electronic supplementary information supplementary information topologically diverse...

13
S1 Electronic Supplementary Information Topologically diverse shape-persistent bis-(Zn-salphen) catalysts: efficient cyclic carbonate formation under mild conditions Shixiong He, Fuli Wang, Wah-Leung Tong, Shek-Man Yiu and Michael C. W. Chan* Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China. Email: [email protected] Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2015

Upload: others

Post on 26-Apr-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Electronic Supplementary Information Supplementary Information Topologically diverse shape-persistent bis-(Zn-salphen) catalysts: efficient cyclic carbonate formation under mild conditions

S1

Electronic Supplementary Information

Topologically diverse shape-persistent bis-(Zn-salphen) catalysts efficient cyclic carbonate formation under mild conditions

Shixiong He Fuli Wang Wah-Leung Tong Shek-Man Yiu and Michael C W Chan

Department of Biology and Chemistry City University of Hong Kong Tat Chee Avenue

Kowloon Hong Kong China Email mcwchancityueduhk

Electronic Supplementary Material (ESI) for ChemCommThis journal is copy The Royal Society of Chemistry 2015

S2

Experimental Section

General Considerations and Instrumentation Propylene oxide epoxybutane and 12-

epoxyhexane (Sigma-Aldrich) were distilled from CaH2 and 2-butanone (MEK methyl ethyl

ketone) was distilled from K2CO3 and all were stored over 4 Aring molecular sieves Carbon dioxide

(research grade 99999) was purchased from HK Scientific Gas Engineering Co Ltd and

used as received Mesitylene was dried over 4 Aring molecular sieves Tetrabutylammonium iodide

(Acros) was recrystallized using dry acetone and diethyl ether (110) and dried in a vacuum

oven at 90 oC for 48 h All reactions that describe the use of dry solvents were performed under a

nitrogen atmosphere and the solvents were appropriately dried and distilled prior to use for the

remaining reactions solvents (analytical grade) were used without further purification 1H and 13C NMR spectra were recorded at 298 K on Bruker Avance III 300 400 and 600 MHz NMR

spectrometers (ppm referenced to residual solvent peaks) ESI mass spectra were measured on a

Perkin-Elmer SCIEX API 365 mass spectrometer Elemental analyses were performed on a

Vario EL elemental analyzer (Elementar Analysensysteme GmbH) The synthesis of L112 L223

L545 L82 L92 and complex 12 were described previously

General Procedure for CO2 Reactions CO2 reactions were performed using a Teflon liner

in a 100-mL Parr stainless steel high-pressure reactor equipped with a paddle-like stirrer The

epoxide (in MEK [5 mL] or neat [epoxypropane and -hexane 3 mL epoxybutane 5 mL])

catalyst nBu4NI cocatalyst and mesitylene (internal standard) were introduced into the reactor

which was then subjected to three cycles of pressurization and depressurization with CO2 (at half

of reacting pressure) before final stabilization at the chosen reacting pressure The reactor was

sealed heated to the required temperature and stirred at 500 rpm for the prescribed time The

reactor was then cooled to 10 degC using ice water and the remaining pressure was slowly vented

An aliquot (60 microL) of the reaction mixture combined with CDCl3 (440 microL) was taken for 1H

NMR analysis (90deg flip angle 30 seconds relaxation delay) The conversion which was

reproducible within plusmn2 in at least 3 independent runs for selected experiments was calculated

from the 1H NMR integration of the cyclic carbonate product against the mesitylene internal

standard

S3

Synthetic Methods

R2

O

CHOOH

Zn(OAc)2 NEt3MeOH

H2N N

HO R2

tBuR2 = H (L8)R2 = tBu (L9)

B

O

B

OH

OH

OH

OH

(L1)

R2

O

ON N

OZn

ON N

OZn

tBu

tBu

Pd(PPh3)4 K2CO3

Br OH

CHO

2 dil HCl (aq)

R11

DMEH2O

R1

CHOOH

R1

R1 = H (L2) tBu (L3)

R1

R1

R1 = H R2 = tBu (1)R1 = tBu R2 = H (5)R1 = R2 = tBu (6)

I CHO

OH

1O

OHCHO

OHCHO

O

NN

OO Zn

tBu

tBuN

NO

O Zn

tButBu

(2)

Zn(OAc)2 NEt3MeOH

H2N N

HO tButBu(L9)

(L4)

tBu

tBu

O

ON N

OZn

ON N

OZn

tBu

tBu

(3)

ZnCl2 NaOMeEtOHCH2Cl2

H2N N

HO tButBu(L10)

Pd(PPh3)4 K2CO3

2 dil HCl (aq)DMEH2O

R1 = H

Zn(OAc)2 NEt3MeOH

H2N N

HO R2

tBuO

B(OH)2

B(OH)2Pd(PPh3)4

K2CO3

Br OH

CHO

2 dil HCl (aq)

O

OHCHO

R1

OH

CHO

R1

R11

R1 = H tBuR2 = tBuMeOH(wash)

O

R2

ON

NOZn

tBu

R1

R2

ON

NO

Zn

tBuR1

H2O(wash)

R1 = tBuR2 = H

[7 AcOH]

DMEH2O

R1 = H R2 = tBu (4)R1 = tBu R2 = H (7)R1 = R2 = tBu (8)

(L5)

R1 = H (L6) tBu (L7)

R2 = H (L8)R2 = tBu (L9)

Scheme S1 Synthesis of complexes 1ndash8

S4

Compound L3 L1 (082 g 20 mmol) 2-hydroxy-3-tert-

butyl-5-bromobenzaldehyde (122 g 476 mmol) and Pd(PPh3)4

(005 g 004 mmol) were suspended in a deoxygenated solution of

K2CO3 (122 g 880 mmol) in DMEDI water (31 40 mL) The

reaction mixture which became a clear orange solution upon

heating was then stirred under reflux for 3 h during which the

color of the solution became dark brown The mixture was cooled to 0 degC after which 1 M

aqueous HCl (20 mL) was added and the mixture was stirred at room temperature for 1 h Water

(100 mL) and chloroform (200 mL) were added to the resulting orange suspension After stirring

at room temperature for 1 h the organic layer was separated and washed with water The

resultant orange solution was dried over MgSO4 filtered and concentrated to dryness The crude

product was further purified by column chromatography (SiO2 hexaneCH2Cl2 11) to give the

desired product as a yellow solid Yield 092 g 68 1H NMR (300 MHz DMSO-d6) δ 1171 (s

2H OH) 947 (s 2H CHO) 760ndash743 (m 6H) 719 (d J = 22 Hz 2H) 173 (s 6H CH3)

134 (s 18H tBu) 120 (s 18H tBu) Compound L4 The procedure for the synthesis of L3 was

adopted using L1 (070 g 17 mmol) and 2-hydroxy-4-

iodobenzaldehyde (10 g 40 mmol) The crude product was

purified by column chromatography (SiO2 hexaneCH2Cl2 12) to

give the desired product as a pale yellow solid Yield 051 g 53 1H NMR (300 MHz DMSO-d6) δ 1014 (s 2H CHO) 756 (d J =

23 Hz 2H) 732 (d J = 80 Hz 2H) 716 (d J = 23 Hz 2H) 684

(d J = 12 Hz 2H) 676 (d J = 80 Hz 2H) 170 (s 6H CH3) 132 (s 18H tBu)

Compound L6 The procedure for the synthesis of L3

was adopted using L5 (200 g 782 mmol) and 2-hydroxy-5-

bromobenzaldehyde (346 g 172 mmol) The crude product

was purified by column chromatography (SiO2 CH2Cl2) to

give the desired product as a pale yellow solid Yield 24 g

75 1H NMR (300 MHz DMSO-d6) δ 1102 (s 2H OH)

S5

1036 (s 2H CHO) 830 (s 2H) 824ndash807 (m 4H) 773 (d J = 76 Hz 2H) 749 (dd J = 78

and 75 Hz 2H) 720 (d J = 86 Hz 2H)

Compound L7 The procedure for the synthesis of L3 was

adopted using L5 (080 g 31 mmol) The crude product was

purified by flash chromatography (SiO2 CH2Cl2hexane 11) to

give the desired product as a yellow powder Yield 12 g 74 1H NMR (400 MHz DMSO-d6) δ 1189 (s 2H OH) 1005 (s 2H

CHO) 823ndash819 (m 4H) 793 (d J = 22 Hz 2H) 773 (dd J =

76 and 12 Hz 2H) 755 (t J = 76 Hz 2H) 133 (s 18H tBu)

Compound L10 To a vigorously stirred solution of 12-

cyclohexanediamine (080 g 70 mmol) in dry CH2Cl2 (15 mL) at 0 oC

was added dropwise a solution of 35-di-tert-butylbenzaldehyde (109 g

467 mmol) in dry CH2Cl2 (10 mL) at 0 oC over 30 min The mixture

was then stirred at 0 oC for 3 h The resulting yellow solution was

evaporated under reduced pressure at 5 degC to give a pale yellow oil which was purified by

column chromatography (SiO2 ethyl acetate) to give the desired product as a pale yellow solid

Yield 052 g 34 1H NMR (400 MHz CDCl3) δ 1371 (s 1H OH) 843 (s 1H) 739 (d J =

24 Hz 1H) 710 (d J = 24 Hz 1H) 412 (q J = 71 Hz 2H) 293ndash274 (m 2H) 199ndash189 (m

2H) 183ndash171 (m 4H) 170ndash157 (m 2H) 145 (s 9H tBu) 130 (s 9H tBu)

Complex 2 Compound L4 (33 mg 0059 mmol

in powder form) and triethylamine (1 mL) were added

to a stirred solution of L9 (42 mg 013 mmol) and

Zn(OAc)2middot2H2O (28 mg 013 mmol) in MeOH (20 mL)

at room temperature The reaction mixture was stirred

at room temperature for 20 h to give a yellow

precipitate which was collected and washed copiously

with MeOH to afford 2 as a bright yellow solid Yield 64 mg 78 Anal Calcd for

C79H86N4O5Zn2(H2O)5 (139245) C 6814 H 695 N 402 Found C 6851 H 670 N 404

S6

1H NMR (300 MHz DMSO-d6) δ 897 (s 2H H11) 873 (s 2H H6) 784 (d J = 79 Hz 2H

H10) 753 (d J = 22 Hz 2H H1) 736 (d J = 85 Hz 2H H7) 732ndash719 (m 8H H5 H9 H12

H13) 718 (d J = 22 Hz 2H H2) 691 (dd J = 78 and 75 Hz 2H H8) 660 (d J = 13 Hz 2H

H3) 647 (dd J = 124 and 22 Hz 2H H4) 171 (s 6H H16) 145 (s 18H H14) 134 (s 18H

H17) 127 (s 18H H15) 13C NMR (101 MHz DMSO-d6) δ 1717 1703 1633 1615 1456

1451 1439 1407 1398 1392 1355 1334 1304 1296 1289 1284 1269 1265 1248

1232 1220 1183 1182 1163 1158 1155 352 348 343 336 315 314 297 ESI-MS

(+ve mode) mz 1304 [M + H]+

Complex 3 Compound L2 (025 g 045

mmol in powder form) was added to a stirred

solution of sodium methoxide (015 g 27

mmol) and zinc chloride (013 g 098 mmol)

in degassed EtOHCH2Cl2 (12 20 mL) at 0 degC

The mixture was stirred for 5 min after which

L10 (029 g 089 mmol) in EtOHCH2Cl2 (12

10 mL) was added The reaction mixture was stirred at room temperature for 12 h to give a pale

yellow suspension The filtrate was collected and all volatiles were removed under reduced

pressure to give a yellow solid which was purified by column chromatography (Et3N-saturated

SiO2 hexaneCH2Cl2 11) to afford 3 as a pale yellow solid Yield 013 g 21 Anal Calcd for

C79H98N4O5Zn2C6H14 (140064) C 7289 H 806 N 400 Found C 7269 H 782 N 377 1H NMR (300 MHz CD2Cl2) δ 765 (s 2H H13) 750 (d J = 22 Hz 2H H15) 749 (s 2H H6)

745 (dd J = 87 and 23 Hz 2H H4) 742 (d J = 23 Hz 2H H1) 731 (d J = 23 Hz 2H H3)

720 (d J = 23 Hz 2H H2) 694 (d J = 88 Hz 2H H5) 653 (d J = 23 Hz 2H H14) 379ndash

359 (m 4H H7 H12) 187ndash163 (m 8H H8 H11) 173 (s 6H H18) 150ndash128 (m 8H H10 H9)

147 (s 18H H17) 137 (s 18H H19) 132 (s 18H H16) 128ndash124 (m C6H14) 088 (t C6H14) 13C NMR (101 MHz CD2Cl2) δ 1737 1728 1702 1687 1459 1455 1417 1385 1382

1359 1314 1300 1298 1283 1267 1249 1237 1219 1178 1174 698 686 383 383

358 351 348 343 333 317 316 301 256 253 ESI-MS (+ve mode) mz 1316 [M + H]+

S7

Complex 4 The procedure for the synthesis

of 2 was adopted using L6 (50 mg 012 mmol) A

yellow precipitate was formed which was

collected and washed copiously with MeOH and

pentane to afford 4 as a yellow solid Yield 011 g

78 Anal Calcd for C68H64N4O5Zn2(H2O)3

(120213) C 6794 H 587 N 466 Found C

6787 H 596 N 445 1H NMR (400 MHz

DMSO-d6) δ 911 (s 2H H7) 893 (s 2H H12)

818 (d J = 22 Hz 2H H4) 809 (dd J = 24 and 26 Hz 2H H5) 805 (d J = 68 Hz 2H H1)

787 (d J = 86 Hz 2H H8) 784 (d J = 84 Hz 2H H11) 775 (d J = 75 Hz 2H H3) 750 (t J

= 76 Hz 2H H2) 737 (t J = 76 Hz 2H H9) 734 (d J = 25 Hz 2H H14) 730ndash722 (m 4H

H10 H13) 686 (d J = 89 Hz 2H H6) 149 (s 18H H16) 128 (s 18H H15) 13C NMR (101

MHz DMSO-d6) δ 1722 1707 1638 1623 1524 1410 1403 1391 1363 1345 1337

1299 1288 1278 1272 1254 1252 1246 1241 1240 1204 1199 1189 1184 1167

1163 354 338 316 299 ESI-MS (+ve mode) mz 1150 [M + H]+

Complex 5 Compound L3 (88 mg 013

mmol in powder form) and trimethylamine (1

mL) were added to a stirred solution of L8 (70

mg 026 mmol) and Zn(OAc)2middot2H2O (63 mg

029 mmol) in MeOH (20 mL) at room

temperature The reaction mixture was stirred

at 75 degC for 20 h to give a yellow precipitate

which was collected and washed copiously with cold MeOH to afford 5 as a bright yellow solid

Yield 80 mg 64 Anal Calcd for C79H86N4O5Zn2(CH3OH)2 (136646) C 7120 H 693 N

410 Found C 7130 H 674 N 413 1H NMR (400 MHz DMSO-d6) δ 838 (s 2H H10) 818

(s 2H H5) 752ndash735 (m 8H H4 H3 H6 H9) 739 (s 2H H1) 721 (s 2H H2) 707 (d J = 67

Hz 2H H13) 697 (dd J = 76 and 72 Hz 2H H7) 684 (d J = 72 Hz 2H H11) 676 (dd J =

80 and 72 Hz 2H H8) 638 (t J = 76 Hz 2H H12) 407 (br q J = 52 Hz CH3OH) 318 (d J

= 52 Hz CH3OH) 172 (s 6H H16) 137 (s 18H H17) 125 (s 18H H14) 123 (s 18H H15)

1

2

3

415

56

7 8

910

11

13

12

16

17

14

O

ON N

OZn

ON N

OZn

tBu

tBu

tBu

tBu

S8

13C NMR (101 MHz C6D6DMSO-d6 91) δ 1729 1722 1614 1612 1458 1448 1423

1420 1398 1396 1346 1329 1309 1300 1299 1261 1258 1257 1221 1199 1194

1192 1154 1151 1120 354 353 348 342 314 297 296 ESI-MS (+ve mode) mz

1304 [M + H]+

Complex 6 The procedure for the

synthesis of 5 was adopted using L3 (50 mg

0074 mmol) and L9 (48 mg 015 mmol) A

orange precipitate was formed which was

collected washed copiously with cold MeOH

and recrystallized from CH2Cl2hexane (19)

to afford 6 as a bright yellow solid Yield 46 mg 41 Anal Calcd for C87H102N4O5Zn2(H2O)5

(150466) C 6945 H 750 N 372 Found C 6977 H 736 N 389 1H NMR (400 MHz

DMSO-d6) δ 880 (s 2H H10) 852 (s 2H H5) 768 (d J = 80 Hz 2H H9) 763 (d J = 83 Hz

2H H6) 750 (d J = 23 Hz 2H H3) 745ndash739 (m 4H H1 H4) 720 (d J = 25 Hz 2H H12)

717 (d J = 23 Hz 2H H2) 719ndash712 (m 2H H7) 705 (d J = 26 Hz 2H H11) 707ndash699 (m

2H H8) 173 (s 6H H16) 136 (s 18H H17) 131 (s 18H H14) 124 (s 18H H13) 121 (s 18H

H15) 13C NMR (101 MHz DMSO-d6) δ 1721 1708 1626 1625 1452 1448 1412 1411

1399 1346 1332 1323 1298 1292 1285 1268 1267 1260 1260 1250 1218 1213

1196 1186 1165 1159 356 353 348 346 339 336 319 319 300 298 ESI-MS (+ve

mode) mz 1416 [M + H]+

Complex 7 and 7middotAcOH Compound L7 (60 mg

012 mmol in powder form) and Et3N (3 mL) were

added to a stirred solution of L8 (62 mg 023 mmol)

and Zn(OAc)2middot2H2O (56 mg 025 mmol) in MeOH

(20 mL) at room temperature The reaction mixture

was stirred at room temperature for 20 h to give a grey

solution All volatiles were removed under reduced

pressure and recrystallization from CH2Cl2hexane

(19) afforded a yellow crystalline solid which was characterized as 7middotAcOH Yield 98 mg

68 Anal Calcd for C68H64N4O5Zn2CH3CO2H (120813) C 6959 H 464 N 567 Found

S9

C 6999 H 464 N 599 1H NMR (400 MHz DMSO-d6) δ 871 (s 2H H11) 870 (s 2H H6)

832 (d J = 22 Hz 2H H4) 804 (dd J = 76 and 11 Hz 2H H1) 781ndash772 (m 4H H3 H5)

750 (t J = 76 Hz 2H H2) 743 (d J = 76 Hz 2H H10) 737 (d J = 81 Hz 2H H12) 732 (d

J = 79 Hz 2H H7) 727 (d J = 75 Hz 2H H14) 701 (t J = 77 Hz 2H H8) 662 (dd J = 79

and 75 Hz 2H H9) 650 (t J = 75 Hz 2H H13) 185 (s 3H H17) 161 (s 18H H16) 156 (s

18H H15) 13C NMR (151 MHz DMSO-d6) δ 1720 1719 1717 1616 1605 1522 1424

1414 1390 1377 1350 1345 1300 1299 1267 1264 1256 1244 1243 1236 1194

1188 1184 1181 1149 1146 1119 353 350 295 294 210

The yellow crystalline solid (7middotAcOH) was

dissolved in CH2Cl2 (15 mL) and washed with DI

water (20 mL times 3) The organic layer was collected

all volatiles were removed under reduced pressure

and recrystallization from acetonepentane (15)

afforded 7 as an orange solid Yield 62 mg 47

(based on L7) Anal Calcd for C68H64N4O5Zn2

(114808) C 7114 H 562 N 488 Found C 7116

H 579 N 473 1H NMR (400 MHz DMSO-d6) δ

870 (s 2H H11) 869 (s 2H H6) 832 (s 2H H4)

804 (dd J = 77 and 10 Hz 2H H1) 781ndash772 (m 4H H3 H5) 750 (t J = 76 Hz 2H H2)

743 (d J = 81 Hz 2H H10) 737 (d J = 68 Hz 2H H12) 732 (d J = 80 Hz 2H H7) 727 (d

J = 73 Hz 2H H14) 701 (dd J = 77 and 74 Hz 2H H8) 662 (t J = 75 Hz 2H H9) 650 (t J

= 75 Hz 2H H13) 161 (s 18H H16) 155 (s 18H H15) 13C NMR (101 MHz DMSO-d6) δ

1720 1717 1618 1606 1522 1425 1414 1390 1376 1352 1347 1301 1300 1268

1265 1256 1245 1243 1238 1195 1188 1185 1183 1150 1146 1120 354 352

296 295 ESI-MS (+ve mode) mz 1150 [M + H]+

S10

Complex 8 The procedure for the synthesis

of 4 was adopted using L7 (78 mg 015 mmol) A

brown precipitate was formed which was

collected and washed copiously with MeOH and

pentane to afford 8 as a brownish yellow solid

Yield 85 mg 43 Anal Calcd for

C76H80N4O5Zn2(H2O)4 (133235) C 6851 H

666 N 421 Found C 6840 H 688 N 429 1H NMR (400 MHz DMSO-d6) δ 883 (s 2H

H13) 882 (s 2H H20) 813 (d J = 22 Hz 2H H8) 805 (d J = 76 Hz 2H H2) 776 (d J = 23

Hz 2H H12) 771 (d J = 70 Hz 2H H4) 763 (d J = 78 Hz 2H H18) 754ndash745 (m 4H H315)

734 (d J = 25 Hz 2H H25) 724 (d J = 26 Hz 2H H23) 711 (dd J = 76 and 78 Hz 2H

H16) 689 (dd J = 78 and 80 Hz 2H H17) 152 (s 18H H32) 151 (s 18H H30) 132 (s 18H

H28) 13C NMR (151 MHz DMSO-d6 peak assignments based on combination of DEPT-135

and 2-D 1H-1H 13C-1H (HSQC and HMBC) and NOE correlation NMR experiments) δ 1719

(C10) 1702 (C21) 1621 (C20) 1612 (C13) 1523 (C6) 1422 (C11) 1407 (C26) 1392 (C19)

1382 (C14) 1346 (C8) 1331 (C24) 1301 (C12) 1294 (C23) 1281 (C25) 1266 (C17) 1265

(C16) 1258 (C5) 1250 (C4) 1243 (C1) 1236 (C3) 1190 (C9) 1188 (C7) 1181 (C2) 1180

(C22) 1152 (C18) 1151 (C15) 352 (C2931) 335 (C27) 313 (C28) 296 (C30) 294 (C32) ESI-

MS (+ve mode) mz 1264 [M + H]+

S11

Figure S1 1H NMR (400 MHz CDCl3 298 K inset expanded) spectrum of reaction mixture corresponding to Run 10 in Table 3 [reaction conditions 12-epoxybutane (575 mmol 5 mL) catalyst 8 (00025 mol) nBu4NI co-cat (0125 mol) mesitylene (internal standard 1 mol) 10 bar CO2 initial pressure 95 degC 2 h]

Hf

Hc

Hd Hdrsquo

Hcrsquo ampnBu4NI

Ha

Hb1

Hb2

Harsquo

Hbrsquo1

Hbrsquo2

CDCl3

He

S12

Figure S2 1H NMR (400 MHz CDCl3 298 K inset expanded) spectrum of reaction mixture corresponding to Run 12 in Table 3 [reaction conditions 12-epoxyhexane (249 mmol 3 mL) catalyst 8 (00025 mol) nBu4NI co-cat (0125 mol) mesitylene (internal standard 1 mol) 10 bar CO2 initial pressure 95 degC 2 h]

nBu4NI Hf

Hd Hdrsquo

Ha

Hb1

Hb2 Harsquo

Hbrsquo1

Hbrsquo2

CDCl3

He

Hc Hcrsquo

S13

ESI References

1 R Okamura T Wada K Aikawa T Nagata and K Tanaka Inorg Chem 2004 43 7210

2 W-L Tong S-M Yiu and M C W Chan Inorg Chem 2013 52 7114

3 M Hirotsu N Ohno T Nakajima C Kushibe K Ueno and I Kinoshita Dalton Trans 2010 39 139

4 E B Schwartz C B Knobler and D J Cram J Am Chem Soc 1992 114 10775

5 Z Guo S-M Yiu and M C W Chan Chem Eur J 2013 19 8937

Page 2: Electronic Supplementary Information Supplementary Information Topologically diverse shape-persistent bis-(Zn-salphen) catalysts: efficient cyclic carbonate formation under mild conditions

S2

Experimental Section

General Considerations and Instrumentation Propylene oxide epoxybutane and 12-

epoxyhexane (Sigma-Aldrich) were distilled from CaH2 and 2-butanone (MEK methyl ethyl

ketone) was distilled from K2CO3 and all were stored over 4 Aring molecular sieves Carbon dioxide

(research grade 99999) was purchased from HK Scientific Gas Engineering Co Ltd and

used as received Mesitylene was dried over 4 Aring molecular sieves Tetrabutylammonium iodide

(Acros) was recrystallized using dry acetone and diethyl ether (110) and dried in a vacuum

oven at 90 oC for 48 h All reactions that describe the use of dry solvents were performed under a

nitrogen atmosphere and the solvents were appropriately dried and distilled prior to use for the

remaining reactions solvents (analytical grade) were used without further purification 1H and 13C NMR spectra were recorded at 298 K on Bruker Avance III 300 400 and 600 MHz NMR

spectrometers (ppm referenced to residual solvent peaks) ESI mass spectra were measured on a

Perkin-Elmer SCIEX API 365 mass spectrometer Elemental analyses were performed on a

Vario EL elemental analyzer (Elementar Analysensysteme GmbH) The synthesis of L112 L223

L545 L82 L92 and complex 12 were described previously

General Procedure for CO2 Reactions CO2 reactions were performed using a Teflon liner

in a 100-mL Parr stainless steel high-pressure reactor equipped with a paddle-like stirrer The

epoxide (in MEK [5 mL] or neat [epoxypropane and -hexane 3 mL epoxybutane 5 mL])

catalyst nBu4NI cocatalyst and mesitylene (internal standard) were introduced into the reactor

which was then subjected to three cycles of pressurization and depressurization with CO2 (at half

of reacting pressure) before final stabilization at the chosen reacting pressure The reactor was

sealed heated to the required temperature and stirred at 500 rpm for the prescribed time The

reactor was then cooled to 10 degC using ice water and the remaining pressure was slowly vented

An aliquot (60 microL) of the reaction mixture combined with CDCl3 (440 microL) was taken for 1H

NMR analysis (90deg flip angle 30 seconds relaxation delay) The conversion which was

reproducible within plusmn2 in at least 3 independent runs for selected experiments was calculated

from the 1H NMR integration of the cyclic carbonate product against the mesitylene internal

standard

S3

Synthetic Methods

R2

O

CHOOH

Zn(OAc)2 NEt3MeOH

H2N N

HO R2

tBuR2 = H (L8)R2 = tBu (L9)

B

O

B

OH

OH

OH

OH

(L1)

R2

O

ON N

OZn

ON N

OZn

tBu

tBu

Pd(PPh3)4 K2CO3

Br OH

CHO

2 dil HCl (aq)

R11

DMEH2O

R1

CHOOH

R1

R1 = H (L2) tBu (L3)

R1

R1

R1 = H R2 = tBu (1)R1 = tBu R2 = H (5)R1 = R2 = tBu (6)

I CHO

OH

1O

OHCHO

OHCHO

O

NN

OO Zn

tBu

tBuN

NO

O Zn

tButBu

(2)

Zn(OAc)2 NEt3MeOH

H2N N

HO tButBu(L9)

(L4)

tBu

tBu

O

ON N

OZn

ON N

OZn

tBu

tBu

(3)

ZnCl2 NaOMeEtOHCH2Cl2

H2N N

HO tButBu(L10)

Pd(PPh3)4 K2CO3

2 dil HCl (aq)DMEH2O

R1 = H

Zn(OAc)2 NEt3MeOH

H2N N

HO R2

tBuO

B(OH)2

B(OH)2Pd(PPh3)4

K2CO3

Br OH

CHO

2 dil HCl (aq)

O

OHCHO

R1

OH

CHO

R1

R11

R1 = H tBuR2 = tBuMeOH(wash)

O

R2

ON

NOZn

tBu

R1

R2

ON

NO

Zn

tBuR1

H2O(wash)

R1 = tBuR2 = H

[7 AcOH]

DMEH2O

R1 = H R2 = tBu (4)R1 = tBu R2 = H (7)R1 = R2 = tBu (8)

(L5)

R1 = H (L6) tBu (L7)

R2 = H (L8)R2 = tBu (L9)

Scheme S1 Synthesis of complexes 1ndash8

S4

Compound L3 L1 (082 g 20 mmol) 2-hydroxy-3-tert-

butyl-5-bromobenzaldehyde (122 g 476 mmol) and Pd(PPh3)4

(005 g 004 mmol) were suspended in a deoxygenated solution of

K2CO3 (122 g 880 mmol) in DMEDI water (31 40 mL) The

reaction mixture which became a clear orange solution upon

heating was then stirred under reflux for 3 h during which the

color of the solution became dark brown The mixture was cooled to 0 degC after which 1 M

aqueous HCl (20 mL) was added and the mixture was stirred at room temperature for 1 h Water

(100 mL) and chloroform (200 mL) were added to the resulting orange suspension After stirring

at room temperature for 1 h the organic layer was separated and washed with water The

resultant orange solution was dried over MgSO4 filtered and concentrated to dryness The crude

product was further purified by column chromatography (SiO2 hexaneCH2Cl2 11) to give the

desired product as a yellow solid Yield 092 g 68 1H NMR (300 MHz DMSO-d6) δ 1171 (s

2H OH) 947 (s 2H CHO) 760ndash743 (m 6H) 719 (d J = 22 Hz 2H) 173 (s 6H CH3)

134 (s 18H tBu) 120 (s 18H tBu) Compound L4 The procedure for the synthesis of L3 was

adopted using L1 (070 g 17 mmol) and 2-hydroxy-4-

iodobenzaldehyde (10 g 40 mmol) The crude product was

purified by column chromatography (SiO2 hexaneCH2Cl2 12) to

give the desired product as a pale yellow solid Yield 051 g 53 1H NMR (300 MHz DMSO-d6) δ 1014 (s 2H CHO) 756 (d J =

23 Hz 2H) 732 (d J = 80 Hz 2H) 716 (d J = 23 Hz 2H) 684

(d J = 12 Hz 2H) 676 (d J = 80 Hz 2H) 170 (s 6H CH3) 132 (s 18H tBu)

Compound L6 The procedure for the synthesis of L3

was adopted using L5 (200 g 782 mmol) and 2-hydroxy-5-

bromobenzaldehyde (346 g 172 mmol) The crude product

was purified by column chromatography (SiO2 CH2Cl2) to

give the desired product as a pale yellow solid Yield 24 g

75 1H NMR (300 MHz DMSO-d6) δ 1102 (s 2H OH)

S5

1036 (s 2H CHO) 830 (s 2H) 824ndash807 (m 4H) 773 (d J = 76 Hz 2H) 749 (dd J = 78

and 75 Hz 2H) 720 (d J = 86 Hz 2H)

Compound L7 The procedure for the synthesis of L3 was

adopted using L5 (080 g 31 mmol) The crude product was

purified by flash chromatography (SiO2 CH2Cl2hexane 11) to

give the desired product as a yellow powder Yield 12 g 74 1H NMR (400 MHz DMSO-d6) δ 1189 (s 2H OH) 1005 (s 2H

CHO) 823ndash819 (m 4H) 793 (d J = 22 Hz 2H) 773 (dd J =

76 and 12 Hz 2H) 755 (t J = 76 Hz 2H) 133 (s 18H tBu)

Compound L10 To a vigorously stirred solution of 12-

cyclohexanediamine (080 g 70 mmol) in dry CH2Cl2 (15 mL) at 0 oC

was added dropwise a solution of 35-di-tert-butylbenzaldehyde (109 g

467 mmol) in dry CH2Cl2 (10 mL) at 0 oC over 30 min The mixture

was then stirred at 0 oC for 3 h The resulting yellow solution was

evaporated under reduced pressure at 5 degC to give a pale yellow oil which was purified by

column chromatography (SiO2 ethyl acetate) to give the desired product as a pale yellow solid

Yield 052 g 34 1H NMR (400 MHz CDCl3) δ 1371 (s 1H OH) 843 (s 1H) 739 (d J =

24 Hz 1H) 710 (d J = 24 Hz 1H) 412 (q J = 71 Hz 2H) 293ndash274 (m 2H) 199ndash189 (m

2H) 183ndash171 (m 4H) 170ndash157 (m 2H) 145 (s 9H tBu) 130 (s 9H tBu)

Complex 2 Compound L4 (33 mg 0059 mmol

in powder form) and triethylamine (1 mL) were added

to a stirred solution of L9 (42 mg 013 mmol) and

Zn(OAc)2middot2H2O (28 mg 013 mmol) in MeOH (20 mL)

at room temperature The reaction mixture was stirred

at room temperature for 20 h to give a yellow

precipitate which was collected and washed copiously

with MeOH to afford 2 as a bright yellow solid Yield 64 mg 78 Anal Calcd for

C79H86N4O5Zn2(H2O)5 (139245) C 6814 H 695 N 402 Found C 6851 H 670 N 404

S6

1H NMR (300 MHz DMSO-d6) δ 897 (s 2H H11) 873 (s 2H H6) 784 (d J = 79 Hz 2H

H10) 753 (d J = 22 Hz 2H H1) 736 (d J = 85 Hz 2H H7) 732ndash719 (m 8H H5 H9 H12

H13) 718 (d J = 22 Hz 2H H2) 691 (dd J = 78 and 75 Hz 2H H8) 660 (d J = 13 Hz 2H

H3) 647 (dd J = 124 and 22 Hz 2H H4) 171 (s 6H H16) 145 (s 18H H14) 134 (s 18H

H17) 127 (s 18H H15) 13C NMR (101 MHz DMSO-d6) δ 1717 1703 1633 1615 1456

1451 1439 1407 1398 1392 1355 1334 1304 1296 1289 1284 1269 1265 1248

1232 1220 1183 1182 1163 1158 1155 352 348 343 336 315 314 297 ESI-MS

(+ve mode) mz 1304 [M + H]+

Complex 3 Compound L2 (025 g 045

mmol in powder form) was added to a stirred

solution of sodium methoxide (015 g 27

mmol) and zinc chloride (013 g 098 mmol)

in degassed EtOHCH2Cl2 (12 20 mL) at 0 degC

The mixture was stirred for 5 min after which

L10 (029 g 089 mmol) in EtOHCH2Cl2 (12

10 mL) was added The reaction mixture was stirred at room temperature for 12 h to give a pale

yellow suspension The filtrate was collected and all volatiles were removed under reduced

pressure to give a yellow solid which was purified by column chromatography (Et3N-saturated

SiO2 hexaneCH2Cl2 11) to afford 3 as a pale yellow solid Yield 013 g 21 Anal Calcd for

C79H98N4O5Zn2C6H14 (140064) C 7289 H 806 N 400 Found C 7269 H 782 N 377 1H NMR (300 MHz CD2Cl2) δ 765 (s 2H H13) 750 (d J = 22 Hz 2H H15) 749 (s 2H H6)

745 (dd J = 87 and 23 Hz 2H H4) 742 (d J = 23 Hz 2H H1) 731 (d J = 23 Hz 2H H3)

720 (d J = 23 Hz 2H H2) 694 (d J = 88 Hz 2H H5) 653 (d J = 23 Hz 2H H14) 379ndash

359 (m 4H H7 H12) 187ndash163 (m 8H H8 H11) 173 (s 6H H18) 150ndash128 (m 8H H10 H9)

147 (s 18H H17) 137 (s 18H H19) 132 (s 18H H16) 128ndash124 (m C6H14) 088 (t C6H14) 13C NMR (101 MHz CD2Cl2) δ 1737 1728 1702 1687 1459 1455 1417 1385 1382

1359 1314 1300 1298 1283 1267 1249 1237 1219 1178 1174 698 686 383 383

358 351 348 343 333 317 316 301 256 253 ESI-MS (+ve mode) mz 1316 [M + H]+

S7

Complex 4 The procedure for the synthesis

of 2 was adopted using L6 (50 mg 012 mmol) A

yellow precipitate was formed which was

collected and washed copiously with MeOH and

pentane to afford 4 as a yellow solid Yield 011 g

78 Anal Calcd for C68H64N4O5Zn2(H2O)3

(120213) C 6794 H 587 N 466 Found C

6787 H 596 N 445 1H NMR (400 MHz

DMSO-d6) δ 911 (s 2H H7) 893 (s 2H H12)

818 (d J = 22 Hz 2H H4) 809 (dd J = 24 and 26 Hz 2H H5) 805 (d J = 68 Hz 2H H1)

787 (d J = 86 Hz 2H H8) 784 (d J = 84 Hz 2H H11) 775 (d J = 75 Hz 2H H3) 750 (t J

= 76 Hz 2H H2) 737 (t J = 76 Hz 2H H9) 734 (d J = 25 Hz 2H H14) 730ndash722 (m 4H

H10 H13) 686 (d J = 89 Hz 2H H6) 149 (s 18H H16) 128 (s 18H H15) 13C NMR (101

MHz DMSO-d6) δ 1722 1707 1638 1623 1524 1410 1403 1391 1363 1345 1337

1299 1288 1278 1272 1254 1252 1246 1241 1240 1204 1199 1189 1184 1167

1163 354 338 316 299 ESI-MS (+ve mode) mz 1150 [M + H]+

Complex 5 Compound L3 (88 mg 013

mmol in powder form) and trimethylamine (1

mL) were added to a stirred solution of L8 (70

mg 026 mmol) and Zn(OAc)2middot2H2O (63 mg

029 mmol) in MeOH (20 mL) at room

temperature The reaction mixture was stirred

at 75 degC for 20 h to give a yellow precipitate

which was collected and washed copiously with cold MeOH to afford 5 as a bright yellow solid

Yield 80 mg 64 Anal Calcd for C79H86N4O5Zn2(CH3OH)2 (136646) C 7120 H 693 N

410 Found C 7130 H 674 N 413 1H NMR (400 MHz DMSO-d6) δ 838 (s 2H H10) 818

(s 2H H5) 752ndash735 (m 8H H4 H3 H6 H9) 739 (s 2H H1) 721 (s 2H H2) 707 (d J = 67

Hz 2H H13) 697 (dd J = 76 and 72 Hz 2H H7) 684 (d J = 72 Hz 2H H11) 676 (dd J =

80 and 72 Hz 2H H8) 638 (t J = 76 Hz 2H H12) 407 (br q J = 52 Hz CH3OH) 318 (d J

= 52 Hz CH3OH) 172 (s 6H H16) 137 (s 18H H17) 125 (s 18H H14) 123 (s 18H H15)

1

2

3

415

56

7 8

910

11

13

12

16

17

14

O

ON N

OZn

ON N

OZn

tBu

tBu

tBu

tBu

S8

13C NMR (101 MHz C6D6DMSO-d6 91) δ 1729 1722 1614 1612 1458 1448 1423

1420 1398 1396 1346 1329 1309 1300 1299 1261 1258 1257 1221 1199 1194

1192 1154 1151 1120 354 353 348 342 314 297 296 ESI-MS (+ve mode) mz

1304 [M + H]+

Complex 6 The procedure for the

synthesis of 5 was adopted using L3 (50 mg

0074 mmol) and L9 (48 mg 015 mmol) A

orange precipitate was formed which was

collected washed copiously with cold MeOH

and recrystallized from CH2Cl2hexane (19)

to afford 6 as a bright yellow solid Yield 46 mg 41 Anal Calcd for C87H102N4O5Zn2(H2O)5

(150466) C 6945 H 750 N 372 Found C 6977 H 736 N 389 1H NMR (400 MHz

DMSO-d6) δ 880 (s 2H H10) 852 (s 2H H5) 768 (d J = 80 Hz 2H H9) 763 (d J = 83 Hz

2H H6) 750 (d J = 23 Hz 2H H3) 745ndash739 (m 4H H1 H4) 720 (d J = 25 Hz 2H H12)

717 (d J = 23 Hz 2H H2) 719ndash712 (m 2H H7) 705 (d J = 26 Hz 2H H11) 707ndash699 (m

2H H8) 173 (s 6H H16) 136 (s 18H H17) 131 (s 18H H14) 124 (s 18H H13) 121 (s 18H

H15) 13C NMR (101 MHz DMSO-d6) δ 1721 1708 1626 1625 1452 1448 1412 1411

1399 1346 1332 1323 1298 1292 1285 1268 1267 1260 1260 1250 1218 1213

1196 1186 1165 1159 356 353 348 346 339 336 319 319 300 298 ESI-MS (+ve

mode) mz 1416 [M + H]+

Complex 7 and 7middotAcOH Compound L7 (60 mg

012 mmol in powder form) and Et3N (3 mL) were

added to a stirred solution of L8 (62 mg 023 mmol)

and Zn(OAc)2middot2H2O (56 mg 025 mmol) in MeOH

(20 mL) at room temperature The reaction mixture

was stirred at room temperature for 20 h to give a grey

solution All volatiles were removed under reduced

pressure and recrystallization from CH2Cl2hexane

(19) afforded a yellow crystalline solid which was characterized as 7middotAcOH Yield 98 mg

68 Anal Calcd for C68H64N4O5Zn2CH3CO2H (120813) C 6959 H 464 N 567 Found

S9

C 6999 H 464 N 599 1H NMR (400 MHz DMSO-d6) δ 871 (s 2H H11) 870 (s 2H H6)

832 (d J = 22 Hz 2H H4) 804 (dd J = 76 and 11 Hz 2H H1) 781ndash772 (m 4H H3 H5)

750 (t J = 76 Hz 2H H2) 743 (d J = 76 Hz 2H H10) 737 (d J = 81 Hz 2H H12) 732 (d

J = 79 Hz 2H H7) 727 (d J = 75 Hz 2H H14) 701 (t J = 77 Hz 2H H8) 662 (dd J = 79

and 75 Hz 2H H9) 650 (t J = 75 Hz 2H H13) 185 (s 3H H17) 161 (s 18H H16) 156 (s

18H H15) 13C NMR (151 MHz DMSO-d6) δ 1720 1719 1717 1616 1605 1522 1424

1414 1390 1377 1350 1345 1300 1299 1267 1264 1256 1244 1243 1236 1194

1188 1184 1181 1149 1146 1119 353 350 295 294 210

The yellow crystalline solid (7middotAcOH) was

dissolved in CH2Cl2 (15 mL) and washed with DI

water (20 mL times 3) The organic layer was collected

all volatiles were removed under reduced pressure

and recrystallization from acetonepentane (15)

afforded 7 as an orange solid Yield 62 mg 47

(based on L7) Anal Calcd for C68H64N4O5Zn2

(114808) C 7114 H 562 N 488 Found C 7116

H 579 N 473 1H NMR (400 MHz DMSO-d6) δ

870 (s 2H H11) 869 (s 2H H6) 832 (s 2H H4)

804 (dd J = 77 and 10 Hz 2H H1) 781ndash772 (m 4H H3 H5) 750 (t J = 76 Hz 2H H2)

743 (d J = 81 Hz 2H H10) 737 (d J = 68 Hz 2H H12) 732 (d J = 80 Hz 2H H7) 727 (d

J = 73 Hz 2H H14) 701 (dd J = 77 and 74 Hz 2H H8) 662 (t J = 75 Hz 2H H9) 650 (t J

= 75 Hz 2H H13) 161 (s 18H H16) 155 (s 18H H15) 13C NMR (101 MHz DMSO-d6) δ

1720 1717 1618 1606 1522 1425 1414 1390 1376 1352 1347 1301 1300 1268

1265 1256 1245 1243 1238 1195 1188 1185 1183 1150 1146 1120 354 352

296 295 ESI-MS (+ve mode) mz 1150 [M + H]+

S10

Complex 8 The procedure for the synthesis

of 4 was adopted using L7 (78 mg 015 mmol) A

brown precipitate was formed which was

collected and washed copiously with MeOH and

pentane to afford 8 as a brownish yellow solid

Yield 85 mg 43 Anal Calcd for

C76H80N4O5Zn2(H2O)4 (133235) C 6851 H

666 N 421 Found C 6840 H 688 N 429 1H NMR (400 MHz DMSO-d6) δ 883 (s 2H

H13) 882 (s 2H H20) 813 (d J = 22 Hz 2H H8) 805 (d J = 76 Hz 2H H2) 776 (d J = 23

Hz 2H H12) 771 (d J = 70 Hz 2H H4) 763 (d J = 78 Hz 2H H18) 754ndash745 (m 4H H315)

734 (d J = 25 Hz 2H H25) 724 (d J = 26 Hz 2H H23) 711 (dd J = 76 and 78 Hz 2H

H16) 689 (dd J = 78 and 80 Hz 2H H17) 152 (s 18H H32) 151 (s 18H H30) 132 (s 18H

H28) 13C NMR (151 MHz DMSO-d6 peak assignments based on combination of DEPT-135

and 2-D 1H-1H 13C-1H (HSQC and HMBC) and NOE correlation NMR experiments) δ 1719

(C10) 1702 (C21) 1621 (C20) 1612 (C13) 1523 (C6) 1422 (C11) 1407 (C26) 1392 (C19)

1382 (C14) 1346 (C8) 1331 (C24) 1301 (C12) 1294 (C23) 1281 (C25) 1266 (C17) 1265

(C16) 1258 (C5) 1250 (C4) 1243 (C1) 1236 (C3) 1190 (C9) 1188 (C7) 1181 (C2) 1180

(C22) 1152 (C18) 1151 (C15) 352 (C2931) 335 (C27) 313 (C28) 296 (C30) 294 (C32) ESI-

MS (+ve mode) mz 1264 [M + H]+

S11

Figure S1 1H NMR (400 MHz CDCl3 298 K inset expanded) spectrum of reaction mixture corresponding to Run 10 in Table 3 [reaction conditions 12-epoxybutane (575 mmol 5 mL) catalyst 8 (00025 mol) nBu4NI co-cat (0125 mol) mesitylene (internal standard 1 mol) 10 bar CO2 initial pressure 95 degC 2 h]

Hf

Hc

Hd Hdrsquo

Hcrsquo ampnBu4NI

Ha

Hb1

Hb2

Harsquo

Hbrsquo1

Hbrsquo2

CDCl3

He

S12

Figure S2 1H NMR (400 MHz CDCl3 298 K inset expanded) spectrum of reaction mixture corresponding to Run 12 in Table 3 [reaction conditions 12-epoxyhexane (249 mmol 3 mL) catalyst 8 (00025 mol) nBu4NI co-cat (0125 mol) mesitylene (internal standard 1 mol) 10 bar CO2 initial pressure 95 degC 2 h]

nBu4NI Hf

Hd Hdrsquo

Ha

Hb1

Hb2 Harsquo

Hbrsquo1

Hbrsquo2

CDCl3

He

Hc Hcrsquo

S13

ESI References

1 R Okamura T Wada K Aikawa T Nagata and K Tanaka Inorg Chem 2004 43 7210

2 W-L Tong S-M Yiu and M C W Chan Inorg Chem 2013 52 7114

3 M Hirotsu N Ohno T Nakajima C Kushibe K Ueno and I Kinoshita Dalton Trans 2010 39 139

4 E B Schwartz C B Knobler and D J Cram J Am Chem Soc 1992 114 10775

5 Z Guo S-M Yiu and M C W Chan Chem Eur J 2013 19 8937

Page 3: Electronic Supplementary Information Supplementary Information Topologically diverse shape-persistent bis-(Zn-salphen) catalysts: efficient cyclic carbonate formation under mild conditions

S3

Synthetic Methods

R2

O

CHOOH

Zn(OAc)2 NEt3MeOH

H2N N

HO R2

tBuR2 = H (L8)R2 = tBu (L9)

B

O

B

OH

OH

OH

OH

(L1)

R2

O

ON N

OZn

ON N

OZn

tBu

tBu

Pd(PPh3)4 K2CO3

Br OH

CHO

2 dil HCl (aq)

R11

DMEH2O

R1

CHOOH

R1

R1 = H (L2) tBu (L3)

R1

R1

R1 = H R2 = tBu (1)R1 = tBu R2 = H (5)R1 = R2 = tBu (6)

I CHO

OH

1O

OHCHO

OHCHO

O

NN

OO Zn

tBu

tBuN

NO

O Zn

tButBu

(2)

Zn(OAc)2 NEt3MeOH

H2N N

HO tButBu(L9)

(L4)

tBu

tBu

O

ON N

OZn

ON N

OZn

tBu

tBu

(3)

ZnCl2 NaOMeEtOHCH2Cl2

H2N N

HO tButBu(L10)

Pd(PPh3)4 K2CO3

2 dil HCl (aq)DMEH2O

R1 = H

Zn(OAc)2 NEt3MeOH

H2N N

HO R2

tBuO

B(OH)2

B(OH)2Pd(PPh3)4

K2CO3

Br OH

CHO

2 dil HCl (aq)

O

OHCHO

R1

OH

CHO

R1

R11

R1 = H tBuR2 = tBuMeOH(wash)

O

R2

ON

NOZn

tBu

R1

R2

ON

NO

Zn

tBuR1

H2O(wash)

R1 = tBuR2 = H

[7 AcOH]

DMEH2O

R1 = H R2 = tBu (4)R1 = tBu R2 = H (7)R1 = R2 = tBu (8)

(L5)

R1 = H (L6) tBu (L7)

R2 = H (L8)R2 = tBu (L9)

Scheme S1 Synthesis of complexes 1ndash8

S4

Compound L3 L1 (082 g 20 mmol) 2-hydroxy-3-tert-

butyl-5-bromobenzaldehyde (122 g 476 mmol) and Pd(PPh3)4

(005 g 004 mmol) were suspended in a deoxygenated solution of

K2CO3 (122 g 880 mmol) in DMEDI water (31 40 mL) The

reaction mixture which became a clear orange solution upon

heating was then stirred under reflux for 3 h during which the

color of the solution became dark brown The mixture was cooled to 0 degC after which 1 M

aqueous HCl (20 mL) was added and the mixture was stirred at room temperature for 1 h Water

(100 mL) and chloroform (200 mL) were added to the resulting orange suspension After stirring

at room temperature for 1 h the organic layer was separated and washed with water The

resultant orange solution was dried over MgSO4 filtered and concentrated to dryness The crude

product was further purified by column chromatography (SiO2 hexaneCH2Cl2 11) to give the

desired product as a yellow solid Yield 092 g 68 1H NMR (300 MHz DMSO-d6) δ 1171 (s

2H OH) 947 (s 2H CHO) 760ndash743 (m 6H) 719 (d J = 22 Hz 2H) 173 (s 6H CH3)

134 (s 18H tBu) 120 (s 18H tBu) Compound L4 The procedure for the synthesis of L3 was

adopted using L1 (070 g 17 mmol) and 2-hydroxy-4-

iodobenzaldehyde (10 g 40 mmol) The crude product was

purified by column chromatography (SiO2 hexaneCH2Cl2 12) to

give the desired product as a pale yellow solid Yield 051 g 53 1H NMR (300 MHz DMSO-d6) δ 1014 (s 2H CHO) 756 (d J =

23 Hz 2H) 732 (d J = 80 Hz 2H) 716 (d J = 23 Hz 2H) 684

(d J = 12 Hz 2H) 676 (d J = 80 Hz 2H) 170 (s 6H CH3) 132 (s 18H tBu)

Compound L6 The procedure for the synthesis of L3

was adopted using L5 (200 g 782 mmol) and 2-hydroxy-5-

bromobenzaldehyde (346 g 172 mmol) The crude product

was purified by column chromatography (SiO2 CH2Cl2) to

give the desired product as a pale yellow solid Yield 24 g

75 1H NMR (300 MHz DMSO-d6) δ 1102 (s 2H OH)

S5

1036 (s 2H CHO) 830 (s 2H) 824ndash807 (m 4H) 773 (d J = 76 Hz 2H) 749 (dd J = 78

and 75 Hz 2H) 720 (d J = 86 Hz 2H)

Compound L7 The procedure for the synthesis of L3 was

adopted using L5 (080 g 31 mmol) The crude product was

purified by flash chromatography (SiO2 CH2Cl2hexane 11) to

give the desired product as a yellow powder Yield 12 g 74 1H NMR (400 MHz DMSO-d6) δ 1189 (s 2H OH) 1005 (s 2H

CHO) 823ndash819 (m 4H) 793 (d J = 22 Hz 2H) 773 (dd J =

76 and 12 Hz 2H) 755 (t J = 76 Hz 2H) 133 (s 18H tBu)

Compound L10 To a vigorously stirred solution of 12-

cyclohexanediamine (080 g 70 mmol) in dry CH2Cl2 (15 mL) at 0 oC

was added dropwise a solution of 35-di-tert-butylbenzaldehyde (109 g

467 mmol) in dry CH2Cl2 (10 mL) at 0 oC over 30 min The mixture

was then stirred at 0 oC for 3 h The resulting yellow solution was

evaporated under reduced pressure at 5 degC to give a pale yellow oil which was purified by

column chromatography (SiO2 ethyl acetate) to give the desired product as a pale yellow solid

Yield 052 g 34 1H NMR (400 MHz CDCl3) δ 1371 (s 1H OH) 843 (s 1H) 739 (d J =

24 Hz 1H) 710 (d J = 24 Hz 1H) 412 (q J = 71 Hz 2H) 293ndash274 (m 2H) 199ndash189 (m

2H) 183ndash171 (m 4H) 170ndash157 (m 2H) 145 (s 9H tBu) 130 (s 9H tBu)

Complex 2 Compound L4 (33 mg 0059 mmol

in powder form) and triethylamine (1 mL) were added

to a stirred solution of L9 (42 mg 013 mmol) and

Zn(OAc)2middot2H2O (28 mg 013 mmol) in MeOH (20 mL)

at room temperature The reaction mixture was stirred

at room temperature for 20 h to give a yellow

precipitate which was collected and washed copiously

with MeOH to afford 2 as a bright yellow solid Yield 64 mg 78 Anal Calcd for

C79H86N4O5Zn2(H2O)5 (139245) C 6814 H 695 N 402 Found C 6851 H 670 N 404

S6

1H NMR (300 MHz DMSO-d6) δ 897 (s 2H H11) 873 (s 2H H6) 784 (d J = 79 Hz 2H

H10) 753 (d J = 22 Hz 2H H1) 736 (d J = 85 Hz 2H H7) 732ndash719 (m 8H H5 H9 H12

H13) 718 (d J = 22 Hz 2H H2) 691 (dd J = 78 and 75 Hz 2H H8) 660 (d J = 13 Hz 2H

H3) 647 (dd J = 124 and 22 Hz 2H H4) 171 (s 6H H16) 145 (s 18H H14) 134 (s 18H

H17) 127 (s 18H H15) 13C NMR (101 MHz DMSO-d6) δ 1717 1703 1633 1615 1456

1451 1439 1407 1398 1392 1355 1334 1304 1296 1289 1284 1269 1265 1248

1232 1220 1183 1182 1163 1158 1155 352 348 343 336 315 314 297 ESI-MS

(+ve mode) mz 1304 [M + H]+

Complex 3 Compound L2 (025 g 045

mmol in powder form) was added to a stirred

solution of sodium methoxide (015 g 27

mmol) and zinc chloride (013 g 098 mmol)

in degassed EtOHCH2Cl2 (12 20 mL) at 0 degC

The mixture was stirred for 5 min after which

L10 (029 g 089 mmol) in EtOHCH2Cl2 (12

10 mL) was added The reaction mixture was stirred at room temperature for 12 h to give a pale

yellow suspension The filtrate was collected and all volatiles were removed under reduced

pressure to give a yellow solid which was purified by column chromatography (Et3N-saturated

SiO2 hexaneCH2Cl2 11) to afford 3 as a pale yellow solid Yield 013 g 21 Anal Calcd for

C79H98N4O5Zn2C6H14 (140064) C 7289 H 806 N 400 Found C 7269 H 782 N 377 1H NMR (300 MHz CD2Cl2) δ 765 (s 2H H13) 750 (d J = 22 Hz 2H H15) 749 (s 2H H6)

745 (dd J = 87 and 23 Hz 2H H4) 742 (d J = 23 Hz 2H H1) 731 (d J = 23 Hz 2H H3)

720 (d J = 23 Hz 2H H2) 694 (d J = 88 Hz 2H H5) 653 (d J = 23 Hz 2H H14) 379ndash

359 (m 4H H7 H12) 187ndash163 (m 8H H8 H11) 173 (s 6H H18) 150ndash128 (m 8H H10 H9)

147 (s 18H H17) 137 (s 18H H19) 132 (s 18H H16) 128ndash124 (m C6H14) 088 (t C6H14) 13C NMR (101 MHz CD2Cl2) δ 1737 1728 1702 1687 1459 1455 1417 1385 1382

1359 1314 1300 1298 1283 1267 1249 1237 1219 1178 1174 698 686 383 383

358 351 348 343 333 317 316 301 256 253 ESI-MS (+ve mode) mz 1316 [M + H]+

S7

Complex 4 The procedure for the synthesis

of 2 was adopted using L6 (50 mg 012 mmol) A

yellow precipitate was formed which was

collected and washed copiously with MeOH and

pentane to afford 4 as a yellow solid Yield 011 g

78 Anal Calcd for C68H64N4O5Zn2(H2O)3

(120213) C 6794 H 587 N 466 Found C

6787 H 596 N 445 1H NMR (400 MHz

DMSO-d6) δ 911 (s 2H H7) 893 (s 2H H12)

818 (d J = 22 Hz 2H H4) 809 (dd J = 24 and 26 Hz 2H H5) 805 (d J = 68 Hz 2H H1)

787 (d J = 86 Hz 2H H8) 784 (d J = 84 Hz 2H H11) 775 (d J = 75 Hz 2H H3) 750 (t J

= 76 Hz 2H H2) 737 (t J = 76 Hz 2H H9) 734 (d J = 25 Hz 2H H14) 730ndash722 (m 4H

H10 H13) 686 (d J = 89 Hz 2H H6) 149 (s 18H H16) 128 (s 18H H15) 13C NMR (101

MHz DMSO-d6) δ 1722 1707 1638 1623 1524 1410 1403 1391 1363 1345 1337

1299 1288 1278 1272 1254 1252 1246 1241 1240 1204 1199 1189 1184 1167

1163 354 338 316 299 ESI-MS (+ve mode) mz 1150 [M + H]+

Complex 5 Compound L3 (88 mg 013

mmol in powder form) and trimethylamine (1

mL) were added to a stirred solution of L8 (70

mg 026 mmol) and Zn(OAc)2middot2H2O (63 mg

029 mmol) in MeOH (20 mL) at room

temperature The reaction mixture was stirred

at 75 degC for 20 h to give a yellow precipitate

which was collected and washed copiously with cold MeOH to afford 5 as a bright yellow solid

Yield 80 mg 64 Anal Calcd for C79H86N4O5Zn2(CH3OH)2 (136646) C 7120 H 693 N

410 Found C 7130 H 674 N 413 1H NMR (400 MHz DMSO-d6) δ 838 (s 2H H10) 818

(s 2H H5) 752ndash735 (m 8H H4 H3 H6 H9) 739 (s 2H H1) 721 (s 2H H2) 707 (d J = 67

Hz 2H H13) 697 (dd J = 76 and 72 Hz 2H H7) 684 (d J = 72 Hz 2H H11) 676 (dd J =

80 and 72 Hz 2H H8) 638 (t J = 76 Hz 2H H12) 407 (br q J = 52 Hz CH3OH) 318 (d J

= 52 Hz CH3OH) 172 (s 6H H16) 137 (s 18H H17) 125 (s 18H H14) 123 (s 18H H15)

1

2

3

415

56

7 8

910

11

13

12

16

17

14

O

ON N

OZn

ON N

OZn

tBu

tBu

tBu

tBu

S8

13C NMR (101 MHz C6D6DMSO-d6 91) δ 1729 1722 1614 1612 1458 1448 1423

1420 1398 1396 1346 1329 1309 1300 1299 1261 1258 1257 1221 1199 1194

1192 1154 1151 1120 354 353 348 342 314 297 296 ESI-MS (+ve mode) mz

1304 [M + H]+

Complex 6 The procedure for the

synthesis of 5 was adopted using L3 (50 mg

0074 mmol) and L9 (48 mg 015 mmol) A

orange precipitate was formed which was

collected washed copiously with cold MeOH

and recrystallized from CH2Cl2hexane (19)

to afford 6 as a bright yellow solid Yield 46 mg 41 Anal Calcd for C87H102N4O5Zn2(H2O)5

(150466) C 6945 H 750 N 372 Found C 6977 H 736 N 389 1H NMR (400 MHz

DMSO-d6) δ 880 (s 2H H10) 852 (s 2H H5) 768 (d J = 80 Hz 2H H9) 763 (d J = 83 Hz

2H H6) 750 (d J = 23 Hz 2H H3) 745ndash739 (m 4H H1 H4) 720 (d J = 25 Hz 2H H12)

717 (d J = 23 Hz 2H H2) 719ndash712 (m 2H H7) 705 (d J = 26 Hz 2H H11) 707ndash699 (m

2H H8) 173 (s 6H H16) 136 (s 18H H17) 131 (s 18H H14) 124 (s 18H H13) 121 (s 18H

H15) 13C NMR (101 MHz DMSO-d6) δ 1721 1708 1626 1625 1452 1448 1412 1411

1399 1346 1332 1323 1298 1292 1285 1268 1267 1260 1260 1250 1218 1213

1196 1186 1165 1159 356 353 348 346 339 336 319 319 300 298 ESI-MS (+ve

mode) mz 1416 [M + H]+

Complex 7 and 7middotAcOH Compound L7 (60 mg

012 mmol in powder form) and Et3N (3 mL) were

added to a stirred solution of L8 (62 mg 023 mmol)

and Zn(OAc)2middot2H2O (56 mg 025 mmol) in MeOH

(20 mL) at room temperature The reaction mixture

was stirred at room temperature for 20 h to give a grey

solution All volatiles were removed under reduced

pressure and recrystallization from CH2Cl2hexane

(19) afforded a yellow crystalline solid which was characterized as 7middotAcOH Yield 98 mg

68 Anal Calcd for C68H64N4O5Zn2CH3CO2H (120813) C 6959 H 464 N 567 Found

S9

C 6999 H 464 N 599 1H NMR (400 MHz DMSO-d6) δ 871 (s 2H H11) 870 (s 2H H6)

832 (d J = 22 Hz 2H H4) 804 (dd J = 76 and 11 Hz 2H H1) 781ndash772 (m 4H H3 H5)

750 (t J = 76 Hz 2H H2) 743 (d J = 76 Hz 2H H10) 737 (d J = 81 Hz 2H H12) 732 (d

J = 79 Hz 2H H7) 727 (d J = 75 Hz 2H H14) 701 (t J = 77 Hz 2H H8) 662 (dd J = 79

and 75 Hz 2H H9) 650 (t J = 75 Hz 2H H13) 185 (s 3H H17) 161 (s 18H H16) 156 (s

18H H15) 13C NMR (151 MHz DMSO-d6) δ 1720 1719 1717 1616 1605 1522 1424

1414 1390 1377 1350 1345 1300 1299 1267 1264 1256 1244 1243 1236 1194

1188 1184 1181 1149 1146 1119 353 350 295 294 210

The yellow crystalline solid (7middotAcOH) was

dissolved in CH2Cl2 (15 mL) and washed with DI

water (20 mL times 3) The organic layer was collected

all volatiles were removed under reduced pressure

and recrystallization from acetonepentane (15)

afforded 7 as an orange solid Yield 62 mg 47

(based on L7) Anal Calcd for C68H64N4O5Zn2

(114808) C 7114 H 562 N 488 Found C 7116

H 579 N 473 1H NMR (400 MHz DMSO-d6) δ

870 (s 2H H11) 869 (s 2H H6) 832 (s 2H H4)

804 (dd J = 77 and 10 Hz 2H H1) 781ndash772 (m 4H H3 H5) 750 (t J = 76 Hz 2H H2)

743 (d J = 81 Hz 2H H10) 737 (d J = 68 Hz 2H H12) 732 (d J = 80 Hz 2H H7) 727 (d

J = 73 Hz 2H H14) 701 (dd J = 77 and 74 Hz 2H H8) 662 (t J = 75 Hz 2H H9) 650 (t J

= 75 Hz 2H H13) 161 (s 18H H16) 155 (s 18H H15) 13C NMR (101 MHz DMSO-d6) δ

1720 1717 1618 1606 1522 1425 1414 1390 1376 1352 1347 1301 1300 1268

1265 1256 1245 1243 1238 1195 1188 1185 1183 1150 1146 1120 354 352

296 295 ESI-MS (+ve mode) mz 1150 [M + H]+

S10

Complex 8 The procedure for the synthesis

of 4 was adopted using L7 (78 mg 015 mmol) A

brown precipitate was formed which was

collected and washed copiously with MeOH and

pentane to afford 8 as a brownish yellow solid

Yield 85 mg 43 Anal Calcd for

C76H80N4O5Zn2(H2O)4 (133235) C 6851 H

666 N 421 Found C 6840 H 688 N 429 1H NMR (400 MHz DMSO-d6) δ 883 (s 2H

H13) 882 (s 2H H20) 813 (d J = 22 Hz 2H H8) 805 (d J = 76 Hz 2H H2) 776 (d J = 23

Hz 2H H12) 771 (d J = 70 Hz 2H H4) 763 (d J = 78 Hz 2H H18) 754ndash745 (m 4H H315)

734 (d J = 25 Hz 2H H25) 724 (d J = 26 Hz 2H H23) 711 (dd J = 76 and 78 Hz 2H

H16) 689 (dd J = 78 and 80 Hz 2H H17) 152 (s 18H H32) 151 (s 18H H30) 132 (s 18H

H28) 13C NMR (151 MHz DMSO-d6 peak assignments based on combination of DEPT-135

and 2-D 1H-1H 13C-1H (HSQC and HMBC) and NOE correlation NMR experiments) δ 1719

(C10) 1702 (C21) 1621 (C20) 1612 (C13) 1523 (C6) 1422 (C11) 1407 (C26) 1392 (C19)

1382 (C14) 1346 (C8) 1331 (C24) 1301 (C12) 1294 (C23) 1281 (C25) 1266 (C17) 1265

(C16) 1258 (C5) 1250 (C4) 1243 (C1) 1236 (C3) 1190 (C9) 1188 (C7) 1181 (C2) 1180

(C22) 1152 (C18) 1151 (C15) 352 (C2931) 335 (C27) 313 (C28) 296 (C30) 294 (C32) ESI-

MS (+ve mode) mz 1264 [M + H]+

S11

Figure S1 1H NMR (400 MHz CDCl3 298 K inset expanded) spectrum of reaction mixture corresponding to Run 10 in Table 3 [reaction conditions 12-epoxybutane (575 mmol 5 mL) catalyst 8 (00025 mol) nBu4NI co-cat (0125 mol) mesitylene (internal standard 1 mol) 10 bar CO2 initial pressure 95 degC 2 h]

Hf

Hc

Hd Hdrsquo

Hcrsquo ampnBu4NI

Ha

Hb1

Hb2

Harsquo

Hbrsquo1

Hbrsquo2

CDCl3

He

S12

Figure S2 1H NMR (400 MHz CDCl3 298 K inset expanded) spectrum of reaction mixture corresponding to Run 12 in Table 3 [reaction conditions 12-epoxyhexane (249 mmol 3 mL) catalyst 8 (00025 mol) nBu4NI co-cat (0125 mol) mesitylene (internal standard 1 mol) 10 bar CO2 initial pressure 95 degC 2 h]

nBu4NI Hf

Hd Hdrsquo

Ha

Hb1

Hb2 Harsquo

Hbrsquo1

Hbrsquo2

CDCl3

He

Hc Hcrsquo

S13

ESI References

1 R Okamura T Wada K Aikawa T Nagata and K Tanaka Inorg Chem 2004 43 7210

2 W-L Tong S-M Yiu and M C W Chan Inorg Chem 2013 52 7114

3 M Hirotsu N Ohno T Nakajima C Kushibe K Ueno and I Kinoshita Dalton Trans 2010 39 139

4 E B Schwartz C B Knobler and D J Cram J Am Chem Soc 1992 114 10775

5 Z Guo S-M Yiu and M C W Chan Chem Eur J 2013 19 8937

Page 4: Electronic Supplementary Information Supplementary Information Topologically diverse shape-persistent bis-(Zn-salphen) catalysts: efficient cyclic carbonate formation under mild conditions

S4

Compound L3 L1 (082 g 20 mmol) 2-hydroxy-3-tert-

butyl-5-bromobenzaldehyde (122 g 476 mmol) and Pd(PPh3)4

(005 g 004 mmol) were suspended in a deoxygenated solution of

K2CO3 (122 g 880 mmol) in DMEDI water (31 40 mL) The

reaction mixture which became a clear orange solution upon

heating was then stirred under reflux for 3 h during which the

color of the solution became dark brown The mixture was cooled to 0 degC after which 1 M

aqueous HCl (20 mL) was added and the mixture was stirred at room temperature for 1 h Water

(100 mL) and chloroform (200 mL) were added to the resulting orange suspension After stirring

at room temperature for 1 h the organic layer was separated and washed with water The

resultant orange solution was dried over MgSO4 filtered and concentrated to dryness The crude

product was further purified by column chromatography (SiO2 hexaneCH2Cl2 11) to give the

desired product as a yellow solid Yield 092 g 68 1H NMR (300 MHz DMSO-d6) δ 1171 (s

2H OH) 947 (s 2H CHO) 760ndash743 (m 6H) 719 (d J = 22 Hz 2H) 173 (s 6H CH3)

134 (s 18H tBu) 120 (s 18H tBu) Compound L4 The procedure for the synthesis of L3 was

adopted using L1 (070 g 17 mmol) and 2-hydroxy-4-

iodobenzaldehyde (10 g 40 mmol) The crude product was

purified by column chromatography (SiO2 hexaneCH2Cl2 12) to

give the desired product as a pale yellow solid Yield 051 g 53 1H NMR (300 MHz DMSO-d6) δ 1014 (s 2H CHO) 756 (d J =

23 Hz 2H) 732 (d J = 80 Hz 2H) 716 (d J = 23 Hz 2H) 684

(d J = 12 Hz 2H) 676 (d J = 80 Hz 2H) 170 (s 6H CH3) 132 (s 18H tBu)

Compound L6 The procedure for the synthesis of L3

was adopted using L5 (200 g 782 mmol) and 2-hydroxy-5-

bromobenzaldehyde (346 g 172 mmol) The crude product

was purified by column chromatography (SiO2 CH2Cl2) to

give the desired product as a pale yellow solid Yield 24 g

75 1H NMR (300 MHz DMSO-d6) δ 1102 (s 2H OH)

S5

1036 (s 2H CHO) 830 (s 2H) 824ndash807 (m 4H) 773 (d J = 76 Hz 2H) 749 (dd J = 78

and 75 Hz 2H) 720 (d J = 86 Hz 2H)

Compound L7 The procedure for the synthesis of L3 was

adopted using L5 (080 g 31 mmol) The crude product was

purified by flash chromatography (SiO2 CH2Cl2hexane 11) to

give the desired product as a yellow powder Yield 12 g 74 1H NMR (400 MHz DMSO-d6) δ 1189 (s 2H OH) 1005 (s 2H

CHO) 823ndash819 (m 4H) 793 (d J = 22 Hz 2H) 773 (dd J =

76 and 12 Hz 2H) 755 (t J = 76 Hz 2H) 133 (s 18H tBu)

Compound L10 To a vigorously stirred solution of 12-

cyclohexanediamine (080 g 70 mmol) in dry CH2Cl2 (15 mL) at 0 oC

was added dropwise a solution of 35-di-tert-butylbenzaldehyde (109 g

467 mmol) in dry CH2Cl2 (10 mL) at 0 oC over 30 min The mixture

was then stirred at 0 oC for 3 h The resulting yellow solution was

evaporated under reduced pressure at 5 degC to give a pale yellow oil which was purified by

column chromatography (SiO2 ethyl acetate) to give the desired product as a pale yellow solid

Yield 052 g 34 1H NMR (400 MHz CDCl3) δ 1371 (s 1H OH) 843 (s 1H) 739 (d J =

24 Hz 1H) 710 (d J = 24 Hz 1H) 412 (q J = 71 Hz 2H) 293ndash274 (m 2H) 199ndash189 (m

2H) 183ndash171 (m 4H) 170ndash157 (m 2H) 145 (s 9H tBu) 130 (s 9H tBu)

Complex 2 Compound L4 (33 mg 0059 mmol

in powder form) and triethylamine (1 mL) were added

to a stirred solution of L9 (42 mg 013 mmol) and

Zn(OAc)2middot2H2O (28 mg 013 mmol) in MeOH (20 mL)

at room temperature The reaction mixture was stirred

at room temperature for 20 h to give a yellow

precipitate which was collected and washed copiously

with MeOH to afford 2 as a bright yellow solid Yield 64 mg 78 Anal Calcd for

C79H86N4O5Zn2(H2O)5 (139245) C 6814 H 695 N 402 Found C 6851 H 670 N 404

S6

1H NMR (300 MHz DMSO-d6) δ 897 (s 2H H11) 873 (s 2H H6) 784 (d J = 79 Hz 2H

H10) 753 (d J = 22 Hz 2H H1) 736 (d J = 85 Hz 2H H7) 732ndash719 (m 8H H5 H9 H12

H13) 718 (d J = 22 Hz 2H H2) 691 (dd J = 78 and 75 Hz 2H H8) 660 (d J = 13 Hz 2H

H3) 647 (dd J = 124 and 22 Hz 2H H4) 171 (s 6H H16) 145 (s 18H H14) 134 (s 18H

H17) 127 (s 18H H15) 13C NMR (101 MHz DMSO-d6) δ 1717 1703 1633 1615 1456

1451 1439 1407 1398 1392 1355 1334 1304 1296 1289 1284 1269 1265 1248

1232 1220 1183 1182 1163 1158 1155 352 348 343 336 315 314 297 ESI-MS

(+ve mode) mz 1304 [M + H]+

Complex 3 Compound L2 (025 g 045

mmol in powder form) was added to a stirred

solution of sodium methoxide (015 g 27

mmol) and zinc chloride (013 g 098 mmol)

in degassed EtOHCH2Cl2 (12 20 mL) at 0 degC

The mixture was stirred for 5 min after which

L10 (029 g 089 mmol) in EtOHCH2Cl2 (12

10 mL) was added The reaction mixture was stirred at room temperature for 12 h to give a pale

yellow suspension The filtrate was collected and all volatiles were removed under reduced

pressure to give a yellow solid which was purified by column chromatography (Et3N-saturated

SiO2 hexaneCH2Cl2 11) to afford 3 as a pale yellow solid Yield 013 g 21 Anal Calcd for

C79H98N4O5Zn2C6H14 (140064) C 7289 H 806 N 400 Found C 7269 H 782 N 377 1H NMR (300 MHz CD2Cl2) δ 765 (s 2H H13) 750 (d J = 22 Hz 2H H15) 749 (s 2H H6)

745 (dd J = 87 and 23 Hz 2H H4) 742 (d J = 23 Hz 2H H1) 731 (d J = 23 Hz 2H H3)

720 (d J = 23 Hz 2H H2) 694 (d J = 88 Hz 2H H5) 653 (d J = 23 Hz 2H H14) 379ndash

359 (m 4H H7 H12) 187ndash163 (m 8H H8 H11) 173 (s 6H H18) 150ndash128 (m 8H H10 H9)

147 (s 18H H17) 137 (s 18H H19) 132 (s 18H H16) 128ndash124 (m C6H14) 088 (t C6H14) 13C NMR (101 MHz CD2Cl2) δ 1737 1728 1702 1687 1459 1455 1417 1385 1382

1359 1314 1300 1298 1283 1267 1249 1237 1219 1178 1174 698 686 383 383

358 351 348 343 333 317 316 301 256 253 ESI-MS (+ve mode) mz 1316 [M + H]+

S7

Complex 4 The procedure for the synthesis

of 2 was adopted using L6 (50 mg 012 mmol) A

yellow precipitate was formed which was

collected and washed copiously with MeOH and

pentane to afford 4 as a yellow solid Yield 011 g

78 Anal Calcd for C68H64N4O5Zn2(H2O)3

(120213) C 6794 H 587 N 466 Found C

6787 H 596 N 445 1H NMR (400 MHz

DMSO-d6) δ 911 (s 2H H7) 893 (s 2H H12)

818 (d J = 22 Hz 2H H4) 809 (dd J = 24 and 26 Hz 2H H5) 805 (d J = 68 Hz 2H H1)

787 (d J = 86 Hz 2H H8) 784 (d J = 84 Hz 2H H11) 775 (d J = 75 Hz 2H H3) 750 (t J

= 76 Hz 2H H2) 737 (t J = 76 Hz 2H H9) 734 (d J = 25 Hz 2H H14) 730ndash722 (m 4H

H10 H13) 686 (d J = 89 Hz 2H H6) 149 (s 18H H16) 128 (s 18H H15) 13C NMR (101

MHz DMSO-d6) δ 1722 1707 1638 1623 1524 1410 1403 1391 1363 1345 1337

1299 1288 1278 1272 1254 1252 1246 1241 1240 1204 1199 1189 1184 1167

1163 354 338 316 299 ESI-MS (+ve mode) mz 1150 [M + H]+

Complex 5 Compound L3 (88 mg 013

mmol in powder form) and trimethylamine (1

mL) were added to a stirred solution of L8 (70

mg 026 mmol) and Zn(OAc)2middot2H2O (63 mg

029 mmol) in MeOH (20 mL) at room

temperature The reaction mixture was stirred

at 75 degC for 20 h to give a yellow precipitate

which was collected and washed copiously with cold MeOH to afford 5 as a bright yellow solid

Yield 80 mg 64 Anal Calcd for C79H86N4O5Zn2(CH3OH)2 (136646) C 7120 H 693 N

410 Found C 7130 H 674 N 413 1H NMR (400 MHz DMSO-d6) δ 838 (s 2H H10) 818

(s 2H H5) 752ndash735 (m 8H H4 H3 H6 H9) 739 (s 2H H1) 721 (s 2H H2) 707 (d J = 67

Hz 2H H13) 697 (dd J = 76 and 72 Hz 2H H7) 684 (d J = 72 Hz 2H H11) 676 (dd J =

80 and 72 Hz 2H H8) 638 (t J = 76 Hz 2H H12) 407 (br q J = 52 Hz CH3OH) 318 (d J

= 52 Hz CH3OH) 172 (s 6H H16) 137 (s 18H H17) 125 (s 18H H14) 123 (s 18H H15)

1

2

3

415

56

7 8

910

11

13

12

16

17

14

O

ON N

OZn

ON N

OZn

tBu

tBu

tBu

tBu

S8

13C NMR (101 MHz C6D6DMSO-d6 91) δ 1729 1722 1614 1612 1458 1448 1423

1420 1398 1396 1346 1329 1309 1300 1299 1261 1258 1257 1221 1199 1194

1192 1154 1151 1120 354 353 348 342 314 297 296 ESI-MS (+ve mode) mz

1304 [M + H]+

Complex 6 The procedure for the

synthesis of 5 was adopted using L3 (50 mg

0074 mmol) and L9 (48 mg 015 mmol) A

orange precipitate was formed which was

collected washed copiously with cold MeOH

and recrystallized from CH2Cl2hexane (19)

to afford 6 as a bright yellow solid Yield 46 mg 41 Anal Calcd for C87H102N4O5Zn2(H2O)5

(150466) C 6945 H 750 N 372 Found C 6977 H 736 N 389 1H NMR (400 MHz

DMSO-d6) δ 880 (s 2H H10) 852 (s 2H H5) 768 (d J = 80 Hz 2H H9) 763 (d J = 83 Hz

2H H6) 750 (d J = 23 Hz 2H H3) 745ndash739 (m 4H H1 H4) 720 (d J = 25 Hz 2H H12)

717 (d J = 23 Hz 2H H2) 719ndash712 (m 2H H7) 705 (d J = 26 Hz 2H H11) 707ndash699 (m

2H H8) 173 (s 6H H16) 136 (s 18H H17) 131 (s 18H H14) 124 (s 18H H13) 121 (s 18H

H15) 13C NMR (101 MHz DMSO-d6) δ 1721 1708 1626 1625 1452 1448 1412 1411

1399 1346 1332 1323 1298 1292 1285 1268 1267 1260 1260 1250 1218 1213

1196 1186 1165 1159 356 353 348 346 339 336 319 319 300 298 ESI-MS (+ve

mode) mz 1416 [M + H]+

Complex 7 and 7middotAcOH Compound L7 (60 mg

012 mmol in powder form) and Et3N (3 mL) were

added to a stirred solution of L8 (62 mg 023 mmol)

and Zn(OAc)2middot2H2O (56 mg 025 mmol) in MeOH

(20 mL) at room temperature The reaction mixture

was stirred at room temperature for 20 h to give a grey

solution All volatiles were removed under reduced

pressure and recrystallization from CH2Cl2hexane

(19) afforded a yellow crystalline solid which was characterized as 7middotAcOH Yield 98 mg

68 Anal Calcd for C68H64N4O5Zn2CH3CO2H (120813) C 6959 H 464 N 567 Found

S9

C 6999 H 464 N 599 1H NMR (400 MHz DMSO-d6) δ 871 (s 2H H11) 870 (s 2H H6)

832 (d J = 22 Hz 2H H4) 804 (dd J = 76 and 11 Hz 2H H1) 781ndash772 (m 4H H3 H5)

750 (t J = 76 Hz 2H H2) 743 (d J = 76 Hz 2H H10) 737 (d J = 81 Hz 2H H12) 732 (d

J = 79 Hz 2H H7) 727 (d J = 75 Hz 2H H14) 701 (t J = 77 Hz 2H H8) 662 (dd J = 79

and 75 Hz 2H H9) 650 (t J = 75 Hz 2H H13) 185 (s 3H H17) 161 (s 18H H16) 156 (s

18H H15) 13C NMR (151 MHz DMSO-d6) δ 1720 1719 1717 1616 1605 1522 1424

1414 1390 1377 1350 1345 1300 1299 1267 1264 1256 1244 1243 1236 1194

1188 1184 1181 1149 1146 1119 353 350 295 294 210

The yellow crystalline solid (7middotAcOH) was

dissolved in CH2Cl2 (15 mL) and washed with DI

water (20 mL times 3) The organic layer was collected

all volatiles were removed under reduced pressure

and recrystallization from acetonepentane (15)

afforded 7 as an orange solid Yield 62 mg 47

(based on L7) Anal Calcd for C68H64N4O5Zn2

(114808) C 7114 H 562 N 488 Found C 7116

H 579 N 473 1H NMR (400 MHz DMSO-d6) δ

870 (s 2H H11) 869 (s 2H H6) 832 (s 2H H4)

804 (dd J = 77 and 10 Hz 2H H1) 781ndash772 (m 4H H3 H5) 750 (t J = 76 Hz 2H H2)

743 (d J = 81 Hz 2H H10) 737 (d J = 68 Hz 2H H12) 732 (d J = 80 Hz 2H H7) 727 (d

J = 73 Hz 2H H14) 701 (dd J = 77 and 74 Hz 2H H8) 662 (t J = 75 Hz 2H H9) 650 (t J

= 75 Hz 2H H13) 161 (s 18H H16) 155 (s 18H H15) 13C NMR (101 MHz DMSO-d6) δ

1720 1717 1618 1606 1522 1425 1414 1390 1376 1352 1347 1301 1300 1268

1265 1256 1245 1243 1238 1195 1188 1185 1183 1150 1146 1120 354 352

296 295 ESI-MS (+ve mode) mz 1150 [M + H]+

S10

Complex 8 The procedure for the synthesis

of 4 was adopted using L7 (78 mg 015 mmol) A

brown precipitate was formed which was

collected and washed copiously with MeOH and

pentane to afford 8 as a brownish yellow solid

Yield 85 mg 43 Anal Calcd for

C76H80N4O5Zn2(H2O)4 (133235) C 6851 H

666 N 421 Found C 6840 H 688 N 429 1H NMR (400 MHz DMSO-d6) δ 883 (s 2H

H13) 882 (s 2H H20) 813 (d J = 22 Hz 2H H8) 805 (d J = 76 Hz 2H H2) 776 (d J = 23

Hz 2H H12) 771 (d J = 70 Hz 2H H4) 763 (d J = 78 Hz 2H H18) 754ndash745 (m 4H H315)

734 (d J = 25 Hz 2H H25) 724 (d J = 26 Hz 2H H23) 711 (dd J = 76 and 78 Hz 2H

H16) 689 (dd J = 78 and 80 Hz 2H H17) 152 (s 18H H32) 151 (s 18H H30) 132 (s 18H

H28) 13C NMR (151 MHz DMSO-d6 peak assignments based on combination of DEPT-135

and 2-D 1H-1H 13C-1H (HSQC and HMBC) and NOE correlation NMR experiments) δ 1719

(C10) 1702 (C21) 1621 (C20) 1612 (C13) 1523 (C6) 1422 (C11) 1407 (C26) 1392 (C19)

1382 (C14) 1346 (C8) 1331 (C24) 1301 (C12) 1294 (C23) 1281 (C25) 1266 (C17) 1265

(C16) 1258 (C5) 1250 (C4) 1243 (C1) 1236 (C3) 1190 (C9) 1188 (C7) 1181 (C2) 1180

(C22) 1152 (C18) 1151 (C15) 352 (C2931) 335 (C27) 313 (C28) 296 (C30) 294 (C32) ESI-

MS (+ve mode) mz 1264 [M + H]+

S11

Figure S1 1H NMR (400 MHz CDCl3 298 K inset expanded) spectrum of reaction mixture corresponding to Run 10 in Table 3 [reaction conditions 12-epoxybutane (575 mmol 5 mL) catalyst 8 (00025 mol) nBu4NI co-cat (0125 mol) mesitylene (internal standard 1 mol) 10 bar CO2 initial pressure 95 degC 2 h]

Hf

Hc

Hd Hdrsquo

Hcrsquo ampnBu4NI

Ha

Hb1

Hb2

Harsquo

Hbrsquo1

Hbrsquo2

CDCl3

He

S12

Figure S2 1H NMR (400 MHz CDCl3 298 K inset expanded) spectrum of reaction mixture corresponding to Run 12 in Table 3 [reaction conditions 12-epoxyhexane (249 mmol 3 mL) catalyst 8 (00025 mol) nBu4NI co-cat (0125 mol) mesitylene (internal standard 1 mol) 10 bar CO2 initial pressure 95 degC 2 h]

nBu4NI Hf

Hd Hdrsquo

Ha

Hb1

Hb2 Harsquo

Hbrsquo1

Hbrsquo2

CDCl3

He

Hc Hcrsquo

S13

ESI References

1 R Okamura T Wada K Aikawa T Nagata and K Tanaka Inorg Chem 2004 43 7210

2 W-L Tong S-M Yiu and M C W Chan Inorg Chem 2013 52 7114

3 M Hirotsu N Ohno T Nakajima C Kushibe K Ueno and I Kinoshita Dalton Trans 2010 39 139

4 E B Schwartz C B Knobler and D J Cram J Am Chem Soc 1992 114 10775

5 Z Guo S-M Yiu and M C W Chan Chem Eur J 2013 19 8937

Page 5: Electronic Supplementary Information Supplementary Information Topologically diverse shape-persistent bis-(Zn-salphen) catalysts: efficient cyclic carbonate formation under mild conditions

S5

1036 (s 2H CHO) 830 (s 2H) 824ndash807 (m 4H) 773 (d J = 76 Hz 2H) 749 (dd J = 78

and 75 Hz 2H) 720 (d J = 86 Hz 2H)

Compound L7 The procedure for the synthesis of L3 was

adopted using L5 (080 g 31 mmol) The crude product was

purified by flash chromatography (SiO2 CH2Cl2hexane 11) to

give the desired product as a yellow powder Yield 12 g 74 1H NMR (400 MHz DMSO-d6) δ 1189 (s 2H OH) 1005 (s 2H

CHO) 823ndash819 (m 4H) 793 (d J = 22 Hz 2H) 773 (dd J =

76 and 12 Hz 2H) 755 (t J = 76 Hz 2H) 133 (s 18H tBu)

Compound L10 To a vigorously stirred solution of 12-

cyclohexanediamine (080 g 70 mmol) in dry CH2Cl2 (15 mL) at 0 oC

was added dropwise a solution of 35-di-tert-butylbenzaldehyde (109 g

467 mmol) in dry CH2Cl2 (10 mL) at 0 oC over 30 min The mixture

was then stirred at 0 oC for 3 h The resulting yellow solution was

evaporated under reduced pressure at 5 degC to give a pale yellow oil which was purified by

column chromatography (SiO2 ethyl acetate) to give the desired product as a pale yellow solid

Yield 052 g 34 1H NMR (400 MHz CDCl3) δ 1371 (s 1H OH) 843 (s 1H) 739 (d J =

24 Hz 1H) 710 (d J = 24 Hz 1H) 412 (q J = 71 Hz 2H) 293ndash274 (m 2H) 199ndash189 (m

2H) 183ndash171 (m 4H) 170ndash157 (m 2H) 145 (s 9H tBu) 130 (s 9H tBu)

Complex 2 Compound L4 (33 mg 0059 mmol

in powder form) and triethylamine (1 mL) were added

to a stirred solution of L9 (42 mg 013 mmol) and

Zn(OAc)2middot2H2O (28 mg 013 mmol) in MeOH (20 mL)

at room temperature The reaction mixture was stirred

at room temperature for 20 h to give a yellow

precipitate which was collected and washed copiously

with MeOH to afford 2 as a bright yellow solid Yield 64 mg 78 Anal Calcd for

C79H86N4O5Zn2(H2O)5 (139245) C 6814 H 695 N 402 Found C 6851 H 670 N 404

S6

1H NMR (300 MHz DMSO-d6) δ 897 (s 2H H11) 873 (s 2H H6) 784 (d J = 79 Hz 2H

H10) 753 (d J = 22 Hz 2H H1) 736 (d J = 85 Hz 2H H7) 732ndash719 (m 8H H5 H9 H12

H13) 718 (d J = 22 Hz 2H H2) 691 (dd J = 78 and 75 Hz 2H H8) 660 (d J = 13 Hz 2H

H3) 647 (dd J = 124 and 22 Hz 2H H4) 171 (s 6H H16) 145 (s 18H H14) 134 (s 18H

H17) 127 (s 18H H15) 13C NMR (101 MHz DMSO-d6) δ 1717 1703 1633 1615 1456

1451 1439 1407 1398 1392 1355 1334 1304 1296 1289 1284 1269 1265 1248

1232 1220 1183 1182 1163 1158 1155 352 348 343 336 315 314 297 ESI-MS

(+ve mode) mz 1304 [M + H]+

Complex 3 Compound L2 (025 g 045

mmol in powder form) was added to a stirred

solution of sodium methoxide (015 g 27

mmol) and zinc chloride (013 g 098 mmol)

in degassed EtOHCH2Cl2 (12 20 mL) at 0 degC

The mixture was stirred for 5 min after which

L10 (029 g 089 mmol) in EtOHCH2Cl2 (12

10 mL) was added The reaction mixture was stirred at room temperature for 12 h to give a pale

yellow suspension The filtrate was collected and all volatiles were removed under reduced

pressure to give a yellow solid which was purified by column chromatography (Et3N-saturated

SiO2 hexaneCH2Cl2 11) to afford 3 as a pale yellow solid Yield 013 g 21 Anal Calcd for

C79H98N4O5Zn2C6H14 (140064) C 7289 H 806 N 400 Found C 7269 H 782 N 377 1H NMR (300 MHz CD2Cl2) δ 765 (s 2H H13) 750 (d J = 22 Hz 2H H15) 749 (s 2H H6)

745 (dd J = 87 and 23 Hz 2H H4) 742 (d J = 23 Hz 2H H1) 731 (d J = 23 Hz 2H H3)

720 (d J = 23 Hz 2H H2) 694 (d J = 88 Hz 2H H5) 653 (d J = 23 Hz 2H H14) 379ndash

359 (m 4H H7 H12) 187ndash163 (m 8H H8 H11) 173 (s 6H H18) 150ndash128 (m 8H H10 H9)

147 (s 18H H17) 137 (s 18H H19) 132 (s 18H H16) 128ndash124 (m C6H14) 088 (t C6H14) 13C NMR (101 MHz CD2Cl2) δ 1737 1728 1702 1687 1459 1455 1417 1385 1382

1359 1314 1300 1298 1283 1267 1249 1237 1219 1178 1174 698 686 383 383

358 351 348 343 333 317 316 301 256 253 ESI-MS (+ve mode) mz 1316 [M + H]+

S7

Complex 4 The procedure for the synthesis

of 2 was adopted using L6 (50 mg 012 mmol) A

yellow precipitate was formed which was

collected and washed copiously with MeOH and

pentane to afford 4 as a yellow solid Yield 011 g

78 Anal Calcd for C68H64N4O5Zn2(H2O)3

(120213) C 6794 H 587 N 466 Found C

6787 H 596 N 445 1H NMR (400 MHz

DMSO-d6) δ 911 (s 2H H7) 893 (s 2H H12)

818 (d J = 22 Hz 2H H4) 809 (dd J = 24 and 26 Hz 2H H5) 805 (d J = 68 Hz 2H H1)

787 (d J = 86 Hz 2H H8) 784 (d J = 84 Hz 2H H11) 775 (d J = 75 Hz 2H H3) 750 (t J

= 76 Hz 2H H2) 737 (t J = 76 Hz 2H H9) 734 (d J = 25 Hz 2H H14) 730ndash722 (m 4H

H10 H13) 686 (d J = 89 Hz 2H H6) 149 (s 18H H16) 128 (s 18H H15) 13C NMR (101

MHz DMSO-d6) δ 1722 1707 1638 1623 1524 1410 1403 1391 1363 1345 1337

1299 1288 1278 1272 1254 1252 1246 1241 1240 1204 1199 1189 1184 1167

1163 354 338 316 299 ESI-MS (+ve mode) mz 1150 [M + H]+

Complex 5 Compound L3 (88 mg 013

mmol in powder form) and trimethylamine (1

mL) were added to a stirred solution of L8 (70

mg 026 mmol) and Zn(OAc)2middot2H2O (63 mg

029 mmol) in MeOH (20 mL) at room

temperature The reaction mixture was stirred

at 75 degC for 20 h to give a yellow precipitate

which was collected and washed copiously with cold MeOH to afford 5 as a bright yellow solid

Yield 80 mg 64 Anal Calcd for C79H86N4O5Zn2(CH3OH)2 (136646) C 7120 H 693 N

410 Found C 7130 H 674 N 413 1H NMR (400 MHz DMSO-d6) δ 838 (s 2H H10) 818

(s 2H H5) 752ndash735 (m 8H H4 H3 H6 H9) 739 (s 2H H1) 721 (s 2H H2) 707 (d J = 67

Hz 2H H13) 697 (dd J = 76 and 72 Hz 2H H7) 684 (d J = 72 Hz 2H H11) 676 (dd J =

80 and 72 Hz 2H H8) 638 (t J = 76 Hz 2H H12) 407 (br q J = 52 Hz CH3OH) 318 (d J

= 52 Hz CH3OH) 172 (s 6H H16) 137 (s 18H H17) 125 (s 18H H14) 123 (s 18H H15)

1

2

3

415

56

7 8

910

11

13

12

16

17

14

O

ON N

OZn

ON N

OZn

tBu

tBu

tBu

tBu

S8

13C NMR (101 MHz C6D6DMSO-d6 91) δ 1729 1722 1614 1612 1458 1448 1423

1420 1398 1396 1346 1329 1309 1300 1299 1261 1258 1257 1221 1199 1194

1192 1154 1151 1120 354 353 348 342 314 297 296 ESI-MS (+ve mode) mz

1304 [M + H]+

Complex 6 The procedure for the

synthesis of 5 was adopted using L3 (50 mg

0074 mmol) and L9 (48 mg 015 mmol) A

orange precipitate was formed which was

collected washed copiously with cold MeOH

and recrystallized from CH2Cl2hexane (19)

to afford 6 as a bright yellow solid Yield 46 mg 41 Anal Calcd for C87H102N4O5Zn2(H2O)5

(150466) C 6945 H 750 N 372 Found C 6977 H 736 N 389 1H NMR (400 MHz

DMSO-d6) δ 880 (s 2H H10) 852 (s 2H H5) 768 (d J = 80 Hz 2H H9) 763 (d J = 83 Hz

2H H6) 750 (d J = 23 Hz 2H H3) 745ndash739 (m 4H H1 H4) 720 (d J = 25 Hz 2H H12)

717 (d J = 23 Hz 2H H2) 719ndash712 (m 2H H7) 705 (d J = 26 Hz 2H H11) 707ndash699 (m

2H H8) 173 (s 6H H16) 136 (s 18H H17) 131 (s 18H H14) 124 (s 18H H13) 121 (s 18H

H15) 13C NMR (101 MHz DMSO-d6) δ 1721 1708 1626 1625 1452 1448 1412 1411

1399 1346 1332 1323 1298 1292 1285 1268 1267 1260 1260 1250 1218 1213

1196 1186 1165 1159 356 353 348 346 339 336 319 319 300 298 ESI-MS (+ve

mode) mz 1416 [M + H]+

Complex 7 and 7middotAcOH Compound L7 (60 mg

012 mmol in powder form) and Et3N (3 mL) were

added to a stirred solution of L8 (62 mg 023 mmol)

and Zn(OAc)2middot2H2O (56 mg 025 mmol) in MeOH

(20 mL) at room temperature The reaction mixture

was stirred at room temperature for 20 h to give a grey

solution All volatiles were removed under reduced

pressure and recrystallization from CH2Cl2hexane

(19) afforded a yellow crystalline solid which was characterized as 7middotAcOH Yield 98 mg

68 Anal Calcd for C68H64N4O5Zn2CH3CO2H (120813) C 6959 H 464 N 567 Found

S9

C 6999 H 464 N 599 1H NMR (400 MHz DMSO-d6) δ 871 (s 2H H11) 870 (s 2H H6)

832 (d J = 22 Hz 2H H4) 804 (dd J = 76 and 11 Hz 2H H1) 781ndash772 (m 4H H3 H5)

750 (t J = 76 Hz 2H H2) 743 (d J = 76 Hz 2H H10) 737 (d J = 81 Hz 2H H12) 732 (d

J = 79 Hz 2H H7) 727 (d J = 75 Hz 2H H14) 701 (t J = 77 Hz 2H H8) 662 (dd J = 79

and 75 Hz 2H H9) 650 (t J = 75 Hz 2H H13) 185 (s 3H H17) 161 (s 18H H16) 156 (s

18H H15) 13C NMR (151 MHz DMSO-d6) δ 1720 1719 1717 1616 1605 1522 1424

1414 1390 1377 1350 1345 1300 1299 1267 1264 1256 1244 1243 1236 1194

1188 1184 1181 1149 1146 1119 353 350 295 294 210

The yellow crystalline solid (7middotAcOH) was

dissolved in CH2Cl2 (15 mL) and washed with DI

water (20 mL times 3) The organic layer was collected

all volatiles were removed under reduced pressure

and recrystallization from acetonepentane (15)

afforded 7 as an orange solid Yield 62 mg 47

(based on L7) Anal Calcd for C68H64N4O5Zn2

(114808) C 7114 H 562 N 488 Found C 7116

H 579 N 473 1H NMR (400 MHz DMSO-d6) δ

870 (s 2H H11) 869 (s 2H H6) 832 (s 2H H4)

804 (dd J = 77 and 10 Hz 2H H1) 781ndash772 (m 4H H3 H5) 750 (t J = 76 Hz 2H H2)

743 (d J = 81 Hz 2H H10) 737 (d J = 68 Hz 2H H12) 732 (d J = 80 Hz 2H H7) 727 (d

J = 73 Hz 2H H14) 701 (dd J = 77 and 74 Hz 2H H8) 662 (t J = 75 Hz 2H H9) 650 (t J

= 75 Hz 2H H13) 161 (s 18H H16) 155 (s 18H H15) 13C NMR (101 MHz DMSO-d6) δ

1720 1717 1618 1606 1522 1425 1414 1390 1376 1352 1347 1301 1300 1268

1265 1256 1245 1243 1238 1195 1188 1185 1183 1150 1146 1120 354 352

296 295 ESI-MS (+ve mode) mz 1150 [M + H]+

S10

Complex 8 The procedure for the synthesis

of 4 was adopted using L7 (78 mg 015 mmol) A

brown precipitate was formed which was

collected and washed copiously with MeOH and

pentane to afford 8 as a brownish yellow solid

Yield 85 mg 43 Anal Calcd for

C76H80N4O5Zn2(H2O)4 (133235) C 6851 H

666 N 421 Found C 6840 H 688 N 429 1H NMR (400 MHz DMSO-d6) δ 883 (s 2H

H13) 882 (s 2H H20) 813 (d J = 22 Hz 2H H8) 805 (d J = 76 Hz 2H H2) 776 (d J = 23

Hz 2H H12) 771 (d J = 70 Hz 2H H4) 763 (d J = 78 Hz 2H H18) 754ndash745 (m 4H H315)

734 (d J = 25 Hz 2H H25) 724 (d J = 26 Hz 2H H23) 711 (dd J = 76 and 78 Hz 2H

H16) 689 (dd J = 78 and 80 Hz 2H H17) 152 (s 18H H32) 151 (s 18H H30) 132 (s 18H

H28) 13C NMR (151 MHz DMSO-d6 peak assignments based on combination of DEPT-135

and 2-D 1H-1H 13C-1H (HSQC and HMBC) and NOE correlation NMR experiments) δ 1719

(C10) 1702 (C21) 1621 (C20) 1612 (C13) 1523 (C6) 1422 (C11) 1407 (C26) 1392 (C19)

1382 (C14) 1346 (C8) 1331 (C24) 1301 (C12) 1294 (C23) 1281 (C25) 1266 (C17) 1265

(C16) 1258 (C5) 1250 (C4) 1243 (C1) 1236 (C3) 1190 (C9) 1188 (C7) 1181 (C2) 1180

(C22) 1152 (C18) 1151 (C15) 352 (C2931) 335 (C27) 313 (C28) 296 (C30) 294 (C32) ESI-

MS (+ve mode) mz 1264 [M + H]+

S11

Figure S1 1H NMR (400 MHz CDCl3 298 K inset expanded) spectrum of reaction mixture corresponding to Run 10 in Table 3 [reaction conditions 12-epoxybutane (575 mmol 5 mL) catalyst 8 (00025 mol) nBu4NI co-cat (0125 mol) mesitylene (internal standard 1 mol) 10 bar CO2 initial pressure 95 degC 2 h]

Hf

Hc

Hd Hdrsquo

Hcrsquo ampnBu4NI

Ha

Hb1

Hb2

Harsquo

Hbrsquo1

Hbrsquo2

CDCl3

He

S12

Figure S2 1H NMR (400 MHz CDCl3 298 K inset expanded) spectrum of reaction mixture corresponding to Run 12 in Table 3 [reaction conditions 12-epoxyhexane (249 mmol 3 mL) catalyst 8 (00025 mol) nBu4NI co-cat (0125 mol) mesitylene (internal standard 1 mol) 10 bar CO2 initial pressure 95 degC 2 h]

nBu4NI Hf

Hd Hdrsquo

Ha

Hb1

Hb2 Harsquo

Hbrsquo1

Hbrsquo2

CDCl3

He

Hc Hcrsquo

S13

ESI References

1 R Okamura T Wada K Aikawa T Nagata and K Tanaka Inorg Chem 2004 43 7210

2 W-L Tong S-M Yiu and M C W Chan Inorg Chem 2013 52 7114

3 M Hirotsu N Ohno T Nakajima C Kushibe K Ueno and I Kinoshita Dalton Trans 2010 39 139

4 E B Schwartz C B Knobler and D J Cram J Am Chem Soc 1992 114 10775

5 Z Guo S-M Yiu and M C W Chan Chem Eur J 2013 19 8937

Page 6: Electronic Supplementary Information Supplementary Information Topologically diverse shape-persistent bis-(Zn-salphen) catalysts: efficient cyclic carbonate formation under mild conditions

S6

1H NMR (300 MHz DMSO-d6) δ 897 (s 2H H11) 873 (s 2H H6) 784 (d J = 79 Hz 2H

H10) 753 (d J = 22 Hz 2H H1) 736 (d J = 85 Hz 2H H7) 732ndash719 (m 8H H5 H9 H12

H13) 718 (d J = 22 Hz 2H H2) 691 (dd J = 78 and 75 Hz 2H H8) 660 (d J = 13 Hz 2H

H3) 647 (dd J = 124 and 22 Hz 2H H4) 171 (s 6H H16) 145 (s 18H H14) 134 (s 18H

H17) 127 (s 18H H15) 13C NMR (101 MHz DMSO-d6) δ 1717 1703 1633 1615 1456

1451 1439 1407 1398 1392 1355 1334 1304 1296 1289 1284 1269 1265 1248

1232 1220 1183 1182 1163 1158 1155 352 348 343 336 315 314 297 ESI-MS

(+ve mode) mz 1304 [M + H]+

Complex 3 Compound L2 (025 g 045

mmol in powder form) was added to a stirred

solution of sodium methoxide (015 g 27

mmol) and zinc chloride (013 g 098 mmol)

in degassed EtOHCH2Cl2 (12 20 mL) at 0 degC

The mixture was stirred for 5 min after which

L10 (029 g 089 mmol) in EtOHCH2Cl2 (12

10 mL) was added The reaction mixture was stirred at room temperature for 12 h to give a pale

yellow suspension The filtrate was collected and all volatiles were removed under reduced

pressure to give a yellow solid which was purified by column chromatography (Et3N-saturated

SiO2 hexaneCH2Cl2 11) to afford 3 as a pale yellow solid Yield 013 g 21 Anal Calcd for

C79H98N4O5Zn2C6H14 (140064) C 7289 H 806 N 400 Found C 7269 H 782 N 377 1H NMR (300 MHz CD2Cl2) δ 765 (s 2H H13) 750 (d J = 22 Hz 2H H15) 749 (s 2H H6)

745 (dd J = 87 and 23 Hz 2H H4) 742 (d J = 23 Hz 2H H1) 731 (d J = 23 Hz 2H H3)

720 (d J = 23 Hz 2H H2) 694 (d J = 88 Hz 2H H5) 653 (d J = 23 Hz 2H H14) 379ndash

359 (m 4H H7 H12) 187ndash163 (m 8H H8 H11) 173 (s 6H H18) 150ndash128 (m 8H H10 H9)

147 (s 18H H17) 137 (s 18H H19) 132 (s 18H H16) 128ndash124 (m C6H14) 088 (t C6H14) 13C NMR (101 MHz CD2Cl2) δ 1737 1728 1702 1687 1459 1455 1417 1385 1382

1359 1314 1300 1298 1283 1267 1249 1237 1219 1178 1174 698 686 383 383

358 351 348 343 333 317 316 301 256 253 ESI-MS (+ve mode) mz 1316 [M + H]+

S7

Complex 4 The procedure for the synthesis

of 2 was adopted using L6 (50 mg 012 mmol) A

yellow precipitate was formed which was

collected and washed copiously with MeOH and

pentane to afford 4 as a yellow solid Yield 011 g

78 Anal Calcd for C68H64N4O5Zn2(H2O)3

(120213) C 6794 H 587 N 466 Found C

6787 H 596 N 445 1H NMR (400 MHz

DMSO-d6) δ 911 (s 2H H7) 893 (s 2H H12)

818 (d J = 22 Hz 2H H4) 809 (dd J = 24 and 26 Hz 2H H5) 805 (d J = 68 Hz 2H H1)

787 (d J = 86 Hz 2H H8) 784 (d J = 84 Hz 2H H11) 775 (d J = 75 Hz 2H H3) 750 (t J

= 76 Hz 2H H2) 737 (t J = 76 Hz 2H H9) 734 (d J = 25 Hz 2H H14) 730ndash722 (m 4H

H10 H13) 686 (d J = 89 Hz 2H H6) 149 (s 18H H16) 128 (s 18H H15) 13C NMR (101

MHz DMSO-d6) δ 1722 1707 1638 1623 1524 1410 1403 1391 1363 1345 1337

1299 1288 1278 1272 1254 1252 1246 1241 1240 1204 1199 1189 1184 1167

1163 354 338 316 299 ESI-MS (+ve mode) mz 1150 [M + H]+

Complex 5 Compound L3 (88 mg 013

mmol in powder form) and trimethylamine (1

mL) were added to a stirred solution of L8 (70

mg 026 mmol) and Zn(OAc)2middot2H2O (63 mg

029 mmol) in MeOH (20 mL) at room

temperature The reaction mixture was stirred

at 75 degC for 20 h to give a yellow precipitate

which was collected and washed copiously with cold MeOH to afford 5 as a bright yellow solid

Yield 80 mg 64 Anal Calcd for C79H86N4O5Zn2(CH3OH)2 (136646) C 7120 H 693 N

410 Found C 7130 H 674 N 413 1H NMR (400 MHz DMSO-d6) δ 838 (s 2H H10) 818

(s 2H H5) 752ndash735 (m 8H H4 H3 H6 H9) 739 (s 2H H1) 721 (s 2H H2) 707 (d J = 67

Hz 2H H13) 697 (dd J = 76 and 72 Hz 2H H7) 684 (d J = 72 Hz 2H H11) 676 (dd J =

80 and 72 Hz 2H H8) 638 (t J = 76 Hz 2H H12) 407 (br q J = 52 Hz CH3OH) 318 (d J

= 52 Hz CH3OH) 172 (s 6H H16) 137 (s 18H H17) 125 (s 18H H14) 123 (s 18H H15)

1

2

3

415

56

7 8

910

11

13

12

16

17

14

O

ON N

OZn

ON N

OZn

tBu

tBu

tBu

tBu

S8

13C NMR (101 MHz C6D6DMSO-d6 91) δ 1729 1722 1614 1612 1458 1448 1423

1420 1398 1396 1346 1329 1309 1300 1299 1261 1258 1257 1221 1199 1194

1192 1154 1151 1120 354 353 348 342 314 297 296 ESI-MS (+ve mode) mz

1304 [M + H]+

Complex 6 The procedure for the

synthesis of 5 was adopted using L3 (50 mg

0074 mmol) and L9 (48 mg 015 mmol) A

orange precipitate was formed which was

collected washed copiously with cold MeOH

and recrystallized from CH2Cl2hexane (19)

to afford 6 as a bright yellow solid Yield 46 mg 41 Anal Calcd for C87H102N4O5Zn2(H2O)5

(150466) C 6945 H 750 N 372 Found C 6977 H 736 N 389 1H NMR (400 MHz

DMSO-d6) δ 880 (s 2H H10) 852 (s 2H H5) 768 (d J = 80 Hz 2H H9) 763 (d J = 83 Hz

2H H6) 750 (d J = 23 Hz 2H H3) 745ndash739 (m 4H H1 H4) 720 (d J = 25 Hz 2H H12)

717 (d J = 23 Hz 2H H2) 719ndash712 (m 2H H7) 705 (d J = 26 Hz 2H H11) 707ndash699 (m

2H H8) 173 (s 6H H16) 136 (s 18H H17) 131 (s 18H H14) 124 (s 18H H13) 121 (s 18H

H15) 13C NMR (101 MHz DMSO-d6) δ 1721 1708 1626 1625 1452 1448 1412 1411

1399 1346 1332 1323 1298 1292 1285 1268 1267 1260 1260 1250 1218 1213

1196 1186 1165 1159 356 353 348 346 339 336 319 319 300 298 ESI-MS (+ve

mode) mz 1416 [M + H]+

Complex 7 and 7middotAcOH Compound L7 (60 mg

012 mmol in powder form) and Et3N (3 mL) were

added to a stirred solution of L8 (62 mg 023 mmol)

and Zn(OAc)2middot2H2O (56 mg 025 mmol) in MeOH

(20 mL) at room temperature The reaction mixture

was stirred at room temperature for 20 h to give a grey

solution All volatiles were removed under reduced

pressure and recrystallization from CH2Cl2hexane

(19) afforded a yellow crystalline solid which was characterized as 7middotAcOH Yield 98 mg

68 Anal Calcd for C68H64N4O5Zn2CH3CO2H (120813) C 6959 H 464 N 567 Found

S9

C 6999 H 464 N 599 1H NMR (400 MHz DMSO-d6) δ 871 (s 2H H11) 870 (s 2H H6)

832 (d J = 22 Hz 2H H4) 804 (dd J = 76 and 11 Hz 2H H1) 781ndash772 (m 4H H3 H5)

750 (t J = 76 Hz 2H H2) 743 (d J = 76 Hz 2H H10) 737 (d J = 81 Hz 2H H12) 732 (d

J = 79 Hz 2H H7) 727 (d J = 75 Hz 2H H14) 701 (t J = 77 Hz 2H H8) 662 (dd J = 79

and 75 Hz 2H H9) 650 (t J = 75 Hz 2H H13) 185 (s 3H H17) 161 (s 18H H16) 156 (s

18H H15) 13C NMR (151 MHz DMSO-d6) δ 1720 1719 1717 1616 1605 1522 1424

1414 1390 1377 1350 1345 1300 1299 1267 1264 1256 1244 1243 1236 1194

1188 1184 1181 1149 1146 1119 353 350 295 294 210

The yellow crystalline solid (7middotAcOH) was

dissolved in CH2Cl2 (15 mL) and washed with DI

water (20 mL times 3) The organic layer was collected

all volatiles were removed under reduced pressure

and recrystallization from acetonepentane (15)

afforded 7 as an orange solid Yield 62 mg 47

(based on L7) Anal Calcd for C68H64N4O5Zn2

(114808) C 7114 H 562 N 488 Found C 7116

H 579 N 473 1H NMR (400 MHz DMSO-d6) δ

870 (s 2H H11) 869 (s 2H H6) 832 (s 2H H4)

804 (dd J = 77 and 10 Hz 2H H1) 781ndash772 (m 4H H3 H5) 750 (t J = 76 Hz 2H H2)

743 (d J = 81 Hz 2H H10) 737 (d J = 68 Hz 2H H12) 732 (d J = 80 Hz 2H H7) 727 (d

J = 73 Hz 2H H14) 701 (dd J = 77 and 74 Hz 2H H8) 662 (t J = 75 Hz 2H H9) 650 (t J

= 75 Hz 2H H13) 161 (s 18H H16) 155 (s 18H H15) 13C NMR (101 MHz DMSO-d6) δ

1720 1717 1618 1606 1522 1425 1414 1390 1376 1352 1347 1301 1300 1268

1265 1256 1245 1243 1238 1195 1188 1185 1183 1150 1146 1120 354 352

296 295 ESI-MS (+ve mode) mz 1150 [M + H]+

S10

Complex 8 The procedure for the synthesis

of 4 was adopted using L7 (78 mg 015 mmol) A

brown precipitate was formed which was

collected and washed copiously with MeOH and

pentane to afford 8 as a brownish yellow solid

Yield 85 mg 43 Anal Calcd for

C76H80N4O5Zn2(H2O)4 (133235) C 6851 H

666 N 421 Found C 6840 H 688 N 429 1H NMR (400 MHz DMSO-d6) δ 883 (s 2H

H13) 882 (s 2H H20) 813 (d J = 22 Hz 2H H8) 805 (d J = 76 Hz 2H H2) 776 (d J = 23

Hz 2H H12) 771 (d J = 70 Hz 2H H4) 763 (d J = 78 Hz 2H H18) 754ndash745 (m 4H H315)

734 (d J = 25 Hz 2H H25) 724 (d J = 26 Hz 2H H23) 711 (dd J = 76 and 78 Hz 2H

H16) 689 (dd J = 78 and 80 Hz 2H H17) 152 (s 18H H32) 151 (s 18H H30) 132 (s 18H

H28) 13C NMR (151 MHz DMSO-d6 peak assignments based on combination of DEPT-135

and 2-D 1H-1H 13C-1H (HSQC and HMBC) and NOE correlation NMR experiments) δ 1719

(C10) 1702 (C21) 1621 (C20) 1612 (C13) 1523 (C6) 1422 (C11) 1407 (C26) 1392 (C19)

1382 (C14) 1346 (C8) 1331 (C24) 1301 (C12) 1294 (C23) 1281 (C25) 1266 (C17) 1265

(C16) 1258 (C5) 1250 (C4) 1243 (C1) 1236 (C3) 1190 (C9) 1188 (C7) 1181 (C2) 1180

(C22) 1152 (C18) 1151 (C15) 352 (C2931) 335 (C27) 313 (C28) 296 (C30) 294 (C32) ESI-

MS (+ve mode) mz 1264 [M + H]+

S11

Figure S1 1H NMR (400 MHz CDCl3 298 K inset expanded) spectrum of reaction mixture corresponding to Run 10 in Table 3 [reaction conditions 12-epoxybutane (575 mmol 5 mL) catalyst 8 (00025 mol) nBu4NI co-cat (0125 mol) mesitylene (internal standard 1 mol) 10 bar CO2 initial pressure 95 degC 2 h]

Hf

Hc

Hd Hdrsquo

Hcrsquo ampnBu4NI

Ha

Hb1

Hb2

Harsquo

Hbrsquo1

Hbrsquo2

CDCl3

He

S12

Figure S2 1H NMR (400 MHz CDCl3 298 K inset expanded) spectrum of reaction mixture corresponding to Run 12 in Table 3 [reaction conditions 12-epoxyhexane (249 mmol 3 mL) catalyst 8 (00025 mol) nBu4NI co-cat (0125 mol) mesitylene (internal standard 1 mol) 10 bar CO2 initial pressure 95 degC 2 h]

nBu4NI Hf

Hd Hdrsquo

Ha

Hb1

Hb2 Harsquo

Hbrsquo1

Hbrsquo2

CDCl3

He

Hc Hcrsquo

S13

ESI References

1 R Okamura T Wada K Aikawa T Nagata and K Tanaka Inorg Chem 2004 43 7210

2 W-L Tong S-M Yiu and M C W Chan Inorg Chem 2013 52 7114

3 M Hirotsu N Ohno T Nakajima C Kushibe K Ueno and I Kinoshita Dalton Trans 2010 39 139

4 E B Schwartz C B Knobler and D J Cram J Am Chem Soc 1992 114 10775

5 Z Guo S-M Yiu and M C W Chan Chem Eur J 2013 19 8937

Page 7: Electronic Supplementary Information Supplementary Information Topologically diverse shape-persistent bis-(Zn-salphen) catalysts: efficient cyclic carbonate formation under mild conditions

S7

Complex 4 The procedure for the synthesis

of 2 was adopted using L6 (50 mg 012 mmol) A

yellow precipitate was formed which was

collected and washed copiously with MeOH and

pentane to afford 4 as a yellow solid Yield 011 g

78 Anal Calcd for C68H64N4O5Zn2(H2O)3

(120213) C 6794 H 587 N 466 Found C

6787 H 596 N 445 1H NMR (400 MHz

DMSO-d6) δ 911 (s 2H H7) 893 (s 2H H12)

818 (d J = 22 Hz 2H H4) 809 (dd J = 24 and 26 Hz 2H H5) 805 (d J = 68 Hz 2H H1)

787 (d J = 86 Hz 2H H8) 784 (d J = 84 Hz 2H H11) 775 (d J = 75 Hz 2H H3) 750 (t J

= 76 Hz 2H H2) 737 (t J = 76 Hz 2H H9) 734 (d J = 25 Hz 2H H14) 730ndash722 (m 4H

H10 H13) 686 (d J = 89 Hz 2H H6) 149 (s 18H H16) 128 (s 18H H15) 13C NMR (101

MHz DMSO-d6) δ 1722 1707 1638 1623 1524 1410 1403 1391 1363 1345 1337

1299 1288 1278 1272 1254 1252 1246 1241 1240 1204 1199 1189 1184 1167

1163 354 338 316 299 ESI-MS (+ve mode) mz 1150 [M + H]+

Complex 5 Compound L3 (88 mg 013

mmol in powder form) and trimethylamine (1

mL) were added to a stirred solution of L8 (70

mg 026 mmol) and Zn(OAc)2middot2H2O (63 mg

029 mmol) in MeOH (20 mL) at room

temperature The reaction mixture was stirred

at 75 degC for 20 h to give a yellow precipitate

which was collected and washed copiously with cold MeOH to afford 5 as a bright yellow solid

Yield 80 mg 64 Anal Calcd for C79H86N4O5Zn2(CH3OH)2 (136646) C 7120 H 693 N

410 Found C 7130 H 674 N 413 1H NMR (400 MHz DMSO-d6) δ 838 (s 2H H10) 818

(s 2H H5) 752ndash735 (m 8H H4 H3 H6 H9) 739 (s 2H H1) 721 (s 2H H2) 707 (d J = 67

Hz 2H H13) 697 (dd J = 76 and 72 Hz 2H H7) 684 (d J = 72 Hz 2H H11) 676 (dd J =

80 and 72 Hz 2H H8) 638 (t J = 76 Hz 2H H12) 407 (br q J = 52 Hz CH3OH) 318 (d J

= 52 Hz CH3OH) 172 (s 6H H16) 137 (s 18H H17) 125 (s 18H H14) 123 (s 18H H15)

1

2

3

415

56

7 8

910

11

13

12

16

17

14

O

ON N

OZn

ON N

OZn

tBu

tBu

tBu

tBu

S8

13C NMR (101 MHz C6D6DMSO-d6 91) δ 1729 1722 1614 1612 1458 1448 1423

1420 1398 1396 1346 1329 1309 1300 1299 1261 1258 1257 1221 1199 1194

1192 1154 1151 1120 354 353 348 342 314 297 296 ESI-MS (+ve mode) mz

1304 [M + H]+

Complex 6 The procedure for the

synthesis of 5 was adopted using L3 (50 mg

0074 mmol) and L9 (48 mg 015 mmol) A

orange precipitate was formed which was

collected washed copiously with cold MeOH

and recrystallized from CH2Cl2hexane (19)

to afford 6 as a bright yellow solid Yield 46 mg 41 Anal Calcd for C87H102N4O5Zn2(H2O)5

(150466) C 6945 H 750 N 372 Found C 6977 H 736 N 389 1H NMR (400 MHz

DMSO-d6) δ 880 (s 2H H10) 852 (s 2H H5) 768 (d J = 80 Hz 2H H9) 763 (d J = 83 Hz

2H H6) 750 (d J = 23 Hz 2H H3) 745ndash739 (m 4H H1 H4) 720 (d J = 25 Hz 2H H12)

717 (d J = 23 Hz 2H H2) 719ndash712 (m 2H H7) 705 (d J = 26 Hz 2H H11) 707ndash699 (m

2H H8) 173 (s 6H H16) 136 (s 18H H17) 131 (s 18H H14) 124 (s 18H H13) 121 (s 18H

H15) 13C NMR (101 MHz DMSO-d6) δ 1721 1708 1626 1625 1452 1448 1412 1411

1399 1346 1332 1323 1298 1292 1285 1268 1267 1260 1260 1250 1218 1213

1196 1186 1165 1159 356 353 348 346 339 336 319 319 300 298 ESI-MS (+ve

mode) mz 1416 [M + H]+

Complex 7 and 7middotAcOH Compound L7 (60 mg

012 mmol in powder form) and Et3N (3 mL) were

added to a stirred solution of L8 (62 mg 023 mmol)

and Zn(OAc)2middot2H2O (56 mg 025 mmol) in MeOH

(20 mL) at room temperature The reaction mixture

was stirred at room temperature for 20 h to give a grey

solution All volatiles were removed under reduced

pressure and recrystallization from CH2Cl2hexane

(19) afforded a yellow crystalline solid which was characterized as 7middotAcOH Yield 98 mg

68 Anal Calcd for C68H64N4O5Zn2CH3CO2H (120813) C 6959 H 464 N 567 Found

S9

C 6999 H 464 N 599 1H NMR (400 MHz DMSO-d6) δ 871 (s 2H H11) 870 (s 2H H6)

832 (d J = 22 Hz 2H H4) 804 (dd J = 76 and 11 Hz 2H H1) 781ndash772 (m 4H H3 H5)

750 (t J = 76 Hz 2H H2) 743 (d J = 76 Hz 2H H10) 737 (d J = 81 Hz 2H H12) 732 (d

J = 79 Hz 2H H7) 727 (d J = 75 Hz 2H H14) 701 (t J = 77 Hz 2H H8) 662 (dd J = 79

and 75 Hz 2H H9) 650 (t J = 75 Hz 2H H13) 185 (s 3H H17) 161 (s 18H H16) 156 (s

18H H15) 13C NMR (151 MHz DMSO-d6) δ 1720 1719 1717 1616 1605 1522 1424

1414 1390 1377 1350 1345 1300 1299 1267 1264 1256 1244 1243 1236 1194

1188 1184 1181 1149 1146 1119 353 350 295 294 210

The yellow crystalline solid (7middotAcOH) was

dissolved in CH2Cl2 (15 mL) and washed with DI

water (20 mL times 3) The organic layer was collected

all volatiles were removed under reduced pressure

and recrystallization from acetonepentane (15)

afforded 7 as an orange solid Yield 62 mg 47

(based on L7) Anal Calcd for C68H64N4O5Zn2

(114808) C 7114 H 562 N 488 Found C 7116

H 579 N 473 1H NMR (400 MHz DMSO-d6) δ

870 (s 2H H11) 869 (s 2H H6) 832 (s 2H H4)

804 (dd J = 77 and 10 Hz 2H H1) 781ndash772 (m 4H H3 H5) 750 (t J = 76 Hz 2H H2)

743 (d J = 81 Hz 2H H10) 737 (d J = 68 Hz 2H H12) 732 (d J = 80 Hz 2H H7) 727 (d

J = 73 Hz 2H H14) 701 (dd J = 77 and 74 Hz 2H H8) 662 (t J = 75 Hz 2H H9) 650 (t J

= 75 Hz 2H H13) 161 (s 18H H16) 155 (s 18H H15) 13C NMR (101 MHz DMSO-d6) δ

1720 1717 1618 1606 1522 1425 1414 1390 1376 1352 1347 1301 1300 1268

1265 1256 1245 1243 1238 1195 1188 1185 1183 1150 1146 1120 354 352

296 295 ESI-MS (+ve mode) mz 1150 [M + H]+

S10

Complex 8 The procedure for the synthesis

of 4 was adopted using L7 (78 mg 015 mmol) A

brown precipitate was formed which was

collected and washed copiously with MeOH and

pentane to afford 8 as a brownish yellow solid

Yield 85 mg 43 Anal Calcd for

C76H80N4O5Zn2(H2O)4 (133235) C 6851 H

666 N 421 Found C 6840 H 688 N 429 1H NMR (400 MHz DMSO-d6) δ 883 (s 2H

H13) 882 (s 2H H20) 813 (d J = 22 Hz 2H H8) 805 (d J = 76 Hz 2H H2) 776 (d J = 23

Hz 2H H12) 771 (d J = 70 Hz 2H H4) 763 (d J = 78 Hz 2H H18) 754ndash745 (m 4H H315)

734 (d J = 25 Hz 2H H25) 724 (d J = 26 Hz 2H H23) 711 (dd J = 76 and 78 Hz 2H

H16) 689 (dd J = 78 and 80 Hz 2H H17) 152 (s 18H H32) 151 (s 18H H30) 132 (s 18H

H28) 13C NMR (151 MHz DMSO-d6 peak assignments based on combination of DEPT-135

and 2-D 1H-1H 13C-1H (HSQC and HMBC) and NOE correlation NMR experiments) δ 1719

(C10) 1702 (C21) 1621 (C20) 1612 (C13) 1523 (C6) 1422 (C11) 1407 (C26) 1392 (C19)

1382 (C14) 1346 (C8) 1331 (C24) 1301 (C12) 1294 (C23) 1281 (C25) 1266 (C17) 1265

(C16) 1258 (C5) 1250 (C4) 1243 (C1) 1236 (C3) 1190 (C9) 1188 (C7) 1181 (C2) 1180

(C22) 1152 (C18) 1151 (C15) 352 (C2931) 335 (C27) 313 (C28) 296 (C30) 294 (C32) ESI-

MS (+ve mode) mz 1264 [M + H]+

S11

Figure S1 1H NMR (400 MHz CDCl3 298 K inset expanded) spectrum of reaction mixture corresponding to Run 10 in Table 3 [reaction conditions 12-epoxybutane (575 mmol 5 mL) catalyst 8 (00025 mol) nBu4NI co-cat (0125 mol) mesitylene (internal standard 1 mol) 10 bar CO2 initial pressure 95 degC 2 h]

Hf

Hc

Hd Hdrsquo

Hcrsquo ampnBu4NI

Ha

Hb1

Hb2

Harsquo

Hbrsquo1

Hbrsquo2

CDCl3

He

S12

Figure S2 1H NMR (400 MHz CDCl3 298 K inset expanded) spectrum of reaction mixture corresponding to Run 12 in Table 3 [reaction conditions 12-epoxyhexane (249 mmol 3 mL) catalyst 8 (00025 mol) nBu4NI co-cat (0125 mol) mesitylene (internal standard 1 mol) 10 bar CO2 initial pressure 95 degC 2 h]

nBu4NI Hf

Hd Hdrsquo

Ha

Hb1

Hb2 Harsquo

Hbrsquo1

Hbrsquo2

CDCl3

He

Hc Hcrsquo

S13

ESI References

1 R Okamura T Wada K Aikawa T Nagata and K Tanaka Inorg Chem 2004 43 7210

2 W-L Tong S-M Yiu and M C W Chan Inorg Chem 2013 52 7114

3 M Hirotsu N Ohno T Nakajima C Kushibe K Ueno and I Kinoshita Dalton Trans 2010 39 139

4 E B Schwartz C B Knobler and D J Cram J Am Chem Soc 1992 114 10775

5 Z Guo S-M Yiu and M C W Chan Chem Eur J 2013 19 8937

Page 8: Electronic Supplementary Information Supplementary Information Topologically diverse shape-persistent bis-(Zn-salphen) catalysts: efficient cyclic carbonate formation under mild conditions

S8

13C NMR (101 MHz C6D6DMSO-d6 91) δ 1729 1722 1614 1612 1458 1448 1423

1420 1398 1396 1346 1329 1309 1300 1299 1261 1258 1257 1221 1199 1194

1192 1154 1151 1120 354 353 348 342 314 297 296 ESI-MS (+ve mode) mz

1304 [M + H]+

Complex 6 The procedure for the

synthesis of 5 was adopted using L3 (50 mg

0074 mmol) and L9 (48 mg 015 mmol) A

orange precipitate was formed which was

collected washed copiously with cold MeOH

and recrystallized from CH2Cl2hexane (19)

to afford 6 as a bright yellow solid Yield 46 mg 41 Anal Calcd for C87H102N4O5Zn2(H2O)5

(150466) C 6945 H 750 N 372 Found C 6977 H 736 N 389 1H NMR (400 MHz

DMSO-d6) δ 880 (s 2H H10) 852 (s 2H H5) 768 (d J = 80 Hz 2H H9) 763 (d J = 83 Hz

2H H6) 750 (d J = 23 Hz 2H H3) 745ndash739 (m 4H H1 H4) 720 (d J = 25 Hz 2H H12)

717 (d J = 23 Hz 2H H2) 719ndash712 (m 2H H7) 705 (d J = 26 Hz 2H H11) 707ndash699 (m

2H H8) 173 (s 6H H16) 136 (s 18H H17) 131 (s 18H H14) 124 (s 18H H13) 121 (s 18H

H15) 13C NMR (101 MHz DMSO-d6) δ 1721 1708 1626 1625 1452 1448 1412 1411

1399 1346 1332 1323 1298 1292 1285 1268 1267 1260 1260 1250 1218 1213

1196 1186 1165 1159 356 353 348 346 339 336 319 319 300 298 ESI-MS (+ve

mode) mz 1416 [M + H]+

Complex 7 and 7middotAcOH Compound L7 (60 mg

012 mmol in powder form) and Et3N (3 mL) were

added to a stirred solution of L8 (62 mg 023 mmol)

and Zn(OAc)2middot2H2O (56 mg 025 mmol) in MeOH

(20 mL) at room temperature The reaction mixture

was stirred at room temperature for 20 h to give a grey

solution All volatiles were removed under reduced

pressure and recrystallization from CH2Cl2hexane

(19) afforded a yellow crystalline solid which was characterized as 7middotAcOH Yield 98 mg

68 Anal Calcd for C68H64N4O5Zn2CH3CO2H (120813) C 6959 H 464 N 567 Found

S9

C 6999 H 464 N 599 1H NMR (400 MHz DMSO-d6) δ 871 (s 2H H11) 870 (s 2H H6)

832 (d J = 22 Hz 2H H4) 804 (dd J = 76 and 11 Hz 2H H1) 781ndash772 (m 4H H3 H5)

750 (t J = 76 Hz 2H H2) 743 (d J = 76 Hz 2H H10) 737 (d J = 81 Hz 2H H12) 732 (d

J = 79 Hz 2H H7) 727 (d J = 75 Hz 2H H14) 701 (t J = 77 Hz 2H H8) 662 (dd J = 79

and 75 Hz 2H H9) 650 (t J = 75 Hz 2H H13) 185 (s 3H H17) 161 (s 18H H16) 156 (s

18H H15) 13C NMR (151 MHz DMSO-d6) δ 1720 1719 1717 1616 1605 1522 1424

1414 1390 1377 1350 1345 1300 1299 1267 1264 1256 1244 1243 1236 1194

1188 1184 1181 1149 1146 1119 353 350 295 294 210

The yellow crystalline solid (7middotAcOH) was

dissolved in CH2Cl2 (15 mL) and washed with DI

water (20 mL times 3) The organic layer was collected

all volatiles were removed under reduced pressure

and recrystallization from acetonepentane (15)

afforded 7 as an orange solid Yield 62 mg 47

(based on L7) Anal Calcd for C68H64N4O5Zn2

(114808) C 7114 H 562 N 488 Found C 7116

H 579 N 473 1H NMR (400 MHz DMSO-d6) δ

870 (s 2H H11) 869 (s 2H H6) 832 (s 2H H4)

804 (dd J = 77 and 10 Hz 2H H1) 781ndash772 (m 4H H3 H5) 750 (t J = 76 Hz 2H H2)

743 (d J = 81 Hz 2H H10) 737 (d J = 68 Hz 2H H12) 732 (d J = 80 Hz 2H H7) 727 (d

J = 73 Hz 2H H14) 701 (dd J = 77 and 74 Hz 2H H8) 662 (t J = 75 Hz 2H H9) 650 (t J

= 75 Hz 2H H13) 161 (s 18H H16) 155 (s 18H H15) 13C NMR (101 MHz DMSO-d6) δ

1720 1717 1618 1606 1522 1425 1414 1390 1376 1352 1347 1301 1300 1268

1265 1256 1245 1243 1238 1195 1188 1185 1183 1150 1146 1120 354 352

296 295 ESI-MS (+ve mode) mz 1150 [M + H]+

S10

Complex 8 The procedure for the synthesis

of 4 was adopted using L7 (78 mg 015 mmol) A

brown precipitate was formed which was

collected and washed copiously with MeOH and

pentane to afford 8 as a brownish yellow solid

Yield 85 mg 43 Anal Calcd for

C76H80N4O5Zn2(H2O)4 (133235) C 6851 H

666 N 421 Found C 6840 H 688 N 429 1H NMR (400 MHz DMSO-d6) δ 883 (s 2H

H13) 882 (s 2H H20) 813 (d J = 22 Hz 2H H8) 805 (d J = 76 Hz 2H H2) 776 (d J = 23

Hz 2H H12) 771 (d J = 70 Hz 2H H4) 763 (d J = 78 Hz 2H H18) 754ndash745 (m 4H H315)

734 (d J = 25 Hz 2H H25) 724 (d J = 26 Hz 2H H23) 711 (dd J = 76 and 78 Hz 2H

H16) 689 (dd J = 78 and 80 Hz 2H H17) 152 (s 18H H32) 151 (s 18H H30) 132 (s 18H

H28) 13C NMR (151 MHz DMSO-d6 peak assignments based on combination of DEPT-135

and 2-D 1H-1H 13C-1H (HSQC and HMBC) and NOE correlation NMR experiments) δ 1719

(C10) 1702 (C21) 1621 (C20) 1612 (C13) 1523 (C6) 1422 (C11) 1407 (C26) 1392 (C19)

1382 (C14) 1346 (C8) 1331 (C24) 1301 (C12) 1294 (C23) 1281 (C25) 1266 (C17) 1265

(C16) 1258 (C5) 1250 (C4) 1243 (C1) 1236 (C3) 1190 (C9) 1188 (C7) 1181 (C2) 1180

(C22) 1152 (C18) 1151 (C15) 352 (C2931) 335 (C27) 313 (C28) 296 (C30) 294 (C32) ESI-

MS (+ve mode) mz 1264 [M + H]+

S11

Figure S1 1H NMR (400 MHz CDCl3 298 K inset expanded) spectrum of reaction mixture corresponding to Run 10 in Table 3 [reaction conditions 12-epoxybutane (575 mmol 5 mL) catalyst 8 (00025 mol) nBu4NI co-cat (0125 mol) mesitylene (internal standard 1 mol) 10 bar CO2 initial pressure 95 degC 2 h]

Hf

Hc

Hd Hdrsquo

Hcrsquo ampnBu4NI

Ha

Hb1

Hb2

Harsquo

Hbrsquo1

Hbrsquo2

CDCl3

He

S12

Figure S2 1H NMR (400 MHz CDCl3 298 K inset expanded) spectrum of reaction mixture corresponding to Run 12 in Table 3 [reaction conditions 12-epoxyhexane (249 mmol 3 mL) catalyst 8 (00025 mol) nBu4NI co-cat (0125 mol) mesitylene (internal standard 1 mol) 10 bar CO2 initial pressure 95 degC 2 h]

nBu4NI Hf

Hd Hdrsquo

Ha

Hb1

Hb2 Harsquo

Hbrsquo1

Hbrsquo2

CDCl3

He

Hc Hcrsquo

S13

ESI References

1 R Okamura T Wada K Aikawa T Nagata and K Tanaka Inorg Chem 2004 43 7210

2 W-L Tong S-M Yiu and M C W Chan Inorg Chem 2013 52 7114

3 M Hirotsu N Ohno T Nakajima C Kushibe K Ueno and I Kinoshita Dalton Trans 2010 39 139

4 E B Schwartz C B Knobler and D J Cram J Am Chem Soc 1992 114 10775

5 Z Guo S-M Yiu and M C W Chan Chem Eur J 2013 19 8937

Page 9: Electronic Supplementary Information Supplementary Information Topologically diverse shape-persistent bis-(Zn-salphen) catalysts: efficient cyclic carbonate formation under mild conditions

S9

C 6999 H 464 N 599 1H NMR (400 MHz DMSO-d6) δ 871 (s 2H H11) 870 (s 2H H6)

832 (d J = 22 Hz 2H H4) 804 (dd J = 76 and 11 Hz 2H H1) 781ndash772 (m 4H H3 H5)

750 (t J = 76 Hz 2H H2) 743 (d J = 76 Hz 2H H10) 737 (d J = 81 Hz 2H H12) 732 (d

J = 79 Hz 2H H7) 727 (d J = 75 Hz 2H H14) 701 (t J = 77 Hz 2H H8) 662 (dd J = 79

and 75 Hz 2H H9) 650 (t J = 75 Hz 2H H13) 185 (s 3H H17) 161 (s 18H H16) 156 (s

18H H15) 13C NMR (151 MHz DMSO-d6) δ 1720 1719 1717 1616 1605 1522 1424

1414 1390 1377 1350 1345 1300 1299 1267 1264 1256 1244 1243 1236 1194

1188 1184 1181 1149 1146 1119 353 350 295 294 210

The yellow crystalline solid (7middotAcOH) was

dissolved in CH2Cl2 (15 mL) and washed with DI

water (20 mL times 3) The organic layer was collected

all volatiles were removed under reduced pressure

and recrystallization from acetonepentane (15)

afforded 7 as an orange solid Yield 62 mg 47

(based on L7) Anal Calcd for C68H64N4O5Zn2

(114808) C 7114 H 562 N 488 Found C 7116

H 579 N 473 1H NMR (400 MHz DMSO-d6) δ

870 (s 2H H11) 869 (s 2H H6) 832 (s 2H H4)

804 (dd J = 77 and 10 Hz 2H H1) 781ndash772 (m 4H H3 H5) 750 (t J = 76 Hz 2H H2)

743 (d J = 81 Hz 2H H10) 737 (d J = 68 Hz 2H H12) 732 (d J = 80 Hz 2H H7) 727 (d

J = 73 Hz 2H H14) 701 (dd J = 77 and 74 Hz 2H H8) 662 (t J = 75 Hz 2H H9) 650 (t J

= 75 Hz 2H H13) 161 (s 18H H16) 155 (s 18H H15) 13C NMR (101 MHz DMSO-d6) δ

1720 1717 1618 1606 1522 1425 1414 1390 1376 1352 1347 1301 1300 1268

1265 1256 1245 1243 1238 1195 1188 1185 1183 1150 1146 1120 354 352

296 295 ESI-MS (+ve mode) mz 1150 [M + H]+

S10

Complex 8 The procedure for the synthesis

of 4 was adopted using L7 (78 mg 015 mmol) A

brown precipitate was formed which was

collected and washed copiously with MeOH and

pentane to afford 8 as a brownish yellow solid

Yield 85 mg 43 Anal Calcd for

C76H80N4O5Zn2(H2O)4 (133235) C 6851 H

666 N 421 Found C 6840 H 688 N 429 1H NMR (400 MHz DMSO-d6) δ 883 (s 2H

H13) 882 (s 2H H20) 813 (d J = 22 Hz 2H H8) 805 (d J = 76 Hz 2H H2) 776 (d J = 23

Hz 2H H12) 771 (d J = 70 Hz 2H H4) 763 (d J = 78 Hz 2H H18) 754ndash745 (m 4H H315)

734 (d J = 25 Hz 2H H25) 724 (d J = 26 Hz 2H H23) 711 (dd J = 76 and 78 Hz 2H

H16) 689 (dd J = 78 and 80 Hz 2H H17) 152 (s 18H H32) 151 (s 18H H30) 132 (s 18H

H28) 13C NMR (151 MHz DMSO-d6 peak assignments based on combination of DEPT-135

and 2-D 1H-1H 13C-1H (HSQC and HMBC) and NOE correlation NMR experiments) δ 1719

(C10) 1702 (C21) 1621 (C20) 1612 (C13) 1523 (C6) 1422 (C11) 1407 (C26) 1392 (C19)

1382 (C14) 1346 (C8) 1331 (C24) 1301 (C12) 1294 (C23) 1281 (C25) 1266 (C17) 1265

(C16) 1258 (C5) 1250 (C4) 1243 (C1) 1236 (C3) 1190 (C9) 1188 (C7) 1181 (C2) 1180

(C22) 1152 (C18) 1151 (C15) 352 (C2931) 335 (C27) 313 (C28) 296 (C30) 294 (C32) ESI-

MS (+ve mode) mz 1264 [M + H]+

S11

Figure S1 1H NMR (400 MHz CDCl3 298 K inset expanded) spectrum of reaction mixture corresponding to Run 10 in Table 3 [reaction conditions 12-epoxybutane (575 mmol 5 mL) catalyst 8 (00025 mol) nBu4NI co-cat (0125 mol) mesitylene (internal standard 1 mol) 10 bar CO2 initial pressure 95 degC 2 h]

Hf

Hc

Hd Hdrsquo

Hcrsquo ampnBu4NI

Ha

Hb1

Hb2

Harsquo

Hbrsquo1

Hbrsquo2

CDCl3

He

S12

Figure S2 1H NMR (400 MHz CDCl3 298 K inset expanded) spectrum of reaction mixture corresponding to Run 12 in Table 3 [reaction conditions 12-epoxyhexane (249 mmol 3 mL) catalyst 8 (00025 mol) nBu4NI co-cat (0125 mol) mesitylene (internal standard 1 mol) 10 bar CO2 initial pressure 95 degC 2 h]

nBu4NI Hf

Hd Hdrsquo

Ha

Hb1

Hb2 Harsquo

Hbrsquo1

Hbrsquo2

CDCl3

He

Hc Hcrsquo

S13

ESI References

1 R Okamura T Wada K Aikawa T Nagata and K Tanaka Inorg Chem 2004 43 7210

2 W-L Tong S-M Yiu and M C W Chan Inorg Chem 2013 52 7114

3 M Hirotsu N Ohno T Nakajima C Kushibe K Ueno and I Kinoshita Dalton Trans 2010 39 139

4 E B Schwartz C B Knobler and D J Cram J Am Chem Soc 1992 114 10775

5 Z Guo S-M Yiu and M C W Chan Chem Eur J 2013 19 8937

Page 10: Electronic Supplementary Information Supplementary Information Topologically diverse shape-persistent bis-(Zn-salphen) catalysts: efficient cyclic carbonate formation under mild conditions

S10

Complex 8 The procedure for the synthesis

of 4 was adopted using L7 (78 mg 015 mmol) A

brown precipitate was formed which was

collected and washed copiously with MeOH and

pentane to afford 8 as a brownish yellow solid

Yield 85 mg 43 Anal Calcd for

C76H80N4O5Zn2(H2O)4 (133235) C 6851 H

666 N 421 Found C 6840 H 688 N 429 1H NMR (400 MHz DMSO-d6) δ 883 (s 2H

H13) 882 (s 2H H20) 813 (d J = 22 Hz 2H H8) 805 (d J = 76 Hz 2H H2) 776 (d J = 23

Hz 2H H12) 771 (d J = 70 Hz 2H H4) 763 (d J = 78 Hz 2H H18) 754ndash745 (m 4H H315)

734 (d J = 25 Hz 2H H25) 724 (d J = 26 Hz 2H H23) 711 (dd J = 76 and 78 Hz 2H

H16) 689 (dd J = 78 and 80 Hz 2H H17) 152 (s 18H H32) 151 (s 18H H30) 132 (s 18H

H28) 13C NMR (151 MHz DMSO-d6 peak assignments based on combination of DEPT-135

and 2-D 1H-1H 13C-1H (HSQC and HMBC) and NOE correlation NMR experiments) δ 1719

(C10) 1702 (C21) 1621 (C20) 1612 (C13) 1523 (C6) 1422 (C11) 1407 (C26) 1392 (C19)

1382 (C14) 1346 (C8) 1331 (C24) 1301 (C12) 1294 (C23) 1281 (C25) 1266 (C17) 1265

(C16) 1258 (C5) 1250 (C4) 1243 (C1) 1236 (C3) 1190 (C9) 1188 (C7) 1181 (C2) 1180

(C22) 1152 (C18) 1151 (C15) 352 (C2931) 335 (C27) 313 (C28) 296 (C30) 294 (C32) ESI-

MS (+ve mode) mz 1264 [M + H]+

S11

Figure S1 1H NMR (400 MHz CDCl3 298 K inset expanded) spectrum of reaction mixture corresponding to Run 10 in Table 3 [reaction conditions 12-epoxybutane (575 mmol 5 mL) catalyst 8 (00025 mol) nBu4NI co-cat (0125 mol) mesitylene (internal standard 1 mol) 10 bar CO2 initial pressure 95 degC 2 h]

Hf

Hc

Hd Hdrsquo

Hcrsquo ampnBu4NI

Ha

Hb1

Hb2

Harsquo

Hbrsquo1

Hbrsquo2

CDCl3

He

S12

Figure S2 1H NMR (400 MHz CDCl3 298 K inset expanded) spectrum of reaction mixture corresponding to Run 12 in Table 3 [reaction conditions 12-epoxyhexane (249 mmol 3 mL) catalyst 8 (00025 mol) nBu4NI co-cat (0125 mol) mesitylene (internal standard 1 mol) 10 bar CO2 initial pressure 95 degC 2 h]

nBu4NI Hf

Hd Hdrsquo

Ha

Hb1

Hb2 Harsquo

Hbrsquo1

Hbrsquo2

CDCl3

He

Hc Hcrsquo

S13

ESI References

1 R Okamura T Wada K Aikawa T Nagata and K Tanaka Inorg Chem 2004 43 7210

2 W-L Tong S-M Yiu and M C W Chan Inorg Chem 2013 52 7114

3 M Hirotsu N Ohno T Nakajima C Kushibe K Ueno and I Kinoshita Dalton Trans 2010 39 139

4 E B Schwartz C B Knobler and D J Cram J Am Chem Soc 1992 114 10775

5 Z Guo S-M Yiu and M C W Chan Chem Eur J 2013 19 8937

Page 11: Electronic Supplementary Information Supplementary Information Topologically diverse shape-persistent bis-(Zn-salphen) catalysts: efficient cyclic carbonate formation under mild conditions

S11

Figure S1 1H NMR (400 MHz CDCl3 298 K inset expanded) spectrum of reaction mixture corresponding to Run 10 in Table 3 [reaction conditions 12-epoxybutane (575 mmol 5 mL) catalyst 8 (00025 mol) nBu4NI co-cat (0125 mol) mesitylene (internal standard 1 mol) 10 bar CO2 initial pressure 95 degC 2 h]

Hf

Hc

Hd Hdrsquo

Hcrsquo ampnBu4NI

Ha

Hb1

Hb2

Harsquo

Hbrsquo1

Hbrsquo2

CDCl3

He

S12

Figure S2 1H NMR (400 MHz CDCl3 298 K inset expanded) spectrum of reaction mixture corresponding to Run 12 in Table 3 [reaction conditions 12-epoxyhexane (249 mmol 3 mL) catalyst 8 (00025 mol) nBu4NI co-cat (0125 mol) mesitylene (internal standard 1 mol) 10 bar CO2 initial pressure 95 degC 2 h]

nBu4NI Hf

Hd Hdrsquo

Ha

Hb1

Hb2 Harsquo

Hbrsquo1

Hbrsquo2

CDCl3

He

Hc Hcrsquo

S13

ESI References

1 R Okamura T Wada K Aikawa T Nagata and K Tanaka Inorg Chem 2004 43 7210

2 W-L Tong S-M Yiu and M C W Chan Inorg Chem 2013 52 7114

3 M Hirotsu N Ohno T Nakajima C Kushibe K Ueno and I Kinoshita Dalton Trans 2010 39 139

4 E B Schwartz C B Knobler and D J Cram J Am Chem Soc 1992 114 10775

5 Z Guo S-M Yiu and M C W Chan Chem Eur J 2013 19 8937

Page 12: Electronic Supplementary Information Supplementary Information Topologically diverse shape-persistent bis-(Zn-salphen) catalysts: efficient cyclic carbonate formation under mild conditions

S12

Figure S2 1H NMR (400 MHz CDCl3 298 K inset expanded) spectrum of reaction mixture corresponding to Run 12 in Table 3 [reaction conditions 12-epoxyhexane (249 mmol 3 mL) catalyst 8 (00025 mol) nBu4NI co-cat (0125 mol) mesitylene (internal standard 1 mol) 10 bar CO2 initial pressure 95 degC 2 h]

nBu4NI Hf

Hd Hdrsquo

Ha

Hb1

Hb2 Harsquo

Hbrsquo1

Hbrsquo2

CDCl3

He

Hc Hcrsquo

S13

ESI References

1 R Okamura T Wada K Aikawa T Nagata and K Tanaka Inorg Chem 2004 43 7210

2 W-L Tong S-M Yiu and M C W Chan Inorg Chem 2013 52 7114

3 M Hirotsu N Ohno T Nakajima C Kushibe K Ueno and I Kinoshita Dalton Trans 2010 39 139

4 E B Schwartz C B Knobler and D J Cram J Am Chem Soc 1992 114 10775

5 Z Guo S-M Yiu and M C W Chan Chem Eur J 2013 19 8937

Page 13: Electronic Supplementary Information Supplementary Information Topologically diverse shape-persistent bis-(Zn-salphen) catalysts: efficient cyclic carbonate formation under mild conditions

S13

ESI References

1 R Okamura T Wada K Aikawa T Nagata and K Tanaka Inorg Chem 2004 43 7210

2 W-L Tong S-M Yiu and M C W Chan Inorg Chem 2013 52 7114

3 M Hirotsu N Ohno T Nakajima C Kushibe K Ueno and I Kinoshita Dalton Trans 2010 39 139

4 E B Schwartz C B Knobler and D J Cram J Am Chem Soc 1992 114 10775

5 Z Guo S-M Yiu and M C W Chan Chem Eur J 2013 19 8937