2070.3 2218.7 698.6 926.3 966.6  1577.1 1587.6 502.3 605.5 631.9 1028.4 1053.7

16  1103.0 1701.0  1646.2 2070.3 2218.7 835.6 1073.6 1073.6  1577.1 1587.6 600.8 701.8 701.8 1028.4 1053.7

20  1264.1 1928.9  1928.9 2070.3 2218.7 957.6 1171.1 1171.1  1577.1 1587.6 688.6 765.6 765.6 1028.4 1053.7

24  1348.7 2078.7  2078.7 2070.3 2218.7 1021.7 1231.7 1231.7  1577.1 1587.6 734.7 805.1 805.1 1028.4 1053.7

28  1436.1 2234.1  2234.1 2070.3 2218.7 1087.9 1293.8 1293.8  1577.1 1587.6 782.3 845.7 845.7 1028.4 1053.7

32  1506.7 2395.0  2395.0 2070.3 2218.7 1141.4 1346.7 1346.7  1577.1 1587.6 820.7 880.3 880.3 1028.4 1053.7

36  1559.1 2561.6  2561.6 2070.3 2218.7 1181.1 1406.1 1389.8  1577.1 1587.6 849.3 919.2 908.5 1028.4 1053.7

40  1612.4 2733.8  2733.8 2070.3 2218.7 1221.5 1433.6 1433.6  1577.1 1587.6 878.3 937.1 937.1 1028.4 1053.7

44  1666.6 2804.2  2804.2 2070.3 2218.7 1262.5 1466.8 1466.8  1577.1 1587.6 907.8 958.8 958.8 1028.4 1053.7

48  1721.7 2875.5  2875.5 2070.3 2218.7 1304.3 1500.5 1489.2  1577.1 1587.6 937.9 980.8 973.5 1028.4 1053.7

Page 96: References - dl.lib.uom.lk

215  

E.4.2 windward pressure values on 30 m side of 48 m building

Pressure (Pa) Zone 1 Zone 2 Zone 3 Height (m)

CP3 AS 1989

AS 2002

BS EN CP3 AS 1989

AS 2002

BS EN CP3 AS 1989

AS 2002

BS EN

0  529.3 1119.7  1119.7 1971.5 2054.8 400.9 745.5 913.1  1505.7 1405.5 288.3 487.4 596.9 982.2 969.0

4  568.4 1119.7  1119.7 1971.5 2054.8 430.6 745.5 913.1  1505.7 1405.5 309.6 487.4 596.9 982.2 969.0

8  748.3 1276.0  1276.0 1971.5 2054.8 566.9 806.4 913.1  1505.7 1405.5 407.6 527.1 596.9 982.2 969.0

12  922.2 1461.6  1461.6 1971.5 2054.8 698.6 926.3 966.6  1505.7 1405.5 502.3 605.5 631.9 982.2 969.0

16  1103.0 1701.0  1646.2 1971.5 2054.8 835.6 1073.6 1073.6  1505.7 1405.5 600.8 701.8 701.8 982.2 969.0

20  1264.1 1928.9  1928.9 1971.5 2054.8 957.6 1171.1 1171.1  1505.7 1405.5 688.6 765.6 765.6 982.2 969.0

24  1348.7 2078.7  2078.7 1971.5 2054.8 1021.7 1231.7 1231.7  1505.7 1405.5 734.7 805.1 805.1 982.2 969.0

28 1436.1 2234.1  2234.1 1971.5 2054.8 1087.9 1293.8 1293.8  1505.7 1405.5 782.3 845.7 845.7 982.2 969.0

32  1506.7 2395.0  2395.0 2144.2 2211.0 1141.4 1346.7 1346.7  1633.4 1512.3 820.7 880.3 880.3 1065.1 1042.7

36  1559.1 2561.6  2561.6 2144.2 2211.0 1181.1 1406.1 1389.8  1633.4 1512.3 849.3 919.2 908.5 1065.1 1042.7

40 1612.4 2733.8  2733.8 2144.2 2211.0 1221.5 1433.6 1433.6  1633.4 1512.3 878.3 937.1 937.1 1065.1 1042.7

44  1666.6 2804.2  2804.2 2144.2 2211.0 1262.5 1466.8 1466.8  1633.4 1512.3 907.8 958.8 958.8 1065.1 1042.7

48  1721.7 2875.5  2875.5 2144.2 2211.0 1304.3 1500.5 1489.2  1633.4 1512.3 937.9 980.8 973.5 1065.1 1042.7

Page 97: References - dl.lib.uom.lk

216  

E.4.3 leeward pressure values on 60 m side of 48 m building

Pressure (Pa) Zone 1 Zone 2 Zone 3 Height (m)

CP3 AS 1989

AS 2002

BS EN CP3 AS 1989

AS 2002

BS EN CP3 AS 1989

AS 2002

BS EN

0  -172.2 -862.7 -863.0 -54.5 -338.0 -130.4 -450.1 -447.0 -41.6 -265.3 -85.3 -294.3 -292.1 -27.1 -163.1

4  -172.2 -862.7 -863.0 -54.5 -338.0 -130.4 -450.1 -447.0 -41.6 -265.3 -85.3 -294.3 -292.0 -27.1 -163.1

8  -172.2 -862.7 -863.0 -54.5 -338.0 -130.4 -450.1 -447.0 -41.6 -265.3 -85.3 -294.3 -292.0 -27.1 -163.1

12  -172.2 -862.7 -863.0 -54.5 -338.0 -130.4 -450.1 -447.0 -41.6 -265.3 -85.3 -294.3 -292.0 -27.1 -163.1

16  -172.2 -862.7 -863.0 -54.5 -338.0 -130.4 -450.1 -447.0 -41.6 -265.3 -85.3 -294.3 -292.0 -27.1 -163.1

20  -172.2 -862.7 -863.0 -54.5 -338.0 -130.4 -450.1 -447.0 -41.6 -265.3 -85.3 -294.3 -292.0 -27.1 -163.1

24  -172.2 -862.7 -863.0 -54.5 -338.0 -130.4 -450.1 -447.0 -41.6 -265.3 -85.3 -294.3 -292.0 -27.1 -163.1

28 -172.2 -862.7 -863.0 -54.5 -338.0 -130.4 -450.1 -447.0 -41.6 -265.3 -85.3 -294.3 -292.0 -27.1 -163.1

32  -172.2 -862.7 -863.0 -54.5 -338.0 -130.4 -450.1 -447.0 -41.6 -265.3 -85.3 -294.3 -292.0 -27.1 -163.1

36  -172.2 -862.7 -863.0 -54.5 -338.0 -130.4 -450.1 -447.0 -41.6 -265.3 -85.3 -294.3 -292.0 -27.1 -163.1

40  -172.2 -862.7 -863.0 -54.5 -338.0 -130.4 -450.1 -447.0 -41.6 -265.3 -85.3 -294.3 -292.0 -27.1 -163.1

44  -172.2 -862.7 -863.0 -54.5 -338.0 -130.4 -450.1 -447.0 -41.6 -265.3 -85.3 -294.3 -292.0 -27.1 -163.1

48  -172.2 -862.7 -863.0 -54.5 -338.0 -130.4 -450.1 -447.0 -41.6 -265.3 -85.3 -294.3 -292.0 -27.1 -163.1

Page 98: References - dl.lib.uom.lk

217  

E.4.4 leeward pressure values on 30 m side of 48 m building

Pressure (Pa)

Zone 1 Zone 2 Zone 3

Height (m)

CP3 AS 1989 AS 2002 BS EN CP3 AS 1989 AS 2002

BS EN CP3 AS 1989

AS 2002

BS EN

0  ‐172.2  ‐290.0  ‐288.0  ‐60.3  ‐201.5  ‐130.4  ‐150.0  ‐148.9  ‐45.9  ‐159.1  ‐85.3  ‐100.0  ‐97.4  ‐30.0  ‐98.4 

4  ‐172.2  ‐290.0  ‐288.0  ‐60.3  ‐201.5  ‐130.4  ‐150.0  ‐148.9  ‐45.9  ‐159.1  ‐85.3  ‐100.0  ‐97.3  ‐30.0  ‐98.4 

8  ‐172.2  ‐290.0  ‐288.0  ‐60.3  ‐201.5  ‐130.4  ‐150.0  ‐148.9  ‐45.9  ‐159.1  ‐85.3  ‐100.0  ‐97.3  ‐30.0  ‐98.4 

12 ‐172.2 ‐290.0  ‐288.0 ‐60.3 ‐201.5 ‐130.4 ‐150.0 ‐148.9  ‐45.9 ‐159.1 ‐85.3 ‐100.0 ‐97.3 ‐30.0 ‐98.4

16  ‐172.2  ‐290.0  ‐288.0  ‐60.3  ‐201.5  ‐130.4  ‐150.0  ‐148.9  ‐45.9  ‐159.1  ‐85.3  ‐100.0  ‐97.3  ‐30.0  ‐98.4 

20  ‐172.2  ‐290.0  ‐288.0  ‐60.3  ‐201.5  ‐130.4  ‐150.0  ‐148.9  ‐45.9  ‐159.1  ‐85.3  ‐100.0  ‐97.3  ‐30.0  ‐98.4 

24  ‐172.2  ‐290.0  ‐288.0  ‐60.3  ‐201.5  ‐130.4  ‐150.0  ‐148.9  ‐45.9  ‐159.1  ‐85.3  ‐100.0  ‐97.3  ‐30.0  ‐98.4 

28 ‐172.2 ‐290.0  ‐288.0 ‐60.3 ‐201.5 ‐130.4 ‐150.0 ‐148.9  ‐45.9 ‐159.1 ‐85.3 ‐100.0 ‐97.3 ‐30.0 ‐98.4

32  ‐172.2  ‐290.0  ‐288.0  ‐60.3  ‐201.5  ‐130.4  ‐150.0  ‐148.9  ‐45.9  ‐159.1  ‐85.3  ‐100.0  ‐97.3  ‐30.0  ‐98.4 

36  ‐172.2  ‐290.0  ‐288.0  ‐60.3  ‐201.5  ‐130.4  ‐150.0  ‐148.9  ‐45.9  ‐159.1  ‐85.3  ‐100.0  ‐97.3  ‐29.9  ‐98.4 

40  ‐172.2  ‐290.0  ‐288.0  ‐60.3  ‐201.5  ‐130.4  ‐150.0  ‐148.9  ‐45.9  ‐159.1  ‐85.3  ‐100.0  ‐97.3  ‐29.9  ‐98.4 

44  ‐172.2  ‐290.0  ‐288.0  ‐60.3  ‐201.5  ‐130.4  ‐150.0  ‐148.9  ‐45.9  ‐159.1  ‐85.3  ‐100.0  ‐97.3  ‐29.9  ‐98.4 

48 ‐172.2 ‐290.0  ‐288.0 ‐60.3 ‐201.5 ‐130.4 ‐150.0 ‐148.9  ‐45.9 ‐159.1 ‐85.3 ‐100.0 ‐97.3 ‐29.9 ‐98.4

Page 99: References - dl.lib.uom.lk

218  

E.4.5 windward pressure values on 46 m side of 183 m building

Pressure (Pa)

Zone 1 Zone 2 Zone 3

Height (m)

CP3 AS 1989 AS 2002 BS CP3 AS 1989 AS 2002 BS CP3 AS 1989 AS 2002 BS

0 286.4 742.5 1062.6 1308.6 200.5 814.4 1206.4 1881.6 131.0 315.5 547.9 626.6

18 639.7 1025.1 1315.2 1308.6 447.8 919.6 1206.4 1881.6 292.7 400.2 547.9 626.6

36 840.1 1936.6 2082.8 1308.6 588.1 1258.2 1497.1 1881.6 384.4 673.0 767.0 626.6

54 965.7 2751.4 2678.0 1368.9 676.0 1448.6 1654.1 1921.9 441.9 826.3 885.3 652.9

72 1031.8 3408.2 2893.0 1416.0 722.3 1590.0 1747.1 1954.2 472.2 940.2 955.4 674.1

90 1094.0 4030.8 3080.1 1464.6 765.8 1714.1 1827.0 1985.1 500.6 1040.2 1015.6 694.1

108 1141.3 4603.4 3245.0 1476.2 799.0 1821.0 1894.6 1993.6 522.3 1126.3 1066.5 699.6

126 1179.1 4640.5 3254.3 1496.3 825.4 1908.0 1941.4 2008.1 539.5 1196.4 1101.8 709.1

144 1217.4 4640.5 3254.3 1522.0 852.2 1997.6 1986.5 2026.8 557.1 1268.6 1135.8 721.4

162 1256.4 4640.5 3254.3 1522.0 879.5 2081.4 2029.7 2026.8 574.9 1336.0 1168.3 721.4

183 1300.4 4640.5 3254.3 1522.0 910.3 2164.4 2401.1 2027.2 595.0 1394.7 1191.6 721.4

Page 100: References - dl.lib.uom.lk

219  

E.4.6 windward pressure values on 30 m side of 183 m building

Pressure (Pa)

Zone 1 Zone 2 Zone 3

Height (m)

CP3 AS 1989 AS 2002 BS EN CP3 AS 1989 AS 2002

BS EN CP3 AS 1989

AS 2002

BS EN

0 343.6 754.3 1076.1 1298.0 2084.9 240.6 496.0 1213.8 952.7 1709.9 131.0  319.1  552.7  621.5  1033.4 

4 767.6 1041.5 1331.8 1298.0 2084.9 537.3 629.3 1213.8 952.7 1709.9 292.7  404.8  552.7  621.5  1033.4 

8 1008.1 1967.5 2109.1 1318.4 2225.1 705.7 1058.1 1556.2 967.7 1824.9 384.4  680.7  773.7  631.4  1102.9 

12 1158.9 2795.3 2711.9 1371.1 2322.7 811.2 1299.3 1741.1 1003.5 1904.8 441.9 835.8 893.0 654.6 1151.2

16 1238.2 3462.6 2929.6 1416.0 2383.6 866.8 1478.3 1850.8 1033.1 1954.8 472.2  951.0  963.7  674.0  1181.4 

20 1312.8 4095.2 3119.0 1462.8 2420.2 919.0 1635.5 1944.8 1062.7 1984.8 500.6  1052.1  1024.4  693.3  1199.6 

24 1369.6 4677.0 3286.1 1482.1 2462.9 958.7 1770.9 2024.5 1076.7 2019.8 522.3  1139.3  1075.8  702.4  1220.7 

28 1414.9 4714.6 3295.5 1490.8 2487.3 990.4 1881.1 2079.6 1083.1 2039.8 539.5 1210.1 1111.4 706.6 1232.8

32 1460.9 4714.6 3295.5 1523.8 2517.7 1022.6 1994.6 2132.7 1095.6 2064.8 557.1  1283.2  1145.7  714.7  1247.9 

36 1507.6 4714.6 3295.5 1523.8 2566.5 1055.4 2100.7 2183.6 1107.0 2104.8 574.9  1351.4  1178.5  722.2  1272.1 

40 1560.4 4714.6 3295.5 1523.8 2566.5 1092.3 2193.0 2219.9 1107.0 2104.8 714.0  1410.8  1202.0  722.2  1272.1 

44 343.6 754.3 1076.1 1298.0 2084.9 240.6 496.0 1213.8 952.7 1709.9 131.0  319.1  552.7  621.5  1033.4 

48 767.6 1041.5 1331.8 1298.0 2084.9 537.3 629.3 1213.8 952.7 1709.9 292.7 404.8 552.7 621.5 1033.4

Page 101: References - dl.lib.uom.lk

220  

E.4.7 leeward pressure values on 46 m side of 183 m building

Pressure (Pa)

Zone 1 Zone 2 Zone 3

Height (m)

CP3 AS 1989 AS 2002 BS CP3 AS 1989 AS 2002 BS CP3 AS 1989 AS 2002 BS

0 -1560.4 -1392.2 -976.3 -1268.3 -1092.33 -660.727 -559.26 -921.099 -714.0 -425.8 -361.0 -601.1

18 -1560.4 -1392.2 -976.3 -1268.3 -1092.33 -660.73 -559.26 -921.099 -714.0 -425.8 -361.0 -601.1

36 -1560.4 -1392.2 -976.3 -1268.3 -1092.33 -660.73 -559.26 -921.099 -714.0 -425.8 -361.0 -601.1

54 -1560.4 -1392.2 -976.3 -1268.3 -1092.33 -660.73 -559.26 -921.099 -714.0 -425.8 -361.0 -601.1

72 -1560.4 -1392.2 -976.3 -1268.3 -1092.33 -660.73 -559.26 -921.099 -714.0 -425.8 -361.0 -601.1

90 -1560.4 -1392.2 -976.3 -1268.3 -1092.33 -660.73 -559.26 -921.099 -714.0 -425.8 -361.0 -601.1

108 -1560.4 -1392.2 -976.3 -1268.3 -1092.33 -660.73 -559.26 -921.099 -714.0 -425.8 -361.0 -601.1

126 -1560.4 -1392.2 -976.3 -1268.3 -1092.33 -660.73 -559.26 -921.099 -714.0 -425.8 -361.0 -601.1

144 -1560.4 -1392.2 -976.3 -1268.3 -1092.33 -660.73 -559.26 -921.102 -714.0 -425.8 -361.0 -601.1

162 -1560.4 -1392.2 -976.3 -1268.3 -1092.33 -660.73 -559.26 -921.102 -714.0 -425.8 -361.0 -601.1

183 -1560.4 -1392.2 -976.3 -1268.3 -1092.33 -660.74 -559.26 -921.447 -714.0 -425.8 -361.0 -601.1

Page 102: References - dl.lib.uom.lk

221  

E.4.7 leeward pressure values on 30 m side of 183 m building

Pressure (Pa)

Zone 1 Zone 2 Zone 3

Height (m)

CP3 AS 1989

AS 2002

BS EN CP3 AS 1989

AS 2002

BS EN CP3 AS 1989

AS 2002

BS EN

0 -780.2 -895.8 -592.6 -1269.8 -640.3 -546.2 -424.0 -357.4 -922.5 -669.8 -357.0 -272.8 -230.6 -601.8 -391.7

4 -780.2 -895.8 -592.6 -1269.8 -640.3 -546.2 -424.0 -357.4 -922.5 -669.8 -357.0 -272.8 -230.6 -601.8 -391.7

8 -780.2 -895.8 -592.6 -1269.8 -640.3 -546.2 -424.0 -357.4 -922.5 -669.8 -357.0 -272.8 -230.6 -601.8 -391.7

12 -780.2 -895.8 -592.6 -1269.8 -640.3 -546.2 -424.0 -357.4 -922.5 -669.8 -357.0 -272.8 -230.6 -601.8 -391.7

16 -780.2 -895.8 -592.6 -1269.8 -640.3 -546.2 -424.0 -357.4 -922.5 -669.8 -357.0 -272.8 -230.6 -601.8 -391.7

20 -780.2 -895.8 -592.6 -1269.8 -640.3 -546.2 -424.0 -357.4 -922.5 -669.8 -357.0 -272.8 -230.6 -601.8 -391.7

24 -780.2 -895.8 -592.6 -1269.8 -640.3 -546.2 -424.0 -357.4 -922.5 -669.8 -357.0 -272.8 -230.6 -601.8 -391.7

28 -780.2 -895.8 -592.6 -1269.8 -640.3 -546.2 -424.0 -357.4 -922.5 -669.8 -357.0 -272.8 -230.6 -601.8 -391.7

32 -780.2 -895.8 -592.6 -1269.8 -640.3 -546.2 -424.0 -357.4 -922.5 -669.8 -357.0 -272.8 -230.6 -601.8 -391.7

36 -780.2 -895.8 -592.6 -1269.8 -640.3 -546.2 -424.0 -357.4 -922.5 -669.8 -357.0 -272.8 -230.6 -601.8 -391.7

40 -780.2 -895.8 -592.6 -1269.8 -640.3 -546.2 -424.0 -357.4 -922.5 -669.8 -357.0 -272.8 -230.6 -601.8 -391.7

44 -780.2 -895.8 -592.6 -1269.8 -640.3 -546.2 -424.0 -357.4 -922.5 -669.8 -357.0 -272.8 -230.6 -601.8 -391.7

48 -780.2 -895.8 -592.6 -1269.8 -640.3 -546.2 -424.0 -357.4 -922.5 -669.8 -357.0 -272.8 -230.6 -601.8 -391.7

Page 103: References - dl.lib.uom.lk

222  

E.5.0 Results of maximum forces obtained for different load combination for 48 m building

E.5.1 Load combination 1.2G+1.2Q+1.2W (wind flow normal to 60 m side)

Zone 1 Zone 2 Zone 3

CP3 BS EN AS 1989

AS 2002

CP3 BS EN AS 1989

AS 2002

CP3 BS EN AS 1989

AS 2002

Col

umn

Axial force (kN) 6152 6152 6152 6154 6154 6152 6152 6152 6152 6152 6152 6152 6152 6152 6152 Bending moment (kNm) 111 108 111 122 122 107 106 108 110 110 104 103 104 106 106 Shear force (kN) 260 253 260 284 284 250 248 252 257 257 243 241 244 247 247

Bea

m

Shear force (kN) 158 159 164 182 182 157 156 158 161 161 152 152 153 155 155 Bending moment (kNm) 283 278 283 337 334 266 262 268 276 276 255 253 257 261 261

E.5.2 Load combination 1.2G+1.2Q+1.2W (wind flow normal to 30 m side)

Zone 1 Zone 2 Zone 3

CP3 BS EN AS 1989

AS 2002

CP3 BS EN AS 1989

AS 2002

CP3 BS EN AS 1989

AS 2002

Col

umn

Axial force (kN) 6151 6151 6151 6151 6151 6151 6151 6151 6151 6151 6151 6151 6151 6151 6151 Bending moment (kNm) 98 98 98 98 98 98 98 8 98 98 98 98 98 98 98 Shear force (kN) 228 228 228 228 228 229 228 228 228 228 228 228 228 228 228

Bea

m

Shear force (kN) 156 156 156 164 164 149 155 156 156 157 154 154 154 154 154 Bending moment (kNm) 250 248 249 269 269 247 246 247 247 247 244 243 252 244 244

Page 104: References - dl.lib.uom.lk

223  

E.5.3 Load combination 1.0G+1.4W (wind flow normal to 60 m side)

Zone 1 Zone 2 Zone 3

CP3 BS EN AS 1989

AS 2002

CP3 BS EN AS 1989

AS 2002

CP3 BS EN AS 1989

AS 2002

Col

umn

Axial force (kN) 4057 4057 4057 4059 4059 4057 4057 4057 4057 4057 4056 4057 4057 4057 4057 Bending moment (kNm) 80 75 80 120 120 73 71 74 78 78 69 68 69 71 71 Shear force (kN) 185 174 185 241 241 171 167 173 180 179 161 159 162 166 166

Bea

m

Shear force (kN) 119 117 120 143 143 110 108 112 116 116 102 101 103 106 106 Bending moment (kNm) 223 220 225 294 294 194 188 202 214 214 175 170 177 184 184

E.5.4 Load combination 1.0G+1.4W (wind flow normal to 30 m side)

Zone 1 Zone 2 Zone 3

CP3 BS EN AS 1989

AS 2002

CP3 BS EN AS 1989

AS 2002

CP3 BS EN AS 1989

AS 2002

Col

umn

Axial force (kN) 4056 4055 4056 4056 4056 4056 4056 4056 4056 4056 4056 4056 4056 4056 4056 Bending moment (kNm) 64 64 64 66 66 62 62 64 64 64 61 61 62 62 62 Shear force (kN) 144 144 145 148 148 144 144 145 146 146 144 144 144 145 145

Bea

m

Shear force (kN) 108 107 108 120 121 104 103 105 105 105 100 99 100 100 100 Bending moment (kNm) 179 176 179 210 210 167 165 170 170 170 157 156 157 157 157

Page 105: References - dl.lib.uom.lk

224  

E.5.5 Load combination 1.4G+1.4W (wind flow normal to 60 m side)

Zone 1 Zone 2 Zone 3

CP3 BS EN AS 1989

AS 2002

CP3 BS EN AS 1989

AS 2002

CP3 BS EN AS 1989

AS 2002

Col

umn

Axial force (kN) 5679  5678  5680  5681  5681  5679  5679  5679  5680  5679  5679  5679  5679  5679  5679 Bending moment (kNm) 99  98  102  122  123  96  96  98  100  100  93  92  94  95  95 Shear force (kN) 233  231  239  277  276  225  224  229  235  235  217  216  219  223  223 

Bea

m

Shear force (kN) 149  147  154  177  177  142  142  147  151  151  138  138  139  141  141 Bending moment (kNm) 260  255  284  342  342  244  243  253  264  264  229  228  233  240  240 

E.5.6 Load combination 1.4G+1.4W (wind flow normal to 30 m side)

Zone 1 Zone 2 Zone 3

CP3 BS EN AS 1989

AS 2002

CP3 BS EN AS 1989

AS 2002

CP3 BS EN AS 1989

AS 2002

Col

umn

Axial force (kN) 5678  5678  5678  5678  5678  5678  5678  5678  5678  5678  5678  5678  5678  5678  5679 Bending moment (kNm) 88  88 88 91 90 87 87 88  88 87 87 87 87 90 90Shear force (kN) 201  201  202  205  202  201  201  202  202  202  201  201  202  205  205 

Bea

m

Shear force (kN) 140  142  143  157  154  139  139  140  141  141  138  138  139  141  141 Bending moment (kNm) 220  226  229  259  257  218  219  222  223  222  215  216  218  218  218 

Page 106: References - dl.lib.uom.lk

225  

E.5.7 wind load only (wind flow normal to 60 m side)

Zone 1 Zone 2 Zone 3

CP3 BS EN AS 1989

AS 2002

CP3 BS EN AS 1989

AS 2002

CP3 BS EN AS 1989

AS 2002

Col

umn

Axial force (kN) 283 235 296 482 481 201 187 228 260 260 131 119 147 170 170 Bending moment (kNm) 48 40 51 82 82 34 32 39 44 44 22 20 25 29 29 Shear force (kN) 97 80 101 164 164 61 58 78 89 89 45 41 50 58 58

Bea

m

Shear force (kN) 35 29 37 60 60 25 23 28 32 32 16 15 18 21 21 Bending moment (kNm) 94 78 98 159 159 67 62 75 86 86 44 40 49 57 56

E.5.8 wind load only (wind flow normal to 30 m side)

Zone 1 Zone 2 Zone 3

CP3 BS EN AS 1989

AS 2002

CP3 BS EN AS 1989

AS 2002

CP3 BS EN AS 1989

AS 2002

Col

umn

Axial force (kN) 201 187 228 260 260 141 134 142 215 215 71 67 75 77 77 Bending moment (kNm) 41 40 43 63 63 34 32 39 44 44 21 20 23 23 23 Shear force (kN) 84 84 86 127 128 61 58 78 89 89 42 40 48 47 47

Bea

m

Shear force (kN) 39 38 41 59 59 30 30 34 33 33 20 19 22 22 22 Bending moment (kNm) 74 72 79 113 113 57 59 64 63 63 37 37 40 41 41

Page 107: References - dl.lib.uom.lk

226  

E.6.0 Results of maximum forces obtained for different load combination for 183 m building

E.6.1 Load combination 1.2G+1.2Q+1.2W (wind flow normal to 46 m side)

Zone 1 Zone 2 Zone 3

CP3 BS EN AS 1989

AS 2002

CP3 BS EN AS 1989

AS 2002

CP3 BS EN AS 1989

AS 2002

Col

umn

Axial force (kN) 26170 26040 27984 29150 28049 24740 24969 25665 25804 25362 23841 23978 24229 24399 24110 Bending moment (kNm) 1785 1779 1808 1830 1812 1869 1847 1801 1796 1823 1927 1913 1896 1892 1906 Shear force (kN) 921 916 1062 1251 1068 951 940 920 918 930 976 969 962 960 966

Bea

m

Shear force (kN) 1712 1700 1774 1826 1812 1657 1660 1687 1558 1574 1630 1622 1632 1640 1630 Bending moment (kNm) 637 628 889 942 890 824 826 841 847 836 808 806 810 815 810

E.6.2 Load combination 1.2G+1.2Q+1.2W (wind flow normal to 30 m side)

Zone 1 Zone 2 Zone 3

CP3 BS EN AS 1989

AS 2002

CP3 BS EN AS 1989

AS 2002

CP3 BS EN AS 1989

AS 2002

Col

umn

Axial force (kN) 25186 25113 25432 24506 25993 24072 24484 25432 24748 24557 23571 23906 24187 24070 23943 Bending moment (kNm) 1895 1902 1891 1881 1885 1962 1943 1909 1926 1938 1992 1976 1960 1965 1973 Shear force (kN) 1106 1113 1265 1501 1494 974 962 1111 950 958 994 984 973 976 982

Bea

m

Shear force (kN) 1823 1818 1835 1884 1868 1762 1783 1816 1799 1788 1733 1751 1766 1761 1754 Bending moment (kNm) 782 768 806 952 895 886 897 915 905 900 871 880 889 886 882

Page 108: References - dl.lib.uom.lk

227  

E.6.3 Load combination 1.0G+1.4W (wind flow normal to 46 m side)

Zone 1 Zone 2 Zone 3

CP3 BS EN AS 1989

AS 2002

CP3 BS EN AS 1989

AS 2002

CP3 BS EN AS 1989

AS 2002

Col

umn

Axial force (kN) 20108 19557 22226 23570 22301 18483 18729 19520 19688 19182 17472 17611 17895 18030 17768 Bending moment (kNm) 1234 1227 1263 1289 1266 1207 1207 1220 1227 1217 1265 1248 1229 1224 1240 Shear force (kN) 839 827 1238 1250 1244 624 624 747 764 675 646 637 629 627 634

Bea

m

Shear force (kN) 1220 1206 1292 1352 1295 1115 1158 1190 1203 1180 1060 1115 1126 1136 1124 Bending moment (kNm) 631 620 848 992 855 578 580 597 605 592 556 556 562 567 561

E.6.4 Load combination 1.0G+1.4W (wind flow normal to 30 m side)

Zone 1 Zone 2 Zone 3

CP3 BS EN AS 1989

AS 2002

CP3 BS EN AS 1989

AS 2002

CP3 BS EN AS 1989

AS 2002

Col

umn

Axial force (kN) 18796 18713 19086 18027 19739 17499 17980 18697 18288 18066 16913 17305 17632 17946 17348 Bending moment (kNm) 1301 1295 1316 1348 1351 1305 1284 1295 1275 1278 1340 1322 1303 1309 1318 Shear force (kN) 1281 1288 1466 1786 1733 683 941 1076 1028 1017 666 654 777 669 652

Bea

m

Shear force (kN) 1291 1285 1306 1366 1344 1219 1245 1284 1263 1250 1186 1207 1225 1219 1210 Bending moment (kNm) 716 709 769 889 873 509 591 647 632 601 596 607 617 613 608

Page 109: References - dl.lib.uom.lk

228  

E.6.5 Load combination 1.4G+1.4W (wind flow normal to 46 m side)

Zone 1 Zone 2 Zone 3

CP3 BS EN AS 1989

AS 2002

CP3 BS EN AS 1989

AS 2002

CP3 BS EN AS 1989

AS 2002

Col

umn

Axial force (kN) 26308 26143 28378 30739 30739 24689 24935 25720 25894 25387 23773 23817 24100 24235 23973 Bending moment (kNm) 1697 1689 1724 1775 1775 1754 1728 1682 1689 1700 1813 1805 1786 1781 1797 Shear force (kN) 879 874 1236 1620 1620 896 884 868 873 872 922 918 909 907 914

Bea

m

Shear force (kN) 1633 1619 1532 1807 1807 1568 1572 1603 1616 1594 1528 1528 1539 1549 1537 Bending moment (kNm) 818 810 911 1140 1140 782 784 801 808 796 760 760 766 772 765

E.6.6 Load combination 1.4G+1.4W (wind flow normal to 30 m side)

Zone 1 Zone 2 Zone 3

CP3 BS EN AS 1989

AS 2002

CP3 BS EN AS 1989

AS 2002

CP3 BS EN AS 1989

AS 2002

Col

umn

Axial force (kN) 25212 25129 25502 27478 27478 23914 24935 25113 24703 24482 23361 23721 24048 23912 23764 Bending moment (kNm) 1784 1792 1780 1889 1889 1863 1841 1802 1820 1834 1897 1879 1861 1865 1875 Shear force (kN) 1286 1294 1472 2263 2264 947 958 1293 1034 957 924 935 922 925 932

Bea

m

Shear force (kN) 1746 1740 1761 1878 1877 1674 1700 1739 1718 1705 1643 1663 1680 1674 1665 Bending moment (kNm) 859 872 880 1181 1182 842 855 875 867 858 825 836 845 842 837

Page 110: References - dl.lib.uom.lk

229  

E.6.7 wind load only (wind flow normal to 46 m side)

Zone 1 Zone 2 Zone 3

CP3 BS EN AS 1989

AS 2002

CP3 BS EN AS 1989

AS 2002

CP3 BS EN AS 1989

AS 2002

Col

umn

Axial force (kN) 3955 3969 5876 7978 5955 2769 2877 3553 3722 3267 1824 1876 2114 2244 2008 Bending moment (kNm) 217 221 324 432 326 152 160 196 200 177 98 104 117 120 108 Shear force (kN) 596 604 888 1161 892 417 438 536 549 485 275 286 319 331 298

Bea

m

Shear force (kN) 233 293 330 555 406 163 212 278 237 213 98 134 166 153 137 Bending moment (kNm) 337 425 477 801 587 237 307 415 354 318 142 200 249 229 206

E.6.8 wind load only (wind flow normal to 30 m side)

Zone 1 Zone 2 Zone 3

CP3 BS EN AS 1989

AS 2002

CP3 BS EN AS 1989

AS 2002

CP3 BS EN AS 1989

AS 2002

Col

umn

Axial force (kN) 2176 2737 3078 5082 3741 1523 1981 2684 2275 2049 916 1292 1609 1474 1323 Bending moment (kNm) 234 293 330 554 380 164 212 288 246 221 92 139 173 159 115 Shear force (kN) 721 932 1038 1604 1229 505 675 910 725 670 300 441 545 468 432

Bea

m

Shear force (kN) 233 293 330 555 406 163 212 278 237 213 98 134 166 153 137 Bending moment (kNm) 337 425 477 801 587 237 307 415 354 318 142 200 249 229 206

Page 111: References - dl.lib.uom.lk

230  

E.7.0 Base moments and base shear values for 48 m height building

E 7.1 Base moments and base shear value (wind flow perpendicular to 60 m side)

E 7.2 Base moments and base shear value (wind flow perpendicular to 30 m side)

Zone 1 Zone 2 Zone 3

CP3 BS EN AS 1989

AS 2002

CP3 BS EN AS 1989

AS 2002

CP3 BS EN AS 1989

AS 2002

Base moment (MNm) 121.4 121.9 154.4 244.6 244.4 91.9 97.2 118.8 133.2 133.2 60.1 62.2 76.6 87.1 87.0 Base shear (kN)

4080.8 4687.6 5937.1 8525.1 8512.1 3091.2 3737.9 4568.8 4752.9 4812.8 2020.8 2390.8 2947.7 3107.3 3145.5

Zone 1 Zone 2 Zone 3

CP3 BS EN AS 1989

AS 2002

CP3 BS EN AS 1989

AS 2002

CP3 BS EN AS 1989

AS 2002

Base moment (MNm) 49.6 63.2 67.6 100.5 100.4 37.6 49.5 56.3 55.3 55.4 24.6 31.7 35.6 36.3 36.2 Base shear (kN) 1669.8 2354.2 2557.3 3428.2 3421.3 1264.6 1851.1 2131.0 1944.2 1977.2 826.8 1186.6 1344.7 1274.0 1292.4

Page 112: References - dl.lib.uom.lk

231  

E.8.0 Base moments and base shear values for 183 m height building

E 8.1 Base moments and base shear value (wind flow perpendicular to 46 m side)

E 8.2 Base moments and base shear value (wind flow perpendicular to 30 m side)

Zone 1 Zone 2 Zone 3

CP3 BS EN AS 1989

AS 2002

CP3 BS EN AS 1989

AS 2002

CP3 BS EN AS 1989

AS 2002

Base moment (MNm) 2215.9 2152.8 3220.4 4296.7 3243.4 1478.8 1554.8 1902.0 1978.4 1734.0 966.7 1007.9 1131.9 1358.6 1120.0 Base shear (kN) 21625.9 22329.1 28887.6 40556.2 32218.2 15502.9 16597.2 20157.4 19856.4 17566.8 10134.1 10829.3 11995.7 13871.4 11345.2

Zone 1 Zone 2 Zone 3

CP3 BS EN AS 1989

AS 2002

CP3 BS EN AS 1989

AS 2002

CP3 BS EN AS 1989

AS 2002

Base moment (MNm) 1103.5 1387.4 1574.4 2626.0 1938.7 772.5 1007.9 1363.6 1159.9 1037.8 463.8 657.4 817.6 745.6 669.7 Base shear (kN) 11520.9 16276.6 18197.9 24511.2 19101.5 7934.9 10828.5 14512.0 11187.2 11659.1 4724.1 7064.2 8698.6 7196.8 6731.5

Page 113: References - dl.lib.uom.lk

232  

E9.0 maximum shell stress in 48 m height building

E 9.1 Maximum shell stress in shear wall (wind flow perpendicular to 60 m side)

E 9.2 Maximum shell stress in shear wall (wind flow perpendicular to 30 m side)

E10.0 maximum shell stress in 183 m height building

E 10.1 Maximum shell stress in shear wall (wind flow perpendicular to 46 m side)

E 10.2 Maximum shell stress in shear wall (wind flow perpendicular to 30 m side)

Zone 1 Zone 2 Zone 3

CP3 BS EN AS 1989

AS 2002

CP3 BS EN AS 1989

AS 2002

CP3 BS EN AS 1989

AS 2002

Shell stress (N/m2) 5.66 6.08 7.36 12.01 11.17 4.03 4.61 5.85 6.45 6.5 2.81 2.98 3.62 4.19 4.14

Zone 1 Zone 2 Zone 3

CP3 BS EN AS 1989

AS 2002

CP3 BS EN AS 1989

AS 2002

CP3 BS EN AS 1989

AS 2002

Shell stress (N/m2) 4.11 5.5 5.81 8.2 8.24 3.1 4.42 4.86 4.51 4.75 1.89 2.63 2.81 2.92 3.09

Zone 1 Zone 2 Zone 3

CP3 BS EN AS 1989

AS 2002

CP3 BS EN AS 1989

AS 2002

CP3 BS EN AS 1989

AS 2002

Shell stress (N/m2) 22.6 23.6 28.1 38.7 31.5 17.6 18.0 20.3 20.4 19.2 14.4 14.7 15.5 15.7 14.9

Zone 1 Zone 2 Zone 3

CP3 BS EN AS 1989

AS 2002

CP3 BS EN AS 1989

AS 2002

CP3 BS EN AS 1989

AS 2002

Shell stress (N/m2) 20.9 24.1 27.4 30.3 28.9 19.1 22.4 26.4 23.2 22.6 15.8 18.2 20.2 18.6 18.2

Page 114: References - dl.lib.uom.lk

233