GTM Chuong 2

Download GTM Chuong 2

Post on 22-Dec-2015

215 views

Category:

Documents

3 download

Embed Size (px)

DESCRIPTION

GTM Chuong 2

TRANSCRIPT

<ul><li><p>Chng 2 : Mch xc lp iu ha </p><p>Bi ging Gii tch Mch 2012</p><p> 2.1 Qu trnh tun hon 2.2 Qu trnh iu ha 2.3 Phng php bin phc 2.4 Gii bi ton mch dng nh phc 2.5 Quan h dng p trn cc phn t mch 2.6 Cc nh lut mch dng phc 2.7 th vect 2.8 Cng sut 2.9 H s cng sut &amp; cch hiu chnh 2.10 Phi hp tr khng</p><p>1</p></li><li><p>Tn hiu kho st : dng in i(t) , in p u(t)</p><p>Bi ging Gii tch Mch 2012 2</p><p>Tun hon : f(t) = f(t+T)</p><p>2.1 Qu trnh tun hon</p><p>Dao ng k quanst, o tr tc thi</p><p>Volt , Amper o tr hiu dng</p><p>o c</p></li><li><p>Bi ging Gii tch Mch 2012 3</p><p>Tr hiu dng</p><p>2 2</p><p>0 0</p><p>1 1( ) ( )T T</p><p>RMS RMSI i t dt U u t dtT T= = </p><p>2.1 Qu trnh tun hon</p><p>Dng in (in p) tun hon s c tr hiudng IRMS (URMS) l bng vi tr s dng (p) DCkhi cng sut tiu tn trung bnh do 2 dng in(in p) gy ra trn cng in tr R l nh nhau</p><p>Biu thc tnh tr hiu dng( RMS Root Mean Square )</p></li><li><p>Bi ging Gii tch Mch 2012 4</p><p>M t ( ) sin( )( ) sin( )</p><p>m</p><p>m</p><p>i t I tu t U t</p><p>= +</p><p>= +</p><p>2.2 Qu trnh iu ha</p><p> Dng in , in p</p><p> Im , Um : bin : tn s gc , : pha ban u</p><p>Tr hiu dng2</p><p>2</p><p>mRMS</p><p>mRMS</p><p>II</p><p>UU</p><p>=</p><p>=</p></li><li><p>Bi ging Gii tch Mch 2012 5</p><p>: pha ban u, ta c th ni u2(t) sm pha so viu1(t), hoc u1(t) chm pha so vi u2(t).</p><p>0 ta ni u1(t) v u2(t) lch pha.</p><p>=0 ta ni u1(t) v u2(t) ng pha</p><p>2.2 Qu trnh iu ha</p></li><li><p>Bi ging Ton K Thut 2012 6</p><p>1 1 1( ) ( )mu t U sin t = +</p><p>2 2 2( ) ( )mu t U sin t = +</p><p> Cng tn s. Cng dng lng gic. Cng dng bin (cc i hay hiu dng)</p><p>Ta ni u1(t) nhanh pha hn u2(t) mt gc th =1-2 (hay ta c th ni 2 chm pha hn 1 mt gc ). </p><p>Nu ta ni u2(t) nhanh pha hn u1(t) mt gc th =2-1</p><p>So snh pha hai tn hiu iu ha</p></li><li><p>Bi ging Gii tch Mch 2012 7</p><p>( ) ( )mu t U sin t = +</p><p>2.3 Phng php bin phc</p></li><li><p>Vct quay</p><p>Bi ging Gii tch Mch 2012 8</p><p>( ) ( )mu t U sin t = +</p><p>Biu din di dng vct quay</p><p>1 1 1( ) ( )mu t U sin t = +</p><p>2 2 2( ) ( )mu t U sin t = +</p><p>Biu din di dng vct quay</p></li><li><p>Bi ging Gii tch Mch 2012 9</p><p>1 1 1( ) ( )mu t U sin t = +</p><p>2 2 2( ) ( )mu t U sin t = +</p><p>1 2</p><p>1 1 2 2</p><p>( ) ( ) ( )( ) ( )m m</p><p>u t u t u tU sin t U sin t </p><p>= +</p><p>= + + +</p><p>)()( 21 tutu +Vct quay</p></li><li><p>nh phc nh phc cho tn hiu iu ha </p><p>Min t Min phc</p><p> Cc quan h</p><p>Bi ging Gii tch Mch 2012 10</p><p>( ) sin( )mf t F t = + jm mF F e F </p><p>= = </p><p>{ }1( ) Im sin( )m mf t F F t = = +{ }2 ( ) Re cos( )m mf t F F t = = +</p><p> Hiu dng phc 2RMS</p><p>FF</p><p>=</p></li><li><p>Cc tnh cht ca vct bin phc</p><p>Bi ging Gii tch Mch 2012 11</p><p>: ( ) ; ( )Cho f t F g t G </p><p>( )kf t k F</p><p>( ) ( )f t g t F G </p><p>: ( ) 3cos(2 30 ) 3 30o oVD f t t F= + = </p><p>3 ( ) 3 9 30of t F = </p><p>3 30 4 60 5 23,13o o oF G </p><p>+ = + = </p><p>( ) 4cos(2 60 ) 4 60o og t t G= = </p><p> Tnh t l</p><p> Tnh xp chng</p><p>0( ) ( ) 5cos(2 23,13 )f t g t t+ = </p></li><li><p>Bi ging Gii tch Mch 2012 12</p><p>Cc tnh cht ca vct bin phc</p><p>( )df t j Fdt</p><p>1( ) jf t dt F</p><p>( ) 6sin(2 30 ) 6cos(2 120 ) 2 6 120df t o o odt t t j F= + = + = </p><p>3 3 312 2 2 2( ) sin(2 30 ) cos(2 60 ) 60</p><p>o o ojf t dt t t F= + = = </p><p>: ( ) ; ( )Cho f t F g t G </p><p> : ( ) 3cos(2 30 ) 3 30o oVD f t t F= + = </p><p>( ) 4cos(2 60 ) 4 60o og t t G= = </p><p> Tnh o hm</p><p> Tnh tch phn</p></li><li><p>2.4 Gii bi ton mch dng nh phc</p><p>Bi ging Gii tch Mch 2012 13</p><p>( )R L Cu u u e t+ + =1 ( )didt CRi L idt e t+ + =</p><p>( ) jme t E E e</p><p> =</p><p>1j CR I j L I I E</p><p>+ + =</p><p>1( )m</p><p>C</p><p>EIR j L </p><p> =</p><p>+ </p><p>1( )CR j L j I E </p><p> + =</p><p>e(t) = 10 cos 2t (V)R = 4; L = 2H; C = 0,5F</p><p>01</p><p>2.0,5</p><p>10 0 10 2 36,874 (2.2 ) 4 3</p><p>o</p><p>Ij j</p><p> = = = </p><p>+ +</p><p>Vay : i(t) = 2 cos (2t - 36,87o) A</p><p>R L</p><p>Ce(t)</p><p>uR uLuC</p><p>i(t) Min t</p><p>Min phcGii pt vi phn tm i(t)</p><p>Pt i s</p></li><li><p>Phng php vct bin phc</p><p>Bi ging Gii tch Mch 2012 14</p><p>Min thi gian Min phc</p><p>PP ny do Charles Proteur Steinmetz tm ra vo nm 1897 .</p><p>Mch xc lp iu ha</p><p>Mch phc</p><p>H phng trnh vi tch phn</p><p>H phng trnh i s phc</p><p>nh phcTn hiu iu ha</p></li><li><p>2.5 Quan h dng p trn cc phn t mch</p><p> in tr</p><p>Bi ging Gii tch Mch 2012 15</p><p>R RU R I </p><p>=</p><p>Cung pha</p><p>R</p><p>u(t)</p><p>i(t)</p><p>cos( )R mi I t = +</p><p>cos( )R R mu Ri RI t = = +</p><p> Min phcRIR</p><p>UR</p><p>IR</p><p>UR</p><p>R mI I </p><p> = </p><p>R mU RI </p><p> = </p></li><li><p>IL</p><p>UL</p><p>jL</p><p>2.5 Quan h dng p trn cc phn t mch</p><p> in cm</p><p>Bi ging Gii tch Mch 2012 16</p><p>L LU j L I </p><p>=</p><p>Lch pha 900</p><p>cos( )L mi I t = +0cos( 90 )LL m</p><p>diu L LI tdt</p><p> = = + +</p><p> Min phc</p><p>L</p><p>u(t)</p><p>i(t)</p><p>IL</p><p>UL</p><p>L mI I </p><p> = </p><p>L mU j LI </p><p> = </p></li><li><p>IC</p><p>UC</p><p>-j/C</p><p>2.5 Quan h dng p trn cc phn t mch</p><p> in dung</p><p>Bi ging Gii tch Mch 2012 17</p><p>C CjU I</p><p>C</p><p> =</p><p>Lch pha 900</p><p>cos( )C mu U t = +</p><p>0cos( 90 )CC mdui C CU tdt</p><p> = = + +</p><p> Min phc</p><p>C</p><p>u(t)</p><p>i(t) </p><p>IC</p><p>UCC mU U </p><p> = </p><p>C mI j CU </p><p> = </p></li><li><p>Bi ging Gii tch Mch 2012 18</p><p>2.6 Cc nh lut dng phc</p><p> in trR RU R I </p><p>=</p><p>RIR</p><p>UR</p><p>L L L LU j L I jX I </p><p>= =IL</p><p>UL</p><p>jL in cm</p><p> in dungIC</p><p>UC</p><p>-j/C</p><p>C C C CjU I jX I</p><p>C</p><p> = =</p></li><li><p>RU</p><p>-j/C</p><p>jLI</p><p>Bi ging Gii tch Mch 2012</p><p>2.6 Cc nh lut dng phc</p><p> Tr khng</p><p>U Z I </p><p>=</p><p> Dn np</p><p>R</p><p>U</p><p>-j/CjLI I</p><p>U</p><p>Z</p><p>Z R jX Z = + = </p><p>I</p><p>U</p><p>Y</p><p>I Y U </p><p>= Y G jB Y = + = </p><p>1YZ</p><p>=</p></li><li><p> Z: Tr khng (impedance) R: in tr (resistance) X: in khng (reactance) n v tnh []</p><p>Bi ging Gii tch Mch 2012 20</p><p> = u i</p><p> Y: Dn np (admittance) G: in dn (conductance) B: in np (susceptance) n v tnh [S]</p><p>Z R jX Z = + = </p><p>| Z |: module cua Z: goc lech pha gia u va i</p><p>Y G jB Y = + = </p><p>| Y |: module cua Y: goc lech pha gia i va u</p><p>Tr khng &amp; Dn np</p><p> = i u</p></li><li><p>nh lut Kirchhoff dng phc</p><p> nh lut Kirchhoff dng phc v dng: Tng cc dng in phc ti mt nt bng khng. Qui c dng i vo nt mang du dng, i ra nt mang du m</p><p> nh lut Kirchhoff dng phc v p: Tng cc p phc trong mt vng kn bng khng. </p><p>Bi ging Gii tch Mch 2012 21</p><p>0Knt</p><p>I</p><p> =</p><p>0Kvngkn</p><p>U</p><p> =</p></li><li><p>V d Tm dng in trong cc nhnh </p><p>v in p trn cc phn t</p><p> S phc ha</p><p>Bi ging Gii tch Mch 2012 22</p><p>1H1/9F</p><p>1</p><p>35cos3t [V]</p><p>i1(t)</p><p>i2(t) i3(t)</p><p>Gii</p><p>1</p><p>3</p><p>I1I2 I3</p><p>j3</p><p>-j35 0o VI II</p><p>a</p><p>b</p><p> Nt a Vng I Vng II</p><p>1 2 3 0I I I </p><p> =0</p><p>1 25 0 (3 3) 0I j I </p><p> + + + =</p><p>2 3(3 3) ( 3) 0j I j I </p><p> + + =</p><p>0 01 2</p><p>03</p><p>1 36,87 ; 1 53,13</p><p>2 81,87</p><p>I I</p><p>I</p><p>= = </p><p>= </p></li><li><p>V d </p><p>Bi ging Gii tch Mch 2012 23</p><p>1</p><p>3</p><p>I1I2 I3</p><p>j3</p><p>-j35 0o VI II</p><p>a</p><p>b</p><p>01</p><p>02</p><p>03</p><p>1 36,87</p><p>1 53,13</p><p>2 81,87</p><p>I</p><p>I</p><p>I</p><p>= </p><p>= </p><p>= </p><p>01 1</p><p>02 2</p><p>02</p><p>03</p><p>1 1 36,87</p><p>3 3 53,13</p><p>3 3 36,87</p><p>3 3 2 8,13</p><p>R</p><p>R</p><p>L</p><p>C</p><p>U I</p><p>U I</p><p>U j I</p><p>U j I</p><p>= = </p><p>= = </p><p>= = </p><p>= = </p><p>i1(t) = cos (3t + 36,87o) [A]i2(t) = cos (3t - 53,13o) [A]i3(t) = 1,41 cos (3t + 81,87o)[A]uR1(t) = cos (3t + 36,87o) [V]uR2(t) = 3 cos (3t - 53,13o) [V]uL(t) = 3 cos (3t + 36,87o) [V]uC(t) = 4,24 cos (3t - 8,13o) [V]</p></li><li><p>V d ngun ph thuc</p><p>Bi ging Gii tch Mch 2012 24</p><p>Tm i1 ? i2 ? 1 23 ( 1)I I K+ = </p><p>1 22 0,5 4 0 ( 2)Rj I U I K + = </p><p>24 ( )RU I Ohm= </p><p> S phc ha</p><p>1( ) 3 2 sin(4 45 )oi t t A= +</p><p>2 ( ) 3 2 sin(4 45 )oi t t A= </p><p>1 2 0jI I+ = 1 2 3I I+ = </p><p>1 3 2 45oI = </p><p>2 3 2 45oI = </p><p>4 +-3sin4t</p><p>[A]</p><p>18</p><p>F</p><p>12 R</p><p>uuR</p><p>i2</p><p>i1</p><p>Gii</p><p>I4+-</p><p>12UR</p><p>I2</p><p>-j2 I1</p><p>UR3 0o A</p><p>a</p><p>b</p></li><li><p>2.7 th vect (vector diagram) nh ngha : </p><p> biu din hnh hc ca cc nh lut mch dng phc Phn loi:</p><p> th vet p, vect dng th vet tr khng, dn np th vet cng sut </p><p> Cng dng : thng dung cho cac bai toan: Mo ta ro hn quan he gia cac ai lng ien trong mach. Tm hieu s anh hng cua mot thong so mach len cac ai </p><p>lng ien. Cho phep xac nh module va pha cac ai lng da tren </p><p>mot so so lieu o ( thng dung kem vect hieu dung phc).</p><p>Bi ging Gii tch Mch 2012 25</p></li><li><p>Biu din hnh hc ca nh phc</p><p>Bi ging Gii tch Mch 2012 26</p><p>03 4 5 53,13U j</p><p>= + = 5</p><p>3</p><p>4</p><p>53,130</p><p>j</p><p>+1Re</p><p>Im</p></li><li><p> th vect v nh phc</p><p>Bi ging Gii tch Mch 2012 27</p><p> Cho Tm</p><p>1 212 5 ; 9 12U j U j </p><p>= + = +</p><p>1 2U U U </p><p>= + Dng nh phc</p><p>01 2 21 17 27 39U U U j</p><p>= + = + = 0</p><p>1</p><p>02</p><p>12 5 13 22,62</p><p>9 12 15 53,13</p><p>U j</p><p>U j</p><p>= + = </p><p>= + = Dng th vect</p><p>Re</p><p>Im</p><p>0 9</p><p>12</p><p>53,130</p><p>12</p><p>5</p><p>22,62</p><p>Re</p><p>Im</p><p>0</p><p>53,130</p><p>22,620</p><p>=390</p></li><li><p>Bi ging Gii tch Mch 2012 28</p><p>V d th vect v nh phc Tm R v XL nu bit I=2A, </p><p>Uac=100V, Uab=173V, Ubc=100V (RMS)</p><p>R jXL</p><p>jXC</p><p>I</p><p>Uac</p><p>c</p><p>a b</p><p>I</p><p>Ubc</p><p>Uac Uab</p><p>2 2 2</p><p>0 0</p><p>cos 0,8652</p><p>30 60</p><p>ab bc ac</p><p>ab bc</p><p>U U UU U</p><p>+ = =</p><p> = =</p><p>0 02 0 173 60abI U </p><p>= = </p><p>43,25 75</p><p>43,2575</p><p>abL</p><p>L</p><p>UR jX jI</p><p>RX</p><p> + = = +</p><p>= = </p></li><li><p> th vng ca tr khng v dn np</p><p> Khi nim: tr khng Z v dn np Y l cc s phc dng th kho st khi thng s nhnh thay i</p><p>Bi ging Gii tch Mch 2012 29</p><p>Z1Z2 Z</p><p>Y1 Y2 Y</p><p>Z1</p><p>Y1</p><p>Z2Y2</p><p>Z</p><p>Y</p><p>R</p><p>jX</p><p>G</p><p>jB</p></li><li><p> th vng ca tr khng v dn np Nhnh R-L ni tip</p><p>Bi ging Gii tch Mch 2012 30</p><p>Z</p><p>Y</p><p>R</p><p>jX</p><p>G</p><p>jB</p><p>R</p><p>jXL</p><p>Z,Y Biu thc tr khng &amp; dn np</p><p>LZ R jX= +</p><p> B &lt; 0 v G &gt; 0 qu tch l ng trn</p><p>2 2</p><p>GRG B</p><p> =+</p><p>2 221 1</p><p>2 2G B</p><p>R R + = </p><p>12R</p><p>1R</p><p>2 2</p><p>1 1 G jBZY G jB G B</p><p>= = =</p><p>+ +</p></li><li><p> th vng ca tr khng v dn np Nhnh R-L ni tip</p><p>Bi ging Gii tch Mch 2012 31</p><p>Z</p><p>Y</p><p>R</p><p>jX</p><p>G</p><p>jB</p><p>R</p><p>jXL</p><p>Z,Y Biu thc tr khng &amp; dn np</p><p>LZ R jX= +</p><p> B &lt; 0 v G &gt; 0 qu tch l ng trn</p><p>2 2LBX</p><p>G B</p><p> =+</p><p>2 221 1</p><p>2 2L LG B</p><p>X X </p><p>+ + = </p><p>12 LX</p><p>1</p><p>LX</p><p>2 2</p><p>1 1 G jBZY G jB G B</p><p>= = =</p><p>+ +</p></li><li><p> th vng ca tr khng v dn np</p><p>Bi ging Gii tch Mch 2012 32</p><p> Mch Qu tch tr khng Qu tch dn np</p><p>R</p><p>jXC</p><p>Z,Y</p><p>R</p><p>jXC</p><p>Z,Y</p><p>Z</p><p>R</p><p>jX</p><p>12R</p><p>Y G</p><p>jB</p><p>12R</p><p>1R</p><p>Z</p><p>R</p><p>jX</p><p>Y</p><p>G</p><p>jB</p><p>12 CX</p><p>1</p><p>CX</p></li><li><p> th vng ca tr khng v dn np</p><p>Bi ging Gii tch Mch 2012 33</p><p> Mch Qu tch tr khng Qu tch dn np</p><p>R jXLZ,Y</p><p>R jXLZ,Y</p><p>Y</p><p>G</p><p>jB1R</p><p>YG</p><p>jB</p><p>1</p><p>LXZ</p><p>R</p><p>jX</p><p>12 LX</p><p>1</p><p>LX</p><p>ZR</p><p>jX</p><p>12R</p><p>1R</p></li><li><p> th vng ca tr khng v dn np</p><p>Bi ging Gii tch Mch 2012 34</p><p> Mch Qu tch tr khng Qu tch dn np</p><p>R jXCZ,Y</p><p>R jXCZ,Y Y</p><p>G</p><p>jB1</p><p>CX</p><p>YG</p><p>jB</p><p>1R</p><p>Z</p><p>RjX 1</p><p>2R1R</p><p>Z</p><p>R</p><p>jX</p><p>12 CX</p><p>1</p><p>CX</p></li><li><p>2.8 Cng sut Xt mt on mch m dng v p ti xc lp iu ha l</p><p> Cng sut tc thi</p><p>Bi ging Gii tch Mch 2012 35</p><p>( ) cos( )( ) cos( )</p><p>m i</p><p>m u</p><p>i t I tu t U t</p><p>= +</p><p>= +</p><p>i(t)</p><p>u(t)</p><p>1 1( ) ( ) ( ) cos( ) cos(2 )2 2m m u i m m u i</p><p>p t u t i t U I U I t = = + + +</p><p> p(t) &gt; 0 : mch ang nhn cng sut p(t) &lt; 0 : mch ang pht cng sut</p></li><li><p>2.8 Cng sut</p><p>Bi ging Gii tch Mch 2012 36</p><p>1 1( ) cos( ) cos(2 )2 2m m u i m m u i</p><p>p t U I U I t = + + +</p></li><li><p>Cng sut tc dng &amp; cng sut phn khng</p><p> P (Active Power) [W]</p><p>( ) cos( )( ) cos( )</p><p>;</p><p>m i</p><p>m u</p><p>u i</p><p>i t I tu t U t</p><p>Z Z</p><p>= +</p><p>= +</p><p>= = </p><p>i(t)</p><p>u(t)</p><p>Z</p><p>0</p><p>0</p><p>1 1( ) cos [ ]2</p><p>t T</p><p>m mt</p><p>P p t dt U I WT</p><p>+</p><p>= =</p><p>{ }1cos Re2P UI U I </p><p>= =</p><p>{ }21 Re2 m</p><p>P I Z=</p><p>Bi ging Gii tch Mch 2012 37</p></li><li><p>Cng sut tc dng &amp; cng sut phn khng Q (Reactive Power) [VAr]</p><p>Bi ging Gii tch Mch 2012 38Ch2-2 38</p><p>cosP UI =</p><p>{ }1 Re2P U I </p><p>=</p><p>{ }21 Re2 m</p><p>P I Z=</p><p>1 cos2 m m</p><p>P U I = 1 sin2 m m</p><p>Q U I =</p><p>sinQ UI =</p><p>{ }1 Im2Q U I </p><p>=</p><p>{ }21 Im2 m</p><p>Q I Z=</p><p> P (Active Power) [W]</p></li><li><p>Cng sut trn cc phn t mch</p><p>Bi ging Gii tch Mch 2012 39</p><p>[ ]21( ) 1 cos(2 2 )2 m</p><p>p t RI t = + +</p><p>2( )p t Ri=2 2( ) cos ( )mp t RI t = +</p><p> in tri(t)</p><p>u(t)</p><p>R</p><p>cos( )mi I tu Ri</p><p> = +=</p><p>u(t)i(t)</p><p>p(t) RI2</p><p>2</p><p>2</p><p>12</p><p>0</p><p>mP RI</p><p>P RIQ</p><p>=</p><p>=</p><p>=</p></li><li><p>Cng sut trn cc phn t mch</p><p>Bi ging Gii tch Mch 2012 40</p><p>21( ) sin(2 2 )2 L m</p><p>p t X I t = +</p><p>( ) dip t Lidt</p><p>=</p><p>2( ) cos( )sin( )mp t LI t t = + +</p><p> in cm</p><p>cos( )mi I tdiu Ldt</p><p> = +</p><p>=</p><p>u(t)i(t)</p><p>p(t)i(t)</p><p>u(t)</p><p>L</p><p>2</p><p>2</p><p>012 m</p><p>P</p><p>Q LI</p><p>Q LI</p><p>=</p><p>=</p><p>=</p></li><li><p>Cng sut trn cc phn t mch</p><p>Bi ging Gii tch Mch 2012 41</p><p>21( ) sin(2 2 )2 C m</p><p>p t X I t = +</p><p>( ) ip t idtC</p><p>= 21( ) cos( )sin( )mp t I t tC</p><p>= + +</p><p> in dung</p><p>cos( )1mi I t</p><p>u idtC</p><p> = +</p><p>= u(t)</p><p>i(t)</p><p>p(t)</p><p>2</p><p>2</p><p>01</p><p>21</p><p>m</p><p>P</p><p>Q IC</p><p>Q IC</p><p>=</p><p>=</p><p>=</p><p>i(t)</p><p>u(t)</p><p>C</p></li><li><p>Cng sut biu kin (Apparent Power) nh ngha</p><p> Cc cch tnh khc</p><p>Bi ging Gii tch Mch 2012 42</p><p>1 [ ]2 m m</p><p>S UI U I VA= =</p><p>2 2</p><p>cossin</p><p>P UIQ UI</p><p>S P Q</p><p>==</p><p>= +</p><p>Q</p><p>P</p><p>Q</p><p>P</p><p> Cng sut phc1 [ ]2 m m</p><p>S U I U I VA </p><p>= ={ }{ }</p><p>Re</p><p>Im</p><p>P S</p><p>Q S</p><p>=</p><p>=</p><p>Chng 2 : Mch xc lp iu ha Tn hiu kho st : dng in i(t) , in p u(t)Slide Number 3Slide Number 4Slide Number 5So snh pha hai tn hiu iu haSlide Number 7Vct quayVct quaynh phcCc tnh cht ca vct bin phcCc tnh cht ca vct bin phc2.4 Gii bi ton mch dng nh phcPhng php vct bin phc2.5 Quan h dng p trn cc phn t mch2.5 Quan h dng p trn cc phn t mch2.5 Quan h dng p trn cc phn t mchSlide Number 18Slide Number 19Slide Number 20nh lut Kirchhoff dng phcV d V d V d ngun ph thuc2.7 th vect (vector diagram)Biu din hnh hc ca nh phc th vect v nh phcV d th vect v nh phc th vng ca tr khng v dn np th vng ca tr khng v dn np th vng ca tr khng v dn np th vng ca tr khng v dn np th vng ca tr khng v dn np th vng ca tr khng v dn np2.8 Cng sut2.8 Cng sutCng sut tc dng &amp; cng sut phn khngCng sut tc dng &amp; cng sut phn khngCng sut trn cc phn t mchCng sut trn cc phn t mchCng sut trn cc phn t mchCng sut biu kin (Apparent Power)</p></li></ul>