history matching and rock mechanics 20 years

Upload: james

Post on 06-Jul-2018

220 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/18/2019 History Matching and Rock Mechanics 20 Years

    1/28

    HISTORY MATCHING

    &

    ROCK MECHANICS

    Øystein PettersenReservoir Mechanics 20 years anniversary 30.08.02

  • 8/18/2019 History Matching and Rock Mechanics 20 Years

    2/28

  • 8/18/2019 History Matching and Rock Mechanics 20 Years

    3/28

    Real History Matching

    Original photography

    Official photography after Trotskij had fallen into disgrace

    Now you see him -- now you don't

  • 8/18/2019 History Matching and Rock Mechanics 20 Years

    4/28

    What is History Matching?

    Standard procedure:

    From a system of equations L(u(x), a, x) = 0 with I.C. and B.C.find the solution u(x), with known parameters a.

    History matching:

    From a system of equations L(u(x), a, x) = 0 with I.C. and thesolution u(x) known, determine the boundary conditions andparameter set a.

    Normally some of the B.C.'s and (part of) a will be known.

  • 8/18/2019 History Matching and Rock Mechanics 20 Years

    5/28

    History Matching in Practice 

    u(x) will not be known as a continuous function of acontinuous space/time variable, but only at a few points in

    space at a few times. Mathematically, the solution isunknown almost everywhere.

    The achieved B.C. "solution" cannot be unique.

    In addition the known (sparse) solution u i(x i) is not always

    reliable.(standard uncertainty, allocation errors, coarse errors).

    The observed quantity may reflect a realisation of thesolution which is not possible to model, and thereforewould be wrong to honour.

    Our task is to critically utilize the provided historical data inthe best possible manner, such that the parameters wedetermine by the H.M. process are the most likely ones froma physical point of view. (Diff icult, diff icult,....)

  • 8/18/2019 History Matching and Rock Mechanics 20 Years

    6/28

    Heterogeneity: Sandstone Outcrop

  • 8/18/2019 History Matching and Rock Mechanics 20 Years

    7/28

    Idealised Heterogeneous X-Section

  • 8/18/2019 History Matching and Rock Mechanics 20 Years

    8/28

     After Upscaling to a Simulation Grid

  • 8/18/2019 History Matching and Rock Mechanics 20 Years

    9/28

    Heterogeneity Modelling (generic example Field A)

    Cum. oil produced

    Deterministiccase

    Different heterogeneity

    cases

  • 8/18/2019 History Matching and Rock Mechanics 20 Years

    10/28

    Field A History Matching:

    Region Pressure -- Best result after > 200 runs

    RFT-pressures ("certain")

    Less certain pressuremeasurements

    Simulated Region Pressure (bar)

    275

    300

    250

    1987 1988 1989 1990 1991 1992 1993 1994 1995 1996

  • 8/18/2019 History Matching and Rock Mechanics 20 Years

    11/28

    210220230240250260270275280285290295300310

    Pressure (bars)

    0,96

    0,97

    0,98

    0,99

    1

       P  o  r  e   V  o   l  u  m  e   M  u   l   t   i  p   l   i  e  r

    c f = 3E-05

    Example rock compaction curves

    (ROCK constant and Irreversible ROCKTAB)

  • 8/18/2019 History Matching and Rock Mechanics 20 Years

    12/28

    Classification of Compaction 

    Reversible elastic

    Irreversible elastic

    Pp (Pore pressure)

    Compaction byOverburden

    Decline period Changing pressure trends

    Pc (Conf. press.)

    With hysteresis

       N  o  r  m  a

       l   i  z  e   d   P  o  r  e   V  o   l  u  m  e

  • 8/18/2019 History Matching and Rock Mechanics 20 Years

    13/28

    Time-dependent compaction (creep) --

    1 cm reservoir compaction pr. year 

    Pure pressure-dependant compaction

    Time- & pressure-dep. compaction

    RFT-pressures ("certain")

    Less certain pressuremeasurements

    Simulated Region Pressure (bar)

    275

    300

    250

    1987 1988 1989 1990 1991 1992 1993 1994 1995 1996

  • 8/18/2019 History Matching and Rock Mechanics 20 Years

    14/28

    The Influence of Rock Mechanics

    By tweaking compaction curves on a per-region basis,pore volume change can be modelled to honour history

     A better approach would be to compute the changes fromthe stress-strain relations

    We should expect that compaction also influences permeabil ity,

    including permeability isotropy

    What if the soil doesn't behave like a stable soil / rock at all?

     Are Darcy's law and the flow equations still valid?

  • 8/18/2019 History Matching and Rock Mechanics 20 Years

    15/28

    0 100 200 300 400

    p' (bars)

    0

    200

    400

    600

    800

    1000

    1200

       E   (

       M   P  a   )

    0

    0,1

    0,2

    0,3

    0,4

    0,5

     

    Field A -- Weak Sandstone

    0 50 100 150 200 250

    p' (bars)

    200

    400

    600

    800

    1000

    1200

       E   (   M   P  a   )

    0

    0,1

    0,2

    0,3

    0,4

    0,5

     

    Field B -- Weak Sandstone

    0 50 100 150 200 250

    p' (bars)

    0

    200

    400

    600

    800

    1000

    1200

       E   (   M

       P  a   )

    0

    0,1

    0,2

    0,3

    0,4

    0,5

     

    Field C -- Unconsolidated Sand

    Elastic moduli

    0 50 100 150 200 250 300

    p' (bars)

    0

    100

    200

    300

    400

    500

    600

       E   (   M

       P  a   )

    0

    0,05

    0,1

    0,15

    0,2

     

    Field B -- Unconsolidated Sand

    E

     

    E

    E

     E

     

  • 8/18/2019 History Matching and Rock Mechanics 20 Years

    16/28

    Elasticity with permanent deformation (" Irreversible")

    ε

    ρ

    Loading

    Unloading

    "Ideal"

    irrev.

  • 8/18/2019 History Matching and Rock Mechanics 20 Years

    17/28

    Permeability vs stress

    Unconsolidated Sand Field A

    69 138 207 276 345 414 483 552 621

    Mean effective stress [bars]

    0

    20

    40

    60

    80

    100

       N  o  r  m  a   l   i  s  e   d  p  e

      r  m  e  a   b   i   l   i   t  y   (   %

       )

    1. load

    1. unload

    2. load

    2. unload

    Initial permeabil ity (100%): 4138 mD

  • 8/18/2019 History Matching and Rock Mechanics 20 Years

    18/28

    Permeabil ity vs stress

    Unconsolidated Sand Field B

    69 138 207 276 345 414 483 552 621

    Mean effective stress [bars]

    0

    20

    40

    60

    80

    100

       N  o  r  m  a   l   i  s  e   d  p  e

      r  m  e  a   b   i   l   i   t  y   (   %

       )

    1. load

    1. unload

    2. load

    2. unload

    Initial permeability (100%): ~1.5 D

  • 8/18/2019 History Matching and Rock Mechanics 20 Years

    19/28

    Permeability vs stress

    Unconsolidated Sand Field C

    69 138 207 276 345 414 483 552 621

    Mean effective stress [bars]

    0

    20

    40

    60

    80

    100

       N

      o  r  m  a   l   i  s  e   d  p  e

      r  m  e  a   b   i   l   i   t  y   (   %

       )

    1. load

    1. unload

    2. load

    2. unload

    Initial permeabil ity (100%): ~3 D

  • 8/18/2019 History Matching and Rock Mechanics 20 Years

    20/28

    Permeabilities from transient test analysis

    Field A

    270275280285290295300

    Reservoir pressure (perm. press. gauge)

    3 000

    3 500

    4 000

    4 500

    5 000

    5 500

    6 000

    Permeability, mD

    Production tests during 2 years

  • 8/18/2019 History Matching and Rock Mechanics 20 Years

    21/28

    Soil strength

    ρ

     A

    B

    C

    0

    C0

    Elastic Ductile Brittle

    OA: Increasing -- slightly convex AB: Increasing -- linear 

      OAB: Elastic (appr. linear)

    BC: Increasing -- concave

      Ductile: Can endure permanent

      deformation without losing

      ability to withstand load.

    CD: Decreasing

      Brittle:  Ability to withstand

      loading decreases with  increasing deformation.

      "Brittleness" : Largest slope

      angle on CD.

    (In theory a continuous processthrough CD. In practice sudden

    failure occurs at some point on

    CD: Total loss of cohesion across

    a plane.)

    ρ

    0: Yield point (transit ion elastic ductile)

      (typically B 2/3 C)

    C0: Uniaxial compressive strength

    S il t th

  • 8/18/2019 History Matching and Rock Mechanics 20 Years

    22/28

    Soil strength:

    Hysteresis and deformation

    ρ

    B

    C

    D

    P

    Q

    R

    S

    T

    U

     

    0

    OB: Perfect elastic ity  (No irreversible behaviour)

    BC: Irreversible changes occur 

      Successive loading / unloading

      by different curves. E.g. PQ

      gives a permanently set

      deformation 0.

      QR PQ, but R sti ll on BC.

    CD: Unloading curve ST often

      results in large permanent  deformation. The following load

      sequence TU meets CD on a

      lower stress level than S.

      Characteristic for brittle matr's,

      but normally hidden by failure

      near point C.

  • 8/18/2019 History Matching and Rock Mechanics 20 Years

    23/28

    Elasto-plasticity and failure

    elastic e  l a s  t

     o -  p  l

     a s  t  i c

    init ial yield surface

    current yield surface

    failure surface

    (envelope of reachable yield surfaces)

    Non-achievable

    states

    ρ-space

    Yield criterion: Specified surface inρ

    -space where failure occurs.

    In elasto-plasticity the yield surface can change with t ime, as the

    material hardens.

    Ideal plasticity: Initial yield surface = failure surface.

    Sand / soil strength (Creep)

  • 8/18/2019 History Matching and Rock Mechanics 20 Years

    24/28

    Sand / soil strength (Creep)

    Elasticity -> Plasticity -> Failure

    0200

    400600

    8001 000

    1 2001 400

    1 600

    Differential s tress (bar)

    0

    4

    8

    Static strain rate *E-8 (1/s)

    Pc = 138bar 

    Pc = 207bar 

    Pc = 276bar Pc = 345bar  

    Field A, 4343m, Pp = 1bar 

    1 500 2 000 2 500 3 000 3 500

    Differential s tress (bar)

    0

    1

    2

    3

    4

    Static strain rate *E-8 (1/s)

    Pc = 276bar Pc = 414bar 

    Field B, 4494m, Pp = 138bar 

    80 120 160 200 240

    Differential stress (bar)

    4

    8

    12

    16

    20

    Static strain rate *E-8 (1/s)

    Pc = 138bar Pc = 276bar 

    Pc = 414bar 

    Field C, 1919m, Pp = 1bar 

    0 50 100 150 200 250 300 350

    Differential stress (bar)

    0

    2

    4

    6

    8

    Static strain rate *E-8 (1/s)

    Pc = 207bar Pc = 276bar Pc = 414bar  

    Field C, 1919m, Pp = 138bar 

    Fl id fl i i f t (j i t )

  • 8/18/2019 History Matching and Rock Mechanics 20 Years

    25/28

    Fluid flow in microfractures (joints)generated by impurities

    FF

     

    Shear stress can imply

    Crushing of the smallest asperities

    Opening of the joint

    Macroscopic enhanced perm.

    in the major stress direction.

    Rotation of flow direction

    Field A Vertical elastic displacement

  • 8/18/2019 History Matching and Rock Mechanics 20 Years

    26/28

    10000 15000 20000 25000

    -0,15

    -0,1

    -0,05

    0

    DEZ01

    DEZ02

    DEZ03DEZ04

    DEZ05

    DEZ06

    DEZ07

    Field A, Vertical elastic displacement

    vs. time at top reservoir level

    Field A Vertical Elastic Displacement

  • 8/18/2019 History Matching and Rock Mechanics 20 Years

    27/28

    PARAMETER:

    DEZ07

    TYPE

    REAL

     

    -0.378989

     

    -0.294638

     

    -0.210288

     

    -0.125937

     

    -0.041586

     

    0.042764

     

    0.127115

    Field A, Vertical Elastic Displacement

    N-S section, Time 1517 days (4 yrs 2 mnths)

  • 8/18/2019 History Matching and Rock Mechanics 20 Years

    28/28

    Conclusion

     Although Newton's laws of motion are perfectlyadequate for everyday physics,

    no-one would even consider using them at the

    Planck scale, or at galaxy scale