folienmaster eth zürich

36
| | Autonomous Systems Lab 151-0851-00 V Marco Hutter, Michael Blösch, Roland Siegwart, Konrad Rudin and Thomas Stastny Autonomous Systems Lab 23.11.2015 Robot Dynamics - Fixed Wing UAS: Stability and Dynamic Model 1 Robot Dynamics Fixed Wing UAS: Stability and Dynamics

Upload: others

Post on 15-Nov-2021

9 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Folienmaster ETH Zürich

||Autonomous Systems Lab

151-0851-00 V

Marco Hutter, Michael Blösch, Roland Siegwart, Konrad Rudin and Thomas Stastny

Autonomous Systems Lab

23.11.2015Robot Dynamics - Fixed Wing UAS: Stability and Dynamic Model 1

Robot DynamicsFixed Wing UAS: Stability and Dynamics

Page 2: Folienmaster ETH Zürich

||Autonomous Systems Lab

1. Overview

2. Aerodynamic Basics

3. Performance

Considerations

4. Stability

5. Simplified Dynamic

Model

6. UAV Control

Approaches

7. Case Studies

Lecture 2:

Stability and Dynamics

1. Some Notations

2. Stability

Overview: Static and Dynamic

Stability

Criteria for Static Stability

3. Simplified Dynamic Model

Coordinate Frames and

Representation of Orientation

Assumptions and Simplifications

Derivation of the Model

Simulation Results

Contents:

Fixed Wing UAS

23.11.2015Robot Dynamics - Fixed Wing UAS: Stability and Dynamic Model 2

Page 3: Folienmaster ETH Zürich

||Autonomous Systems Lab

The objective of this lecture is:

Not to give you all the detailled theory of flight dynamics

(already the topic of „Flugtechnik“ by Dr. Wildi)

To show the application of the most important theory in order to

analyze stability and to create a mathematical model of an

airplane

Introduction

23.11.2015Robot Dynamics - Fixed Wing UAS: Stability and Dynamic Model 3

Page 4: Folienmaster ETH Zürich

||Autonomous Systems Lab

Additional Notations

Moments

LA : Roll moment

MA : pitch moment

NA : Yaw moment

L/M/NT :Thrust moment

Angles

a : Angle of attack

b : Sideslip angle

e : Thrust-vector angleSpeed (no wind!)

Angular Rates

Important Points

: CoG

: Aerodynamic Center

Forces

FA : Aerodynamic force

FT : Thrust

G : Weight

Background image:

http://upload.wikimedia.org/wikiped

ia/commons/

5/5c/C_172_line_drawing_oblique.

svg

0AC

Ma

zB

xB

yB

FT

e

MA

G

Bv

ab (-)

= yS

xS zS

S: Stability Frame

D=-FA,xs

-FA,zs=L

FA,ys=Y

FA

LA

NA

p

r

q

u

v

w

Bv= u,v,w( )T

23.11.2015Robot Dynamics - Fixed Wing UAS: Stability and Dynamic Model 4

Page 5: Folienmaster ETH Zürich

||Autonomous Systems Lab

Stability Example: LonditudinalDynamic stabilityStatic stability

Disturbance Aerodyn.

reaction

torque

Disturbance No reaction

torque

Stable

Neutral

Disturbance Aerodyn.

reaction

torqueUnstable

Stable

Neutral

Unstable

Tre

ate

d w

ith

aero

dyn

am

ic d

eri

vati

va

Mo

delin

g o

f th

e d

yn

am

ics r

eq

uir

ed

23.11.2015Robot Dynamics - Fixed Wing UAS: Stability and Dynamic Model 5

Page 6: Folienmaster ETH Zürich

||Autonomous Systems Lab

Criteria for Static Stability (1)

Apply in Stability Coordinate Frame

Velocity Stability

u v w

Forces

x

y

z

0 TxAx FFu

0 TyAy FFv

0 TzAz FFw

0 yCb

0 DTx CuCu

0 LCa

23.11.2015Robot Dynamics - Fixed Wing UAS: Stability and Dynamic Model 6

Page 7: Folienmaster ETH Zürich

||Autonomous Systems Lab

Criteria for Static Stability (2)

Directional Stability Rotational Stability

b a p q r

Torques

roll

pitch

yaw

0 TA LLb

0Cl b

0 TA NNb

0CN b

0 TA MMa

0CM a

0 TA LLp

0 lCp

0 TA MMq

0 MCq

0 TA NNr

0 NCr

(Moment „L“ Coeff.)

23.11.2015Robot Dynamics - Fixed Wing UAS: Stability and Dynamic Model 7

Page 8: Folienmaster ETH Zürich

||Autonomous Systems Lab

Example: Longitudinal Static Stability

Equilibrium condition:

Condition for stability: 0CM a

0CM

a

MC

0CM a

0CM a

2

3

1 2 3Aerodyn. Centers

Wing (mean chord) Tail

Zero Lift Line CoG

1

Equi-

librium

(trim

)

Additional Influences:

Fuselage L, D, M

FT, M from

propulsion/slipstream

Stability criterion:

Aerodynamic Center of

the Airplane BEHIND

CoG

Elev.

up

down

23.11.2015Robot Dynamics - Fixed Wing UAS: Stability and Dynamic Model 8

Page 9: Folienmaster ETH Zürich

||Autonomous Systems Lab

Sailplane (glider):

Goal of energy

efficiency and flight

endurance

Large wingspan, low

weight

Low speed

Low payload

Different Airplane Configurations

23.11.2015Robot Dynamics - Fixed Wing UAS: Stability and Dynamic Model 9

Page 10: Folienmaster ETH Zürich

||Autonomous Systems Lab

Fighter aircraft:

Goal of high speed, climbing rate, maneuverability, stealthiness

Strong engines, short wings (swept) with high chord length,

complex geometry, large control surfaces

High fuel consumption (and thus limited operating range)

Different Airplane Configurations

23.11.2015Robot Dynamics - Fixed Wing UAS: Stability and Dynamic Model 10

Page 11: Folienmaster ETH Zürich

||Autonomous Systems Lab

Tandem plane:

Goal of increased longitudinal stability

With center of gravity between the two wings, the plane is more stable

than a classical design

Different Airplane Configurations

23.11.2015Robot Dynamics - Fixed Wing UAS: Stability and Dynamic Model 11

Page 12: Folienmaster ETH Zürich

||Autonomous Systems Lab

Biplane:

More compact layout with shorter wingspan

Higher maneuverability

Very popular in the early days of aviation

But: more drag and less lift than a classical design with equal wing

area

Different Airplane Configurations

23.11.2015Robot Dynamics - Fixed Wing UAS: Stability and Dynamic Model 12

Page 13: Folienmaster ETH Zürich

||Autonomous Systems Lab

Flying wing aircraft:

Most commonly used in the low to medium speed range

High stealth capabilities (low visibility for radar)

Fuel efficient due to low drag

Stability issues: directional and longitudinal

Problem: no passenger windows (in commercial application)

Different Airplane configurations

23.11.2015Robot Dynamics - Fixed Wing UAS: Stability and Dynamic Model 13

Page 14: Folienmaster ETH Zürich

||Autonomous Systems Lab

Search for the limits

SOLARIMPULSE

Different Airplane Configurations

23.11.2015Robot Dynamics - Fixed Wing UAS: Stability and Dynamic Model 14

Page 15: Folienmaster ETH Zürich

||Autonomous Systems Lab

Airbus A380

Before first flight in 2005, it flew only in Simulation !

Why Simulation?

23.11.2015Robot Dynamics - Fixed Wing UAS: Stability and Dynamic Model 15

Page 16: Folienmaster ETH Zürich

||Autonomous Systems Lab

System analysis:

model allows evaluating future flight characteristics Stability

Controllability

Power required fuel needs

Controllability in the case of actuator failure

Autopilot design and simulation:

model allows comparing different control techniques and

autopilot parameter tuning Gain of time and money

Higher performance of the autopilot

No risk of damage compared to real tests

Pilot training (in Simulator) Allows simulating and training especially emergency situations

Why Model the Dynamics of an Airplane?

23.11.2015Robot Dynamics - Fixed Wing UAS: Stability and Dynamic Model 16

Page 17: Folienmaster ETH Zürich

||Autonomous Systems Lab

Dynamics of an airplane

... Are very different from an acrobatic aircraft to a line jet airplane

... but the principles remain the same for all

Wings, stabilizers

control surfaces (ailerons, rudder, elevator, flaps,spoilers)

propulsion group (motor-gearbox-propeller, turbine, rocket,…)

In this lecture, we will model the solar airplane Sky-Sailor

Steps for the creation of the model

1. Define the coordinate frames

2. List all the physical effects acting on the airplane

3. Set assumptions, make simplifications

4. Express the physical effects into equations

5. Derive the equations of motion (here: Newton)

Introduction

23.11.2015Robot Dynamics - Fixed Wing UAS: Stability and Dynamic Model 17

Page 18: Folienmaster ETH Zürich

||Autonomous Systems Lab

Coordinate FramesEarth fixed frame

(regarded as inertial): Body fixed frame:exB,eyB,ezBexE,eyE,ezE

eyE

ezE

exEψ

ey1

=ez1

ex1

θ

ey2=

ez2

ex

=ex

B

eyB

ezB

eyE

ezE

exEψ

ey1

=ez1

ex1

θ

ey2=

ez

2

ex2

eyE

ezE

exEψ

ey1

=ez1

ex1

Rotation Matrix (B to E) is parametrized with 3 successive rotations using

the zyx Tait-Brian Angles (specific kind of Euler Angles):CEB

Roll:

φ around ex2:

Frame B

3 )(2 BCPitch:

θ around ey1:

Frame 2

2 )(12 CYaw:

ψ around ezE:

Frame 1

1 )(1 EC

EBC )(1 EC )(12 C )(2 BC (post-multiply for rotations

around new axes…)

23.11.2015Robot Dynamics - Fixed Wing UAS: Stability and Dynamic Model 18

Page 19: Folienmaster ETH Zürich

||Autonomous Systems Lab

The rotation matrix calculated:

Be careful with the boundaries:

The inverse transformation:

Coordinate Frames

Roll (-<<) Pitch (-/2<</2) Yaw (-<<)

)()(0

)()(0

001

)(2

cs

scBC

)(0)(

010

)(0)(

)(12

cs

sc

C

100

0)()(

0)()(

)(1

cs

sc

EC

)()()()()(

)()()()()()()()()()()()(

)()()()()()()()()()()()(

2121

ccscs

sccssccssscs

sscsccsssccc

EEEB CCCC

TEBEBBE CCC 1

23.11.2015Robot Dynamics - Fixed Wing UAS: Stability and Dynamic Model 19

Page 20: Folienmaster ETH Zürich

||Autonomous Systems Lab

Angular Rates:

Time variation of Tait-Bryan angles

Body angular rates

Singularity: for (Jr becomes singular)

« Gimbal Lock »

Coordinates System

≠ ,,

rqp ,,

coscossin0

cossincos0

sin01

rJ

r

r

q

p

J

2

23.11.2015Robot Dynamics - Fixed Wing UAS: Stability and Dynamic Model 20

Page 21: Folienmaster ETH Zürich

||Autonomous Systems Lab

Forces and moments acting on the airplane

Weight at the center of gravity

Thrust of propeller: complex task will not be presented here

Aerodynamic forces on each

part of the airplane:

see previous lecture…

Wing

Tail

Fuselage

Forces and Moments

z

x

y

T

M

L

N

G

V

a

D

L

Y

23.11.2015Robot Dynamics - Fixed Wing UAS: Stability and Dynamic Model 21

Page 22: Folienmaster ETH Zürich

||Autonomous Systems Lab

Definitions

Remember: origin of body-fixed coordinate frame set into center of gravity

Assumptions and simplifications

Rigid and symmetric structure:constant, (almost) diagonal inertia matrix

Constant mass

Motor without dynamics and without gyroscopic effects (can be adapted)

Aerodynamics (list not complete):

We don’t enter stall (operation in the linear cl domain)

Neglect fuselage lift/sideslip force (may be easily included, if modeled correctly)

Inputs/Outputs/States

Definitions, Assumptions and Simplifications

Velocities (Body Fr.): u,v,w

Turn rates (Body Fr.): p,q,r

Position (Earth Fr.): x,y,z

Tait-Bryan angles: ,,

Nonlinear

Aircraft

Dynamics

Forces

Moments

u,v,w;

p,q,r

x,y,z;

,,

Propulsion,

Mechanics,

Aerodynamics

Elevator

Aileron

Rudder

Throttle

23.11.2015Robot Dynamics - Fixed Wing UAS: Stability and Dynamic Model 22

Page 23: Folienmaster ETH Zürich

||Autonomous Systems Lab

On the Rigidity…

23.11.2015Robot Dynamics - Fixed Wing UAS: Stability and Dynamic Model 23

Page 24: Folienmaster ETH Zürich

||Autonomous Systems Lab

On the Rigidity…

NASA Helios Crash: www.nasa.gov/centers/dryden/history/pastprojects/Helios

23.11.2015Robot Dynamics - Fixed Wing UAS: Stability and Dynamic Model 24

Page 25: Folienmaster ETH Zürich

||Autonomous Systems Lab

Forces and momentsrepresented in body frame, attacking at the CoG:

Development of the Model

aae

aae

e

e

aa

aa

coscoscossinsin

cossin

sinsincoscos

0

0

sin

0

cos

cossin

sincos

mgLDF

mgY

mgLDF

g

m

F

F

LD

Y

LD

T

T

BE

T

T

tot CF

T

T

T

tot

N

M

L

N

M

L

M

23.11.2015Robot Dynamics - Fixed Wing UAS: Stability and Dynamic Model 25

Page 26: Folienmaster ETH Zürich

||Autonomous Systems Lab

Application of Newton‘s Second Law

Development of the Model

Euler

Derivatives

xzxxyyzzxz

xzzzxxyy

xzyyzzxzxx

zzxz

yy

xzxx

zzxz

yy

xzxx

qrIIIpqrIpI

IprIIprqI

qpIIIqrrIpI

r

q

p

II

I

II

r

q

p

r

q

p

II

I

II

22

0

00

0

0

00

0

Ftot =d

dtm

b Bv( ) =

qupvw

pwruv

rvqwu

m

w

v

u

r

q

p

w

v

u

m

r

q

p

II

I

II

dt

d

dt

d

zzxz

yy

xzxx

Btot

0

00

0

IMTypically

small

23.11.2015Robot Dynamics - Fixed Wing UAS: Stability and Dynamic Model 26

Page 27: Folienmaster ETH Zürich

||Autonomous Systems Lab

Summarized equations of motion:

Translation

Development of the Model

aae

aae

coscoscossinsin1

cossin1

sinsincoscos1

gLDFm

pvquw

gYm

rupwv

gLDFm

qwrvu

T

T

w

v

u

z

y

x

EBC

23.11.2015Robot Dynamics - Fixed Wing UAS: Stability and Dynamic Model 27

Page 28: Folienmaster ETH Zürich

||Autonomous Systems Lab

Rotation (simplified with Ixz≈0):

Development of the Model

xxyyT

zz

zzxxT

yy

yyzzT

xx

IIpqNNI

r

IIprMMI

q

IIqrLLI

p

1

1

1

cos

cos

cos

sinsincos

costansintan1

rq

rq

rqp

r

q

p

rJ

23.11.2015Robot Dynamics - Fixed Wing UAS: Stability and Dynamic Model 28

Page 29: Folienmaster ETH Zürich

||Autonomous Systems Lab

c

Turning

Demand for coordinated turn:

L increases with

Vmin increases with

Stationary Flight

constc

a

0Y

R

22

mRR

mV

D

≈FT

L

G

ccos

1

ccos

1

23.11.2015Robot Dynamics - Fixed Wing UAS: Stability and Dynamic Model 29

Page 30: Folienmaster ETH Zürich

||Autonomous Systems Lab

10m260m

Simulation

Behaviour in open-loop:

• Natural Stability

• Flight speed, glide slope

very close to reality

Initial condition:

• Roll 0°, Pitch -12°, Yaw 0°

• Speed 8.2 m/s

• Control surfaces at 0°

• Motor off

Stabilized after ~50 s

Flight speed ~8.2 m/s

Glide Ratio ~26

23.11.2015Robot Dynamics - Fixed Wing UAS: Stability and Dynamic Model 30

Page 31: Folienmaster ETH Zürich

||Autonomous Systems Lab

Simulation

For the airplane

m measured

Ixx, Iyy, Izz calculated using CAD model

CL CD CM, … calculated with CFD software

measured in wind tunnel tests

Precision of physical

parameters in the modelQuality of the model

23.11.2015Robot Dynamics - Fixed Wing UAS: Stability and Dynamic Model 31

Page 32: Folienmaster ETH Zürich

||Autonomous Systems Lab

Simulation

23.11.2015Robot Dynamics - Fixed Wing UAS: Stability and Dynamic Model 32

Page 33: Folienmaster ETH Zürich

||Autonomous Systems Lab

Real Prototype

23.11.2015Robot Dynamics - Fixed Wing UAS: Stability and Dynamic Model 33

Page 34: Folienmaster ETH Zürich

||Autonomous Systems Lab

Thermal Soaring

23.11.2015Robot Dynamics - Fixed Wing UAS: Stability and Dynamic Model 34

Page 35: Folienmaster ETH Zürich

||Autonomous Systems Lab

Can be solved individually

Assistance in HG E 27: 14:00 – 16:00

Today‘s Exercise

23.11.2015Robot Dynamics - Fixed Wing UAS: Stability and Dynamic Model 35

Page 36: Folienmaster ETH Zürich

||Autonomous Systems Lab

See you next week!

23.11.2015Robot Dynamics - Fixed Wing UAS: Stability and Dynamic Model 36