tass 2e - international nuclear information system (inis)

202
KAERI/TR-845-2/97 J KR9700119 TASS 2E 2.3LM ^] 3 ^ : TASS 3S.IL TASS Code Topical Report Volume III: TASS Code USER'S Manual - I

Upload: khangminh22

Post on 09-May-2023

0 views

Category:

Documents


0 download

TRANSCRIPT

KAERI/TR-845-2/97J KR9700119

TASS 2 E 2.3LM^] 3 : TASS 3S.IL

TASS Code Topical ReportVolume III: TASS Code USER'S Manual

- I

KAERI/TR-845-2/97

TASS 3 EI 3 : TASS 5LJ=

TASS Code Topical ReportVolume ID: TASS Code USER'S Manual

TASS 3.B.

3 ^ : TASS a n

TASS 2 H ^ - ^ 7 ] # ilJlAi, ^] 3 € : TASS

TASS Code Topical Reprot, Volume HI : TASS Code User's Manual

1997\1

NBXT PAOB(S)toft BLANK

TASS 3.^ ^ 7l# S.JL*], ^) 3 T5 : TASS 2 £

H. <9^M 55

51 Westinghouse^

TASS 1.0 2 £

TASS 1.0 3.^-2] 4-8- ^1^4 TASS 1.0 2£fi] 4

)^^sa^. TASS i.o iSH

, BOP

TASS 1.0 2 E 4-8-41- §71 3 * H

«)-^cf. ^•^•°flfe TASS 1.0 2 £ ^ ^ ^ ^*3, Data Dictionary ne j j i TASS 1.0

Database ^

5J Westinghouse^

S.7] A> «fl>«4 - 4]$ ojf:^. TASS 1.0 SHSl s .^ 7l# i a l A ^ ^ ^ © . s . TASS

- 3 -

1.0 5LB 7l# 1LJL*\ % TASS 1.0 2 E

- 4 -

EXECUTIVE SUMMARY

I. Title

TASS Code Topical Reprot, Volume III : TASS Code User's Manual

II. Objective and Scope of the Project

A need in developing a new licensing transient analysis code for the CE as well

as the Westinghouse type plants has been recognized for some time due to costly

expense to maintain vendor transient analysis codes for each type of plant and thus

economic competitiveness as well as the expensive royalty payments to both vendors.

TASS Code has been developed by KAERI as a part of the Nuclear Safety

Enhancement project which has been funded by the Long Term Nuclear Research

and Development Program. This manual is thus prepared for the TASS Code users

to help their non-LOCA licensing transient analyses for the CE and Westinghouse

type plants operating or under condstruction in Korea.

This user's manual describes the guidance for using TASS 1.0 Code, TASS 1.0

input and TASS 1.0 Standard output. The input of TASS 1.0 Code is catagorized

and described in the areas of core power, primary system, secondary system, wall

heat, malfunctions and leak, BOP, and control system. Sample input and output of

the main feedline break event are included to illustrate its use. The TASS 1.0 Code

commands, Data Dictionary and the list of the input are appended to this manual.

- 5 -

This TASS 1.0 Code User's Manual will be submitted as a part of the TASS 1.0

Topical Report to the Regulatory Body for its licensing review in the Non-LOCA

transient analyses for the CE and Westinghouse type plants in Korea.

TASS 1.0 Code is expected to make a significant contribution in the nuclear

technology self-reliance and the nuclear export in the near future as well as in the

enhancement of the nuclear safety.

- 6 -

1 # *\ ^

13

2 # TASS 1.0 AJ-3- *J^15

3 # TASS 1.0 ^

3 5

2 ^ ^ > ? i i f og^ 3 6

*]*}%$.

j 4 3

5 *i JL% ^ ^ ^ 4 4

BOP S ^ l i ^ i ^ y 4 5

47

4 # TASS 1.0 i ^

49

5 # TASS 1.0

51

6 ^ ^ ^

53

55

123A. TASS l.oq

B. Data Dictionary1?fi

C. Data Dictionary ^ ^ -ijig129

D. Data Dictionary t g ^ 4)<*l ..." 189

_ 7 _ I NEXT PAOE(S)I toft BLANK

3. ^

3. 1 ^ f r s ^ A}-§-4 *\)6) 56

1 2 k J #^S] <y 57

a 3 t-g #^si # 3 ^ 58

1 4 t ^ #-§-:£ <y§) 59

S 5 t^J #-§-£ # 3 £^r 61

3. 6 £3.3-4 ^ 4 ^ •fi-Sig'r 62

a 7 ic-a ^ ^ ^ ^EJI 6 3

S. 8.A <£*} TJlf-^ ^ H ^ ^ (#^3<?1 CE PWR) 64

a 8.B <£*} Jfl-f-s] ^ 1 ^ ^ ^ (*!*aiS! Westinghouse 3-loop PWR) 65

3. 8.C ^^1- TJlf-s) 2lMs)H (^ t§2l<y Westinghouse 4-loop PWR) 66

a 9 u*> ai*3 ^H^i^j ^ ^ 67

a 10.A <y*} ^lf-^ ^ - ^ ^ -{VS. (^l^^?l CE PWR) 68

a 10.B «£*> Til -S ^ ^ ^ -S-S. ( # $ 3 ^ Westinghouse 3-loop PWR) 69

a 10.C ?!*} ^l^sl £ ^ - # -H-S. ( ^ ^ ^ t ! Westinghouse 4-loop PWR) 70

a 11.A ^S} ^Jf-Sl « 1 ^ : ^ ^ -frS (^^^^1 CE PWR) 72

a 11.B ^*> ^|*S1 Hl^:^^ -frS. (#*83<y Westinghouse 3-loop PWR) 74

a ll.C W ^1*S? a ) ^ : ^ -frS (^^^j1?! Westinghouse 4-loop PWR) 76

a 12 «J*} * | * -B-S^^ 78

a 13 #^ ^a ^ ^ 80

- 9 -

& 14.A ^ 7 l # «2] -frs C^*}1?] CE PWR) 81

3. 14.B -f^l^ <2]-£- -frs (3i1!3<?] Westinghouse 3-loop PWR) 82

S. 14.C ^ 7 ^ ^Jf -fi-3. (^^J^?l Westinghouse 4-loop PWR) 83

a 15 ^71^-^71 2Xfc Node ^ ^ 87

a 16 ^7l^-^7i 2^}# ifl- -B-S $ ^ 89

i 17 2*>?l|* ^^--fr* ^^r 90

a 18 ^^l^f- ^ 4 ^ ¥ ^ ^ 3.% 92

a 19 ^ 7 m ^ 7 l 2^>^|^ ^r^ 94

a 20 2*>7flf- 4 ^ ^ : ^ ^^r 95

a 21 O-Ring ^^S- ^ ^^r 96

a 22 «)*};4I3- ttJ«- * ¥ ^ ^ ^ ^^r 97

a 23 3 ^ <1^^ ^^r 98

a 24 a ^ # ^ S ^ ^^r 99

a 25 a^ #^ # r ioo

a 26 ^ - r £ 4#42. ^ ^ 103

- 1 0 -

1 0 8

2.A <a*Hlf- Node*} £ ^ # -fi-5. (31M<y C E P W R ) 1 0 9

2.B i W l f - Nodei4 ^ - ^ ^ -fi-S. (3^3*1 Westinghouse 3-loop PWR) HO

2.C iJ*l-7fl^ Node f £ ^ - # -R-S. (^l^aj°1 Westinghouse 4-loop PWR) H I

3.A 1i*l-7fif- «1-Sr^-^ -B-S (^^^<y CE PWR) 112

3.B ^ ^ ^ 1 ^ - H l £ ^ # -fi-S. (^<§ajoj Westinghouse 3-loop PWR) H 3

3.C ^Tflf- H l ^ ^ ^ -B-s. ( ^ ^ ^ ° I Westinghouse 4-loop PWR) 114

4 -g-^iEKQuench Tank) ^ ^ n 5

5.A 2*>7Jlf- Nodessf 3 ^ - -R-S (^^^o] C E P W R ) n 6

5.B 2^7ilf- Nodes*} ^ ^ - -B-S. (^^2jo] Westinghouse 3-loop PWR) 117

5.C 2*>7flf- Nodes** ^-?- -fi-5. ( ^ D ^ J Westinghouse 3-loop PWR) 118

6 2x^1^- Node*V ^Jf -B-S. ^ ^ n 9

7 TASS # 3 1 2 0

NEXT PAQE(S)toft BLANK

TASS 1.0 2 £ t -vfl 7>^#oi^q- 3 ^ 0 ] Westinghouse gj CE^

71 A>j7sfl oj^-g- 5 E £ ^ 7fl^-£iSi4[l, 2, 3].

Westinghouse ^ CE g ^ ^ 5 ] 4 £ 7 l A}ji3fl^ O J ^ A I ^ ^ . o^a} TASS 1.0 S ^

TASS 1.0 2 £ 7)# i^A^ ^ 1 2 € TASS 1.0 S.B. ^

, TASS 1.0 3Efi] S . ^ 4 71^ 5 TASS 1.0

TASS 1.0 3HS]

TASS 1.0 2 E

°fl 5 ] ^ ^1H ^ SSj ^Eflf 4^4}- ^ Si£^- Real-Time On-Line Interactive 2 E

TASS 1.0 2Hi4 Interactive ModeS.

7) ^ * H ^•41«J- ^ ' H * %n ^fl# Filel-i- ^-el*>^ Global Database^

^1A1^" ^ XI-c- 4 £ 7 l JE.S] ^ * | Executive Routined 4\*% Interactive Mode

lfe Af-g-^}^ Keyboard* f^V °d^AS. ^^«j->

A, B 5 C IA-1 TASS 1.0 2E«1 Interactive Mode

jis)]^ gj TASS 1.0 2E5] <y3j Database* 4 ^ #41*1

NEXT PAGEfS)left BLANK

- 1 3 -

2 # TASS 1.0

Interactive ModeS.

, time step ^<H7l^ ^ £ ] s SS]s\

TASS 1.0 S^ fe o ] e ^ On-Line Interactive Mode

v], ^11- ^*>^ tt^S] Dictionary^ Database Filel-i- -

Interactive Mode

7>. Dictionary File^ ^ ^ € i ^ - ^ ^ r i tflsfl H 2

&o) *m*) ^fe- Static Data File4 Snapshotpf4 §Jt6l £*}£• Dynamic Data File

s] Snapshots- f-*}-^ ^lf-^^cf.

M-. Interactive Mode* *H*)-fe Command File-§- $•%: "r SX^ 7]^-. o]

4 . W ^>-8-ft 3 * H Command File Formates. Library^]

n>. Dictionary File°fl SUfe 4 ^^ r^

a>. 3S>^ ^ 4 - ^^12] ^<^ Array*

><•>. 2J-S.71 2.S1 time

« •

- 1 5 -

TASS 1.0 2E7} 4i*li|ol Sife SUN $.£ HP

Workstation°1M- fflM PC Platform^ ^ , On-Line Interactive ModeS. TASS 1.0 2ES]

TASS 1.

- 1 6 -

: BACKUP

-8- : B{ACKUP} {CLOSE}

B(ACKUP) { (FILEKfilesoec (REPLACE)) | APPEND}{ ALL | ALLSH | var name, ...}

BACKUP

^ Sa

« •

APPENDS

Dictionary File^l Sa

. BACKUP

SUfe Backup Files)

CLOSEfe Si* <i^ safe Backup F

Backup File^

Status Message*

: BACKUP

77ie current BACKUP file is C\RCSDAT1.^BK

>1 BACKUP file is not open.

: BACKUP CTL_TURB_DUMP_OPEN, B PRADII

CTL_TURBS>UMP_OPEN=02502758E-1

PRADII=3*O.,2*0.51816,1.744675,0.6O96E-l,4*0.365762*051816,1.74467S\

0.6096E-1,4*0.365762*0.6096E-1,0.54864E-1,0.387096£*051816,19*0.

: B CTL_FWS_VALVE_POS

: BACKUP ALL, APPEND

States Backup of <PLTJ)ATA> to file «C^RCSDAT1._BK» completed

Status Backup of <CHTJDATA> to file «C\RCSDAT1._BK» completed

- 1 7 -

: CLEAR

•%• : CLEAR { <RAMR RECORD. SCREEN. TRACE. WHEN) | ALL}

CLEAR ^ ^ - f c r QA f ^ l ^ U $X$= Interactive Mode

K CLEAR *§%

^-g- iL<^^4. CLEAR21-

RAMP, RECORD, SCREEN, TRACER

WHEN l 9W. n ef-M, CLEAR ^ < H ^ r ^ ^ 57H

File** ^fe

: CLEAR

RECORD files 2, and 3 are open.

RAMPS are not defined on any variable.

SCREEN list is defined and active with DT = 2.00 sea

TRACE function is inactive without a variable list.

WHENs are not defined for any conditions.

•• CLEAR RECORD SCREEN

Status Closed data record file on unit 41 «tassdrOOO._rc»

Status SCREEN list was deleted

: CLEAR ALL

Status Closed data record file on unit 41 «tassdrOOO._rc»

Status Deleted RAMP on BAT(3)

Status Deleted RAMP on BAT(4)

Status SCREEN list was deleted

Status TRACE list was deleted

Status Deleted WHEN 000 - (TIME GT 4)

Status Deleted WHEN 001 - (BAT(3) GE 5)

- 1 8 -

: DO

-8- : DO { (FILE=)(filespec) | SKIP}

DO ^ ^ T r Command Fi

, File-i- £<H Command Line-§-

DO

Command file

711 s H , DO

Command

DO

File-I-

DO

SKIP

Consoled

. DO FiUe < )f-

Consoled s)l-6> 7}

SUfe File^l SUA^

Command Li

: DO (FILE1..CD)

Console°}& *}-§-*} console3.-^E/ FILE1._CDS.

- 1 9 -

: DUMP

-%- '• DUMP array_name {(index_list)}, {array_name{(index_list)}...}

DUMP *gig<H4r # ^ Array^

Array°fl t^-g- Format^.^

: DUMP DBVTNK

Value cf DBVTNK = 8.8971 AT3

• DUMP PLT_RCS_QT

Values cf PLTJiCS_QT(l:10) (Partition)

l: 17.7 1300.0 9.5 80232.0 104.70

6: 0.00000 0.00000 0.00000 0.00000 0.00000

: DUMP PLT_RCS_QT(6)

Values cf PLTJtCS_QT(6:10) (Partition)

6: 0.00000 0.00000 0.00000 0.00000 0.00000

- 2 0 -

: GO

-8- : GO {timejength I TO time limit }

GO ^ ^ T T Model Queued*\ ActiveX. # 3 ! £ 4 ^ 1 Routine-!-

TO7> 5Ufe

: GO 100Al&°l &*# Allt + 100

: GO TO 100

100 sec eh

- 2 1 -

: MODEL

-g- : MODEL { ON I OFF {model name... I ALL} }

MODEL ^*§<Ht 4 ^ 7 1 3.2] Time Step

Model Queue ^ TIMQUE, MODQUE n s ]

(Active/Inactive) Flag-i-

"11 SM MODEL

FLGQUE^l

Model Queued

fe Comment7>

5.c|o]

Model °]

: MODEL

NMB,

1

2

3

4

5

6

7

8

9

10

E MODEL

SYINIT

CEOUT

CECONT

CORE3D

RCSDRV

SYINIT

SGSMAN

RCSDRV

CEOUT

SYINIT

STATUS

ACTIVE

ACTIVE

ACTIVE

ACTIVE

ACTIVE

ACTIVE

ACTIVE

ACTIVE

ACTIVE

ACTIVE

FRACTION

0.400

0.001

1.000

1.000

0500

0.400

1.000

0.500

0.999

0200

: MODEL OFF SYINIT SGSMAN

: MODEL ON

The following models are active'-

CEOUT CECONT RCSDRV CORE3D

: MODEL OFF

The following models are inactive:

SGSMAN SYINIT

DESCPRIPTION

TASS initialization

TASS output

Control systems

3D core neutronics

Reactor coolant systems

TASS initialization

Steam generator

Reactor coolant systems

TASS output

TASS initialization

- 2 2 -

: NAME

-%- '• variable_name

variable name=value I (var name)

array element=value I (var name) {.value I (var name) ...}

TASS 1.0^1 t } ^ ^ ^ a f e ^ 2 ] NAME ^ © I f e ^ ^ | ^ A 5 . Data Dictionary^

311= ^ ^ M - Array^ olf~§- Aj-g-*>^ NAME

Arrays

: KOPREG

POW_KINJREG_ROD_OPTION Regulating rod reactivity option

KOPREG=.T.—>ACTIVE

: DTAHT

COREJiTJiREA Core heat transfer area, clad/coolant

DTAHT= 4524.75 M~2

: DTAHT=6500

CORE_HT_AREA Core heat transfer area, clad/coolant

DTAHT= 6500.00 M'2

- 2 3 -

: QUIT

: QtUIT}

QUIT *$%*\^

FUeCRECORDM- Backup

- 2 4 -

: RAMP

-%• : RAMP variable_name {{ FROM=value}, TOvalue, {START=time},END=time I IN=time difference }

RAMP ^ O I T T 4 £ 7 l S.S) AJ V f'ofl ^ ^ 1 4 Array §

. RAMP ^ 3 ^ RAMP

: RAMP

RAMPs are not defined on any variable.

: RAMP BAN START=5 END=20 T O 3 FROM=0

: RAMP

Active RAMP on BAN(l).

: RAMP BAN

Active RAMP ON BAN(l) (currently 0.680 DIMENSIONLESS at 10.00 sea)

from 0.000 at 5.0 sec to 3.000 at 20.0 sec

- 2 5 -

: RECORD

•%• : RECORD { N=file_number }

RECORD { N=file_number } CLEAR {ALL}

RECORD {N=file_number} {function} { {add} | DELETE} variablejist}

function = { DT=interval }, {ON I OFF},

{FORMATTED}, { {FILE=} (filespec{,REPLACE}) }

RECORD ^^<Hfe SL£\ ^91 4 ^ 7 ] s ] 4 £ 7 l Al Vofl 4 2 Data ^ File-fr 67fls]

File?l-*1 4>\ , ^ nz\JL ^ - ^ t 71 -fr ^ t ! : ^ . 4 ^ ^ File*

Array

: RECORD

RECORD file 1 is unformatted, open, and active with DT = 0.100 sea

RECORD file 2 is not open.

RECORD file 3 is not open.

RECORD file 4 is not open.

RECORD file 5 is not open.

RECORD file 6 is not open.

: RECORD N=l

Unfomatted RECORD file 1 is open and active with DT = 0.100 sec.

Current file is tassdr003._rc

Variable list'

1 TIME

- 2 6 -

: REST

-§- : REST { {FILE=}(filespec) }

REST ^ < H f e ^ 3 SNAP *33°H 3*1 * i # £ ^V*^7> ^ 3 ^ : Dynamic Data

File-4 ^ ^ ^ Static Data File^- "514. °1 ¥ Data File^r Data Dictionary^

, SNAP

: REST (KORI34)

Finished reading DYNAMIC data fila «KORI34._DY»

Label:

Saved at 10:53:38.0 on 08/14/96

Finished reading STATIC data fila «kori34._st»

Label: KORI 3/4 Database Fixed for TASS 1.0

Saved at 10:53:38.0 on 08/14/96

- 2 7 -

: SCREEN

-g- : SCREEN { CLEAR }

SCREEN { function } { (ADD) I DELETE variablejist }

function = { DT=interval }, { ON I OFF }

SCREEN ^^o] fe 3j-£7l 3_$) %.# ^7\*\±S. i L ^ f e £ ^ % Array^

: SCREEN

SCREEN list is not defined

SCREEN list is defined and active with DT = 1.00 sea

: SCREEN BAN(4), BAD(2), BAN(l)

3 items added to the SCREEN variable list

: SCREEN

SCREEN list is defined and active with DT = 1.00 sea

Variable list'

1 BAN(4) 2 BAD(2)

3 BAN(l)

- 2 8 -

: SET

-g- : SET {ECHCXON | OFF}}, {WAIT{ON I OFF}}, {LOG{ON | OFF}}

{JOURNAUON | OFF}}, {QUIET{ON | OFF}}, {VERBOSE{ON I OFF}}{WIDTH{screen_columns}}

SET

SET ^^o]7> ^^§ io l A>^-S)^, SET

: SET

77ie .ECi/O mode is ON.

The WAIT mode is OFF.

The JOURNAL file is active.

The LOG file is active.

Status messages are displayed

The screen width is 80.

: SET ECHO=OFF WAIT=0N

The ECHO mode is OFF.

The WAIT mode is ON.

The JOURNAL file is active.

The LOG file is active.

Status messages are displayed

The screen width is 80.

- 2 9 -

SNAP

SNAP {FILE=} (filespec) { STATIC=(filespec) }

SNAP fl^t *}-%•*}?} ^ * > f e File^l Data Dictionary^ 9lir 3.^

. TASS 1.0 Data Dictionary<fl £ ^ £ ^ f e 27fl^ Data FUe^l

A]^-6)1 145^ ^o ] ^ s > ^ i g ^ s - ^ ^ - « ^ Dynamic Data File-4

&fe ^ ^ » ^^"*>fe Static Data Fileolt}.

)- FUe^l ^ M : ^ ^ 4 ^ 4 ^1?>^ ^ ^ l ^ a l ^l-8-€ Data

DictionarySJ- Program Versions, ^^l^cf .

Dynamic Data File^r SNAP ^ <>1<Hl ^«><^ m^"€ ^ ^ ^ Static Data F i l e t n*

: SNAP FILE=(FILE._DY) STATIC (FELE._ST)

STATIC Data file «FILK_ST» was written.

DYNAMIC Data file «FILE.J)Y» was written

- 3 0 -

: TRACE

-§- : TRACE { ON | OFF } {(ADD) | DELETE variablejist }

. TASS 1.0

. SCREEN ^ < > l f e ^ 2 1 ^

TRACE

5UT)1 fl-^-. ^ ^ r ^°1 TRACE ^ < H 7 > ^ - g - s ] ^ TRACE List

TRACE List^ ^ ^ - b ADD4 DELETE» *1"§-3

ON I OFF^Il 21^ -^ S ^ ^ 4s

: TRACE

77ie TRACE function is inactive with an empty variable list

: TRACE PRESS(l)

Status PRESS(l) was added to the TRACE LIST.

: GO 3

TRACE at 1.000 sec: PRESS(l) became 1.469805E+07 PA

TRACE at 2.000 sec: PRESS(l) became 1.543824E+07 PA

TRACE at 3.000 sec: PRESS(l) became 1.492374E+07 PA

- 3 1 -

: WHEN

-8- : WHEN {(condition) command }

WHEN (condition)command_linecommand_linecommand_linecommandjine

command_lineWHEND

WHEN CLEAR {ALL | {when_#, when_#, ... }}WHEN DUMP when. #

condition^{NOT} logical_var_name- or -

num_var_name test_type {num_var_name I value}

test_type= EQ I NE | LT | LE | GT I GE

WHEN ^ ^ < H ^ ak£7l SL2)^ * 1 ^ £ a ? H S.^ ^ nfl <^fl^[ jq.5E.7l

n|| Command File<*lH

File^l ^ ^ € ^ . a|-3E7l S.S1 ^ WHEN ^ ^ ^*S^? i^ r

^ Logical Stai ^ ° 1 | ^ * H S ^ € ^ 5U4.

: WHEN

Pending WHEN conditions

Sea # Filename Condition

63 whenO63._wn (time ge 50.)

64 whenO64._wn (ctl_time_core_trip ge 2.)

: WHEN DUMP 063

- 3 2 -

/ FILE whenO63._wn

! WILL BE EXECUTED WHEN THE CONDITION

! (time ge 50.)

! BECOMES TRUE

TIME_SCALE 02

NEXT PAOe(S)toft BLANK

- 3 3 -

TASS 1.0

TASS 1.0 iSHS} ic-a # ^ 4 Kinetics JE.'fi, « | ^ 5 . ^^AovEfl, Quench

- 3 5 -

o]

71^*1-584. * 3 * M , Point Kinetics,

ufefvfl^ TASS 1.0

l .

TASS 1.0 2 H tflafl

Point Kinetics JE-^-g-

p o i n t Kinetics

Control) :

Point Kinetics A>-jj- : Point Kinetics

Scram^l

5<H1

4<Hl

. Feedback

^7ia-(Initialization of Reactivity Model) : ^-§-5.

- 3 6 -

. TASS 1.0 2 £ 2 ] 7 l # Database

(1) *>* SP-8-5L i L ^ - S ^ »g-^oflA^ Perturbation^

(2) 4 * Tfl^a^ofl tll««l ^flS.^ ^^^Ef l

f. o] nflo] Doppler

71 £

4

Point KineticsCDelaved and Fast Neutron Coefficients) : °1# Parameter0!) cfl l-

-&£• POWER_COMMON ^-^-31 P0W_KIN_C0MM0Noll

2.

- 3 7 -

£-3. 47fl

3.

NodeS.

CHT.BOILING3)- CHT_IHT<H1 3«fl 4 4

TASS 1.0 2 E f e Point Kinetics

Quench Tank

Cesium

Iodine

Xenon

Cs

I131

137

Xe133

. TASS 1.0 S H

a.

b. System)*

sat)..

. RCS,

qg-g

CORE_PART_REL (mCi/sec)

CORE_IOD_REL (mCi/sec)

CORE_ZEN_REL (mCi/sec)

Source^- Sink» - 2 - ^

Source^ :

- 3 8 -

), %E., 3-?)3- Quench Tank f-g- 3.^

Quench Tank* ^ S ) ^ 5L€-

Tank)*

1. Nodes

TASS 1.0 5L!=^ Nodal Map^- =r^ 2°fl Ji<^^14. a 8 r =L$ 2^ z NodeS.

Nodes! < i ^ ^ ^Efl» 71 # « ^ ^ ^d^^ ^^1-^r a 9°fi

Node "^(Overall Node Variables)"** *^1 Node^

Node £=r (Two-phase Node Variables)"

2. -R-S.

Node ^><>lsl -fHj-ofl rfl^- ^ - ^ - ^ ^ . # ^ ^ ^ ^ - Coupled System Equation

Sinks

- 3 9 -

£ Sources « 1 ^ * ^ -frS.3. «J3<H*!c}-.

5L, S.

3<H) j i ^ j ! , S. 1H

2 ^ 3 neiiL a 104 i H

ul^r-^^ -frS** cfl«fl -§-5fl^i, ^ - ^ iodine, ^^(Particulates,

Cesium) rLe|jl XenonS]

12°1| Slfe a l ^ : ^ ^ -frSoflfe- 27M « H i ^ ( T w o Numbering Scheme)^

^ ^ P_FLOW, P_ENTH =1.3)3. P_QUAL°1)

1 H

P_FLOW(55) = RCS_P_FLOW_NONM(5)

3.

TASS SJE Database^

RCP_COMMON ^•ft^'H S-fr *r 5U4.

12 #2) - l

- 4 0 -

RCPI_VOLT_FRAC(1) = 0.0

5.

TASS 1.0 2 E

4.

-8-71

RTRV_BTPASS°fl 3*11 2 * ! € E } . TASS 1.0 2 £ f e ^^cfl^- t ^ ^ - ^ 1 ^ , ^ * j | 7\

-8-71

^£#oflAi Qz\s. -8-71 DowncomerS

*9!(Weighting Factor Matrix) RCS_KWEIGHT_TE.T(IJ)<>11

Ife- 3-^r^-, Jfe ^ l ^ : ^ ^ - M-Bl-^cl-. o] Downcomer ^ l ^ : ^ ^^-fe- Downcomer, Flow

Skirt, n e l J i Lower Plenum-§-

Fo°fl

- 4 1 -

. Mixing factor^ Database^ *\

RTRV_MIX_INLET(J) ^ " U ^ £ ^

RTRV_MIX_OUTLET(J) i ^ # ^ ^ 31 r, Fo

. 4 <y*KFactor)t-8r 2^1^ 5lt^ ^ ^ ^ 1 , ^-fr* a^«fl^fe J =

J =2*1^. f ?> -R-^^ )^^ Mixing Factor^

^ ^ r HTILT_CORE_EX<^]

P_ENTH, P_ENTH_LIQ, n e ] a l P_QUAL(S 12)^ Node

ENTH_TOT_, ENTH.LIQ, TEMP.TOT n e l o l TEMP_LIQ(a

6.

Nodes^l- Flowpathsfe n ^ 4 ^ S. 13^1 A ^ s i - ^ 4 . Node

°H ^ ^ ^-Efl^^rfe a 13<H1 ^^£]<H ojc}-. ^y -8 -7 lS * « • Rupture Disk Flowpath^

Flowpath)7> ^ A }

- 4 2 -

2*}-§KEvaporator, Downcomer

i Steam Dome), ^ ^ iftE.*)-

Evaporator^ 1*liM- i # $ 4 . =L% 6£r ^7\ 1HM

Volume NodeSi-

s. i4fe ^<H?H*S; ^ ^n< i A> .sife ^ 7 i $ Hiw.-8-s* ^*I*FJL sa^. °ii- -a-

^^-(Upstream)^ *r*(Downstream)Sl ^ 1 ^ ^ - wfl^^^r MSLH_VALVE

_INLET(Steamline Source, n ^ 5 #2)3r ^ ^ ^ ^ r MSLH_VALVE_EXIT(Flow Sink,

Si4. S 15fe 2*}# Node

ifl-¥"frS ^ , 2^}^ Node *}°)2

a 17£ 2 > ?fl*-fr*|sl Source ^ ^ Sink* 7l#*R

MSLH_VALVEJSfUM ^ S ] Valve -frS g? -8-S. ^Jt*<>l SLJ'^FLOW

f-*(| 3 ^ 5 4 a 14*1 £*lil5a^. at!-, SL_P_FLOW ^ ^ 1 - ^ MSLH_

VALVE.NUM 4-g- ^il-ofl cfl«ll^, 4 *7l^(Upstream of the

SGS_HLEVEL(I)^r ^ H i M M ^ Downcomer«fl-M

Can_deck/Steam ^-e)7)(Separator)7> sfl-*]!) nfl, # Downcomer

•fr nfll- ^flsq^Jlfe <a^^A5 . Downcomer Node°fl^ ^| <+^ =^^ SGS_HT3(I)sf

4 . SGS_HTI(I,J)fe JSi^l # ^ ^ ( J : 1 = ^ ^ , 2 = ^ ^ ^ ^ , 3 =

-fr-S-WH ^ ^ ^ ^71^-^71 IS] Downcomer

CTL_SG_ILEVEL(I,J)^ SGS_HTI(IJ)Sl-

- 4 3 -

CTL_SG_ILEVEL(I)s)-

TASS 1.0 2 £

a

- 4 4 -

^ « . ^ , TASS 1.0 2 E

Database^ ^ - ^ i 4-S. ^^-^l i ^ - s l ^ SU4. ^^Hlfe ^f- ^^^^^(Overa l l Heat

Transfer Coefficients)^

TASS l.

^^^>al(SBL0CA) ¥ - g £ ^=^S-°d ^^^-(Pump-suction Cold Leg), *§E.

^^r^(Pump-discharge Cold Leg), Jl^r^r, 7f<a-7l ^e ) j i ^-Jf^l^(CEA

7 } ? « } i t S14. ¥ ^ ^ ^ ° 1 «& «fl 4 ^ ^«fl*lfe ATWS(Anticipated

Transient Without Scram) ¥-££- ^••?- lS<:Hl ^<H\+tf. ^ ^ , O-Ring

Operated Relief Valve)0!)*

, ^ H ^ 1 4<i(Shaft Break),

7><a-7l

Bundle)^

5J PORV(Power

Lock)^- A

A &7]&%7

3 ^ 5°ll Tilf-^f^^ $\*]7}

£ 18 1 #.2.

- 4 5 -

CEA

. LOCAfe sK!:^ 3-2.3. 5.^1*)-^, LOCA

), CONT_PRES°fl 4 ^ 4 . ^ ^ J i ^ £

^(Zero), t e ^ ^ ^ s . ^ FalseS. q-Ej-\«4

S. 12*11

CEA ol^VaL^-Hfe $_ 4^ POW_KIN_DK1-

2.

TASS LO

19°fl 1 1*1-5514. u l 4 ^ S^-^^r^ ^ ^ ^ ^ <g(ZeroHc}

CONT_PRES«»1)

^ig-4^(Guillotine break)#

, RCS_SGTR_FLOWMULT = 0.5» ^l t>€

- « £ £ ^ SIS] 714-,

Stt4.

- 4 6 -

BOP

TASS 1.0 2 £ f

BOP(Balance-of-Plant)

± ^ - ^ , BOP %

BOP

NEXT PAQE(S)toft BLANK

- 4 7 -

4 ^ TASS 1.0

TASS 1.0 2£fe *}*$ E.3.=L$o] 3 £ ^ & t Data-Dictionary 3 H £

25*

. CTL_OUTPUT_OPTION - -1 a t - 2* <

t 1, 2#

NEXT PAOC(t)l«fft BkANK

- 4 9 -

TASS 1.0

TASS 1.0 3.B.S

$ d I 26

NEXT PAQC(8)toft BLANK

- 5 1 -

TASS 1.0 2 £

TASS i.o 2E21 *\**t7\

Westinghouse 5J

TASS 1.0 S ^

3. TASS 1.0 7l#A3.^o) Y^-^-5- TASS 1.0

TASS S ^ User Group - * « H TASS 2£fil

NEXT PAOEIS)toft BLAN*

1. ," KAERI/RR-1224/93,

1993.

2. 3H1S si, " ^ ^ ^ 1 1 - ^ A - ) 2 £ TASS 7flf

KAERI/RR-1313/93, 1994.

3. AjA zp. s] "^ J f l - t - $ ^ S H TASS

KAERI/RR-1468/93, 1995.

4. 4 H ^ ^1, "TASS 2 E

KAERI/TR-845/97, 1997.

5. /yAj^. si j "TASS 2 E s . ^ 7 l #

TASS S =

: TASS 2 £

2 iS : CE ^ Westinghouse^

", KAERI/TR-845-1/97, 1997.

- 5 5 -

POWJJSERJFUPOW

False (F)

Power and Reactivity Procdeure

TASS calculates power based on reactivity

feedbacks in Table 5. This includes the reactivity

from the control fod regulating system

True' (T) The user controls power through the input of a power

versus time table as described in Table 2. Reactivity

varies because of feedbacks due to the power change.

The control rod controller may be used to compensate

these reactivity changes.

Choice of Power Caculation Model

MOD_OFF_POWER Point Kinetics model if False,

1-D Neutronics model if True

* Must also set CTL_CORE_CONTROL_AUTO=F

- 5 6 -

ft 2

User Power Specifications

POWJJSERJFUPOW

POW_USER_NPOWT

POW_USER_TPOWT

POW_USER_POWT

POW_USER_POWZ

POW_USER_QAXL( 12)*

User supplies power table if true* (T)

Number of entries in power table

Time for power tables entries (sec)

User Power table (fraction of rated power)

Rated power (MWt)

Axial power shape (Normalized to 1.0)

Decay Heat

POW_DKHTJ)HCFCT

POW_DKHT_NDHC

POWJDKHT_TIMDHT

POW_DKHT_ANSDHC

POWJ)KHT_DHCBEG

Multiplier on decay heat curve

Number of entries in decay heat table

Time for decay heat table (sec)

Decay heat table (fraction of the power at trip)***

Core power fraction for switch to decay heat curve*

Zirconium-Water Reaction

POW_ZRH2O_NYZIR Flag to include Zr-H20 reaction, yes if true (T)

Must also set CTL_CORE_CONTROL_AUTO = F

Input for 12 equal length segments as fractions normalized to 1.0

Current table in data base is ANSI/ANS-5.1 - 1979 for nominal fullpower operation of a PWR.

Normally equal to the first entry of the decay heat table. Switch todecay heat occurs after scram when CTL_CORE_POWER_FRACTION < (POW_DKHT_DHCBEG )*( POW_DKHT_DHCFCT )

- 5 7 -

s. 3

Power

CTL_CORE_POWER_FRACTION

POW_CORE_TRD°_FRACTION

CFTH.RCSAXIAL _Q(12)*

CTL_CORE_POWER

Fraction of rated power, actual

Fraction of rated power at trip

Fuel heat generation rate (Btu/sec)

Core power (Btu/sec)

Decay Heat

POW_DKHT_IFDHC

P0WJ3KHT_TIMDHC

Flags switch to decay heat curve if true (T)

Time of switch to decay heat (sec)

Zirconium~Water Reaction

POW_ZRH2O_H2M

CHT_HT_GEN_ZR_WAT(12)*

POW_JZRH2O_QZH2O(12)<

POW_ZRH2O_PCZRU2)'

Hydrogen generation (lbm/sec)

Heat rate generated (Btu/sec)

Heat flux generated (Btu/ft2-sec)

Percent zirconium reacted

Defined for 12 axial segments of fuel rod.

Defined for N axial segments of fuel rod, where N=12 in pool boiling (ifCHT_BOILING=T), N=4 in forced convection (if CHT_BOILING=F).

- 5 8 -

s. 4

Control Rod Scram

(CTL_CORE_TRIP = T and POW_KIN_SCRAM_ROD_OPTION = T)'

POW_KIN_NQDK Number of entries in table (<30)

POW_KIN_TQDK Time for control rod reactivity table (sec)

POW_KIN_QDK Reactivity*

User Specified Reactivity

POW_KIN_DK User specified reactivity due to rod motion or

other effects."

Doppler Reactivity

(POW_KIN_DOPPLER_FB_OPTION = T)

POW_KIN_NDKTMP Number of entries in table (<30)

POW_KIN_TDKTMP Fuel temperature for Doppler reactivity table CF).

POW_KIN_DKTMP Reactivity+

POW_KIN_DKTMPZ Doppler reactivity for initial conditions*

Moderator Temperature

(POW_KIN_MOD_TEMP_FB_OPTION = T)

POW_KIN_NDKCTM Number of entries in table (<30)

POW_KIN_TDKCTM Moderator (coolant) temperature for table (" F)

POW_KIN_DKCTM Reactivity*

POW_KIN_DKCTMZ Moderator temperature reactivity for initial conditions*

- 5 9 -

S. 4

Moderator Boric Acid Concentration

(POW_KIN_BORON_FB_OPTION = T)

POW_KIN_NDKCON

POW_KIN_TDKCON

POW_KIN_DKCON

POW_KIN_DKCONZ

Number of entries in table (^30)

Moderator boric acid concentration for table (ppm)

Reactivity*

Moderator boric acid reactivity for initial conditions*

Moderator Density

(POW_KIN_MOD_DENSITY_FB_OPTION = T)

POW_KIN_NDKDEN

POW_KIN_TDKDEN

POW_KIN_DKDEN

POW_KIN_DKDENZ

Number of entries in table (^30)

Moderator density for table (lbm/ft3)

Reactivity+

Moderator density reactivity for initial conditions*

Control Rod Regulating System

POW_KIN_NDKINS

POW_KIN_TDKINS

POW_KIN_DKINS

POW_KIN_DKINSZ

Numder of entries in table (^ 100)

Control rod position for table

Reactivity*

Control rod regulating system reactivity

for initial rod position

T means true, F means false.

Use RAMP function for variable insertion or withdrawal

+ Reactivity units _ 5k/k

- 6 0 -

S. 5

Feedback Reactivity*

POW_KIN_OUT Database partition for the following parameters

POW_KIN_DKSCRAM Control rod reactivity (insertion, scram)

POW_KIN_DKDOP Fuel Doppler effect reactivity

POW_KIN_DKBOR Moderator boric acid reactivity

POW_KIN_DKTMD Moderator temperature reactivity

POW_KIN_DKMOD Moderator density reactivity

POW_KIN_DKROD Control rod regulating system reactivity

POW_KENLDKT Total reactivity

POW_KIN_DK User specified reactivity

Independent Variable for Reactivity Feedback Interpolation

POW_KIN_T Average fuel temperature for Doppler (" F)

RCS_BORON_CORE Boric acid concentration in core (ppm)

CHT_TCOOL_AV Moderator temperature in core (' F)

POW_KIN_DENCOR Moderator density in core (lbm/ft3)

'Reactivity units - 6k/k

- 6 1 -

S. 6

Fuel Rod Nodal Variables

CHT_HT_GEN_ZR_WAT (12)*

CFTH_RCSAXIAL_Q (12)

CHT_TEMP_ROD (10, 12)"

Zirconium-water reaction heat

generation rate (Btu/sec)

Fuel heat generation rate (Btu/sec)

Temperature distribution in fuel rod (* F)

Cladding Surface Variables

CHT_HT_FLUX (13)

CHT_TEMP_SURF (13)

CHT_BOILING

CHTJHT (13)

Heat flux into coolant (Btu/ft2-sec)

Cladding surface temperature (* F)

Flag for heat transfer mode, natural

Convection is True.

Heat transfer regime (Table 7)

Coolant Channel Variables

CHT_ENTH_COOL (13)

CHT_TEMP_COOL (13)

Coolant enthalpy at bottom of node (Btu/lbm)

Coolant enthalpy temperature at

bottom of node (' F)

Dimension of variable

The current model has 10 radial nodes - 8 fuels, gap and cladding.

- 6 2 -

s. 7

Heat Transfer Type

CHT_BOILING*

F

T

TYPE

Forced convection

Natural circulation (pool boiling)

Heat Transfer Regime on Boiling Curve

CHTJHT

1

2

4

5

7

8

REGIME

Subcooled

Nucleate boiling

Transition boiling

Stable film boiling

Steam

Supercritical steam

* F = false, T = true.

- 6 3 -

S. 8.A

( # 1 1 3 ? ! CE PWR)

1 Inner Vessel and Upper Plenum

2 Pressurizer

3 Reactor Vessel Annulus and Lower Plenum

4 Reactor Vessel Upper Head

5 Hot Leg and Steam Generator Inlet Plenum (Loop 11)

6 Steam Generator Tube Bundle - Hot Side (Loop 11)

7 " '' » " - Cold Side (Loop 11)

8 Steam Generator Outlet Plenum and Loop Seal (Loop 11)

9 Cold Leg (Loop 11 A)

10 " " (Loop 11B)

11 Hot leg and Steam Generator Inlet Plenum (Loop 12)

12 Steam Generator Tube Bundle - Hot Side (Loop 12)

13 " " " i - Cold Side (Loop 12)

14 Steam Generator Outlet Plenum and Loop Seal (Loop 12)

15 Cold Leg (Loop 12A)

16 " " (Loop 12B)

17 Control Element Assembly (CEA) Guide Tubes

- 6 4 -

3. 8.B

Westinghouse 3-loop PWR)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Inner Vessel and Upper Plenum

Reactor Vessel Upper Head

Reactor Vessel Annulus and Lower

Pressurizer

Hot Leg and Steam Generator Inlet

// // it n it

n II it n it

Plenum

Plenum (Loop

a (Loop

" (Loop

Steam Generator Tube Bundle - Hot Side (Loop

n n II it n

n n n n n

n II it n — C (

// // n n it

n n n u n

Steam Generator Outlet Plenum and

n it n u n

it n n n n

Cold Leg (Loop C)

» a (Loop A)

" " (Loop B)

* (Loop

" (Loop

)ld Side (Loop

a (Loop

a (Loop

C)

A)

B)

C)

A)

B)

C)

A)

B)

1 Loop Seal (Loop C)

» (Loop A)

" (Loop B)

20 Control Element Assembly (CEA) Guide Tubes

- 6 5 -

s. 8.cWestinghouse 4-loop PWR))

1 Inner Vessel and Upper Plenum

2 Pressurizer

3 Reactor Vessel Annulus and Lower Plenum

4 Reactor Vessel Upper Head

5 Hot Leg and Steam Generator Inlet Plenum (Loop 1)

6 Steam Generator Tube Bundle - Hot Side (Loop 1)

7 » « » i Cold Side (Loop 1)

8 Steam Generator Outlet Plenum and Loop Seal (Loop 1)

9 Cold Leg (Loop 1)

10 Hot leg and Steam Generator Inlet Plenum (Loop 2)

11 Steam Generator Tube Bundle - Hot Side (Loop 2)

12 » " » " - Cold Side (Loop 2)

13 Steam Generator Outlet Plenum and Loop Seal (Loop 2)

14 Cold Leg (Loop 2)

15 Hot leg and Steam Generator Inlet Plenum (Loop 2)

16 Steam Generator Tube Bundle - Hot Side (Loop 3)

17 n » ii a - Cold Side (Loop 3)

18 Steam Generator Outlet Plenum and Loop Seal (Loop 3)

19 Cold Leg (Loop 3)

20 Hot Leg and Steam Generator Inlet Plenum (Loop 4)

21 Steam Generator Tube Bundle - Hot Side (Loop 4)

22 a a » a Cold Side (Loop 4)

23 Steam Generator Outlet Plenum and Loop Seal (Loop 4)

24 Cold Leg (Loop 4)

25 Control Element Assembly (CEA) Guide Tubes

- 6 6 -

$- 9

PRESS (N)*

ENTH_TOT (N)

TEMP_TOT (N)

TEMP.SAT (N)

MASS_TOT (N)

LEVL_MIX (N)

LEVL_LIQ (N)**

NUM_NODES

Overall Node Variables

Pressure (psia)

Average node enthalpy (But/lbm)

Average node temperature (°F)

Saturation temperature (" F)

Total coolant mass (lbm)

Two-phase mixture level (feet)

Two-phase liquid level (feet)

Number of primary system nodes

Liquid Phase

ENTHJJQ (N)

ENTH_LIQ_SAT (N)

TEMP_LIQ (N)

MASS.LIQ (N)

MASS_BUB (N)

Two-Phase Node Variables

Steam Phase

ENTH.STM (N)

ENTH_STM_SAT (N)

TEMP.STM (N)

MASS.STM (N)

Ethalpy (Btu/lbm)

Saturation enthalpy (But/lbm)

Temperature (' F)

Mass (lbm)

Mass of entrained bubbles

(lbm)

Solute Concentrations

RCS_CONC_SOLU (NJ) Solute concentrations

J = 1 Boron (ppm)

2 Hydrogen (lbm/lbm)

3 Iodine (mC/lbm)

4 Particulated (mC/lbm)

5 Xenon (mC/lbm)

N =1 NUM.NODE

Refer Table 8 for particular node numbers

In the inner vessel (N=l), LEVL_LIQ(1) is the subcooled liquid level

- 6 7 -

10.A

CE PWR)

Number Description

1 Reactor Vessel Downcomer to Inner Vessel2 Pressurizer Surge Line3 Upper Head to Inner Vessel4 Inner Vessel to Hot Leg (Loop 11 lower path)5 Hot Leg to Steam Generator (Loop 11 lower path)6 Top of Steam Generator U-tubes (Loop 11)

7 Steam Generator to Outlet Plenum/Loop Seals (Loop 11)8 Outlet Plenum/Loop Seal to Cold Leg (Loop 11 A)9 Cold Leg to Reactor Vessel Downcomer (Loop 11A lower path)10 Outlet Plenum/Loop Seal to Cold Leg (Loop 11B)11 Cold Leg to Reactor Vessel Downcomer (Loop 11B lower path)12 Inner Vessel to Hot Leg (Loop 12 lower path)13 Hot Leg to Steam Generator (Loop 12 lower path)14 Top of Steam Generator U-tubes (Loop 12)15 Steam Generator to Outlet Plenum/Loop Seals (Loop 12)16 Outlet Plenum/Loop Seal to Cold Leg (Loop 12A)17 Cold Leg to Reactor Vessel Downcomer (Loop 12A lower path)18 Outlet Plenum/Loop Seal to Cold Leg (Loop 12B)19 Cold Leg to Reactor Vessel Downcomer (Loop 12B lower path)20 Inner Vessel to CEA Guide Tubes21 CEA Guide Tubes to Upper Head22 Inner Vessel to Hot Leg (Loop 11 upper path)23 Hot Leg to Steam Generator (Loop 11 upper path)24 Inner Vessel to Hot Leg (Loop 12 upper path)25 Hot Leg to Steam Generator (Loop 12 upper path)26 Cold Leg to Reactor Vessel Downcomer (Loop 11A upper path)cv-t " ft tr rt ft tf iT < 1 i-» " " \

27 (Loop 11B )28 " " (Loop 12A " " )29 " " " " " " (Loop 12B " " )

- 6 8 -

S. 10.B

( # 3 3 SI Westinghouse 3-loop PWR)

Number Description

1 Reactor Vessel Downcomer to Inner Vessel

2 Upper Head to Inner Vessel

3 Pressurizer Surge Line

4 Inner Vessel to Hot Leg (Loop C lower path)

5 » " » « (Loop A lower path)

6 n n H n (Loop A lower path)

7 Hot Leg to Steam Generator (Loop C lower path)

8 H H n i, (Loop A lower path)

9 » » " i (Loop B lower path)

10 Top of Steam Generator U-tubes (Loop C)

11 rt n n n n (Loop A)

12 * * i " » (Loop B)

13 Steam Generator to Outlet Plenum/Loop Seals (Loop C)

M ff if ft ft fr ft /T A \(Loop A)if— ft fr ft rt ff rt /T r\\

15 (Loop B)16 Outlet Plenum/Loop Seal to Cold Leg (Loop C)1 rt ft K ft tt ft ft / T A \

17 (Loop A)1 a f l " ft ti ft tf /T T~*\

18 (Loop B)

19 Cold Leg to Reactor Vessel Downcomer (Loop C lower path)

20 " " " " " " (Loop A lower path)

21 " " " " " " (Loop A lower path)

22 Inner Vessel to CEA Guide Tubes

23 CEA Guide Tubes to Upper Head

24 Reactor Vessel Downcomer (Annulus) to Upper Head

25 Inner Vessel to Hot Leg (Loop C upper path)

26 n n n n (Loop A upper path)

27 " i " i (Loop B upper path)

28 Hot Leg to Steam Generator (Loop C upper path)

29 >i ii H i, (Loop A upper path)

30 » " » " (Loop B upper path)

31 Cold Leg to Reactor Vessel Downcomer (Loop C upper path)

32 n n a H n n (Loop A upper path)

33 » " » " " i> (LOOP B upper path)

- 6 9 -

10.C

Westinghouse 4-loop PWR)

Number Description

1 Reactor Vessel Downcomer to Inner Vessel

2 Pressurizer Surge Line

3 Upper Head to Inner Vessel

4 Inner Vessel to Hot Leg (Loop 1 lower path)

5 Hot Leg to Steam Generator (Loop 1 lower path)

6 Top of Steam Generator U-tubes (Loop 1)

7 Steam Generator to Outlet Plenum/Loop Seals (Loop 1)

8 Outlet Plenum/Loop Seal to Cold Leg (Loop 1)

9 Cold Leg to Reactor Vessel Downcomer (Loop llower path)

10 Inner Vessel to Hot Leg (Loop 2 lower path)

11 Hot Leg to Steam Generator (Loop 2 lower path)

12 Top of Steam Generator U-tubes (Loop 2)

13 Steam Generator to Outlet Plenum/Loop Seals (Loop 2)

14 Outlet Plenum/Loop Seal to Cold Leg (Loop 2)

15 Cold Leg to Reactor Vessel Downcomer (Loop 2 lower path)

16 Inner Vessel to Hot Leg (Loop 3 lower path)

17 Hot Leg to Steam Generator (Loop 3 lower path)

18 Top of Steam Generator U-tubes (Loop 3)

19 Steam Generator to Outlet Plenum/Loop Seals (Loop 3)

20 Outlet Plenum/Loop Seal to Cold Leg (Loop 3)

21 Cold Leg to Reactor Vessel Downcomer (Loop 3 lower path)

22 Inner Vessel to Hot Leg (Loop 4 lower path)

23 Hot Leg to Steam Generator (Loop 4 lower path)

24 Top of Steam Generator U-tubes (Loop 4)

25 Steam Generator to Outlet Plenum/Loop Seals (Loop 4)

26 Outlet Plenum/Loop Seal to Cold Leg (Loop 4)

27 Cold Leg to Reactor Vessel Downcomer (Loop 4 lower path)

28 Inner Vessel to CEA Guide Tubes

29 CEA Guide Tubes to Upper Head

30 Reactor Vessel Downcomer (Annulus) to Upper Head

31 Inner Vessel to Hot Leg (Loop 1 upper path)

32 Hot Leg to Steam Generator (Loop 1 upper path)

33 Cold Leg to Reactor Vessel Downcomer (Loop 1 upper path)

- 7 0 -

& 10.C

(^[^^61 Westinghouse 4-loop PWR)

Number Description

34 Inner Vessel to Hot Leg (Loop 2 upper path)

35 Hot Leg to Steam Generator (Loop 2 upper path)

34 Inner Vessel to Hot Leg (Loop 2 upper path)

35 Hot Leg to Steam Generator (Loop 2 upper path)

36 Cold Leg to Reactor Vessel Downcomer (Loop 2 path)

37 Inner Vessel to Hot Leg (Loop 3 upper path)

38 Hot Leg to Steam Generator (Loop 3 upper path)

39 Cold Leg to Reactor Vessel Downcomer (Loop 3 upper path)

40 Inner Vessel to Hot Leg (Loop 4 upper path)

41 Hot Leg to Steam Generator (Loop 4 upper path)

42 Cold Leg to Reactor Vessel Downcomer (Loop 4 upper path)

- 7 1 -

S.

CE PWR)

Number* Description*

Kxteraal to Primary System

Non-mom*Abbreveation Number

51 Reactor Coolant Pump (RCP) Leak (Loop UA) PSL•-O ft ff ft ft ft / T 1 1 T~k\ "

52 (Loop 11B)

53 (Loop 12A)

54 (Loop 12B)

55 Charging to Cold Leg (Loop 11 A) CH

56 Charging to Cold Leg (Loop 12B)

59 Letdown Outlet from Pump Discharge (Loop 12B) LDNS

63 Hot Leg drain (Loop 11) RCW

64 Shutdown Cooling Outlet from Hot Leg (Loop 12) SDC

66 Emergency Core Cooling System Injeciton (Loop 11A) SIS67

68

69

(Loop 11B)

(Loop 12A)

(Loop 12B)

1

2

3

4

5

6

9

13

14

16

17

18

19

Leaks for Component Breaks

76 Steam Generator Tube Rupture (Loop 11 Hot Side) SGTR

77 " " " " (Loop 11 Cold Side)

78 " " " " (Loop 12 Hot Side)

79 " " " " (Loop 12 Cold Side)

84 Discharge Cold Leg Small Break (Loop 11A) SB

85 Suction Cold Leg Small Break (Loop 12A)

86 Hot Leg Small Break (Loop 12A)

87 Pressurizer Small Break

88 Control Element Assembly (CEA) Ejection (Upper RODEJ

Head)89 Anticpated Transient Without Scram O-Ring Seal ATWS

90 Suction Cold Leg Large Break (Loop 12B) LB

26

27

28

29

34

35

36

37

38

39

40

-72-

CE PWR)

Number* Description*Non-mom*

Abbreveation Number

Internal to Primary System

93 Main Spray to Pressurizer

94 Main Spray Source from Cold Leg (Loop 11A)

95 (Loop 11B)

96 Pressurizer Relief (SV, PORV and vents combined)

97 Upper Head Vent Valve

SPR

SV, PORV

VENT

43

44

45

46

47

* The alternate Path number are for non-momentum paths as a continuationof the momentum path arrays (51-100) or for the non-momentum pathsnumbered form 1-50.

+ The non-momentum paths may be reconnected to different loops or nodesvia the array P_NODE_INLET, or at different elevations via the arrayPJ;LEV_INLET.

- 7 3 -

Number*

Westinghouse 3-loop PWR)

Non-Mom*Description+ Abbreveation Number

External to Primary System

51 Reactor Coolant Pump (RCP) Leak (Loop C)

52 (Loop A)

53 (Loop B)

55 Charging to Pump Seal (Loop C)

56 Charging to Pump Seal (Loop A)

57 Charging to Cold Leg and Pump Seal (Loop B)

59 Letdown Outlet from Pump Discharge Leg (Loop A)

63 Hot Leg drain (Loop C)

64 Shutdown Cooling Outlet from Hot Leg (Loop A)

66 Emergency Core Cooling System Injection (Loop C)f+rn I* H It tt If ft / T A \

67 (Loop A)68 (Loop B)

PSL

PS

PS

CH&PS

LDNS

DRN

SHC

SIS"

12

3

5

6

7

9

13

14

16

17

18

Leak for Component Breaks

76

77

78

79

80

81

84

85

86

87

88

89

90

System Generator Tube Rupture (Loop C Hot Side)

(Loop C Cold Side)

(Loop A Hot Side)

" (Loop A Cold Side)

(Loop B Hot Side)

(Loop B Cold Side)

Discharge Cold Leg Small Break (Loop C)

Suction Cold Leg Small Break (Loop A)

Hot Leg Small Break (Loop A)

Pressurizer Small Break

Contorl Element Assembly (CEA) Ejection (Upper Head)

O-Ring Seal Leak

Suction Cold Leg Large Break (Loop A)

SGTRfr

tf

ft

ft

tt

SB

SB

SB

SB

RODEJ

ATWS

LB

2627

28

29

30

31

34

35

36

37

38

39

40

- 7 4 -

S. ll.B

Westinghouse 3-loop PWR)

Number* Description+Non-Mom*

Abbreveation Number

Internal to Primary System

93 Main Spray to Pressurizer

94 Main Spray Source from Cold Leg (Loop C)r\r- *f " " " ft " / T A \

95 (Loop A)

96 Pressurizer Relief (SV, PORV and vents combined)

97 Upper Head Vent Valve

SPRft

tr

SV, PORV

VENT

43

44

45

46

47

* The alternate path numbers are for non-momentum paths as a continuation

of the momentum path arrays (51-100) or for the non-momentum paths

numbered form 1-50. See the text for more information.

+ The non-momentum paths may be reconnected to different loops or nodes

via the array P_NODE_INLET, or at different elevations via the array

PJELEVJNLET.

- 7 5 -

Number*

S. ll.C

Westinghouse 4-loop PWR)

Non-Mom*Description* Abbreveation Number

External to Primary System

51 Reactor Coolant Pump (RCP) Leak (Loop 1) PSL 1

52 " " " " " " (Loop 2) PSL 2

53 " " " " " " (Loop 3) PSL 3

54 " " " " " " (Loop 4) PSL 455 Charging to Pump Seal (Loop 1) PS 5

56 Charging to Pump Seal (Loop 2) PS 6

57 Charging to Cold Leg and Pump Seal (Loop 3) CH&PS 7

58 Charging to Pump Seal (Loop 4) PS 8

59 Letdown Outlet from Pump Suction Leg (Loop 3) LDNS 9

60 Letdown Outlet from Pump Discharge Leg (Loop 3) LDNS 10

63 Hot Leg drain (Loop 1) DRN 13

64 Shutdown Cooling Outlet from Hot Leg (Loop 2) SDC 14

66 Emergency Core Cooling System Injection (Loop 1) SIS 16

67 " " " " " " (Loop 2) SIS 17

68 " " " " " " (Loop 3) SIS 18

69 " " " " " " (Loop 4) SIS 19

70 Safety Injection to Hot Leg (Loop 1) SIS 20

71 " " " " (Loop 3) SIS 21

76

S. l l .C

Number*

Westinghouse 4-loop PWR)

Leak for Component Breaks

Non-Mom*Description+ Abbreveation Number

76 System Generator Tube Rupture (Loop 1 Hot Side)

77 " " " " (Loop 1 Cold Side)

78 " " " " (Loop 2 Hot Side)

79 " " " " (Loop 2 Cold Side)

80 " " (Loop 3 Hot Side)

81 " " " " (Loop 3 Cold Side)

82 " " " (Loop 4 Hot Side)

83 " " " " (Loop 4 Cold Side)

84 Discharge Cold Leg Small Break (Loop 3)

85 Suction Cold Leg Small Break (Loop 2)

86 Hot Leg Small Break (Loop 1)

87 Pressurizer Small Break

88 Contorl Element Assembly (CEA) Ejection (Upper Head)

89 O-Ring Seal Leak

90 Suction Cold Leg Large Break (Loop 2)

SGTR

"

tr

tr

tt

ft

"

SB

SB

SB

SB

RODEJ

ATWS

LB

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

Internal to Primary System

93 Main Spray to Pressurizer

94 Main Spray Source from Cold Leg (Loop 3)r\r- ff ft rt " " " /T A \

95 (Loop 4)

96 Pressurizer Relief (SV, PORV and vents combined)

97 Upper Head Vent Valve

SPRtr

tr

SV, PORV

VENT

43

44

45

46

47

* The alternate path numbers are for non-momentum paths as a continuation

of the momentum path arrays (51-100) or for the non-momentum paths

numbered form 1-50. See the text for more information.

+ The non-momentum paths may be reconnected to different loops or nodes

via the array P_NODE_INLET, or at different elevations via the array

P_ELEV_INLET.

-77 -

S. 12

Path Types

1-50 Momentum

51-75 Non-momentum, sources or sinks external to primary system

76-92 Non-momentum, leaks

93-100 Non-momentum, sources or sinks internal to primary sysrem

Path Variables

PJ?LOW (J)* Flow rate

P_ENTH (J) Enthalpy

PJ'LOW.XIQ (M) Liquid enthalpy

P_PLOW_STM (M) Steam enthalpy

P_QUAL (J) Quality

DP_TOT (M) Momentum Path pressure drop

NUM_PATHS_MOM Number of momentum paths

NUM_PATHS Total of momentum and

non-momentum paths

(lbm/sec)

(Btu/lbm)

(Btu/lbm)

(Btu/lbm)

(psid)

(100)

Non-Momentum Path Variables

RCSJ>J?LOW3IONM(N)* Flow rate (lbm/sec)

RCS_P_JNTH_NONM(N) Enthalpy (Btu/lbm)

RCS_P_QUAL_NONM(N)

RCSJ>_3ORON(N)

RCS_P_HYD(N)

RCSJ>JOD(N)

RCSJ>JPART(N)

RCS_PJCEN(N)

NUM_PATHSJSTONM

Quality

Boric acid concentration (ppm)

Hydogen (lbm/lbm)

Iodine fission products (MC/lbm)

Particulatev tf ft tt

Xenon

Number of non_momentum paths (50)

- 7 8 -

3. 12

SPEED_PUMP (I)'

DP_PUMP (I)

RCPI_VOLT_FRAC

RCP_HEAT (I)

NUM_PUMPS

(I)

Critical

Reactor Coolant

Pump speed

Pump head

Pump voltage

Pump heat

Number of reactor

PumD

coolant

Flow Ootion for Liauid and

(RPM)

(psid)

(fraction of rated

voltage)

(Btu/sec)

pumps

Two-Phase

RCS_CRIT_MODEL =0, Homogeneous Equilibrium Model(HEM)

=1, Henry-Fauske Model(H-F)

"See Figure 2 and Figure 3 for praticular path numbers.

1 = 1 , . . . , NUM.PUMPS

J = 1, . . . , NUM.PATHS

M = 1 NUM_PATHS_MOM

N = 1, . . . , NUM_PATHSJSfONM

- 7 9 -

S. 13

Input

Gaseous waste system to quench tank flow rate.

Adjustment multiplier on vent to gaseous waste

system (GWS) flow

Adjustment multiplier on vent to containment flow

QT_RUPTURE_SPOINT Rupture disk setpoint pressure

VLV_QT_GWS Valve position of vent to GWS

VLV_QT_CONT Valve position of vent to containment

QWS_QT_FLOW

QT_GWS_MULT

QT_VENT_MULT

Output : Node

PRES.QT

TEMP_QT

ENTH_QT

LEVL_QT

Pressure

Temperature

Enthalpy

Level

CONC_SOLU_QT(J)* Solute concentrations

(psia)

(°F)

(Btu/lbm)

(ft)

RUPTURE.QT

PJ?LOW_DISK

ENTH.QT

Output : Rupture Disk Path

Disk ruptured when true (T/F)

Disk to containment flow rate (lbm/sec)

Disk to containment enthalpy (Ibm/sec)

Output : Quench Tank to Containment Vent Path

P_pLOW_VENT_WAT Vent water flow rate (Ibm/sec)

ENTH_QT Vent enthalpy (lbm/sec)

•See Table 9 for relationship of J to solute and units

- 8 0 -

ft 14.A

CE PWR)

No. Steamline Sources

1. Steamline 1, upstream of MSIV

2. Steamline 2, upstream of MSIV

3. Steamline header, downstream of MSIV

No. Steamline Sinks

1.

2.

3.

4.

Atmosphere

Condenser

Containment

Turbine

No. Steamline External Flowpaths Source Sink

1. Atmospheric Dump Valve

2.

3. Safety Valve

4.

5 ft /t

6 ff rr

8.

9.

10.

11.

12.

13.

14.

1

2

1

1

1

1

1

1

1

1

2

2

2

2

1

1

1

1

1

1

1

1

1

1

1

1

1

1

- 8 1 -

S. 14.A

CE PWR)

No. Steamline External Flowpaths Source Sink

15. " 2 1

16. " 2 1

17. " 2 1

18. " 2 1

19. Turbine Bypass Valves 3 2

20. " " " 3 2

21. " " " 3 2

22. " " 3 2

23.* Turbine Admission Valves 3 4

24. Constant Auxiliary Flow 1

25. " " 2

26. " " 3

MSLB Main Steam Line Break 1 3

" " 2 3

" " 3 1

* MSLH_VALVE_NUM

- 8 2 -

14.B -g^l# ^ -frii-

Westinghouse 3-loop PWR)

No. Steamline Sources

1. Steamline 1, upstream of MSIV

2. Steamline 2, upstream of MSIV

3. Steamline 3, upstream of MSFV

4. Steamline header, downstream of MSIV

No. Steamline Sinks

1. Atmosphere

2. Condenser

3. Containment

4. Turbine

No. Steamline External Flowpaths

1. Atmospheric Dump Valve

2.

3 ft tf *f

4. Safety Valve

6.rj 'I It

8.

Source

1

2

3

1

1

1

1

1

Sink

1

1

1

1

1

1

1

1

- 8 3 -

14.B j ^

Westinghouse 3-loop PWR)

No. Steamline External Flowpaths

9. Safety Valve

10.

11.

12.

13.

14.

15.

16.

17.

//

tt

tt

Safety

//

tt

tt

tt

tt

tt

Valvett

tt

tt

18.

19. Turbine Bypass Valves A+B

20. " " C+D

21. " " E+F

22. " " G+H

23.* Turbine Admission Valves

24. Constant Auxiliary Flow

25.

26.

27.

MSLB Main Steam Line Break

tt tt ft tt tt

tt tt tt tt

* MSLH_VALVE_NUM

Source

2

2

2

2

2

3

3

3

3

3

4

4

4

4

4

1

2

3

4

1

2

3

4

Sink

1

1

1

1

1

1

1

1

1

1

2

2

2

2

4

3

3

3

1

- 8 4 -

S. 14.C

Westinghouse 4-loop PWR)

No. Steamline Sources

1. Steamline 1, upstream of MSIV

2. Steamline 2, upstream of MSIV

3. Steamline 3, upstream of MSIV

4. Steamline 4, upstream of MSIV

5. Steamline header, downstream of MSIV

NQ. Steamline Sinks

1. Atmosphere

2. Condenser

3. Containment

4. Turbine

No. Steamline External Flowpaths

1. Atmospheric Dump Valve

2.Q ft ft n

4.

5. Safety Valve

6 tr ft

rj ft ft

8.

9.

10. Safety Valve

11.

12.

13.

14.

rce

1

2

3

4

1

1

1

1

1

2

2

2

2

2

Sink

1

1

1

1

1

1

1

1

1

1

1

1

1

1

- 8 5 -

S. 14.CWestinghouse 4-loop PWR)

No. Steamline Kxternal Flowpaths

15. Safety Valve

16.

17.

18.

19.

20. Safety Valve

21.

22.

23.

24.

25. Turbine Bypass Valves

26.

27.

28.

29.

30.

31.

32.* Turbine Admission Valves

33. Constant Auxiliary Flow

34.

35.

36.

37.

MSLB Main Steam Line Break

ft ft tr f/ ft

ft ft

tt / / / / tr

' MSLH_VALVELNUM

Source

3

3

3

3

3

4

4

4

4

4

5

5

5

5

5

5

5

5

1

2

3

4

5

1

2

3

4

5

Sink

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

4

3

3

3

3

1

- 8 6 -

S. 15 Node

SGS_P(D*

SGS3NTH1 ( I )

SGS_T1 ( I )

SGS.WF1 ( I )

SGS.WG1 ( I )

SGS.M1 ( I )

SGS_C0N_I01 ( I ) "

SGS_HF ( I )

SGS_HG ( I )

SGS.ENTH2 ( I )

SGS_T2 ( I )

SGS_WF2 ( I )

SGS.WG2 ( I )

SGS_M2 ( I )

SGS_C0NJ02 ( I )*'

SGS.HT2 ( I )

SGS_ENTH3 ( I )

SGS.T3 ( I )

SGS.WF3 ( I )

SGS.WG3 ( I )

SGS.M3 ( I )

SGS.HT3 ( I )

MSLH_P

MSLH_H

MSLH_T

MSLH_M

Steam Dome

Pressure

Average enthalpy

Temperature

Liquid mass

Steam mass

Total fluid mass

Iodine concentration

Liquid saturation enthalpy

Steam saturation enthalpy

EvaDorator

Overall enthalpy

Temperature

Liquid mass

Steam mass

Total fluid mass

Iodine concentration for

evaporator and downcomer

Level

Downcomer

Overall enthalpy

Temperature

Liquid mass

Steam mass

Total fluid mass

Level

Main Svstem Line Header

Pressure

Average enthalpy

Temperature

Total fluid mass

(psia)

(Btu/lbm)

(°F)

(lbm)

(lbm)

(lbm)

(mC/lbm)

(Btu/lbm)

(Btu/lbm)

(Btu/lbm)

(°F)

(lbm)

(lbm)

(lbm)

(mC/lbm)

(ft)

(Btu/lbm)

(°F)

(lbm)

(Ibm)

(lbm)

(ft)

(psia)

(Btu/lbm)

(°F)

(lbm)

- 8 7 -

15 Node

MSLH_CON_IO

MSLH_HG

MSLH_HF

SGS_PSL( I )

SGS_TSL( I )

SGS_HSL( I )

SGS_HLEVEL ( I )

SGS_HTI( IJ )

Iodine concentration

Liquid saturation enthalpy

Steam saturation enthalpy

Steam Line

Pressure

Temperature

Average enthalpy

Downcomer Water Level

Downcomer water level, actual

Downcomer water level, measured

(mC/lbm)

(Btu/lbm)

(Btu/lbm)

(psia)

(°F)

(Btu/lbm)

(ft)

(ft)

CTL_SG_ILEVEL( IJ )

by J'th reference leg

Downcomer water level, measured

by J'th reference leg

(fraction)

SGT_Q_MULT(ir

SGT_RCS_QCOLD(I)

SGT_RCS_QHOT(I)

SGT_RCS_QECON(I)

SGT_SG_QCOLD(I)

SGT_SG_QHOT(I)

SGT_SG_QECON(I)

Steam Generator Tube Heat Transfer

Multiplier on heat transfer area

RCS to cold side tubes (Btu/sec)

RCS to hot side tubes (Btu/sec)

RCS to economizer tubes (Btu/sec)

Cold side tubes to secondary (Btu/sec)

Hot side tubes to secondary (Btu/sec)

Economizer tubes to secondary (Btu/sec)

The variable with dimension ( I ) refer to the sream generator.

I+1,...,NUM_SG

Replace 10 by XE or PT for xenon or particulate concentrations.

This multiplier is user-input. It has the effect of simulating tube heat

transfer area degradation due to tube plugging.

- 8 8 -

S. 16

SGS_W21 (I)'

SGS.W23 (I)

SGS.W32 (I)

SGS.W13 (I)

SGS_W31 (I)

SGS.WOUTSG (I)

MSLH_WIN (I)

Evaporator to steam dome flowrate (Ibm/sec)

(Steam separation, Wilson model)

Evaporator to downcomer flowrate (Ibm/sec)

(Recirculation flow)

Downcomer to evaporator flowrate (Ibm/sec)

(Circulator flow)

Steam dome to downcomer flowrate (lbm/sec)

(Steam condensation)

Downcomer to steam dome flowrate (lbm/sec)

(Boiling)

Steam generator outlet nozzle flowrate (lbm/sec)

Steam flow into MSLH (lbm/sec)

I = Steam generator number = 1,...,NUM_SG

- 8 9 -

S. 17

SGS_WOUTSG(D*

MSLH_WIN(I)

Flow In Steam Line

Flow at the steam nozzle

Flow to the steamline header

SL_P_FLOW(J)*

SL_P_FLOW(NV+K)'

MSLH.WOUT

MSLH_WOUT_ATM(K)*

MSLH_WOUT_COND(K)

MSLH_WOUT_CONT(K)

MSLH_WOUT_TURB(K)

MSLH_OUTFLOW(L,M)

Flow Out of Steam Line

Flow through each of the valve paths off the

steamlines: atmospheric dumps, steam bypass, safeties

and turbine admission. (Figure 5 and Table 14)

User-specified auxiliary steam outflow from

steamline source K.

Partition of the following four arrays, which organizethe above valve-path flows by source and sink

(not including break flow and auxiliary flows).

Total flow from steamline source K* to atmosphere

(safety and atmospheric dump valves)

Same as above, to condenser (turbine steam bypass)

Same as above, to containment (none configured)

Same as above, to turbine (turbine admission valve)

Total flow quantitiest L to sinks M :

L =1 Total flow from all NUM_SG + 1

steamline source, including break

=2 Average specific enthalpy (Btu/lbm)

=3,4,5 Average concentrations of iodine,

particulates and xenon (mC/lbm)

M =1 To asmosphereJ =2 To condenser

=3 To containment: =4 To turbine

Each of these twenty elements may be

referenced by an individual name.

See Appendix A. E.g.

MSLH_FLOW_ATM is the total flow rate to

atmosphere, via all ADVs and safety valves and a

main steam line break at the header equivalent to

MSLH_OUTFLOW(1,1).

- 9 0 -

JE 17

MSLH_V AL VE_POS (J) Open position of steamline valves,

corresponding to SL_P_FLOW(J) (fraction).

FWS_FLOW(I)

FWS_ECON_FLOW(I)

FWS_FLOW_TOT(I)

FWSJENTH(I)

FWS_NOZ_FLOW(I)

FWSJSfOZ_QUAL(I)

FWS_J£ON_NOZ_FLOW(I)

FWS_ECONJSIOZ_QUAL(I)

AFWS_FLOW(I)

AFWSJ)NTH(I)

Feedwater Systems

Main feedwater flow to downcomer

Main feedwater flow to economizer

Totol main feedwater flow

Specific enthalpy of above (Btu/lbm)

Flow to downcomer through the main feed nozzle.

Different from FWS_FLOW(I) only in case of

feedline break

Quality at above (fraction)

Flow to economizer through the main feed nozzle.

Different from FWS_ECON_FLOW(I) only in case

of feedline break

Quality at above (fraction)

Auxiliary feedwater flow

Auxiliary feedwater enthalpy (Btu/lbm)

See Table 20.

SGS_CRIT_MODEL

'I = l,...,NUM_SGf

J = 1.....NV

K = 1,...,NUM_SG:

Steam Line and Feed Line Breaks

Critical Flow Option

for Liquid and Two-Phase

= 0, Homogeneous Equilibrium model (HEM)

= 1, Henry-Fauske model (H-F)

NUM_SG = Number of steam generators

Steam line K, upstream of MSIV.

= NUM_SG + 1 : Main steam line header downstream of MSIV.

NV = MSLH_VALVE_NUM = Number of external valve paths

- 9 1 -

S- 18

Malfunction

LOCA"*

SB, Discharge Leg

SB, Suction Leg

SB, Hot Leg

SB, Pzr RTD Well

SB, Suction Leg

Reactor Coolant Pumps

Nod

17

15

6

4

15

Path"* Cue Variable

RCP Seal Leak

RCP Shaft Break

RCP Locked Rotor

14-16

84

85

86

87

90

MAL_SBJX>CA(1)

MAL_SBJX>CA(2)

MAL_SBJ£)CA(3)

MAL_SBJX>CA(4)

MAL LB LOCA

51-53

16-18

16-18

RCP_SE ALSJLE AK( J)'

MAL_RCP_SHAFTBREAK(J)

MAL_RCP_LOCKED(J)

Function of Cue

Break Area (ft2)

Break Area (ft2)

Break Area (ft2)

Break Area (ft2)

Break Area (ft2)

Gallons/Minute*

True/False

True/False

Valves with Auto Controls"

Pressurizer PORV 4

Pressurizer Safety Valve 4

Pzr Spray Bleed Valve 17-18

96

96

94-95

MAL_VLV_PRZR_PORV(K)'

MAL_VLV_PRZR_SAFETY(D*

MAL_VLV_PRZR_MSPRAY(M)'

Fraction

Fraction

Fraction

is

Malfunction Nod

Manually Contoralled Valves"***

Upper Head Vent to Cont. 2

Upper Head Vent to Quench 2

Pzr Vent to Containment 4

Pzr Vent to Quench 4

97

97

96

96

Cue Variable

MAL_VLV_UHEAD_CONT

MAL_VLV_UHEAD_QT

MAL_VLV_PRZR_CONT

MAL_VLV_PRZR_QT

Function of Cue

Fraction

Fraction

Fraction

Fraction

UH Leak Due to CEA Ejection2 MAL_ROD^EJECT Fraction

*J = 1,...,NUM_PUMPS (No. of RCPs) K = 1 RCP_NUM_PORVS (No. of Pzr PORVs)

L = 1,...,RCS_NUM_SAFETYVLVS (No. of Pzr safeties)

M = 1,...,RCS_NUM_MSPRAYVLVS (No. of main spray bleed valves)

Fail-open malfuctions. The valves will stick open at the fractional position indicated by the Cue, unless opened further

by the automatic or manual controls. The indicated areas represent one open valve.

Leak paths may be reconnected to other nodes and/or at other elevations.

+ Not available in the current version. ++ Liquid, at nominal pressure and temperature.

+++ Path and node numbers are for a typical 3 loop Westinghouse PWR.

3. 19.

Malfunction

Tube Rupture*

Location

Loop 1 Hot Side

Loop 1 Cold Side

Loop 2 Hot Side

Loop 2 Cold Side

Loop 3 Hot Side

Loop 3 Cold Side

Cue Variable

MAL_SGTR(1)

MAL_SGTR(2)

MAL_SGTR(3)

MAL_SGTR(4)

MAL_SGTR(5)

MAL_SGTR(6)

Function of Cue

Number of tubes*

Comments

Node 8, Path 76

Node 11, Path 77

Node 9, Path 78

Node 12, Path 79

Node 10, Path 80

Node 13, Path 81

Steamline Break Upstream of MSIV:

Loop J**

Downstream of MSIV

MAL_MSLB_OUT

MAL_MSLB_OUT

Fraction of area

Fraction of area

See Table 20 for

associated flow variables

Feedwater Line

Break

Upstream of

check valve, Loop J*

Downstream of

check valve, Loop J*

MAL_FWLB_OUT(J) or Fraction of area

MAL_FWLB_ECON_OUT_(J)

MAL_FWLB_IN(J) or

MAL_FWLB_JECON_IN(J)

See Table 20 for

associated flow variables

* The indicated leak area in the dara base corresponds to 2 tubes (one double-ended rupture). However,

a multiplier, RCS_SGTR_PLOWMULT=0.5, is imposed on the leak flow, as explained in the text.

** J=1,...,NUM_SG

+ Path and node numbers are for a typical 3 loop W PWR.

++ For a fourth steam generator, use MAL_SGTR(7) and MAL_SGTR(8).

& 20

Steam Line Break

Inside Containment (Upstream of MSIV)

MAL_MSLB_IN(J) Fractional break area, loop J*

MSLB_IN_FLOW(J) Flow rate (lbm/sec)

For flow properties, see steamline properties, Table 15

Outside Containment (Downstream of MSIV)

MAL_MSLB_OUT Fractional break area

MSLB_OUT_FLOW Flow rate (lbm/sec)

For flow properties, see header properties, Table 15

MAL_FWLB_OUT(J),

MAL_FWLB_IN(J),

FWLB_FLOW(J),

FWLB_£NTH**(J),

FWS_FL0W(J),

FWS_NOZ_FLOW(J),

FWSJOZ_QUAL(J),

Main Feedwater Line Break

MAL_FWLB_ECON_OUT Fractional break area, upstream of chv

MAL_FWLBJiCON_IN(J) Fractional break area, downstream of chv

FWLB_£C0N_FL0W(J) Break flow rate

FWLB_ECON_ENTH(J)" Break flow enthalpy

FWS_ECON_pLOW(J) Flow delivered by pumps

FWS_ECON_NOZ_JFLOW(J) Flow at the feedwater nozzle

FWS_ECONJNOZ_QUAL(J) Flow quality at the nozzle

* J=1,...,NUM_SG

** Replace ENTH by 10, PT, XE to obtain solute concentrations of iodine, particulates or

xenon (mC/lbm).

- 9 5 -

& 21 O-Ring

Variable Definition Unit

P_j\REA_ATWS_MIN An*, = minimum head seal in2

leakage area

P_AREA_ATWS_MAX A™* = maximum head seal in2

leakage area

PRES_ATWS_MIN P™, = minimum head seal psia

leakage pressure

PRES_ATWS_MAX P ^ = maximum head seal psia

leakage pressure

RCS_UHEAD_RING_SEAL_MULT Multiplier on the

head seal leakage area

- 9 6 -

S. 22

Type

SG Tube Rupture

Small Break LOCA

CEA Ejection

O-Ring Seal (ATWS)

Large Break LOCA**

Pzr PORV

Pzr Safety Valve

"

Pzr PORV isolation

"

Pzr Vent to Containment

Pzr Vent to Q.T.H

Upper Head Vent to Cont

Upper Head Vent to Q.T.

Pzr Spary Linestt

Cue

Variable

MAL.SGTR

MAL_SBJX)CA

MAL_RODj:jECT

MALJLBJ.OCA

VLV_PRZRJ5ORV

VLV_PRZR_SAFETY

VLV_PRZR_MOV

VLV_PRZR_CONT

VLV_PRZR_QT

VLV_UHEAD_CONT

VLV_UHEAD_QT

VLV_PRZR31SPRAY

Area Variable (ft2)

P_AREA_LEAK (J)

J=1,...,2*NUM_SG

P_AREA_LEAK (J)

J=9 12

P_AREA_LEAK (13)

P_AREA_LEAK (14)

P_AREA_LEAK (15)

AREA_VALVE_PRZR (J)

AREA_VALVE_PRZR (J)

J=5 8*

AREA_VALVE_PRZR (J)

J=9 12*

AREA_VALVE_PRZR (13)

AREA_VALVE_PRZR (14)

AREA_VALVE_PRZR (15)

AREA_VALVE_UHEAD (1)

AREA_VALVE_UHEAD (2)

AREA_VALVE_UHEAD (3)

AREA_VALVE_SPARY (1)

AREA_VALVE_SPARY (2)

"For as many such valves that exist, up to 4.

"Not available in the current version.

- 9 7 -

S. 23

Read-Write Input

RCS_PRZR_HLICLMULT

RCS_PRZR_HWALLF_MULT

RCSJ>RZR_CONT_HEAT_MULT

RCS_UHEAD_CONT_HEAT_MULT

RCS_CONT_HEAT_MULT

TEMP_CONT(30)

CONT_SG_TEMP(J)

Multiplier on pressurizer wall-to-liquid heat transfer

Multiplier on pressurizer wall condensation

Multiplier on pressurizer wall heat loss to containment

Multiplier on upper-head wall heat loss to containment

Multiplier on wall heat loss to containment from

all primary system nodes

Containment temperatures outside RCS nodes, F

Containment temperature at steam generator J

Output

HEATJJQGO)

HEAT_STM(30)

HEAT_WALL(30)

HEAT_CONT(30)

TEMP_WALL(30)

MSLH_Q

MSLH_Q_ATM

MSLH_TWALL

SGS_Q_WALL1(J)

SGS_Q_WALL3(J)

SGS_Q_CONT(J)

SGS.TWALL(J)

RCS node wall-to-liquid heat rates, Btu/sec

RCS node wall-to-steam heat rates, Btu/sec

RCS node wall-to-coolant heat rates, Btu/sec

RCS node containment-to-wall heat rates, Btu/sec

RCS node wall temperatures, "F

Main steamline header coolant-to-wall heat rate, Btu/sec

Main steamline header wall-to-atmosphere heat

rate, Btu/sec

Main steamline header wall temperature, ' F

Steam generator J steam dome coolant-to-wall

heat rates, Btu/sec

Steam generator J downcomer coolant-to-wall

heat rates, Btu/sec

Steam generator J wall heat loss to containment, Btu/sec

Steam generator J wall temperatures, ' F

- 9 8 -

24

Fuction Variable Description

Output frequency

control

CTL_OUTPUTJNTERVAL =N. Output is displayed

every N time steps (1 step =

1 second for TMELSCALE = 1.0)

If = 0, no output

Heading frequency

control

Choice of output

information and

formats

CTL.OUTPUTJJTITLE

CTL_OUTPUT_OPTION

=M. Output heading is

displayed at the start of

output, and after every M

output lines

=1, 2, - 1 , -2.

Indicates user's choice of one

of four output variable

lists. For a description,

see the text, Table 25 and

Figure 7.

Choice of coolant

loops for output

CTL_OUTPUTJ£>OP(2) =Li, L2. Data for output items

that are displayed for two

loops (e.g.,steam generator

pressure) is obtained from

loops Li and L2.

- 9 9 -

3. 25

ID:

A

B

C

D

E

F

G

H

I

U

V

W

CTL_

OUTPUT.

OPTION"

All

All

1,2

-1,-2

All

All

All

All

All

1,2

-1,-2

All

All

All

Data-Base

Variable*"

TIME

PRESS(NODE_PRZR)

LEVL_MK(NODE_PRZR)

CTL.PRZRJLEVEL

LEVEL_MIX(NODE_CORE)

TEMPJLIQ(N),

N=NODE_CL(Li)

TEMP_LIQ(N),

N=NODE_CL(L2)

TEMP_LIQ(N),

N=RCS_NODE_HL(Li)

TEMP_SAT(N),

N=RCS_NODE_HL(Li)

SGS_HLEVEL(Li,l)

CTL_SGS_ILEVEL(Li,l)

[AFWS_FLOW]

[RCPI_VOLT_FRAC(D]

[RCPI_VOLT_FRAC(2)]

Description

Transient Time (sec)

Pressurizer pressure (psia)

Hieght of coolant (water or two-phase)

in the pressurizer (ft)

Instrumentation indicated coolant

hieght in the pressurizer (frac span)

Two-phase mixture height, inner vessel (ft)

Liquid* temperature, loop Li**

pump-discharge cold leg CF)

Liquid* temperature, loop L2

pump-discharge cold leg CF)

Liquid* temperature, loop Li**

hot leg CF)

Saturation temperature, loop Li**

hot leg CF)

Liquid height, steam generator Li**

downcomer (ft, above tubesheet)

Measured liquid height, steam generator

Li* downcomer

(frac span, narrow range)

Auxiliary feedwater:O = no feed,

1 = feed to any steam generator

Reactor coolant pump (RCP) 1;

1 = pump running; 0 = pump tripped

RCP 2, steam as above

-100-

3. 25

CTL_

OUTPUT. Data-Base

ID! OPTION" Variable'"

X All [RCPI_VOLT_FRAC(3)]

Y All [RCPI_VOLT_FRAC(4)]

a ±1 [P_FLOW(96),

P_FLOW(97)]

±1 [MSLH_VALVE_POS]

±1 [MSLH_VALVE_POS]

±1 [MSLH_VALVEJPOS]

±1 [VLV.PRZRJV1SPRAY,

CHGS_ASPRAY_FLOW]

±1 [SIS_RCS_FLOW-

SLTANKJLOW]

±1 [SLTANK_FLOW]

±1 [CTL_VOLT_PROP]

±1 [CTL_VOLT_BACK]

Description

RCP 3, steam as above

RCP 4, (if exists) steam as above

Primary system relief valves

(pressurizer PORV, safety or vent, or

upper head vent): 0 = valves closed,

1 = one or more valves open

Steam generator safety valves;

0 = valves closed, 1 = open valve

Turbine bypass; 0 = valves closed,

1 = open valve

Atmospheric dump valves;

0 = valves closed, 1 - open valve

Pressurizer spray (main and/or

auxiliary); 0 = no spray beyond

the continuous minimum, 1 = spray

active

High pressure safety injection

(HPSI) or low pressure safety

injection (LPSI); 0 = not injecting,

1 = injecting

Safety injection tanks; 0 = not

injecting, 1 = injecting

Pressurizer's proportional heaters;

0 = off, 1 = on at any level

Pressurizer's backup heaters;

0 = off, 1 = on

- 1 0 1 -

S. 25

j

k

1

m

n

CTL_

OUTPUT. Data-Base

OPTION*' Variable'**

±1

±1

±1

±1

±1

CTL_CH_FLOW

CTLJDNJLOW

FWS_FLOW(Li)

+AFWS_FLOW(Li)

FWS_FLOW(L2)

+AFWS_FLOW(L2)

P_FLOW(N),

DescriDtion

Total charging flow delivery

to RCS (lbm/sec)

Letdown flow (lbm/sec)

Feedwater flow (main and

auxiliary) to steam generator Li

(Ibm/sec)

Feedwater flow (main and

auxiliary) to steam generator L2 "

(lbm/sec)

Reactor vessel inlet flow (lbm/sec)

N=PATH_ANNUL_CORE

±1 LEVL_MDC(NODE_UHEAD)

±1 CTL_CORE_POWER_FRACTION

-1 POW_EXCORE_POWER_AV

Two-phase mixture height, reactor

vessel upper head (ft)

Core power fraction, actual

Core power fraction, ex-core detectors

* See Figure 7 for ID definition

** "AH" indicates that the item appears in all output formats (1, 2, - 1 , -2)

*** Brackets indicate the output item is a function of the variable, as

explained, rather than the variable itself.

+ If node quality exceeds 80%, steam temperature is displayed.

++ See CTL_OUTPUT_LOOP, Table 24, for definition of Li and L2.

+•*•+ Corresponding to Figure 2.

- 1 0 2 -

Set developer onSet Log offSet Echo offSet convert off

! File ygnflb._cd! Last modified 95/5/8

! Run TASS in order to compare to CESEC results for! YGN 3&4 feedline break eventi

Rest (steady2)do (ygn34ctl)ceinit tinit_off_pow tinit_off_cht tinit_off_sgs tinit_off_rcs tinit_off_con fgo 1time 0

! Turn off interpolation error messageInterpolation_error_option 0i

! set sis delay timeCTL_SIS_DELAY=31.5CTL_SIAS_CONTROL_AUTO=.T.

i

! set aux. feedwater delay timectl_afws_delay = 46.25

i

! set turbine trip delay timeCTL CORE TURB TRIP DELAY=0.

S. 26.

! set turbine stop valve timectl_turb_trip_valve_time=O.

! Moderator temperature coefficient is 0.0 /Deg Fi

Pow_kin_mod_density_fb_option = FPow_kin_mod_temp_fb_option = T

Pow_kin_ndkctm = 2.

Pow_kin_tdkctm(l) = 0.0Pow_kin_tdkctm(2) = 10000.

Pow_kin_dkctm(1) = 0.0Pow_kin_dkctm(2) =0.0

! Trip overridesi

Ctl_core_low_sg_level_trip_or = 1.0Ctl_core_hi_power_frac_trip_or = 1.0i

! High pressurizer pressure trip setpoint

Ctl_core_hi_przr_pres_trip = 2460.

! Scram delay is 1.15 seconds for high pressurizer pressure tripi

S. 26.

Scram_delay = 1.15i

! Safety valve behavior

Ctl_sgsv_pset_open = 1277.2, 23*10000.Ctl_sgsv_pset_full = 1315.5, 23*10000.Ctl_sgsv_pset_close = 1213.3, 23*10000.Mslh_valve_amax = 4*0.1111I! No CEA motion during the eventi

Ctl_cea_auto = FCtl_cea_perfect = Fi

! Use the same break area as the RELAP5 case! 0.01858 M2 --> 0.2 ft2IFwlb_area =0.2 !!

o ! Do not credit the turbine bypass systemoI !Ctl_turb_bypass_control_auto = F

i

! Do not credit the atmospheric dump valvesi

Ctl_atm_dump_control_auto = Fi

! turn off s/g blowdown modelmod__of f_sgbd= . t.

! Turn on afwi

Ctl_afws_control_auto = TI! Turn off spraysI

Ctl_przr_spray_control_auto = F

3- 26. ^

VIvjprzr_mspray_sig (1) = 0.0Vlv_przr_mspray_sig(2) =0.0!! Turn off PORVsi

Ctl_porv_pset(1) = 10000.Ctl_porv_pset(2) = 10000.i

! Feedline break optioni

fwlb_in(l) 1.

! Use Henry-Fauske Critical flow model!Sgs_crit_model = 1

I ! Feedwater control system

S !

I Ctl_fws_control_auto = FCtl_fws_trip = T

fws_flow(l) 0.0fws_flow(2) 0.0

fws_econ_flow(1) 0.0fws_econ_flow(2) 0.0j

! Adjust feedline flow coefficient! to get the same break flow as RELAP5FW_COEFF=2*60. , 2*0.

i

S. 26.

! AFW Flowctl_afws_tot_flow = 152.05CTL_AFWS_SG_LEVEL_LOW = 2*14.206CTL_AFWS_FLOW_MULT = 0.,1.0afws_enth = 2*91.21,2*0.

! MSISCTL_MSIS_SG_PRES_TRIP=788.8

j

! Loac at the time of tripi

When (ctl_core_trip) rcpi_volt_frac = 4*0.0j

! Lower feedwater nozzle to obtain fully liquid break flowi

Htnoz(l) = 1.^ Htnoz(2) = 1.© sli_flow_coeff = 4*300. !was 196.17I slo_flow_coeff = 4*100.

i

! reduce the steam region heat transfer coefficientSGT_HTCSTM=l.E-5

j

! Define time step sizei

Time_scale = 0.1

do (fib.set)

When (time ge 200) tscale .2i

set convert on

X 26. H

ooo

J+l

J-l

I-u

CHT_TEMPJWD(I-1,J-1)

CFTHJ«:SAXIAL_Q(J-1)

FUEL

u

GAP

I+1J

CHTJfT_6EN_ZR_WAT(J-1)

CLADDING

RADIUS

STEAM COOLANT

CHT_TEMP_COOL(J*1)

CHT_TBf_SURF(13)

TVD-PHASE LEVEL

Frur_KT_FLUX(J)

_TEMP_SURF(J)

CHT_ENTH_COOL(J)

CHT_TEMP_COOL(J)

F"JTJfT_FLUX(J-l)

_TEMP_SURF(J-1)

CHT_ENTH_COOL(J-1)

CHT_TB*>_£OOL(J-l)

LIQUID COOLANT

-601-

uto

r-ao|lll

K

STEAM GENERATOROUTLET PLENUM AND ca

SUCTION I PPI

CO

VJM

00

STEAM GENERATOROUTLET PLENUM AND

STEAMGENERATOR

STEAMGENERATOR

PRESS,

ILCEA

STEAMGENERATOR

STEAMGENERATOR

—on —

^ GENERATOR OUTLET.bPLENUM AND SUCTION LEG

_STEAM GENERATOR OUTLETCTPLENUH ANO SUCTION LE

— STEAM GENERATOR OUUET"'PLENUM AND SUCTION LEG

- U I -

STEAM GENERATOR mOUTLET PLENUM • - -

ro ro

STEAM GENERATOROUTLET PLENUM AND ~

SUCTION LEG °°

STEAM GENERATOR ^OUTLET PLENUM ANO £

SUCTION LEG

STEAMGENERATOR <*

STEAM ^GENERATOR "

OO

STEAM ^GENERATOR -

ISTEAM

GENERATOR ^

-zu-

STEAM GENERATOROUTLET PLENUM AND

SUCTION LEG

STEAM GENERATOROUTLET PLENUM ANO

SUCTION LEGSTEAM

GENERATOR

- £ U -

STEAM GENERATOROUTLET PLENUM ANO £

SUCTION LEGSTEAM ^

GENERATOR -

STEAM GENERATOR _OUTLET PLENUM AND <*•

SUCTION LEG

-PU-

STEAM GENERATOROUTLET PLEW* AND

SUCTION LEG

OUTLET PLENUM AND ~SUCTION LEG •

STEAM GENERATOR ^OUTLET PLENUM AND £

SUCTION LEG

RUPTURE QTP FLOW DISK""ENTMJJT

CONC_SOLUJ}T(J)

VLV QT CONTP_FL~OW~VENT_WATENTH QT

1HEAD VENT

PRES_QT

|

PORV, SV

ENTH_QT

RUPTURE DISKVENT 1

CONTAIN!

TEHPJJT

LEVEL

4 ^ f 3 (Quench Tank)

-115-

«u

mm injwiM >woSOUKl 1

5(MLJOUJMll)

5 A 0i<

"M®

wi !

mm<*nOnMM* U

ten

0SIV A

ex

(MM. * U J » ( J I )

• inotnaic ou» ««>•- vwrr nun• IUIW ITHSl 1M.it• nmm wnuion ««.n• • !« iTiM iscunm IM.II

OMtl >*<ۥ STW i n u n uaam

KIM m m UK IKU

ITUHMKIMIW rut «rru

lot IM: i inasMcn2 CJBOOOH

< 1 M I M

OHO I*IC

Miri. «Mur o nV4.TI. UMHXT a 0 3 OU W

MtfC CUE VUIMLX

55 Aon

3 3

? i(1 S5T« = i

5.ACE PWR)

POOR QUALITYORIGINAL

- 1 1 6 -

©©©© ©

SRITO O

II©

(Nnjoujmni

•o®

• 0 w8I• Aon

(PN.JSUJMI1)

•GO

II5 Aon

1

i

n a i « ITMU <«TfW H WTOIM ««.MMU l i t * IUUTI0I MM

not suit 11

naniMiT

ouwnUL«f. MMU.TW.H. a w

MM 01 fMIMU

•o©

Aon

5.BWestinghouse 3-loop PWR)

POORQUAUTYI-117 -

M i l 1TUM.IM HCAOOI

SOUKt

H O

OA

CXI

w»r» MUMIUBIM man uutm»nt wnuiai >«tn"n» iru> licuca mit

•in t o w n IM

nat um: i innnm) camiimir

ana MLH

««.rt, n u i agsa

WIT

TT)

- A CW

(IW.JWJJM2I)

©©0

CTAMMTM

1 Ii I

]C WTI .3

y

h

J

§z

(WiJOUJMO)

mm

\ •(MlJ?U_aiT(l)l

5.C?! Westinghouse 4-loop PWR)

- 1 1 8 -

fnwouToi

I!

s51

SSTI Ml

h

iKU. M l IW«ll

Aon

POOR QUALITYORIOINAL

(TBV) (TAV)

MSLH WIN

S6T SG QCOLD

SGT SG QHOT

-IX-(MSIV)

SGS WOUTSG

(MAIN STEAM LINE HEADER)

MSLH_PMSLH_TMSLH HF

(STEAM DOME)SGS PSGS~ENTH1SGS~T1SGS~M1SGS HFSGS HG

SGS W21

(EVAPORATOR)

SGS HT2

SGS_ENTH2

SGS_T2

SGS M2

SGS W31

SGS W13

SGS W23

SGS HLEVEL

SGS W32

(DDWNCOMER)SGS HT3

SGS_ENTH3SGS_T3SGS M3

MSLH_H

MSLRJ-1

MSLH HG

(FWS)

(AFWS)

- 1 1 9 -

? CH_OUTPUT_INTERVAL = 2? CTLJXITPUT OPTIC* = -1? MALMSLB IMC 1> = 2.0? GO 40

TRIPS: CORE,TURB,CSR,HSIS,SIAS,HFU,AFU(ON)

TIME PRES LEVELS RCS TEHPS SG LEVELS SG PRES ST FLOWSPRZR IV 1 3 1 1 1 2 1 2 1 2

TRIPS RCPS VALVS SI HT

VALVES: PRLF,SRLF,CDUHP,ADUHP,SPRAYCVCS TOT FU FLOW UHLEV POWER

CH LON 1 2

B H I N OPQRSTU VWXY abede fg h i j I m

1

O11

0246810121416182022242628303234363840

? CTL

21092094205820232009199419771962194619321918

1905189318821871I8601834

1P.02177117421713

13.213.112.912.411.911.310.710.29.89.38.98.68.27.97.67.36.75.95.24.64.0

19.219.219.219.219.219.219.219.219.219.219.219.219.219.219.219.219.219,?19.219.219.2

OUTPUT OPTION? GO TO 64

424446485052545658606264

166416541625159715741538149014341372137713821370

3.32.72.12.02.01.91.81.71.61.61.61.6

19.219.219.2

19.219.219.219.219.219.219.219.219.2

538538536530526523521518516514513510508507506504SC5507507505502

= -2

500497494491488486483481478476473465

538538536532528527524521519516515513511509508506507509508506503

500497494492489486484481478476475476

59259259259259158958658458258057857657557357157056352542535530

525520516512508506503500497489490406

644642640636636635634633632631630629628628627626623A21

619616614

612609607605602599595590584586585585

32.0

32.232.232.132.0

31.731.431.231.030.930.730.630.630.530.5

30.329.9??. 428.728.027.2

26.525.825.224.624.023.423.022.622.322.222.021.7

32.032.132.132.232.132.232.232.132.031.931.7

31.531.431.231.1

30.830.429.829.228.427.5

26.726.125.424.824.223.723.323.022.722.522.322.2

782714678660633626608595587576567558551544536576i94603600590579

568554543531519508497486476440412391

781731704671661637627617600593585574567561552582603.'10607598587

575563551539527515504493483511512521

90916871419145515151331143513661331133213141286127412581244755Ybi7':!,693655618

610591568554541527522517511954900645

91514891353140712721421127912831298125612311238122111921194769••06

671613575569

54752551449648547846444943700O

0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001100000.1000001100000110000011000001100000

110000011000001100001110000111001011100101110010111001011100101110111111011111101111

111111111111111111111111111111111111111111111111111111111111111111111111111111111111

111111111111111111111111111111111111111111111111

000000000000000000000000000000000000000000000000000000000000000000000000000001100C1VJ

oow-c000000000000000

00000000000000000000000000000000

no00000000

101010111111111111111111111111111100000000

6.6.6.12.18.18.18.18.18.18.18.18.18.18.18.18.18.18.18.18.18.

000111111111111111111

4.94.93.73.63.63.63.63.63.63.63.63.63.63.63.63.6J.63.o3.63.63.6

915114011401140114011401140114011401140114011401140114011401090V39888787686585

915114011401140114011401140114011401140114011401140114011401090989888787686585

200632002320023200532016120230202952037020418204862053520580206242067920698208222085320826208142080320844

9.49.4 (9.49.4 (9.49.49.49.49.49.49.49.49.49.49.4

3.99883.99923.99813.99811.0056.0164.0240

.0319

.0352

.0428

.0494

.0516

.0581

.0587

.0643

9.4 0.52189.<. 0.22439., v3.15639.4 0.13019.4 0.11069.4 (1.0959

7 TASS

II

DATA FROMPLANT FILE ISSNAP

" TIME.000

1.0002.0003.0004.0005.0006.0007.0008.0009.00010.00011.00012.00013.00014.00015.00016.00017.00018.00019.00020.00021.00022 .00023.00024.00025.00026.00027.00028.00029.00030.000

FILE IS

CEER000.! steady2.

steady2.

RCSt

_dy

TRTOT(3) TTCOOL(13)RPFLOW(7) RE5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.

688E+02688E+02688E+02688E+02687E+02687E+02686E + 02686E+02685E+02685E+02684E+02684E+02684E+02684E+02684E+02684E+02684E+02685E+02686E+02686E+02687E+02688E+02690E+02691E+02693E+02694E+02696E+02698E+02700E+02702E+02705E+02

6.009E+026.009E+026.008E+026.008E+026.008E+026.007E+026.007E+026.006E+026.006E+026.006E+026.005E+026.005E+026.005E+026.005E+026.005E+026.005E+026.005E+026.006E+026.006E+026.007E+026.008E+026.009E+026.010E+026.011E+026.012E+026.014E+026.015E+026.017E+026.019E+026.021E+026.023E+02

7.588E+037.590E+037.592E+037.593E+037.596E+037.596E+037.598E+037.598E+037.599E+037.598E+037.597E+037.596E+037.595E+037.594E+037.593E+037.591E+037.589E+037.588E+037.586E+037.583E+037.580E+037.576E+037.572E+037.569E+037.565E+037.563E+037.561E+037.559E+037.555E+037.547E+037.510E+03

Mon May 2911:20:24Thu May 409:14:18Thu May 409:14:18

7.589E+03 17.588E+03 17.589E+03 17.591E+03 17.592E+03 17.594E+03 17.595E+03 17.595E+03 17.596E+03 17.597E+03 17.597E+03 17.597E+03 17.597E+03 17.597E+03 17.596E+03 17.595E+03 17.594E+03 17.593E+03 17.592E+03 17.590E+03 17.588E+03 17.586E+03 17.584E+03 17.582E+03 17.580E+03 17.578E+03 17.575E+03 17.573E+03 17.570E+03 17.567E+03 17.566E+03 1

(2) RPFLOW(2) SGSP(l).551E+07 1.441E+00

1.550E+07.550E+07.549E+07.549E+07.548E+07.548E+07.547E+07.547E+07.547E+07.546E+07.546E+07

960E+011.554E+011.525E+012 .031E + 011.788E+011.980E+011.796E+011.470E+011.171E+016.439E+003 .249E+00

.546E+07 -1.480E-01

.547E+07 -5.525E+00

.548E+07 -1.050E+01

.549E+07 -1.337E+01

.550E+07 -1.891E+01

.552E+07 -2.259E+01

.554E+07 -2.909E+01

.557E+07 -3.657E+01

.560E+07 -4.065E+01

.564E+07 -4.400E+01

.568E+07 -4.741E+01

.572E+07 -4.971E+01

.577E+07 -5.182E+01

.581E+07 -5.357E+01

.586E+07 -6.562E+01

.593E+07 -7.630E+01

.601E+07 -1.035E+02

.612E+07 -1.545E+02

.629E+07 -2.019E+02ii

A. TASS 1.0

B. Data Dictionary

C. Data Dictionary

D. Data Dictionary

I NEXT PAQE13)

A. TASS 1.0

Blank(

•Braces({ }) : option-

file* ^ B ^ nfl

•Underscore( _

* ) :

•At Sign( @ ) : TASS 1. routine^?}:

Backslash( data7>

Colon( : ) : Array^ 3.7]*

' ) : #*r Character^

Semicolon( ;

- 1 2 5 -

B. Data Dictionary

Copy3.

?ltl-i- Display

Database^-

^-<# D a t a b a s e s . ^ 7 > ^ ^ Datafe "flS.Sl ifl Database^ Working

, Global Common a.3. 1-BJ-fcr Common Block^

-^r ^r*l =5.3L^I(Executive ProgramWl

Database^- Global Common ^ ^ 5J

^l-g-(Printing, Plotting, Manipulation)*>7l - Sfl

COMMON Block^.

PLT_DATA

CHT_COMMON

POWER_COMMON

RCS_COMMON

SGS_COMMON

CONTROL.COMMON

USER_COMMON

CORE_COMMON

1# Common Blockl"^ tj-A]

Nodalization Data

BOP

Block

Block

-s.^(Submodel)

Blocks ^wi^oi PLT_DATA

l Node-frS. Schemed

2, 3,

Blocks

- 1 2 6 -

•3 PLT_DATA ^

Database^ #<

Version °1 zl-2^^

$ Blockl-^r ^2) *$t

11 && Global Common^!

(Restart)«flt ^<3s)*l ^ f e ^ . Database^ <H

4 € - Database

. °1# Block

Snapshot

I NBXTPAQKf)toft BLANK

- ' "

C. Data Dictionary

— 129—

NEXT PAGE(S)toft BLANK

1234567891011121314151617181920212223

24252627282930313233343536373839

CHR_COMMONPLANT DATA LABELPLANT_DATA_FI LE_NAMEPLANT DATA TITLEPLANT_DATA_TIMEPLANT DATA DATESNAPSHOT_LABELSNAPSHOT_FI LE_NAMESNAPSHOTJTITLESNAPSHOT_TIMESNAPSHOT_DATEPLT_DATAPLT~CHTCORE_HT_AREACHT_NNOD_BOCHT_NNOD_FCCHT NREGIONS RADCORE_HYD_DIACORE~RAD_OUT_DUMMYFUEL_DENSITYPLT_RCSPLT_RCS_DESIGNNUM_SG

PLT RCS TYPENUM_PROP_HEATERSNUM BACK~HEATERSNUM CHGS PUMPSRCS_NUM_MSPRAYVLVSRCS NUM PORVSRCS_NUM_SAFETYVLVSMOD INITPLT RCS NODEPLT_RCS_NODALIZATIONRCS_NODE_TOTALSNUM_NODESNUM2NODES_SECNUM SG NODESNUM HL NODESNUM SL NODES

CH(1,CH(0,CH(0,CH(0,CH(0,CH(0,CH(0,CH(0,CH(0,CH(0,CH(0,RE(1,RE(1,RE(0,IN(0,IN(0,IN(0,RE(0,RE(1,RE(0,RE(1,RE(1,IN(0,

IN(0,IN(0,IN(0,IN(0,IN(0,IN(0,IN(0,LO(0,RE(1,

IN(0,INtO,IN(0,IN(0,IN(0,

3)1)1)1)1)1)1)1)1)1)1)

7168)15)1)1)1)1)1)3)1)

2350)10)1)

1)1)1)1)1)1)1)1)

600)50)6)1)1)1)1)1)

Snapshot ID -g- V *&':rJl-«# 31* €> «^

SegmentPartition

Snapshot S ^ fir*}Snapshot S)-^Snapshot 2}-13Snapshot Sf-'a ^ 11}Snapshot

S."ffl

Partition

SegmentPartition

Pool BoilingForced Convection " 8 ^

i^

5UfeS. (<-12)

Hydraulic Diameter*l SJfe ^

U02

CE(W/H S*\ 2-Loop 3-Loop 4-Loop

) * l « ^ l ^

Lbm/ft3PartitionPartition

0 :7)<U-7] \$2] Proportional Heater «r7y&7] vfls] Backup Heater^ -T1

CVCS 3 1 * ^ Charging ^85.31 ^^ spray fl ^PORV <=r

, T:True FrFalse

Nodalization

TrueFalsePartitionPartitionPartition

Sectionalized lnE.2)

S. Suction Leg tESj

11

11

4041424344454647484950515253545556575859606162

63

64

65

66676869707172737475

NUM CL NODESRCS_NODE_NUMBERSRCS NODE HLNODE HL1NODE~HL2NODE~HL3NODE_HL4NODE_SGNODE_SG1HNODE SG1CNODE SG2HNODE_SG2CNODE_SG3HNODE~"SG3CNODE SG4HNODE_SG4CNODE~CLNODE CL1NODE~CL2NODE CL3NODE_CL4RCS_NODE SLNODE_SG1P

NODE_SG2P

NODE_SG3P

NODE_SG4P

RCS_NODE_OTHERSNODE_CORENODE_PRZRNODE_UHEADNODE_ANNULNODE_CEASHRCS_NODE_GEOMETRYNODE AREANODE HEIGHTN BOT

I N ( 0 ,I N ( 1 ,I N ( 1 ,IN(0,IN(0,IN(0,IN(0,IN(1 ,IN(0,IN(0,IN(0,IN(0,IN(0,IN(0,IN(0,IN(0,IN(1 ,IN(0,IN(0,IN(0,IN(0,IN(1 ,IN(0,

IN(0,

IN(0,

IN(0,

IN(1 ,IN(0,IN(0,IN(0,IN{0,IN(0,RE(1,RE(1,RE(1,RE(1,

1)30)

4)1)1)1)1)8)1)1)1)1)1)1)1)1)4 )

1 )1)1)1)4)1)

1)

1)

1)

10)1)1)1)1)1)

150)30)30)30)

Q-& WizV^fl^

J0.-&S- k EJL-grQ k EJl-fr^ k E•ji-S-^Q- v *=• § • 7 ] *£•*•$ 7]^ 7 ] ^ ^ 7 ]* 7 ] ^--^71^•7} ^ ^ 7 1•&7] ^^7\&7) "*}""*,§ 7]^ 7 ] ^ ^ 7 ]•^•7] *&A$7]

^71 V-$7\

S$\ fl- 4^" V* *—

^-grS kETA 5* 5 - *r* -"

&7] <£^7lLoop 1^7i -a- 71Loop 2•S-7) "^71T j"n-vn 1LtOOp -5•^7) "a-^7)Loop 4

k'tJ k E »i7>-y-7l k E

5- kE ^^ ^ kE

Si -S, LoopSi&, Loop**1 5 1 , Loop^ S., Loop

kE «15:Jl-S-^- Tube^•£• •4 Tube51-2?^ Tube^ - S - ^ - Tubeol-S-^- Tube*\-&^ TubeJl-8-^- Tubex\-&^t Tubeh& k E iti*di. Loop•tiJfc, Loop"S S., Loop^i S., Loop

1234

kE »ii!kE QS.,kE SiSl,

kE >SJL,kE sis:.

I234

S. Suction Leg k E *\£•&-?• Plenum

§ ? Plenum

#•-?• Plenum

•&-T1 Plenum

Upper Head k E *££.Downcomer Annulus k E

^^S.^z|^)

«7.}S.^^n

j1}- Suction

•Bf Suction

j+ Suction

^\- Suction

Si "&f- - fl Shroud k E ^ l s•S- k E ^%•f" k E If}"?* kE feo* kE *£-°

1 Si'r

]

LOOPLoopLoopLoopLoopLOOpLoopLoop

Leg

Leg

Leg

Leg

11223344

k E

k E

k E

k E

PartitionPartition

Partition

Partition

Partition

-££\-

j . " COM § *S °S

S S 5

i U » W U J U J U i U i U » U » W O l*> <

rferteAdecferferferfeg &51 rfeJ2r-|orferfe&g 8 ? ^ - K KrteoitH' K K H* K K K K

g * 8 S 8 ua >. 33 3 n

' '- l '4>ii<£S !?££«• InJo Jo | n Nojo , .J^o(nni£ A

c c c f t r r o n o _

in Tf 6i hu Ai "I1 !-V" I" v M oHlcte iu-fl&wa>wa-v rt

r|f I - N n -n > ' *1 "" " *0 oi rr

- |> jv n f ^ |fllw S ag

5

: -o-

U fl "O J4 yfl ' rtNr*0' nN('C]>13Jr1D}t0-lTit9CODdCdCOt013vU t a g i P U r A U-IJt l " - l r J l | i i T U r T f T n u r r r r f T ( T r t r r l » )

ft fT rT Mi Hi Hi MI MI M I rT 1*^ CO ( I*-1 fp ^J { (V (D ( rTp. t-<- H- rr rr rr ft rr ft H- jv, n O Jv fl O fl fl O H-O O O — w — w — M O i* • < " I * i i • i i O

115 RCS_NUMMAX_RCP116 RCS_NUMMAX_CHGSIN117 RCS_NUMMAX_LDNSOUT118 RCS_NUMMAX_DRAINSOUT119 RCS_NUMMAX_SDCOUT120 RCS_NUMMAX_SISIN121 RCS_NUMMAX_MOM122 RCS_PATHS_NUMBERS123 PATH_SURGE124 PATH ANNUL_CORE125 PATHJXIREJJHEAD126 PATH_SPRAY127 PATH_LB_LOCA128 PATH_PUMP129 PATH_HL130 PATH_CL131 PATH_SG132 PATH_UCEA133 RCS_PATHS_GEOMETRY134 P_NODE_INLET135 RCS_P_NODE_INLET_MOM136 RCS_P_NODE_INLET_NONM137 RCS_PATHEXT_PNODEIN138 RCS_RCPLEAK_PNODEIN13 9 RCS_CHGS_PNODEIN140 RCS_LDNS_PNODEIN141 RCS_RCW_PNODEIN142 RCS_SDC_PNODEIN143 RCS_SIS_PNODEIN144 RCS_PATHLEAK_PNODEIN145 RCS_SGTR_PNODEIN146 RCS_SBLOCA_PNODEIN147 RCS_RODEJ_PNODEIN14 8 RCS_ORING_PNODEIN14 9 RCS_LBLOCA_PNODEIN150 RCS_PATHINT_PNODEIN151 RCS_SPRAY_PNODEIN152 RCS_SPRAYBLEED_PNODEIN153 RCS_PRZR_RELIEF_PNODEIN154 RCS UHEAD RELIEF PNODEIN

IN(0,IN(0,IN(0,IN(0,IN(0,IN(0,IN(0,

IN(0,IN(0,IN(0,IN<O,IN(0,

IN(1,IN(O,RE(1,

IN(1,iNd,IN(1,INd,IN(1,IN(1,IN(1,IN(1,

IN(1,

IN(1,IN(0,IN(0,IN(0,IN(1,IN(0,

1) €*>-£•1)l)1)1)

Charging LinealLetdown Line^]Drain Lines}

LinealLineS}

35)1) Surge Line -8-3.1) Downcoraer Annulus°*M1) Upper

1)4)8)8)4)

Partition

Large break

-B-3

l -8-3

"8-3.

IN(0,IN(0,

700)ioo)50) ^ r * ^ -8-350) al-g--!-^ -8-3.25) External -8-^-214) -$1*1-3. ^ z ] - =§5.4) Charging -8"3.214) Letdown ft]1) RCW drain2) ^^1 HJZt 7)1^- -8-38) <?>^i^<a ^ 1 * -8-317) r-f- -8-3. <y?- t E8) ^7l#^7l >H1«- ^a- -8-34) Small break ^zt^fl 'g -8-31) l<H-g- "?]# Small break -fi-31)1)8)1)2)1)1)

Partition

t E

Large breakSl ^l

o-ring seal -8-3R ^ } -8-3 "?)?• k

internal -8-S. "a T1 k E-8-3 "y^ k Ef "8-3 <a^ k E

7><y-7l relief "fiJi -8-3 Q^ k Erelief HiM. -8-3. ^ k E

155156157158159ISO161162163164165166167168169170171172173174175176177178

179180181182183184185186187188189190191192193

P NODE EXITP_ELEV~INLETRCS_P_ELEV_INLET_MOMRCS_P ELEV_INLET NONMRCS_PATHEXT_PELEVINRCS_RCPLEAK PELEVINRCS_CHGS_PELEVINRCS LDNS PELEVINRCS_RCW_PELEVINRCS_SDC_PELEVINRCS_SIS_PELEVINRCS PATHLEAK PELEVINRCS SGTR PELEVINRCS_SBLOCA_PELEVINRCS RODEJ PELEVINRCS_ORING_PELEVINRCS~LBLOCA_PELEVINRCS_PATHINT PELEVINRCS~SPRAY PELEVINRCS_SPRAYBLEED_PELEVINRCS_PRZR RELIEF_PELEVINRCS_UHEAD_RELIEF_PELEVINP ELEV EXITP_GEOM~

P RADIUSPATH TLOAPATH_KLOSS_POSPATH KLOSS NEGP_AREAPATH_LEN_DIAMP DIAM HYDPLT_RCS_VESPRES_ATWS_MINP AREA ATWS MINPRES ATWS MAXP AREA ATWS MAXP_AREAJIODEJN_TOP_UPLENN BOT UPLEN

RE(1,RE(1,RE(1,RE(1,RE(1,RE(1,RE(1,RE(1,RE(1,RE(1,RE(1,RE(1,RE(1,RE(0,RE(0,RE(0,RE(1,RE(0,RE(1,RE(0,RE(0,RE(1,

RE(1,RE(1,RE(1,RE(1,RE(1,RE(1,RE(1,RE(1,RE(O,RE(0,RE(0,RE(0,RE(0,RE(0,RE(0,

50)100)50)50)25)4)4)4)1)2)8)17)8)4)1)1)1)8)1)2)1)1)

50)50)

50)50)50)50)50)50)50)60)1)1)1)1)1)1)1)

-8-5.)

External -8-5.2)

Charging Line^Letdown Line 2} <&=?-RCW drain fr

(ft)(ft)

l (ft)(ft)(ft)(ft)

Kft)(ft)(ft)(ft)

Small break 4)^*11 ^ ^ ^ > ^ 1 -frS.Small break -8-3.

O-ring sealLarge break ^Z>^1 -£-£;•>JH -ft-S.« > J^lS internal -8-S.

| a bleed -8-s.7}<g-7l relief fB. -frS.« ^ S ^ ^ relief «.& -8-S.-8-5. #. p- -o]

(ft)(ft)(ft)(ft)lft)(ft)(ft)(ft)

3--8-5.-8-5.2) inertiaForward flow2]Reverse flow2l

-8-5. k-factor-fr5. k-f actor

S. seal.E- seal ¥*r "8-5.

seal n r i r o f l A i 2 ) ATWSseal ir4IO(l-*i2) ATWS

(ft)

(ft)

^^i (ft2)

^°1 (ft)PartitionPsia

Psia(ft2)

(ft)

194195196197198199200

201202203204205206207208209210211212213214215216217218219220221222223224225226227226229230231232

KLOSS UPLEN POSKLOSS UPLEN~NEGCORE_BOTCORE TOPAREA_C0REHA_CE*A_COREPATH_CEA_LOW

PATH_CEA_UPNUM_CEASCEAS_DISTEXCORE_BOTEXCORE TOPMAP_EXCORERTRV_BYPASSRCS_KWEIOHT HTILTHA_UHEAD_COREPLT RCS PRZR

m»fHEATERSBURNOUT_HEATERAREA_BLEED MINHCAP HEATERXFER_HEATERRES1_HEATERTOP_HEATERSVOLT HEATER MAXLEVL_PRZR_RTDLEVL_REF_BOTLEVL_REF~TOPLEVL~RELIEFDESIGN_FLOW PORVDESIGN_FLOW_SAFETY1DESIGN FLOW SAFETY2PLT_RCS_QTPRES N2VOLU~QTHEIGHT_QTMASS QT MAXQT_RUPTURE_SPOINTPLT RCS RCP

RE(O,RE(O,RE(O,RE(O,RE(O,RE(O,IN(O,

IN(O,IN(O,RE(O,RE(O,RE(O,

RE(O,RE (2 ,RE(O,RE(1,IN(O,RE(1,RE(O,RE(1,RE(1,RE(1,RE(O,RE(O,RE(O,RE(O,RE(O,RE(O,RE(O,RE(O,RE(O,RE(1,RE(O,RE(O,RE(O,RE(O,RE(O,RE(1,

1)1)1)1)1)1)1)

1)1)1)1)1)

10)1)4)1)

40)1)6)1)6)6)6)1)1)1)1)1)1)1)1)1)

10)1)1)1)1)1)

450)

Forward FlowS] -#-*?- plenum^) 7l*>«}-<Si form lossReverse flowS] ^ - ^ - plenum 7l*j-«}-a) form lossactive i ^ s ] ^J^ S°lactive i^-y^ -tf<£ fe°lactive ic-$ 2) -frS.

guide tube

*}°1 (ft)S2°l (ft)"93 (ft2)

-ft-s.plenum*!-

i

Ex-CoreEx-CoreEx-Core SL>g mappin

(ft)

^ ^ > S . ^zj-^l-S- 7VU-71 7-VS.7VU-71 heater bank^ ^ ( ^ 67><U-7l heater burnout

-a-41 bleed 4)4heater *heaterfi]

7\<&7) heater^heater^heater^ ^ ^H busRTD *<»1reference

7J-"y-7l reference g7VU-71 re l i f >a«. nozzle7J-*a-7J PORV -M^l -8-7V0,]-7) -y-^ «flH. 12)7VU-7) °>^i » l f l 221 ^ Tfl

Tank

.O-S. 7}^)

Btu/sec-'FPartition

Tank ^Tank #Tank STank2lTank disk

Btu^ ^ (ft2)Btu/'FBtu/sec--FOhms^^1 (ft)Volts

^ol (ft)

Lbm/secLbm/secLbm/secPartitionPsia^ M (ft3)^ol(ft)LbmPsiaPartition

1

-J11

233234235236237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

NUM PUMPSFRACJTABLBANBVNBAD

BVD

BAT

BVT

BAR

BVR

HAN

HVN

HAD

HVD

HAT

HVT

HAR

HVR

HANC

HVNC

HADC

HVDC

IN(O,RE(1,RE(1,RE(1,RE(1,

RE(1,

RE(1,

RE(1,

RE(1,

RE(1,

RE(1,

RE(1,

RE(1,

RE(1,

RE(1,

RE(1,

RE{1,

RE(1,

RE(1,

RE(1,

RE(1,

RE(1,

1)11)11)11)11)

11)

11)

r ( )5. homologous

8 ^ ^

¥•§•(- -8-^r0 / a2 va v i a1 = ¥#(- -fr#0 I a2 VB a/v

v / a \ <=1)^t)Al ^

1/ / a#£-)Al| v / a

torque homologoustorque homologoustorque homologous

S torgue homologous)S torque homologous

0 I a 2 v s v I a11) ^ Si 7\% (--fr^1 +^-51)-M ^ a torque homologous

0 / a 2 v a a/_y ( | v / a | - > l )~~ " ^ a torque homologous11)

11)

11)

11)

ll)

ll)

ll)

11)

11)

11)

11)

/1 ^ ^ ] S ( f t ^

^ • - i i 0 / a 2 v e a / v

h / a 2 v s i//ar

h / i / 2 vs a I v ( v / a >1)•a^ ¥#(--8-^ +^£)^l ^h / o 2 v s i / / a ( | y / o | < = 1 )"&^ ¥*(--fr^r +^S.)'"-1 J§h / a2 vs a / i / {\ v I a \ >1)

h/ar2vs v / a 11 i/ / cr | <=1)

h / v 2 v s ar/i/ (| v I a |->1)ol-S- ^ a 7}-f-(+-fi-# - ^h / a 2 v s i / / a (| v I a \

° 1 ^ ^ a 7>-§-(+-8-^ ^h / i / 2 v s a/v ( |

*% 2. torque homologous

«I1S. homologous

*))£. homologous ^

^1S. homologous

^1E- homologous

Sfl E. homologous

^1E. homologous

^ a «flE. homologous • •

S a «i] E. homologous -5J-

§i difference «flEhomologous ^"il h/ a 2 vs v / a ( V / C T < = 1 )

11) ^^?}••§• (+-8-^ +#£)-«•] ^ n . difference «flE.homologous • 'ii h/i/2 va or/ v { v / a >1)

11) °l-S"7>T5-(--8- f +^S.)-">] = . difference )E.homologous ^'S h/or 2 vs 1// a (|i//a|<»l)

11) °l'S-7l-S-(--fr^1 +#£.)^1 ^ 5 difference ^)E.homologous ^•S h/i/2 vs ar/ v {\ v / a \>1)

1

oo1

255

256

257

258

259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290

HATC

HVTC

HARC

HVRC

FRAC_HD_TABLHD DEG TABLRATED_PUMP_SPEEDRATED VOL FLOWRATED_PUMP_DENSRATED PUMP HDRATED PUMPJTORQRATED_PUMP_SYNCHNUM_POLESWIND TORQ MULTRATED_BUS_VOLTNPTS TABSLIPJTABTORQ_TABDTDW TABCURRENT_TABPRESS LDNRCP_VOLT_RATEDRCP FREQ RATEDRCS CONSTRCS_CONST_PRZRPRZR SPRAY MULTPRZR_HEATER_MULTPRZR PORV MULTPRZR_SAFETY_MULTPRZR VENT MULTPRZR_RELIEF_RTD_TAUPRZR QT MULTRCS_PRZR_FLASH_MULTRCS_DM_FLASH_PRZRRCS LEVL SAT PRZRRCS DFLASH MAX PRZR

RE(1, 11)

RE(1, 11)homologous1 1 > *

RE(l,

RE(1,

RE(1,RE(1,RE(1,RE(1,RE(1,RE(1,REU,RE(1,IN(0,RE(0,RE(0,IN(0,RE(1,RE(1,RE(1,RE(1,RE(0,RE(0,RE(0,RE(1,RE(1,RE(0,RE(0,RE(0,

RE(0,RE(0,RE(0,RE(0,RE(0,RE(0,RE(0,RE(0,

homologous

homologous

homologous

n. torque

11)

11)

11)11)

4)4)4)4)4)4)

1) windage/Friction Torque1) -iTfl AgS bus i }1) motor S.

22)22)22)22)

1)

200)15)

1) 7\<£7) heater1) 7J-°J-7) PORV

I vZ. difference *i|i=.h/ <z 2 vs via K\ v I a \ <-l)- ^ S . ) ^ l 1 5 difference •)!=.h/ v 2 vs a I v ( | v I a | >1)^•S.)AI *?}5- difference *f)H.h / s 2 vs v I a (\ v I a \ <«1)^S.)-"-! *8B. difference «!|E.

i t i h/112 vs a I v (| i/ / a | >1)^ 1 ^ . degradation 7lH.-§- (void fraction)*!]=. degradation ^-*\

s. synchronous

Z$ slip H.torque •f'aj inertia

letdown line

1) 7><a-7l vent1) 7}°^7] Relief "gtL RTD Lag

1) 7><y-7l Flashing1) 7>°J-7l l ^ ^ Flashing r a t e

1) time s tep 1 ^ 7><a-7l moflA^o) Flashing

ShaftRPMFt3/secLbm/ft3

Ft-lbfShaftRPM

Ft-lbfVolts

PsiaVoltsHertzPartitionPartition

i(sec)

Lbm/sec^ol (ft)Lbm/sec

- 6 C I -

l » i 3 l « l » l oS l n r i oC l « 1 M l o 1 ^Va l S l o l ^ M | " l « l * l < l < l * l « l S | M | " ^ r l " l o i^ l 5 i ^ l o l « l «

S3 | ' i j S S'g HI2 ™ g | ' s * < 3 > CO § H H | ° l I H M 6l"l™ Q"/

i t d b d M C Q P i N H n t ' d b d t d b d b d C ' i P l b d C d b d n C d n B l D d P d M n b d r d t d C d M D d t d t ' d b d b d t d t d i^^

l - 1 O O O t - » O O O O I - ' O O I - i O O O O O O t - 1 t - » O M ( - » O O O O O H O O

o2t

a

n

H> O)T1J2 '

. lj>|,-fSff|HJi||)ltMs. |-0f0? 0 1

5 o|H V 'T ' l1 IH H- rr

2 flt " - " i ? * H>

H>

* S ] r 2! • H>

J Ha Ha Ha Ha» S 5 5 * Ha He Ha y Ha He J * (> 9 9 r+Ha 4» ff + * f)i Ha Ha Ha Ha Ha y J(S J.

S - J 2 - 2 3

§ o3

- O H -

50 JO JO JO JO JO JO 50 50 JO JO JO JO JO 50 JO JO JO JO JO JO JO JO 50 JO *0 JO 50 lj 3 0 3 J T3 J 0 0 MJ ^Jo o n o n o n o o o r s o o o o n o o o o o o n n o n n n f p p c p f p p f ^ t 1

v * o t o t o c o ' o > r j t o t o t o * d * o c o t o t o t o t o t o t o t o t o t o t o t o t o c o t o c o H H H H i - l H H H H H H

X O O N N 501 H H H < < H H | I-H H H H H M W N N N N

I I H I I I TJI I I H H I ••* tj t-> IOI I 6 6 | t*I I i l I

! - ° 5 5 *SSSS8aoS l o i * l o6 1 'n > S i 5 - * l

a i S r g ? S S i * i > 0 i i ' 0 O H | - g H l | -Q H I _ > 5 » a.M.Ki. i_ n.a P > c WI_I »

^C e.ss.s § S g s a a S'sCs I s a i i ^ r.&i; » r scciI i lCCCCCC":

Q i g > P P n g l o oI a S r i i B j i ^ P n a T o o a I to c i£ p i _ H g^g o » s H ^ <P 6 w s Sw ot? Mflri<:

O O O H O O O O O O O O O O O O O M O O O O O O O i

4i

rttca.ni>: ^ 3 ( * J t S " rM

„, of, aa » n rarft » H i f r° _&,^ ,\i w& i brr K |M o ~ H- m J\ jv II n A « T B - " w I"- rr

» n H-ri rfirft o vo o^oi •» rr II WW Mi C » rUlO ,0

J I-1 "v M «fll D l

P O M a a tt it rfllttrr 3 a « ^ -H"rf1-11' • n ' + ' lH • It O lo '+1 B fO

5 Rut*3 445 2&*f*$ 3 P r>>flS

O r£ fKrc M, V » n O 0 r r r r r l i rk l i iH iHi r tH iHiMiHih i• jv Jvjv rr M M O • M g H - r r r r r r r r r t r l - r r r r r r r r r r

370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409

RCP DELAMPSRCS_DHEAT_FASTT_UHEAD_FRACRCP CAVIT~VIBR MULTRCP_CAVIT_LOAD_MULTRCS_DWSTP_SITRCS PRZR VLV REVH TAURCS_PHTR_RLD_MULTRCS BHTR RLD MULTRCS PRZR VLV LVIB_MULTRCS_K_TEMPCL_LOCAPLT_SGSPLT_SGS_INTERNALSG_DESIGNASP TBLASP TBL DSGN1ASP~TBL_DSGN2HSP_TBLHSP~TBL DSGN1HSP_TBL_DSGN2VST_TBL~VST TBL DSGN1VST_TBL_DSGN2TBL2 NUMHT3_TBLHT3 TBL_DSGN1HT3 TBL DSGN2V3 TBLV3_TBL_DSGN1V3_TBL_DSGN2TBL3_NUMASEP SGEVAP_SS_ALPHASPACEPERIMSF CONC 10SG_U12SG~~U23SG_V2_ACTIVESG_V4_MAXSG V5 MAX

RE(0,RE(0,RE(0,RE(0,RE(0,RE(0,RE(0,RE(0,RE(0,RE(1,RE(1,RE(1,I N ( 1 ,RE(2,RE(1,RE(1,RE (2 ,RE(1,RE(1,RE(2,RE(1,RE(1,I N ( 1 ,RE(2,RE(1,RE(1,RE(2,RE(1,RE(1,I N ( 1 ,RE(1,RE(1,RE(1,RE(1,RE(O,RE(0,RE(0,RE(1,RE(1,RE(1,

1)1)1)1)1)1)1)1)1)3)

850)230)

4 )15)15)15)15)15)15)15)15)1 5 )

2)1 5 )15)15)15)15)15)

2 )4 )4 )4 )2)1)1)1)2)2)2)

<-§zJ

^ 4Time

^ *$2- ^tfl ^fl- #*>-£•¥• *<\s- fast "SsisJ- •§•-§•

^ ^ S cavitation Q& i r «117)141

7$ *82. cavitation Qft •f'Wll^l^! step1^ ^>^i^<y TankS] -fi-^

7}<&7] Relief ^*L3\ q <&&T& *1 *> =T=7l proportional heater RLD ^r^HT))^

7VU-71 backup hea te r RLD -^uflTfl^1

7J-<y- 7) r e l i e f >ia.Si slug -8-%= !-§- •S'MHTfl'rLarge break ^ S 2 ! ^ -y-^^l-Jl (CL1 2B) •fr.E.-y-'T1

3.:3:3:3:3:3:3:3:3:3:3:3:3:3:3:3:3 :3:3:&7]&7]

^•7]

&7]*&7]&7]^•7]

&7]

i$-7) itA$7) 7\S-^•7) ^ - ^ 7 ] internals -Q^r *}£•^7] ^ ^ 7 ] ^Tfl ^ Efl l-CE ^ 2-Westinghouse ^&7] itA87] Evaporator "^ ^ - ^ ^^71 SJ-'$7l - TJj ^«H lfil evaporator "& ^ci-^^^ 7 ] Q-S&7] ^7)1 ^ E)) 2^1 evaporator "^ q ' S ^ ^•^71 ^-^371 Evaporator "Sq^i i£°l^"7l ^lp^87l 'Si^i ^ Sfl lSi Evaporator if°l&7] itA&7] -^?fl ^61) 2^1 Evaporator if°l&7] it^7] Evaporator < q *fl 41•^7] ^-^37] - Tfl } E]) ISI Evaporator "^ q *1] ^^7) --»37) ^Tfl JEfl 2S1 Evaporator "^ q 41 ^&7] ^--^7] Evaporator S.^ 3 ^"r^i 4=^ 7 l 1SP'*37] Downcomer^i ^-" l^ 7 ] ^ ^ 7 ] -^ Tfl S.^S 1*1 Downcomer ^ ° 1i?7] ^-*J7] ^7(1 2 . ^ 23) Downcomer ^t°]^7] Q*&7) Downcomer 4 ] ^^ 7 1 ^ - ^ 7 l -^T!) S . ^ lfil Downcomer 41 ^i^5*7] ^I''*37l -^741 2 . ^ 2^1 Downcomer 4 | ^

• 371 Downcomer S . ^ S ^S^fil ^r^•"^71 Can Deck°l|'*i3i ^ ^ ^ •£••31 Al ^ 7 l -S-21 ^^1^•^371 ^ ^ ^ -Sr;?iAl Evaporator 7]S-§-

^•A371 S>-r-°l)^i3i tube shroud perimeter^••A37J Iodine -%-S.Si stripping 'Q'T-^•-^71 Evaporatorfi}- Downcomer A}o]si ^ ^ ^ ^^r^•-*87J EvaporatorSJ- steam dome -M-°l3} * Q ^ i ^ 7H41

^tA37l -Hl r-S" •5.^'*Vfe Evaportor 4 ) ^>a-A37l Economizer °$ q 3) 4 1 ^iJ"A37i can deck -y-^-3] *f\Z$

Amperes« • *

•¥":*l"?lirLbm/seci(aec)•^•aV-^41

PartitionPartition-

• I (ft2)^^1 (ft2)^ ^ (ft2)-ilol (ft)^l°l (ft)J°l (ft)

••r^i (ft3)•¥-^ (ft3)•¥-31) ( f t3)^"T 1

1°1 (ft)^''l (ft)•0.°] (ft)^•^1 (ft3)-¥•=) (ft3)-¥•3^ (ft3)^8'7r

^ ^ (ft2)

-^°1 (ft)•¥•*)• • S ' T 1

Btu/sec-ft2-"FBtu/sec-ft2-*F^z) (ft3)•¥•311 ( f t 3)•¥•311 (ft3)

-in-

1 1V1W

!8§3°80 r .a.&nccc .^c g,§.S.S •l«HH CO g o >

3 t< p'w'sar 3 B\~C " § s i w " H I f g ' g ' g ' i dII I S 8 35 O M H H o W m 01 Q| 3 M » B S S M5 3C J* ? * (3 *^ *O to CO C0 ^^ ^^ to C J *^ 03 W Cfl d *^ ^^ *fl ^^

jL 8LL ^ H S g QI I

3! § §

I r * B f l l"J HJ O X "O Hr ^ en n ^ o

- IVcfl,

| o J

D M (B ffl ID

M 5

jo n ^

- » jo

M ( I T

Sn H- M o » cO N -= -0 1 elf M

1

>• O M

J2.

oft

- IV

ofl.

O O r t H - r T f T w n r t MI I M O K} U I I — I

to • DrrC

— ^ r» i» — — p-

rt rr • • rr rr p-

r» g

— — n a » »m MI n o o oa rr • • • •

is

— cCN OUH

ur

•s10tl

If

F

^'iro i l l ' " " ^c n) •in/ji"tJ •-" as'rII B II 0"°^ UN

S 3 2-H o oo 3 a oToToTC

21" 2

1 1 1i pa fa

£ 3 > 3I I I I I

B SO SB SB SB S

>

I

0 1 2 2 z2 O O o

W H 2J 2 Hm H oS o nH 0 S !

. J (I) h O] U I II I I I I IW W

H K f t f t H J t S w S o S i o I | S S 5 H 5 ( J 5 5 5 5 5 5 < ( « !l U P f l E o i o i O f c o | 2 N N N B . E - t i J B w Q . o . o . Q . o , S > >

S i l_i J _ i , I", i d " 12 2 2 _ I _ I l_i I I i I I i I I I i

- 1 4 3 -

_L oi oT _ i _

5 I I I IXI

V" NO

•tr TO TTI I ILTIL' ' '" ;L^- TI H H « «I H 'M O

5="Tt <3T^' U ^ C T O i O l f ? , K " X r - * 0 0 N N l W 'PI i-l U

F -"l -— ni) nd « N in-5= K * , * , £1 C C N N x j Lj r-'M lol a

rrr* 1 E •> 3 O '—T T 3 3 3 ? ? ? n ~ r-( r-H H rl '

* ^ . r i - *^ 3 3 3 3 3 3 0 0 0

g, j y n a i . « . • < . . S g Ttt l«> SS „)<[-

' -nl -nl "nl «ni P G JL C C •— •— •— •—'— •— J i r l H L 4* •"" T~ °* ° ' 3 *T- 4 J ^ T~ * rin ^ rin rin rlTi *0I Jl| JJ| D[ fl| 3 0 y 3 O f N N ^ ^ f ^ r v O 0 J ^T J3 f\ N ^ ^ O O C v 0 (0 ' la O ' ™ '™ O*1 j jI BBl SB 3 d 581 O U f+n O U Jl/* Jl« ilL-t rfL-i i(ln rflrt •"' V+l T*~ 3 Win i(U% ^ ^ H i ^ O ^~~ F J3 J L U JI I/L. ' J ~ 111 (O to j | _ i-1—-> y jr* y * ^ ^ »Q Hi '' *O Q) ••• ^^ ''t V^ P V^ 03 " l T^ i* ^^ * CNMCQ*^ U ^ > U ''i W l»r" Iv" ^ »J £ IE •\l~ FN

b. [K O N N bQ Q Q b . U b < H 2 O O C i ,X Q u a B. u b>

3 a S S f f l b j O BdggSrf gS Sgco888 £58S . O . O J . > . >.Q. QOcoco.co.cn. o l u . h _ I

["> CO Ol O i

- 1 4 4 -

527 CTL_PSV_CONTROLLERS528 CTL_RPS_CONTROLLERS529 CTL SIAS_TRIP_CONTROLLER530 CTL!SPRAY_CONTROLLERS531 CTL_T_AVG CONTROLLER532 CTL_T_REF~CONTROLLER533 CTL_TURB_TRIP_CONTROLLERS534 CTL_CORE_TRIP_CONTROLLER535 CTL_POWER_CUTBACK_CONTROLLER536 CTL_TURB_SETBACK_CONTROLLER537 CTL_TURB_RUNBACK_CONTROLLER538 CTL_PRZR_LVL_ERR_CONTROLLER539 CTL_PRZR_PROG_LVL_CONTROLLER540 CTL_ATM_DUMP_NUM541 CTL_ATM_DUMP_PATH542 CTL_TAV NUM543 CTL_TAV~PATH544 CTL_TURB_BYPASS_NUM545 CTL_TURB_BYPASS_PATH546 DBADD547 DBCOM548 ELEMS549 ELIN550 ELTYPE551 GROUPS552 NOTAB553 PTTAB554 SEQNCE555 XTAB556 YTAB557 UNUSED558 CTL_INIT559 INPED560 INPED_SEQNCE561 INPED_PAGE562 CTL_DBG563 CTL_CONSTS564 CTL_ZERO565 CTL_HALF566 CTL ONE

IN(0

IN(0IN(0

IN(0IN(0IN(0IN(0IN(0IN(0IN(0

IN(0

IN(0

RE(1

IN(0

RE(1RE(1RE(0LO(0LO(0LO(0IN(0LO(1REURE(0RE(0RE(0

4), 20)

1)2)1)1)2)1)1)1)1)1)1)1)

, 10)1)5)1)5)

100)100)200)

2000)600)

1)30)30)

200)100)100)

1)1)1)1)1)

202)10)1)1)1)

Channel »!:£.SIAS7V1J-Loop] Sis.

Sis (trip/close)=8*1 *iH7l sis# ^ cutback

setbackrunback

7>-y-7l program^ ^ 1 ^ cfl7l dump 18^21 <T-

cfl 7] dump •aa-Header^ E] Si Admission 1B.H.3}Header^} E) <il Admission

COMMON^COMMON^

INPED

Debug* ^4

atat

Display flag-'•-): T»seqnce, F=inputpage1^ line-r1. 0-no paging

^ 1^

True FalseTrue FalseTrue False

True FalsePartition

Floating point (0.0)Floating point (0.5)Floating point (1.0)

567566569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599

600

601

602

CTL M ONECTL LIMITSELMAXLSTMAXINMAXGRPMAXCTLMAXTABMAXFCTMAXCTL_WARNINPED FILECHT_PLT_EXTENS I ONCORE_RAD_0UTMATTYPCHT_COMMONCHT_SNAPCHT STATECHT_BOILINGCHT_ENTH_COOLCHT~ENTH SAT LIQ MlCHT FLOW STM BOCHT_GAP_CONDCHT_HT_GEN_ZR_WATCHT IHTCHT_TEMP_COOLCHT TEMP_ROD_DUMMYCHT ENTH SAT LIQCHT_ENTH_SAT_STMCHT~SVOL SAT LIQCHT_SVOL_SAT_STMCHT_TEMP_SATCHT DHF DPCHT_DHG_DP

CHT_DTSAT_DP

CHT_DTSAT_DH

CHT DVSATL DP

RE(O,

IN(OIN(OIN(OIN(OIN(OIN(OIN(OIN(OLO{0RE(1RE(1

RE(1,RE(1,RE(1(

L0(0,RE(1,RE(O;

RE(1,RE(1,RE(1,

RE(1,RE (2,RE(O,RE(O,RE(O,RE{0,RE(O,RE(O,RE(O,

1)10)1)1)1)1)1)1)1)1)1)

20)10)10)

1024)300)260)

1)13)1)

12)12)12)13)13)3)1)1)1)1)1)1)1)

Floating point (-1.0) •¥•*)• •H'rPartition

RE(0, 1)

RE(0, 1)

RE(0, 1)

Last

CTL_CONTROLLER NUMBERS ^ DimensionF

INPEDCHT blocks}

: T-file, F=console

Common blockSnapshopRestart*

mode cue, T, F-

°>^1^- timestepofl^s)pool Hl-f. modeSl l

Zr-# >?}-g-1regime cue

True FalsePartition

SegmentPartitionPartitionTrue FalseBtu/lbmBtu/lbmLbm/secBtu/sec-ft-*FBtu/sec

Btu/lbmBtu/lbmFt3/lbmFt3/lbm

* *

U I) U U U UV t> 41 w >w tJa « a i i i• • < u u uU U U II « I

3 3 34J j j 4J

3

m

u o u u ut « II «U• « n • -3 3 3 E O «4J iJ U <-|| 0Q 03 CQ J ^r i

_ § V

•go

w

Kb

r

4

N S O

« p its 2IF <ff g g ^O O • H - H f N

>>

J*"

or

Mr.

oror

"D"B P P o D T J " D Q B B B B P B

gC

Ul U Cd2 S 2

O O O O O O O O O O i - H O < N O O O f N O r H O O r - f O i H O » H O O O O r H « H r H i - H

I Ia t< pa

•00 H S & ' g , g S ^ S B 2 - 1 - --1C b X X ' 4 ! H ' 4 , I I S C O C O IQ Q Q K to cn H £ H H 3£ I t IQ

O iJ p o i M i o s o i o ) H n " l E S S «

H H H p p O I I I I I I I I I I C O

°i °i f i firir*i"i^i. i^iri*!™!"!™!"! I^ITI. i. i°iTiTiTirv i. K i. i^r'i"i°i^ifiri

a: i

CO A

I H I

I M CU

i g S |< X U

h U. h ffi IH

n ** ino o oV) V> Vfi

- 1 4 7 -

1

00

1

640641642643644645646647648649650651652653654655656657658

659660661662663664665666667668669670671672673674675676677678

CHT_TEMP_SURFCHT INPUTSCHT_COND_FUEL_MULTCFTH RCSAXIAL~QCHT_GAP HCAPCHT_FRAC_HT_GEN_DUMMYCHT_PRESS_SUPERCRITCHT~CHF_MULTCHT NUM LINPROPCHT_MOD_OUTPUTSCHT_HEAT_LIQCHT~HEAT STMCHT_AVG_HEAT_FLUXCHT INITIAL_CONDITIONSTGAPINCHT_RADIAL_EXTCHTJTEMP RODCHT COND RODCHT_HT_CAP_ROD

CHT FRAC HT GENCHT TEMP FUEL AVCHT AXIAL EXTCHT QUALCHT_TEMP_CROSSCHT HTCOF FBCHT"FLX DNBCHT_TEMP_NB_FCPOWER_COMMONPOW USER COMMONPOW_USER_INPPOW USER QAXLPOW_USER_IFUPOWPOW_USER POWZPOW_USER_NPOWTPOW USER POWTPOW_USER_TPOWTPOW_USER_STATEPOW_USER QCPOW USER QCD

RE(1,RE(1,RE(0,RE(1,RE(O,RE(1,RE(0,RE(0,IN(0,RE(1,RE(1,RE(1,RE(0,RE(1,RE(0,RE(1,RE(2,RE(2,RE(2,

RE(1,RE(0,RE(1,RE(1,RE(1,RE(1,RE(1,RE(1,RE(1,RE(1,RE(1,RE(1,LO(0,RE(0,IN(0,RE(1,RE(1,RE(1,RE(0,RE(O,

13)30)1)

12)1)4)1)1)1)

50)12)12)1)

10)1)

375)10)10)10)

11)1)

65)13)13)13)13)13)

1536)80)60)12)1)1)1)

20)20)10)1)1)

DNB ^1-iV-

Afl si:

^ ^ ) ^ tEcrossover •&£.

array

COMMON BLOCK

41 Xlfe- ^4) # 3

IS]

3}-.E.7l

Partition

Btu/secBtu/ft3-T

Psia

PartitionBtu/secBtu/secMegBtu/hr-ft3PartitionBtu/hr-ft2-'FPartition-F

Btu/sec-ft-'F

Btu/ft3-*F

-FPartition* • § •

*FBtu/sec-ft2-*FBtu/sec-ft2

SegmentPartitionPartition

T r u e

Megawatts

3: (sec.)Partition

6 7 96 6 06816 8 26 8 36 8 46856866 8 76886 8 96 9 06 9 16 9 26 9 36 9 46956 9 66 9 76 9 86 9 97 0 07 0 17 0 27 0 37 0 47 0 57 0 67 0 77 0 87 0 97107 1 17127 1 37 1 47157167 1 77 1 8

POWPOW"

POW]

POW'

POW"

POW]

POW'

POW]

POW'

POw]POW]

POW"

POW'

POW"

POW"

POW"

POW"

POW"

POw]POW"

POW]

POW"

POW"

POW"POW"

POW"

POW"

POw]POW]

POW"

POW]

POW"

POW"

POW]

POW]

POW"

POW]

POW"

POW]

POW"

_KIN_COMMONKIN INP

JCINJVLPHA"KIN DLAM_KIN_BETA]KIN_PLAM"KIN BBAR]KIN_BBARR"KIN DKCONZ]KIN_DKCTMZ]KIN_DKDENZ"KIN DKTMPZ]KIN_DKINSZKIN MODDK

"KIN NDKCON"KIN NDKCTM]KIN_NDKDEN]KIN_NDKTMP]KIN_NQDK]KIN_SIGD2]KIN_STARL"KIN TSS"KIN DKCON]KIN_TDKCON"KIN DKCTM]KIN_TDKCTM"KIN DKDEN]KIN_TDKDEN]KIN_DKTMP"KIN TDKTMP]KIN_QDK"KIN TQDK"KIN T]KIN_DENCOR]KIN_DKINS"KIN TDKINS]KIN_NDKINSIFUPOW TIM

]KIN_CUTBACK"KIN TCUTBACK

RE(1,RE(1,RE(1,RE(1,RE(1,RE(1,RE(O,RE(O,RE(O,RE(O,RE(O,RE(O,RE(O,LO(0,IN(O,IN(O,IN(O,IN(O,IN(O,RE(O,RE(O,RE(O,RE(1,RE(1,RE(1,RE(1,RE(1,RE(1,RE(1,RE(1,RE(1,RE(1,RE(O,RE(O,RE(1,RE(1,IN(O,RE(O,RE(1,RE(1,

650)600)

1 1 )1 1 )

6 )6 )1)

1)1)1)1)1)1 )

1)1 )1 )

1)1)1)

1)1)1)

3 0 )3 0 )3 0 )3 0 )3 0 )3 0 )3 0 )3 0 )3 0 )3 0 )

1 )1)

100)100)

1)1 )

1 0 )1 0 )

KineticsKinetics <y

energy

«••§•

effectiveness

Doppler

option

3.e)

Doppler S.S]

^•S-'S energy •&•§• (1.0-POW_KIN_ALPHA)^^ ^ ^ ^ 1 - Life timea) cfl Kinetics time step

51-

DopplerDoppler

Doppler

as)RPC

RPC ">-§-£ -a-'aasi *i#

PartitionPartition«•§-1/seconds

I/seconds

ReactivityReactivityReactivityReactivityReactivityTrueFalse

2L (sec.)2: (sec.)ReactivityParts/millionReactivity•FReactivityLbm/ft3Reactivity•FReactivity^(sec.)•FLbm/ft3Reactivity

i(sec)Reactivityi(sec.)

t) V 01a « mr-t r-i r-i

•H 0 "H -H -H -H -H -H -H -H -H -H 0 O O —- JL O — 0 0 J\_ O —• O

•H AJ -H -H -H -H -H -H -H -H -H -H AJ AJ AJ O ^aj AJ O AJ AJ ? l 4-> C H-l AJAJ -H AJ AJ AJ AJ AJ AJ AJ AJ AJ AJ -H -H -H 0) ^ -H 0) H H Cf -H 4> '— H* A 4 A A A 0

*

TP

•oT

rod

u3Li

l

* » 5" ripW S S

O O O H O O O O O O O O O O r H r H H O O O O i H r H i H r H O O O r H O O r H t H O O t H r H

§

iU O ^ B K ^ K S S ^ S A ^ K H X ^ Q h 2 p U H F H S z Q Q U ] H E H | | | I | I | I I

yj 2 01 O O Q Q Q P Q Q Q Q Q Q CO U M O O E 3 l ^ l ^ l ^ l ' t , 1 ^ , 1 ^ 1 ^ , 1 ' I O O O O O O O O O

- 1 5 0 -

759 POW_ZRH2O_H2M RE(O,760 POW_ZRH2O_QZRH2O RE(1,761 POW_INITIAL_CONDITIONS RE (1,762 KFRAIN RE(0,763 KSHAPIN RE(1,764 POW_KIN_HERMITE_INPUT RE(1,765 POW_KIN_HERMITE_PARAM RE(1,766 POW_KIN_HERM_TD RE(0,767 POW_KIN_HERM_MULT RE(0,768 POW_KIN_TEMP_TILT_MIN RE(0,769 POW_KIN_POWTOFLOW_MIN RE(0,770 POW_KIN_FLOWFRAC_MIN RE(0,771 POW_KIN_TEMP_TILT_MAX RE(0,772 POW_KIN_POWTOFLOW_MAX RE(0,773 POW_KIN_HERM_POW_REF RE(0,774 POW_KIN_HERM_FLOW_REF RE(0,775 POW_KIN_HERM_N_FLOWFR IN(0,776 POW_KIN_CORE_W_FRACTAB RE(1,777 POW_KIN_HERM_CREDITTAB RE(1,778 POW_KIN_MIXING_INPUT RE(1,779 POW_KIN_MIX_CON_COLD RE(1,780 POW_KIN_MIX_CON_HOT RE(1,781 POW_KIN_EDGE_WEIGHT RE(0,782 POW_KIN_DH_FACTOR RE(0,783 POW_KIN_FEEDBACK_OPTIONS RE(1,784 POW_KIN_SCRAM_ROD_OPTION LO(0,785 POW_KIN_REG_ROD_OPTION LO (0,786 POW_KIN_CUT_ROD_OPTION LO(0,787 POW_KIN_DOPPLER_FB_OPTION LO(0,788 POW_KIN_BORON_FB_OPTION LO(0,789 POW_KIN_MOD_TEMP_FB_OPTION LO(0,790 POW_KIN_MOD_DENSITY_FB_OPTION LO(0,791 POW_KIN_MOD_DENSITY_OPTION LO(0,792 POW_KIN_HERM_CREDIT_OPTION LO(0,793 POW_EXCORE_OUT RE(1,794 POW_EXCORE_DISP RE(1,795 EXCORE_POWERD RE (1,796 EXCORE_POWER RE(1,797 EXCORE_OFFSET RE(1,798 EXCORE POWER AV RE(0,

1) Zr-H2O12) Zr-H2O20) t-

12)380)30)1)1)

8)350)10)4)4)

15)1)1)1)1)1)l)1)

1)1)

60)25)8)4)4)

3:71

3D Kinetics3D Kinetics3D Kinetics3D Kinetics

2 HAfla (I"jV-8-.E.

(3D(3D(3D

(3D

(3D(3D

(3D

3.2)

(3D(3D

MI-8-S.Scram

3D Kinetics 3 E3D Kinetics 3 =3D Kinetics 2 E fll-^- -?-^- " array

(3D(3D fl|«r)

options arrayoption

optionl§ option

optionoption

S1-8-S. optionS. oV-S-S. option

v^^fl D J £ flit option flag3D Kinetics 3 E *]):& >-§-S. option flag

array4

CutbackDoppler ti##1) *

#4=-*S

Offsets

Lbm/secBtu/Bec-ft2Partition

PartitionPartitioni(sec.)

« • *

*F

•F

MegawattsLbm/sec

«•*PartitionPartition

« *« ** ** *PartitionActive InactiveActive InactiveActive InactiveActive inactiveActive InactiveActive InactiveActive InactiveTrue FalseActive InactivePartitionPartition« • *

• S - *

«•*

- z s i -

z B s z z o j ' p f ' f ' o s s s s o u j f o n o n o o o o o o o o o o o o o o o o o o o O M X

I i i i ss I I I I ss i I 33 co i z z H o o o o o o o r n p i P j n n w i ' j w M B B w s wS C n P H O a W f H O W H O * O O O Z * 4 * 4 * 4 * 4 * 4 ' 4 I 4 | Q X X X X X X X X X X X M MM j j M O O G ^ n O O j j O O I 1 0 D D 4 l f l I I l ' I J l f l l l 5 l f l M O 2 Q Q Q Q Q Q 0 O Q O Q l IX S E O H M t P S O H M S H M W M W Ml I | | | | | i l | O ( 3 c 3 O O d O O O O O H O

s s g s g i i i ^ g g Q aie1fiisifiiMisisi™iHis.™c3

M 5> P U M O C O P H p H O ' O O ' O ' O d MH to M M 5> P U MX to JO CO w H 50 HI < 4 » G | > i » T l O 3 O OP M Q to > t« W M Z b d ^ ^ ^ i I Sr to M C D 2 ; m M w S t n m SH to K n HI > 6M 10 (O I >to g 5

|n |n |n |n |n |n |n |n |n |n |n |n |n |n J(* |n .nhabct^.nh-y^g' j o jo jo jo jo jo jo jo jo jo_2,jo jo

H T O § H-

>O o?! 3 3

r r r t r r r r p i e ' b ' O ' O ' W r r r r W B 0 ) B i i » i i i M M « M M M « i » ( B a b ' l D » I T i I ' n a - 1 I i r f l f f l 5 , I T " i n

'O 'O 'O ' r t rr rt ft rt ft ^ 3

O 3 36 o o o o o g

3 ^j ^j ^^ 'O ^J ^ J J Q ^ J ^J

oil:

ofl,u-W'

Ja

to m oi to at CD CDfl) « « n> (» » n>

B

a a a a a a a a a ?•?•?•?•?•?«?« a a a a a a a a a ww a * # *

w

in

S1

8

ft3*

5J*

ul u| u| ul u| ul ul u| ul ul u| u| ul ul u| u| ul ul u| ul ul ul ul ul ul ul u| u| ul u| ul ul u| u| ul ul ul u| u| ul^ » I ^ I » I I ^ »om

(i.

o o1/1

(1,

1

om

(1,

o om

(1,

o

(i.

om

o

(1.

2

om

om

(1,

om

O

no

(i.

o

(1,

om

(1,

ot-t

om

(1,

o om n

O

(i,

om

(1,

o om

(1.

o\o

on

om

o O Oro m

Om

oCTi

o On

o

(1,

om

(1,

o

(1,

of t

(1*

o o1-1

(1,

"IP U< <t ncncoco

1cncoH

m

3u

e o o o o o c o c o o o a o o o c o o O 0 c o c o c o e o m a > c o c O ( D a ) o o c o a i c o o o < D a > t D c o o o e o c D c o c o a } a } < s c o o o

- 1 5 3 -

879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918

DVDHJTOTDHF DPDHO_DPDVF_DPDVG_DPRCS_NODE_BUBBLESRELE_BUBDRFT_BUBRCS NODE CONDENSATIONCONDJTOTCOND BOILCOND_SURFCOND_INJCOND_BUBRCS NODE STATESNE_CANDIDATENON EQ_STATEN HETERORCS_SECT_NODE_VARIABLESQUAL_MIX_SECTMASS BUB SECTSLIP SECTRCS_MBUB_SSRCS RELE PRIMERCS_VOID_TOPRCS VOID_TRANRCS TRANS CORRRCS_PATH_VARIABLESRCS_PATH_FLOW_RATESP FLOWRCS_P_FLOW_MOMRCS_P_FLOW_NONMRCS_PATHEXT_FLOWRCS RCPLEAK FLOWRCS_CHGS_FLOWRCS~LDNS_FLOWRCS RCW FLOWRCS_SDC_FLOWRCS SIS FLOWRCS PATHLEAK FLOW

RE(1,RE(1,RE(1,RE(1,RE(1,RE(1,RE(1,RE(1,RE(1,RE(1,RE(1,RE(1,RE(1,RE(1,RE(1,

LO(1RE(1RE (2RE (2RE (2RE(0RE(0RE(0RE(0RE(0RE(1RE(1RE(1RE(1RE(1RE(1.RE(1RE(1,RE(1,RE(1,RE(1,RE(1,RE(1,

30)30)30)30)30)60)30)30)150)30)30)30)30)30)90)30)30)30)50)1)1)1)1)1)1)1)1)

1550)150)100)50)50)25)4)4)4)1)2)8)

17)

iH. 715. ^^-i-in-E- ?)£. Drift velocity

a ] * ) ) ^

2] i&

Heterogeneous i c ^ flag# } £ ^2^ ^1^ ^ ^

(quality)

«1 •§• (slip)

-frs.

-fi-s -8-%=

ChargingLetdovmRCW drain

PartitionLbm/sec^°1 (ft)PartitionLbm/secLbm/secLbm/secLbm/secLbm/secPartition

TrueFalsePartition

Lbtn

Lbni

«-§:

PartitionPartitionLbm/secLbm/secLbm/secLbm/secLbm/secLbm/secLbra/secLbm/secLbm/secLbm/secLbm/sec

vvI D CD I D CO C O '

M 3 3 3|Q ^J ^ ^J

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 r oJ ^J ^ ^ ^ J ^ J J J JJ ^ ^ j JJ ) J J ) j

*

v

"I

in in o ui inin in in o o in

TO M f*l f*1 f*1 M M M F*l M

•go

- 1 5 5 -

444444444444444444444*4*4444*4 4 4 44 44

* * „

^ <|«4 ""Tci v ^ * j , —1*»

* T L I * I ill T* <*a- illo di. is "fW^w^'Vi id ih T - *

Jd *P liirflA N° -— <— 'tn'd- •-L- iL ° l r t

IlHU)oo|-J iS» fflS-HhT^Wl^1 ft" & "a^ oT

r-iO IT) l/l (N

o o o

§ i? p.d j j o 0.0. D 0.

go., i _ j s . s , _i e, . . o. -p <

TP § | & gas l i a i 'Ba s.s l ig.B iSBBs iB i s: n -P «.X j S 3 I I O O O J | S I O 5 H > " S IQ E £ K H I I C O C O C O I J I S ii O O M• " ' S 3 C Q C 0 I I I K K Q M Z Q a r f r f O j a 0 . H H S J B f f l I I I I K O U 2 Q S

H f i i O S i S U n H H J Q H j h K K H H 5 C l ) t Q t . Q i O 2 S U 0 ) h ^ ^] Q M3 F

CU P^ J h^ tf CQ CO & CO CO 0£ C^ j C^ CO CO C t 3 3E« CU O i CU 0 * L ) d PE| CO CO O* CO CO CK« ^^ h-3 C ^

C Q C O C Q C O C O C O C O C O C O C 0 0 1 C O C O C O C Q O ) C Q C O > C O C O C O C O C O C O C O C O C O C Q C O C O CO CO C O C O COU U C J U U U O U U U U U U U U U O U I I O O C J C J C J O O O C J C J O U L> OCJ CJOS Ob Ob Of P6 OS 0* Oi 05 0^ Oi OM OS Oi Oi PS Ofi CM f^ C^ (Xi a Oi OJ 03 Oi OS Oi OS 05 ON OG OS OS OS 0*

- 1 5 6 -

99599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034

RCS SPRAY STM UPRCS_SPRAYBLEED_STM_UPRCS_PRZR_RELIEF_STM_UPRCS_UHEAD_RELIEF_STM_UPP_STM DOWNRCS PATH PRESS DROPSDP MOMDP~FRICDP~ELEVDP~LOSSDP~HEADDP~EXTDP TOTDP~ACTUALDP_CHECKRCS PATH DERIVATIVESESUBKFSUBKRCS_PATH_UPDOWNP_NODE_UPP_NODE DOWNP_ELEV UPP_ELEV~DOWNRCS STEAM GENERATORHEAT SGRCS PUMPS

SPEED_^S =.HEAT PUMPTORQ_PUMPHEAD~PUMPDP_jg"SRCS_COREHEAT LIQ COREHEAT_STM_COREHEAT COREFLOW_CORE_INBORON CORELEVL_LIQ_VESSELLEVL_MIX_VESSELLEVL MIX CORE

1)50)

RE(l,RE(0,RE(0,RE(1,RE(1, 450)REU, 50)

50)50)50)50)50)

2) 7\°J7] -y-^ bleed1) 7\<&7] re l ief >gJi

«••§•

RE{1,RE(1,RE(1,RE(1,RE(1,RE(1,

RE(1,RE<1,RE(1,REU,REU,INU,INU,REU,REU,REU,REU,REU,REU,REU,REU,REU,REU,REU,REU,REU,RE(0,RE(0,RE(0,RE(0,RE(0,RE(0,

relief -gfiDownstream

friction

Head°fl

50)so)50)

100)50)50)

200)50)50)50)50)16)

8)20)

4)4)4)4)4)

80)12)12)

1)1) i t -S ^ - S •g-'iV -%-S.

-8-7)-g-7)

Check (DP_ACTUAL-DP_TOTAL)

ESUBKSi

^S. hydraulic torque

•^•lS3-<& i t S -

Partition

psidPsidPsid

p s i d

PsidP s i d

PsidPartition

Partition

PartitionBtu/secPartitionShaftRPMBtu/secFt-lbf^ l t f t )PsidPartitionBtu/secBtu/secBtu/secLbm/secParts/million

00

I

1035 SVOL_DOWNC0MER1036 BOUYANCY_CORE1037 DP_LOSS_UPLEN1038 RCS_Q_CEA_CORE1039 ENTH_QUAD_CORE1040 RCS_DELH_HLTILT1041 RCS_Q_UHEAD_CORE1042 RCS_PRESSURIZER1043 VOLT_HEATER1044 ADMI_HEATER1045 HEAT_ELEC1046 ENGY_HEATER1047 TEMP_HEATER1048 HEAT_HEATER104 9 HEAT_PRZR1050 LEVL_PRZR_DP1051 TEMP_PRZR_REF1052 TEMP_PRZR_SURGE1053 TEMP_PRZR_RTD1054 P_FLOW_SPRAY1055 P_ENTH_SPRAY1056 P_BORON_SPRAY1057 P_FLOW_AUX_SPRAY1058 P_ENTH_AUX_SPRAY1059 P_BORON_AUX_SPRAY1060 P_FLOW_BLEED1061 P_FLOW_RELIEF1062 P_ENTH_RELIEF1063 P_SVOL_RELIEF1064 VIBR_VALVE_RELIEF1065 TEMP_VALVE_RELIEF1066 P_NONC_PRZR_CONT1067 P_NONC_PRZR_QT1068 P_FLOW_PRZR_QT1069 RCS_P_FLOW_PRZR_QT21070 RCS_PRZR_PRES1071 P_ENTH_BLEED1072 VLV_PRZR_PRES_UP1073 VLV_PRZR_PRES_DOWN1074 RCS UPPER HEAD

RE (2,REtO,RE(0,

REtl,REtO,REtl,REtl,REtl,REtl,REtl,REtl,REtl,REtO,REtO,REtO,REtO,REtO,REtO,

RE(O,REtO,RE(O,REtO,

REtl,REtO,REtO,REtO,REtl,REtl,REtO,REtO,REtO,REtO,REtO,REtl,REtO,REtO,REtl,

plennura

2) Excore Detector°H -M S] Downcomer

4)4)1)

80)6)6)6)6)6)

Ft3/lbm

7>°J-7J heater i7V<y-7J h e a t e r Admittance7V<y-7J heater7)-<a-7l heater ?\

J7>-y-7J heater -&S."S

6) 7><a-7l heater°ll-MheaterS)1)

1) surge1) 7VOJ-71 RTD -frS.1) 7><y-7l -y -^ #

1) 7V-U-71

4) ^^rS-O-^.^-EiS] 7\«t7]1) 7>°J-7l relief "8fil) 7>oj-7j relief1) 7>°J-7l relief4) 7)-<y-7l relief 5l*il3) 7><y-7) relief ^ j a s ] -f- p-1) 7l-°J-7l°HAi ^^--8-715.31 «

1) 7>-y-7l surge1) 7V°J-7) M

J

bleed

gasgas

4)1) 7><y-7l r e l i e f <g«.1) 7><y-7l relief ^« .

25) «7->S -g-71

^.5.31 bleed

PaidBtu/secBtu/lbmBtu/lbmBtu/secPartitionVoltsMhoadmittanceBtu/secBtu•FBtu/secBtu/sec^ l (ft)•F'F•FLbra/secBtu/lbmParts/millionLbra/secBtu/lbmParts/millionLbm/secLbm/secBtu/lbmFt3/lbmVolts•FLbm/secLbm/secLbm/secLbm/secPsiaBtu/lbmPsiaPsiaPartition

w

TP

V

WW

•go

u E u 6 E E u u u U 4r 4J -H E iJt) 2 v £> a A "J o v a l a w l J A "-*• D H C n H H H « CO 0Q * T H 1

O

- ~ « CO

E E E g E 6 E-Q -Q -Q ja J3 ja xi

l H i HHHH- ~ - ^ - ~ - \ - ^ a- * ~ - <&-2TT- v it — —3 E 3 3 m E " H E E E - H l K 0 M H 3 3 0* J . Q i J * J 4 J . Q _ L a ) Q Q a O L id B u U

S

r-l i-H .-i

3 * > " E H

i Hn<1»3

g, S

g, g, g, g,iu)

ruliii|iu|ii)liuiii)|ii)lii)|ii>|iu)ii)| iulii) |j |oj |oni| 5 o a ° S ° 5 ° S ' W i ' S ' W i i l nH "f" nHnHnHmliutnHnitnH nH nH

op op op op oP op op op op op op op SP W 5P fa dB r]l til f)l fa lj» Hi fljl tjl fa op 5p op op op op op op op op op op

O O O O O O O O O O O O O H O H O O O O O O O O O W O r H O O O O O O O O O O O O

M M M TTi r*i f*i M M r*i r*i w ro M M M M r*i r*i M M r*i M r*i r*i Q M r*i M W r*i ro M r*i ro M f*i r»i M f*i r*!

u a o. c til O O.I

'I I I IP

b Pi Qi A t

i o i5 3 5 5,3 -1*1*S

(Q en a 0iQ Q Q Q

a a 5 H i M -. - _I I c n o i S E H < a i c a m a ) m n m i I I I I

*• . _ _ . • • ' ^ ^ b i J ^ ^ ^ ^ . ^ ^ ^ ^ ^-^ ^ . ^ r . . * ^4 ^ ^ ^ >« »

12' I I I Ii en co oi co i

K I X P i K

ICO'OIVX'O'J'J'WVJ'J1

c u £ H t t i e o o i o c i l w o i c n\ft ^& f^ co eft i' 'i f^ 4 r s* ^ o ** co c^ t^ ^ O4 ^ ^c ft ^o ^^ co c^ i ^ f^ ^ ^^ s* n \^y ^^ ^^^ " ^ ^ r r 1 co co oo oo ^^ ^^ co co ^ ^^ ^^ h c^ c o \ c^ @\ eft c^ r i ^ j ^ ^ i' 'i i i ^ tM> i '•O O O O O O O O O O O O O O O O O O O O O O O O O r H t - t r H r - t r H r H ^ t r H r H

- 1 5 9 -

- 0 9 1 -

tncn'Td

W W W M M U M

i \ j i j \ j i j \ j r>+ ^J f** ^* f** ^* (v f* / * * r** ^ * f** ^ * / * * r** r** / * * ^ * r** z*' ^ ^d o o o o o o n n o n n n o n n n n o n n o n o o ' o»»»n»cocncocacococococacocacotococacococo to tnl

I H > i H > J H i

,M,n,n,°,2i2ini^.§ JS.8.S § S 8 1 i §i X fl M BO to to

I H I Icol en co*o co »o »o* "0 w »

r

o o o o o i

H'K'K'K'K'H'K'H'KK'K'|n |n |n |n |n in ^L

3 3 3 3 3 3(D (8 (0 (0 W (Drt ft rr rt rt rt

K H K K H H|n |n |n |n|n |n ofe

oft 1 1i^."

0 «

3 S S'g S

jo

r-IVfa

in

*o p r1 to td tfl *o I(U O" O" ft rr ft o IH 3 B C C C H- I

rr fl> n> tf O* O"H. n o 3 3 3s

toe

toc

H-rt

§

o

8rie

oIDn

2O

8rie

(B

no

* CH' Q

0 U0 (tc nrie

>*.man

n a a >-•^^ ^ — H-I-1 »-• h-» O

2 2 2' H- H- H- in o n

Z 2 2

n n o

c c c 3 c c c

•=^rt «?rt a

n n ID ID n n

1155 FATAL_INPUT_ERROR

1156 FATAL_OUTPUT_ERROR

1157 RCS_HOMOGENEOUS

1158 RCS_EQUILIBRIUM1159 MASS_BUB_PRED1160 RCS_LOCA_MAPPING

1161 RCS_SEARCH_ITER1162 RCS_SEARCH_TYPE1163 CORE_SURF_AREA_LAST1164 RCS_VALVES1165 RCS_VLV_AREA1166 AREA_VALVE_UHEAD1167 AREA_VALVE_PRZR1168 AREA_VALVE_SPRAY1169 AREA_VALVE_QT1170 RCS_MALFUNCTION1171 FLAG_RODEJ1172 FLAG_LOCA1173 LOCA_BLOWDOWN1174 P_AREA__LEAK1175 RCS_PRZR_FLOW_VALVES1176 RCS_P_FLOW_PORV1177 RCS_P_FLOW_SAFETY1178 P_FLOW_PRZR_CONT1179 RCS_P_FLOW_PRZR_QT11180 RCP_COMMON~1181 RCP_INTERNAL1182 RCP_ELECTRIC1183 RCP_VOLT1184 RCP_FREQ1185 RCP_ADMI_RE1186 RCP_ADMI_IM1187 RCP_SL1P1188 RCP_PF1189 RCP_MECHANICAL1190 RCP_TORQ_HYD1191 RCP_TORQ ELEC

LO(0, 1)

LO(0, 1)

LO(0, 1)

LO(0, 1)RE(1, 30)LO(0, 1)

30)30)i)

25)25)3)15)2)3)

30)1)D1)17)10)4)4)1)l)

100)as)28)4)4)4)4)4)4)

40)4)4)

error°flfeel True False

RE(0,RE(1,RE(1,RE(1,RE(1,RE(1,RE(1,RE(1,LO(0,LO(0,LO(0,RE(1,RE(1,RE(1,RE(1,RE(0,RE(0,RE(1,RE(1,RE(1 ,RE(1,RE(1,RE(1,RE(1,REI l ,RE(1,RE(1,RE(1,RE(1,

feel

7ia.t E mappimg-g- fl «•

-8-71 -ft-s.21

.!= v e n t7><y-7l relief « « .

b l e e d ^ a .

* « < H *fee)

Blowdown

flag

^«8 fee)

7><U-7l PORV

7V<y-7l°fH7V<a-7)o)iA-1

ventTankS.fi! vent

Common

£ £ 1 ) *}7l frequency5. 3-t\e) -Q'T- Admittance

I S S-tH^I *f^r AdmittanceS motor Slip -fr5. motor Slip #

l f l ^ ^ ^

True FalseTrue FalseTrue FalseLbm

True False

Partition(ft2)(ft2)

(ft2)PartitionTrueFalseTrueFalseTrueFalse"33 (ft2)PartitionLbm/secLbm/secLbm/secLbm/secPartitionPartitionPartitionVoltsHertz

MhoadmittanceMhoadmittance

hydraulic torque&7] torque

* *PartitionFt-lbfFt-lbf

•O T>C C

G O O CO O U OH o> ot

ns/se

sdia

a.

ns/se

a

Pi

•H

GSF

£*»tion

artialse

rueFalse

u.0)

alse

rueFtion

arti

cfc

tion

artition

ti<i-

u01ai

J J•M

tion

arti

N^ Oi

alse

rueFalse

01

alse

rueFalse

bIfH iv iv H ^ i

tion

U H -.

ft O, C

8

Old

tu/1

U CO

83

rti ffl CQ

8

t3/l

b

8m

H|r

-I2

S

H| Hi H| H| H| H| H| H| H| H) H|

t U| U| U| U| U| Ul U|H » ^ Ji >l M M

w

72

• Q. Q j Q^ L J I

P i P i D i P i P i O i O i C i i C t i O i P i P i Q i m c o o i o i o i t n t a n Q i rU U O C J U U O U C J U U U C J U U U O O O U U O IacioiuauoioioiKeieioioiaioiaioioioicioii

_ _ _ _ _ _ _ C J U U O O O U U O C J

- 1 6 2 -

C C In fe 0) 41 C

j G r r r r *T <fc r <f <Jr r E *H -H G £ V" V" • V" • • «H • t-t \i -H \ T \T u

2 2 * * * * * * * * * * 2 . ^ 2 2 * * ot)«f%$&$% J 5 2 s ? §

IH at/I • *M *J

* * S ? ^a^o. i? Hi?" fl"

' £ § i * 1 &Ha -rl -ri <j^ -H 4>

i!r^ir'1r'V'!ir'i!r*7ir^—T" nrJ i"1 TT ~ m <u a rv'TT

U| U| U| U| U| U| U| U| U| ^VVP^JLZ g g^rHrHrH HH 2l 7T1 , fc * ^ 4J J J Or T3 T3 '_ _

igii

ulA A PPPVP'PPVPV A d * o r s r ^ ^ ^»S^>I>1>1>1 ^-i^TtTr* i

W W W W W WK Q{ pi « tf O!

K yy I-IM H H H M M W W H £ O 0 < H ^ re tn Z W H h (K (_ . ^n lbbOOtOCOht f t f I IZ l< |W < rt; OttfOQ Q; b b> (fa j I

(r-t- MHffitfiKXIDCffiOil.'llHHOOiKWKWU H W J CJ O «4 U U U H —COCOAOt I I I I I I I I H > > X X O W E 2 I S O l ib IE > I I IO oo

'imi riQrrrrrrrrrrrrri~rri"ri^rrri"rrrri T'rTi"rri

Wj I l p a o . 3 o . 5 o . g o . a 5 I I ltd M 10, l u g I I Hb l r t lH IQ I l > n > . b . g m o .

> > K S > > > > P > S > z o O H 2 a W i w W i H W H U p h t a H S a S0 l i 0 ) i Q i Q i Q Q b 1 Q 1 Q 1 Q 1 Q 1 D , B X 1 I X i i a a B f t > , Q , h l Q > > i Q > f c 5 u

V

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I Io ) U ( 0 ( o c o c a Q . o ) ( A O ) o ) ( n o ) U ( n c f l t n c o h t i v . a . c n f H H H t < c A c n i » c n w c n c o w c n a i u iU U U U O U O U U U O U O U O U C J u S f f i U U a t C f f i l c S K U O U O U O U U U O OKCi{tfPia>Ct!&!Ktfp4tfPLiCi4Pif i t iPip4tfuUp,p!P«uuuuuttO!tf^ K ft! 0, dl o! d pi

tNn^" invDt-ooo\o- - f tNm^ i invor-coo\o^o

N ( N ( N N N ( N N f N ( N ( N f M ( N N t S N N ( N O ) M f N M^^ t ^ r i ^ t H « ^ ^ ^ f H t H pH ^H • ^ frn ^^ ^ * H ^H ^^ r^ t H

r» oo a\ ou> u> u> vo rCN (M C4 CS ( N

- 1 6 3 -

mHn)b.

Oua

oVn

o01a

u

m

ot>m

ion

r-lrH

gCD

0)aiH£ lb

m

0)a

£tofta

c.2 <l3 ?

"V" Oa*8

co

• H of)

01

A!b.

o1)

o

1)to

c

u to0 t)

BO

JJ•H

*

ww

%.

0 iH1 A i

u to .i «>3 ^ "

°V a)u

wecm

s^

«H T

a rt

^ ^^ ^ i H ^^ ^ r ^H ^ ^ ^ H ^ ^ ^^ H ^» ^« ^» ^ ^ O r i rn ^1 ^ Ul ^^ ^ C^ ^ "*4 C'J H ^J ^^ T I Hr-i

O O O O O O O O O O O O O O O O O O O O O t - I O O O O f H O O f H O r H r H O H O O O

M U U f*1 M Q M M fT1 M M M Q W W Q fT1 Q M M M M T*1 W Firi M f*l M O M M M M f*1 f*1 M frl bl

I 55 2H Op«J t I

Q Q

UQtfl

§ ISCO

D IU

b i Q p j o :

rH ^^ f^ tf' ^O ^p ^^ 00 ^^\ ^^ ^^ 04 f^\ ^f ^O ^O ^^ CO KT^ t| *4 ^^ fO ^ l ' ^O ^D ^^ CO ^^ <* 'i ^^ Ot ^^ } Vft ^O ^^ pf

r- r - r - r * r » r ' r - r - r * o o o o a > e o o o a o o o a > o o a > a » < h o \ c h o \ < n o \ o \ < T > c n o o o o o o o o o

- 1 6 4 -

1309 RCP DELSPEED_LOCKED1310 RCP FRIC COEFF1311 RCS P ELEV MOD SURGE1312 RCS_DHF_MIN1313 RCS_DP_ELEV_SURGE1314 RCS ITER DPL1315 RCS_SDCSIT_CONSIST_TEST1316 RCS_MORE_VARIABLES_V1317 RCS DW SDC1318 RCS_DWSTP_SDC1319 RCP_RCP_START1320 RCS PRZR MASS STM1321 RCS_PRZR_MASS_AIR1322 RCS MORE~VARIABLES_VI1323 RCS REINITIALIZE1324 RCS_INIT_P1325 RCS INIT LEVEL PRZR1326 RCS_INIT_AIR_PRZR1327 RCS W PRZR CONT1328 RCS_W_PRZR_QT1329 RCS_PRZR_QUAL_RELIEF1330 RCS_INIT_T_PRZR1331 RCS~INIT T LOOP1332 RCS_DRAINS_SDC1333 RCS MAX DRAIN_SDC1334 RCS PRZR FRAC AIR1335 RCS PRZR KH STM1336 RCSIPRZR_KP_STM1337 RCS MORE VARIABLES 504 SR1338 RCP_CAVIT_SGDP_FRAC1339 RCS_PRZR_DT_SUB_BOIL1340 RCS RCP VOIDF1341 RCP_DT_LAST_TRIP1342 RCP STOPPED1343 RCPJTRIPPED1344 RCS PRZR_COND_SURF1345 RCS PRZR LEVL LAST1346 RCS_PRZR_T_WALL1347 RCS_PRZR_Q_CONT1348 RCS PRZR QAX WALL

RE(0,RE(0,RE(0,RE(0,RE(0,RE(0,LO(0,RE(1,RE(0,RE(0,RE(1,RE(0,RE(0,RE(1,LO(0,RE(0,RE(0,LO(0,RE(0,RE(0,RE(0,RE(0,RE(0,RE(0,RE(0,RE(0,RE(0,RE(0,RE(1,RE(0,RE(0,RE(1,RE(1,LO(1,LO(1,RE(0,RE(0,RE(1,RE(1,RE(0,

1) HS2!^! ^-5. -H*!" rotor^l •#£.*>1) ^2+*!! ^ H windage^ friction?)] *r1) surge lineS) fe°l T1-3) Al 1 •& fl St "U"^1) *1S]'OI|'*1^ OVW) ^Q^t^*}1) surge l i n e ^r^ <U''N*V1) ^ ^ 1 *y" fl"tl" 'r-^-fi- 9]Q ti^*V1) - ^ ^ l ^ ^ 3 ! - 'ib^i^'y 'SS-'-l^ flag8) -^^1-S. ^z^Tfl-f- S!*r-V1) ^8*] y~8:z:t-9}:&.^L'Q TANK -fr^*)-1) ^^1 vSzt-t!-^i'T1<y "8-3. -M^S) s t e p ^ -8-^*>4) ^z)-;tfl ^S-S. 7]-^- •>•]%} Q^ f lag1) 7}-<y-7| ^-7] ^ ^i ) 7J-<y-7J -5-7] ^

14) 1*1"-S- ^Z^-^]^- ^"T^-VI1) 11 2i7)4(- ))<H f lag1) >fl 3:7] ^--«.] 7}-<y-7] "U"^1) J<H ±7)3J-A] 7J-<y-7] "7=^11) *ft i 7 ] ^ - A l 7><a-7l ^ -7 l^)o1 f l ag1) 7><y-7)o(l-M 2%^%-7]^2] - 8 " ^1) 7J-<y-7] °)| A-) -^ 4J 1) 3 . .sL 3} - 8 " ^1) 7J-OJ-7J r e l i e f va lue ? i S .1) 11 2i7lS)-A] 7VJ}"7] liSz^'rL -&S.1) fl i7]3)-A] RCS -8"S. •£•£.1) ^ ^ l 1 ^ 2 ! line^.5.-^-Eifil drain -8"^ (fast time^l)1) fast timcM ^^)^A lineal drain -8"^ - 1^11) 7)-<y-7]tfls) - 5 - 7 ] ^ ^ •&•§•1) 7J-'y-7J ^7} 'M^ji'3 ^1*T^ 7^ t:} Tll-iV-ft- ^1 rV ^)^=1) 7V't]'7]Lfls1 ^ 7 ] 'M-S'S ^\"r 3H*V ^H'tl'-S' ^HQ "U"^

58) 3}*]-.^. ^Z|/fl^f- ^ - S R1) &?] ^•-lS7] <y-^ l-iV-S" ^ t ! - VSz+ fl ^ 5 . Cavitation^}-1) 7}-iy'7) H] •§• -$-S.^l-4) i Z^ )) Jg n. 7 l i - § :4) ^z - fl j g a trip-91 time step4) ^zj-^n sgS. ^^1 flag(^S.-0)4) ^zt^fl ^ 5 - trip flag1) 7]-'y-7l ^ z } - ^ S.^ofl'H^ - § - ^ ^1) °1 i^i time step°IM2j 7V<y-7) ^S]2) 7)-<y-7) ^ ^ - g - S . 1- ^S^^r 2-^7]2) 7}-ty-7]^^°fl-H •^'d'-8"7]3.2} 'M'S'3'1) 7><y-7] ^ ^ 2 ] • ^ • ' i 1 ^ <M;?iiap

Radians/second• ^ • • ^ • ^ • • ^

PsiaBtu/lbmPsigPsigTrue FalsePartitionLbm/secLbm/sec

LbmLbmPartitionTrueFalsePsiaInchesTrueFalseLbm/secLbm/sec

*F•FLbm/secLbm/sec

PsiaPartition# • § •

"F•&"&•

±(sec.)True FalseTrue FalseLbm/sec•0.°] (ft)•FBtu/secBtu/sec

i A id 4 n) 0 4 1 0 1 1 1 1 1 1 1 0 idk &4 tu C &« Pu fiu C C t^ 6M PU tu C _.-._ fT.

11 o o jl -^ ~ *-- ~ O <NM" • B O O -H rH\T • • • • O U U U H E g E u O7 1 O A 0>4> 4J 4J *y I U O U U V V Q) V li A £) J5 «M 0>Or^iH n o H H * 1 i) i) D u a a a a - H r H r - i r H ~ ' a

J ' K a m p E E - H p h p a j m * - 3 3 3 3 3 3 3 3 3 1 i 3 3 f n f l 3 - H 3

i t ^ 5 b l H 3 S ? H ™ H 2 H H H " n l " J ' J ' ' J ' l ' J ' l ' J V ' -

•f

nT

*

3 * 14 * *

L. f<nf-(iJ-0BtS5 u-1 -[IffS0! g^*I1S*'0-JK-F'<*i'5J'K-***'W>P|PiPlflPjP|Plfl

•5- g> g> i^o^lv -«fciiilomOiil»rioiloiAii«lDrio«lOMlor '"«111 . a * * * * ^ ^ ^ ? ^

B O O WJOPOOI °

J 0"J "R" t1»K|- o f Op of) Of) 0p 0p 0p 0p 0p 0p 0p 3° 7 O

O O O r H r H H r H r H ^ O O i - l r H O O O f - I O O O O O O O O M O O O O O r H O O O O O O O O

W W O W W W O U W U U Q Q Q Q Q U U W W U W O O O W O O U U C d W U U t i l M U O W U

W5 5 J o <: a> sc P a. 5 > « u J H DB H W H la. «; rfz^ rn <—••*• F-< IM Im n J rt H J Jl J tf N t< [I ti rn v M M m m J i—t

EH H I

JQ2»I10 w 1

i|C0iC0,H,HiQiEiQiQiCiE|b.|X1C>,QiQiOi5,g § H O SS.O.a

m o r H d m ^ | m \ D r s > o o o \ O r H C N r n« in in in i / i u i i nu i i n inu iwu>u>v i

W U U U M P E Z " f ** • . M

1 M

i ***•I I I I I I 1 1 I I r j l l l l 1 1 1 1 1 l 1 1 1 1 1 1 I I I I I Z Z O i> t i l l

CO CO CO C^ C^ CO CO CO CO CO I C ^ CO CO CO CO CO CO m CO CO CO CO CO CO CO 0 CO CO CO CO UJ DJ £1] ^ CO CO CO CO COO U U U O U U U U C J H U O U U O U C J U O U O U U U O U O U C J O U I I I I O U U U

- 1 6 6 -

1389 RCS_FLAG_DP_LEAK_LB1390 RCS_DELTEM_SG_LB1391 RCS_HA_PRIM1392 RCS_TEMP_SG_PRE1393 RCS_TEMP_SG_LAST1394 RCS_FLAG_COARSE_NODES1395 RCS~LB_LOCA_FIRST1396 RCS_RCSLB_FIRST1397 RCS_M0D_0UTPUTS1398 RCS_MOD_OUTPUTS_INSTRUM1399 RCSL_PMP1_DP1400 RCSL_PMP2_DP1401 RCSL_PMP3_DP1402 RCSL_PMP4~DP1403 RCS_M0D OUTPUTS_C0RE1404 CHT_TCOOL_AV1405 CHT_SV0LC00L_AV1406 RCS_B0R0N_C0RE1407 RCS_MOD_OUTPUTS_CHT1408 RCS_CHT_PRESS1409 RCS_CHT_ENTHLIQ1410 RCS_CHT_ENTHSTM1411 RCS_CHT_QUAL1412 RCS_CHT_FLOWIN1413 RCS_CHT_ENTHIN1414 RCS_CHT_QUALIN1415 RCS_CHT_LEVMIX1416 RCS_CHT_LEVSAT1417 RCS_CHT_QWALL1418 RCS_CHT_TWALL1419 RCS_CHT_MASSLIQ1420 RCS_CHT_MASSBUB1421 RCS_MOD_INPUTS1422 RCS_M0D INPUTS_BOP1423 CHGS_RCS_FLOW1424 CHGS_RCS_ENTH1425 CHGS_RCS_B0R0N1426 CHGS_RCS_HYD1427 CHGS_RCS_IOD1428 CHGS RCS PART

LO(0,RE(1,RE(1,RE(1,RE(1,LO(0,L0(0,LO(0,RE(1,RE(1,RE(0,RE(0,RE(0,RE(0,RE(1,RE(0,RE(0,RE(0,RE(1,RE(0,RE(0,RE(0,RE{0,RE(0,RE(0,RE(0,RE(0,RE(0,RE(0,RE(0,RE(0,RE(1,RE(1,RE(1,RE(1,RE(0,RE(0,RE(0,RE(0,RE(0,

4)4)4)4)1)1)1)

60)4)1)1)

3)1)1)1)

26)

Coarse v *=Coarse itH. -M-g-Coarse lc=. A}-g-

a.-a*3. "g

•^ ^ I B

4I-3. 2A

global Common

t-a

plenumplenum

*>•¥• plenum

1)1)1)1)14)

240)50)4)1)1)1)1)1) particulate %•£.

^ %=

BOPCVCS^- f t - *boron

-8-%=

True False•FBtu/sec-*F•F•FTrue False

) True FalseM>Jl)True False

PartitionPartitionPsidPsidPsidPsidPartition•FFt3/lbmParts/millionPartitionPsiaBtu/lbmBtu/lbm

Lbm/secBtu/lbm£•§•^o] (ft)^°1 (ft)Btu/sec•FLbmLbmPartitionPartitionLbm/secBtu/lbmParts/millionLbm/lbmLbm/lbmLbm/lbm

•HOO U U U O E g O H

vvaivvx>^vu

c ~ ~ cO M C4 O•H U y -H

§ * S T S • * 2 * * * *

V

3

* BlB|

II91

"•or

m| a\-KK

8

<|-

8

O . W U O Oz o 1 io.M 0 Q Qb b £ d c Q [ i 4

I I I I I I

n juoiPiltltCPi

0 H 3 CO E

01 a o 1 01 2

rt WOO JUOl

g S S >

HjassC0 M

loi Pi I( Q t 4 H Q [

1E, 0, st <s 1 2 O O

O > < Q Q

z > uO ho! l>iO O O «<

I leu en-« U Q Q I I

?I>I^I~I!J!J

V

- 1 6 8 -

146914701471147214731474147514761477147814791480148114821483148414851486148714881489

1490

1491149214931494149514961497149814991500150115021503150415051506

MALMAL|MAL"MAL"MAL"MAL"MAL"MAL"MAL"MAL"MAL"RCS"

VLV PRZR_MOV~VLV_PRZR_CONT"VLV PRZR QT"VLV_PRZR_MSPRAYV L V _ Q T _ G W S"VLV QT CONT~VLV_QT_NSUPPLYRCP_SHAFTBREAK

|RCP_LOCKED"RCP HIVIB"ROD_CORE"MOD INPUTS CONT

CONT PRESQ T _ M O D _ I N P U T SDMWDMW"RCW"GWS^

QT FLOW"QT_ENTH"QT FLOW"QT PRES

GWS_QT_FLOWRCSVLV"

VLV_

VLVVLV"VLV"RCS"

INPUTS PRZR RELIEF[pRZR_QUAL_DF

_PRZR_FLOW_OPTION

_PRZR_NPOINTS_TAB^PRZR_FLOW_TABLEPRZR PROP TABLEI N I T I A L CONDITIONS

RPINITRLINITRWINITRTCLINRBINITRKPUMPRSINITSGSSGS"SGS~SGS"SGS"

.COMMONINTERNAL

~BOT_P|CON_I01CON IO2

R E ( 1 ,RE(0,RE(1,RE(1,RE(0,RE(0,RE(0,L O ( 1 ,L O ( 1 ,L O ( 1 ,IN(0,RE(1,RE(0,RE(1,RE(0,RE(0,RE(0,RE(0,RE(0,RE(1,RE(0,

IN(0,

IN(0,RE(1,RE(1,RE(1,RE(0,RE(0,RE(0,RE(0,RE(0,RE(1,RE(0,RE(1,RE(1,RE(1,RE(1,RE(1,

4 )

1 )2)2)1)1)1)4 )4 )4 )1 )2)1)5 )1 )1 )1 )1)1)

33)1)

1)

1)1 5 )15)1 5 )

1)1)1 )1)

f-t

4)

1)1536)

400)4 )4 )4)

MOVvent H8*L S) *1vent -flM

GWSS.S1 vent

^ S rotor

vent "Us.. 3*1fee) =ri^- fee)

DemineralizedDemineralized

GWSRCWS.fi)

l | GWSS.S) gas fr^7>a7l relief "gM dischange S.'fi7><a-7J relief >gU quality &$3-^lquality

f a )3 l q u a l i t y7f<a-7) rel ief •ffl«-2-Bern/Cd(dT) 3-f(P)relief "£*- dischargefifi)Discharge £.S] * # ^ ^Discharge S.fil ^

- quality 2

i-<a7fl/Bern

2:71±7)

-frS.fi!

Common Block

dome t E 2 ]Evaporator t=.fi)

-§"§•«•-§•£•-§•

-g-8-

TrueTrueTrue

FalseFalseFalse

PartitionPsiaPartitionLbm/secBtu/lbmLbm/secPsiaLbm/secPartition

•§•-§:

PartitionPsia^"^Kft)Lbm/sec#FParts/million

RPMSegmentPartition

Microcurie/lbmMicrocurie/lbm

oI

1507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546

SGSSGS"SGS]SGS"SGS]SGS"SGS~SGS"SGS"SGSSGS]SGSSGs"SGS"SGS'SGSJSGS"SGS"SGs"SGS"SGS"SGS"SGS"SGS'SGSJSGS"SGS~SGS"SGS"SGS]SGS"SGS"SGSSGS~SGS"SGS"SGS"SGS"SGS"SGS"

CON PT1"CON PT2[CONJCEI"CON XE2~CON_BORON1~CON_BOR0N2"DELTV"DP"DVDP"ENTHI"ENTH2J3NTH3"ENTH4ENTH5

IEI

I E 2"E3~E4

IE5"HF"HG"HLEVELHT2~HT3"HTI"MI~M2M3"M4~M5"p"RECIRC"RHOIJJH02"RHO3~RHO4"RH05"SVI"SV2SV3

RE(1,RE(1,RE(1,RE(1,RE(1,RE(1,RE(1,RE(2,RE(1,RE( l ,RE(1,RE( l ,RE(1,RE(1,RE(1,RE(1,RE(1,RE(1,RE(1,RE(1,RE(1,RE(1,RE(1,RE(1,RE(2,RE(1,RE(1,RE(1,RE(1,RE(1,RE(1,RE(1,RE(1,RE(1,RE(1,RE(1,RE(1,RE(1,RE(1,RE(1,

t-E-31 participaterator t E S ] particulateDome t E 2 ] Xenon •%-£.

Sl Xenonboron

^l boron

g g specifics§ specific

s§-g SpecificJg-g- Specific

l *% -g- Specific%• energy%• energy

^ energysg -g- ^ energy

%. energy= SpecificSpecific

4) •f'7] dome4) Evaporator4) ]4) Evaporator4) ^7] Dome4) Evaporator4) *7l3)4)4) ^7J dome4) Evaporator4) Downcomer i4) Economizer4) Quench-pool4) &7] dome i4) Evaporator4) Dovmcomer i4) Economizer4) Quench-pool4)4) * ]4) 97)4) Evaporator4) Downcomer

4) &7) >a-^7| fl

4) 7] Dome t £ %•4) Evaporator icH. #4) Downcomer icS. %•4) Economizer t H . a |4) Quench-pool icH.4) ^71 Dome MI= ^ ^4) Evaporator^]^1 DowncomerS.^ recirculation4) 7) Dome i ^ "SS4) Evaporator itS.4) Downcomer bcS-4) Economizer k E4) Quench-pool icH.4) *7l Dome4) Evaporator t E4) Downcomer icH.

Microcurie/lbmMicrocurie/lbmMicrocurie/lbmMicrocurie/lbmParts/millionParts/million

paid

Btu/lbmBtu/lbmBtu/lbmBtu/lbmBtu/lbmBtuBtuBtuBtuBtu

Btu/lbmBtu/lbm

)

LbmLbmLbmLbm

LbmPsia

Lbm/ft3Lbm/ft3Lbm/ft3Lbm/ft3Lbm/ft3Ft3/lbmFt3/lbmFt3/lbm

15471S4815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586

SGSSGS~

sos"_SGSSGS"SGS~SGS"SGS"SGS~SGS"SGS"SGS'SGSSGS"SGS'SGS"SGS"SGSSGS"SGSSGS"SGSsos\SGS'SGS"SGS"SGS_SGSSGS~SGS"SGSSGS"SGS"SGS"SGS~SGS"SGS"SGS"SGS"SGS"

SV4~SV5JTREFLG"TWALL"TIT2~T3~T4~T5USTM

I V F~VF2~VF3~VF4~VF5~VG

~vi~V2~V3~V4V5"WF1~WF2"WF3WF4WFS"WG1WG2~WG3"WG4~WG5~W13"W21

[W23~W31"W32^W51~W25"W53W42

RE(1,RE(1,RE(1,RE(1,RE(1,RE(1,RE(1,REI1,RE(1,RE(1,RE(1,RE(1,RE(1,RE(1,RE(1,RE(1,RE(1,RE(1,RE(1,RE(1,RE(1,RE(1,RE(1,RE(1,RE(1,RE(1,RE(1,RE(1,RE(1,RE(1,RE11,RE(1,RE(1,RE(1,REtl,RE(1,RE(1,RE(1,RE(1,RE(1,

4)4)4)4)4)4)4)4)4)4)4)4)4)4)4)4)4)4)4)4)4)4)4)4)4)4)4)4)4)4)4)4)

Economizer iQuench-pool B-S] JȤ -g-

B) Sfl 2}

=5-7} *&*$7&7] DomeEvaporatorDowncomerEconomizerQuench-pool

Evaporator ±^Downcomer t HEconomizer k HQuench-pool »1 *ll

t E

Dome i HEvaporator icDowncomer icH-Economizer icQuench-pool

\ DomeEvaporatorDowncomer iEconomizerQuench-pool&7] Dome iiS- -7]EvaporatorDowncomer hEconomizerQuench-pool-^7] Domeofl^ Downcomer3.S)

4) Evaporator°fl-M4) Evaporator°D-H DowncomerS. 9]4) Downcomer°fl^ ^ 7 ) Dome^-Sa

Downcomer°fl ^1 Evaporators.-^Quench-pool °f\^ &7] Dome°-Evaporator°)]-"-i Quench-poolSS

4) Quench- pool °tl^1 DowncomerS. 2]4) Economizer0!] -M Evaporator^

4)4)4)

Ft3/lbmFt3/lbm*F•F•F•F•F•F*FFt/secFt3/lbmFt3/lbmFt3/lbmFt3/lbmFt3/lbmFt3/lbm

(ft3)

(ft3)•¥•=1 (ft3)LbmLbmLbmLbmLbmLbmLbmLbmLbmLbmLbm/secLbm/secLbm/secLbm/secLbm/secLbm/secLbm/secLbm/ secLbm/sec

Ill

•H O U U U O UU 01 01 0) 01 0) 01-H Q in n ID n Q

"<%• ~g<&<&<&dp<& p u "3 ~s ~5 ~3 ~3 "si (U (Q CQ CQ PQ ( 0 CQ

g§0 O O O H -H01 4) « 01 4J 4Jco a o) a -iH -H

— » - ^3 3 3 3

u u0 3 3II U U• O O

H3

U UO

U U o

U U 6 60 I0 IJ3J3n n H H

ti fc E 3 3 3id td J i ,Q -H -H -H -k- u u u

j -r Sp

ID) iu| orol o|ft #

0 (Iu H

B> 8

w

a)

rl-

*

.— Ar\ u

f•§ -8-8-8-8-S-8-8-8 •m i e m e i a t a r o n i R )( i a i a i a ) V ( i ix a x x x a

ia g Kb Kb i*> "X Kb •*>

Q O Z H 3 p 3 Z H OO H O t J U O O O O Q H M H D»J

I, o,|o8o«'<lj"l l i J l| 5 H °I^CCCl* 9;

- 1 7 2 -

WIB0

Ill III II«-•«-)«-* «-l r-< rH «-H «-*• ^ ^ \ W N . - ^ -s*.V O I D t> ai a> «> t>

C -H TH -H C « ^~* ~. ^ ti C -H -H -H -<-t -HO U ^ h 0 M N N M O O tl 1 M M 14

O -H O E 3 3 3 U H i J i J A J i J - H U O O U - H U E 3 3 3 O e 3 3ft) *J 4 )JQ O U O V U U i u u i M i J V l l V I U P O ^ O U U I l A U U

~ O O O B . H - - - w . ^ ( i i i a ( i i O ' H ( D H O O O » H O O

H H HA^rta^i^^^sr^rsrsr V ^ ' - - - ^ { J ^ - - v j S S"e"5S oA A A J3 M A J-) -H -H -H JD u -H -H

J

A,

U|U|

5 ;^ N S + ( ^^l\^^^^'i\^^^^^^^^'F^^^^^(l0^^^^K^^^^Kb Kb Kb Kb Kb "FT 3» •> Kb Kb Kb Kb Kb Kb Kb Kb Kb Kb Kb Kb Kb Kb *> Kb Kb Kb Kb Kb Kb Kb > Kb Kb Kb Kb Kb Kb Kb Kb KbHI- HI- HI- Kh K> Kb W W Kh Kh K|- Kh if Kf K|- if Kh KJ- Kf Kj- Kh Kh if KJ- K|- if Kh if Kf if 75" Kh Kh Kj-Kl- if ifKhKl-Kl-

01

"H° ™ 2 to O Q H I

IHJ I i ig w H ' H ' HI

HI

H (JtHlEJH

lEi a'a'S 5 S »'a'8 8

E S.H| I I l ! \ !„! I I I I I I I I. I I I ,l_l..r I. I l_l l"l !„! I l!"V I

- 1 7 3 -

1667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706

MSLH XE CONDMSLH FLOW CONTMSLH~ENTH_CONTMSLH_IO_CONTMSLH PT CONTMSLH XE CONTMSLH_FLOW_TURBMSLH_ENTH_TURBMSLH IO TURBMSLH_PT_TURBMSLH XE TURBSGS_FWS"FWS"FWS|FWS"FWS"

FWSJFWS"FWS"FWS"FWS"FWS"FWS'FWS"FWS"FWSFWS"FWs]FWS"FWS]FWS"FWS"FWS~FWS"FWS]FWS~FWS"Fws|FWS"

_FWS"PUMP_PIN^PUMP_P^JUNCTION P"VALVE PRESSURES_VALVE_PJ!CON_VALVE P"PUMP SPEED"PUMP HEAD~PUMP_FLOW"LINE_FLOWS"FLOW"ECON FLOW"FLOW TOT"ENTH"LINE ENTHALPIES[LINE_H"ECON_LINE_H"CON IO"CON_PT"CON_XE^NOZZLE FLOW^NOZ_FLOW"ECON NOZ FLOW^NOZZLE_ENTHALPY"NOZ_ENTH_ECON_NOZ ENTH|NOZZLE_?15."NOZ QUAL

RE(0,RE(0,RE(0,RE(0,RE(0,RE(0,RE(0,RE(0,RE(0,RE(0,RE(0,RE(1,RE(0,RE(1,RE(1,RE(2,RE(1,RE(1,RE(1,RE(1,RE(1,RE (2,RE(1,RE(1,RE(1,RE(1,RE (2,RE(1,RE(1,RE(1,RE(1,RE(1,RE (2,RE(1,RE(1,RE (2,RE(1,RE(1,RE (2,RE(1,

1)1)1)1)1)1)1)1)1)1)1)

180)1)4)4)4)4)4)4)4)4)4)4)4)4)4)4)4)4)4)4)4)4)4)4)4)4)4)4)4)

% •

particulate ^f51-8-^ Xenon

particulate\°-3.2] -8- = Xenon

•H"^1 Downcomer *S^- *&%Economizer Hi- . *&&

Downcomer *fi -H. °fl *]Economizer u,S-&°fl'H ^ g - ^ -8- =Downcomer *i! Evaporator-1-

Specific

DowncomerEconomizer

particulateXenon

T51 ^ T = NozzleDowncomerEconomizer

DowncomerEconomizer

Downcomer

Microcurie/lbmLbm/secBtu/lbmMicrocurie/lbmMicrocurie/lbmMicrocurie/lbmLbm/secBtu/lbmMicrocurie/lbmMicrocurie/lbmMicrocurie/lbmPartitionPsiaPsiaPsiaPsiaPsiaPsiaRPM

Gal/minLbm/secLbm/secLbm/secLbm/secBtu/lbmBtu/lbmBtu/lbmBtu/lbmMicrocurie/lbmMicrocurie/lbmMicrocurie/lbmLbm/secLbm/secLbm/secBtu/lbmBtu/lbmBtu/lbm«-§•«-§•

1707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746

FWSFWS_FWS_FWS_FWLBMAL_MALFWLBMAL_MAL_FWLBFWLBFWLBFWLBFWLBFWLBFWLBFWLBFWLBFWLBFWLB

ECOK NOZ QUALNOZZLE_TEMPNOZ_TECON NOZ TIN

FWLB INFWLB~ECON_IN_OUTFWLB OUTFWLB ECON OUTLOCATION""FECON_FWFLOW

_ECON_FLOW~HENTHECON ENTH

QUALFWLB ECON_QUALFWLB~FWLBFWLBFWLBFWLBFWLBFWLBFWLBFWLBAFWSAFWSSGSSGBDSGBDSGBDSGBDSGBDSGBD

IODINE_IOECON_IOPART

_PT_ECON_PTXENONXE_ECON_XEFLOW

_ENTHSGBDCON IOCON PTCON XEDVDHDVDPH

RE(1,RE(2,RE(l,RE(1,RE(2,RE(1,RE(1,RE(2,RE(1,RE(l,RE(2,REU,RE(1,REU,RE(l,RE(l,RE(2,RE(1,RE(l,RE(2,RE(1,RE(1,RE(2,RE(1,RE(1,RE(2,RE(1,RE(1,RE(2,RE(1,RE(1,REU,REU,REU,RE(0,RE(0,RE(0,RE(0,RE(0,RE(0,

Economizer

DowncomerEconomizerCheck •§-£!Check *&*L S)-- -Check 1 UCheck 1lJiCheck HSiiCheck •g^. -y-¥-

DowncomerEconomizer

DowncomerEconomizer

DowncomerEconomizer

4)4)4)4)4)4)4)4)4)4)4)4)4)4)4)4)4)4)4)4)4)4)4)4)4)4)4)4)4)4)4)4)4)

100)1)1)1)

1) Blowdown

-frS.

Downcomer lineEconomizer line

Downcomer lineEconomizer line

-fr%=^ *1

DowncomerEconomizer -fr^DowncomerEconomizer

DowncomerEconomizer

DowncomerEconomizer

Darticulate T?S.DarticulateDarticulate

xenon ^JE^ ] xenon

Xenon- f t - *Specific ^

Blowdown ^

particulate %•£.BlowdownBlowdown pBlowdown *&3. Xenon •%-£.Blowdown "§3.Blowdown <83

^ specific

«••§•

Lbm/secLbm/secLbm/secBtu/lbmBtu/lbmBtu/lbm

•§••§•

Microcurie/lbmMicrocurie/lbmMicrocurie/lbmMicrocurie/lbmMicrocurie/lbmMicrocurie/lbmMicrocurie/lbmMicrocurie/lbmMicrocurie/lbmLbm/secBtu/lbmPartitionMicrocurie/lbmMicrocurie/lbmMicrocurie/lbm

Btu/lbm

-9L\-

J ( )

C O C O [ A 0 3 C O ( O U > ( O C aQ Q Q Q Q C l Q Q OOff hrt rt C D Off 09 0 0 Off 0*t O O D C3 D Cl Cj D

Off Off

oft

51

5 E S 0 3 E S o 3 S O B J 0 ) aH - H O I H H » H H - W r t r t wo n u o n r i n o f i c e i

K M H H B Br r t r c r r t l t nH- 3 3 H- n n

. - . . f*f hi . .H' O O H* O 0 P- O Or t o o r r o o r r n nH - C C H - C C K - C C

3 p. »J- p p. p. «3 p. p.

- M H « K - nffffftH

- 3 3 H OMl- ' l - '

3 3 3

l|c'rtrT

HiCTtTn 3 3

-LL\-

z i j i o o a n o 2 » ? o SflB

•fl M W S d MM H

dwofig zr H

c a c a i a i a t o u i C Q c a c a i a c n

S ogoogaoou i C Q c a c a i a c noogaoo

QO CO r

r-IV

nn!Dn!OiQ! i i^^sof f39nf l9Sdp n g n ) 9 n nf innt ' innnntQGdf innDit ' inG' io M fed M w w w wO M W O O O O O O O O O O O O O O O O O O O O O O

f j o b d b d C Q M N b d b QM O O l - ' M O H I - ' O

oft

3 ^ e

•g S0 Oa

ft

Sii*fl

r|r oSdii'|fJii4>:

i t

o-IV

t a hi a iI a H J I « M j i m iJ o H- >J o H- TJ n i

-r' <ft "T<ft - f fl> " f

L*+#*ceH,,*oe***

kwJt

(4

Jff i .

3 » H H- B>

°K 3 O M H-U1 C 0> OP1 QIJ- M rr c

Ui " * »

*

< * •

ofl,

o i» MI o. o res 8 * * * " 8 £S 2 "> » o

— o3

Ql H- H- Ql H- H- (U P- H-M O O H O O M O O^i r f n f^ « ^i r T^

H1 O O H- O O H- Q Qr T O O r t o f l r r n OH- C C M- C C H- C C3 H- H- 3 H- H- 3 H- H-

1826 SGT_HTCSTM RE(O, 1)1827 SGT_Q MULT RE(1, 4)1828 MSLH_DPMIN_MULT RE(O, 1)1829 SGS_VF_REF RE(O, 1)1830 SGS_VG_REF RE(0, 1)1831 SGS_VLEG_REF RE(0, 1)1832 SGS_TAU_FLOW RE(1, 2)1833 SGS_XTAU_FLOW RE (1, 2)1834 SGS_CRIT_MODEL IN(0, 1)

1835 SGS_MORE_VARIABLES RE (1, 120)1836 SGS_INITIAL_CONDITIONS RE(1, 15)1837 SPINIT RE(0, 1)1838 SLINIT RE{0, 1)1839 FHINIT RE(0, 1)1840 SKAMUL RE(1, 4)1841 SGS_TUBE_AREA_DEGRAD RE (1, 10)1842 SGS_TUBE_AREA_OPTION LO(0, 1)1843 SGS_MASS_FULL_TUBE_AREA RE (1, 4)1844 SGS_MASS_ZERO_TUBE_AREA RE(1, 4)1845 FWS_ENTH_TABLE RE (1, 50)1846 FWS_HTABLE_ENTH RE(1, 20)1847 FWS_HTABLE_LOAD RE (1, 20)1848 FWS_HTABLE_NUM IN(0, 1)184 9 SGS_ECON_VARS RE(1, 40)1850 SGS_ECON_TPIN RE(1, 4)1851 SGS_ECON_TPOUT RE(1, 4)1852 SGS_ECON_TFIN RE(1, 4)1853 SGS_ECON_TFOUT RE(1, 4)1854 SGS_ECON_ASUB RE(1, 4)1855 SGS_ECON_TCAV RE(1, 4)1856 SGS_ECON_CNVRG RE(0, 1)1857 SGS_ECON_FLIM RE(0, 1)1858 CONTROL_COMMON RE(1,2048)1859 CTL_TIME_STEP RE(0, 1)1860 CTL_CORE_CONTROL RE(1, 110)1861 CTL_CORE_SETPOINTS_FOR_TRIP RE (1, 45)1862 CTL_CORE_HI_POWER_FRAC_TRIP RE(0, 1)1863 CTL_CORE_HI_POWER_SUR_TRIP RE(0, 1)1864 CTL CORE LOW PRZR PRES TRIP RE(0, 1)

Evaporator Jr.H.21 Btu/sec-ft2-'F

Tfl-^71lo/hi ta.SGS tau_flow°11^1

ra te •&-§•

l=Henry-Fauske £.?&

* 71

cfl V option flag

zero °•¥-*>°flH. =3. :

: Entry1 ^ ^

(h-Hl)/(H2-Hl)

EconomizerEconomizerEconomizerEconomizerEconomizer -Sr£.

Economizer ^

EconomizerEconomizer

7)1-f-*1 ±-Jil-BOP

time step) Common ^

SUR Jr.-y

* *Ft3/lbmFt3/lbmFt3/lbmi(sec)

PartitionPartitionPsia«»l(ft)Btu/lbm«•-§•

PartitionTrue FalseLbmLbmPartition

PartitionT*F*F"F

Lbm/eecSegment±(sec.)PartitionPartition* - § •

Decades/minPsia

86a v

4-3P

o o o o o o o o o o o o o o o oczzzzzzzzzzzzzzzz• H T I ' O T J T J ' d ' O ' d ' O T J T l ' O ' O ' O ' O T J T j ' ^ O O* J " ^ * ^ * ^ '^i •• ( -^i *# "r ( *^i • i #/^ • ^ 'i f • ^ * ^ * H ^J ^ /

S S Si Si Si IS Si Si Si Si Si Si Si t!SJ

_•ml

W

o

h i . b "0-7- 0) Vb U U -H •< T3 *O1 tl U d H -H

•R-R-

1R-FT

O O O O O O O O O O O O r H H t H O O O r H r H O O O ^ O ^ O O ^ O O O O O O r H O O O O

Oig «o; « o; o I o

a. O S O K O I A B : U I K KO.M o. co i o i o i o . M O o i o o i o . o o

cuMai M o. O . I O . I O C M O ! I O I O M O : I IQI H Q! H Q< O. Qi 0 . 0 . CO >< CO H Q < H A H ( l i h l l < 10. I C t i O O i O .M Oi H _ |M O, M O. p . M M O. « . O. « H K H B K _ | M O. M O, H.. |M MO.H

M \>*«; a rfevse

I J O g I

U > £ l<a i J i s ? ^ i " s.a.Eg M

_ P P £ W CO £ IH IH 18 0 H ttl H « K 2 H H3 I I I U O . I U I CO I J O K | H I h U J II

CO O* t ^ . tH y J Hj CO A M | | |CL t J O ; U b Q i K M ^ C I l Q i O. M p4X I M P

. » j o

.L.l« 1 M s p: H ca 5 u S s « w o; w w N a. a. a o » « 1 U J ^ H U

I I J 10) CO U Q I O 10) O OI O I I L O O A K K I I J ICO CO O D I O0, « KU. 01 1 IOIUI |u td co a; 2 3 IwM ^ > U M O O M &

« « HN N H 0 . Q H O O I IH0; B! I I J 10) CO U Q Io. 0, « KU. 01 1 IOIUHI

I |u td co a; 2 3 Iw

H10)

II I 15 o S ot a; I 1.3 ico co o D lo I la: a. «p£ (it Cb Cii ) Cu pLi Q& p£ tn U) ] I C O W f f l U K U W H f dU M | | S I I U U C 0 < 2 3 u S U K 2 K 2

-179 -

> 4) 111 t>•HO moX) r-i r-i i-t

H H u 4 n) <Cn q n l b . B C G (•. b. C G C G G G

ii 3 c G 0 0 /LJL — - H -H o O O O 0•\r c E M * .-< v-V" • E E H -H E e H c H OH^P 3E 55 > - H - H ^ 7 a i m o o o o ) m o - H - H i-ir-i-H E - H O - H

*ni- a ft a fi a s ?• Mfpt-*-*! assasftftasaa?<*eaa*s 2 * * * * as *

rfcirfcj WMl

of

| Hi Hi

3 S "* "• m

2 | O to J |tf b, U 01 W E~* O O O O C L C ^ * — * M M i — i E - * !E iJ M E-» J Oi u l £ *£ 0) I ^ > Pi & U H O O O O ^ h)

I o co 2 O p X 1 2 M H J 2 I »J i-3 d cu H co m ft o« a Q> K oOf Q! | 0 - 2 M S U [ J L 1 Q O H U l O J U U M C O W N J W M W W m ICr:Ed H Qi ft H O O I I I »-3 M l D U £ p £ (4 t> p t |W I I I I I I 115 E-1 '

" i2 " I ^ I ^ I ^ I S w P H 3 P o a 2 £ S S o i 3 S 3 c n i "i i •' "i i g5 ~ I ~ I S • i i i S W I " Io J M u u w I I I J 1 lo. J J J J J J J J J J«! S g « K « P R H «! ?! R ?! H o-.W «

o"J

- 1 8 0 -

0)>

i-l -H i-lid i-» «J3 O 3

* » * % * % *

-rt NT H O O g

> -H ^ -H n a <Hl U U U U < 1 l ' l ' K M 3 g j

s s a 2 s s a p S« « « « J * 4 O D

asssg£gsfi

iJ 4J

« « O u JJM - r t U U V l

a

1op?)

T?

w

Hl-Jctrii|o ? ^ f D « H * * , a ^ ^ ^

|MIMI-K-RTJIfl?H ft r=)f l*MlPI«TTSir i. S 55*11.5 £SiO-^nfir*2 2

?- r^ rH rH P * 4* ^^ O 1/1 L/ LO H r~4 CN fN P tH Of Of CD C) Ol rH rH rH r4 r4 rH rH rH r~4 rH t/^ < rH t-H r^ ^D ^^

O O O O r H r H H O r H f — I r - t i H O O t - l r H t H O r H H r - l r H t - I O O O O O O O O O O t H i — l O O O r H r H

s a a a a s s s a a a a a s a a a a a a a a a a a s a a a a a a s a a a s s a a

CO

M M

u

hz s s 5 «.2 § P (« t

I.

S o t . l i . IKJ H Q . U . I I . Z I I . 2OUCQOOOOO« CO I I I I I ICOt* I 11 f*! P f*i Hi ("> f*l

. 1 .6. iJ b. M

o o u o. — — . I p! M Or

O I J H O I C O C O H J H

>.Q fe H y o! g g wU I I

I l « t>.i >< Cd IdU |S w S u l H i S 5 l» * g u « g « jj jS N M

H X H D i P i H C a C O C O C Q C C E - ' C - ' O E H O S l I t O S O i O i C O O ioi'o! > w 5. 5 5 iw I ico „

^ ^ I ^ I ^ I j , i , i , i , i J J , i , i , i , i i i ^ i ^ ^ ^ . ^ ^ j i i j ^ i ^ ^ i j ^ ^ N i * ^ ^ ! * . * ! 0 : ! 0 : ! 0 : !

! N N N N N CV) N

- 1 8 1 -

C (0 AJ 4) C C3 3 U m O OC C B) rH -H -H« flClflrHrHZ C C C SI H fa C »H rH

H -H -H fi C ~ ~ -H £ £ £' -H -H U O <l> -U * ^ £1 *-*. .

£ E Jl « > -H (0 H B irr~ ( d ( d i d < 0 O 4 J 4 - » f l j ' O f l id ** j\_ " ^ rtJL/iiiJL*^Op -H -H -H -H i ) ^ U -H -H -H -H U ^l" *H -r( N ™ \T rH -

c o c o n c o ^ f l j n j o o o D t Q rj. n <d o^ id oo P C / ^ I SL/ ftip

o» of

^^

ff'V

O Ui O

2 tn 2 H w a io a- l a a £ | m m I c o c ^ H Z C d

TP I § I aS^S 'S lg 's l ^^ i^H i^^ r iH s o. " f lu ^ § 1 1 ^ ^H H I I I D O ft K W U I Q ! H 3 ( 0 P I H H S U & H | I ) > 4 H ( 1 I H H H (I| I I I O & > >

I I U* X E C C O O l Z U b O O C l Hto I I I I I I I I I I I I< ( O ( O ( / ) C 0 C 0 h H H H H H H

GO GO 00 00 GO G\ CA 0^ O\ ^ O^ O\ O^ OA ^ 2 ^ ^ ^ O ^2 O ^? O ^^ rH rH rH rH rH rH rH fH rH rH (N CN fl CN (Na v t n c n < n o \ o \ m o A O \ a t a t c r t o i c ^ a t o o o o o o o o o o o o o o o o o o o o o o o o oH H H H r l H H H H H H H H H H « ( N ( N N M ( N ( S f N M N M O I N O I ( N N O ) n ( N N M M N ( N D

- 1 8 2 -

-ili

e COO

iJ3rH — -W -H V ft) CU

n « i o

&. e001 H

r H U r-tc i g n c c < o c c0 3 C O O 3 O OH O C H C H H3C

C Ha 01

> -

u u - H u^ 3 u 3< < H <

u n K(-• o. o,

nfl3uinii3inia a 3 < < a o Q < a o

n m a m s e c•O'O'O'O 00C C C C ^H -HO O O O U UCJ U U O -H -M« i i i ( o u uiiDiBai u i< I I -\XN\ p a a

• I *

nr o" K}- K}- Kb w TIT IO- KH ifl- w N" W I F W TS" nr iir inr nr nr ur w

<h rH rH rH rH O O O O O O O O O

ssssssssssss

I

^ H co > w g < S o

? 3 o S > H P Q IO O S: IS p « o i i |5 5 a fi 10.

O 01P H

a o. b J JsMM CO rt. O M O

o. o: B: O H ip: oM H H H J Z JhDiiV I | L D O M ^ O Z t " *

i I WO I HAHhUOlS i - " vv._CO CO Z

k O OMftU p ! ucotnoi H A I | |

10] w a i

A* J , J , I I I I I I I I I I I I I I I( - , ' H ' I S S S S | § S S p ! ? ' ? q t 0 ™ ™

CO I I I I £: > iI CO >

fflWwzZS!

' ' ' 1

- 1 8 3 -

i-> « m « m usO 3 3 3 3 3« C C C C C

oo - ^5 i x x i i g g g _-rt ••* • O £ 6 ' OJ -H -H O • ^i j j j U « .Q J3 U 0) J J J J U U -•H -H 0) CO r-t rH 41 > JJ H -«-l OQ «> <

1 , £8*13 33333********5 22**3 £*•);

Kb Kb Kb fa Hi Kb Kh Hi- -H 3T ft" Kj- fa 7P rjn Hi Us Hi

58°

1UCO

uCO

1

uCO

" • l

gOiO

2!

iS

il

CO

M

2

SET

9

• J

SG_

1J

J

§MX

J

J

oCO

o

g

P_F

M

Bi

'1

>-i :Oi 1H i

I I

| |

H

i. QIbl

SPE

aIco

1o»

TR

I

O L - .

! o o. o F ? !B'o.'a.'? z'? ss'S H H 6; H I^IH'I ,,I t i M H S S i J p Z H i J O O ^ c a p u U U O H U O O U U i S' ' ~ « t 0 5 P S < ' - i t J 2 o O O < O i 0 . 0 c o c n c n H c o Q b .

. . - . - . - . . . . _ , J > U Oi P > (0 B > 0 i B 0) M 01 I I I I I I I Ig -> > I l l l l l l l l l l l l l l l l l l l l l l l l l l l l c a c a c o c o c o c o u i o iC Q C O C Q C O C O C O C O C O C 0 C 0 C O C 0 C 0 C Q C 0 C 0 C 0 C O C O C O C O C O C 0 C 0 C 0 C Q C 0 C 0 C Q C Q C O C 0 2 2 S S S S S 2

f^\ rft CO \M4 P^ t^ t^ t^ D t^ w E t^ C*M 6 t^ v^ P^ v^ WM t^ 6 WM u CM C< C B4 P4 t^ C t^ ^ * iC iC iC tf iC iC iC

f n ^ i n « ) f ^ o o ( n O f H « f n ^ i n « ) p * < D a > O r H o i f n " * i n \ o r - c o o \ O f H C > » r i ^ t i / ) V D i > c o c h o ^ o j^O 0 O O D O 0 ^ ^ ^ ^ ^ ^ " ^ ^ ^ CO CO 0 ^ tD CO CO CO CO CO Cft ft ft j^ ^^\ U\ iJy Q\ h h ii i ^O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O i H H H(NnN«(NM(NKNNM(H{NOIOICM(N(N(NNfSN(Nr<(NN(NM(Nn(S«(NnO)(N(NfN(NOIO)

- 1 8 4 -

oo

I

2103 CTL_AFWS_TURB_PUMP RE(0,2104 CTL_AFWS_MOTOR PUMP RE(0,2105 CTL_AFWS_CONTROL_AUTO LO(0,2106 CTL_RPCS_CONTROL RE(1,2107 CTL_RPCS_SETPOINTS RE(1,2108 CTL_RPCS_CONTROL_AUTO LO(0,2109 CTL_RPCS_TRIP LO(0,2110 CTL_RPCS_PTRIP LO(0,2111 CTL_RPCS_TRIP_TIME RE(0,2112 CTL_TURB_SETBACK_CONTROL RE(1,2113 CTL_TURB_SETBACK_SETPOINTS RE(1,2114 CTL_TURB_SETBACK_AUTO LO(0,2115 CTL_TURB_RUNBACK_AUTO LO(0,2116 CTL_TURB_SETBACK_TRIP LO(0,2117 CTL_TURB_RUNBACK LO(0,2118 CTL~MISC~SETPOINTS REtl,2119 CTL_SET_TEMP RE(1,2120 CTL_SET_DELTEMP RE(1,2121 CTL_SET_DELTEMPD RE(1,2122 CTL~SET_PRES RE(1,2123 CTL_SET PRESD RE(1,2124 CTL_SET~NODIM RE(1,2125 CTL_SET_FLOW RE(1,2126 CTL~SET_FLOWD RE(1,2127 CTL SET PERTIME RE(1,2128 CTLjriME_CONSTANTS RE(1,2129 CTL_OUTPUT RE(1,2130 CTL_OOTPUT_INTERVAL IN(0,2131 CTL_OUTPUT_OPTION IN(0,2132 CTL_OUTPUT_COUNT IN(1,2133 CTL_OUTPUT_NTITLE IN(0,2134 CTL_GRAPH_INTERVAL IN(0,2135 CTL_GRAPH_FILE IN(0,2136 CTL_OUTPUT_LOOP IN(1,2137 CTL_OUTPUT_OPCL IN(0,2138 CTL_OUTPUT_3DMAP LO(0,2139 CTL_CONTROLLER RE(1,2140 ELLAST RE(1,2141 GROUT REtl,2142 MAL CTL LO(1,

4H switch O-off 1-on

Motor ^-f- =. switch O-off 1-on*)"§- *fl<H flag

Time step0))^

Flag

setback & runbacksetback & runback 31-f-setback^ ^>*^1<H FlaglrunbackSl )-§- )<H Flag

E} "4! setback -t]3lE}>J] runback •&$.

71 El-

1)1)1)15)5)1)1)1)1)

20)10)1)1)1)1)

200)20)20)20)20)20)60)10)10)20)150)16)

1) Line4) # ^1) #321 all-5- SIS.1) Graphics # ^1) Graphics fi le Graphnn. DAT°f| *\ Si nn2) a $ # 3 « Graphics* 44^- Loop -£

flag

-t]JL

7lEi- -ft-^7] El-7]El-

tt)-^-

l )600) afl<H7l200) "V^l^- time s200) ^^7} -i-^200) (1 <=H 1 5.-S-2}-

Map-fr

Auto ManualPartitionPartitionAuto ManualTrip NormalTrip Normal2(Bec.)PartitionPartitionAuto ManualAuto ManualTrip NormalTrue False

Del-'FPer-'FPsiaPer-psia

Lbm/secSec/lbmI/secondsi ( s e c )Partition

True FalsePartition

Malfunc Normal

ooCTv

I

2143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182

CTL_TIME_BLOCKDELTFDELTTBASETIMETIME SCALETSTOPMODEL QUEUETIMQUEMODQUEFLGQUECTL INITIAL CONDITIONSCTL_UNUSEDCLCONTCTL_SPAREINIT_FLAGINIT_ALLINIT OFF MODELSINIT_OFF_RCSINIT OFF CHTINIT_OFF_POWINIT OFF SGSINIT OFF CONINIT_COREINIT_ITERCTL ILEVELCTL_SG_ILEVELCTL PRZR_I LEVELMODEL_ERRORUSER_COMMONSCRAM DELAYMSLH_NO_MOISTURE_CARRYSGT INIT OPTIONINTERPOLATION_ERROR_0PTI0NSGS DEBUG SGSINISGS_DEBUG_SGHEATCTL~CORE_POWERASGS AREA DOWNCOMERSGS_ALPHA_DOWNCOMERSGS VEL31 MULT

RE(1,RE(0,RE(0,RE(0,RE(0,RE(0,RE(0,RE(1,RE(1,

LO(1,RE(1,RE(0,LO(0,RE(1,LO(1,LO(0,LO(1,LO(0,LO(0,LO(0,LO(0,LO(0,LO(0,IN(0,RE(1,RE (2,RE(0,IN(0,RE(1,RE(0,RE(0,RE(0,RE(0,RE(0,RE(0,RE(0,RE(1,RE(1,RE(1,

10) Time step 1<H1) Master time step

l) 7]-^- Time step1) Time step

•*«. T i m e step

SLS]

Partition

i(sec)i(sec)i(sec)Per unit

1) _ .

60) 2.-820) S.-820) 3.^20) 2.-S4) 2:7]1)1)

200) , _10) S.'S &7]3H- Flagl) -2.-S- Routined7)

- Time step

- on/off flagFlag

Partition

Active InactivePartition

Routine* flag True False

off flag

1)

1)

l)15)4)

1) -E.'fi1024)

1)1)

4)4) Downcomer4) Wilson ^

3:7) 1H-i7lS)-

PartitionTrue FalseTrue FalseTrue FalseTrue FalseTrue FalseTrue FalseTrue FalseTrue False

*•

Common* 1 * flag

Partitioni(sec)

Subroutine SGSINI°flSubroutine SGHEAT°fl

o] ifl

Downcomer

Downcomer

Megawatts

u e« 8

in

•go |

rs

Kb

I*

IP

§5to O

00 CO

I NEXT PAQIIt)l*fft BLANK

- 1 8 7 -

D. Data Dictionary

— 189—

NEXT PAGE(S)l«ft BLAH*

1044 ADMLHEATER1739 AFWS_ENTH1738 AFWS J L O W213 AREA3LEED_MIN198 AREA_CORE88 AREAJNJ_MULT1167 AREA_VALVE_PRZR1169 AREA_VALVE_QT1168 AREA_VALVE_SPRAY1166 AREA_VALVE_UHEAD400 ASEP.SG441 ASL_MAX462 ASL3HN383 ASP_TBL384 ASP_TBL_DSGN1385 ASP_TBL_DSGN2439 ATUBES_MAXEC_HT427 ATUBES_MAX_CS428 ATUBES_MAX_HT237 BAD235 BAN241 BAR239 BAT1031 BORON.CORE1036 BOUYANCY_CORE212 BURNOUT_HEATER238 BVD236 BVN242 BVR240 BVT203 CEAS_DIST643 CFTH_RCSAXIAL_Q1430 CHGS^ASPRAY_FLOW1425 CHGS_RCSJ3ORON1424 CHGS_RCS_JENTH1423 CHGS_RCS_FLOW1426 CHGS_RCS_HYD1427 CHGS_RCS_IOD1428 CHGS_RCS_PART1429 CHGS_RCSJCEN1 CHR_COMMON652 CHT_AVG_HEATJXUX661 CHT_AXLAL_EXT584 CHT3OILING647 CHT_CHF_MULT581 CHT_COMMON642 CHT_COND_FUEL31ULT657 CHT_COND_ROD618 CHT_COND_ROD_DUMMY611 CHT_COND_SAT_STM610 CHT_COND_STM

609 CHT_COND_WAT635 CHT_CONSTJLEV636 CHTJ)EBUG1256 CHT_DELT1259 CHT_DELTA_T598 CHT_DHF_DP599 CHT_DHG_DP601 CHT_DTSATJDH600 CHT_DTSATJDP605 CHT_DVSATGJ)H603 CHT_DVSATGJDP604 CHT_DVSATL_DH602 CHTJ5VSATLJ5P585 CHTJENTH_COOL593 CHT_ENTH_SAT_LIQ586 CHT_ENTH_SAT_UQ_M1594 CHT_ENTH_SAT_STM1257 CHT_FDELT633 CHT_FLASH_RATE_LAST619 CHT.FLOW587 CHTJFLOW_STMJ3O623 CHT_FLUX_CRIT665 CHT.FLXJDNB637 CHT_FLX_DNBJDUMMY659 CHT_FRAC_HT_GEN645 CHT_FRAC_HT_GEN_DUMMY1258 CHTJTIME588 CHT_GAP_COND644 CHT_GAP_HCAP1251 CHT_HEAT_FRAC650 CHT_HEATJLIQ651 CHT_HEAT_STM664 CHT_HTCOF_FB629 CHT_HTCOFJFB_DUMMY630 CHT_HTCOFJNB631 CHT_HTCOF_ST632 CHT_HTCOF_SUB658 CHTJiT_CAP_ROD622 CHT_HT_CAP_ROD_DUMMY638 CHT_HT_FLUX589 CHT_HT_GEN_ZR_WAT1250 CHTJLSUPERJrfULT590 CHT_IHT653 CHT_INITIAL_CONDITIONS641 CHTJNPUTS634 CHT_LEVL3ffiULAST649 CHT_MOD_OUTPUTS15 CHT_NNODJBO16 CHTJWOD_FC17 CHTJJREGIONS_RAD648 CHTJWMJJNPROP

- 1 9 1 -

578 CHT_PLT_EXTENSION614 CHT_PRAN_SAT_STM613 CHT_PRAN_STM612 CHTJ>RAN_WAT620 CHT_PRESS646 CHTJPRESS_SUPERCRIT662 CHT_QUAL624 CHT_QUAL_DUMMY655 CHT_RADIAL_EXT582 CHT.SNAP617 CHT_SPEC_HT_SAT_STM616 CHT_SPEC_HT_STM615 CHT_SPEC_HT_WAT583 CHT_STATE1405 CHT_SVOLCOOL_JAV595 CHT_SVOL_SATJLIQ596 CHT_SVOL_SAT_STM1404 CHTJTCOOL^AV591 CHT_TEMP_COOL628 CHT_TEMP_CRIT663 CHT_TEMP_CROSS627 CHT_TEMP_CROSS_DUMMY660 CHT_TEMP_FUEL_AV666 CHT_TEMPJJB_FC639 CHT_TEMP_NB_FC_DUMMY656 CHT_TEMP_ROD592 CHT_TEMP_ROD_DUMMY597 CHT_TEMP_SAT640 CHT_TEMP_SURF625 CHT_TERM626 CHT.TERM21274 CHT_TERM_MAX1255 CHT_TIME_SCALE621 CHT_TIME_STPJWM608 CHT_VISCOS_SAT_STM607 CHT_VISCOS_STM606 CHT_VISCOS_WAT2156 CLCONT1100 CONC_SOLU_QT889 CONILBOIL892 CONILBUB891 COND_INJ890 COND.SURF888 COND_TOT1858 CONTROL_COMMON1481 CONT_PRES1800 CONT_SG_TEMP329 CONV_GP\LAREA1136 COREJORON_REL196 CORELBOT2184 CORELCOMMON

14 CORE_HT_AREA18 CORELHYELDIA1137 CORE_HYD_REL1138 CORE_IOD_REL1139 CORE_PART_REL579 CORE_RAD_OUT19 CX)RE_RAD_OUTJDUMMY1163 CORE_SURFJU*EA_LAST197 CORE_TOP1140 COREJ(EN_REL573 CTLMAX2095 CTLJ^WS.CONTROL514 CTLJVFWS_CONTROLLERS2105 CTL_AFWS_CONTROL_AUTO2101 CTL_AFWS_DELAY2102 CTL_AFWS_FLOW_MULT2104 CTL_AFWS_MOTOR_PUMP2096 CTL_AFWS_SETPOINTS2100 CTL_AFWS_SGDP_HIGH2098 CTL_AFWS_SG_XEVEL_HIGH2097 CTL_AFWS_SGO£VEL_LOW2099 CTL_AFWS_TOT_FLOW2103 CTL_AFWS_TURB_PUMP2046 CTL_ATMJDUMP_CONTROL2049 CTL_ATM_DUMP_CONTROL_AUTO540 CTL JVTM_DUMP_NUM541 CTL_ATMJDUMP_PATH2047 CTL_ATM_DUMP_SETPOINTS2048 CTL_ATM_DUMP_SPOINT1917 CTL_CEAPOSITION_FRAC1926 CTL_CEAJ^CCUM1924 CTL_CEAJUJTO1911 CTL_CEA_COMMON515 CTL_CEA_CONTROLLER1915 CTL_CEA_GAIN_EXP1918 CTL_CEAJ.AST_TIME1919 CTL_CEA_MAX1920 CTL_CEA3«N1925 CTL.CEAJ'ERFECT1921 CTL_CEA_POS1912 CTL_CEA_SETPOINTS1922 CTL_CEA_SPEED1927 CTL_CEA_SPEED_LAST1923 CTL_CEA_STEP1914 CTL_CEA_TREF_FULL1913 CTL_CEA_TREF_NO1916 CTL_CEA_TURBLD_GAIN1937 CTL_CHARGING_SETPOINTS516 CTL_CHGS_CX)NTROLLERS1954 CTL_CHV_FRAC1955 CTL_CHV_RAREA

- 1 9 2 -

1962 CTL_CH_FLOW1964 CTL_CH_H1950 CTL_CH_PUMP_AUTO1949 CTL_CHJ>UMP_FRAC1951 CTL_CH_PUMP_ON1942 CTL_CH_PUMP_W_RATED1963 CTL_CH_T563 CTL_CONSTS2139 CTL_CONTROLLER513 CTL_CONTROLLER_NUMBERS1860 CTL_CORE_CONTROL1907 CTL_C»RE_CONTROLJVUTO1876 CTL_CORE_HLCONT_PRES_TRIP1899 CTL_CORE_HLCONT_PRES_TR1P_OR1862 CTL_CORE_HLPOWER_FRAC_TRIP1885 CTL_CORE_HLPOWERJHAC_TRIP_OR1879 CTL_CORE_HI_POWER_SUR J Y P S1863 CTL_CORE_HI_POWER_SUR_TRIP1886 CTL_CORE_HLPOWER_SUR_TRIP_OR1866 CTL_CORE_HI_PRZR_LEVEL_TRIP1889 CTL_CORE_HLPRZRJLEVEL_TRIP_OR1865 CTL_CORE_HI_PRZR_PRES_TRIP1888 CTL_CORE_HIJ>RZR_PRES_TRIP_OR1873 CTL_CORE_HI_SG_LEVEL_TRIP1896 CTL_CORE_HI_SG_XEVEL_TRIP_OR1864 CTL_CORE_LOW_PRZR_PRES_TRIP1887 CTL_CORE_LOWJ>RZRJ3RES_TRIP_OR1872 CTL_COREJLOW_SGJLEVEL_TRIP1895 CTL_CORE_LOW_SG_LEVEL_TRIP_OR1871 CTL_CORE_XOW_SG_PRES_TRIP

1894 CTL_CORE_LOW_SG_PRES_TRIP_OR1868 CTL_CORE_OVER_POWER_MRGN_TRIP1891 CTL_CORE_OVER_POWERJtfRGN_TRIP_OR1867 CTL_CORE_OVER_TEMP_MRGN_TRIP1890 CTL_CORE_OVER_TEMP_MRGN_TRIP_OR1902 CTL_CORE_POWER2179 CTL_CORE_POWERA1904 CTL_CORE_POWER_FRACTION1905 CTL_CORE_POWER_FRAC_XAST1880 CTL_CORE_JPOWER_RATIO1910 CTL_CORE_PTRIP1869 CTL_CORE_RCSFLOW_FRAC_TRIP1892 CTL_CORE_RCSFLOW_FRAC_TRIP_OR1861 CTL_CORE_SETPODMTS_FOR_TRIP1870 CTL_CORE_SIAS_TRIP1893 CTL_CORE_SIAS_TRIP_OR1908 CTL_CORE_TRIP534 CTL_CORE_TRIP_CONTROLLER1884 CTL_CORE_TRIP_OR1909 CTL_CORE_TRIP_SIG1882 CTL_CORE_TURB_TRIP_BYPS

1875 CTL_CORE_TURB_TRIP_DELAY1898 CTL_CORE_TXJRB_TRIP_DELAY_OR1883 CTL_CORE_USER_DEFINED_BYPS1877 CTL_CORE_USER_DEFINED_TRIP1900 CTL_CX)RE_USER_DEFINED_TRIP_OR1938 CTL_CVCS_CH1_SPOINT1939 CTL_CVCS_CH2_SPOINT1940 CTL_CVCS_CH3_SPOINT1941 CTL_CVCS_CH4_SPOINT1928 CTL_CVCS_COMMON1943 CTL_CVCS_CONTROL1936 CTL_CVCSJL.DN_W_GPM1935 CTL_CVCS_LDN^ZSPOINT1953 CTL_CVCS_RCS_VALVES1956 CTL_CVCS_TH_VARIABLES562 CTLJDBG

2080 CTL_FWS_AUTO2066 CTL_FWS_CONTROL517 CTL_FWS_CONTROLLERS2081 CTL_FWS_CONTROL_AUTO518 CTLJFWS^ECON.CONTROLLERS2091 CTL_FWS_ECON_POS2088 CTL_FWSJECON_SIG2083 CTL_FWSJECON_VALVE_AUTO2076 CTL_FWS_H2077 CTL_FWS_H31AX2078 CTL_FWS_HL.TC2073 CTL_FWS_MAXL.FLOW2090 CTL_FWS_POS2084 CTL_FWS_PUMP_AUTO519 CTLJ'WS_PUMP_CONTROLLERS2067 CTL_FWS_SETPOINTS2070 CTL_FWS_SGJLEVEL_HIGH2068 CTL_FWS_SGJJ:VELJLOAD2069 CTL_FWS_SG_I-EVEL_LOW2087 CTL_FWS_SIG2093 CTL_FWS_SPEED_FRAC2094 CTL_FWS_SPEED_MAX2074 CTL_FWS_SPEED_MULT2092 CTL_FWS_SPEED_SIG2079 CTL_FWS_TRIP2085 CTL_FWS_TRIP_AUTO520 CTL_FWS_TRIP_CONTROLLER2075 CTL_FWS_TRIP_SP2072 CTL_FWS_TURB_TRIP_DELAY2071 CTL_FWS_TURB_TRIP_FRAC2082 CTL_FWS_VALVE_AUTO2089 CTL_FWS_VALVE_POS2086 CTL_FWS_VALVE_SIG2135 CTL_GRAPH_FILE2134 CTL_GRAPHJNTERVAL

- 1 9 3 -

565 CTL_HALF1957 CTL_HA_REG_HEATJC1965 CTLJHEATERS.CONTROL1977 CTL_HEATERS_CONTROL_AUTO521 CTLJiEATER_CONTROLLERS1999 CTL_HPSI_FLOW_TABLE1998 CTL_HPSI_NPOINTS_TAB2000 CTL_HPSI_PRES_TABLE2001 CTL_HPSI_JPUMP_NUM2002 CTL_HPSI_SPLIT2168 CTLJLEVEL558 CTL_INIT2154 CTL_INrriAL_CONDITIONS1952 CTLO.DN_j\UTO1958 CTL_1DN_FLOW1960 CTL_LDN_H1959 CTLJJDN_T522 CTLJ.ETDOWN.CONTROLLERS1961 CTL_XETDOWN_FRAC1934 CTL_LETDOWN_SETPOINTS1968 CTL_LEVEL_HEATER_OFF568 CTLJJMITS2004 CTL_LPSI_FLOW_TABLE2003 CTL_LPSI_NPOINTS_TAB2005 CTLJ.PSI_PRES_TABLE2006 CTLJLPSI_PUMP_NUM2007 CTL_LPSI_SPLIT2118 CTL_MISC_SETPOINTS2039 CTL_MSIS_CONTROL2044 CTL_MSIS_CONTROLJUJTO2042 CTL_MSIS_CONT_PRES_TRIP2040 CTL3iSIS_SETPOINTS2041 CTL_MSIS_SG_PRES_TRIP2043 CTL_MSIS_SG_SLFLOW_TRIP2045 CTL_MSIS_TRIP524 CTLJ4SIS_TRIP_CONTROLLER523 CTLJtfSIV_CONTROLLERS525 CTL_MSLH_CONTROLLERS567 CTL31_ONE1906 CTL_NUM_RPS566 CTL_ONE2129 CTL_OUTPUT2138 CTL_OUTPUT_3DMAP2132 CTL_OUTPUT_COUNT2130 CTL_OUTPUTJNTERVAL2136 CTL_OUTPUTJLOOP2133 CTL_OUTPUT_NTITLE2137 CTL_OUTPUT_OPCL2131 CTL_OUTPUT_OPTION1989 CTL_PORV_AUTO526 CTL_PORV_CONTROLLERS

1985 CTL_PORV_j>SET535 CTL_POWER_CUTBACICCONTROLLER1983 CTL_PRESSURIZER_RELIEF1971 CTL_PRES_BHEATER_OFF1972 CTL_PRES3HEATER_ON1969 CTL_PRES_PHEATER_OFF1970 CTL_PRES_PHEATER_ON1967 CTL_PRZR_BHLEVEL_SPOINT1976 CTL_PRZR_HEATERS_VOLT1966 CTL_PRZR_HEATER_SETPOINTS2170 CTL_PRZR_ILEVEL1945 CTL_PRZRJLEVEL_ERROR1946 CTL_PRZRJLEVEL_INST1929 CTLJ)RZRJLEVEL_SETPOINTS1932 CTL_PRZRJLIQ_SPVOL_REF538 CTLJPRZRJLVL_ERR_CONTROLLER1931 CTL_PRZR_PLEVEL1930 CTL_PRZR_PLEVEL_TEMP1944 CTL_PRZR_PROG_LEVEL539 CTL_PRZRJ)ROGJ.VL_CONTROLLER1973 CTL_PRZR_REFJ3RES1984 CTL_PRZR_RELIEF_SETPOINTS1978 CTLJ'RZR.SPRAY.CONTROL1982 CTL_PRZR_SPRAY_CONTROLJVUTO1981 CTL_PRZR_SPRAY_PRES_OFF1980 CTL_PRZR_SPRAYJ>RES_ON1979 CTL_PRZR_SPRAY_SETPOINTS1933 CTL_PRZR_STM_SPVOL_REF527 CTL_PSV_CONTROLLERS1988 CTLJJSV_PSET_BLDN1987 CTL_PSV_PSET_CLOSE1986 CTL_PSV_PSET_OPEN1903 CTL_QCORE_TRIP1878 CTL_RCP_FLOW_STPOINT2106 CTL_RPCS_CONTROL2108 CTL_RPCS_CONTROL_AUTO2110 CTL_RPCSJJTRIP2107 CTL_RPCS_SETPOINTS2109 CTLJIPCS_TRIP2111 CTL_RPCS_TRIP_TIME528 CTL_RPS_CONTROLLERS2120 CTL_SET_DELTEMP2121 CTL_SET_DELTEMPD2125 CTL_SET_FLOW2126 CTL_SET_PLOWD2124 CTL_SET_NODIM2127 CTL_SET_J>ERTIME2122 CTL_SET_PRES2123 CTL_SET_PRESD2119 CTL_SET_TEMP2065 CTL_SGSVJVSET_OPEN

- 1 9 4 -

2064 CTL_SGSV_PSET_CLOSE2063 CTL_SGSV_PSET_FULL2062 CTL_SGSVJPSET_OPEN2169 CTL_SG_ILEVEL2060 CTL_SG_SAFETIES2061 CTL_SG_SV_SETPOINTS2010 CTL_SIAS_CONTROL_AUTO1994 CTL_SIAS_HI_CONT_PRES1996 CTL_SIAS_LOW_SLJPRES1995 CTL_SIAS_XOW_TAVG1992 CTL_SIAS_PRZR_PRES_LOW2012 CTL_SIAS_PTRIP1991 CTL_SIAS_SETPOINTS1993 CTL_SIAS_SL_SH_DP2008 CTL_SIAS_TIME2011 CTL_SIAS_TRIP529 CTL_SIAS_TRIP_CONTROLLER1990 CTL_SIS_COMMON1997 CTL_SIS_CONTROL2009 CTL_SIS_DELAY2013 CTL_SIS_FLOW2014 CTL_SIS_HLPSUC2015 CTL_SIS_HLPSLH2016 CTL_SIS_SIT_BC2017 CTL_SIS_SIT_H2019 CTL_SIT_ELEV_PRES2020 CTL_SIT_JLOW_COEFF2021 CTL_SIT_GAS_CONST2022 CTL_SIT_GAS_PRES2023 CTL_SIT_GAS_VOLUME2024 CTL_SIT_ISO_VALVE2025 CTL_SIT_XIQ_SPVOL2026 CTL_SITJJQ_VOLUME2018 CTL_SIT_NUM2157 CTL_SPARE530 CTL_SPRAY_CONTROLLERS1881 CTL_STEAM_FEED_MISMATCH_BYPS1874 CTL_STEAM_FEED_MISMATCH_TRIP1897 CTL_STEAMJFEEDJrfISMATCH_TRIP_OR542 CTL_TAV_NUM543 CTL_TAV_PATH2143 CTL_TIME_BLOCK2128 CTL_TIME_CONSTANTS1901 CTL_TIME_CORE_TRIP1859 CTL_TIME_STEP2030 CTL_TURB_AOUT_TC2050 CTL_TURB3YPASS_CONTROL2069 CTL_TURB3YPASS_CONTROL^AUTO544 CTL_TURBJYPASSJWM545 CTL_TURB_3YPASS_PATH2051 CTL_TURB_BYPASS_SETPOINTS

2027 CTL_TXJRB_CONTROL2034 CTL_TURB_CONTROL^AUTO2035 CTL_TURB_CONTROLJLOAD2032 CTL_TURB_DEMAND2053 CTL_TURB_DUMP_DELP2058 CTL_TURB_DUMP_MODE2057 CTL_TURB_DUMP_NCLOSE2055 CTL_TURBJDUMP_NOPEN2052 CTL_TURB_DUMP_OPEN2066 CTL_TURB JDUMP_QCLOSE

2054 CTL_TURB_DUMP_QOPEN2038 CTL_TURB_PTRIP2117 CTL_TURB_RUNBACK2115 CTL_TURB_RUNBACICAUTO537 CTL_TURB_RUNBACKWCONTROLLER2114 CTL_TURB_SETBACieAUTO

2112 CTL_TURB_SETBACKXONTROL536 CTL_TURB_SETBACK.CONTROLLER2113 CTL_TURB_SETBACK.SETPOINTS2116 CTL_TURB_SETBACKJTRIP2028 CTL_TURB_SETPOINTS2033 CTL_TURB_STEAM_RATED2036 CTL_TURB_TRIP2037 CTL_TURB_TRIP_AUTO533 CTL_TURB_TRIP_CONTROLLERS2031 CTL_TURB_TRIP_TIME2029 CTL_TURB_TRIP_VALVE_TIME1947 CTL_TJVVG531 CTL_T_AVG_CONTROLLER1948 CTL_T_REF532 CTL_T_REF_CONTROLLER2155 CTL_UNUSED1975 CTL_VOLT3ACK1974 CTL_VOLT_PROP576 CTL_WARN564 CTL_ZERO274 CURRENT_TAB546 DBADD547 VBOOU2144 DELT223 DESIGN_FLOW_PORV224 DESIGN_FLOW_SAFETY1225 DESIGN_FLOW_SAFETY2877 DHDM876 DHDU880 DHFJDP881 DHGJ5P1484 DMW_QT_ENTH1483 DMW_QT_FLOW872 DPDM_LIQ873 DPDM.STM

- 1 9 5 -

871 DPDM_TOT875 DPDILSTM874 DPDUJTOT1008 DP_ACTUAL1009 DP_CHECK1003 DP_£LEV1006 DP_EXT1002 DP_FRIC1115 DP.GLOB1005 DPJHEAD1004 DPJX>SS1037 DP_LOSS_UPLEN1001 DP_MOM1083 DP_NON_UHEAD1025 DP_PUMP1007 DP.TOT886 DRFTJBUB273 DTDW_TAB879 DVDH_TOT878 DVDP.TOT882 DVF_DP883 DVG_DP548 ELEMS424 ELEV_TUBE_SHEET549 ELIN2140 ELLAST569 ELMAX550 ELTYPE1106 ENGY_GLOB1046 ENGY_HEATER1093 ENGY_QT828 ENGY_STM1142 ENGY_STM_XAST827 ENGY_TOT1143 ENGY_TOT_XAST1105 ENTHLGLOB836 ENTH_LIQ1149 ENTHIKLXAST839 ENTH_LIQ_SAT1110 ENTKXIQ_SAT_GLOB1151 ENTHJJCLSATJLAST838 ENTHLMK1092 ENTH_QT1039 ENTH_QUAD_CORE837 ENTH_STM1150 ENTH_STM_LAST840 ENTH_STM_SAT1111 ENTH.STMLSAT_GLOB835 ENTH_TOT1079 ENTH_UHEAD_TOP1011 ESUBK

401 EVAP_SS_j\LPHA204 EXCOREJOT797 EXCORE.OFFSET799 EXCORE_OFFSET_AV796 EXCORE_POWER795 EXCORE_POWERD798 EXCORE_POWER_AV800 EXCORE_TAU205 EXCORE_TOP1155 FATAL_INPUT_ERROR1156 FATAL_OUTPUTJERROR575 FCTMAX2145 FDELT1839 FHINIT1172 FLAG_LOCA1171 FLAG_RODEJ2153 FLGQUE1030 FLOW.COREJN259 FRAC_HD_TABL234 FRAC_TABL1012 FSUBK20 FUEL_DENSITY468 FWLB_AREA1725 FWLB_ECONUENTH1719 FWLBJECON_F1722 FWLB_ECON_FLOW1731 FWLBJCONJO1734 FWLB_ECON_PT1728 FWLBj:CON_QUAL1737 FWLB_ECON_XE

1724 FWLBJ:NTH

1718 FWLB_F1721 FWLBJFLOW1723 FWLB_H1711 FWLBJN1730 FWLBJO1729 FWLBJODINE1717 FWLBJLOCATION1714 FWLB_OUT1732 FWLB_PART1733 FWLBJ'T1727 FWLB_QUAL1726 FWLB_QUALITY1720 FWLB_W1736 FWLBJCE1735 FWLBJ(ENON1696 FWS_CON_IO1697 FWS_CON_PT1698 FWS_CONJ£E496 FWSJDIAM496 FWS_ECONJ5IAM

- 1 9 6 -

1690 FWSJECON_FLOW478 FWS_ECON_JUNCTION490 FWS^ECONJJNE.OOEFF1695 FWS_£CONJJNE_H1704 FWSJEXX)N_NOZj:NTH1701 FWS_ECON_JJOZ_FLOW1707 FWS_EOON_NOZ_QUAL1710 FWS_ECON_NOZ_T487 FWS_ECON_VALVE_COEFF1684 FWS_ECON_VALVE_P493 FWS_ECON_VOL1692 FWS_ENTH1845 FWS_ENTH_TABLE1689FWS_FLOW466 FWS_FLOW1001691 FWS_FLOW_TOT1846 FWS_HTABLE_ENTH1847 FWS_HTABLE_LOAD1848 FWS _HTABLE_NUM477 FWSJUNCTION1681 FWSJUNCTION_P489 FWS_LINE_COEFF488 FWSJJNE_COEFFS494 FWS_LINE_DIAMS1693 FWS JJNE_J:NTHALPIES1688 FWSJLINE_FLOWS1694 FWS_LINE_H476 FWSJL1NEJUNCTION491 F W S J J N E . V O L U M E S1702 FWS_NOZZLE_ENTHALPY1699 FWS_NOZZLE_FLOW1705 FWS_NOZZLE_QUALITY1708 FWS_NOZZLE_TEMP1703 FWS J^OZ_ENTH1700 FWS_NOZ_FLOW469 FWS_NOZ_HEIGHT1706 FWS_NOZ_QUAL1709 FWS_NOZ_T484 FWS_JPUMP_COEFF1687 FWS_PUMP_FLOW482 FWS_PUMP_FLOW_NPOINTS479 FWSJPUMP_FLOW_TABLE1686 FWSJPUMP_HEAD480 FWS_PUMP_HEAD_TABLE475 FWS_PUMPJUNCTION1680 FWS_PUMP_P1679 FWS_PUMPJW1685 FWS_PUMP_SPEED483 FWS_PUMP_SPEED_NPOINTS481 FWS_PUMP_SPEED_TABLE486 FWS_VALVE_COEFF

485 FWS_VALVE_COEFFS1683 FWS_VALVE_P1682 FWS_VALVE_PRESSURES492 FWS_VOL465 FW_COEFF551 GROUPS2141 GROUT572 GRPMAX1487 GWS_QT_FLOW1486 GWS_QT_PRES245 HAD253 HADC243 HAN251 HANC249 HAR257 HARC247 HAT255 HATC199 HA_CEA_CORE209 HA_UHEAD_CORE442 HA_WALLLMSLH499 HA_WALLI_SGBD443 HA_WALLOJtfSLH500 HA_WALLO_SGBD214 HCAP_HEATER260 HD_DEG_TABL1024 HEAD_PUMP862 HEAT_COND857 HEAT_CONT1029 HEAT_CORE1045 HEATJXEC858 HEAT_EXT1048 HEAT_HEATER861 HEAT_LIQ1027 HEAT_LIQ_CORE1049 HEAT_PRZR1022 HEAT_PUMP1019 HEAT_SG860 HEAT_STM1028 HEAT_STM_CORE859 HEAT_TOT856 HEAT_WALL229 HEIGHT_QT386 HSP_TBL387 HSP_TBL_DSGN1388 HSP_TBL_DSGN2393 HT3_TBL394 HT3_TBL_DSGN1395 HT3_TBL_DSGN2470 HTNOZ471 HTNOZj:CON

- 1 9 7 -

472 HTNOZ_EFW246 HVD254 HVDC244 HVN252 HVNC250 HVR258 HVRC248 HVT256 HVTC

2159 INIT^ALL2166 INIT_CORE2158 INIT_FLAG2167 INITJTER2162 INIT_OFF_CHT2165 INIT_OFF_CON2160 IN1T_OFF31ODELS2163 INIT_OFF_POW2161 INIT_OFF_RCS2164 INIT_OFF_SGS571 INMAX559 INPED577 INPEDJTLE561 INPED_PAGE560 INPED.SEQNCE2176 INTERPOLATION_JERROR_OPTION762 KFRAIN195 KLOSS_UPLEN_NEG194 KLOSS_UPLEN_POS763 KSHAPIN1431 LDNS_RCS_FLOW865 LEVLJJQ1032 LEVL_LIQ_VESSEL864 LEVL_MDC1034 LEVL_MK_CORE1033 LEVL_MDLVESSEL1050 LEVL_PRZR_DP219 LEVL_PRZR_RTD1094 LEVL_QT220 LEVL_REF_BOT221 LEVL_REF_TOP222 LEVLJffiLIEF1173 LOCA3LOWDOWN570 LSTMAX2142 MAL_CTL1713 MAL_FWLB_ECONJN1716 MAL_FWLBJSCON_OUT1712 MAL_FWLB_IN1715 MAL_FWLB_OUT1461 MAL^LB-LOCA1633 MAL_MSLBJN1610 MAL_MSLB_OUT

1478 MAL_RCP_HIVIB1477 MAL_RCP_XOCKED1476 MAL_RCP_SHAFTBREAK1464 MAL_RCS_VALVE1479 MAL_ROD_CORE1463 MAL_ROD_EJECT1460 MAL_SB_LOCA1462 MAL.SGTR1470 MAL_VLV_PRZR_CONT1469 MAL_VLV_PRZR_MOV1472 MAL_VLV_PRZR_MSPRAY1467 MAL_VLV_PRZR_PORV1471 MAL_VLV_PRZR_QT1468 MAL_VLV_PRZR_SAFETY1474 MAL_VLV_QT_CONT1473 MAL_VLV_QT_GWS1475 MAL_VLV_QT_NSUPPLY1465 MAL_VLV_UHEAD_CONT1466 MAL_VLV_UHEAD_QT206 MAP_EXCORE833 MASSJ3UB1146 MASS_BUB_LAST1159 MASS_BUB_PRED899 MASS3UB_SECT1096 MASS_GAS_QT1104 MASS_GLOB831 MASSJJQ1144 MASS_LIQ_LAST1081 MASSJJON_UHEAD230 MASS_QT_MAX832 MASS_STM1145 MASS_STM_LAST830 MASS_TOT1147 MASS_TOTJAST1095 MASS_WAT_QT580 MATTYP444 MCP.WALLJWSLH501 MCP_WALL_SGBD2171 MODEL_ERROR813 MODEL_OFF2150 MODEL_QUEUE2152 MODQUE31 MODJNIT816 MOD_OFF_CHT820 MOD_OFF_ONEDT819 MOD_OFF_POWER818 MOD_OFF_QT814 MOD_OFF_RCP815 MOD_OFF_RCPOIL817 MOD_OFF_RCS1798 MOD_OFF_SGBD

- 1 9 8 -

450 MSLB_AREA1634 MSLBJNJXOW1611 MSLB_OUT_FLOW1647 MSLH.AOUT1648 MSLH.AOUT.jVrM1649 MSLH_AOUT_COND1650 MSLH_AOUT_CONT1651 MSLH_AOUT_TURB1612 MSLH.CONJO1613 MSLH_CON_PT1614 MSLH_CONJ£E1639 MSLH_CSL1828 MSLH_DPMIN_MULT1615 MSLHJDVDH1616 MSLH-DVDP1659 MSLHLENTH-ATM1664 MSLH_ENTH_COND1669 MSLH_ENTH_CONT1674 MSLH_ENTH_TURB1658 MSLH_FLOW_ATM1663 MSLH_FLOW_COND1668 MSLH_FLOW_CONT1673 MSLH_FLOW_TURB1801 MSLHJFTIME_MAX1617 MSLH_H1618 MSLH-HF1619 MSLH_HG1635 MSLH.HSL1660 MSLH_IO_ATM1665 MSLH_IO_COND1670 MSLHJCLCONT1675 MSLHJO.TURB1638 MSLHJSL1620 MSLH311621 MSLH_ML451 MSLH_MSIV_AMAX452 MSLH_MSIV_BYPASS_AMAX1643 MSLH_MSIV_BYPASS_POS1641 MSLH_MSIV_POS1642 MSLHJtfSIV.SIG2174 MSLH_NO_MOISTURE_CARRY1657 MSLH_OUTFLOW1622 MSLHJP1636 MSLH_PSL1661 MSLH_PT^VTM1666 MSLH_PT_COND1671 MSLH_PT_CONT1676 MSLH_PT_TURB1623 MSLH_Q1624 M S L H _ Q L A T M

1609 MSLH_STATE

1625 MSLH_SV1626 MSLH_SVF1627 MSLH_SVG1628 MSLH_T458 MSLR.TATM1637 MSLH_TSL1629 MSLH.TWALL453 MSLH_VALVE^AMAX455 MSLH_VALVEJX1T454 MSLH_VALVE_INLET456 MSLH_VALVELNUM1644 MSLH_VALVE_JOS1645 MSLH_VALVE_SIG1630 MSLH_WIN1652 MSLH_WOUT1653 MSLH_WOUTJVTM1654 MSLH_WOUT_COND1655 MSLH_WOUT_CONT1656 MSLH_WOUT_TURB1631 MSLHJC1662 MSLHJCEJVTM1667 MSLHJ£E_COND1672 MSLHJ(E_CONT1677 MSLHJCELTURB1640 MSLHJCSL894 NE_CANDIDATE

70 NODE_ANNUL73 NODE_AREA71 NODE_CEASH56 NODE_CL57 NODE_CL158 NODE_CL259 NODE_CL360 NODE_CL467 NODE_CORE74 NODE_HEIGHT43 NODE_HL144 NODE_HL245 NODE_HL346 NODE_HL468 NODEJ>RZR47 NODE_SG49 NODE.SG1C48 NODE_SG1H62 NODE.SG1P51 NODE_SG2C50 NODE.SG2H63 NODE_SG2P53 NODE_SG3C52 NODELSG3H64 NODE.SG3P

- 1 9 9 -

55 NODE.SG4C54 NODE_SG4H65 NODE_SG4P69 NODE_UHEAD1084 NONC_DILU_RATE895 NON_EQ_STATE552 NOTAB270 NPTS_TAB26 NUM3ACKJffiATERS202 NUM_CEAS27 NUM_CHGS_PUMPS40 NUM_CL_NODES474 NUM_FWS_JUNCTIONS473 NUMJWS_PUMPS211 NUM_HEATERS38 NUM_HL_NODES35 NUMJSfODES36 NUM_NODES_SEC105 NUM_PATHS108 NUM_PATHS_CL102 NUM_PATHSJEXT107 NUM_PATHS_HL104 NUM_PATHS_INT103 NUM_PATHSJ,EAK101 NUM_PATHS_MOM109 NUM_PATHS_NONM267 NUM.POLES25 NUWLPROP_HEATERS233 NUM_PUMPS23 NUM_SG37 NUM_SG_NODES463 NUM_SL39 NUM_SL3fODES106 NUM_SML_BRK90 N_j\REA_SECT75 N 3 O T193 N_BOT_UPLEN76 N.GEOM83 N_HEAT_CAP82 N_HEATJCFER3OT81 NJffiATJffERXONT79 N_HEAT_XFERJJQ80 N_HEATJ(FER_STM91 N_HEIGHT_SECT896 N_HETERO77 N_SECTIONS192 N_TOP_UPLEN84 NJCFER3OIL85 NJCFERJNJ124 PATH_ANNUL_CORE200 PATH_CEA_LOW

201 PATH_CEA_UP130 PATH_CL125 PATH_CORE_UHEAD129 PATH_HL182 PATH_KLOSSJ«JEG181 PATHLKLOSS_POS127 P A T R X B J J X A184 PATfrXEN_DIAM128 PATH_PUMP131 PATHLSG126 PATH_SPRAY123 PATH_SURGE180 PATH_TLOA132 PATH_UCEA403 PERIM6 PLANT_DATA_DATE3 PLANT_DATA_FILE_NAME2 PLANT_DATAJ^ABEL5 PLANT_DATA_TIME4 PLANT_DATA_TITLE13 PLT_CHT512 PLT_CTL12 PLT_DATA21 PLT_RCS22 PLT_RCSJ)ESIGN33 PLT_RCS_NODALIZATION32 PLT_RCS3fODE98 PLT_RCS_PATH210 PLT_RCS_PRZR226 PLT_RCS_QT232 PLT_RCS_RCP24 PLT_RCS_TYPE186 PLT_RCS_VES330 PLT_RCS_VLVAREA380 PLT_SGS464 PLT_SGS_FWS426 PLT_SGS_HEAT381 PLT_SGS_INTERNAL440 PLT_SGS_MSLH497 PLT_SGS_SGBD336 PLT_VLVAREA_PRZR_CONT335 PLT_VLVAREA_PRZR_MOV338 PLT_VLVAREA_PRZR_MSPRAY333 PLT_VLVAREA_PRZR_PORV337 PLT_VLVAREA_J3RZR_QT334 PLT_VLVAREAJ'RZR_SAFETY340 PLT_VLVAREA_QT_CONT339 PLT_VLVAREA_QT_GWS341 PLT_VLVAREA_QT_NSUPPLY331 PLT_VLVAREA_UHEAD_CONT332 PLT_VLVAREA_UHEAD_QT

- 2 0 0 -

667 POWER_COMMON739 POW_CORE_TRIP_FRACTION743 POW_DKHT^ANSDHC740 POWJDKHT.COMMON745 POWJDKHTJ5HCBEG746 POW_DKHT_DHCFCT748 POW_DKHT_IFDHC741 POW_DKHT_INP744 POW_DKHT_NDHC747 POW_DKHT_STATE749 POWJ5KHT_TIMDHC742 POW_DKHT_TIMDHT808 POW_EXCORE_CALIB801 POWJSXCORE_DATA794 POW_EXCORE_DISP810 POW_EXCORE_GAIN804 POWj:XCORE_OFFSET806 POWj:XCORE_OFFSET_AV793 POW_EXCORE_OUT803 POWJEXCORE_POWER802 POWJIXCORE_POWERD805 POW_EXCORE_JPOWER_AV811 POW_EXCORE_SVR807 POW_EXCORE_TAU809 POWJEXCORE_TUNE716 POW_IFUPOW_TIM761 POWJMTIAL_CONDITIONS681 POWJONJVLPHA685 POW_KIN_BBAR686 POW_KIN_BBARR683 POW_KIN_BETA788 POW_KIN_BORON_FB_OPTION734 POW_KIN_CHI2679 POW_KIN_COMMON776 POWJCIN_CORE_W_FRACTAB717 POW_KIN_CUTBACK786 POWJCIN_CUT_ROD_OPTION712 POW_KIN_DENCOR782 POW_KIN_DH_FACTOR724 POW_KIN_DK725 POW_KIN_DKBOR701 POW_KINJ5KCON687 POWJONJ3KCONZ703 POW_KIN_DKCTM688 POW_KIN_DKCTMZ731 POW_KIN_DKCUT705 POWJUN_DKDEN689 POW_KIN_DKDENZ727 POW JON_DKDOP732 POWJON_DKHERMC713 POW_KIN_DKINS

691 POWJON_DKINSZ726 POWJON_DKMOD729 POW_K1N_DKROD730 POWJON_DKSCRAM723 POW_KIN_DKT728 POWJONJ3KTMD707 POW_KIN_DKTMP690 POW_KIN_DKTMPZ721 POW_KIN_DK.INIT682 POW_KIN_DLAM787 POWJONJX)PPLER_FB_OPTION781 POWJON_EDGELWEIGHT738 POW_KIN_EN2735 POW.KINJEX2783 POWJUNJTSEDBACICOPTIONS770 POW_KIN_FLOWFRAC_MIN764 POW_KIN_HERMITE_INPUT765 POW_KIN_HERMITE_PARAM777 POW_KIN_HERM_CREDnTAB792 POW_K1N_HERM.CREDIT_OPTION774 POW_KIN_HERM_FLOW_REF767 POW_KIN_HERM_MULT775 POWJON_HERM_N_FLOWFR773 POW_KIN_HERM_POW_REF766 POW_KIN_HERM_TD680 POW_KIN_INP778 POW_KIN_MIXINGJNPUT779 POW_KIN_MIX_CX)N_COLD780 POW_KIN_MIX_CON_HOT692 POW_KIN_MODDK790 POW_KIN_MOD_DENSITY_FB_OPTION791 POWjaN_MOD_DENSITY_OPTION789 POW_KIN_MOD_TEMP_FB_OPTION719 POW_KIN_NCUTBACK693 POW_KIN_NDKCON694 POW_KIN_NDKCTM695 POWJCQSLNDKDEN715 POW_KIN_NDKINS696 POW_KIN_NDKTMP697 POWJUNLNQDK722 POW_KIN_OUT684 POW_KIN_PLAM772 POW_KINJ)OWTOFLOW_MAX769 POWjaN_POWTOFLOW_MIN736 POW_KIN_QD2709 POWJON.QDK737 POW_KIN_QF2785 POWJCIN_REG_ROD_OPTION784 POW_KIN_SCRAM_ROD_OPTION698 POWJCIN_SIGD2720 POW_KIN_SOURCE

- 2 0 1 -

699 POW_KIN_STARL733 POW_KIN_STATE711 POW_KIN_T718 POW_KIN_TCUTBACK702 POW_KIN_TDKCON704 POW_KIN_TDKCTM706 POW_KIN_TDKDEN714 POW_KIN_TDKINS708 POW_KIN_TDKTMP771 POW_K1N_TEMP_TILT_MAX768 POW_KIN_TEMP_TILT_MIN710 POW_KIN_TQDK700 POW_KIN_TSS668 POW_USER_COMMON671 POW_USER_IFUPOW669 POWLUSERJNP673 POW.USERJMPOWT674 POW_USER_POWT672 POW_USER_POWZ670 POW_USER_QAXL677 POW_USER_QC678 POW_USER_QCD676 POW_USER_STATE675 POW_USER_TPOWT750 POW_ZRH2O_COMMON753 POW_ZRH20_FZBJ759 POW_ZRH2O_H2M751 POW^ZRH2O_INP755 POWJZRH2O_IZX752 POW_ZRH2O_NYZIR758 POW_ZRH2O_OUT756 POW_ZRH2O_PCZR760 POW^ZRH2O_QZRH2O754 POWLZRH2O_STATE757 POW.JZRH2CLZX825 PRESS275 PRESS_LDN189 PRESJVTWS_MAX187 PRESJVTWS_MIN1103 PRES.GLOB1148 PRES^LAST227 PRES_N2824 PRES_PRED1091 PRES.QT1455 PRSI_HEATER_VOLT_FRAC281 PRZR_HEATER_MULT282 PRZRJ>ORV_MULT286 PRZR_QT_MULT285 PRZR_RELIEF_RTD_TAU283 PRZR_SAFETY_MULT280 PRZR_SPRAYJtfULT

284 PRZR_VENT_MULT553 PTTAB183 P.AREA190 P_AREA_ATWS_MAX188 P_AREA_ATWS_MIN1174 PJUffiAO-EAK191 P_AREA_RODEJ457 P_ATMOSPHERE1059 PJORON_AUXL.SPRAY1056 P_BORON_SPRAY1802 P.CONDENSER185 P_DIAM_HYD1017 P_ELEVJX>WN177 P_ELEV_EXIT156 PJXEVJNLET1016 PJ!LEV_UP931 P^ENTH1058 P_ENTH_AUX^SPRAY1071 PJENTH_BLEED952 P_ENTH_LIQ1381 P_ENTH_LIQ_LB1062 P_ENTH_RELIEF1055 P_ENTH_SPRAY953 P J : N T P L S T M1382 P_ENTH_STMLLB1078 P J : N T H _ U H E A D _ C O N T1076 P_ENTH_UHEAD_QT908 P_FLOW1057 P_FLOW_AU)e.SPRAY1060 P_FLOW_BLEED929 P_FLOW_CRIT1152 P_FLOW_LAST1178 P_FLOW_PRZR_CONT1068 P_FLOW_PRZR_QT1061 P_FLOW_REUEF1054 P_FLOW_SPRAY1077 P_FLOW_UHEAD_CONT1075 P_FLOW_UHEAD_QT178 P_GEOM1015 PJK)DE_DOWN155 P_NODE_EXIT134 P_NODE_INLET1014 P_NODE_UP1066 P_NONC_PRZR_CONT1067 PJJONC_PRZR_QT1101 P^NONC_QT_CONT1085 P_NONC_UHEAD_CONT1086 P_NONC_UHEAD_QT956 P_QUAL179 P_RADIUS999 P.STMJDOWN

- 2 0 2 -

978 P_STM_UP954 P_SVOL1384 P_SVOLJ-B1063 P_SVOL_RELIEF977 P.VOID1383 P.VOIDJLB429 QSG100430 QSG_TBL317 QT_FLOW_FRAC315 QT_GWS_MULT1359 QT_J4_P1482 QT_MODJNPUTS314 QT_N2_MULT231 QT_RUPTURE_SPOINT316 QT_VENT_MULT1109 QUAL.GLOB868 QUAL3HX898 QUAL_MIX_SECT867 QUAL.TOT269 RATED_BUS_VOLT263 RATED_PUMP_DENS264 RATED_PUMP_HD261 RATED_PUMP_SPEED266 RATED_PUMP_SYNCH265 RATED_PUMP_TORQ262 RATED_VOL_FLOW325 RATIO_CONC_SOLU1499 RBINIT1458 RCPI_FREQ_FRAC1456 RCPI_VOLT_FRAC1352 RCPJtf)MI_FLOWCORR369 RCP^UDM1_FLOWCORR_MULT1186 RCP_ADMUM1308 RCP_ADMLMULT1185 RCP^ADMLRE1353 RCP_AMPS1200 RCP_BREAK373 RCP_CAVITJ.OAD_MULT1338 RCP_CAVIT_SGDP_FRAC359 RCP_CAVIT_SGDP_FRAC_MIN358 RCP_CAVIT_SGDP_MULT372 RCP_CAVTT_VIBR_MULT1180 RCP.COMMON370 RCPJ3ELAMPS1309 RCP_DELSPEED_LOCKED1341 RCPJ5T_LAST_TRIP1182 RCP_ELECTRIC368 RCP_FLOW_REF1184 RCP_FREQ277 RCP_FREQ_RATED1310 RCP_FRIC_COEFF

363 RCP_FR_SP_RUB_RATCH1193 RCP_HEAT304 RCP_HEAT_MULT1201 RCP_HLVIB1181 RCPJNTERNAL1202 RCP.LOCKED1199 RCP_MALFUNCTION1189 RCP3IECHAN1CAL303 RCP_MOM_INERTIA305 RCP_MOM_INERTIA_SPLIT1188 RCPJT1319 RCP_RCP_START1203 RCP_RCS_LEAK1204 RCP.SEALSJ^AK1187 RCP_SLJP1198 RCP_SPEED_DERIV309 RCP_SPEED_DERIV_SHAKE1196 RCP_SPEED3IOTOR1195 RCP_SPEED_PUMP1342 RCP_STOPPED1360 RCP_TBEARING_HIGH1191 RCP_TORCLELEC1192 RCP_TORQ_FRIC1190 RCP_TORQ_HYD364 RCP_TORGLRUB_RATCH1343 RCP.TRIPPED1194 RCP_VIBR1197 RCP_VBR_AMP307 RCP_VIBR_MAX306 RCP_VIBR_NORM308 RCP_VIBR_TIME1183 RCP_VOLT276 RCP_VOLT_RATED1399 RCSL_PMP1J)P1400 RCSLJPMP2LDP1401 RCSL_PMP3JDP1402 RCSLJPMP4_DP96 RCS_ANNULJVSECT97 RCS_ANNUL_HSECT95 RCS_ANNUL_NSECT1385 RCS_AREAJLBJLAST377 RCS_BHTR_RLD_MULT1406 RCS_BORON_CORE301 RCS_CEAIN_KTERM1089 RCS_CEA_AV1088 RCS_CEA3IULT936 RCS_CHGS_ENTH913 RCS_CHGSJFLOW161 RCS_CHGSJPELEVIN139 RCS_CHGS_PNODEIN961 RCS_CHGS_QUAL

- 2 0 3 -

983 RCS_CHGS_STM_UP1413 RCS_CHT_ENTHIN1409 RCS_CHT_ENTHLJQ1410 R C S _ C H T J ; N T H S T M1412 RCS_CHT_PLOWIN1415 RCS_CHT_1EVMIX1416 RCS_CHT_LEVSAT1420 RCS_CHT_MASSBUB1419 RCS_CHT_MASSLIQ1408 RCS_CHTJ > RESS1411 RCS_CHT_QUAL1414 RCS_CHT_QUALIN1417 RCS_CHT_QWALL1418 RCS_CHT_TWALL812 RCS.COMMON1129 RCS_CONC_BORON1130 RCS_CONC_HYD1131 RCS_CONC_IOD1132 RCS_CONC_PART1128 RCS_CONC_SOLU1133 RCS.CONCLXEN324 RCS_COND_SURF_MULT278 RCS_CONST318 RCS_CONST_GENERAL326 RCS_CONSTJ .EAKS310 RCS_CONST_XOOP279 RCS_CONSTJ>RZR302 RCS_CONST_PUMPS313 RCS_CONST_QT293 RCS_CONST_UHEAD311 RCS_CONT_HEAT31ULT1026 RCS_CORE1153 RCS_CORE_FLASHJLAST1301 RCS_CORE_HYD_REL_MAX357 RCS_CRIT_FLOW_CHECK1263 RCS_CRIT_MODEL1040 RCSJ3ELH_HLTILT1367 RCSJDELT1369 RCSJDELTA_T1390 RCS_DELTEM_SG_LB1254 RCS_DELT_HEATER1370 RCSJ)ELT_WALL290 RCS_DFLASH_MAXJ>RZR1377 RCSJ)HEAT_FASTT371 RCSJ)HEAT_FASTT_UHEAD_FRAC1378 RCSJ3HEATJdAJCFASTT1379 RCS_DHEAT_STEP_FASTT1234 RCSJDHFFDP1312 RCS_DHF_MIN1235 RCS_DHGGDP288 RCS.DMJFLASHJ'RZR

1313 RCS_DP_ELEV_SURGE1387 RCS_DPJLEAICLAST_XB1332 RCS_DRAINS_SDC322 RCS_DROP_COND_MULT1270 RCS_DTFOPEN_LB1239 RCS_DVDHH_HF1241 RCS_DVDHti_HG1237 RCS_DVDHH_HLIQ1243 RCS_DVDHHJiSTM1238 RCS_DVDPP_HF1240 RCS_DVDPP_HG1236 RCS_DVDPP_HLIQ1242 RCS_DVDPP_HSTM347 RCSJDWSOLID.SDC1318 RCS_DWSTP_SDC374 R C S _ D W S T P _ S I T1317 RCS_DW_SDC1357 RCS_DW_SIT

1226 RCS_ENTH_LIQQ1227 R C S _ E N T H _ S T M M1244 R C S J N T K L T O T T1158 RCSJ :QUILIBRIUM1361 RCS_FAILURE_STATUS1368 RCS_FDELT1394 RCS_FLAG_COARSE_NODES1389 RCS_FLAG_DPJLEAKJLB1271 RCS_FRAC_SIT_12B1283 R C S _ F T I M E J U B1375 RCS_FTIME_CVCS1372 RCS_FTIMEJffiAT1253 RCS_FTIME_HEATER1373 RCS_FTIMEJ>ATHS1299 RCS_FTIME_PRZR1276 RCS_FTIME_SDC1376 RCS_FTIME_SIT1260 RCS_FTIME_SPRAYS1371 RCS_FTIME_WALL1102 RCS_GLOBAL_AVERAGE1391 RCS_HA_PRIM1457 RCS_HEATER_VOLT_BUS1374 RCS_HEAT_FASTT1388 RCS_HEAT_SG31AX_LB1228 RCS_HFF1229 RCS_HGG1293 RCS_HIGHP_COARSE_NODES1157 RCS_HOMOGENEOUS1273 RCS_H_SIT_CONT1275 RCS_H_SURGE_TAU1212 RCS_ICOUNT_FLOWLIM_P1219 RCSJCOUNTJJNPROP1207 RCS_ICOUNT_MUKPR_P

- 2 0 4 -

1494 RCSJNITIAL_CONDITIONS1326 RCSJNITJURJPRZR1325 RCSJN1T_LEVEL_PRZR1324 RCSJNIT_P1331 RCSJNIT_T_LOOP1330 RCS JNIT_T_PRZR1488 RCSJNPUTS_PRZR_RELIEF821 RCSJNTERNAL321 RCSJTER_DH_NE319 RCS_ITER_DP1314 RCSJTERJ5PL320 RCSJTERJDPJ4E323 RCS_KLOSS_MULT208 RCSJCWEIGHTJfTILT379 RCSJC.TEMPCLJXJCA1380 RCSJLARGE_BREAK946 RCS_LBLOCA^ENTH923 RCS_LBLOCA_FLOW171 RCS_J^LOCA_PELEVIN149 RCS_LBLOCA_PNODEIN971 RCS_LBLOCA_QUAL993 RCS_LBLOCA_STM_UP1395 RCSJ.B_LOCA_FIRST1386 RCS _XB_SGDRAIN

937 RCS_LDNS_ENTH914 RCS_IDNS_FLOW162 RCSJLDNS_PELEVIN140 RCS_LDNS_PNODEIN962 RCSJLDNS_QUAL984 RCS_XDNS_STM_UP289 RCS_LEVL_SAT_PRZR1214 RCSXINPROP.CONTROL1217 RCS_LINPROP_NODE1223 RCS_L1NPROP_PROPERT1ES1216 RCS_LINPROP_SYSTEM1215 RCS_LINPROP_USER1160 RCS_LOCA_MAPPING1267 RCS_L_EFF_SPR1269 RCS_MAL0381170 RCS_MALFUNCTION1282 RCS_MAX3C_EXT1277 RCS_MAX_CHGS1333 RCS_MAX_DRA1N_SDC1248 RCS_MAX_EXT_ENTH1279 RCS_MAXJ-DNS1278 RCS_MAX_SIT1280 RCS_MAX.WDRAIN1281 RCS_MAX_WSDC901 RCS3IBUB_SS1247 RCS_MINJEXTJENTH1421 RCS_MODJNPUTS

1422 RCS31OD_INPUTS_BOP1480 RCS_MOD_INPUTS_CONT1459 RCS_MOD_INPUTS_MALFUNCTIONS1438 RCSJtfOD_INPUTS_VLVCONTR1454 RCS3IOD_INPUTS_VOLTCONTR1397 RCS31OD_OUTPUTS1407 RCSJ^OD_OUTPUTS_CHT1403 RCS31OD_OUTPUTS_CORE1398 RCS_MOD_OUTPUTS_INSTRUM342 RCS_MORE_VARIABLES_504_RO1337 RCS31ORE_VARIABLES_504_SR1245 RCS_MORE_VARIABLES_A1246 RCSJ4ORE_VARIABLES_I1264 RCS_MORE_VARIABLES_n1292 RCS_MORE_VARIABLES_m1297 RCS_MORE_VARIABLES_niA1302 RCS_MORE_VARIABLES_inB1305 RCS3IORE_VARIABLES_IV1316 RCS_MORE_VARIABLES_V1322 RCS_MORE_VARIABLES_VI1362 RCS_NEVER_STOP_AUTO1218 RCSJNEWCENTERJJNPROP884 RCSJ4ODEBUBBLES

887 RCSJWDE_CONDENSATION870 RCS.NODEJDERIVATIVES826 RCS^NODE^ENERGIES834 RCS_NODEJENTHALPffiS72 RCS_NODE_GEOMETRY855 RCS3fODE_HEAT_RATES42 RCS_NODE_HL863 RCS_NODE_LEVELS829 RCS_NODE_MASSES41 RCSJJODEJJ'UMBERS66 RCSJsIODE_OTHERS823 RCS3fODEJJRESSURES89 RCS_NODE_SECTIONALIZED61 RCSJJODE_SL841 RCS_NODE_SPEC_VOLUME893 RCS_NODE_STATES866 RCS_NODE_STEAM_FRAC847 RCS_NODE_TEMPERATURE78 RCS_NODE_TH_VARS34 RCS_NODE_TOTALS822 RCSJ4ODE_VARIABLES1206 RCS_NSTEP_CALCULATIONS110 RCS_NUMIN_CHGS114 RCS_NUMIN_SIS116 RCS_NUMMAX_CHGSIN118 RCS_NUMMAXJ)RAINSOUT117 RCS_NUMMAX_LDNSOUT121 RCS_NUMMA)LMOM

- 2 0 5 -

115 RCSJNUMMAX_RCP119 RCSJ>JUMMAX_SDCOUT120 RCS_NUMMAX_SISIN111 RCSJSIUMOUT_LDNS112 RCS_NUMOUT_RCWDRA1NS113 RCS_NUMOUT_SDC1213 RCSJNTUM_FLOWLIM_P1220 RCS_MJM_LINPROP28 RCS_NUM_MSPRAYVLVS1208 RCSJSTUMJdUKPRJ?29 RCSJSIUM_PORVS30 RCSJKJM_SAFETYVLVS1205 RCS_OPTIMEATION

945 RCS_ORING_ENTH1351 RCS_ORING_FAIL922 RCS_ORING_FLOW170 RCS_ORING_PELEVIN148 RCS_ORING_PNODEIN970 RCS_ORING_QUAL992 RCS_ORING_STM_UP1141 RCS_PAST_VALUES934 RCS_PATHEXTJENTH911 RCS_PATHEXT_FLOW159 RCS_PATHEXT_PELEVIN137 RCSJ>ATHEXTJ>NODEIN959 RCSJPATHEXT.QUAL981 RCS_PATHEXT_STM_UP947 RCS_PATHINT_ENTH924 RCS_PATHINT_FLOW172 RCS_PATHINT_PELEVIN150 RCS_PATHINT_PNODEIN972 RCS_PATHINT_QUAL994 RCS_PATHINT_STM_UP941 RCS_PATHLEAK_ENTH918 RCS_PATHLEAKJLOW166 RCS_PATHLEAK_PELEVIN144 RCS_PATHLEAiePNODEIN966 RCS_PATHLEAK_QUAL988 RCS_PATHLEAieSTM_UP133 RCS_PATHS_GEOMETRY

99 RCS_PATHS_NODALIZATION122 RCS_PATHS_NUMBERS100 RCS_PATHS_TOTALS1010 RCS_PATH_DERIVATIVES930 RCS_PATHJENTHALPIES907 RCS_PATH_FLOW_RATES1000 RCS_PATH_PRESS_DROPS955 RCS_PATH_QUALITIES1013 RCS_PATH_UPDOWN906 RCSJPATH_VAR1ABLES376 RCS_PHTR_RLD_MULT

1225 RCS_PRESSS1042 RCS_PRESSURIZER361 RCS_PRES_COARSE31AL0341224 RCS_PRES_GLOBB93 RCS_PRZR_ASECT1344 RCS_PRZR_COND_SURF1296 RCS_PRZR_COND_WALL1249 RCS_PRZR_CONT_HEAT_MULT343 RCS_PRZRJDHWSPRAY_EQ1306 RCS_PRZR_DT_BOIL1307 R C S _ P R Z R J ) T _ S U B C345 RCS_PRZR_DT_SUBH1349 RCS_PRZR_DT_SUBSS1339 RCS_PRZR_DT_SUB_BOIL287 RCS_PRZR_FLASH_MULT1261 RCS_PRZR_FLASH_TAU1175 RCS_PRZR_FLOW_VALVES

1334 RCS_PRZR_FRACJUR365 RCS_PRZR_HAX_WALL1298 RCS_PRZR_HLIQ_MULT94 RCS_PRZR_HSECT1295 R C S _ P R Z R J W A L L F _ M U L T1335 R C S _ P R Z R J O L S T M1336 R C S _ P R Z R J O ' _ S T M1304 RCSJ>RZR_LEVEL1345 RCS_PRZR_LEVLJ-AST1288 RCSJ>RZR_IX>WP_COND_XOG366 RCS_PRZR_LVLDT_SUBC352 RCS_PRZR_L-BOIL1290 RCS_PRZR_L_COND_OFF1321 RCS_PRZR_MASS_AIR1320 RCS_PRZR_MASS_STM360 R C S _ P R Z R 3 I S P R A Y _ T A U92 RCS_PRZRJ4SECT1070 RCS_PRZR_PRES1348 RCS_PRZR_QAX_WALL1329 RCS_PRZR_QUAL_REL1EF1347 RCSJ ) RZR_Q_CONT950 RCS_PRZR_RELIEF_ENTH927 RCS_PRZR_RELIEF_FLOW175 R C S J ' R Z R J R E L I E F J ' E L E V I N153 RCS_PRZR_RELIEF_PNODEIN975 RCS_PRZR_RELIEF_QUAL997 RCS_PRZR_RELIEF_STM_UP

344 RCS_PRZR_SPRAYJ;Q346 RCS_PRZR_TAUJ3TSUB1300 RCS_PRZR_TREF_TAU1346 RCS_PRZR_T_WALL348 RCS_PRZR_VENT_RIG351 RCS_PRZR_VENTJUG_FRAC362 RCS_PRZR_VLVHJ4AX_TAU

- 2 0 6 -

378 RCS_PRZR_VLV_XVIB_MULT375 RCS_PRZR_VLV_REVH_TAU1020 RCS.PUMPS1118 RCSJ>_BORON1210 RCS_P_CONDUCT157 RCS_P_ELEVJNLET_MOM158 RCS_P_ELEVJNLET_NONM1311 RCS_PJELEV_MOD_SURGE932 RCS_P_ENTH_MOM933 RCS_P_ENTH_NONM909 RCS_P_FLOW3IOM910 RCS_P_FLOW_NONM1176 RCSJP_FLOW_PORV1179 RCSJ>JFLOW_PRZR_QT11069 RCS_JPJrLOW_PRZR_QT21177 RCSJP_FLOW_SAFETY1119 RCS_P_HYD1123 RCS_P_HYD_JAUX_SPRAY1120 RCS_P_IOD1124 RCS_PJOD_AUX_SPRAY135 RCS_PJ4ODE_INLET_MOM136 RCS_P_NODEJNLET_NONM1350 RCS_P_ORING367 RCS_P_ORINGJ'AIL1121 RCS_P_PART1125 RCS_P_PART_AUX-SPRAY1211 RCS_P_PRANDTL957 RCS_P_QUAL_MOM958 RCS_P_QUAL_NONM1117 RCS_P_SOLU1252 RCS_P_SPIKE_OUTPUT979 RCS_P_STM_UP31OM980 RCS_P_STM_UP-NONM1209 RCS_P_VISCOS1122 RCSJ>JCEN1126 RCS_P_XEN_AUX_SPRAY1289 RCS_QUAL3QN_NE1090 RCS_QUENCH_TANK1038 RCS_Q_CEA_CORE297 RCS_Q_CEA_CORE_MULT1041 RCS_Q_UHEAD_CORE935 RCS_RCPLEAK_ENTH912 RCS_RCPLEAKJ"LOW160 RCS_RCPLEAKJ?ELEVIN138 RCSJICPLEAICPNODEIN960 RCS_RCPLEAKJ3UAL982 RCS_RCPLEAieSTM_UP1355 RCSJ*CP_CAVITAT1354 RCS_RCP_SVOL1340 RCS_RCP_VOIDF1396 RCS_RCSLBJFIRST

938 RCS_RCW_ENTH915 RCS_RCW_FLOW163 RCS_RCW_PELEVIN141 RCS_RCW_PNODEIN963 RCS_RCW_QUAL985 RCS_RCW_STM_UP1323 RCS_REINITIALIZE1127 RCS_RELE_NONC902 RCS_RELE_PRIME1134 RCS_RELE_SOLU1135 RCS_RELE_SOLU_CORE944 RCS_RODEJ_ENTH921 RCS.RODEJJ'LOW169 RCS_RODEJJPELEVIN147 RCS_RODEJ_PNODEIN969 RCS_RODEJ_QUAL991 RCS_RODEJ_STM_UP943 RCS_SBLOCA_ENTH920 RCS_SBLOCA_FLOW168 RCS_SBLOCA_PELEVIN146 RCS_SBLOCA_PNODEIN968 RCS_SBLOCA_QUAL990 RCS_SBLOCA_STM_UP1315 RCS_SDCSIT_CONSIST_TEST939 RCS_SDC_ENTH916 RCS_SDC_FLOW164 RCS_SDC_PELEVIN142 RCS.SDCJ'NODEIN964 RCS_SDC_QUAL986 RCS_SDC_STM_UP1161 RCS_SEARCHJTER1162 RCS_SEARCH_TYPE897 RCS_SECT_NODE_VARIABLES354 RCS_SG1112_DP_ADD356 RCS_SG1112J3P_W_MULT942 RCS.SGTR^ENTH919 RCS_SGTR_FLOW312 RCS_SGTR_FLOWMULT167 RCS_SGTRJ>ELEVIN145 RCS_SGTRJ>NODE1N967 RCS_SGTR_QUAL989 RCS_SGTR_STM_UP353 RCS_SG_DP_ADD1294 RCS_SG_DP_MULT355 RCS_SGJDP_W_MULT940 RCS.SISJENTH917 RCS_SIS_FLOW165 RCS_S1S_PELEVIN143 RCS_SIS_PNODEIN965 RCS_SIS_QUAL987 RCS_SIS_STM_UP

- 2 0 7 -

1116 RCS_SOLUTE949 RCS_SPRAYBLEED_ENTH926 RCS_SPRAYBLEED_FLOW174 RCS_SPRAYBLEED_PELEVIN152 RCS_SPRAYBLEED_PNODEIN974 RCS_SPRAYBLEED_QUAL996 RCS_SPRAYBLEED_STWLUP1284 RCS_SPRAY_DELH_DEG1265 RCS_SPRAY_EFF1285 RCS_SPRAY_EFF11287 RCS_SPRAY_EFF21266 RCS_SPRAY_EFF_MULT948 RCS_SPRAY_ENTH925 RCS_SPRAY_FLOW1291 RCS_SPRAY_PDEG_TERM173 RCS_SPRAY_PELEVIN151 RCS_SPRAY_PNODEIN1286 RCS_SPRAY_PRES_DEG973 RCS_SPRAY_QUAL995 RCS_SPRAY_STM_UP1221 RCS_SS_CONTROL1222 RCS_SS_USER1154 RCS_STATUS1018 RCS_STEAM_GENERATOR1363 RCS_STEP_FAILURE1364 RCS_STEP_RECOVERY328 RCS_SUBCRIT_FLOW_MULT327 RCS_SUPERCRIT_FLOW_MULT1230 RCS_SVOL_LIQQ1231 RCS_SVOL_LIQQ_SAT1232 RCS_SVOL_STMM1233 RCS_SVOL_STMM_SAT1358 RCS_TEMP_CL12B1393 RCS_TEMP_SGJJVST1392 RCS_TEMP_SG_PRE1365 RCS_TIME_CONTROL1366 RCSJTIME_SCALE905 RCS_TRANS_CORR1268 RCS_T_SURGE_TAU1262 RCS_UHEAD_CONT_HEAT_MULT1087 RCS_UHEAD_PRES951 RCS_UHEAD_RELIEF_ENTH928 RCS_UHEAD_RELIEF_FLOW176 RCS_UHEAD_RELIEF_PELEVIN154 RCS_UHEAD_RELEFJPNODEIN976 RCS_UHEAD_REL1EF_QUAL998 RCS_UHEAD_RELIEF_STM_UP298 RCS_UHEAD_RING_SEAL_MULT

349 RCS_UHEAD_VENT_RIG350 RCS_UHEAD_VENT_RIG_FRAC1074 RCS_UPPER_HEAD

1164 RCS_VALVES1165 RCS_VLV_AREA903 RCS_VOID_TOP904 RCS_VOID_TRAN1303 RCS_VOLT_HTR_BUS1327 RCS_WJ>RZR_CONT1328 RCS_W_PRZR_QT1356 RCS_W_SIT1272 RCS_W_SIT_CONT1485 RCW_QT_FLOW1432 RCW_RCS_FLOW885 RELE_BUB216 RESLHEATER1500 RKPUMP1496 RLINIT1495 RPINIT1501 RSIN1T1498 RTCLIN207 RTRV_BYPASS296 RTRV_HEAD_SEAL_MULT294 RTRV_KLOSS_CORE299 RTRV_MDUNLET300 RTRV_MDCOUTLET295 RTRV_VENT_JMULT432 RTUBES1099 RUPTURE_QT1497 RWINIT2173 SCRAMJDELAY1433 SDC_RCS_FLOW1107 SENG_GLOB554 SEQNCE404 SF_CONC_IO

498 SGBDJVCROSS

506 SGBD3OT_COEFF

1767 SGBD_BOTJ:NTH

1764 S G B O J B O T J T J O W

508 SGBD_BOT_HTNOZ1770 SGBD_BOTJO1761 SGBD_BOTJ>OS1773 SGBD_BOT_PT1776 SGBD_BOTJCE1741 SGBD_CON_IO1742 SGBD_CON_PT1743 SGBD_CONJCE1744 SGBDJ3VDH1745 SGBD_DVDP1746 SGBD_H1747 SGBDJIF1748 SGBD_HG1749 SGBOX1750 SGBDJrf

- 2 0 8 -

1751 SGBD_ML510 SGBD_OUT_COEFF1784 SGBD_OUT_ENTH1781 SGBD.OUTJFLOW509 SGBD_OUT_HTNOZ1787 SGBD.OUTJO1796 SGBD_OUT_P1778 SGBD_OUTJ>OS1790 SGBD_OUT_PT1793 SGBD_OUTJCE1752 SGBD_P511 SGBD_RELEF_AMAX1785 SGBD_RELIEF_ENTH1782 SGBD.RELIEFJLOW1788 SGBD_RELIEF_IO1797 SGBD_RELIEF_P1779 SGBD_RELIEF_POS1791 SGBD_RELIEF_PT1794 SGBD_RELIEF_XE503 SGBD_SG_COEFF1765 SGBD_SGJNTH1762 SGBD_SG_FLOW506 SGBD_SG_HTNOZ1768 SGBD_SG_IO1759 SGBD_SG_POS1771 SGBD_SG_PT1774 SGBD_SGJCE1783 SGBD_SINKJENTH1780 SGBD_SINieFLOW1786 SGBD.SINKJO1795 SGBD_SINKJ>1777 SGBD_SINK_POS1789 SGBD_SINK_PT1792 SGBD_SINKJCE504 SGBD_SURF_COEFF1766 SGBD_SURF_ENTH1763 SGBD_SURF_FLOW507 SGBD_SURFJiTNOZ1769 SGBD_SURF_IO1760 SGBD_SURF_POS1772 SGBD_SURF_PT1775 SGBD_SURFJCE1753 SGBD_SV1754 SGBD_SVF1755 SGBD_SVG1756 SGBD_T1757 SGBD.TWALL502 SGBD_VOL1758 SGBDJC433 SGMTCP2181 SGS_ALPHAJX)WNCOMER

2180 SGS_AREA_DOWNCOMER1803 SGS_ASEP_TUNE1504 SGS_BOT_P1502 SGS_COMMON1511 SGS_CON_BORON11512 SGS_CON3ORON21505 SGS_CONJO11506 SGS_CON_IO21507 SGS_CON_PT11508 SGS_CON_PT21509 SGS_CON_XE11510 SGS_CONJ£E21834 SGS_CRIT_MODEL2178 SGSJ5EBUG_SGHEAT2177 SGS_DEBUG_SGSINI1513 SGS.DELTV1804 SGS_DELTV_MAX1514 SGS_DP1515 SGS.DVDP1521 SGSJE11522 SGSJE21523 SGSJS31524 SGS341525 SGS_E51854 SGSj;CON_ASUB1856 SGS_ECON_CNVRG1857 SGS_ECON_FLIM1855 SGSJCON_TCAV1852 SGS^ECON.TFIN1853 SGS_ECON_TFOUT1850 SGS_ECON_TPIN1851 SGSj;CON_TPOUT1849 SGS_ECON_VARS1516 SGS.ENTH11517 SGS_ENTH21518 SGS_ENTH31519 SGS^ENTH41520 SGS^ENTH51805 SGS_FK3_TUNE1593 SGS_FLOW_CHOKED1806 SGS_FTIME1807 SGS_FTIME_PMAX1678 SGS.FWS1808 SGS_HASUB_OPTION1594 SGSJffiAT1604 SGS_HEATXOAD1526 SGS_HF1527 SGS_HG1528 SGS_HLEVEL1529 SGSJHT21530 SGS.HT3

- 2 0 9 -

1531 SGS_HTI1836 SGSJNITIAL_CONDITIONS1503 SGSJNTERNAL1532 SGS.M11533 SGS3I21534 SGS_M31535 SGS_M41536 SGS_M51843 SGS31ASS_FULL_TUBE_AREA1844 SGS_MASS_ZERO_TUBE_AREA1835 SGS_MORE_VARIABLES1537 SGS_P1809 SGSJ>CNVRG1810 SGS.PMIN1605 SGS_Q_CONT1606 SGS_Q_WALL11607 SGS_Q_WALL31538 SGSJffiCIRC1811 SGS_RECIRC_DELVOL1812 SGS_RECIRC_MIN1539 SGS_RHO11540 SGS_RHO21541 SGS_RHO31542 SGSJIHO41543 SGS_RHO51813 SGS_SEP_PMIN1740 SGS_SGBD1608 SGS_STEAMLINE2183 SGS_STEAM_VEL311544 SGS_SV11545 SGS_SV21546 SGS_SV31547 SGS_SV41548 SGS_SV51551 SGS_T11552 SGS.T21553 SGS_T31554 SGS.T41555 SGS_T51814 SGS_TAURC1_TUNE1815 SGS_TAURC2_MAX1832 SGS_TAU_FLOW1816 SGS_TAU_WOUTSG1549 SGS.TREFLG1841 SGS_TXJBE_AREA_DEGRAD1842 SGS_TUBE_AREA_OPTION1799 SGS_TUNE1550 SGS.TWALL1817 SGS.UADROPJPERIM1818 SGS_UADROP_WFDMIN1556 SGS.USTM

1819 SGS_USTM_MIN1563 SGS_V11564 SGS_V21565 SGS_V31566 SGS_V41567 SGS_V51820 SGS_VCNVRG2182 SGS_VEL31JrfULT1557 SGS_VF1558 SGS_VF21559 SGS.VF31560 SGS_VF41561 SGS_VF51829 SGS_VF_REF1562 SGS.VG1830 SGS_VG_REF1831 SGS_VLEG_REF1578 SGS_W131579 SGS_W211580 SGS_W231584 SGS_W251581 SGS.W311582 SGS.W321586 SGS_W421583 SGS_W511585 SGS_W531568 SGS_WF11569 SGS.WF21570 SGS_WF31571 SGS_WF41572 SGS.WF51821 SGS.WFMIN1573 SGS_WG11574 SGS.WG21575 SGS_WG31576 SGS_WG41577 SGS_WG51587 SGS.WOUTSG1588 SGSJU1589 SGSJC21822 SGS_X2_11590 SGS_X31591 SGS.X41592 SGSJC51833 SGSJCTAU_FLOW1823 SGT_HTCRTC1824 SGT_HTCRTH1825 SGT_HTCSCW1826 SGT_HTCSTM434 SGT_HYD_DIAM2175 SGT_INIT_OPTION

- 2 1 0 -

1827 SGT_CLMULT1597 SGT_RCS_QCOLD1599 SGT_RCS_QECON1595 SGT_RCS_QHOT1598 SGT_SG_QCOLD1600 SGT_SG_QECON1596 SGT_SG_QHOT1602 SGT_TEMP_COLD1603 SGT.TEMPJECON1601 SGT_TEMP_HOT382 SGJDESIGN425 SGJCONOMIZER435 SG_HCONV415 SG_HT4JvlAX419 SG_REF_BOT417 SG_REF_iEGS418 SG_REF_NUM420 SG_REF_TOP436 SG_RWALL423 SG_TUBE_AREA405 SG_U12406 SG.U23407 SG_V2_ACTIVE408 SG_V4_MAX409 SG_V5_MAX1436 SIS_RCS_BORON1435 SIS_RCS JENTH1434 SIS_RCS_FLOW1437 SLTANieFLOW1840 SKAMUL1838 SLINIT900 SUP_SECT271 SLIP.TAB459 SLJ_CHECK_VALVE460 SLLDP100445 SLLFLOW.COEFF461 SLO_DP100446 SLO_FLOW_COEFF447 SL_JLOW_COEFF1646 SL_P_FLOW11 SNAPSHOT_DATE8 SNAPSHGT_FILEJ4AME7 SNAPSHOT_LABEL10 SNAPSHOT_TIME9 SNAPSHOT.TITLE402 SPACE1021 SPEED_PUMP1837 SPINIT1632 STEAMLINE_STATE853 SUBCJJQ1035 SVOL_DOWNCOMER

1108 SVOL_GLOB843 SVOLJLIQ845 SVOL_LIQ_SAT1112 SVOL_LIQ_SAT_GLOB844 SVOL_STM846 SVOL_STM_SAT1113 SVOL_STM_SAT_GLOB842 SVOL.TOT1080 SVOL_UHEAD_TOP574 TABMAX410 TAURC1411 TAUJO412 TAU_PT421 TAU_REFLG_DN422 TAU_REFLG_UP413 TAUJCE2146 TBASE392 TBL2_NUM399 TBL3_NUM854 TEMP_CONT1047 TEMP_HEATER849 TEMPJ-IQ1061 TEMP_PRZR_REF1053 TEMP_PRZR_RTD1052 TEMP_PRZR_SURGE1097 TEMP_QT1098 TEMP_QT_SURGE851 TEMP_SAT1114 TEMP_SAT_GLOB850 TEMP_STM848 TEMP_TOT1065 TEMP_VALVE_RELffiF852 TEMP_WALL654 TGAPIN2147 TIME2148 TIME_SCALE2151 TIMQUE431 TMP.TBL217 TOP_HEATERS1023 T O R Q L P U M P

272 TORQ_TAB2149 TSTOP557 UNUSED2172 USER_COMMON396 V3_TBL397 V3_TBL_DSGN1398 V3_TBL_DSGN2448 VEL1001064 VIBR_VALVE_RELIEF1445 VLV_PRZR_CONT1490 VLVJPRZR_FLOW_OPTION

- 2 1 1 -

1492 VLVJPRZR_FLOW_TABLE292 VLV_PRZR_KLOSS_DOWN291 VLV_PRZR_KLOSS_UP1444 VLV_PRZR_MOV1447 VLV_PRZR_MSPRAY1452 VLV_PRZR_MSPRAY_SIG1491 VLV_PRZR_NPOINTS_TAB1442 VLV_PRZR_PORV1453 VLV_PRZR_PORV_SIG1073 VLV_PRZR_PRESJX)WN1072 VLV_PRZR_PRES_UP1493 VLV_PRZR_PROP_TABLE1446 VLV_PRZR_QT1489 VLV_PRZR_QUAL_DF1443 VLV_PRZR_SAFETY1449 VLV_QT_CONT1448 VLV_QT_GWS1450 VLV_QT_NSUPPLY1439 VLV_RCS_POS1451 VLV_RCS_SIG1440 VLV_UHEAD_CONT1441 VLV_UHEAD_QT869 VOID_FRAC414 VOLSGS1043 VOLT_HEATER218 VOLT_HEATER_MAX1082 VOLILNON_UHEAD228 VOLU_QT449 VOLJ4SLH389 VST.TBL390 VST_TBL_DSGN1391 VST_TBL_DSGN2416 W32_FLOW_COEFF437 WALL_AREA438 WALL_MCP467 WFW100268 W I N D _ T O R Q L M U L T

215 XFER_HEATER86 XFER_SURFJ5OFF87 XFER.SURFJ'ON555 XTAB556 YTAB

- 2 1 2 -

IMS ^*\) 2 £

KAERI/TR-845-2/97

TASS 2 £*fl 3 T£ : TASS 2 E

-§--§-

'97. 2. 13

p. 212 S.3. •8-( 0 3. 7] 26 cm

0 ), ).

TASS

1.0 2HS1

4 TASS 1.0 SHS} 4

-B- l ¥ ^ °d^, nejui BOP

, TASS 1.0 s ^ 4-§-

foji4. -?- -<Hlfe TASS 1.0 2 E

Dictionary ne)Jl TASS 1.0 Database <y§j-|-

*ol?1i4 ? l ^ ^ y CE^ % Westinghouse^

TASS 1.0 2 £ 5 ] ^ 7l# ialAi^. TASS 1.0 2 £

TASS 1.0 2 =

T A S s 1.0 s ^

, Data

TASS 1.0

TASS,. TASSSS.

, Westinghouse^

BIBLIOGRAPHIC INFORMATION SHEET

Performing Org.Report No.

Sponsorin Org.Report No.

Standard Report No. INIS Subject Code

KAERI /TR-845-2/97Title / Subtitle TASS Code Topical Report

Volume IE : TASS Code USER'S Manual

Project Manager andDept

Suk K. SimAdvanced Techno-logy Group

Thermal Hydraulic ResearchTeam

Researcher and Dept H.C. Kim(Reactor Design Group)S.K. Moon(Advanced Technology Group)

Pub.Place Taejon Pub. Org KAERI Pub.Date '97. 2. 13

Page p. 212 III. and Tab Yes(0 ), No( Size 26 Cm

Note

Classified Open( 0 ), Outside( ), Class Report Type Technical Report

Sponsoring Org. Contract No.Abstract (About 300 words)

TASS Code has been developed by KAERI as a part of the Nuclear Safety

Enhancement project which has been funded by the Long Term Nuclear Research and

Development Program. This manual is thus prepared for the TASS Code users to

help their non-LOCA licensing transient analyses for the CE and Westinghouse type

plants operating or under condstruction in Korea. This user's manual describes the

guidance for using TASS 1.0 Code, TASS 1.0 input and TASS 1.0 Standard output.

The input of TASS 1.0 Code is catagorized and described in the areas of core power,

primary system, secondary system, wall heat, malfunctions and leak, BOP, and control

system. Sample input and output of the main feedwater line break event are included

to illustrate its use. The TASS 1.0 Code commands, Data Dictionary and the list of

the input are appended to this manual. This TASS 1.0 Code User's Manual will be

submitted as a part of the TASS 1.0 Topical Report to the Regulatory Body for its

licensing review in the Non-LOCA transient analyses for the CE and Westinghouse

type plants in Korea.

Subject keywords (About 10 words)TASS, Safety Analysis, CE Type PWR, Westing-house Type PWR. TASS Code Users Manual

^ 4 ^ Proprietary

Informational