industrial biocatalysis - taylor & francis ebooks

290

Upload: khangminh22

Post on 23-Apr-2023

1 views

Category:

Documents


0 download

TRANSCRIPT

Industrial Biocatalysis

Pan Stanford Series on Biocatalysis

Series EditorPeter Grunwald

Titles in the Series

Published

Vol. 1Industrial BiocatalysisPeter Grunwald, ed.2015978-981-4463-88-1 (Hardcover)978-981-4463-89-8 (eBook)

Forthcoming

Vol. 2Biocatalysis and NanotechnologyPeter Grunwald, ed.

Vol. 3Handbook of Carbohydrate-Modifying BiocatalystsPeter Grunwald, ed.

for the WorldWind PowerThe Rise of Modern Wind Energy

Preben MaegaardAnna KrenzWolfgang Palz

editors

Industrial Biocatalysis

edited by

Peter Grunwald

Pan Stanford Serieson Biocatalysis

Volume 1

CRC PressTaylor & Francis Group6000 Broken Sound Parkway NW, Suite 300Boca Raton, FL 33487-2742

© 2015 by Taylor & Francis Group, LLCCRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government worksVersion Date: 20141110

International Standard Book Number-13: 978-981-4463-89-8 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reason-able efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organiza-tion that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site athttp://www.taylorandfrancis.com

and the CRC Press Web site athttp://www.crcpress.com

Contents

Preface xxxi

1. Biocatalysts: Global Market, Industrial Applications, Aspects of Biotransformation Design, and Societal Challenges 1

Peter Grunwald

1.1 Introduction 1 1.2 The Global Enzyme Market 3 1.3 Competitive Structures 4 1.4 Industrially Used Enzymes 6 1.5 Design of Biotransformations 11 1.5.1 Immobilization of Biocatalysts 12 1.5.2 Non-Conventional Reaction Media 14 1.5.2.1 Organic solvents 14 1.5.2.2 Ionic liquids 16 1.5.2.3 Supercritical fluids 17 1.6 Climate Changes and Sustainable Development

as Societal Challenges 19 1.7 Conclusions 24

2. Making Use of Newly Discovered Enzymes and Pathways: Reaction and Process Development Strategies for Synthetic Applications with Recombinant Whole-Cell Biocatalysts and Metabolically Engineered Production Strains 33

Daniel Meyer, Joerg Martin Buescher, and Juergen Eck

2.1 Introduction 33 2.2 Definition and Differentiation of Whole-Cell

Biocatalysts and Metabolically Engineered Production Strains 34

2.3 Bioreaction and Pathway Engineering 37

vi Contents

2.3.1 Cofactor Dependency 37 2.3.2 Model-Based Strain Design 39 2.4 Strain Engineering/Choice of Host Organism 41 2.4.1 Impact of Inherent Metabolism on Productivity 42 2.4.2 Availability and Regeneration of Cofactors 44 2.4.3 Genetic Accessibility and Control of Gene

Expression 50 2.5 Bioprocess Design and Development 53 2.5.1 Optimization of Bioprocess Development

Efficiency 54 2.5.2 Process Control for Cultivation and

Biotransformation 58 2.5.3 Bioreactor Equipment and Downstream

Processing 59 2.6 Conclusions and Future Prospects 61

3. Directed Evolution of Enzymes for Industrial Biocatalysis 73

Youyun Liang, Ee Lui Ang, and Huimin Zhao

3.1 Introduction 73 3.2 Directed Evolution of Industrial Enzymes 75 3.2.1 Steps Involved in Directed Evolution 75 3.2.2 Key Considerations for the Use of Directed

Evolution in Industrial Biocatalysis 83 3.2.3 Major Classes of Industrial Enzymes 89 3.2.3.1 EC 1 oxidoreductases 89 3.2.3.2 EC 2 transferases 93 3.2.3.3 EC 3 hydrolases 95 3.2.3.4 EC4 lyases 98 3.2.3.5 EC 5 isomerases 99 3.2.3.6 EC 6 ligases 99 3.2.4 Directed Evolution in Pathway Engineering 100 3.2.4.1 Engineering of pathway enzymes 100 3.2.4.2 Enabling tools for pathway

engineering 102 3.3 Conclusions 104

viiContents

4. Strategies to Overcome Stability Constraints in Enzyme Evolution and Facilitate Effective Enzyme Engineering 115

Stephane Emond, Raymond D. Socha, and Nobuhiko Tokuriki

4.1 Introduction 115 4.2 Protein Stability and the Evolution of Enzymes 117 4.2.1 Thermodynamic Versus Kinetic Stability 117 4.2.2 The Threshold Model 119 4.2.3 Trade-Offs between New Function and Protein

Stability 121 4.2.4 Stability-Meditated Epistasis Is a Bottleneck

of Enzyme Evolution 123 4.3 Strategies to Increase the Evolvability of Enzymes

by Modulating Stability 124 4.3.1 Increasing Protein Stability Using Permissive

and Compensatory Mutations 125 4.3.2 Lowering the Stability Threshold by Chaperone

Buffering 126 4.3.3 Combining Compensatory and Permissive

Mutations with Chaperone Buffering 127 4.4 Experimental Methodologies to Identify Stabilizing

Mutations 130 4.4.1 Experimental Approaches to Generate Genetic

Diversity 130 4.4.2 Computational Approaches for the Prediction

of Stabilizing Mutations 132 4.4.2.1 Sequence-based prediction 137 4.4.2.2 Structure-based prediction 139 4.4.2.3 Combined prediction strategies 140 4.4.3 Experimental Approaches for the Identification

of Stabilizing Mutations 141 4.4.3.1 Screening for native state stability 143 4.4.3.2 Screening for soluble expression

level 147 4.4.3.3 Screening for enzymatic cell lysate

activity 147

viii Contents

4.4.3.4 Screening from destabilized variants 148 4.4.3.5 Neutral drift 149 4.5 Experimental Methodologies for Buffering the

Stability Threshold 149 4.6 Concluding Remarks 150

5. Production of Functional Isoprenoids through Pathway Engineering 161

Jun-ichiro Hattan and Norihiko Misawa

5.1 Introduction 161 5.2 Physiological Functions of Isoprenoids Found in

Nature 163 5.3 Outline of Isoprenoid Biosynthetic Pathway 165 5.4 Cytochromes P450 as Isoprenoid-Modifying

Enzymes 166 5.5 Escherichia coli as the Host Microbe and Its

Intrinsic Isoprenoids 167 5.6 Pathway Engineering for Functional Isoprenoids 168 5.7 Application of Pathway Engineering to Functional

Analyses of TPSs and P450s 170 5.8 Developing a Catalog of Plant TpsGenes and Their

Products: An Outlook 173

6. Metabolic Engineering for the Biobased Conversion of CO2 to Biofuels 181

Jordan McEwen and Shota Atsumi

6.1 Introduction 181 6.2 Fermentative Alcohols 184 6.3 Non-Fermentative Alcohols 187 6.4 Fatty Acid Derivatives 190 6.5 Isoprenoid Derivatives 193 6.6 Direct CO2 Conversion 194 6.7 Formate Conversion 197 6.8 Conclusion 197

ixContents

7. Mixed Microbial Cultures for Industrial Biotechnology: Success, Chance, and Challenges 205

Wael Sabra and An-Ping Zeng

7.1 Introduction 205 7.2 Microbial Community and Biochemical Diversity 207 7.3 Advantages of Using Mixed Culture 208 7.3.1 The Existence of a Food Web for Improved

Performance 209 7.3.2 Stability and Robustness 210 7.3.3 Unsterile Open Fermentation Processes 211 7.3.4 Oxygen Removal for Anaerobes 212 7.3.5 Promoting Growth and Culturing

“Unculturable” Bacteria 212 7.3.6 Use of Complex Substrates 213 7.4 Established Industrial Bioprocesses 214 7.4.1 Microbial Consortia in Industrial Wastewater

Treatment 214 7.4.2 Bioethanol 216 7.5 Potential Use of Mixed Culture in Industrial

Biotechnology 218 7.5.1 Biofuel and Polymer Production 218 7.5.1.1 Bioelectricity 218 7.5.1.2 Biohydrogen 220 7.5.1.3 Butanol and 1,3 propanediol

production 223 7.5.1.4 Propionic acid 224 7.5.2 Antimicrobial Substances 226 7.6 Challenges Facing the Use of Mixed-Culture

Fermentations 227 7.6.1 Population Dynamic Determination 228 7.6.2 Analysis of the Interrelationships between

Members of Mixed Cultures 229 7.6.3 Engineering Synthetic Microbial Consortia 230 7.6.4 Contamination of Fermentations 230

x Contents

7.6.5 Consistency of Inoculums of Mixed Cultures 231 7.7 Concluding Remarks 232

8. Extremophiles and Their Use in Biofuel Synthesis 239

Eldie Berger, Eloy Ferreras, Mark P. Taylor, and Don A. Cowan

8.1 Introduction 239 8.2 First-Generation Biofuels 241 8.3 Second-Generation Biofuels 241 8.4 Extremophiles 242 8.4.1 Exploring Extreme Environments 243 8.4.2 Extremozymes as Biocatalysts 245 8.5 Lignocellulose 245 8.5.1 Pretreatment 246 8.5.2 Thermophilic Organisms for Lignocellulose

Deconstruction 247 8.5.3 Cellulose Hydrolysis 247 8.5.4 Hemicellulose Hydrolysis 248 8.5.5 Lignin Hydrolysis 250 8.5.6 Synergistic Degradation of Cellulose: The

Cellulosome 250 8.6 Biofuel Production 252 8.6.1 Biobutanol and Bioethanol 253 8.6.1.1 Geobacillus 255 8.6.1.2 Thermoanaerobacterium and

thermoanaerobacter 256 8.6.1.3 Clostridium 259 8.6.2 Consolidated Bioprocessing 260 8.6.3 Biogas 261 8.6.4 Hydrogen 263 8.6.5 Other Extremophiles 264 8.7 Biodiesel 265 8.7.1 Chemical versus Enzymatic

Transesterification 266 8.7.2 Raw Materials for Biodiesel Production 267

xiContents

8.7.3 Lipases (E.C. 3.1.1.3) 268 8.7.4 Lipases from Extremophiles 268 8.8 The Future 269

9. Industrial Applications of Halophilic Microorganisms 283

Aharon Oren

9.1 Introduction 283 9.2 The Contribution of Halophilic Microorganisms in

Ancient Technologies 285 9.3 Advantages and Disadvantages of Using Halophiles

in Industry and Biotechnology 287 9.4 Success Story # 1: Production of β-Carotene by

Dunaliella 288 9.5 Success Story # 2: Production of Ectoine by

Halomonas 291 9.6 Bacteriorhodopsin of Halobacterium: A Versatile

Molecule with Many Possible Applications 295 9.7 Other Possible Applications of Halophilic

Microorganisms Not Yet Exploited in Industry 298 9.7.1 Halophilic Enzymes 298 9.7.2 Exopolysaccharides 301 9.7.3 Poly-β-Hydroxyalkanoate 303 9.7.4 Other Products from Halophiles:

Poly-(γ-D-Glutamic Acid), Glycerol and Biofuel 305

9.7.5 Halophiles as Heterologous Expression Vectors 306

9.7.6 Other “Potential” Applications of Halophiles 307

9.8 Final Comments 308

10. Non-Pathogenic Pseudomonas as Platform for Industrial Biocatalysis 323

Till Tiso, Nick Wierckx, and Lars M. Blank

10.1 Introduction 323 10.1.1 General Introduction 323

xii Contents

10.1.2 Taxonomy 324 10.1.3 Versatile Metabolism 325 10.1.4 Obligate Respiratory? 326 10.1.5 Redox Cofactor Metabolism 327 10.1.6 Solvent Tolerance 329 10.1.7 Pseudomonas beyond Industry 333

10.1.7.1 Plant protection/enhancement 333 10.1.7.2 Siderophore production 334 10.1.7.3 Bioremediation 336

10.2 Applications 337 10.2.1 Academic Examples 338

10.2.1.1 Biotransformation 338 10.2.1.2 Bioconversion 343

10.2.2 Industrial Examples 354 10.2.2.1 Vitamin B12 355 10.2.2.2 Acrylamide 358 10.2.2.3 5-Methylpyperazine-2-carboxylic

acid 358 10.2.2.4 D-p-hydroxyphenyl glycine 359

10.3 Conclusion 361

11. Use of Corynebacterium glutamicum for the Production of High-Value Chemicals from New Carbon Sources 373

Petra Peters-Wendisch and Volker F. Wendisch

11.1 Introduction 373 11.2 Carbon Source Utilization by C. glutamicum via

Endogenous and Engineered Metabolic Pathways 375 11.2.1 Starch, Molasses, Glucose, Fructose,

and Sucrose 376 11.2.1.1 Starch 376 11.2.1.2 Molasses 378 11.2.1.3 Glucose 378 11.2.1.4 Fructose 379 11.2.1.5 Sucrose 379

xiiiContents

11.2.2 Lignocellulosics, Cellulose, Xylose, Arabinose, Acetate, and Galactose 380

11.2.2.1 Lignocellulosic biomass 380 11.2.2.2 Cellulose and cellobiose 382 11.2.2.3 Xylose 382 11.2.2.4 Arabinose 383 11.2.2.5 Galactose 384 11.2.2.6 Acetate 385

11.2.3 Whey and Lactose 385 11.2.3.1 Whey 386 11.2.3.2 Lactose 386

11.2.4 Silage Juice and Lactic Acid 386 11.2.4.1 Silage juice 387 11.2.4.2 Lactic acid 387

11.2.5 Amino Sugars 387 11.2.5.1 Glucosamine 388 11.2.5.2 Sialic acid 388

11.2.6 Dicarboxylic Acids 389 11.2.7 Glycerol 389 11.3 Metabolic Engineering of C. glutamicum for New

Product Formation 390 11.3.1 Amino Acids 391

11.3.1.1 L-Glutamate, L-glutamine, and L-arginine 391

11.3.1.2 L-Lysine and L-threonine 392 11.3.1.3 L-Valine and L-isoleucine 393 11.3.1.4 L-Serine 394 11.3.1.5 Proline 395 11.3.1.6 Non-proteinogenic amino acids

and D-amino acids 396 11.3.2 Diamines 396

11.3.2.1 Putrescine 396 11.3.2.2 Cadaverine 397

11.3.3 Organic Acids 397

xiv Contents

11.3.3.1 Succinic acid 397 11.3.3.2 Pyruvic acid 398 11.3.3.3 Lactic acid 398 11.3.3.4 α-Ketoglutaric acid 399 11.3.3.5 2-Ketoisovaleric acid 399 11.3.3.6 D-Pantothenic acid 399

11.3.4 Alcohols 400 11.3.4.1 Ethanol, isobutanol, and

1,2-propanediol 400 11.3.4.2 Sugar alcohols (D-mannitol,

xylitol) 401 11.3.5 Carotenoids 402 11.3.6 PHA 402 11.3.7 Proteins 403 11.4 Summary 403

12. Applications of Enzymes in Industrial Biodiesel Production 417

Jesper Brask, David Cowan, and Per Munk Nielsen

12.1 Introduction 417 12.2 Biodiesel 418 12.2.1 Background 418 12.2.2 Feedstocks (Oils) 419 12.2.3 Alcohols 419 12.2.4 Catalysts 420 12.3 Oil Pretreatment 421 12.3.1 Phospholipids in Oil 422

12.3.1.1 Enzymatic degumming 423 12.3.1.2 Enzymatic degumming and

enzymatic biodiesel production 426 12.4 Enzymatic Biodiesel Production 427 12.4.1 Lipases 427

12.4.1.1 Immobilized enzymes 429 12.4.1.2 Free, liquid formulated enzymes 430

12.4.2 Factors That Influence Enzyme Performance 431

xvContents

12.4.2.1 Water content 431 12.4.2.2 Alcohols and temperature 433 12.4.2.3 pH 434 12.4.2.4 Solvents 435

12.4.3 Process Design Considerations 436 12.4.3.1 Stirred tank reactor, batch

process 436 12.4.3.2 Continuous stirred tank

process 437 12.4.4 Packed-Bed Reactors 438 12.5 Commercial or Near-Commercial Enzymatic

Biodiesel Solutions 438 12.5.1 The Novozymes BioFAME Process 438

12.5.1.1 Transesterification 438 12.5.1.2 Effect of minor components

in the feedstock 440 12.5.1.3 Enzyme and glycerol recovery 442 12.5.1.4 The caustic wash 443

12.6 Other Processes 443 12.6.1 Transbiodiesel 443 12.6.2 Piedmont Biofuels 444 12.6.3 Tsinghua University 444

13. Promiscuous Biocatalysts: Applications for Synthesis from Laboratory to Industrial Scale 449

Qi Wu and Xian-Fu Lin

13.1 Introduction 449 13.2 Classical Organic Reactions Catalyzed by

Promiscuous Enzymes 450 13.2.1 Enzymatic Aldol Reaction 450 13.2.2 Enzymatic Decarboxylative Aldol

Reaction 457 13.2.3 Enzymatic Knoevenagel Reaction 458 13.2.4 Decarboxylative Knoevenagel

Reaction 460

xvi Contents

13.2.5 Enzymatic Michael Addition Reactions 461 13.2.5.1 Lipase-catalyzed Michael

addition 462 13.2.5.2 Protease-catalyzed Michael

addition 466 13.2.5.3 Stereoselectivity of

hydrolase-catalyzed Michael addition 469

13.2.5.4 4-Oxalocrotonate tautomerase-catalyzed Michael addition 472

13.2.5.5 Phenolic acid decarboxylases-catalyzed Michael addition 473

13.2.6 Enzymatic Markovnikov Addition 473 13.2.7 Enzymatic Diels–Alder Reaction 478 13.2.8 Enzymatic Henry Reaction 479 13.2.9 Enzymatic Mannich Reaction 481

13.2.10 Enzymatic Hantzsch-Type Reaction 483

13.2.11 Enzymatic Ugi Reaction 484 13.2.12 Enzymatic Biginelli Reaction 484 13.2.13 Enzymatic Friedel–Crafts

Alkylation 481 13.2.14 Enzymatic Oxidation Reaction 489 13.2.15 Other Promiscuities 496

13.3 Multiple-Promiscuities of One Enzyme 497 13.4 Application of Enzymatic Promiscuity in

Multistep Organic Processes 500 13.4.1 Single Enzyme-Catalyzed Multistep

Organic Process 500 13.4.2 Multiple Enzyme-Catalyzed Multistep

Organic Processes 505 13.5 Industrial Application of Promiscuous Enzymes 502 13.6 Conclusions and Outlook 511

xviiContents

14. Micromagnetic Porous and Non-Porous Biocatalyst Carriers 521

Julia Stolarow, Berna Gerçe, Christoph Syldatk, Ivana Magario,

Christian Morhardt, Matthias Franzreb, and Rudolf Hausmann

14.1 Introduction 521 14.2 Theoretical Considerations of Mass Transfer

Phenomena 526 14.3 Experiment-Based Factors for Estimation

of Immobilization Quality 536 14.4 Selected Examples for Comparison of Porous

and Non-Porous Biocatalyst Carriers 537 14.4.1 Effects of the Substrate Properties on

the Effectiveness Factor of Porous and Non-Porous Biocatalyst Carriers 538

14.4.2 Effects of Protein Loading on Effectiveness Factor of Porous and Non-Porous Biocatalyst Carriers 542

14.4.3 Effects of Porous and Non-Porous Carriers on the Effectiveness Factor 545

14.4.4 Effects Not Covered by Mass Transfer Transport to the Carrier Model 547

14.5 Conclusion 549

15. Robust Enzyme Preparations for Industrial Application 553

Oliver Thum, Frank Hellmers, and Marion Ansorge-Schumacher

15.1 Introduction: Robustness—a Mandatory Feature of Industrial Enzymes 553

15.2 Immobilisation Strategies 557 15.2.1 Attachment to Carriers 558 15.2.2 Carrier-Less Cross-Linking 559 15.2.3 Entrapment in Polymeric Matrices 560 15.3 Synthetic Applications Using Robust Immobilised

Enzymes 561 15.3.1 Ester Synthesis and Cleavage 562 15.3.2 Modification of Sugars 566 15.3.3 Production of β-Lactam Antibiotics 573 15.4 Conclusion 577

xviii Contents

16. Hydrolases in Non-Conventional Media: Implications for Industrial Biocatalysis 583

Veronika Stepankova, Jiri Damborsky, and Radka Chaloupkova

16.1 Introduction 583 16.2 Biocatalysis in Organic Solvents 585 16.2.1 Nearly Anhydrous Organic Solvent Systems 585 16.2.2 Biphasic Systems 594 16.2.3 Organic Co-Solvent Systems 594 16.3 Biocatalysis in Ionic Liquids 596 16.3.1 Nearly Anhydrous IL Systems 603 16.3.2 IL-Based Biphasic Systems 604 16.3.3 IL Co-Solvent Systems 605 16.3.4 Ionic Liquids as Coating Agents 606 16.4 Biocatalysis in Deep Eutectic Solvents 606 16.5 Supercritical Fluids 610 16.6 Fluorous Solvents 614 16.7 Case Study: Haloalkane Dehalogenases in the

Presence of Organic Co-Solvents 615 16.8 Concluding Remarks 620

17. Ene-Reductases from Cyanobacteria for Industrial Biocatalysis 631

Yilei Fu, Kathrin Castiglione, and Dirk Weuster-Botz

17.1 Introduction 631 17.2 Asymmetric Reduction of Alkenes 632 17.3 Ene-Reductases from the Old Yellow Enzyme

Family 634 17.3.1 Structure and Classification of

Ene-Reductases 634 17.3.2 Reaction Types and Catalytic Mechanism 635 17.3.3 Substrate Spectrum and Stereoselectivities 639 17.4 Ene-Reductases from Cyanobacteria 642 17.4.1 Substrate Spectrum 643 17.4.2 Cofactor Specificity 645 17.4.3 Stereoselectivity 646

xixContents

17.5 Preparative Bioreduction of Alkenes 647 17.5.1 Baker’s Yeast Mediated Biotransformation 647 17.5.2 Biocatalysis Using Isolated Ene-Reductases 649 17.5.3 Whole-Cell Bioreduction by Recombinant

Escherichia Coli 651 17.6 Concluding Remarks 655

18. Cytochrome P450 Biocatalysts: Current Applications and Future Prospects 663

Santosh Kumar

18.1 Introduction 663 18.2 Cytochrome P450: General Background 664 18.3 Cytochrome P450-Mediated Drug Interactions 665 18.3.1 CYP Induction 666 18.3.2 CYP Inhibition 667 18.3.3 CYP Polymorphism 668 18.4 Cytochromes P450 as Potential Biocatalysts 669 18.4.1 Potential Applications 669 18.4.2 Limitations of Cytochromes P450 as

Biocatalysts and Their Possible Solutions 670 18.5 Application of Cytochrome P450 in

Biotechnology: Industrial Synthesis 671 18.5.1 Background 671 18.5.2 CYP Enzymes in the Synthesis of Drugs

and Drug Metabolites 672 18.5.3 Future Prospects of Engineered CYP

Enzymes in Industrial Synthesis 673 18.6 Application of Cytochrome P450 in Biosensors 676 18.6.1 Background 676 18.6.2 CYP Biosensors 677 18.6.3 Future Prospects of CYP Biosensors 679 18.7 Application of Cytochrome P450 in Gene-Directed

Enzyme Prodrug Therapy (GDEPT) 680 18.7.1 Background 680 18.7.2 CYP-Based GDEPT 681

xx Contents

18.7.3 Future Prospects of CYP-Based GDEPT 682 18.8 Application of Cytochrome P450 in

Phytoremediation 684 18.8.1 Background 684 18.8.2 CYP-Based Phytoremediation Using

Wild-Type Plants 685 18.8.3 CYP-Based Phytoremediation Using

Transgenic Plants 685 18.8.4 Future Prospects of CYP-Based

Phytoremediation 686 18.9 Conclusion 688

19. Laccases: Green Biocatalysts for Greener Applications 697

Susana Rodríguez-Couto

19.1 Introduction 697 19.2 Occurrence of Laccases 700 19.3 Mode of Action of Laccases 700 19.4 Biochemical Properties 701 19.5 Structure of Laccases 702 19.6 Heterologous Production of Laccases 704 19.7 Potential Industrial Applications of Laccase

Enzymes 705 19.7.1 Food Industry 706

19.7.1.1 Wine stabilization 706 19.7.1.2 Preventing taint in cork stoppers 706 19.7.1.3 Baking 707 19.7.1.4 Sugar beet pectin gelation 707 19.7.1.5 Treatment of wastewater from

the food industry 707 19.7.2 Pulp and Paper Industry 708

19.7.2.1 Pulp bleaching 708 19.7.2.2 Treatment of paper mill effluents 708 19.7.2.3 Other paper and pulp applications 709

19.7.3 Delignification of lignocellulosics 709 19.7.4 Textile Industry 710

xxiContents

19.7.4.1 Wastewater treatment 710 19.7.4.2 Textile bleaching 710 19.7.4.3 Other textile applications 711

19.7.5 Soil Bioremediation 711 19.7.6 Biosensors and Biofuel Cells 712 19.7.7 Synthetic Chemistry 712 19.7.8 Cosmetics and Personal Care Applications 713 19.7.9 Removal of Pharmaceutical Compounds 713 19.8 Outlook 714

20. Lipase-Catalyzed Epoxidation of Fatty Compounds and Alkenes 723

Fabian Haitz, Steffen Rupp, Thomas Hirth, and Susanne Zibek

20.1 Introduction 723 20.2 Lipase-Catalyzed Epoxidation of Fatty Compounds

and Alkenes 724 20.2.1 Epoxides: Oxirane Oxygen Compounds as

Functional Intermediates 725 20.2.2 Chemical Epoxidation 728 20.2.3 General Features of Triacylglycerol Lipases 731 20.2.4 Lipase-Catalyzed Epoxidation of Fatty

Compounds 734 20.2.4.1 Epoxidation of fatty acids 737 20.2.4.2 Epoxidation of fatty acid esters 743 20.2.4.3 Epoxidation of various plant oils 749

20.2.5 Lipase-Catalyzed Epoxidation of Alkenes 754 20.2.5.1 Linear and branched alkenes 755 20.2.5.2 Cyclic alkenes 762

20.2.6 Stability of Lipases 769 20.2.7 Application of Epoxidized Fatty Compounds 772 20.2.8 Conclusions 774

21. Synthetic Potential of Dihydroxyacetone-Utilizing Aldolases 783

Anne K. Samland and Georg A. Sprenger

21.1 Introduction 783 21.2 Enzymatic C–C Bond Formation Using Aldolases 784

xxii Contents

21.3 Classification of Aldolases by Donor Specificity 786 21.4 Preparative Syntheses Using Aldolases 786 21.5 Stereocomplementary DHAP-Dependent Aldolases 787 21.6 Limitations of DHAP-Dependent Aldolases 788 21.7 Dihydroxyacetone Utilizing Aldolases 790 21.8 FSA from Escherichia coli is a DHA-Utilizing Aldolase 790 21.9 Biological Function of FSA 791 21.10 Substrate Scope for Donor Substrates 792 21.11 Self- and Cross Aldolization of Glycolaldehyde 794 21.12 Synthetic Applications 795 21.13 Substrate Scope for Acceptor Aldehydes 795 21.14 Lack of Stereoselectivity of FSAA for the α-Position

of the Aldehyde 799 21.15 Chemo-Enzymatic Syntheses 800 21.16 Enzyme Cascade Reactions 802 21.17 Industrial Applications 803 21.18 Other DHA-Utilizing Aldolases 804 21.19 De novo Design of a Retro-Aldolase 810 21.20 Perspectives 810 21.21 Conclusions 811

22. The Hydantoinase Process: Recent Developments for the Production of Non-Canonical Amino Acids 817

Ulrike Engel, Jens Rudat, and Christoph Syldatk

22.1 Introduction 817 22.2 The Hydantoinase Process: Biocatalytic Production

of Chiral α-Amino Acids 818 22.3 Hydantoinase and Dihydropyrimidinase 819 22.3.1 Definition of Terms 819 22.3.2 Distribution of Hydantoinases and

Dihydropyrimidinases in Nature 820 22.3.3 Characteristics 821 22.3.4 Classification 822 22.4 N-carbamoyl Amino Acid Cleaving Enzymes 822 22.4.1 β-Ureidopropionases and L-Carbamoylases 822

xxiiiContents

22.4.2 D-Carbamoylases 823 22.5 Hydantoin Racemases 824 22.6 Chemoenzymatic Production of Amino Acids 827 22.6.1 D-α-Amino Acids 827 22.6.2 L-α-Amino Acids 842 22.6.3 β-Amino Acids 847 22.7 Conclusions and Future Prospects 851

23. Biotechnological Approaches to Dipeptide Production 863

Martin Krehenbrink, Ahmed Sallam, and Alexander Steinbüchel

23.1 Dipeptides: The Future of Amino Acids? 863 23.2 Dipeptide Production: State of the Art and

Alternative Technologies 866 23.2.1 Extraction from Natural Sources 867 23.2.2 Chemical Synthesis 867 23.2.3 Biotechnological Processes 868 23.2.4 Non-Ribosomal Peptide Synthetases 874 23.2.5 L-Amino Acid Ligase 876 23.3 Outlook 880

24. Synthetic Enzyme Cascades for Valuable Diols and Amino Alcohols: Smart Composition and Optimization Strategies 887

Torsten Sehl, Justyna Kulig, Robert Westphal, and Dörte Rother

24.1 Introduction 887 24.1.1 Asymmetric Synthesis of Chiral

α-Hydroxy Ketones, 1,2-Amino Alcohols and 1,2-Diols 887

24.1.2 Enzyme Toolboxes to Obtain High Product Diversity 892

24.1.3 Advantages and Challenges of Enzyme Cascades 893

24.1.4 Cascade Designs 894 24.1.5 Synthetic Enzyme Cascades for the

Production of Valuable 1,2-Amino Alcohols and 1,2-Diols 895

xxiv Contents

24.2 Toolbox of ThDP-Dependent Enzymes for C–C Coupling 896

24.2.1 Accessible Product Platform of α-Hydroxy Ketones 898

24.2.2 Integrated Engineering for Carboligase-Step Optimisation 900

24.2.2.1 Enzyme engineering 900 24.2.2.2 Substrate screening 902 24.2.2.3 Solvent screening 903 24.2.2.4 Reaction optimisation 904 24.2.2.5 Process design 905

24.3 Combining Enzymatic Carboligation and Reductive Amination for Production of Chiral 1,2-Amino Alcohols 906

24.3.1 Enzyme Screening of Reductive Aminase Activity towards α-Hydroxy Ketones 907

24.3.2 Two-Step Biocatalytic Synthesis of Norpseudoephedrine in Different Cascade Modes 910

24.3.3 Smart Composition of Linear Enzyme Cascades for the Synthesis of 1,2-Amino Alcohols 911

24.4 Combining Enzymatic Carboligation and Oxidoreduction for Production of Chiral 1,2-Diols 915

24.4.1 Enzyme Screening of Reductase Activity towards α-Hydroxy Ketones 916

24.4.2 Optimisation of Reductase Step 918 24.4.3 Two-Step Two-Pot Enzymatic Synthesis

of 1,2-Diols with Cofactor Regeneration System 919

24.4.4 Sustainability Improvement of the Production of 1,2-Diols 921

25. Metabolic Engineering for the Biosynthesis of Longevity Molecules Rapamycin and Resveratrol 931

Victor M. Ye and Sujata K. Bhatia

25.1 Introduction 931

xxvContents

25.2 Rapamycin and Its Analogs 932 25.2.1 Cinical Properties of Rapamycin and Mode

of Action 932 25.2.2 Biosynthesis of Rapamycin 934 25.2.3 Improvement of Rapamycin Production by

Traditional Mutagenesis and Precursor Metabolic Engineering 934

25.2.4 Generation of High Titer Rapamycin Production Strain by Mutagenesis, Rational Screening, and Bioprocess Optimization 936

25.2.5 Biosynthesis of Bioengineered Rapalogs 938 25.3 Resveratrol 939 25.3.1 Health Benefits of Resveratrol and

Mechanism of Action 939 25.3.2 Biosynthesis of Resveratrol 941 25.3.3 Engineering E. coli for Resveratrol

Production 942 25.3.4 Engineering Yeast for Resveratrol

Production 942 25.3.5 Engineering Plants for Resveratrol

Production 943 25.4 Conclusion 944

26. Detergent Proteases 949

Karl-Heinz Maurer

26.1 Introduction 949 26.2 Market 951 26.3 Protease Products and Molecules 952 26.4 Performance 957 26.5 Enzyme Screening and Development 959 26.6 Production Organisms and Production 963 26.6.1 Production of Enzymes 963 26.6.2 Bacillus Fermentation Process 964 26.6.3 Fungal Fermentation Process 966 26.6.4 Downstream Processing 966

xxvi Contents

26.7 Product Formulation (Confectioning) 967 26.7.1 Confectioning: Granulation for Powder

Products and Tablets 968 26.7.2 Confectioning: Liquid enzyme products 969 26.7.3 Detergent Formulation 970

26.7.3.1 Detergent powder products 971 26.7.3.2 Detergent tablet products 971 26.7.3.3 Liquid detergent products 972

26.8 Safety Aspects 973 26.8.1 Human Risk Assessment

(Consumer Safety, Worker Safety) 973 26.8.2 Environmental Risk Assessment 975 26.8.3 Enzyme Analysis 976 26.8.4 Enzyme Product Level 976 26.8.5 Detergent Product Level 977 26.8.6 Dust or Aerosol Level 977 26.9 Sustainability Aspects 978 26.10 Regulatory and Legal Aspects 978 26.11 Outlook 979

27. Industrial Starch Processing 985

Józef Synowiecki, Anna Panek, and Olga Pietrow

27.1 Introduction 985 27.2 Starch Isolation 986 27.3 Modified Starches 988 27.4 Enzymes Used in Starch Processing 991 27.4.1 α-Amylases 991 27.4.2 Debranching Enzymes 986 27.4.3 Exoamylases 993 27.5 Amylolytic Enzymes in Food Processing 994 27.6 The Use of Amylases in Production of Starch

Syrups 995 27.7 Other Starch Derivatives 997 27.8 Production and Applications of Cyclodextrins 998 27.9 Biodegradable Packaging Material 1000

xxviiContents

27.10 Production of Biofuel 1002 27.11 Conclusions 1002

28. Algae: A Rich Source of Energy and High-Value Products 1007

Peter Grunwald

28.1 Introduction 1007 28.2 Algae: General Characteristics 1009 28.3 Advantages and Disadvantages of Algae as

Biomass Feedstock 1012 28.4 Conversion of Algal Biomass 1015 28.4.1 Algae-Based Biofuels 1015

28.4.1.1 Biodiesel from algae 1015 28.4.1.2 Re-utilization of glycerol 1020

28.5 Alcohols from Second-Generation Feedstocks: General Aspects 1029

28.5.1 Bioethanol from Algae 1031 28.6 High-Value Products from Algae 1034 28.6.1 Polyunsaturated Fatty Acids 1035 28.6.2 Carotenoids 1038 28.6.3 Phycobilins 1043 28.6.4 Transgenic Microalgae as Cell Factories 1044 28.6.5 Utilization of Protein Waste 1047 28.7 Conclusions 1051

29. Enzyme-Catalysed Processes in a Potential Algal Biorefinery 1065

Bhavish Patel, Pongsathorn Dechatiwongse, and Klaus Hellgardt

29.1 Introduction 1065 29.2 Direct Synthesis and Excretion 1068 29.2.1 Oxygenic Photosynthesis: Solar Energy

Storage Mechanism 1068 29.2.1.1 Light reaction 1069 29.2.1.2 Dark reaction 1070

29.2.2 Excretion of Hydrogen 1071 29.2.2.1 Hydrogen biosynthesis pathway 1071

xxviii Contents

29.2.2.2 Green algae 1072 29.2.2.3 Cyanobacteria 1074

29.2.3 Excretion of Isoprene 1076 29.2.3.1 Isoprene biosynthesis

pathway 1077 29.2.3.2 Isoprenoids biosynthesis

pathway 1078 29.2.3.3 MVA pathway 1078 29.2.3.4 MEP pathway 1079

29.2.4 Excretion of Long-Chain Hydrocarbons 1079 29.3 Biocatalytic Release and Transformation 1081 29.3.1 Biocatalysed Lysis 1082 29.3.2 Bioalcohol (Ethanol/Butanol) Synthesis 1084 29.4 Biodiesel Synthesis 1086 29.5 Conclusion 1090

30. Biocatalytic Synthesis of Polymers: A Contribution to Green Chemistry 1101

Karla A. Barrera-Rivera and Antonio Martinez-Richa

30.1 Introduction 1101 30.2 Enzymatic Polymerizations 1102 30.2.1 Lipase for Polymer Synthesis 1103 30.3 Polyester Synthesis 1104 30.3.1 Enzyme-Catalyzed Polycondensations 1106 30.3.2 Enzyme-Catalyzed Ring-Opening

Polymerizations of Cyclic Esters 1107 30.3.3 AA-BB Type Enzymatic Polyesterification 1109 30.3.4 Enzyme-Catalyzed Ring-Opening

Polymerizations of Cyclic Esters 1110 30.3.5 Mechanism of Lipase-Catalyzed

Ring-Opening Polymerization of Cyclic Esters 1117

30.4 Poly(Carbonates) Synthesis 1118 30.5 Polyamides Synthesis 1120 30.6 Outlook 1121

xxixContents

31. Bio-Based Chemicals and Materials 1127

Peter Grunwald

31.1 Introduction 1127 31.2 General Aspects 1130 31.3 Identification of Platform Chemicals 1133 31.4 Bio-Based C2–C6 Platform Chemicals 1138 31.5 Other Platform Chemicals 1148 31.6 Polymers: Bio-based and Biodegradable 1150 31.6.1 Some Industrial Applications 1152 31.6.2 Microbial Production of Renewable

Building Blocks for Biopolymers 1153 31.7 Conclusion 1155

Index 1165

Preface

Biocatalysis has meanwhile become an essential tool in the chemical industry and is the central part of biotechnology, defined by the European Federation of Biotechnology already in 1988 as “the integration of natural sciences and organisms, cells, parts thereof, and molecular analogues for products and services.” As to the industrial application, biocatalysis is the core of industrial biotechnology, also known as white biotechnology; “white” stands for the positive impact on the environment associated with the use of biocatalysts as enzymes or whole cells in chemical processes as an alternative to chemical catalysts. Drivers of this development are the big challenges resulting from concerns about global climate change and the need for an assured energy supply. These aspects are discussed in Chapter 1 together with an overview of the many areas of daily life where biocatalysts are already employed. Modern biocatalysis relies to a large extent on the tremendous advances in the so-called “omics techniques” and the structural elucidation of biomolecules, which have led to synthetic biology and metabolic engineering as new research fields with high application potential for the rational design of enzymes and microbial production strains. In Chapter 2, Daniel Meyer and colleagues from the Biotechnology Research and Information Network introduce the reader to strategies for synthetic applications with recombinant whole-cell biocatalysts and metabolically engineered production strains. They see a convergence of both toward an engineering biology that will penetrate all sectors of the chemical industry and forecast the marked launch of a variety of products with properties that outperform their counterparts produced from crude oil with respect to quality and diversity. This is followed by a detailed overview of methods employed for directed evolution of industrial enzymes (creation of libraries and screening) with many examples from all six enzyme classes, written by Youyun Liang, Ee Lui Ang, and Huimin Zhao; Chapter 3 includes directed

xxxii Preface

evolution in pathway engineering and combinatorial strategies to optimize the expression of pathway genes. The generation of new enzyme functions by mutations is accompanied in many cases by a decrease in thermodynamic stability. In Chapter 4, Nobuhico Tokuriki and colleagues discuss the fundamentals of the underlying processes together with the state of the art concerning methods to overcome such limitations to enable effective enzyme engineering. Jun-ichiro Hattan and Norihiko Misawa report in Chapter 5 about tailored production strains for the synthesis of functional isoprenoids and the cataloguing of novel terpene synthase genes isolated from edible plants. The contribution by Jordan McEwen and Shota Atsumi (Chapter 6) deals with metabolic engineering applied to the bio-based conversion of CO2 for the synthesis of new fuel-like molecules as petroleum replacements in the fuel industry. Subsequently, Wael Sabra and An-Ping Zeng address the importance of microbial consortia in industrial biotechnology. In Chapter 7, the authors illustrate how these mixed bacterial cultures can act together to generate bioelectricity (microbial fuel cells), or in the production of hydrogen, methane, and other chemicals. Eldie Berger, Eloy Ferreras, Mark P. Taylor, and Don A. Cowan critically examine the use of extremophiles in biofuel synthesis; Chapter 8 includes a discussion of major microbial strains and enzymes involved in different production steps, new developments in strain engineering, and pre-treatment procedures for lignocellulosic biomass. In Chapter 9, Aharon Oren describes the potential industrial utilization of halophilic microorganisms and enzymes. Famous examples are the green algae Dunaliella salina for producing β-carotene, and Halomonas elongata as a source of ectoine that has been reported to act as a “molecular chaperone”, and meanwhile found a variety of applications in biotechnology as well as in cosmetic products and in the biomedical area. Till Tiso, Nick Wierckx, and Lars M. Blank review in Chapter 10 the importance and potential of non-pathogenic Pseudomonas with a focus on P. putida as platform for industrial biocatalysis; the chapter summarizes compounds produced in industry with these microorganisms as well as industrially used enzymes from Pseudomonas strains. The chapter contributed by Petra Peters-Wendisch and Volker F. Wendisch (Chapter 11) describes in detail

xxxiii

the use of Corynebacterium glutamicum strains for the sustainable production of a variety of compounds such as organic acids, alcohols, diamines, polyhydroxyalkanoates, and proteins from alternative carbon sources, enabled by metabolic engineering. Chapter 12, contributed by Jesper Brask, David Cowan, and Per Munk Nielsen (Novozymes), deals with the application of industrial enzymes in biodiesel production; the emphasis is on phospholipases used for the removal of phospholipids, and lipases as an alternative to chemical catalysts in the transesterification process. Enzymes being promiscuous with respect to the substrates accepted or to the catalyzed reaction type are very interesting biocatalysts due to their capability of converting a wide range of substrates. In Chapter 13, Qi Wu and Xian-Fu Lin highlight their (industrial) application in non-conventional organic reactions, including tandem synthetic processes. Chapters 14 and 15 deal with the immobilization of enzymes, which has a variety of advantages (stabilization, reuse of the catalyst, simplified product recovery, etc.) over the employment of dissolved ones. Julia Stolarow, Berna Gerçe, Christoph Syldatk, Ivana Magario, Christian Morhardt, Matthias Franzreb, and Rudolf Hausmann discuss micro-magnetic non-porous carriers in comparison to porous supports with a focus on theoretical considerations concerning mass transfer phenomena. Oliver Thum, Frank Hellmers (Evonic Industries), and Marion Ansorge- Schumacher provide an overview on the various immobilization strategies together with selected examples of uses of robust immobilized enzymes for large-scale applications under individual process conditions. In Chapter 16, Veronica Stepankova, Jiri Damborsky, and Radka Chaloupkova then treat the behavior of hydrolases in non-conventional media (organic solvents, ionic liquids, deep eutectic solvents, supercritical fluids, and fluorous solvents). By a case study with haloalkane dehalogenases in the presence of organic co-solvents, the authors demonstrate how the effect of solvents on enzyme structure and function can be mechanistically explained at the molecular level and mathematically modeled. Three contributions deal with members of the enzyme class 1, the oxidoreductases. In Chapter 17, Yilei Fu, Kathrin Castiglione, and Dirk Weuster-Botz report about ene-reductases

Preface

xxxiv

from cyanobacteria for industrial biocatalysis. These enzymes are capable of generating chiral molecules by the asymmetric reduction of C=C bonds and are hence of much interest in connection with the synthesis of enantiopure molecules for application in the pharmaceutical and chemical industries. The chapter includes whole-cell bioreductions using engineered E. coli overexpressing an ene-reductase. The contribution by Santosh Kumar (Chapter 18) about cytochrome P450 biocatalysts—apart from providing general information about these enzymes—introduces the readers to many applications, including their use for industrial synthesis of drugs, drug metabolites, and other chemicals, for biosensor design to monitor drug levels in the plasma, for gene-directed enzyme prodrug therapy applicable to targeted cancer treatment, and finally for phytoremediation of soil and water contaminants. In Chapter 19, Susana Rodríguez- Couto finally discusses laccases—copper-containing polyphenol oxidases—under the topic “Green Biocatalysts for Greener Applications,” which comprises, among others, pulp bleaching, denim finishing, wastewater treatment, delignification of lignocellulosics, and their use for the fabrication of biosensors and biofuel cells. Chapter 20, by Fabian Haitz, Steffen Rupp, Thomas Hirth, and Susanne Zibek, deals with the lipase- catalyzed epoxidation of unsaturated fatty compounds from renewable raw materials, and mineral oil–based linear, branched, or cyclic alkenes as an alternative to chemical procedures. The resulting epoxides are important intermediates in the industrial chemical industry. The synthetic potential of dihydroxyacetone-utilizing aldolases is the topic of Chapter 21, contributed by Anne K. Samland and Georg A. Sprenger. This rather new group of aldolases catalyzing stereoselective carbon–carbon bond formation is characterized by an unprecedented donor tolerance, a wide acceptor scope, strict stereoselectivity even with unnatural substrates, and temperature and solvent tolerance. Examples of industrial applications are included. Ulrike Engel, Jens Rudat, and Christoph Syldatk (Chapter 22) discuss the “hydantoinase process” with respect to recent developments for the production of non-canonical optically pure amino acids. The isolation of novel strains, optimization by genetic modification, heterogeneous expression and the composition of “designer bugs,” and improvement of

Preface

xxxv

space-time yields by process engineering measures like enzyme immobilization have led to a considerable enhancement of the product range. Dipeptides play a pivotal role in nutrition and fulfill very specific roles within the body. In Chapter 23, Martin Krehenbrink, Ahmed Sallam, and Alexander Steinbüchel discuss possible biotechnological approaches (chemoenzymatic routes, cell-based production methods, etc.) to the production of these compounds with their enormous application potential. The contribution by Torsten Sehl, Justyna Kulig, Robert Westphal, and Dörte Rother deals with synthetic enzyme cascades for the production of valuable 1,2-amino alcohols and 1,2-diols from cheap achiral precursors (Chapter 24) with a focus on stereoselective synthesis of α-hydroxy ketones, vicinal amino alcohols, and diols as versatile building blocks for the pharmaceutical and chemical industries. Rapamycin is known as a compound with a variety of clinically useful characteristics. Some of these properties have been shown to be potentiated by resveratrol. Both compounds are available from natural sources in only low amounts. In Chapter 25, Victor M. Ye and Sujata K. Bhatia discuss how to increase the availability of these compounds for clinical or nutraceutical applications through the combination of traditional mutagenesis and metabolic engineering. The subject “Detergent Proteases” (Chapter 26), the use of technical enzymes in the detergent industry, has been covered by Karl-Heinz Maurer (AB Enzymes). The chapter contains all important aspects of this topic, including the market situation, the performance of different proteases, production organisms and processes, product formulations, safety aspects, and environmental risk assessment. Starch is the main carbohydrate component of many agricultural products. Enzymes used in industrial processing of starch, valuable products derived from starch, and its use for the manufacture of biodegradable plastics or for the production of bioethanol are treated in an overview by Józef Synowiecki and coworkers Anna Panek and Olga Pietrow in Chapter 27. Algae biotechnology belongs to the hot topics in this area: After an introduction to algae as a rich source of energy and high-value products (Chapter 28), Bhavish Patel, Pongsathorn Dechatiwongse and Klaus Hellgardt summarize enzyme-catalyzed

Preface

xxxvi

processes in a potential algal biorefinery. The authors describe in Chapter 29 among others key biocatalytic processes leading to the direct excretion of drop-in fuels, ranging from hydrogen and isoprene to long chain hydrocarbons and develop a complete picture of an algae-based biorefinery concept In Chapter 30, about the biocatalytic synthesis of polymers, Karla A. Barrera-Rivera and Antonio Martinez-Richa introduce the reader to a field of industrial biocatalysis with a promising future because the multitude of different monomers provided by Nature enables in principle the production of polymers with precisely tuned properties. The final chapter provides a brief overview on the development toward an increasing production of bio-based chemicals and materials (commodity chemicals, fine chemicals, polymers), also forecasted by recent market analyses. One of its main drivers is a profound understanding of metabolic pathways, enabling their modification and reconstruction, and the generation of robust “microbial chemical factories.” The contributions compiled in this book underline the highly interdisciplinary character of industrial biocatalysis. Furthermore, they mirror the gradual shift from a primarily petro-based to a more and more bio-based economy—a development where industrial biocatalysis/biotechnology plays a key role in meeting the challenges resulting from the increasing demand of the still continuously growing world population for energy, food and raw materials. The editor is indebted to the staff at Pan Stanford Publishing Pte. Ltd. for their invaluable support during the publication of this book.

Peter Grunwald

Preface

Chapter 1

Industrial BiocatalysisEdited by Peter GrunwaldCopyright © 2015 Pan Stanford Publishing Pte. Ltd.ISBN 978-981-4463-88-1 (Hardcover), 978-981-4463-89-8 (eBook) www.panstanford.com

Biocatalysts: Global Market, Industrial Applications, Aspects of Biotransformation Design, and Societal Challenges

1.1 Introduction

Different research institutes prognosticate an annual growth rate of the global market for industrial enzymes of about 5% for the next years. Drivers for this continuous rise are innovations in various areas of biotechnology, together with the ever-increasing demand for environment-friendly, sustainable solutions for industrial pro-duction processes by replacing conventional chemical catalysts with biocatalysts.

Enzymes that efficiently catalyze the manifold reactions in living organisms are isolated from higher eukaryotes, such as plants and animals (Liu et al., 2004), and in the recent past to an

Peter GrunwaldDepartment of Physical Chemistry, University of Hamburg, Grindelallee 117, D-20146 Hamburg, Germany

[email protected]

� Biocatalysts

increasing extent from microbial cells, which are also a source of new industrially important biocatalysts (Steele et al., 2009) identified by high-throughput screening and metagenome analysis enabling the assessment of uncultured microbial communities in complex ecosystems from different environments (Simon and Daniel, 2011; see also Chapter 7). These biocatalysts have evolved to work under physiological conditions for millenniums. Their application as catalysts has a long tradition in the food and detergent industry. For application in connection with the production of bulk and fine chemicals, including pharmaceuticals and nutraceuticals, or the production of biofuels from lignocellulosic materials (e.g., Baek et al., 2012), their properties have to be improved to meet the requirements of the respective industrial processes. The methods mostly employed for this purpose are directed evolution and rational protein design—alone or combined (Illanes et al., 2012)—supported among others by computational approaches to predict protein functions from sequence and structure (Lee et al., 2007). Recently published introductions into these fields with respect to biocatalyst engineering came, for example, from Quin and Schmidt-Dannert (2011) and Bommarius et al. (2011). Concerning whole cells employed as chemical factories, significant progress has been achieved during the recent decade in engineering pathways of bacteria (Escherichia coli, Corynebacterium glutamicum, Bacillus subtilis), fungi (Aspergillus niger, A. oryzae, Penicillium chrysogenum) and yeasts (e.g. Saccharomyces cerevisiae) as discussed by Chen and Nielsen (2013) with the bio-based production of the building block chemicals adipic acid, succinic acid and 3-hydroxypropionic acid. Reports about advanced biofuels produced by means of engineering the metabolic pathway of microorganisms (Peralta-Yahya et al., 2012; see also Chapter 6) or the synthesis of short-chain alkanes for direct use as petrol as possible alternative to fossil fuel by introducing new pathways into engineered E. coli (Choi and Lee, 2013) prove the high potential of these new molecular tools (for a comprehensive overview including results of improved pathway productivity in a variety of host cells see Galanie et al., 2013) for a successful future development of industrial biotechnology. Further progress is to be expected from strain development by targeted metabolic engineering based on systems biology. Systems metabolic engineering considers the entire metabolic pathway fluxes and regulatory networks of a cell, as discussed by Lee and Park (2010)

�The Global Enzyme Market

with the L-threonine production in E. coli, or by Wittmann (2010) in connection with the optimization of C. glutamicum for industrial applications (see also Chapter 11). The application of such approaches to natural and synthetic microbial ecosystems has been reviewed by Mee and Wang (2012). Several aspects of these topics are also treated in Chapters 2 to 6.

Finally, synthetic biology makes use of advanced technologies to synthesize DNA which theoretically enables to construct the sequence of a genome thereby generating an artificial organism. Synthetic biology—a kind of genetic manipulation—may find application in connection with the design of industrial strains (Chen et al., 2010), for example, via synthesis of new gene clusters by refactoring of native gene clusters for generating new (non-natural) products of pharmaceutical and other interest; the current state in this field has been reviewed among others by Bornscheuer et al. (2012), Hranueli et al. (2013), and Frasch et al. (2013).

1.� The Global Enzyme Market

According to a recent report by BCC (Business Communications Company) Research about Enzymes in Industrial Applications (2011) the global enzyme market is estimated at US$ 3.3 billion in 2010 and forecasted to reach US$ 4.4 billion by 2015, which means a compound annual growth rate (CAGR) of about 6%. The respective numbers for so-called technical enzymes that in contrast to speciality enzymes are normally used as bulk enzymes are US$ 1 billion for 2010 and 1.5 billion (2015) with the principal customer being the leather industry, followed by companies engaged in bioethanol production. The market for enzymes employed in the food and beverage industry is expected to increase within this 5 years period from US$ 975 million to US$ 1.3 billion (CAGR ~5%); in 2009 nearly 50% of these enzyme sales were allotted to processing of milk and dairy products. Figure 1.1, adapted from statistics provided by Novozymes (2011) in connection with comparing the global enzyme market with that in China, gives a rough estimate of how the enzyme market is divided into the different industrial segments. In addition to the use of enzymes, a variety of biotransformations is carried out with whole cells (including microbial consortia; Chapter 7), among which the prokaryotic microorganism Escherichia coli and the eukaryotic cells

� Biocatalysts

Saccharomyces cerevisiae, and Zymomonas mobilis are important representatives. As metabolizing cells regenerate cofactors whole cells are often employed for redox biotransformation; independent of that, they make enzyme isolation and purification dispensable. Examples of whole cells-mediated biotransformations with more details are given among others in Chapters 9 to 11.

Figure 1.1 The division of industrially employed enzymes into four main application areas (after Novozymes: Selling Enzymes in China, 2011).

1.� Competitive Structures

Although there are several hundred manufacturers of enzymes worldwide, the production of enzymes is concentrated in only a few countries. As shown in Fig. 1.2, Novozymes (Denmark) is the largest player in this industry. Together with Danisco-Genencor they satisfy more than two third of the global market, followed by DSM (The Netherlands). Further 20% are supplied by Roche (Switzerland), Amano and Shin-Nihon (Japan), AB Enzymes and BASF (Germany), and Christian Hansen (Denmark). Another 5% of this market is shared by ADM (USA), KAO (Japan), and BioZyme (USA). The other larger companies with a market share of together about 5% are located in Japan (Meiji, Nagase), the USA (Verenium, Dyadic) as well as in Mexico (Enmex) and Canada (Iogen). The food enzyme business (including oil seed processing) of Verenium/San Diego, among others active with its enzyme products in animal health and nutrition, grain processing, and oil field services, has been recently

�Competitive Structures

Figure 1.� The producers of industrial enzymes with the largest estimated share in the global market reside in European countries.

(2012) acquired by DSM. Dyadic International, Florida, produces enzymes for use in the segments biofuel, animal health, pulp and paper, textile, food and beverage, and has been recently (Nov. 2012) issued its 12th US Patent, describing “methods to increase the yield of fermentative sugars from fermentation of Distillers Dried Grains using mixtures comprising glucoamylase, β-glucosidase, and α-arabinofuranidase.” Iogen (Ottawa, Canada) provides enzymes for use in the pulp and paper, grain processing, brewing, textile, animal feed, and biofuel industries. Furthermore, Iogen owns the world’s longest running cellulosic ethanol facility; in October 2012, Iogen together with the Brasilian Raízen Group, the world’s largest producer of sugarcane ethanol, announced a cooperation for designing a biomass-to-ethanol plant in Piracicaba, a city in the state of Sao Paulo, based on technologies developed by Iogen researchers. The Mexican Enmex, S.A. DE C.V. in Tlalnepantla de Baz (State of México) originally started the production of enzymes with bacterial α-amylase, amyloglucosidase (glucoamylase) and microbial rennet (dairy industry); meanwhile, the company manufactures biocatalysts for application in the segments textile, bakery, and detergents and produces enzymes for nutraceutical formulas. Meiji Seika Pharma Co., Ltd. and Nagase & Co, Ltd. are the leading domestic enzyme producers in Japan for use in the fields of food, household, textiles, and the production of pharmaceuticals; the latter also holds for

� Biocatalysts

Roche (Switzerland), among others a producer of therapeutic proteins—enzymes and antibodies. The largest enzyme manufacturer of the Indian subcontinent is Advanced Enzymes Technologies Inc., founded already in 1957. The company is active in human and animal nutrition, food processing, and industrial processing. The amount of enzymes produced by Chinese companies was about 700,000 metric tons in 2010, which covers less than 1% of the world market. Some of these enzymes such as thermostable α-amylase or phytase are successfully exported, mainly to the United States, Japan, India, and Korea meanwhile resulting in a trade surplus in this area (Li et al., 2012). Furthermore, several overseas-based companies founded production facilities in China; for example, Novozymes has a R&D Center in the Zhonguancun Science Park of Beijing and operates several production facilities in other parts of the country. Similarly Danisco Genencor started in 2007 with the production of industrial enzymes in the eastern Chinese city of Wuxi.

1.� Industrially Used Enzymes

Most of all enzymes employed for production on industrial scale are hydrolases (EC class 3; Chapters 16, 20) which, however, may change because enzymes belonging to other classes such as lyases—e.g., aldolases (Chapter 21), hydroxynitril lyases—or oxidoreductases (Chapters 17 to 19) are meanwhile successfully used for various processes. Of the applied hydrolases, esterases, lipases (EC 3.1.-.-), glycoside hydrolases (EC 3.2.-.-) and peptidases (EC 3.4.-.-, acting on peptide bonds) make up about 70%. Table 1.1 provides an impression about the importance industrial biotechnology has already gained today. The selection of products given in this table shows that they range from comparatively inexpensive bulk products to highly expensive fine chemicals such as vitamins or antibiotics. It should be mentioned that the numbers given for production and prices are associated with a relatively high degree of uncertainty among others due to an increasing demand of some of these products. For example, the production of itaconic acid was 15.000 t/a in 2001 (Wilke and Vorlop, 2001) but already 80.000 t/a in 2009 (Okabe et al., 2009). According to a recent publication, the global amino acid market is estimated to reach US$ 11.6 billion by the year 2015 (Public Relations, 2012).

Table 1.1 The world production (in tons per year) and the world market price in € per kilogram (€/US$ ~1.30) of several compounds resulting from fermentative processes

Product

World production

(t×a–1))

World market

Price (€/kg)

Bioethanol1

Biodiesel (FAME)1

L-Glutamic acidCitric acidItaconic acidL-LysineD,L-MethionineL-ThreonineL-TryptophaneLactic acidVitamin CGluconic acidAntibiotics (bulk products)Antibiotics (specialities)XanthanL-HydroxyphenylalanineDextranVitamin B12

70,000,000 13,000,000

1,500,0001,800,000

80,0001,500,000

40030,000

1,200250,000

80,00050,00030,000

5,00020,00010,000

2003

0.40—

1.500.80

22

206

2028

1.50150

15008

1080

25,000Note: After Soetart et al., 2006; Novalin-Canoy, 2009, and literature cited therein. Some of these compounds cannot be synthesized by chemical means.1Carriquiry et al., 2010.

Regarding industrial application of microbial enzymes under the aspect of the catalyzed reaction type (see also Chapter 3), the situation is characterized by the data compiled in Table 1.2.

If applied as “processing aid,” these enzymes must match the specific conditions of the respective process, such as enhanced temperatures, pH stability, or tolerance to organic solvents. Methods to improve the properties of enzymes with respect to process parameters are, for example, recombinant DNA-technology and pathway engineering (Chapters 2, 3, 4). Such technologies allow for the manipulation of the genetic material of microorganisms used in fermentation processes or to insert genes from higher organisms

Industrially Used Enzymes

� Biocatalysts

such as plants or animals into industrial micro-organisms in order to generate the desired function by expression. It has to be ensured that such genetically modified microorganisms are not released from the fermenter or bioreactor into the environment to avoid ecological problems, and a further deterioration of the acceptance of such methods by the general public—a problem still unsolved.

Table 1.� Large-scale applications of microbial enzymes in industrial biochemistry, arranged according to the type of catalyzed reaction together with the resulting products and their annual global production in tons

Reaction type

Microbial enzyme Product

Production(t×a–1)

Hydrolysis Nitrile hydratase Acrylamide 100,000Penicillin amidase 6-Aminopenicillanic acid 35,000

Resolution D-Hydantoinase 4-Hydroxy-D-phenylglycine

1,200

Pseudomonas enzymes

L-Cystein 5,000

Dehalogenase (S)-2-Chloropropionate 2,000Oxidation D-Sorbitol

dehydrogenaseL-Sorbose 80,000

Hydroxylation Niacin hydroxylase 6-Hydroxynicotinic acid 20Reduction β-Ketoreductase (R)-Carnitin 2,500C-C-synthesis Pyruvate

decarboxylase(R)-Phenylacetyl carbinol

500

L-Tyrosin-phenol-lyase

3,4-L-Dihydroxy-phenyl-alanine (L-DOPA)

300

Conversion of achiral precursors

Fumarase L-Malate 500L-Aspartate ammonia lyase

L-Aspartate 400

Peptide synthesis

Thermolysine α-Aspartame 14,000

Glycosyl transfer

Cyclodextrin glucano-transferase (CGT-ase)

β-Cyclodextrin 10,000

Note: After Vandamme et al., 2006, and Internet searches.

�Industrially Used Enzymes

In Table 1.3, some industrial applications of enzymes—partially already with rather long tradition—are compiled. To the largest industrial segments within the different application areas (see also Fig. 1.1) belong the detergent (Chapter 26), starch (Chapter 27), textile, fuel alcohol, leather, and pulp and paper industry (including paper recycling; Leduc et al., 2011).

Table 1.� Enzymes used in industry, together with applications

Industry Enzyme Application

Detergent Protease Protein stain removalAmylase Removal of starch residuesLipase Degradation of fatty pollutionsCellulase Modification of cellulose fiber

structure with a positive effect on color brightness,

Mannanase Mannan stain removal, anti-redeposi-tion, prevents graying

Starch and fuel

α-amylase Starch liquefaction & saccharification (cleavage of α-1,4-glycosidic bonds)

β-amylase Cleavage of α-1,4-glycosidic bonds from the non-reducing end (starch, glycogen); production of e.g. maltose

γ-amylase Saccharification; additional cleavage of α-1,6-glycosidic bonds (amylopectin/amylose)

Pullulanase – type I Saccharification; attack of α-1,6-glyco-sidic bonds, formation of oligosaccha-rides (debranching enzyme)

Pullulanase – type II Cleavage of α-1,4-/α-1,6- glycosidic bonds

Glucose isomerase Isomerization of glucose fructoseGlycosyltransferases Changing the functional properties of

starch e.g. by creating new branching points

CGT-ase Cyclodextrin productionXylanase Viscosity reduction (fuel, starch)Protease Yeast nutrition; ethanol fermentation

(Continued)

10 Biocatalysts

Industry Enzyme Application

Food/dairy Protease Milk clotting, infant formulas, flavor

Lipase Cheese flavor

Lactase Lactose removal

Pectin methylesterase

Firming fruit-based products

Pectinase Fruit-based products

Transglutaminase Visco-elastic properties

Baking Amylase Bread softness and volume, flour adjustment

Xylanase Dough conditioning

LipasePhospholipase

Dough stability (in situ emulsifier)Dough stability (in situ emulsifier)

Glucose oxidase Dough strengthening

Lipoxygenase Dough strengthening, bread whitening

Protease Biscuits, cookies

Transglutaminase Laminated dough strength

Animal feed

Phytase Phytate digestion

Xylanase Digestibility

β-glucanase Digestibility

Beverage Pectinase De-pectinization, mashing

Amylase Juice teatment, low calorie bear

β-glucanase Mashing

Acetolactate decarboxylase

Maturation (beer)

Laccase Clarification, flavor (beer)

Textile Cellulase Denim finishing, cotton softening

Amylase De-sizing

Pectate lyase Scouring

Catalase Bleach termination

Laccase Bleaching

Peroxidase Excess dye removal

Table 1.� (Continued)

11

Industry Enzyme Application

Pulp & paper

Lipases Pitch & contaminant control

Protease Biofilm removal

Amylase Starch coating etc.

Xylanase Bleach boosting

Cellulase De-inking, drainage improvement

Fats and oils

Lipase Transesterification

Phospholipase De-gumming, lysolecithin

Leather Proteases Unhairing, bating

Lipases De-pickling

Personal care

Amyloglucosidase Antimicrobial

Glucose oxidase Antimicrobial, bleaching

Peroxidase antimicrobialBiofuels (2nd gen-eration), chemicals

EndoglucanasesCellobiohydrolasesβ-GlucosidasesEndo-1,4-β-xyla-nasesα-Glucuronidasesα-Arabinofurano-sid-asesLignolytic peroxidasesPeroxide generating oxidasesLaccases & rela-ted multi-copper oxidases

Cellulose degradation

Hemicellulose degradation

Lignin degradation

Note: After Kirk et al., 2002; Li et al., 2012; Sarrough et al., 2012, with modifications.

1.� Design of Biotransformations

Aspects treated briefly in the following subsections are the immobilization of biocatalysts together with the application of unconventional reaction media. Questions concerning the different types of bioreactors or the choice of biocatalysts and their use as isolated enzymes or in the form of whole cells (advantageous

Design of Biotransformations

1� Biocatalysts

among others for biotransformations that require cofactors), are not discussed here (see, however, Chapter 2). With regard to the application potential of promiscuous enzymes, see Chapter 13, and for the above-mentioned methods available to improve the performance of biocatalysts, the reader is referred to Chapters 2 to 4. The development of industrial processes based on microbial consortia is discussed in Chapter 7.

1.�.1 Immobilization of Biocatalysts

Both enzymes and whole cells are used either as dissolved, and suspended catalysts, respectively, or are transferred into an immobilized—water insoluble—state through attachment to the surfaces of a water-insoluble carrier of organic or inorganic origin or by entrapment within the porous matrix of such materials. The attachment of a biocatalyst by a covalent linkage, an adsorptive or ionic binding, etc., may require the decoration of the carrier’s surface with suited spacers containing terminal functional groups such as –SH, –NH2, aldehyde, epoxide, N-hydroxysuccinimide esters and others for interaction with exposed functional groups of the biocatalyst (e.g., –NH2 of Lys), leading in the case of covalent attachment to its chemoligation in a non-specific way. Chemically inert polymers (polyethylene, polystyrene, etc.) can be treated by means of various plasma technologies (Siow et al., 2006) resulting in carboxylated (CO2-plasma), hydroxylated (O2-plasma) or aminated (H2/N2-plasma) polymer surfaces with enhanced hydrophilic character; for successful application examples see Ghasemi et al. (2011) or Vorhaben et al. (2010). The advantages of immobilization are an easy separation of the catalyst from the reaction mixture, the possibility to reuse the catalysts several times, e.g., in a batch or fed-batch reactor, and an often higher stability, which may enable to carry out the reaction at higher temperatures. To the possible disadvantages of immobilization belong a sometimes lower activity of the biocatalyst compared to its free counterpart, mainly due to mass transfer limitations (discussed in detail in Chapter 14) and/or the chemistry used for immobilization, loss of the biocatalyst through leakage, and additional costs for the carrier material. Diffusion limitations may be reduced by the shape of the carriers (e.g., the lens-shaped Lenticat® beads prepared from polyvinyl alcohol;

1�

Vorlop and Jekel, 1998) and/or the choice of the material employed (Schoenfeld et al., 2013). Carrier-free immobilization is achieved by cross-linking enzyme molecules—mostly glutaraldehyde is used as bifunctional reagent—either in their crystalline state (cross-linked enzyme crystals, CLECs) or based on precipitated enzyme aggregates (cross-linked enzyme aggregates, CLEAs; Sheldon, 2011). The catalysts obtained by both these procedures are characterized by a largely preserved native structure, higher stability toward organic solvents and heat, and an often high storage and operational stability. Because the production of CLECs requires purified enzymes and their laborious crystallization, the CLEA® technology (also in the form of Combi-CLEAs where different enzymes are co-precipitated and co-cross-linked; Mateo et al., 2006) is preferred for industrial applications, among others due to the fact that they may be prepared from crude enzyme preparations (Sheldon and van Pelt, 2013, and literature cited therein). Immobilization procedures should be thoroughly documented according to the guidelines published by the Working Party on Immobilized Biocatalysts within the European Federation of Biotechnology (1983), illustrated in more detail with the immobilization of Nitrosomonas europaea by entrapment through ionotropic gelation within calcium alginate (van Ginkel et al., 1983). Compared to enzymes, immobilization is less common in cases where cells are utilized as catalysts. However, an approach of some biotechnological relevance is an immobilization of whole cells via cell surface expression of carbohydrate-binding modules such as the cellulose-binding domain (Wang et al., 2001), or the chitin-binding domain for the stable immobilization of cells onto the surface of chitin beads (Wang and Chao, 2006). The different immobilization methods and kinds of carrier materials with their pros and cons have been described by Cantone et al. (2013), Liese and Hilterhaus (2013), Datta et al., (2013), DiCosimo et al., (2013), Buchholz et al., (2012), Grunwald (2009), Spahn and Minteer (2008), Blickerstaff (1997), and others. Franssen et al. (2013) in a comprehensive review treated the topic of enzyme immobilization in connection with the production of biorenewables. Examples of immobilized biocatalysts employed for industrial large-scale productions are described in Chapter 15.

Finally, an immobilization with a focus on the selective covalent attachment of proteins onto solid supports also plays an important

Design of Biotransformations

1� Biocatalysts

role in the fabrication of biosensors, or protein microarrays in connection with high-throughput methods for studying protein–protein or protein–small molecule and other interactions, a topic excellently reviewed by Wong et al. (2009) and by Jonkheijm et al. (2008).

1.�.� Non-Conventional Reaction Media

Most biotransformations are carried out in aqueous solutions; however, non-conventional media such as organic solvents may also be employed, and, in principle, ionic liquids, or supercritical solvents, looked at as “green answers” to organic solvents (Anastas and Eghbali, 2010), too. A substitution of water by unconventional solvents is in many cases associated with a variety of advantages with the main one being the possibility to use substrates insoluble in water. Compared with water as reaction medium, enhanced stability and catalytic activity of biocatalysts together with a change of properties, including an inversion of the enantioselectivity, have been reported. However, whether or not such advantages apply to a given biotransformation system cannot be predicted and non-conventional reaction media still represent an active field of research. In any case at least a small amount of residual water is indispensable for biocatalytic activity. The brief introduction to the application of non-conventional solvents as reaction media, given in the following three sections, is discussed comprehensively with many examples by Damborsky and colleagues in Chapter 16.

1.�.�.1 Organic solvents

The use of organic solvents as reaction medium for enzyme-catalyzed reactions has been known for many decades (Sym, 1930; 1936; 1936a), but the findings published obviously went unnoticed by the scientific community. About 30 years ago, Zaks and Klibanov (1984) reported that porcine pancreatic lipase catalyzes the transesterification reaction between tributyrin and various alcohols in quasi water-free organic media at temperatures above 100°C, and already some years earlier Klibanov et al. (1977) proposed “a new approach to preparative organic synthesis” where the enzymatic process is performed in a system containing water together with a water-immiscible organic solvent as a second phase.

1�

Since then, enzymatic catalysis in presence of organic solvents has greatly broadened the application of biocatalysis. Organic solvents without a separate water phase are used in (trans)esterification and amidation reactions. Alternatively, the organic solvent is added to the aqueous reaction mixture, leading to either a monophasic or a biphasic system. The organic phase in a biphasic system often serves as a product and/or substrate reservoir, or simply represents the liquid substrate or product (Straathof et al., 2002). Biocompatible organic solvents, apart from enhancing the biocatalyst’s thermal stability have several advantages. They offer the possibility to enzymatically convert nonpolar substrates and to increase the solubility of substrates and products with a positive effect on space/time yield and volumetric productivity. Furthermore, the outcome of the reaction in question is changed to synthesis instead of hydrolysis. In addition, a solvent may change the catalyst’s properties—sometimes termed “solvent mediated enzyme engineering”—such as its enantioselectivity (Tawaki and Klibanov, 1992; see also Chen and Sih, 1989). However, the presence of an organic solvent is also often associated with a significant reduction of catalytic activity (Zaks and Klibanov, 1988). Nonpolar solvents (log P > 2), although often contributing to significantly increased temperature stability (Grunwald et al., 1988, 1993), may impair the hydrophobic core of the enzyme molecules; more hydrophilic solvents, on the other hand, remove essential water molecules from the enzyme surface and its active site, or disrupt hydrogen bond interactions between subunits, hence affecting the kinetic values (Vmax, KM). As a consequence, the polarity of the reaction medium is a crucial parameter that has to be thoroughly balanced with respect to enzyme stabilization and inactivation (Karan et al., 2012; and literature cited therein). Investigations into the so-called “water activity, aW” by Halling (1984) and Goderis et al. (1987) led to new insights concerning the relation between the amount of water in a non-aqueous reaction medium and the activity of enzymes. For a recent systematic study on the activity and enantioselectivity of a (S-) selective hydroxynitrile lyase in organic solvents (MTBE, toluene, octane) as a function of the water concentration, see Paravidino et al. (2010). Reviews about biocatalysis in organic solvents have been published, for instance, by Carrea and Riva (2000), van Rantwijk and Sheldon (2007),

Design of Biotransformations

1� Biocatalysts

Lozano (2010), and Moniruzzaman et al. (2010), and for examples of industrial biotransformations in organic solvents or biphasic systems, see Liese et al. (2006), Krishna (2002), and Milner and Maguire (2012).

1.�.�.� Ionic liquids

Organic solvents represent a high amount of hazardous industrial wastes with the well-known negative effects concerning air and soil pollution, climate change, etc. An alternative is the use of ionic liquids (ILs) with a melting point below 100°C. Their polarity can be tailored by appropriate combination of anions and cations (Chapter 16). They are normally of high thermal and storage stability and able to dissolve a large variety of inorganic, organic, and polymeric compounds including cellulosic material (e.g., Abdulkhani et al., 2013); the ability of ILs to solubilize sugars has been discussed in connection with the enzymatic synthesis of various glycoconjugates by Galonde et al. (2012). IL’s have a negligible vapor pressure, are inert, and due to their pronounced biocompatibility do not inactivate enzymes as polar organic solvents often do. Typical “first generation” ILs were prepared from, for example, 1-butyl-3-methylimidazolium (BMIM) as cation with tetrafluoroborate or hexafluorophosphate as anion and exert polarities similar to methanol; the first reports about successful (two-phase) biotransformations in such solvents date back to the year 2000 (Cull et al.; Lau et al.). These ILs are rather expensive, which in part is due to the fact that they have to be purified as a requirement for successful application (Park and Kazlauskas, 2003), and their “greenness” is limited due to their high stability, partial water-solubility and low biodegradability; for a review on the environmental fate and toxicity of ILs see Thi et al. (2010). Several examples of alternative easy-to-prepare and biodegradable ILs, so-called advanced ILs, have been reported during the recent years, among them protic ionic liquids (PILs) of the type [R1R2R3NH+][X−], simply synthesized by mixing tertiary amines with carboxylic acids, so that X− is, for example, an acetate, propionate, hexanoate anion. They were successfully tested by de los Rios et al. (2012) with the kinetic resolution of 1-phenyl ethanol by Candida antarctica lipase (not soluble in the PILs). Other examples of comparatively easy to synthesize ILs with improved biodegradability contain

1�

choline as cation combined with anions derived from amino acids, sugars, or alkylsulfates; they may be used as cosolvents with water to support the solubility of hydrophobic substrates. Furthermore, the rather new in most cases water-soluble and very promising deep eutectic solvents are among the advanced ILs; they consist of a salt such as choline chloride mixed with an uncharged hydrogen bond donor, e.g., glycerol or urea, and the eutectics are liquid at room temperature.

One of the most advantageous properties of ILs—apart from being more or less green—is that they can replace polar organic solvents without destroying the enzyme’s catalytic activity and hence extend biotransformations to a polarity range that was inaccessible before the advent of ILs (Park and Kazlauskas, 2003). Disadvantages are apart from being expensive problems related to the separation of products from ILs and their recovery and reuse. Reviews about ionic liquids in biocatalysis have been published, for example, by Kragl et al. (2002), Park and Kazlauskas (2001, 2003), Yang and Pan (2005), van Rantwijk and Sheldon (2007), Cantone et al. (2007), Gorke et al. (2010), Habulin et al. (2011), and Tavares et al. (2013). For a new class of deep eutectic solvents derived from natural products see Dai et al. (2013), and for reports focusing on properties and applications of different kinds of deep eutectic solvents Zhang et al. (2012), Hayyan et al. (2013), and Guo et al. (2013).

1.�.�.� Supercritical fluids

Supercritical fluids (SCFs) are used as solvents as well as extraction media, e.g., in combination with ionic liquids (see below). They are generated from compounds heated and compressed above their critical point as described in Chapter 16. The critical volume Vc of CO2 is distinctly lower than the one of normal gases, indicating that gases in the critical state are considerably denser, and explaining the designation “supercritical fluid.” Hence, SCFs can be used as reaction media with a variety of advantages: the diffusivity of dissolved molecules is higher than in real solvents which means that mass transfer limitations are low, as is the viscosity of SCFs. Apart from CO2, water, methanol, ethane, ethylene, SF6 (nearly as non-polar as xenon) acetone, and others have been used as SCFs. The reason why

Design of Biotransformations

1� Biocatalysts

scCO2 is often given preference over other SCFs is that it lacks all the hazardous properties organic solvents may have (it is neither mutagenic nor cancer-causing, or flammable), and upon degassing the reaction system, the solvent vanishes completely (e.g., Anastas and Eghbali, 2010). In addition, the Tc-value is rather low so that temperature-labile compounds are less impaired. On the other hand, there are a variety of reports according to which scCO2 may show inhibitory effects. For example, Kamat et al. (1992, 1993, 1995) found fluoroform instead of scCO2 to be an ideal solvent for the transesterification of methylmethacrylate with 2-ethylhexanol catalyzed by Candida cylindracea lipase. Problems arising from the use of scCO2 come from the possible formation of carbamates from CO2 and basic amino acid side chains and the formation of carbonic acid, lowering the pH value of the enzyme’s microenvironment. A further disadvantage of SCFs in general is that their application—although a mature technique—requires a rather sophisticated apparatus equipment (Chapter 16).

The influence of pressure on the reactions in SCFs is governed by two effects, that of pressure on the reaction rate itself, and changes in the reaction behavior by pressure dependent parameters such as solvating properties, partitioning coefficient, and the dielectric constant; an increase of the latter with increasing pressure means that the solvent becomes more hydrophilic and may, for instance, lead to a change in enantioselectivity as observed by Kamat et al. (1993) for proteases from B. licheniformis and Aspergillus in HCF3. For a lipase-catalyzed transesterification reaction in scCO2 Matsuda et al. (2001) reported E-values between 10 (high T and p) and 65 (lower T and p values). The water activity is a key parameter of enzyme kinetics in organic solvents or ILs, which also holds for SCFs; for example, the activity of cholesterol oxidase increased by a factor of 10 in presence of low amounts of water compared to the activity in dry scCO2, and the reduction in activity turned out to be fully reversible after addition of 1% (v/v) water (Randolph et al., 1985, 1988). The solubility of H2O in the rather nonpolar CO2 is low but may be adjusted to some extent by the reaction temperature (Jackson et al., 1995). The low polarity of scCO2 is also the reason why this dense gas is preferentially employed for biotransformations with hydrophobic compounds. Kasche et al. (1988) reported that α-chymotrypsin,

1�

trypsin, and penicillin acylase partially unfold in scCO2 during the depressurization step, particularly in humid scCO2. A review about supercritical fluid technologies as an alternative to conventional processes for preparing biodiesel has been provided by Bernal et al. (2012).

Several instances of the combined use of ILs and SCFs have meanwhile been described, among them the Candida antarctica lipase B (CAL-B) catalyzed acylation of octan-1-ol (Reetz et al., 2002; see also Lozano et al. (2002) for a similar approach). In this continuously working process, the substrates were introduced into the CO2 stream, and after passing the reactor containing the IL/CAL-B suspension, the scCO2 was depressurized, followed by product collection and analysis. In such reaction systems with scCO2 as mobile (and extractive) phase the employed ILs may also serve to protect the enzyme against the sometimes deleterious effect of CO2 (Garcia et al., 2004).

1.� Climate Changes and Sustainable Development as Societal Challenges

Industrial biocatalysis—or more general Industrial/White Biotechnology—is based on biological principles and the advancement of life (and material) sciences with the aim to convert renewable biomass into energy (see Huber and Corma, 2007, for a review about synergies between bio- and oil refineries as to biomass-derived fuels), chemical compounds, and bio-based materials. The biorefinery concept combines energy supply, e.g., in the form of second-generation biofuels with the production of useful chemicals in order to improve the “Energy Return on Investment” (EROI) defined by the ratio of energy output to (fossil) energy input. Petrochemical refineries gain between 25% and 35% of their profits from using just about 8% of crude oil for the production of chemicals; similarly, chemicals recovered from biomass are thought to become the economic drivers for profitable biorefineries (OECD, 2011). The development of the traditional chemical industry toward one becoming less dependent on fossil resources will contribute to sustainability through saving energy, water, raw materials combined with a reduction of waste generation, thereby

Climate Changes and Sustainable Development as Societal Challenges

�0 Biocatalysts

mitigating the consequences of global climate changes which are closely related to the current energy situation.

According to the IEA report (IEA 2012)—see also the essay of Keinan, 2013, and literature cited therein, about the “Unpredict-ability of Science” in connection with the main six problems mankind is faced with, as defined by the EuCheMS, 2011, and the central part, chemistry will play to solve them—the global energy demand will grow by more than 30% until 2035 (and is assumed to double until 2050), of which 60% are allotted to China, India, and the Middle East. At present, more than 80% of the primary energy consumption is covered by fossil fuels. The situation of the global energy market will be coined by a reconstitution of the oil and gas production in the USA and other countries due to the temporary additional exploitation of light tight oil and gas from huge shale reservoirs by hydraulic fracturing techniques (Kerr, 2010; Cohen, 2013), often discussed rather controversial due to possible unacceptable environmental damages that may not be ruled out. Osborn et al. reported about methane contaminations of drinking water as a consequence of drilling and hydraulic fracturing activities in the United States (New York, Pennsylvania). In active gas extraction areas, the methane concentration increased with decreasing distance from the gas wells up to 64 mg/L with an average concentration of 19 mg/L, which is about 17 times higher than the methane concentration found in non-extraction sites, and 13C-NMR studies confirmed these contaminations to stem from deeper rock layers and not from biogenic near-surface sources; however, the researchers did not find constituents of the fracturing fluid (<1% chemical additives, among them biocides required to minimize the corrosive action of bacteria; see DOE, 2009, for details) in the drinking water (Osborn et al., 2011; see also Osterath, 2012). On the other hand, the prize for gas in the United States declined to one-third compared with 2008, and GHG savings due to using more gas instead of other fossil fuels are distinctly higher than those achieved by enhanced application of wind mills, etc., in other countries, and reduce the cost of meeting government-issued emission goals (Kerr, 2010).

Further important aspects that will impact the global energy situation are the retreat of several states from nuclear energy, and the possible (but currently unlikely) recovery of the Iraqi oil

�1

economy. Alternatives to fossil energy sources such as water power and sun (photovoltaic) and wind energy, already realized in the form of large land- and sea-based wind mill parks, and biomass (that in addition can be used for the fabrication of carbon-based products) will strengthen their position as indispensable parts of a global energy mix. The International Energy Agency (IEA) in its world energy outlook (2012) estimates the share of renewable energies in global electricity production to be about one third in 2035, and the consumption of biomass for electricity and biofuels is expected to expand by a factor of 4. This development is promoted among others by governmental subsidies assumed to increase world-wide from $88 billion (2011) to $240 billion in 2035, which, on the other hand, means a high burden on national budgets and with this for the private households (IEA, World Energy Outlook, 2012).

Energy conversion by utilizing renewable resources is linked with the term “biofuel” and as the name suggests, biofuels—including biogases, liquid fuels and solid biomass—are derived from biomass, with their energy content originating from CO2 fixation. The production of biofuels—although technically known since the 18th century (first transesterification of a vegetable oil reported by E. Duffy and J. Patrick in 1853, which is 40 years before the first Diesel engine became functional; Kalyani et al., 2012)—gained sharply increased interest since the oil crisis in the early 1970s. Important further factors (see also Soetaert and Vandamme, 2009, 2009a)—apart from the expected shortage of fossil fuel—are • the high and presumably further increasing oil price together

with the growing energy demand, particularly of countries with rapidly growing population and industry,

• the dependence on petroleum imports from politically unstable regions, and

• the awareness of global climate changes requiring a reduction of anthropogenic greenhouse gas (e.g., CO2, CH4, N2O) emission (see Meinshausen et al., 2009, for GHG emission scenarios and consequences for global warming).

In principle, the CO2 released into the atmosphere through conversion of biomass into energy is part of a closed CO2 cycle because it has been taken up from the atmosphere during growth so that the use of biofuels is regarded as environment friendly. Aside from energy conversion, biofuel production helps to avoid

Climate Changes and Sustainable Development as Societal Challenges

�� Biocatalysts

land filling and reduces the pollution of soil and water. There are, however, additional aspects to be considered in connection with the assessment of the ecobalance related to the terms Life Cycle Assessment (LCA), mostly used for this purpose, or its derivative, the Product Carbon Footprint (PCF) standards (Biobased Products Working Group, 2010). Several reports have been published in the recent past with the example of different scenarios about the sustainability of bioenergy, and as expected they come to different results. The Intergovernmental Panel on Climate Change (IPCC) Special Report 2012 on Renewable Energy (SRREN) draws a predominantly positive picture concerning greenhouse gas reduction potential of bioenergy (IPCC SRREN, 2012). The Leopoldina position paper (2012) about “Bioenergy: Chances and Limits,” written by reckoned scientists, provides in this regard a more sophisticated and less optimistic analysis for Germany and also for the other EU countries. For example, they do not recommend the production of bioethanol from starch and sugars, due to the inefficient use of cropland, high energy demand and only low— if any—CO2 saving potential (see also Michel, 2012), but see the combination of bioethanol and biogas production under certain criteria to be an option. The production of bioethanol from lignocellulosic material is recommended, presupposed that the entire process—“from the cradle to the grave”—leads to GHG emissions, distinctly lower than those of an energy-equivalent amount of fossil fuel.

The above-mentioned lifecycle assessment is a tool to support the development toward a bioeconomy and defines sustainability as resulting from the sum of environmental impacts of biobased products—e.g., the various biofuels—with GHG mitigation as just one yet important aspect of many others. These include apart from global warming—conflicting with existing climate models its increase slowed down significantly since about 15 years for reasons that have not been elucidated so far (Fyfe et al., 2013; Guemas et al., 2013)—eleven additional environmental performance scores that are human health, fossil fuel depletion, air pollutants, water use, ecological toxicity, eutrophication, habitat alteration, smog formation, indoor air quality, acidification, and ozone depletion, weighted between 29% for global warming and 2% for ozone depletion, as proposed by Duncan et al. (2008) in

��

“Metrics to support informed decision-making for consumers of bio-based products.” LCA is described by the international standards ISO 14040 (2006)/14044 (2006) in the form of the framework depicted in Fig. 1.3. As is to be seen from this LCA framework it is characterized by four stages that in practice are handled in an iterative process. The clear goal and scope definition is an indispensable prerequisite for being able to compare different products, processes, and services. Lifecycle inventory describes energy and material flows into and out of the respective system. Lifecycle impact assessment deals with the comprehensive analysis of environmental impacts related, for example, to a given emission from its emergence to the point of fate and behavior in the environment. Finally, the “interpretation” serves to translate the often very complex outcome of the different stages of lifecycle assessment into a readily understandable message based on quality-assured lifecycle data and studies that are—apart from direct applications, e.g., in connection with product development—also of use for ecolabeling, ecodisign, or carbon foot-printing (OECD, 2011; ILCD, 2010). The topic has been excellently reviewed

Figure 1.� The framework for lifecycle assessment used to measure sustainability.

Climate Changes and Sustainable Development as Societal Challenges

�� Biocatalysts

by Schebek (2011). A recent example of applying the LCA approach is the investigation by Cherubini and Jungmeier (2010) into a biorefinery concept producing bioenergy, bioethanol, and chemicals from switchgrass. They demonstrated that the use of switchgrass as feedstock results in enhanced carbon sequestration in soils, thereby contributing considerably to GHG emission savings (79% during the first 20 years compared to a fossil reference system), reinforced by high biomass yields, which, on the other hand, may be reduced to some extend by the need of fertilizers to enhance plant growth; the biorefinery has lower impacts in all categories with the exception of acidification and particularly eutrophication. Perimenis et al. (2011) developed a decision support tool for the evaluation of different biofuel production pathways on the basis of the entire value chain from biomass production to biofuel end-use, considering technical, environmental, economic, and social aspects. It should not be left unmentioned that the existence of different standards and models require an improvement of harmonization in order to further reduce uncertainties and discrepancies.

1.� Conclusions

The global enzyme market will grow steadily, a development driven by the demand for sustainable production processes of fine and bulk chemicals, pharmaceuticals, bioplastics, energy, etc., from renewable feedstock as an alternative to petroleum-based chemical and technical processes. Further development of advanced biotechnological tools such as industrial systems biology combined with high-throughput (microfluidic) screening, cell-free protein expression, etc., will not only lead to enzymes with an improved adaption to the respective process requirements but may also pave the way for the discovery of so far unknown enzymes, including plant-derived biocatalysts, with novel properties for new applications in industrial biotechnology. Furthermore, enzymes emerging from the drawing board probably gain increasing importance although the field of computational enzyme design is still in its infancy.

The application of immobilized biocatalysts is meanwhile firmly established in the large-scale production of a variety of

��

compounds. Examples include the synthesis of enantiopure amino acids for the food and pharmaceutical market, the acrylamide production, and the synthesis of β-lactam antibiotics, to name only some few. Research in the field of immobilization with the aim to generate robust biocatalysts optimized with respect to high, activity, selectivity, stability, and cost effectiveness will contribute significantly to the development of greener industrial processes through substituting chemical production routes.

Unconventional solvents broaden the applicability of biocatalysis considerably. Their advantages are based on the solvent properties (partitioning coefficient, polarity, dielectric constant, etc.) determining the activity and operational stability of the catalysts as well as their specificity and enantioselectivity. Whereas organic solvents—neat or in combination with water—are used in a variety of industrial biotransformations, a broader application of ionic liquids or supercritical fluids, despite their obvious advantages has not yet been reported. However, the combination of SCFs with ILs, particularly the scCO2/IL system, allowing a combination of product extraction with the biocatalytic step should have a promising future as it represents a genuine green procedure. Furthermore, this scope of application will benefit from the development of advanced ILs including deep eutectic solvents.

It is well known that the rapid industrial development with the chemical industry being predominantly based on the exploitation of fossil resources, despite of many obvious advantages goes along with a variety of negative environmental impacts. Industrial biotechnology is based on the exploitation of renewable resources and contributes significantly to what is termed Green Chemistry. Unlike traditional chemical technology, biotechnology makes use of enzymes and whole cells as catalysts for producing fuels, bulk and fine chemicals and other materials. Biocatalysts work under mild reaction conditions with often high efficiency and selectivity to yield pure products. These properties enable production processes characterized by lower energy consumption and less waste generation as compared to their chemical counterparts, and are prerequisites for making the different areas of the chemical industry increasingly more sustainable, resulting among others in reduced greenhouse gas emissions and in overcoming problems associated with the depletion of fossil resources.

Conclusions

�� Biocatalysts

References

Abdulkhani A., Marvast E. H., Ashori A., Karimi A. N., Carbohydr. Polymer, 95 (2013), 57–63.

Anastas P., Eghbali N., Chem. Soc. Rev., 39 (2010), 301–312.Baek S.-H., Kim S., Lee K., Lee J.-K., Hahn J-S., Enzyme Microb. Technol., 51

(2012), 366–372.BCC Research: Enzymes in Industrial Applications: Global Markets (2011).Bernal J. A., Lozano P., García-Verdugo E., Burguette M. I., Sánchez-Gómez

G., López-López G., Pucheault M., Vaultier M., Luis S. V., Molecules, 17 (2012), 8696–8719.

Biobased Products Working Group, Biotechnology Industry Organization, Position Paper: Principles for the accounting of biogenic carbon in PCF standards, Ind. Biotechnol., 6 (2010), 318–320.

Blickerstaff G. F., Immobilization of Enzymes and Cells, Humana Press, Totowa, 1997.

Bommarius A. S., Blum J. K., Abrahamson M. J., Curr. Opin. Chem. Biol., 15 (2011), 194–200.

Bornscheuer U. T., Huisman G. W., Kazlauskas R. J., Lutz S., Moore J. C., Robins K., Nature, 485 (2012), 185–194.

Buchholz K., Kasche V., Bornscheuer U. T., Biocatalysts and Enzyme Technology, 2nd. Ed., Wiley-Blackwell (2012).

Cantone S., Ferrario V., Corici L., Ebert C., Fattor D., Spizzo P., Gardossi L., Chem. Soc. Rev. (2013), DOI: 10.1039/c3cs35464d.

Cantone S., Hanefeld U., Basso A., Green Chem., 9 (2007), 954–971.

Carrea G., Riva S., Angew. Chem., 112 (2000), 2312–2341, Angew. Chem. Int. Ed., 39 (2000), 2226–2254.

Carriquiry M., Du X., Timilsina G. R., Second Generation Biofuels, Economics and Polices, Policy Research Working Paper, The World Bank Research Group Environment and Energy Team, August 2010.

Chen C. S., Sih C. J., Angew. Chem., 101 (1989), 711–724, Angew. Chem. Int. Ed., 28 (1989), 695–707.

Chen Y., Nielsen J., Curr. Opin. Biotechnol., 24 (2013).

Chen Z., Wilmanns M., Zeng A. P., Trends Biotechnol., 28 (2010), 534–542.

Cherubini F., Jungmeier G., Int. J. Life Cycle Assess, 15 (2010), 53–66.

Choi Y. J., Lee S.-Y., Nature, 502 (2013), 571–574.

��

Cohen M., IEA J., 3 (2013), http://www.iea.org/newsroomandevents/iea-journal/.

Cull S. G., Holbrey J. D., Vargas-Mora V., Seddon K. R., Ley G. J., Biotechnol. Bioeng., 69 (2000), 227–233.

Dai Y., van Spronsen J., Witkamp G.-J., Verpoorte R., Choi Y. H., Anal. Chim. Acta, 766 (2013), 61–68.

Datta S., Christena L. R., Rajaram Y. R. S., 3 Biotech (2013), doi: 10.1007/s13205-012-0071-7.

De los Rios A. P., van Rantwijk F., Sheldon R. A., Green Chem., 14 (2012), 1584–1588.

DiCosimo R., McAuliffe J., Poulose A. J., Bohlmann G., Chem. Soc. Rev., 42 (2013), 6437–6474.

DOE, Office of fossil energy, Modern Shale Gas Development in the US: A Primer (2009), www.fossil.energy.gov.

Duncan M., Lippiatt B. C., Haq Z., Wang M., Conway R. K., Agricultural Information Bulletin 803, USDA (2008), http://www.oecd.org.sti.biotech/4240099.pdf.

EuCheMS, Chemistry-Developing Solutions in a Changing World. European Association for Chemical and Molecular Sciences, Brussels (2011).

Franssen M. C. R., Steunenberg P., Scott E. L., Zuilhof H., Sanders J. P. M., Chem. Soc. Rev., 42 (2013), 6491–6533.

Frasch H. J., Medema M. H., Takano E., Breitling R., Curr. Opin. Biotechnol., 24 (2013), 1144–1150.

Fyfe J. C., Gillett N. P., Zwiers F. W., Nature Climate Change, 3 (2013), 767–769.

Galanie S., Siddiqui M. S., Smolke C. D., Curr. Opin. Biotechnol., 24 (2013), 1000–1009.

Galonde N., Nott K., Debuigne A., Deleu M., Jerôme C., Paquot M., Wathelet J.-P., J. Chem. Technol. Biotechnol., 87 (2012) 451–471.

Garcia S., Lourenço N. M. T., Lousa D., Sequeira A. F., Mimoso P., Cabral J. M. S. Afonso C. A. M., Barreiros S., Green Chem., 6 (2004), 466–470.

Ghasemi M., Minier M. J. G., Tatoulian M., Chehimi M. M., Arefi-Khonsari F., J. Phys. Chem., B, 115 (2011), 10228–10238.

Goderis H. L., Ampe G., Feyten M. P., Fouwé B. L., Guffens W. M., van Cauwenbergh S. M., Tobback P.P., Biotechnol. Bioeng., 30 (1987), 258–266.

Gorke J., Srienc F., Kazlauskas R., Biotechnol. Bioprocess Eng., 15 (2010), 40–53.

References

�� Biocatalysts

Grunwald P., Biocatalysis: Biochemical Fundamentals and Applications, Imperial College Press, 2009.

Grunwald P., Hansen K., Remus M., Ind. J. Chem., 32B (1993), 70–72.Grunwald P., Hansen K., Stollhans M., Midedel. Faculteit Landbouww.

Rijksuniv. Gent, 53 (1988), 2057–2064.Guemas V., Doblas-Reyes J., Andreu-Burillo T., Asif M., Nature Climate

Change, 3 (2013), 649–653.Guo W., Hou Y., Ren S., Tian S., Wu W., J. Chem. Eng. Data, 58 (2013), 866–872.Habulin M., Primožič M., Knez Z., Ionic Liquids: Applications and Pers-

pectives, in Application of Ionic Liquids in Biocatalysis (Kokorin A., ed.), InTech, available from http://www.intechopen (2011).

Halling P. J., Enzyme Microb. Technol., 16 (1994), 178–206.Hayyan A., Mjalli F. S., Al-Nashef I. M., Al-Wahaibi Y. M., Al-Wahaibi T., Hashim

A., J. Mol. Liquids, 178 (2013), 137–141.Hranueli D., Starcevic A., Zucko J., Rojas J. D., Diminik J., Baranasic D., Gacesa

R., Padilla G., Long P. F., Cullum J., Food Technol. Biotechnol., 51 (2013), 3–11.

Huber G. W., Corma A., Angew. Chem., 119 (2007), 7320–7338, Angew. Chem. Int. Ed., 46 (2007), 7184–7201.

IEA World Energy Outlook (2012), http://iea.org/publications/freepubli-cations/publication/English.pdf.

ILCD (Intern. Reference Life Cycle Data System), Handbook: General guide for Life Cycle Assessment—detailed guidance, 1st ed., EUR 24708 EN, Luxembourg, Publication Office of the European Union (2010).

Illanes A., Cauerhff A., Wilson L., Castro G. R., Bioresour. Technol., (2012), 48–57.

IPPC SRREN (2012), Special Report of the Intergovernmental Panel on Climate Change, in Renewable Energy Sources and Climate Change Mitigation (Edenhofer O., Madruga R. P., Sokona Y., Eds.), Cambridge.

Jackson K., Bowman L. E., Fulton J. L., Anal. Chem., 67 (1995), 2368–2372.Jonkheijm P., Weinrich D., Schröder H., Niemeyer C. M., Waldmann H., Angew.

Chem., 120 (2008), 9762–9792, Angew. Chem. Int. Ed., 47 (2008), 9618–9647.

Kalyani G., Rao H. J., Kumar Y. P., Int. J. Sci. Eng. Res., 3 (2012), 1–8.Kamat S. V., Barrera J., Beckmann E. J., Russel A. J., Biotechnol.Bioeng., 40

(1992), 158–166.Kamat S. V., Critchley G., Beckman E. J., Russel A. J., Biotechnol. Bioeng., 46

(1995), 610–620.

��

Kamat S. V., Iwaskewycz B. Beckman E. J., Russel A. J., Proc. Natl. Acad. Sci. U. S. A, 90 (1993), 2940–2944.

Karan R., Capes M. D., DasSarma S., Aquatic Biosyst. (2012), 8:4.

Kasche H., Schlothauer R., Brunner G., Biotechnol. Lett., 8 (1988), 569–574.

Keinan E., Angew. Chem., 125 (2013), 2730–2735, Angew. Chem. Int. Ed., 52 (2013), 2667–2672.

Kerr R. A., Science, 238 (2010), 1624–1626.

Kirk O., Borchert T., Fulgsang C. C., Curr. Opin. Biotechnol., 13 (2002), 345–351.

Klibanov A. M., Samokhin G. P., Martinek K., Berizin I. V., Biotechnol. Bioeng., 19 (1977), 1351–1361.

Kragl U., Eckstein M., Kaftzik N., Curr. Opin. Biotechnol., 13 (2002), 565–571.

Krishna S. H., Biotechnol. Adv., 20 (2002), 238–267.

Lau R. M., van Rantwijk F., Seddon K. R., Sheldon R. A., Org. Lett., 2 (2000), 4189–4191.

Leduc C., Lanteigne-Roch L.-M., Daneault C., Cellulose Chem. Technol., 45 (2011), 657–663.

Lee D., Redfern O., Orengo C., Mol. Cell Biol., 8 (2007), 995–1005.

Lee S. Y., Park J. H., Adv. Biochem. Engin. Biotechnol., 120 (2010), 1–19.

Leopoldina report: German National Academy of Sciences Leopoldina (2012), Bioenergy: Chances and Limits, Halle (Saale).

Li S., Yang X., Yang S., Zhu M., Wang X., Comput. Struct. Biotechnol. J., 2 (2012), e201209017.

Liese A., Hilterhaus L., Chem. Soc. Rev., 42 (2013), 6236–6249.

Liese A., Seelbach K., Wandrey Ch. (eds.), Industrial Biotransformations, WILEY-VCH, 2nd ed. (2006).

Liu Z., Weis R., Glieder A., Food Technol. Biotechnol., 42 (2004), 237–249.

Lozano P., de Diego T., Carrié D., Vaultier M., Iborra L., Chem. Commun., 7 (2002), 692–693.

Lozano P., Green Chem., 12 (2010), 555–569.

Mateo C., Chmura A., Rustler S., van Rantwijk F., Stolz A., Sheldon R. A., Tetrahedron: Asymmetry, 17 (2006), 320–323.

Matsuda T., Kanamaru R., Watanabe K., Harada T., Nakamura K., Tetrahedron Lett., 42 (2001), 8319–8321.

Mee M. T., Wang H. H., Mol. BioSyst. (2012), DOI: 10.1039/c2mb25133g.

References

�0 Biocatalysts

Meinshausen M., Meinshausen N., Hare W., Raper S. C. B., Frieler K., Knutti R., Frame D. J., Allen M. R., Nature, 458 (2009), 1158–1162.

Michel H., Angew. Chem., 124 (2012), 2566–2568, Angew. Chem. Int. Ed., 51 (2012), 2516–2518.

Milner S. E., Maguire A. R., Arkivoc (2012), 321–382.

Moniruzzaman M., Nakashima K., Kamiya N., Goto M., Biochem. Eng. J., 48 (2010), 295–314.

Novalin-Canoy: Grüne Bioraffinerie Phase III: Marketing Studie: Aminosäuren und Anwendungen, Bundesministerium für Verkehr, Innovation und Technologie, Austria (2009).

Novozymes: Selling Enzymes in China (2011); http://www.novozymes.com/en/investor/events-presentations/Documents/2_NZCMD_LILI_Selling%20enzymes%20in%20China_FINAL.pdf.

OECD (2011), Future prospects for Industrial Biotechnology, OECD Publishing. http://dx.doi.org/10.1787/9789264126633-en.

Okabe M., Lies D., Kanamasa S., Park E. J., Appl. Microbiol. Biotechnol., 84 (2009), 597–606.

Osborn S. G., Vengosh A., Warner N. R., Jackson R. B., Proc. Natl. Acad. Sci. USA, 108 (2011), 8172–8176.

Osterath B., Nachrichten aus der Chem., 60 (2012), 31–34.

Paravidino M., Sorgedrager M. J., Orru R. V. A., Hanefeld U., Chem. Eur. J., 16 (2010), 7596–7604.

Park S., Kazlauskas R. J., Curr. Opin. Biotechnol., 14 (2003), 432–437.

Park S., Kazlauskas R J., J. Org. Chem., 55 (2001), 8395–8401.

Peralta-Yahya P. P., Zhang F., del Cardayre S. B., Keasling J. D., Nature, 488 (2012), 320–328.

Perimenis A., Walimwipi A., Zinoviev S., Müller-Langer F., Miertus S., Energy Policy, 39 (2011), 1782–1793.

Public relations, Global Industry Analysts, Inc., USA (2012).

Quin M. B., Schmidt-Dannert C., ACS Catal., 1 (2011), 1017–1021.

Randolph T. W., Blanch H. W., Prausnitz J. M., Wilke C. R., Biotechnol. Lett., 7 (1985), 325–328.

Randolph T. W., Clark D. S., Blanch H. W., Prausnitz J. M., Proc. Natl. Acad. Sci., U. S. A., 85 (1988), 2979–2983.

Reetz M. T., Wiesenhöfer W., Franciò G., Leitner W., Chem. Commun., 9 (2002), 992–993.

�1

Sarrouh B., Santos T. M., Miyoshi A., Dias R., Azevedo V., J. Bioproces. Biotechniq, (2012), S:4.

Schebek L., Life-Cycle Analysis of Biobased Products, in Renewable Raw Materials (R. Ulber, D. Sell, Th. Hirth, eds), Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany (2011).

Schoenfeld I., Dech S., Ryabenky B., Daniel B., Glowacki B., Ladish R., Tiller J. C., Biotechnol. Bioeng. (2013), DOI: 10.1002/bit.24906.

Sheldon R. A., Org. Proc. Res. Develop., 15 (2011), 213–232.

Sheldon R. A., van Pelt S., Chem. Soc. Rev. (2013), DOI: 10.1039/c3cs60075k.

Simon C., Daniel R., Appl. Environ. Microbiol., 77 (2011), 1153–1161.

Siow K. S., Britcher L., Kumar S., Griesser H. J., Plasma Process. Polym. 3 (2006), 392–418.

Soetaert W., Vandamme E J., The Scope and Impact of Industrial Biotechnology in Industrial Biotechnology: Sustainable Growth and Economic Success (Soetaert W., Vandamme E J, eds.), Wiley-VCH (2009a).

Soetaert W., Vandamme E. J., Biofuels in Perspective, in Biofuels (Soetaert W., Vandamme E. J., Eds.), John Wiley & Sons, Ltd. (2009b).

Soetaert W., Vandamme E. J., Biotech J., 1 (2006), 756–769.

Spahn C., Minteer S. D., Recent patents in Engineering, 2 (2008), 195–200.

Steele H. L., Jaeger K. E., Daniel R., Streit W. R., J. Mol. Microbiol. Biotechnol., 16 (2009), 25–37.

Straathof A. J. J., Panke S., Schmid A., Curr. Opin. Biotechnol., 13 (2002), 549–556.

Sym E. A., Biochem J., 24 (1930), 1265–1281.

Sym E. A., Biochem J., 30 (1936a), 609–617.

Sym E. A., Enzymologia, 1 (1936), 156–160.

Tavares A. P., Rodríguez O., Macedo E. A., New Generations of Ionic Liquids Applied to Enzymatic Biocatalysis, in Ionic Liquids: New Aspects for the Future (Kadokawa J.-I., ed.), InTech, available from http://www.intechopen (2013).

Tawaki S., Kilibanov A. M., J. Am. Chem. Soc., 114 (1992), 1882–1884.

The Working Party on Immobilized Biocatalysts, Enzyme Microb. Technol., 5 (1983), 304–307.

Thi P. T. P., Cho C.-W., Yun Y.-S., Water Res., 44 (2010), 352–372.

References

�� Biocatalysts

Van Ginkel C. G., Tramper J., Luyben K. Ch. A. M., Klapwijk A., Enzyme Microb. Technol., 5 (1983), 297–304.

Van Rantwijk F., Sheldon R. A., Chem. Rev., 107 (2007), 2757–2785.Vandamme E. J., Cerdobbel A., Soetaert W., BIOforum Europe, 10 (2006),

20–22.Vorhaben T., Böttcher D., Jasinski D., Menyes U., Brüser V., Schröder

K., Bornscheuer U. T., Chem Cat Chem., 2 (2010), 992–996.Vorlop K.-D., Jekel M., German Patent DE 19827552 C1 (1998).Wang A. A., Mulchandani A., Chen W., Biotechnol. Prog., 17 (2001), 407–411.Wang J.-Y., Chao Y.-P., Appl. Environ. Microbiol., 72 (2006), 927–931.Wilke Th., Vorlop K. D., Appl. Microbiol. Biotechnol., 56 (2001), 289–295.Wimmer Z., Zarevúcka M., Int. J. Mol. Sci., 11 (2010), 233–253.Wittmann C., Adv. Biochem. Engin. Biotechnol., 120 (2010), 21–49.Wong L. S., Khan F., Mickefield J., Chem. Rev., 109 (2009), 4025–4053.Yang Z., Pan W., Enzyme Microb. Technol., 37 (2005), 19–28.Zaks A., Klibanov A. M., Science, 224 (1984), 1249–1251.Zaks A., Klibanov A. M., J. Biol. Chem., 263 (1988), 3194–3201.Zhang Q., de Oliveira Vigier K., Royer S., Jérôme F., Chem. Soc. Rev., 41 (2012),

7108–7146.

References

1 Chapter 1: Biocatalysts: Global Market,Industrial Applications, Aspects ofBiotransformation Design, and SocietalChallenges

Abdulkhani A., Marvast E. H., Ashori A., Karimi A. N.,Carbohydr. Polymer, 95 (2013), 57–63.

Anastas P., Eghbali N., Chem. Soc. Rev., 39 (2010), 301–312.

Baek S.-H., Kim S., Lee K., Lee J.-K., Hahn J-S., EnzymeMicrob. Technol., 51 (2012), 366–372.

BCC Research: Enzymes in Industrial Applications: GlobalMarkets (2011).

Bernal J. A., Lozano P., García-Verdugo E., Burguette M.I., Sánchez-Gómez G., López-López G., Pucheault M.,Vaultier M., Luis S. V., Molecules, 17 (2012), 8696–8719.

Biobased Products Working Group, Biotechnology IndustryOrganization, Position Paper: Principles for theaccounting of biogenic carbon in PCF standards, Ind.Biotechnol., 6 (2010), 318–320.

Blickerstaff G. F., Immobilization of Enzymes and Cells,Humana Press, Totowa, 1997.

Bommarius A. S., Blum J. K., Abrahamson M. J., Curr. Opin.Chem. Biol., 15 (2011), 194–200.

Bornscheuer U. T., Huisman G. W., Kazlauskas R. J., LutzS., Moore J. C., Robins K., Nature, 485 (2012), 185–194.

Buchholz K., Kasche V., Bornscheuer U. T., Biocatalysts andEnzyme Technology, 2nd. Ed., Wiley-Blackwell (2012).

Cantone S., Ferrario V., Corici L., Ebert C., Fattor D.,Spizzo P., Gardossi L., Chem. Soc. Rev. (2013), DOI:10.1039/c3cs35464d.

Cantone S., Hanefeld U., Basso A., Green Chem., 9 (2007),954–971.

Carrea G., Riva S., Angew. Chem., 112 (2000), 2312–2341,Angew. Chem. Int. Ed., 39 (2000), 2226–2254.

Carriquiry M., Du X., Timilsina G. R., Second Generation

Biofuels, Economics and Polices, Policy Research WorkingPaper, The World Bank Research Group Environment andEnergy Team, August 2010.

Chen C. S., Sih C. J., Angew. Chem., 101 (1989), 711–724,Angew. Chem. Int. Ed., 28 (1989), 695–707.

Chen Y., Nielsen J., Curr. Opin. Biotechnol., 24 (2013).

Chen Z., Wilmanns M., Zeng A. P., Trends Biotechnol., 28(2010), 534–542.

Cherubini F., Jungmeier G., Int. J. Life Cycle Assess, 15(2010), 53–66.

Choi Y. J., Lee S.-Y., Nature, 502 (2013), 571–574.

Cohen M., IEA J., 3 (2013),http://www.iea.org/newsroomandevents/ieajournal/.

Cull S. G., Holbrey J. D., Vargas-Mora V., Seddon K. R.,Ley G. J., Biotechnol. Bioeng., 69 (2000), 227–233.

Dai Y., van Spronsen J., Witkamp G.-J., Verpoorte R., ChoiY. H., Anal. Chim. Acta, 766 (2013), 61–68.

Datta S., Christena L. R., Rajaram Y. R. S., 3 Biotech(2013), doi: 10.1007/ s13205-012-0071-7.

De los Rios A. P., van Rantwijk F., Sheldon R. A., GreenChem., 14 (2012), 1584–1588.

DiCosimo R., McAuliffe J., Poulose A. J., Bohlmann G.,Chem. Soc. Rev., 42 (2013), 6437–6474.

DOE, Office of fossil energy, Modern Shale Gas Developmentin the US: A Primer (2009), www.fossil.energy.gov.

Duncan M., Lippiatt B. C., Haq Z., Wang M., Conway R. K.,Agricultural Information Bulletin 803, USDA (2008),http://www.oecd.org.sti. biotech/4240099.pdf.

EuCheMS, Chemistry-Developing Solutions in a ChangingWorld. European Association for Chemical and MolecularSciences, Brussels (2011).

Franssen M. C. R., Steunenberg P., Scott E. L., Zuilhof H.,Sanders J. P. M., Chem. Soc. Rev., 42 (2013), 6491–6533.

Frasch H. J., Medema M. H., Takano E., Breitling R., Curr.

Opin. Biotechnol., 24 (2013), 1144–1150.

Fyfe J. C., Gillett N. P., Zwiers F. W., Nature ClimateChange, 3 (2013), 767–769.

Galanie S., Siddiqui M. S., Smolke C. D., Curr. Opin.Biotechnol., 24 (2013), 1000–1009.

Galonde N., Nott K., Debuigne A., Deleu M., Jerôme C.,Paquot M., Wathelet J.-P., J. Chem. Technol. Biotechnol.,87 (2012) 451–471.

Garcia S., Lourenço N. M. T., Lousa D., Sequeira A. F.,Mimoso P., Cabral J. M. S. Afonso C. A. M., Barreiros S.,Green Chem., 6 (2004), 466–470.

Ghasemi M., Minier M. J. G., Tatoulian M., Chehimi M. M.,Arefi-Khonsari F., J. Phys. Chem., B, 115 (2011),10228–10238.

Goderis H. L., Ampe G., Feyten M. P., Fouwé B. L., GuffensW. M., van Cauwenbergh S. M., Tobback P.P., Biotechnol.Bioeng., 30 (1987), 258–266.

Gorke J., Srienc F., Kazlauskas R., Biotechnol. BioprocessEng., 15 (2010), 40–53.

Grunwald P., Biocatalysis: Biochemical Fundamentals andApplications, Imperial College Press, 2009.

Grunwald P., Hansen K., Remus M., Ind. J. Chem., 32B(1993), 70–72.

Grunwald P., Hansen K., Stollhans M., Midedel. FaculteitLandbouww. Rijksuniv. Gent, 53 (1988), 2057–2064.

Guemas V., Doblas-Reyes J., Andreu-Burillo T., Asif M.,Nature Climate Change, 3 (2013), 649–653.

Guo W., Hou Y., Ren S., Tian S., Wu W., J. Chem. Eng. Data,58 (2013), 866–872.

Habulin M., Primožič M., Knez Z., Ionic Liquids:Applications and Pers- pectives, in Application of IonicLiquids in Biocatalysis (Kokorin A., ed.), InTech,available from http://www.intechopen (2011).

Halling P. J., Enzyme Microb. Technol., 16 (1994), 178–206.

Hayyan A., Mjalli F. S., Al-Nashef I. M., Al-Wahaibi Y. M.,

Al-Wahaibi T., Hashim A., J. Mol. Liquids, 178 (2013),137–141.

Hranueli D., Starcevic A., Zucko J., Rojas J. D., DiminikJ., Baranasic D., Gacesa R., Padilla G., Long P. F.,Cullum J., Food Technol. Biotechnol., 51 (2013), 3–11.

Huber G. W., Corma A., Angew. Chem., 119 (2007), 7320–7338,Angew. Chem. Int. Ed., 46 (2007), 7184–7201.

IEA World Energy Outlook (2012),

ILCD (Intern. Reference Life Cycle Data System), Handbook:General guide for Life Cycle Assessment—detailed guidance,1st ed., EUR 24708 EN, Luxembourg, Publication Office ofthe European Union (2010).

Illanes A., Cauerhff A., Wilson L., Castro G. R.,Bioresour. Technol., (2012), 48–57.

IPPC SRREN (2012), Special Report of the IntergovernmentalPanel on Climate Change, in Renewable Energy Sources andClimate Change Mitigation (Edenhofer O., Madruga R. P.,Sokona Y., Eds.), Cambridge.

Jackson K., Bowman L. E., Fulton J. L., Anal. Chem., 67(1995), 2368–2372.

Jonkheijm P., Weinrich D., Schröder H., Niemeyer C. M.,Waldmann H., Angew. Chem., 120 (2008), 9762–9792, Angew.Chem. Int. Ed., 47 (2008), 9618–9647.

Kalyani G., Rao H. J., Kumar Y. P., Int. J. Sci. Eng. Res.,3 (2012), 1–8.

Kamat S. V., Barrera J., Beckmann E. J., Russel A. J.,Biotechnol.Bioeng., 40 (1992), 158–166.

Kamat S. V., Critchley G., Beckman E. J., Russel A. J.,Biotechnol. Bioeng., 46 (1995), 610–620.

Kamat S. V., Iwaskewycz B. Beckman E. J., Russel A. J.,Proc. Natl. Acad. Sci. U. S. A, 90 (1993), 2940–2944.

Karan R., Capes M. D., DasSarma S., Aquatic Biosyst.(2012), 8:4.

Kasche H., Schlothauer R., Brunner G., Biotechnol. Lett., 8(1988), 569–574.

Keinan E., Angew. Chem., 125 (2013), 2730–2735, Angew.Chem. Int. Ed., 52 (2013), 2667–2672.

Kerr R. A., Science, 238 (2010), 1624–1626.

Kirk O., Borchert T., Fulgsang C. C., Curr. Opin.Biotechnol., 13 (2002), 345–351.

Klibanov A. M., Samokhin G. P., Martinek K., Berizin I. V.,Biotechnol. Bioeng., 19 (1977), 1351–1361.

Kragl U., Eckstein M., Kaftzik N., Curr. Opin. Biotechnol.,13 (2002), 565–571.

Krishna S. H., Biotechnol. Adv., 20 (2002), 238–267.

Lau R. M., van Rantwijk F., Seddon K. R., Sheldon R. A.,Org. Lett., 2 (2000), 4189–4191.

Leduc C., Lanteigne-Roch L.-M., Daneault C., CelluloseChem. Technol., 45 (2011), 657–663.

Lee D., Redfern O., Orengo C., Mol. Cell Biol., 8 (2007),995–1005.

Lee S. Y., Park J. H., Adv. Biochem. Engin. Biotechnol.,120 (2010), 1–19.

Leopoldina report: German National Academy of SciencesLeopoldina (2012), Bioenergy: Chances and Limits, Halle(Saale).

Li S., Yang X., Yang S., Zhu M., Wang X., Comput. Struct.Biotechnol. J., 2 (2012), e201209017.

Liese A., Hilterhaus L., Chem. Soc. Rev., 42 (2013),6236–6249.

Liese A., Seelbach K., Wandrey Ch. (eds.), IndustrialBiotransformations, WILEY-VCH, 2nd ed. (2006).

Liu Z., Weis R., Glieder A., Food Technol. Biotechnol., 42(2004), 237–249.

Lozano P., de Diego T., Carrié D., Vaultier M., Iborra L.,Chem. Commun., 7 (2002), 692–693.

Lozano P., Green Chem., 12 (2010), 555–569.

Mateo C., Chmura A., Rustler S., van Rantwijk F., Stolz A.,

Sheldon R. A., Tetrahedron: Asymmetry, 17 (2006), 320–323.

Matsuda T., Kanamaru R., Watanabe K., Harada T., NakamuraK., Tetrahedron Lett., 42 (2001), 8319–8321.

Mee M. T., Wang H. H., Mol. BioSyst. (2012), DOI:10.1039/c2mb25133g.

Meinshausen M., Meinshausen N., Hare W., Raper S. C. B.,Frieler K., Knutti R., Frame D. J., Allen M. R., Nature,458 (2009), 1158–1162.

Michel H., Angew. Chem., 124 (2012), 2566–2568, Angew.Chem. Int. Ed., 51 (2012), 2516–2518.

Milner S. E., Maguire A. R., Arkivoc (2012), 321–382.

Moniruzzaman M., Nakashima K., Kamiya N., Goto M., Biochem.Eng. J., 48 (2010), 295–314.

Novalin-Canoy: Grüne Bioraffinerie Phase III: MarketingStudie: Aminosäuren und Anwendungen, Bundesministerium fürVerkehr, Innovation und Technologie, Austria (2009).

Novozymes: Selling Enzymes in China (2011);http://www.novozymes.

OECD (2011), Future prospects for Industrial Biotechnology,OECD Publishing.http://dx.doi.org/10.1787/9789264126633-en.

Okabe M., Lies D., Kanamasa S., Park E. J., Appl.Microbiol. Biotechnol., 84 (2009), 597–606.

Osborn S. G., Vengosh A., Warner N. R., Jackson R. B.,Proc. Natl. Acad. Sci. USA, 108 (2011), 8172–8176.

Osterath B., Nachrichten aus der Chem., 60 (2012), 31–34.

Paravidino M., Sorgedrager M. J., Orru R. V. A., HanefeldU., Chem. Eur. J., 16 (2010), 7596–7604.

Park S., Kazlauskas R. J., Curr. Opin. Biotechnol., 14(2003), 432–437.

Park S., Kazlauskas R J., J. Org. Chem., 55 (2001),8395–8401.

Peralta-Yahya P. P., Zhang F., del Cardayre S. B., KeaslingJ. D., Nature, 488 (2012), 320–328.

Perimenis A., Walimwipi A., Zinoviev S., Müller-Langer F.,Miertus S., Energy Policy, 39 (2011), 1782–1793.

Public relations, Global Industry Analysts, Inc., USA(2012).

Quin M. B., Schmidt-Dannert C., ACS Catal., 1 (2011),1017–1021.

Randolph T. W., Blanch H. W., Prausnitz J. M., Wilke C. R.,Biotechnol. Lett., 7 (1985), 325–328.

Randolph T. W., Clark D. S., Blanch H. W., Prausnitz J. M.,Proc. Natl. Acad. Sci., U. S. A., 85 (1988), 2979–2983.

Reetz M. T., Wiesenhöfer W., Franciò G., Leitner W., Chem.Commun., 9 (2002), 992–993.

Sarrouh B., Santos T. M., Miyoshi A., Dias R., Azevedo V.,J. Bioproces. Biotechniq, (2012), S:4.

Schebek L., Life-Cycle Analysis of Biobased Products, inRenewable Raw Materials (R. Ulber, D. Sell, Th. Hirth,eds), Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany(2011).

Schoenfeld I., Dech S., Ryabenky B., Daniel B., GlowackiB., Ladish R., Tiller J. C., Biotechnol. Bioeng. (2013),DOI: 10.1002/bit.24906.

Sheldon R. A., Org. Proc. Res. Develop., 15 (2011), 213–232.

Sheldon R. A., van Pelt S., Chem. Soc. Rev. (2013), DOI:10.1039/ c3cs60075k.

Simon C., Daniel R., Appl. Environ. Microbiol., 77 (2011),1153–1161.

Siow K. S., Britcher L., Kumar S., Griesser H. J., PlasmaProcess. Polym. 3 (2006), 392–418.

Soetaert W., Vandamme E J., The Scope and Impact ofIndustrial Biotechnology in Industrial Biotechnology:Sustainable Growth and Economic Success (Soetaert W.,Vandamme E J, eds.), Wiley-VCH (2009a).

Soetaert W., Vandamme E. J., Biofuels in Perspective, inBiofuels (Soetaert W., Vandamme E. J., Eds.), John Wiley &Sons, Ltd. (2009b).

Soetaert W., Vandamme E. J., Biotech J., 1 (2006), 756–769.

Spahn C., Minteer S. D., Recent patents in Engineering, 2(2008), 195–200.

Steele H. L., Jaeger K. E., Daniel R., Streit W. R., J.Mol. Microbiol. Biotechnol., 16 (2009), 25–37.

Straathof A. J. J., Panke S., Schmid A., Curr. Opin.Biotechnol., 13 (2002), 549–556.

Sym E. A., Biochem J., 24 (1930), 1265–1281.

Sym E. A., Biochem J., 30 (1936a), 609–617.

Sym E. A., Enzymologia, 1 (1936), 156–160.

Tavares A. P., Rodríguez O., Macedo E. A., New Generationsof Ionic Liquids Applied to Enzymatic Biocatalysis, inIonic Liquids: New Aspects for the Future (Kadokawa J.-I.,ed.), InTech, available from http://www. intechopen (2013).

Tawaki S., Kilibanov A. M., J. Am. Chem. Soc., 114 (1992),1882–1884.

The Working Party on Immobilized Biocatalysts, EnzymeMicrob. Technol., 5 (1983), 304–307.

Thi P. T. P., Cho C.-W., Yun Y.-S., Water Res., 44 (2010),352–372.

Van Ginkel C. G., Tramper J., Luyben K. Ch. A. M., KlapwijkA., Enzyme Microb. Technol., 5 (1983), 297–304.

Van Rantwijk F., Sheldon R. A., Chem. Rev., 107 (2007),2757–2785.

Vandamme E. J., Cerdobbel A., Soetaert W., BIOforum Europe,10 (2006), 20–22.

Vorhaben T., Böttcher D., Jasinski D., Menyes U., BrüserV., Schröder K., Bornscheuer U. T., Chem Cat Chem., 2(2010), 992–996.

Vorlop K.-D., Jekel M., German Patent DE 19827552 C1 (1998).

Wang A. A., Mulchandani A., Chen W., Biotechnol. Prog., 17(2001), 407–411.

Wang J.-Y., Chao Y.-P., Appl. Environ. Microbiol., 72(2006), 927–931.

Wilke Th., Vorlop K. D., Appl. Microbiol. Biotechnol., 56(2001), 289–295.

Wimmer Z., Zarevúcka M., Int. J. Mol. Sci., 11 (2010),233–253.

Wittmann C., Adv. Biochem. Engin. Biotechnol., 120 (2010),21–49.

Wong L. S., Khan F., Mickefield J., Chem. Rev., 109 (2009),4025–4053.

Yang Z., Pan W., Enzyme Microb. Technol., 37 (2005), 19–28.

Zaks A., Klibanov A. M., Science, 224 (1984), 1249–1251.

Zaks A., Klibanov A. M., J. Biol. Chem., 263 (1988),3194–3201.

Zhang Q., de Oliveira Vigier K., Royer S., Jérôme F., Chem.Soc. Rev., 41 (2012), 7108–7146.

2 Chapter 2: Making Use of NewlyDiscovered Enzymes and Pathways: Reactionand Process Development Strategies forSynthetic Applications with RecombinantWhole-Cell Biocatalysts and MetabolicallyEngineered Production Strains

Eck J., Gabor E., Liebeton K., Meurer G., Niehaus F., Fromprospecting to product—industrial metagenomics is comingof age, in Protein engineering handbook (Lutz S.,Bornscheuer U. T., eds.); WILEY-VCH Verlag GmbH & Co.KGaA, Weinheim, 2009.

Edegger K., Gruber C. C., Faber K., Hafner A., Kroutil W.,Eng. Life Sci., 6 (2006a), 149–154.

Edegger K., Gruber C. C., Poessl T. M., Wallner S. R.,Lavandera I., Faber K., Niehaus F., Eck J., Oehrlein R.,Hafner A., Kroutil W., Chem. Commun., 22 (2006b),2402–2404. Endy D., Nature, 438 (2005), 449–453.

Ernst M., Kaup B., Müller M., Bringer-Meyer S., Sahm H.,Appl. Microbiol. Biotechnol., 66 (2005), 629–634. FaberK., Biotransformations in Organic Chemistry, 5th edn.;Springer, Berlin, Heidelberg, New York, 2004.

Fendt S. M., Buescher J. M., Rudroff F., Picotti P.,Zamboni N., Sauer U., Mol. Syst. Biol., 6 (2010), 356.

Flamholz A., Noor E., Bar-Even A., Liebermeister W., MiloR., Proc. Natl. Acad. Sci. U. S. A., 110 (2013),10039–10044.

Frock A. D., Kelly R. M., Curr. Opin. Chem. Eng., 1 (2012),363–372. Fuhrer T., Fischer E., Sauer U., J. Bacteriol.,187 (2005), 1581–1590. Fuhrer T., Sauer U., J. Bacteriol.,191 (2009), 2112–2121.

Funke M., Diederichs S., Kensy F., Müller C., Büchs J.,Biotechnol. Bioeng., 103 (2009), 1118–1128.

Gamenara D., Seoane G. A., Saenz-Mendez P., de Maria P. D.,Redox Biocatalysis, 1st. edn.; Wiley, Hoboken, New Jersey,2013.

Gao H., Zhuo Y., Ashforth E., Zhang L., Protein Cell, 1(2010), 621–626.

Gernaey K. V., Baganz F., Franco-Lara E., Kensy F., KrühneU., Luebberstedt M., Marx U., Palmqvist E., Schmid A.,

Schubert F., Mandenius C.-F., Biotechnol. J., 7 (2012),1308–1314.

Gomes J., Steiner W., Food Technol. Biotechnol., 42 (2004),223–235.

Grimm T., Grimm M., Klat R., Neubauer A., Palela M.,Neubauer P., Appl. Microbiol. Biotechnol., 94 (2012),931–937.

Gröger H., Chamouleau F., Orologas N., Rollmann C., DrauzK., Hummel W., Weckbecker A., May O., Angew. Chem. Int.Ed., 45 (2006), 5677–5681.

Harnastai I. N., Gilep A. A., Usanov S. A., Protein Expr.Purif., 46 (2006), 47–55.

Heipieper H. J., Neumann G., Cornelissen S., Meinhardt F.,Appl. Microbiol. Biotechnol., 74 (2007), 961–973.

Hellmuth K., Korz D. J., Sanders E. A., Deckwer W.-D., J.Biotechnol., 32 (1994), 289–298.

Henry C. S., DeJongh M., Best A. A., Frybarger P. M.,Linsay B., Stevens R. L., Nat. Biotechnol., 28 (2010),977–982.

Heyland J., Fu J., Blank L. M., Schmid A., Biotechnol.Bioeng., 107 (2010), 357–368.

Hoelsch K., Sührer I., Heusel M., Weuster-Botz D., Appl.Microbiol. Biotechnol., 97 (2013), 2473–2481.

Huber R., Scheidle M., Dittrich B., Klee D., Büchs J.,Biotechnol. Bioeng., 103 (2009), 1095–1102. Inoue A.,Horikoshi K., Nature, 338 (1989), 264–266. Iqbal H. A.,Feng Z., Brady S. F., Curr. Opin. Chem. Biol., 16 (2012),109–116.

Itoh N., Isotani K., Nakamura M., Inoue K., Isogai Y.,Makino Y., Appl. Microbiol. Biotechnol., 93 (2012),1075–1085. Jackson J. B., FEBS Lett., 545 (2003), 18–24.

Jakoblinnert A., Mladenov R., Paul A., Sibilla F.,Schwaneberg U., AnsorgeSchumacher M. B., de Maria P. D.,Chem. Commun., 47 (2011), 12230–12232.

Julsing M. K., Cornelissen S., Bühler B., Schmid A., Curr.Opin. Chem. Biol., 12 (2008), 1–10. Kacser H., Burns J.A., Biochem. Soc. Trans., 23 (1995), 341–366.

Kataoka M., Kita K., Wada M., Yasohara Y., Hasegawa J.,Shimizu S., Appl. Microbiol. Biotechnol., 62 (2003),437–445. Keasling J., MIT Technol. Rev., 109 (2006), 27.

Kelk S. M., Olivier B. G., Stougie L., Bruggeman F. J.,Sci. Rep., 2 (2012), 580.

Kieboom J., Dennis J. J., de Bont J. A. M., Zylstra G. J.,J. Biol. Chem., 273 (1998), 85–91.

Kim H. J., Hou B. K., Lee S. G., Kim J. S., Lee D. W., LeeS. J., Metab. Eng., 18 (2013), 44–52.

Kim P. Y., Pollard D. J., Woodley J. M., Biotechnol. Prog.,23 (2007), 74–82. Kim S., Nibe E., Ferri S., Tsugawa W.,Sode K., Biotechnol. Lett., 32 (2010), 1123–1129. KocharinK., Siewers V., Nielsen J., Biotechnol. Bioeng., 110(2013), 2216–2224.

Krause M., Ukkonen K., Haataja T., Ruottinen M., GlumoffT., Neubauer A., Neubauer P., Vasala A., Microb. CellFact., 9 (2010), 11.

Kuhn D., Kholiq M. A., Heinzle E., Bühler B., Schmid A.,Green Chem., 12 (2010), 815–827. Kuhn D., Bühler B.,Schmid A., J. Ind. Microbiol. Biotechnol., 39 (2012),1125–1133.

Lauterbach L., Lenz O., Vincent K. A., FEBS J., 280 (2013),3058–3068.

Le Thanh H., Hoffmann F., Biotechnol. Prog., 21 (2005),1053–1061.

Leak D. J., Sheldon R. A., Woodley J. M., Adlercreutz P.,Biocatal. Biotransform., 27 (2009), 1–26.

Lee H. L. T., Boccazzi P., Ram R. J., Sinskey A. J., LabChip, 6 (2006), 1229–1235.

Leferink N. G. H., Fraaije M. W., Joosten H.-J., Schaap P.J., Mattevi A., Van Berkel W. J. H., J. Biol. Chem., 284(2009), 4392–4397. Lewis J. C., Coelho P. S., Arnold F. H.,Chem. Soc. Rev., 40 (2011), 2003–2021. Lewis N. E.,Nagarajan H., Palsson B. O., Nat. Rev. Microbiol., 10(2012), 291–305.

Li M., Green D. C., Anderson J. L. R., Binks B. P., MannS., Chem. Sci., 2 (2011), 1739–1745.

Lye G. J., Woodley J. M., Trends Biotechnol., 17 (1999),395–402.

Mädje K., Schmölzer K., Nidetzky B., Kratzer R., Microb.Cell Fact., 11 (2012), 7.

Mampel J., Buescher J. M., Meurer G., Eck J., TrendsBiotechnol., 31 (2013), 52–60.

Manabe K., Kageyama Y., Morimoto T., Ozawa T., Sawada K.,Endo K., Tohata M., Ara K., Ozaki K., Ogasawara N., Appl.Environ. Microbiol., 77 (2011), 8370–8381.

Martinez A., Kolvek S. J., Yip C. L., Hopke J., Brown K.A., MacNeil I. A., Osburne M. S., Appl. Environ.Microbiol., 70 (2004), 2452–2463.

Matsushita K., Arents J. C., Bader R., Yamada M., AdachiO., Postma P. W., Microbiology, 143 (1997), 3149–3156.

McMahon M. D., Guan C., Handelsman J., Thomas M. G., Appl.Environ. Microbiol., 78 (2012), 3622–3629.

Meyer D., Witholt B., Schmid A., Appl. Environ. Microbiol.,71 (2005), 6624–6632.

Meyer D., Bühler B., Schmid A., Adv. Appl. Microbiol., 59(2006), 53–91.

Mizoguchi H., Sawano Y., Kato J., Mori H., DNA Res., 15(2008), 277–284.

Mutalik V. K., Guimaraes J. C., Cambray G., Lam C.,Christoffersen M. J., Mai Q. A., Tran A. B., Paull M.,Keasling J. D., Arkin A. P., Endy D., Nat. Methods, 10(2013a), 354–360.

Mutalik V. K., Guimaraes J. C., Cambray G., Mai Q.-A.,Christoffersen M. J., Martin L., Yu A., Lam C., RodriguezC., Bennett G., Keasling J. D., Endy D., Arkin A. P., Nat.Methods, 10 (2013b), 347–353.

Nakahigashi K., Toya Y., Ishii N., Soga T., Hasegawa M.,Watanabe H., Takai Y., Honma M., Mori H., Tomita M., Mol.Syst. Biol., 5 (2009), 306. Nielsen D. R., Prather K. J.,Biotechnol. Bioeng., 102 (2009), 811–821.

Oda T., Oda K., Yamamoto H., Matsuyama A., Ishii M.,Igarashi Y., Nishihara H., Microb. Cell Fact., 12 (2013),

2.

Orth J. D., Conrad T. M., Na J., Lerman J. A., Nam H.,Feist A. M., Palsson B. O., Mol. Syst. Biol., 7 (2011),535.

Overbeek R., Begley T., Butler R. M., Choudhuri J. V.,Chuang H. Y., Cohoon M., de Crécy-Lagard V., Diaz N., DiszT., Edwards R., Fonstein M., Frank E. D., Gerdes S., GlassE. M., Goesmann A., Hanson A., Iwata-Reuyl D., Jensen R.,Jamshidi N., Krause L., Kubal M., Larsen N., Linke B.,McHardy A. C., Meyer F., Neuweger H., Olsen G., Olsen R.,Osterman A., Portnoy V., Pusch G. D., Rodionov D. A.,Rückert C., Steiner J., Stevens R., Thiele I., VassievaO., Ye Y., Zagnitko O., Vonstein V., Nucleic Acids Res., 33(2005), 5691–5702. Perrenoud A., Sauer U., J. Bacteriol.,187 (2005), 3171–3179.

Pettinari M. J., Nikel P. I., Ruiz J. A., Méndez B. S., J.Mol. Microbiol. Biotechnol., 15 (2008), 41–47.

Rasmussen S., Chen L., Nilsson M., Abe S., Artif. Life, 9(2003), 269–316. Rathore A. S., Winkle H., Nat.Biotechnol., 27 (2009), 26–34.

Reyda M. R., Dippold R., Dotson M. E., Jarrett J. T., Arch.Biochem. Biophys., 471 (2008), 32–41.

Richter N., Neumann M., Liese A., Wohlgemuth R., WeckbeckerA., Eggert T., Hummel W., Biotechnol. Bioeng., 106 (2010),541–552. Riesenberg D., Curr. Opin. Biotechnol., 2 (1991),380–384.

Riesenberg D., Schulz V., Knorre W. A., Pohl H. D., KorzD., Sanders E. A., Ross A., Deckwer W. D., J. Biotechnol.,20 (1991), 17–28.

Rodriguez C., Lavandera I., Gotor V., Curr. Org. Chem., 16(2012), 2525–2541. Romero P. A., Arnold F. H., Nat. Rev.Mol. Cell Biol., 10 (2009), 866–876. Rosell A., ValenciaE., Ochoa W. F., Fita I., Pares X., Farres J., J. Biol.Chem., 278 (2003), 40573–40580.

Rothschild L. J., Mancinelli R. L., Nature, 409 (2001),1092–1101.

Rühl M., Le Coq D., Aymerich S., Sauer U., J. Biol. Chem.,287 (2012), 27959–27970.

Sasaki M., Kumagai H., Takegawa K., Tohda H., Nucleic Acids

Res., 41 (2013), 5382–5399. Sauer U., Canonaco F., HeriS., Perrenoud A., Fischer E., J. Biol. Chem., 279 (2004),6613–6619.

Schäpper D., Alam M. N. H. Z., Szita N., Eliasson Lantz A.,Gernaey K. V., Anal. Bioanal. Chem., 395 (2009), 679–695.

Scheidle M., Jeude M., Dittrich B., Denter S., Kensy F.,Suckow M., Klee D., Büchs J., FEMS Yeast Res., 10 (2010),83–92.

Schellenberger J., Park J. O., Conrad T. M., Palsson B. O.,BMC Bioinformatics, 11 (2010), 213.

Schmid A., Kollmer A., Mathys R. G., Witholt B.,Extremophiles, 2 (1998), 249–256. Schmid A., Kollmer A.,Sonnleitner B., Witholt B., Bioproc. Eng., 20 (1999),91–100.

Schmid A., Dordick J. S., Hauer B., Kiener A., Wubbolts M.,Witholt B., Nature, 409 (2001), 258–268.

Schrewe M., Julsing M. K., Bühler B., Schmid A., Chem. Soc.Rev., (2013), 42 (2013), 6346–6377.

Schuetz R., Zamboni N., Zampieri M., Heinemann M., SauerU., Science, 336 (2012), 601–604.

Segrè D., Vitkup D., Church G. M., Proc. Natl. Acad. Sci.U. S. A., 99 (2002), 15112–15117.

Segura A., Molina L., Fillet S., Krell T., Bernal P.,Munoz-Rojas J., Ramos J. L., Curr. Opin. Biotechnol., 23(2012), 415–421. Serov A. E., Popova A. S., Fedorchuk V.V., Tishkov V. I., Biochem. J., 367 (2002), 841–847.Shiloach J., Fass R., Biotechnol. Adv., 23 (2005), 345–357.

Shoval O., Sheftel H., Shinar G., Hart Y., Ramote O., MayoA., Dekel E., Kavanagh K., Alon U., Science, 336 (2012),1157–1160.

Siurkus J., Panula-Perälä J., Horn U., Kraft M., RimselieneR., Neubauer P., Microb. Cell Fact., 9 (2010), 35. SteeleH. L., Jaeger K.-E., Daniel R., Streit W. R., J. Mol.Microbiol. Biotechnol., 16 (2009), 25–37.

Stelling J., Klamt S., Bettenbrock K., Schuster S., GillesE. D., Nature, 420 (2002), 190–193.

Studier F. W., Moffatt B. A., J. Mol. Biol., 189 (1986),

113–130.

Sumegi B., Sherry A. D., Malloy C. R., Biochemistry, 29(1990), 9106–9110. Thiele I., Palsson B. O., Nat. Protoc.,5 (2010), 93–121.

Törnroth-Horsefield S., Neutze R., Proc. Natl. Acad. Sci.U. S. A., 105 (2008), 19565–19566.

Udaondo Z., Duque E., Fernandez M., Molina L., de la TorreJ., Bernal P., Niqui J. L., Pini C., Roca A., Matilla M.A., Molina-Henares M. A., Silva-Jimenez H., Navarro-AvilesG., Busch A., Lacal J., Krell T., Segura A., Ramos J. L.,FEBS Lett., 586 (2012), 2932–2938.

US Food and Drug Administration, Pharmaceutical cGMPs forthe 21st century: a risk-based approach, Rockville, MD,2002.

Ütkür F. Ö., Gaykawad S., Bühler B., Schmid A., J. Ind.Microbiol. Biotechnol., 38 (2011), 1067–1077.

Ütkür F. Ö., Thanh Tran T., Collins J., Brandenbusch C.,Sadowski G., Schmid A., Bühler B., J. Ind. Microbiol.Biotechnol., 39 (2012), 1049–1059.

van Beilen J. B., Holtackers R., Lüscher D., Bauer U.,Witholt B., Duetz W. A., Appl. Environ. Microbiol., 71(2005), 1737–1744.

van den Brink J., Canelas A. B., van Gulik W. M., Pronk J.T., Heijnen J. J., de Winde J. H., Daran-Lapujade P.,Appl. Environ. Microbiol., 74 (2008), 5710–5723. van derDonk W. A., Zhao H., Curr. Opin. Biotechnol., 14 (2003),421–426.

Vester A., Hans M., Hohmann H.-P., Weuster-Botz D., Appl.Microbiol. Biotechnol., 84 (2009), 71–76.

Wang G. Y., Graziani E., Waters B., Pan W., Li X.,McDermott J., Meurer G., Saxena G., Andersen R. J., DaviesJ., Org. Lett., 2 (2000), 2401–2404.

Weckbecker A., Gröger H., Hummel W., Adv. Biochem. Eng.Biotechnol., 120 (2010), 195–242.

Xiao Z., Lv C., Gao C., Qin J., Ma C., et al. (2010). ANovel Whole-Cell Biocatalyst with NAD + Regeneration forProduction of Chiral Chemicals. PLoS ONE, 5(1): e8860.doi:10.1371/journal.pone.0008860.

Yeh C. M., Yeh C. K., Hsu X. Y., Luo Q. M., Lin M. Y.,Appl. Environ. Microbiol., 74 (2008), 1039–1049.

Yukawa H., Inui M. (eds.), CorynebacteriumGlutamicum—Biology and Biotechnology, 1st. edn.;Springer-Verlag, Heidelberg, New York, Dordrecht, London,2013.

Zelcbuch L., Antonovsky N., Bar-Even A., Levin-Karp A.,Barenholz U., Dayagi M., Liebermeister W., Flamholz A.,Noor E., Amram S., Brandis A., Bareia T., Yofe I., JubranH., Milo R., Nucleic Acids Res., 41 (2013), e98.

Zhang G., Hubalewska M., Ignatova Z., Nat. Struct. Mol.Biol., 16 (2009), 274–280.

Zhu J., Sánchez A., Bennett G. N., San K. Y., Metab. Eng.,13 (2011), 704–712.

3 Chapter 3: Directed Evolution ofEnzymes for Industrial Biocatalysis

Gaucher E. A., Ancestral Sequence Reconstruction, (2007),20–33. Geddie M. L., Rowe L. A., Alexander O. B., MatsumuraI., Edited by: Dan E. R., Joseph P. N., Methods inEnzymology, 388 (2004), 134–145, Academic Press. Gibbs M.D., Nevalainen K. M. H., Bergquist P. L., Gene, 271 (2001),13–20. Gibson D. G., Nucleic Acids Research, 37 (2009),6984–6990. Gibson D. G., Benders G. A., Axelrod K. C.,Zaveri J., Algire M. A., Moodie M., Montague M. G., VenterJ. C., Smith H. O., Hutchison C. A., III, Proceedings ofthe National Academy of Sciences of the United States ofAmerica, 105 (2008), 20404–20409. Gibson D. G., Young L.,Chuang R. Y., Venter J. C., Hutchison C. A., Smith H. O.,Nature Methods, 6 (2009), 343–345. Gilson L., Collier S.J., Sukumaran J., Yeo W. L., Alvizo O., Teo E. L., WilsonR. J., Junye X., US 2011/0111468 A1 (2010). GlobalIndustry Analysts, Inc., Industrial Enzymes: GlobalStrategic Business Report (2012). Guo M. T., Rotem A.,Heyman J. A., Weitz D. A., Lab on a Chip, 12 (2012),2146–2155. Hall B. G., Biochemistry, 20 (1981), 4042–4049.Hamamatsu N., Aita T., Nomiya Y., Uchiyama H., Nakajima M.,Husimi Y., Shibanaka Y., Protein Engineering Design andSelection, 18 (2005), 265–271. Hanes J., Jermutus L.,Weber-Bornhauser S., Bosshard H. R., Plückthun A.,Proceedings of the National Academy of Sciences, 95 (1998),14130–14135.

Hanes J., Schaffitzel C., Knappik A., Plückthun A., NatureBiotechnology, 18 (2000), 1287–1292. Hardiman E., GibbsM., Reeves R., Bergquist P., Applied Biochemistry andBiotechnology, 161 (2010), 301–312. Hidalgo A.,Schliessmann A., Molina R., Hermoso J., Bornscheuer U. T.,Protein Engineering Design & Selection, 21 (2008),567–576. Hiraga K., Arnold F. H., Journal of MolecularBiology, 330 (2003), 287–296. Jaeger K.-E., Eggert T.,Current Opinion in Biotechnology, 13 (2002), 390–397.Jennewein S., Schürmann M., Wolberg M., Hilker I., LuitenR., Wubbolts M., Mink D., Biotechnology Journal, 1 (2006),537–548. Jochens H., Aerts D., Bornscheuer U. T., ProteinEngineering Design & Selection, 23 (2010), 903–909.

Jochens H., Bornscheuer U. T., ChemBioChem, 11 (2010),1861–1866. Johannes T. W., Woodyer R. D., Zhao H., Appliedand Environmental Microbiology, 71 (2005), 5728–5734.Johannes T. W., Woodyer R. D., Zhao H., Biotechnology andBioengineering, 96 (2007), 18–26. Karanicolas J., Corn J.E., Chen I., Joachimiak L. A., Dym O., Peck S. H., AlbeckS., Unger T., Hu W., Liu G., Delbecq S., Montelione G. T.,

Spiegel C. P., Liu D. R., Baker D., Molecular Cell, 42(2011), 250–260. Keasling J. D., Science, 330 (2010),1355–1358. Khosla C., Keasling J. D., Nature Reviews DrugDiscovery, 2 (2003), 1019–1025. Kille S., Zilly F. E.,Acevedo J. P., Reetz M. T., Nature Chemistry, 3 (2011),738–743. Kim H. J., Uhm T. G., Kim S. B., Kim P., Journalof Microbiology and Biotechnology, 20 (2010), 1018–1021.Klein-Marcuschamer D., Yadav V. G., Ghaderi A.,Stephanopoulos G. N., Edited by: Wittmann C., Krull W. R.,Biosystems Engineering I: Creating Superior Biocatalysts,Advances in Biochemical Engineering-Biotechnology, 120(2010), 101–131. K ourist R., Jochens H., Bartsch S.,Kuipers R., Padhi S. K., Gall M., Böttcher D., JoostenH.-J., Bornscheuer U. T., ChemBioChem, 11 (2010),1635–1643. Lee S. M., Jellison T., Alper H. S., Applied andEnvironmental Microbiology, 78 (2012), 5708–5716. LernerS. A., Wu T. T., Lin E. C. C., Science, 146 (1964),1313–1315. Leung D. W., Chen E., Goeddel D. V., Technique,1 (1989), 11–15. Li T., Liang J., Ambrogelly A., BrennanT., Gloor G., Huisman G., Lalonde J., Lekhal A., Mijts B.,Muley S., Newman L., Tobin M., Wong G., Zaks A., Zhang X.,Journal of the American Chemical Society, 134 (2012),6467–6472.

Liang J., Lalonde J., Borup B., Mitchell V., Mundorff E.,Trinh N., Kochrekar D. A., Nair Cherat R., Pai G. G.,Organic Process Research & Development, 14 (2009),193–198. Liu Z., Pscheidt B., Avi M., Gaisberger R.,Hartner F. S., Schuster C., Skranc W., Gruber K., GliederA., ChemBioChem, 9 (2008), 58–61. Lutz S., Current Opinionin Biotechnology, 21 (2010), 734–743. Lutz S., OstermeierM., Moore G. L., Maranas C. D., Benkovic S. J., Proceedingsof the National Academy of Sciences, 98 (2001),11248–11253.

Ma S. K., Gruber J., Davis C., Newman L., Gray D., Wang A.,Grate J., Huisman G. W., Sheldon R. A., Green Chemistry,12 (2010), 81–86. Machado H. B., Dekishima Y., Luo H., LanE. I., Liao J. C., Metabolic Engineering, 14 (2012),504–511. Martin J. S., Martin S., Michae M. J. H., DanielM., Michael W., Gerhardus W. M., WO/2005/118794 (2005).Martin V. J. J., Pitera D. J., Withers S. T., Newman J. D.,Keasling J. D., Nature Biotechnology, 21 (2003), 796–802.Maté D., García-Burgos C., García-Ruiz E., Ballesteros A.O., Camarero S., Alcalde M., Chemistry & Biology, 17(2010), 1030–1041. McLachlan M. J., Johannes T. W., ZhaoH., Biotechnology and Bioengineering, 99 (2008), 268–274.Meyer M. M., Silberg J. J., Voigt C. A., Endelman J. B.,Mayo S. L., Wang Z.-G., Arnold F. H., Protein Science, 12(2003), 1686–1693. Mijts B. N., Lee P. C., Schmidt-Dannert

C., Chemistry & Biology, 12 (2005), 453–460. Miller O. J.,Bernath K., Agresti J. J., Amitai G., Kelly B. T.,Mastrobattista E., Taly V., Magdassi S., Tawfik D. S.,Griffiths A. D., Nature Methods, 3 (2006), 561–570. MorleyK. L., Kazlauskas R. J., Trends in Biotechnology, 23(2005), 231–237. Muller K. M., Stebel S. C., Knall S., ZipfG., Bernauer H. S., Arndt K. M., Nucleic Acids Research,33 (2005), e117. Murakami H., Hohsaka T., Sisido M., NatureBiotechnology, 20 (2002), 76–81. Nannemann D. P.,Birmingham W. R., Scism R. A., Bachmann B. O., FutureMedicinal Chemistry, 3 (2011), 809–819. Ness J. E., WelchM., Giver L., Bueno M., Cherry J. R., Borchert T. V.,Stemmer W. P. C., Minshull J., Nature Biotechnology, 17(1999), 893–896. O’Maille P. E., Bakhtina M., Tsai M.-D.,Journal of Molecular Biology, 321 (2002), 677–691. OkkelsJ. S., Edited by: Svendsen A., Enzyme Functionality,(2004), 413–424, CRC Press. Ostermeier M., Shim J. H.,Benkovic S. J., Nature Biotechnology, 17 (1999),1205–1209. Panda T., Gowrishankar B. S., AppliedMicrobiology and Biotechnology 67 (2005), 160–169. PatelR. N., ACS Catalysis, 1 (2011), 1056–1074.

Patnaik R., Louie S., Gavrilovic V., Perry K., Stemmer W.P., Ryan C. M., del Cardayre S., Nature Biotechnology, 20(2002), 707–712.

Pfleger B. F., Pitera D. J., D Smolke C., Keasling J. D.,Nature Biotechnology, 24 (2006), 1027–1032. Quin M. B.,Schmidt-Dannert C., ACS Catalysis, 1 (2011), 1017–1021.Reetz M. T., Bocola M., Carballeira J. D., Zha D., VogelA., Angewandte Chemie, 117 (2005), 4264–4268. Reetz M. T.,Carballeira J. D., Vogel A., Angewandte ChemieInternational Edition, 45 (2006), 7745–7751. Reetz M. T.,Prasad S., Carballeira J. D., Gumulya Y., Bocola M.,Journal of the American Chemical Society, 132 (2010),9144–9152. Reetz M. T., Wang L.-W., Bocola M., AngewandteChemie, 118 (2006), 1258–1263. Rha E., Kim S., Choi S.-L.,Hong S.-P., Sung M.-H., Song J. J., Lee S.-G., FEBSJournal, 276 (2009), 6187–6194. Ro D. K., Paradise E. M.,Ouellet M., Fisher K. J., Newman K. L., Ndungu J. M., HoK. A., Eachus R. A., Ham T. S., Kirby J., Chang M. C.,Withers S. T., Shiba Y., Sarpong R., Keasling J. D.,Nature, 440 (2006), 940–943. Rothlisberger D., KhersonskyO., Wollacott A. M., Jiang L., DeChancie J., Betker J.,Gallaher J. L., Althoff E. A., Zanghellini A., Dym O.,Albeck S., Houk K. N., Tawfik D. S., Baker D., Nature, 453(2008), 190–195. Rubin-Pitel S. B., Cho C. M. H., Chen W.,Zhao H., Edited by: Shang-Tian Y., Bioprocessing forValue-Added Products from Renewable Resources, (2007),49–72, Elsevier. Rubin-Pitel S. B., Zhao H., Combinatorial

Chemistry & High Throughput Screening, 9 (2006), 247–257.Salis H. M., Mirsky E. A., Voigt C. A., NatureBiotechnology, 27 (2009), 946– 950.

Savile C. K., Janey J. M., Mundorff E. C., Moore J. C., TamS., Jarvis W. R., Colbeck J. C., Krebber A., Fleitz F. J.,Brands J., Devine P. N., Huisman G. W., Hughes G. J.,Science, 329 (2010), 305–309. Schmidt-Dannert C., Umeno D.,Arnold F. H., Nature Biotechnology, 18 (2000), 750–753.Shao Z., Zhao H., Giver L., Arnold F. H., Nucleic AcidsResearch, 26 (1998), 681–683. Shao Z., Zhao H., Zhao H.,Nucleic Acids Research, 37 (2009), e16. Sieber V., MartinezC. A., Arnold F. H., Nature Biotechnology, 19 (2001),456–460.

Sneeden J. L., Loeb L. A., Edited by: Arnold F. H.,Georgiou G., Directed Enzyme Evolution, Methods inMolecular Biology, 230 (2003), 3–10, Humana Press. SongG., Zhang L., Vinar T., Miller W., Journal of ComputationalBiology, 17 (2010), 1227–1242. Stapleton J. A., Swartz J.R., PLoS ONE, 5 (2010), e15275. Stemmer W. P., Proceedingsof the National Academy of Sciences, 91 (1994),10747–10751. Stutzman-Engwall K., Conlon S., Fedechko R.,McArthur H., Pekrun K., Chen Y., Jenne S., La C., TrinhN., Kim S., Zhang Y. X., Fox R., Gustafsson C., KrebberA., Metabolic Engineering, 7 (2005), 27–37. Tang W. L., LiZ., Zhao H., Chemical Communications, 46 (2010), 5461–5463.Tang W. L., Zhao H., Biotechnology Journal, 4 (2009),1725–1739.

Tawfik D. S., Griffiths A. D., Nature Biotechnology, 16(1998), 652–656. Uhlen M., Andersson Svahn H., Lab on aChip, 11 (2011), 3389–3393. Umeno D., Arnold F. H., Journalof Bacteriology, 186 (2004), 1531–1536. Umeno D., Tobias A.V., Arnold F. H., Microbiology and Molecular BiologyReviews, 69 (2005), 51–78. Urlacher V. B., Girhard M.,Trends in Biotechnology, 30 (2012), 26–36. Van Antwerp J.J., Wittrup K. D., Biotechnology Progress, 16 (2000),31–37. Villiers B. R. M., Stein V., Hollfelder F., ProteinEngineering Design and Selection, 23 (2010), 1–8. Wang H.H., Isaacs F. J., Carr P. A., Sun Z. Z., Xu G., Forest C.R., Church G. M., Nature, 460 (2009), 894–898. Wang M., SiT., Zhao H., Bioresource Technology, 115 (2012), 117–125.Wang Q., Wu H., Wang A., Du P., Pei X., Li H., Yin X.,Huang L., Xiong X., Journal of Biological Chemistry, 285(2010), 41509–41516. Ward T. R., Angewandte ChemieInternational Edition, 47 (2008), 7802–7803.

Warner J. R., Reeder P. J., Karimpour-Fard A., Woodruff L.B. A., Gill R. T., Nature Biotechnology, 28 (2010),

856–862. Wong T. S., Tee K. L., Hauer B., Schwaneberg U.,Nucleic Acids Research, 32 (2004), e26.

W u B., Szymański W., Wybenga G. G., Heberling M. M.,Bartsch S., de Wildeman S., Poelarends G. J., Feringa B.L., Dijkstra B. W., Janssen D. B., Angewandte ChemieInternational Edition, 51 (2012), 482–486.

Xie X., Pashkov I., Gao X., Guerrero J. L., Yeates T. O.,Tang Y., Biotechnology and Bioengineering, 102 (2009),20–28. Xie X., Tang Y., Applied and EnvironmentalMicrobiology, 73 (2007), 2054–2060. Xie X., Watanabe K.,Wojcicki W. A., Wang C. C. C., Tang Y., Chemistry &Biology, 13 (2006), 1161–1169. You C., Percival Zhang Y.H., Analytical Biochemistry, 428 (2012), 7–12. Zhang X.-Z.,Sathitsuksanoh N., Zhu Z., Percival Zhang Y. H., MetabolicEngineering, 13 (2011), 364–372. Zhang X. Z., Zhang Y. H.,Microbial Biotechnology, 4 (2011), 98–105. Zhang Y. X.,Perry K., Vinci V. A., Powell K., Stemmer W. P. C., delCardayre S. B., Nature, 415 (2002), 644–646.

Zhao H., Giver L., Shao Z., Affholter J. A., Arnold F. H.,Nature Biotechnology, 16 (1998), 258–261. Zumárraga M.,Camarero S., Shleev S., Martínez-Arias A., Ballesteros A.,Plou F. J., Alcalde M., Proteins: Structure, Function andGenetics, 71 (2008), 250–260.

4 Chapter 4: Strategies to OvercomeStability Constraints in Enzyme Evolutionand Facilitate Effective EnzymeEngineering

Acharya, P., Rajakumara, E., Sankaranarayanan, R., Rao, N.M., J Mol Biol, 341 (2004), 1271–1281.

Aharoni, A., Gaidukov, L., Yagur, S., Toker, L., Silman,I., Tawfik, D. S., Proc Natl Acad Sci USA, 101 (2004),482–487.

Aharoni, A., Galili, G., Curr Opin Biotechnol, 22 (2011),239–244.

Alcolombri, U., Elias, M., Tawfik, D. S., J Mol Biol, 411(2011), 837–853.

Allali-Hassani, A., Wasney, G. A., Chau, I., Hong, B. S.,Senisterra, G., Loppnau, P., Shi, Z., Moult, J., Edwards,A. M., Arrowsmith, C. H., Park, H. W., Schapira, M.,Vedadi, M., Biochem J, 424 (2009), 15–26.

Amar, D., Berger, I., Amara, N., Tafa, G., Meijler, M. M.,Aharoni, A., J Mol Biol, 416 (2012), 21–32.

Amin, N., Liu, A. D., Ramer, S., Aehle, W., Meijer, D.,Metin, M., Wong, S., Gualfetti, P., Schellenberger, V.,Protein Eng Des Sel, 17 (2004), 787–793.

Anbar, M., Gul, O., Lamed, R., Sezerman, U. O., Bayer, E.A., Appl Environ Microbiol, 78 (2012), 3458–3464.

Andrews, S. R., Taylor, E. J., Pell, G., Vincent, F.,Ducros, V. M., Davies, G. J., Lakey, J. H., Gilbert, H.J., J Biol Chem, 279 (2004), 54369–54379.

Augustyniak, W., Brzezinska, A. A., Pijning, T., Wienk, H.,Boelens, R., Dijkstra, B. W., Reetz, M. T., Protein Sci,21 (2012), 487–497.

Bandyopadhyay, A., Saxena, K., Kasturia, N., Dalal, V.,Bhatt, N., Rajkumar, A., Maity, S., Sengupta, S.,Chakraborty, K., Nat Chem Biol, 8 (2012), 238–245.

Benedix, A., Becker, C. M., de Groot, B. L., Caflisch, A.,Bockmann, R. A., Nat Methods, 6 (2009), 3–4.

Bershtein, S., Segal, M., Bekerman, R., Tokuriki, N.,Tawfik, D. S., Nature, 444 (2006), 929–932.

Bershtein, S., Goldin, K., Tawfik, D. S., J Mol Biol, 379(2008), 1029–1044. Bershtein, S., Mu, W., Shakhnovich, E.I., Proc Natl Acad Sci USA, 109 (2012), 4857–4862.

Bershtein, S., Mu, W., Serohijos, A. W., Zhou, J.,Shakhnovich, E. I., Mol Cell, 49 (2013), 133–144.

Bloom, J. D., Meyer, M. M., Meinhold, P., Otey, C. R.,MacMillan, D., Arnold, F. H., Curr Opin Struct Biol, 15(2005), 447–452.

Bloom, J. D., Labthavikul, S. T., Otey, C. R., Arnold, F.H., Proc Natl Acad Sci USA, 103 (2006), 5869–5874.

Bloom, J. D., Arnold, F. H., Proc Natl Acad Sci USA, 106Suppl 1 (2009), 9995– 10000.

Blum, J. K., Ricketts, M. D., Bommarius, A. S., JBiotechnol, 160 (2012), 214–221.

Bogumil, D., Dagan, T., Genome Biol Evol, 2 (2010), 602–608.

Bordes, F., Tarquis, L., Nicaud, J. M., Marty, A., JBiotechnol, 156 (2011), 117–124.

Bornscheuer, U. T., Huisman, G. W., Kazlauskas, R. J.,Lutz, S., Moore, J. C., Robins, K., Nature, 485 (2012),185–194.

Bowie, J. U., Reidhaar-Olson, J. F., Lim, W. A., Sauer, R.T., Science, 247 (1990), 1306–1310.

Breen, M. S., Kemena, C., Vlasov, P. K., Notredame, C.,Kondrashov, F. A., Nature, 490 (2012), 535–538.

Buettner, K., Hertel, T. C., Pietzsch, M., Amino Acids, 42(2012), 987–996.

Cabantous, S., Terwilliger, T. C., Waldo, G. S., NatBiotechnol, 23 (2005), 102–107.

Cabantous, S., Rogers, Y., Terwilliger, T. C., Waldo, G.S., PLoS One, 3 (2008), e2387.

Cabrita, L. D., Gilis, D., Robertson, A. L., Dehouck, Y.,Rooman, M., Bottomley, S. P., Protein Sci, 16 (2007),2360–2367.

Cadwell, R. C., Joyce, G. F., PCR Methods Appl, 2 (1992),

28–33.

Camps, M., Herman, A., Loh, E., Loeb, L. A., Crit RevBiochem Mol Biol, 42 (2007), 313–326.

Capriotti, E., Fariselli, P., Casadio, R., Nucleic AcidsRes, 33 (2005), W306–W310.

Carbone, M. N., Arnold, F. H., Curr Opin Struct Biol, 17(2007), 454–459.

Champion, E., Guerin, F., Moulis, C., Barbe, S., Tran, T.H., Morel, S., Descroix, K., Monsan, P., Mourey, L.,Mulard, L. A., Tranier, S., Remaud-Simeon, M., Andre, I.,J Am Chem Soc, 134 (2012), 18677–18688.

Chautard, H., Blas-Galindo, E., Menguy, T., Grand’Moursel,L., Cava, F., Berenguer, J., Delcourt, M., Nat Methods, 4(2007), 919–921.

Chica, R. A., Doucet, N., Pelletier, J. N., Curr OpinBiotechnol, 16 (2005), 378–384.

Cole, M. F., Gaucher, E. A., Curr Opin Chem Biol, 15(2011), 399–406.

Dalby, P. A., Curr Opin Struct Biol, 21 (2011), 473–480.

Dawid, A., Kiviet, D. J., Kogenaru, M., de Vos, M., Tans,S. J., Chaos, 20 (2010), 026105.

De Baets, G., Van Durme, J., Reumers, J., Maurer-Stroh, S.,Vanhee, P., Dopazo, J., Schymkowitz, J., Rousseau, F.,Nucleic Acids Res, 40 (2012), D935–D939.

de Visser, J. A., Cooper, T. F., Elena, S. F., Proc BiolSci, 278 (2011), 3617–3624.

Dehouck, Y., Kwasigroch, J. M., Gilis, D., Rooman, M., BMCBioinformatics, 12 (2011), 151.

Dellus-Gur, E., Toth-Petroczy, A., Elias, M., Tawfik, D.S., J Mol Biol, 425 (2013), 2609–2621.

DePristo, M. A., Weinreich, D. M., Hartl, D. L., Nat RevGenet, 6 (2005), 678–687.

Diaz, J. E., Lin, C. S., Kunishiro, K., Feld, B. K.,Avrantinis, S. K., Bronson, J., Greaves, J., Saven, J. G.,Weiss, G. A., Protein Sci, 20 (2011), 1597–1606.

Dietrich, J. A., McKee, A. E., Keasling, J. D., Annu RevBiochem, 79 (2010), 563–590.

Dobson, C. M., Nature, 426 (2003), 884–890.

Duan, X., Chen, J., Wu, J., Appl Environ Microbiol, 79(2013), 4072–4077.

Dyson, M. R., Perera, R. L., Shadbolt, S. P., Biderman, L.,Bromek, K., Murzina, N. V., McCafferty, J., Nucleic AcidsRes, 36 (2008), e51.

Emond, S., Andre, I., Jaziri, K., Potocki-Veronese, G.,Mondon, P., Bouayadi, K., Kharrat, H., Monsan, P.,Remaud-Simeon, M., Protein Sci, 17 (2008), 967–976.

Fasan, R., Meharenna, Y. T., Snow, C. D., Poulos, T. L.,Arnold, F. H., J Mol Biol, 383 (2008), 1069–1080.

Foit, L., Morgan, G. J., Kern, M. J., Steimer, L. R., vonHacht, A. A., Titchmarsh, J., Warriner, S. L., Radford, S.E., Bardwell, J. C., Mol Cell, 36 (2009), 861–871.

Foit, L., Mueller-Schickert, A., Mamathambika, B. S.,Gleiter, S., Klaska, C. L., Ren, G., Bardwell, J. C.,Antioxid Redox Signal, 14 (2011), 973–984.

Fujiwara, K., Ishihama, Y., Nakahigashi, K., Soga, T.,Taguchi, H., EMBO J, 29 (2010), 1552–1564.

Gallardo, O., Pastor, F. I., Polaina, J., Diaz, P., Lysek,R., Vogel, P., Isorna, P., Gonzalez, B., Sanz-Aparicio,J., J Biol Chem, 285 (2010), 2721–2733.

Garcia-Ruiz, E., Mate, D., Ballesteros, A., Martinez, A.T., Alcalde, M., Microb Cell Fact, 9 (2010), 17.

Giver, L., Gershenson, A., Freskgard, P. O., Arnold, F. H.,Proc Natl Acad Sci USA, 95 (1998), 12809–12813.

Godoy-Ruiz, R., Ariza, F., Rodriguez-Larrea, D.,Perez-Jimenez, R., Ibarra-Molero, B., Sanchez-Ruiz, J. M.,J Mol Biol, 362 (2006), 966–978.

Goldsmith, M., Tawfik, D. S., Methods Enzymol, 523 (2013),257–283.

Gong, L. I., Suchard, M. A., Bloom, J. D., Elife, 2 (2013),e00631.

Guerois, R., Nielsen, J. E., Serrano, L., J Mol Biol, 320(2002), 369–387.

Guo, H. H., Choe, J., Loeb, L. A., Proc Natl Acad Sci USA,101 (2004), 9205–9210.

Gupta, R. D., Goldsmith, M., Ashani, Y., Simo, Y.,Mullokandov, G., Bar, H., Ben-David, M., Leader, H.,Margalit, R., Silman, I., Sussman, J. L., Tawfik, D. S.,Nat Chem Biol, 7 (2011), 120–125.

Hartl, F. U., Hayer-Hartl, M., Nat Struct Mol Biol, 16(2009), 574–581.

Hecky, J., Muller, K. M., Biochemistry, 44 (2005),12640–12654.

Heinzelman, P., Snow, C. D., Smith, M. A., Yu, X., Kannan,A., Boulware, K., Villalobos, A., Govindarajan, S.,Minshull, J., Arnold, F. H., J Biol Chem, 284 (2009a),26229–26233.

Heinzelman, P., Snow, C. D., Wu, I., Nguyen, C.,Villalobos, A., Govindarajan, S., Minshull, J., Arnold, F.H., Proc Natl Acad Sci USA, 106 (2009b), 5610–5615.

Heinzelman, P., Komor, R., Kanaan, A., Romero, P., Yu, X.,Mohler, S., Snow, C., Arnold, F., Protein Eng Des Sel, 23(2010), 871–880.

Herman, A., Tawfik, D. S., Protein Eng Des Sel, 20 (2007),219–226.

Ito, Y., Ikeuchi, A., Imamura, C., Protein Eng Des Sel, 26(2013), 73–79.

Iwabata, H., Watanabe, K., Ohkuri, T., Yokobori, S.,Yamagishi, A., FEMS Microbiol Lett, 243 (2005), 393–398.

Jackel, C., Bloom, J. D., Kast, P., Arnold, F. H., Hilvert,D., J Mol Biol, 399 (2010), 541–546. Jiang, S., Li, C.,Zhang, W., Cai, Y., Yang, Y., Yang, S., Jiang, W., BiochemJ, 402 (2007), 429–437.

Jurgens, C., Strom, A., Wegener, D., Hettwer, S., Wilmanns,M., Sterner, R., Proc Natl Acad Sci USA, 97 (2000),9925–9930.

Kaper, T., Brouns, S. J., Geerling, A. C., De Vos, W. M.,

Van der Oost, J., Biochem J, 368 (2002), 461–470.

Kather, I., Jakob, R. P., Dobbek, H., Schmid, F. X., J MolBiol, 383 (2008), 238–251.

Kazlauskas, R. J., Bornscheuer, U. T., Nat Chem Biol, 5(2009), 526–529.

Kerner, M. J., Naylor, D. J., Ishihama, Y., Maier, T.,Chang, H. C., Stines, A. P., Georgopoulos, C., Frishman,D., Hayer-Hartl, M., Mann, M., Hartl, F. U., Cell, 122(2005), 209–220.

Khan, S., Vihinen, M., Hum Mutat, 31 (2010), 675–684.

Khersonsky, O., Rosenblat, M., Toker, L., Yacobson, S.,Hugenmatter, A., Silman, I., Sussman, J. L., Aviram, M.,Tawfik, D. S., Biochemistry, 48 (2009), 6644–6654.

Khersonsky, O., Rothlisberger, D., Dym, O., Albeck, S.,Jackson, C. J., Baker, D., Tawfik, D. S., J Mol Biol, 396(2010), 1025–1042.

Khersonsky, O., Rothlisberger, D., Wollacott, A. M.,Murphy, P., Dym, O., Albeck, S., Kiss, G., Houk, K. N.,Baker, D., Tawfik, D. S., J Mol Biol, 407 (2011), 391–412.

Khersonsky, O., Kiss, G., Rothlisberger, D., Dym, O.,Albeck, S., Houk, K. N., Baker, D., Tawfik, D. S., ProcNatl Acad Sci USA, 109 (2012), 10358–10363.

Komor, R. S., Romero, P. A., Xie, C. B., Arnold, F. H.,Protein Eng Des Sel, 25 (2012), 827–833.

Kristensen, P., Winter, G., Fold Des, 3 (1998), 321–328.Lamla, T., Hoerer, S., Bauer, M. M., Int J Biol Macromol,39 (2006), 111–121.

Lauck, F., Smith, C. A., Friedland, G. F., Humphris, E. L.,Kortemme, T., Nucleic Acids Res, 38 (2010), W569–W575.

Lehmann, M., Pasamontes, L., Lassen, S. F., Wyss, M.,Biochim Biophys Acta, 1543 (2000), 408–415.

Lehmann, M., Loch, C., Middendorf, A., Studer, D., Lassen,S. F., Pasamontes, L., van Loon, A. P., Wyss, M., ProteinEng, 15 (2002), 403–411.

Li, Y., Drummond, D. A., Sawayama, A. M., Snow, C. D.,Bloom, J. D., Arnold, F. H., Nat Biotechnol, 25 (2007),

1051–1056. Li, Y., Fang, J., PLoS One, 7 (2012), e47247.

Lin-Goerke, J. L., Robbins, D. J., Burczak, J. D.,Biotechniques, 23 (1997), 409–412.

Lindman, S., Hernandez-Garcia, A., Szczepankiewicz, O.,Frohm, B., Linse, S., Proc Natl Acad Sci USA, 107 (2010),19826–19831.

Liu, B., Zhang, J., Fang, Z., Gu, L., Liao, X., Du, G.,Chen, J., J Ind Microbiol Biotechnol, 40 (2013), 697–704.

Lonquety, M., Lacroix, Z., Papandreou, N., Chomilier, J.,Nucleic Acids Res, 37 (2009), D374–379. Lutz, S., CurrOpin Biotechnol, 21 (2010), 734–743.

Martin, A., Schmid, F. X., Sieber, V., Methods Mol Biol,230 (2003), 57–70.

Martinez, R., Jakob, F., Tu, R., Siegert, P., Maurer, K.H., Schwaneberg, U., Biotechnol Bioeng, 110 (2013),711–720.

Maxwell, K. L., Mittermaier, A. K., Forman-Kay, J. D.,Davidson, A. R., Protein Sci, 8 (1999), 1908–1911.

Mayer, S., Rudiger, S., Ang, H. C., Joerger, A. C., Fersht,A. R., J Mol Biol, 372 (2007), 268–276.

Miyazaki, J., Nakaya, S., Suzuki, T., Tamakoshi, M.,Oshima, T., Yamagishi, A., J Biochem, 129 (2001), 777–782.

Mogk, A., Bukau, B., Curr Biol, 14 (2004), R78–R80.

Moore, G. L., Maranas, C. D., Lutz, S., Benkovic, S. J.,Proc Natl Acad Sci USA, 98 (2001), 3226–3231.

Nestl, B. M., Nebel, B. A., Hauer, B., Curr Opin Chem Biol,15 (2011), 187–193. Ni, J., Takehara, M., Miyazawa, M.,Watanabe, H., Protein Eng Des Sel, 20 (2007), 535–542.

Niwa, T., Kanamori, T., Ueda, T., Taguchi, H., Proc NatlAcad Sci USA, 109 (2012), 8937–8942.

Noor, S., Taylor, M. C., Russell, R. J., Jermiin, L. S.,Jackson, C. J., Oakeshott, J. G., Scott, C., PLoS One, 7(2012), e39822.

Ortlund, E. A., Bridgham, J. T., Redinbo, M. R., Thornton,J. W., Science, 317 (2007), 1544–1548.

Parthiban, V., Gromiha, M. M., Schomburg, D., Nucleic AcidsRes, 34 (2006), W239–W242.

Pedelacq, J. D., Cabantous, S., Tran, T., Terwilliger, T.C., Waldo, G. S., Nat Biotechnol, 24 (2006), 79–88.

Pey, A. L., Rodriguez-Larrea, D., Bomke, S., Dammers, S.,Godoy-Ruiz, R., Garcia-Mira, M. M., Sanchez-Ruiz, J. M.,Proteins, 71 (2008), 165–174.

Phillips, P. C., Nat Rev Genet, 9 (2008), 855–867.

Pokala, N., Handel, T. M., J Mol Biol, 347 (2005), 203–227.

Polizzi, K. M., Chaparro-Riggers, J. F., Vazquez-Figueroa,E., Bommarius, A. S., Biotechnol J, 1 (2006), 531–536.

Potapov, V., Cohen, M., Schreiber, G., Protein Eng Des Sel,22 (2009), 553–560.

Rajan, R. S., Tsumoto, K., Tokunaga, M., Tokunaga, H.,Kita, Y., Arakawa, T., Curr Med Chem, 18 (2011), 1–15.

Randles, L. G., Lappalainen, I., Fowler, S. B., Moore, B.,Hamill, S. J., Clarke, J., J Biol Chem, 281 (2006),24216–24226.

Rath, A., Davidson, A. R., Protein Sci, 9 (2000), 2457–2469.

Reetz, M. T., Carballeira, J. D., Vogel, A., Angew Chem IntEd Engl, 45 (2006), 7745–7751.

Reetz, M. T., Kahakeaw, D., Lohmer, R., Chembiochem, 9(2008), 1797–1804.

Rockah-Shmuel, L., Tawfik, D. S., Nucleic Acids Res, 40(2012), 11627–11637.

Romero, P. A., Arnold, F. H., Nat Rev Mol Cell Biol, 10(2009), 866–876.

Roodveldt, C., Tawfik, D. S., Protein Eng Des Sel, 18(2005), 51–58.

Salazar, O., Cirino, P. C., Arnold, F. H., Chembiochem, 4(2003), 891–893. Sanchez-Ruiz, J. M., Biophys Chem, 148(2010), 1–15. Sasidharan, R., Chothia, C., Proc Natl AcadSci USA, 104 (2007), 10080–10085.

Seitz, T., Thoma, R., Schoch, G. A., Stihle, M., Benz, J.,D’Arcy, B., Wiget, A., Ruf, A., Hennig, M., Sterner, R., JMol Biol, 403 (2010), 562–577.

Shafikhani, S., Siegel, R. A., Ferrari, E., Schellenberger,V., Biotechniques, 23 (1997), 304–310.

Sharma, S. K., Christen, P., Goloubinoff, P., Curr ProteinPept Sci, 10 (2009), 432–446.

Shimizu, H., Yokobori, S., Ohkuri, T., Yokogawa, T.,Nishikawa, K., Yamagishi, A., J Mol Biol, 369 (2007),1060–1069.

Shivange, A. V., Serwe, A., Dennig, A., Roccatano, D.,Haefner, S., Schwaneberg, U., Appl Microbiol Biotechnol,95 (2012), 405–418.

Sideraki, V., Huang, W., Palzkill, T., Gilbert, H. F., ProcNatl Acad Sci USA, 98 (2001), 283–288.

Sieber, V., Pluckthun, A., Schmid, F. X., Nat Biotechnol,16 (1998), 955–960.

Steipe, B., Schiller, B., Pluckthun, A., Steinbacher, S., JMol Biol, 240 (1994), 188–192.

Stemmer, W. P., Proc Natl Acad Sci USA, 91 (1994),10747–10751.

Suen, W. C., Zhang, N., Xiao, L., Madison, V., Zaks, A.,Protein Eng Des Sel, 17 (2004), 133–140.

Sun, P., Tropea, J. E., Waugh, D. S., Methods Mol Biol, 705(2011), 259–274.

Thiltgen, G., Goldstein, R. A., PLoS One, 7 (2012), e46084.

Tokuriki, N., Stricher, F., Schymkowitz, J., Serrano, L.,Tawfik, D. S., J Mol Biol, 369 (2007), 1318–1332.

Tokuriki, N., Stricher, F., Serrano, L., Tawfik, D. S.,PLoS Comput Biol, 4 (2008), e1000002.

Tokuriki, N., Oldfield, C. J., Uversky, V. N., Berezovsky,I. N., Tawfik, D. S., Trends Biochem Sci, 34 (2009),53–59.

Tokuriki, N., Tawfik, D. S., Curr Opin Struct Biol, 19(2009), 596–604.

Tokuriki, N., Tawfik, D. S., Nature, 459 (2009a), 668–673.

Tokuriki, N., Jackson, C. J., Afriat-Jurnou, L.,Wyganowski, K. T., Tang, R., Tawfik, D. S., Nat Commun, 3(2012), 1257. Turner, N. J., Nat Chem Biol, 5 (2009),567–573.

Vazquez-Figueroa, E., Chaparro-Riggers, J., Bommarius, A.S., Chembiochem, 8 (2007), 2295–2301.

Voigt, C. A., Martinez, C., Wang, Z. G., Mayo, S. L.,Arnold, F. H., Nat Struct Biol, 9 (2002), 553–558.

Waldo, G. S., Standish, B. M., Berendzen, J., Terwilliger,T. C., Nat Biotechnol, 17 (1999), 691–695. Wang, M., Si,T., Zhao, H., Bioresour Technol, 115 (2012), 117–125.

Wang, Q., Buckle, A. M., Foster, N. W., Johnson, C. M.,Fersht, A. R., Protein Sci, 8 (1999), 2186–2193.

Wang, X., Minasov, G., Shoichet, B. K., J Mol Biol, 320(2002), 85–95.

Watanabe, K., Ohkuri, T., Yokobori, S., Yamagishi, A., JMol Biol, 355 (2006), 664–674.

Weinreich, D. M., Delaney, N. F., Depristo, M. A., Hartl,D. L., Science, 312 (2006), 111–114. Wen, S., Tan, T.,Zhao, H., J Biotechnol, 164 (2012), 248–253.

Wickstrom, L., Gallicchio, E., Levy, R. M., Proteins, 80(2012), 111–125.

Wigley, W. C., Stidham, R. D., Smith, N. M., Hunt, J. F.,Thomas, P. J., Nat Biotechnol, 19 (2001), 131–136.

Wong, T. S., Zhurina, D., Schwaneberg, U., Comb Chem HighThroughput Screen, 9 (2006), 271–288.

Worth, C. L., Preissner, R., Blundell, T. L., Nucleic AcidsRes, 39 (2011), W215–W222.

Wunderlich, M., Martin, A., Schmid, F. X., J Mol Biol, 347(2005), 1063–1076. Wunderlich, M., Schmid, F. X., J MolBiol, 363 (2006), 545–557.

Wyganowski, K. T., Kaltenbach, M., Tokuriki, N., J MolBiol, 425 (2013), 3403–3414.

Xiao, Z., Bergeron, H., Grosse, S., Beauchemin, M., Garron,M. L., Shaya, D., Sulea, T., Cygler, M., Lau, P. C., ApplEnviron Microbiol, 74 (2008), 1183–1189.

Xie, H., Flint, J., Vardakou, M., Lakey, J. H., Lewis, R.J., Gilbert, H. J., Dumon, C., J Mol Biol, 360 (2006),157–167.

Xie, X., Pashkov, I., Gao, X., Guerrero, J. L., Yeates, T.O., Tang, Y., Biotechnol Bioeng, 102 (2009), 20–28.

Yamashiro, K., Yokobori, S., Koikeda, S., Yamagishi, A.,Protein Eng Des Sel, 23 (2010), 519–528.

Yang, D. F., Wei, Y. T., Huang, R. B., Biosci BiotechnolBiochem, 71 (2007), 746–753.

Yue, P., Li, Z., Moult, J., J Mol Biol, 353 (2005), 459–473.

Yue, P., Moult, J., J Mol Biol, 356 (2006), 1263–1274.

Zaccolo, M., Williams, D. M., Brown, D. M., Gherardi, E., JMol Biol, 255 (1996), 589–603.

Zeldovich, K. B., Chen, P., Shakhnovich, E. I., Proc NatlAcad Sci USA, 104 (2007), 16152–16157. Zhang, S. B., Wu,Z. L., Bioresour Technol, 102 (2011), 2093–2096.

5 Chapter 5: Production of FunctionalIsoprenoids through Pathway Engineering

Abassi S. Al, Birkett M. A., Pettersson J., Pickett J. A.,Wadhams L. J., Woodcock C. M., J. Chem. Ecol., 26 (2000)1765–1771.

Ajikumar P. K., Xiao W. H., Tyo K. E. J., Wang Y., SimeonF., Leonard E., Mucha O., Phon T. H., Pfeifer B.,Stephanopoulos G., Science, 330 (2010), 70–74. AlbrechtM., Misawa N., Sandmann G., Biotechnol. Lett., 21 (1999),791–795.

Beale M. H., Birkett M. A., Bruce T. J. A., Chamberlain K.,Field L. M., Huttly A. K., Martin J. L., Parker R.,Phillips A. L., Pickett J. A., Prosser I. M., Shewry P.R., Smart L. E., Wadhams L. J., Woodcock C. M., Zhang Y.,Proc. Natl. Acad. Sci., U.S.A., 103 (2006), 10509–10513.

Bernhardt T. G., Struck D. K., Young R., J. Biol. Chem.,276 (2001), 6093–6097.

Boo K. H., Lee D., Jin S. B., Kim S. C., Kim J. H., LeeJ.-M., Cho S. K., Lee D. S., Riu K. Z., Hort. Environ.Biotechnol., 53 (2012), 421–427. Bouvier F., Rahier A.,Camara B., Progress Lipid Res., 44 (2005), 357–429. Caro L.G., Schnos M., Proc. Natl. Acad. Sci., U.S.A., 56 (1966),126–132.

Collins M. D., Jones D., Microbiol. Rev., 45 (1981),316–354.

Cunningham Jr. F. X., Lafond T. P, Gantt E., J. Bacteriol.,182 (2000), 5841–5848.

Demmig-Adams B., Adams W. W. III., Trends Plant Sci. 1(1996), 21–26. Eisenkolb M., Zenzmaier C., Leitner E.,Schneiter R., Mol. Biol. Cell, 13 (2002), 4414–4428.Fujisawa M., Harada H., Kenmoku H., Mizutani S., Misawa N.,Planta, 232 (2010), 121–130, Erratum, 232 (2010), 131.

Gershenzon J., Dudareva N., Nat. Chem. Biol., 3 (2007),408–414.

Gibson R. W., Pickett J. A., Nature, 302 (1983), 608–609.

Goto S., Kogure K., Abe K., Kimata Y., Kitahama K.,Yamashita E., Terada H., Biochim. Biophys. Acta, 1512(2001), 251–258. Green M. R., Sambrook J. (eds) MolecularCloning: a Laboratory Manual, 4th edn.; Cold Spring Harbor

Laboratry Press, Cold Spring Harbor, New York, 2012.

Harada H., Shindo K., Iki K., Teraoka A., Okamoto S., YuF., Hattan J., Utsumi R., Misawa N., Appl. Microbiol.Biotechnol., 90 (2011), 467–476.

Harada H., Yu F., Okamoto S., Kuzuyama T., Utsumi R.,Misawa N., Appl. Microbiol. Biotechnol., 81 (2009),915–925. Hori M., J. Chem. Ecol., 24 (1998), 1425–1432.

Hu Y., Chou W. K. W., Hopson R., Cane D. E., Chem. Biol.,18 (2011), 32–37.

Jung S. T., Lauchli R., Arnold F. H., Curr. Opin.Biotechnol., 22 (2011), 809–817. Kajiwara S., Fraser P.D., Kondo K., Misawa N., Biochem. J., 324 (1997), 421–426.

Kakinuma K., Dekishima Y., Matsushima Y., Eguchi T., MisawaN., Takagi M., Kuzuyama T., Seto H., J. Am. Chem. Soc.,123 (2001), 1238–1239.

Kato J., Fujisaki S., Nakajima K., Nishimura Y., Sato M.,Nakano A., Progress Lipid Res., 44 (1999), 357–429.

Köllner T. G., Held M., Lenk C., Hiltpold I., Turlings T.C. J., Gershenzon J., Degenhardt J., Plant Cell, 20(2008), 482–494.

Krinsky N. I., Landrum J. T., Bone R. A. Annu. Rev. Nutr.23 (2003), 171–201.

Lederberg J., Lederberg E. M., J. Bacteriol., 63 (1951),399–406.

Lenihan J. R., Tsuruta H., Diola D., Renninger N. S.,Regentin R., Biotechnol. Prog., 24 (2008) 1026–1032.

Lücker J., Bouwmeester H. J., Schwab W., Blaas J., van derPlas L. H. W., Verhoeven, H. A., Plant J., 27 (2001),315–324. Maia N. B., Bovi O. A., Perecin M. B., Marques M.O. M., Granja N. P., Acta Hort., 629 (2004), 39–43.

Martin V. J. J., Pitera D. J., Withers S. T., Newman J. D.,Keasling J. D., Nature Biotehcnol., 21 (2003), 796–802.

Mau C. J. D., Croteau R., Phytochem. Rev., 5 (2006),373–383. Meganathan R., FEMS Microbiol. Lett., 203 (2001),131–139. Misawa N., Mar. Drugs, 9 (2011a), 757–771. MisawaN., Curr. Opin. Biotechnol., 22 (2011b), 627–633.

Misawa N., Nakagawa M., Kobayashi K., Yamano S., Izawa Y.,Nakamura K., Harashima K., J. Bacteriol., 172 (1990),6704–6712.

Misawa N., Satomi Y., Kondo K., Yokoyama A., Kajiwara S.,Saito T., Ohtani T., Miki W., J. Bacteriol., 177 (1995),6575–6584.

Molnár J., Serly J., Pusztai R., Vincze I., Molnár P.,Horváth G., Deli J., Maoka T., Zalatnai A., Tokuda H.,Nishino H., Anticancer Res., 32 (2012), 507–518.

Müller P., Li X.-P., Niyogi K. K., Plant Physiol., 125(2001), 1558–1566.

Nishida Y., Adachi K., Kasai H., Shizuri Y., Shindo K.,Sawabe A., Komemushi S., Miki W., Misawa N., Appl.Environ. Microbiol., 71 (2005), 4286–4296. Nishino C.,Manabe S., J. Pesticide Sci., 9 (1984), 125–130.

Okamoto S., Yu F., Harada H., Okajima T., Hattan J., MisawaN., Utsumi R., FEBS J., 278 (2011), 2892–2900. Omura T.,Biotechnol. Appl. Biochem., (2013), published online 15February 2013 in Wiley Online library, 4–8.

Paddon C. J., Westfall P. J., Pitera D. J., Benjamin K.,Fisher K., McPhee D., Leavell M. D., Tai A., Main A., EngD., Polichuk D. R., Teoh K. H., Reed D. W., Treynor T.,Lenihan J., Fleck M., Bajad S., Dang G., Diola D., DorinG., Ellens K. W., Fickes S., Galazzo J., Gaucher S. P.,Geistlinger T., et al., Nature, (2013), Published online10 April 2013. Raguso R. A., Pichersky E., Plant Syst.Evol., 194 (1995), 55–67.

Rasmann S., Köllner T. G., Degenhardt J., Hiltpold I.,Toepfer S., Kuhlmann U., Gershenzon J., Turlings T. C. J.,Nature, 434 (2005), 732–737.

Ro D.-K., Paradise E. M., Ouellet M., Fisher K. J., NewmanK. L., Ndungu J. M., Ho K. A., Eachus R. A., Ham T. S.,Kirby J., Chag M. C., Withers S. T., Shiba Y., Sarpong R.,Keasling J. D., Nature, 440 (2006), 940–943.

Rodríguez-Concepción M., Boronat A., Plant Physiol., 130(2002), 1079–1089. Seki H., Ohyama K., Sawai S., MizutaniM., Ohnishi T., Sudo H., Akashi T., Aoki T., Saito K.,Muranaka T., Proc. Natl. Acad. Sci., U. S. A., 105 (2008),14204–14209. Swiezewska E., Danikiewicz W., Progress LipidRes., 44 (2005), 235–258. Tauche A., Krause-Buchholz U.,Rödel G., FEMS Yeast Res., 8 (2008), 1263–1275. Thulasiram

H. V., Erickson H. K., Poulter, C. D., Science, 316 (2007),73–76.

Tsuruta H., Paddon C. J., Eng D., Lenihan J. R., HorningT., Anthony L. C., Regentin R., Keasling J. D., RenningerN. S., Newman J. D., PLoS ONE, 4 (2009), e4489 1–12.

Weitzel C., Simonsen H. T., Phytochem. Rev., (2013),published online 17 March 2013.

Westfall P. J., Pitera D. J., Lenihan J. R., Eng D.,Woolard F. X., Regentin R., Horning T., Tsuruta H., MelisD. J., Owens A., Fickes S., Diola D., Benjamin K. R.,Keasling J. D., Leavell M. D., McPhee D. J., Renninger N.S., Newman J. D., Paddon C. J., Proc. Natl. Acad. Sci., U.S., 109 (2012), E111–E118.

Wu S., Schalk M., Clark A., Miles R B., Coates R., ChappellJ., Nat. Biotechnol., 24 (2006), 1441–1447.

Yamashita, E. Carotenoid Sci. 10 (2006), 91–95.

Yu F., Harada H., Yamasaki K., Okamoto S., Hirase S.,Tanaka Y., Misawa N., Utsumi R., FEBS Lett., 582 (2008b),565–572.

Yu F., Okamoto S., Nakasone K., Adachi K., Matsuda S.,Harada H., Misawa N., Utsumi R., Planta, 227 (2008a),1291–1299.

6 Chapter 6: Metabolic Engineering forthe Biobased Conversion of CO2 toBiofuels

Agarwal A. S., Zhai Y., Hill D., Sridhar N., ChemSusChem, 4(2011), 1301–1310. Agrawal R., Singh N. R., Annu. Rev.Chem. Biomol. Eng., 1 (2010), 343–364.

Alfenore S., Molina-Jouve C., Guillouet S. E., UribelarreaJ.-L., Goma G., Benbadis L., Appl. Microbiol. Biotechnol.,60 (2002), 67–72. Alvira P., Tomás-Pejó E., Ballesteros M.,Negro M. J., Bioresour. Technol., 101 (2010), 4851–4861.

Andrietta M. D. G. S., Andrietta S. R., and Stupiello É. N.A., Bioethanol–what has brazil learned about yeastsinhabiting the ethanol production processes from sugarcane?, in Biofuel Production-Recent Developments andProspects (Dos Santos Bernardes M. A. ed.), InTech, 2011.Atsumi S., Cann A. F., Connor M. R., Shen C. R., Smith K.M., Brynildsen M. P., Chou K. J. Y., Hanai T., and Liao J.C., Metab. Eng., 10 (2008a), 305–311.

Atsumi S., Hanai T., and Liao J. C., Nature, 451 (2008b),86–89.

Atsumi S., Higashide W., and Liao J. C., Nat. Biotechnol.,27 (2009), 1177–1180.

Avalos J. L., Fink G. R., and Stephanopoulos G., Nat.Biotechnol, 31 (2013), 335–341.

Baez, A., Cho, K. M., and Liao, J. C., Appl. Microbiol.Biotechnol., 90 (2011), 1681–1690.

Bafrncová P., Šmogrovičová D., Sláviková I., Pátková J.,Dömény Z., Biotechnol. Lett., 21 (1999), 337–341.

Basso L. C., Basso T. O., Rocha S. N., Ethanol productionin Brazil: the industrial process and its impact on yeastfermentation, in Biofuel Production-Recent Developmentsand Prospects, (Dos Santos Bernardes M. A. ed.), InTech,2011.

Bastian S., Liu X., Meyerowitz J. T., Snow C. D., Chen M.M. Y., Arnold F. H., Metab. Eng., 13 (2011), 345–352.Beller H. R., Goh E.-B., and Keasling J. D., Appl. Environ.Microbiol., 76 (2010), 1212–1223.

Brat D., Weber C., Lorenzen W., Bode H. B., Boles E.,Biotechnol. Biofuels, 5 (2012), 65.

Cann A. F., Liao J. C., Appl. Microbiol. Biotechnol., 81(2008), 89–98.

Cao Y., Yang J., Xian M., Xu X., Liu W., Appl. Microbiol.Biotechnol., 87 (2010), 271–280. Carroll A., SomervilleC., Annu. Rev. Plant Biol., 60 (2009), 165–182. Chen X.,Nielsen K. F., Borodina I., Kielland-Brandt M. C., KarhumaaK., Biotechnol. Biofuels, 4 (2011), 2089–2090.

Chisti Y., Biotechnol. Adv., 25 (2007), 294–306. Cho H.,Cronan J. E., J. Biol. Chem., 270 (1995), 4216–4219. ChouH. H., Keasling, J. D., Appl. Environ. Microbiol., 78(2012), 7849–7855. Coelho P. S., Brustad E. M., Kannan, A.,Arnold, F. H., Science, 339 (2013), 307–310. 2

Connor M. R., Liao J. C., Appl. Environ. Microbiol., 74(2008), 5769–5775.

Connor M. R., Cann A. F., Liao J. C., Appl. Microbiol.Biotechnol., 86 (2010), 1155–1164. Conrado R. J., HaynesC. A., Haendler B. E., Toone E. J., Electrofuels: a newparadigm for renewable fuels, in Advanced Biofuels andBioproducts (Lee J. W., ed.) Springer, New York, 2013.Davis M. S., Solbiati J., Cronan, J. E., J. Biol. Chem.,275 (2000), 28593–28598.

Dekishima Y., Lan E. I., Shen C. R., Cho K. M., Liao, J.C., J. Am. Chem. Soc., 133 (2011), 11399–11401. Desai S.H., Atsumi S., Curr. Opin. Biotech. (2013) doi: 10.1016/j.copbio.2013.03.015. Department of Energy (U.S.), Reporton the First Quadrennial Technology Review (2011). DoshiR., Nguyen T., Chang G., Proc. Natl Acad. Sci. U.S.A., 110(2013), 7642–7647.

Ducat D. C., Way J. C., Silver, P. A., Trends Biotechnol.,29 (2011), 95–103. Elsden S. R., Sentheshanmuganathan S.,Biochem. J., 69 (1958), 210–218.

Fan J., Yan C., Andre C., Shanklin J., Schwender J., Xu C.,Plant Cell Physiol., 53 (2012), 1380–1390.

Forney F. W., Markovetz A. J., J. Lipid Res., 12 (1971),383–395.

Gerpen J. V., Fuel Process Technol., 86 (2005), 1097–1107.Goh E.-B., Baidoo E. E. K., Keasling J. D., Beller, H. R.,Appl. Environ. Microbiol., 78 (2011), 70–80. Golden, S.S., Ishiura, M., Johnson, C. H., and Kondo, T., Annu. Rev.Plant Biol., 48 (1997), 327–354. Howard T. P., Middelhaufe

S., Moore K., Edner C., Kolak D. M., Taylor G. N., ParkerD. A., Lee R., Smirnoff N., Aves S. J., Love J., Proc. NatlAcad. Sci. U.S.A., 110 (2013), 7636–7641.

Howell D. M., Xu H., White, R. H., J. Bacteriol., 181(1999), 331–333. Huntley M., Redalje D., Mitig. Adapt.Strategies Glob. Change, 12 (2007), 573–608.

Ingraham J. L., Guymon J. F., Crowell E. A., Arch. Biochem.Biophys., 95 (1961), 169–175. International Energy Agency,CO 2 Emissions from Fuel Combustion— HIGHLIGHTS; OECD/IEA,Paris, 2013.

Jiang Y., Xu C., Dong F., Yang Y., Jiang W., Yang S.,Metab. Eng., 11 (2009), 284–291.

Jones C. S., Mayfield S. P., Curr. Opin. Biotech., 23(2012), 346–351.

Jones D. T, Woods D. R., Microbiol. Rev., 50 (1986),484–524. Keasling J. D., Science, 330 (2010), 1355–1358.

Kilian O., Benemann C. S. E., Niyogi K. K., Vick B., Proc.Natl Acad. Sci. U.S.A., 108 (2011), 21265–21269.

Kim Y. J., Lee H. S., Kim E. S., Bae S. S., Lim J. K.,Matsumi R., Lebedinsky A. V., Sokolova T. G., KozhevnikovaD. A., Cha, S.-S., Kim J., Kwon K. K., Imanaka T., AtomiH., Bonch-Osmolovskaya E., Lee H.-J., Kang S. G., Nature,467 (2010), 352–355. Knothe G., Fuel Process Technol., 86(2005), 1059–1070. Kondo T., Tezuka H., Ishii J., MatsudaF., Ogino C., Kondo A., J. Biotechnol., 159 (2012), 32–37.Kramer R., Belanger H., Fermentation-Based Biofuels inPlant Biomass Conversion (Hood E. E., Nelson P., PowellR., eds.), Wiley Online Library, Hoboken, 2011.

Lamsen E. N., Atsumi S., Front. Microbiol., 3 (2012), 196.

Lan E. I., Liao J. C., Metab. Eng., 13 (2011), 353–363.

Lan E. I., Liao J. C., Proc. Natl. Acad. Sci. U.S.A., 109(2012), 6018–6023.

Lange B. M., Rujan T., Martin W., Croteau R., Proc. Natl.Acad. Sci. U.S.A., 97 (2000), 13172–13177.

Lee J. Y., Jang Y.-S., Lee J., Papoutsakis E. T., Lee S.Y., Biotechnol. J., 4 (2009), 1432–1440.

Li H., Opgenorth P. H., Wernick D. G., Rogers S., Wu T. Y.,

Higashide W., Malati P., Huo Y. X., Cho K. M., Liao, J.C., Science, 335 (2012), 1596–1596.

Li N., Nørgaard H., Warui D. M., Booker S. J., Krebs C.,Bollinger J. M., Jr., J. Am. Chem. Soc., 133 (2011a),6158–6161.

Li S., Wen J., Jia X., Appl. Microbiol. Biotechnol., 91(2011b), 577–589.

Liu X., Sheng J., Curtiss R., Proc. Natl. Acad. Sci.U.S.A., 108 (2011), 6899–6904.

Lu X., Vora H., Khosla C., Metab. Eng., 10 (2008), 333–339.

Lü J., Sheahan C., Fu P., Energy Environ. Sci., 4 (2011),2451–2466.

Lütke-Eversloh T., Bahl H., Curr. Opin. Biotech., 22(2011), 634–647. Machado I. M. P., Atsumi S., J.Biotechnol, 162 (2012), 50–56.

Machado H. B., Dekishima Y., Luo H., Lan E. I., Liao J. C.,Metab. Eng., 14 (2012), 504–511.

Marcheschi R. J., Li H., Zhang K., Noey E. L., Kim S.,Chaubey A., Houk K. N., Liao J. C., ACS Chem. Biol., 7(2012), 689–697. 2

Martin V. J. J., Pitera D. J., Withers S. T., Newman J. D.,Keasling J. D., Nat. Biotechnol., 21 (2003), 796–802.McEwen J., Atsumi S., Curr. Opin. Biotech., 23 (2012),744–750. McEwen J., Machado I. M. P., Connor M. R., AtsumiS., Appl. Environ. Microbiol., 79 (2013), 1668–1675.Moellering E. R., Benning C., Eukaryot. Cell, 9 (2010),97–106. Nicolaou S. A., Gaida S. M., Papoutsakis E. T.,Metab. Eng., 12 (2010), 307–331.

Nielsen D. R., Leonard E., Yoon S.-H., Tseng H.-C., YuanC., Prather K. L. J., Metab. Eng., 11 (2009), 262–273.

Oliver J. W. K., Machado I. M. P., Yoneda H., Atsumi S.,Proc. Natl. Acad. Sci. U.S.A., 110 (2013), 1249–1254.

Paddon C. J., Westfall P. J., Pitera D. J., Benjamin K.,Fisher K., McPhee D., Leavell M. D., Tai A., Main A., EngD., Polichuk D. R., Teoh K. H., Reede D. W., Treynor T.,Lenihan J., et al., Nature, 496 (2013), 528–532.

Peralta-Yahya P. P., Ouellet M., Chan, R. Mukhopadhyay A.,

Keasling J. D., Lee T. S., Nat. Commun., 2 (2011), 483.

Pohlmann A., Fricke W. F., Reinecke F., Kusian B.,Liesegang H., Cramm R., Eitinger T., Ewering C., PötterM., Schwartz E., Srittmatter A., Voss I., Gottschalk G.,Steinbüchel A., Friedrich B., Bowien B., Nat. Biotechnol.,24 (2006), 1257–1262.

Qiu Y., Tittiger C., Wicker-Thomas C., Le Goff G., YoungS., Wajnberg E., Fricaux T., Taquet N., Blomquist G. J.,Feyereisen R., Proc. Natl. Acad. Sci. U.S.A., 109 (2012),14858–14863.

Rabinovitch-Deere C. A., Oliver J. W. K., Rodriguez G. M.,Atsumi S., Chem. Rev. (2013) doi: 10.1021/cr300361t.Renninger N. S., Mcphee D. J., Fuel compositions comprisingfarnesane and farnesane derivatives and method of makingand using same. US patent 7,846,222, (2010).

Rippka R., Deruelles J., Waterbury J. B., Herdman M.,Stanier R. Y., J. Gen. Microbiol., 111 (1979), 1–61.

Ro D.-K., Paradise E. M., Ouellet M., Fisher K. J., NewmanK. L., Ndungu J. M., Ho K. A., Eachus R. A., Ham T. S.,Kirby J., Chag M. C., Withers S. T., Shiba Y., Sarpong R.,Keasling J. D., Nature, 440 (2006), 940–943.

Rodolfi L., Chini Zittelli G., Bassi N., Padovani G.,Biondi N., Bonini G., Tredici M. R., Biotechnol. Bioeng.,102 (2009), 100–112. Rodriguez G. M., Atsumi S., Curr.Chem. Biol., 6 (2012a), 32–41. Rodriguez G. M., Atsumi S.,Microb. Cell Fact., 11 (2012b), 90.

Rude M. A., Baron T. S., Brubaker S., Alibhai M., delCardayre S. B., and Schirmer A., Appl. Environ.Microbiol., 77 (2011), 1718–1727. Rustan A. C., Drevon C.A, Fatty acids: structures and properties, in Encyclopediaof Life Sciences, Nature Publishing Group, London; NewYork, 2002.

Schirmer A., Rude M. A., Li X., Popova E., del Cardayre S.B., Science, 329 (2010), 559–562.

Scott S. A., Davey M. P., Dennis J. S., Horst I., Howe C.J., Lea-Smith D. J., Smith A. G., Curr. Opin. Biotech., 21(2010), 277–286.

Shen C. R., Liao J. C., Metab. Eng., 10 (2008), 312–320.

Shen C. R., Liao J. C., Meth. Enzymol., 497 (2011), 469–481.

Shen C. R., Liao J. C., Metab. Eng., 17 (2013), 12–22.

Shen C. R., Lan E. I., Dekishima Y., Baez A., Cho K. M.,Liao J. C., Appl. Environ. Microbiol., 77 (2011),2905–2915.

Siegel J. B., Zanghellini A., Lovick H. M., Kiss G.,Lambert A. R., St Clair J. L., Gallaher J. L., Hilvert D.,Gelb M. H., Stoddard B. L., Houk K. N., Michael F. E.,Baker D., Science, 329 (2010), 309–313.

Smith K. M., Cho K. M., Liao J. C., Appl. Microbiol.Biotechnol., 87 (2010), 1045–1055. Solomon B. D., BarnesJ. R., Halvorsen K. E., Biomass Bioenerg., 31 (2007),416–425. Stams A. J. M., Plugge C. M., Nat. Rev.Microbiol., 7 (2009), 568–577. Steen E. J., Chan R., PrasadN., Myers S., Petzold C. J., Redding A., Ouellet M.,Keasling J. D., Microb. Cell Fact., 7 (2008), 36.

Steen E. J., Kang Y., Bokinsky G., Hu Z., Schirmer A.,McClure A., del Cardayre S. B., Keasling J. D., Nature,463 (2010), 559–562.

Stephenson P. G., Moore C. M., Terry M. J., Zubkov M. V.,Bibby T. S., Trends Biotechnol., 29 (2011), 615–623.

Sukovich D. J., Seffernick J. L., Richman J. E., Hunt K.A., Gralnick J. A., Wackett L. P., Appl. Environ.Microbiol., 76 (2010), 3842–3849.

Tan X., Yao L., Gao Q., Wang W., Qi F., Lu X., Metab. Eng.,13 (2011), 169–176.

Varman A. M., Xiao Y., Pakrasi H. B., Tang Y. J., Appl.Environ. Microbiol., 79 (2013), 908–914.

Wang C., Kim J.-Y., Choi E.-S., Kim, S.-W., ProcessBiochem., 46 (2011), 1221–1229.

Wang C., Yoon S.-H., Shah A. A., Chung Y.-R., Kim J.-Y.,Choi E.-S., Keasling J. D., Kim S.-W., Biotechnol.Bioeng., 107 (2010), 421–429. 2

Wargacki A. J., Leonard E., Win M. N., Regitsky D. D.,Santos C. N. S., Kim P. B., Cooper S. R., Raisner R. M.,Herman A., Sivitz A. B., Lakshmanaswamy A., Kashiyama Y.,Baker D., Yoshikuni Y., Science, 335 (2012), 308–313.

Warui D. M., Li N., Nørgaard H., Krebs C., Bollinger J. M.,

Booker S. J., J. Am. Chem. Soc., 133 (2011), 3316–3319.

Weisz P. B., Haag W., Rodewald, P. G., Science, 206 (1979),57–58.

Westfall P. J., Pitera D. J., Lenihan J. R., Eng D.,Woolard F. X., Regentin R., Horning T., Tsuruta H., MelisD. J., Owens A., Fickes S., Diola D., Benjamin K. R.,Keasling J. D., Leavell M. D., McPhee D. J., Renninger N.S., Newman J. D., Paddon C. J., Proc. Natl. Acad. Sci.U.S.A., 109 (2012), E111–E118.

Withers S. T., Gottlieb S. S., Lieu B., Newman J. D.,Keasling J. D., Appl. Environ. Microbiol., 73 (2007),6277–6283. Zhang F., Carothers J. M., Keasling J. D., Nat.Biotechnol., 30 (2012), 354–359.

Zhang K., Sawaya M. R., Eisenberg D. S., Liao J. C., Proc.Natl. Acad. Sci. U.S.A., 105 (2008), 20653–20658.

7 Chapter 7: Mixed Microbial Cultures forIndustrial Biotechnology: Success,Chance, and Challenges

Abulencia C. B., Wells S. M., Gray K. A., Keller M., KrepsJ. A., Accessing microbial communities relevant tobiofuels production, in Industrial Microbiology andBiotechnology, 3rd ed. (Baltz R. H., Davies J. E., DemainA. L., eds.) ASM press: Washington DC, 2010; pp. 565–576.A elt erman P., Rabaey K., Clauwaert P., Verstraete W.,Water Sci. Technol., 54 (2006), 9–15. Angenent L. T., Rosenbaum M. A., Biofuels, 4 (2013), 131–134. Angenent L.T., Wrenn B. A., Optimising mixed culture bioprocessing toconvert wastes into bioenergy, in Bioenergy (Wall D. J.,Harwood C. S., Demain A, eds.), ASM Press Washington,2008; pp. 179–194. Bader J., Mast-Gerlach E., Popovic M.K., Bajpai R., Stahl U., J. Appl. Microbiol., 109 (2009),371–387. Benemann J., Nat. Biotechnol., 14 (1996),1101–1103.

Bischoff K. M., Liu S., Leathers T. D., Worthington R.E., Rich J. O., Biotechnol. Bioeng., 103 (2009), 117–122.Bizukojc M., Dietz D., Sun J., Zeng A. P., Bioprocess.Biosyst. Eng, 33 (2010), 507–523. Botheju D., Bakk e R.,Open Waste Manag., J., 4 (2011), 1–19. Bradsha w D. J.,Marsh P. D., Allison C., Schilling K. M., Microbiology, 142(1996), 623–629. Brenner K., Y ou L., Arnold F. H., TrendsBiotechnol., 26 (2008), 483–489. Chatzifrag kou A., DietzD., Komaitis M., Zeng A. P., Papanikolaou S., Biotechnol.Bioeng., 107 (2010), 76–84. Chatzifrag kou A.,Papanikolaou S., Dietz D., Doulgeraki A. L., Nychas G. J.,Zeng A. P., Appl. Microbiol. Biotechnol., 91 (2011),101–112. Delv es-Broughton J., Blackburn P., Evans R. J.,Hugenholtz J., Antonie Leeuwenhoek, 69 (1996), 193–202.Dietz D., Sabr a W., Zeng A. P., AMB Express, 3 (2013), 29.Dietz D., Zeng A. P ., Bioprocess Biosyst. Eng., 37 (2014),225–233. Distler W., Kr oncke A., Arch. Oral Biol., 25(1980), 655–658. Fong K. P . Y., Tan H. M., World J.Microbiol. Biotechnol., 16 (2000), 441–443. Friedman W.,Zeng A. P., Process and apparatus for the microbialproduction of a certain product and methane.PCT/EP2008/063493, 2008. Fu N ., Peiris P., Markham J.,Bavor J., Enz. Microb. Tech., 45 (2009), 210–217. Fuk udaT., Tsutsumi K., Morita H., Japan. J. Food Eng., 9 (2009),99–106. Gall L. S., Biotechnol. Bioeng., 12 (1970)333–340. Gu Z., Glatz B. A., Glatz C. E., Biotechnol.Bioeng., 57 (1998), 454–461.

Guo X., Zhou J., Xiao D., Appl. Biochem. Biotechnol., 160(2010), 532–538. Harnisch F., Rabaey, K., ChemSusChem., 5

(2012), 1027–1038. Harnisch F ., Schroder U., Scholz F.,Environ. Sci. Technol., 42 (2008), 1740–1746. Harrison D.E. F ., Adv. Appl. Microbiol., 24 (1978) 129–164. HerbelZ., Rákhely, G., Bagi Z., Ivanova G., Ács N., Kovács E.,Kovács K. L., Environ Technol., 31 (2010), 1017–1024.Hibbing M. E., Fuqua C., Parsek M. R., Peterson S. B., Nat.Rev. Microbiol., 8 (2010), 15–25. Hoang J., Microbial FuelCell, http://www.greeniacs.com/GreeniacsArticles/Energy/Microbial-Fuel-Cell.html (2010). (see also:Microbial Fuel Cell. Arizona State University (2008,January 7). Fuel Cell That Uses Bacteria To GenerateElectricity. Science Daily. Retrieved August 13, 2013, fromhttp://www.sciencedaily.com/releases/2008/01/080103101137.htm 2010. Huang H., Gong C. S., Tsao,G. T., Appl.Microbiol. Biotechnol., 98–100 (2002), 687–698. Inoue K.,Ito T., Kawano Y., Iguchi A., Miyahara M., Suzuki Y.,Watanabe K., J. Biosci. Bioeng. 2013 (available online 10June 2013). Jensen T . O., Kvist T., Mikkelsen M. J.,Westermann P., AMB. Express, 2 (2012), 44. Jeon B. Y.,Kim D. H., Na B. K., Ahn D. H., Park D. H., J. Microbiol.Biotechnol., 18 (2008), 545–551. Kargi F ., Ozmihci S.,Bioresour. Technol., 94 (2004), 113–117. Kato S., HarutaS., Cui Z. J., Ishii M., Igarashi Y., Appl. Environ.Microbiol., 71 (2005), 7099–7106. Khleifat K. M., C urr.Microbiol., 53 (2006), 444–448. Kim Y . M., Ahn C. K., WooS. H., Jung G. Y., Park J. M., J. Biotechnol., 144 (2009),293–298. Kleerebezem R., van Loosdrecht M. C., Curr.Opin. Biotechnol., 18 (2007), 207–212. Ky azze G.,Dinsdale R., Hawkes F. R., Guwy A. J., Premier G. C.,Donnison I. S., Biores. Technol., 99 (2008), 8833–8839.Li R. D., Li Y. Y., Lu L. Y., Ren C., Li Y. X., Liu L.,BMC. Syst. Biol., 5 (2011), Suppl 1, S12. Liang Z. X.,Li L., Li S., Cai Y. H., Yang S. T., Wang J. F.,Bioprocess. Biosyst. Eng, 35 (2012), 915–921. Lin C.-Y .,Hung W.-C., Int. J. Hydrogen Energy, 33 (2008), 3660–3667.

Liu C., Hu B., Liu Y., Chen S., Appl. Biochem. Biotechnol.,131 (2006), 751–761. Lovley D. R., Curr. Opin.Biotechnol., 17 (2006), 327–332. Lov ley D. R., Curr.Opin. Biotechnol., 19 (2008), 564–571. Lov ley D. R.,Geobiology, 6 (2008a), 225–231. Lushia W., Heist P .,Ethanol Producer Mag. 2005, May, 80–82. Macfadyen A., J.Fed. Inst. Brewing, 9 (1903), 2–15. Maki M., Leung K. T .,Qin W ., Int. J. Biol. Sci., 5 (2009), 500–516. MaldonadoA., Jimenez-Diaz R., Ruiz-Barba J. L., J. Bacteriol., 186(2004), 1556–1564. Mamma D ., Koullas G., FountoukidisG., Kekos D., Marcris B. J., Koukios E., Process Biochem.,31 (1996), 377–381.

Manitchotpisit P., Bischoff K. M., Price N. P., Leathers

T. D., Curr. Microbiol., 66 (2013), 443–449. Markl H.,Zenneck C., Dubach A., Ogbonna J., Appl. Microbiol.Biotechnol., 39 (1993), 4852. Monica S., Karthik L.,Mythili S., Sathiavelu A., J. Microbial Biochem. Technol.,3 (2011), 51–55. Mu Y., Y u H. Q., Wang G., Water Res., 41(2007), 1152–1160. Namsiv ayam S. K. R., Narendrakumar G.,Kumar A., J. Experim. Sci., 2 (2011), 30–32. Navarrete-Bolanos J. L., Serrato-Joya O., Botello-Alvarez E.,Jimenez-Islas H., Cardenas-Manriquez M., Conde-Barajas E.,Rico-Martinez R., Analyzing microbial consortia forbiotechnological processes design, in CommunicatingCurrent Research and Educational Topics and Trends inApplied Microbiology, Vol-1 (Mendez-Vilas A., Ed.) FORMATEX2007: 2007; pp. 437–449.

Oh D . C., Kauffman C. A., Jensen P. R., Fenical W., J.Nat. Prod., 70 (2007), 515–520. Ozmihci S., Kargi F .,Lett. Appl. Microbiol., 44 (2007), 602–606. Ozmihci S.,Kargi F ., J. Ind. Microbiol. Biotechnol., 37 (2010),341–347. Patil S. V., Patil C. D., Salunke B. K.,Salunkhe R. B., Bathe G. A., Patil D. M., Appl. Biochem.Biotechnol., 163 (2011), 463–472. Patle S., Lal B.,Biotechnol. Lett., 29 (2007), 1839–1843. Pest chanker L.J., Ercoli E. C., Biotechnol. Bioeng., 55 (1997), 609–615.Piv eteau P., Condon S., Cogan T. M., J. Dairy Res., 67(2000), 65–71. Rabae y K., Lissens G., Siciliano S. D.,Verstraete W. A., Biotechnol Lett., 25 (2003), 1531–1535.

Rabaey K., Verstraete W., Trends Biotechnol., 23 (2005),291–298. Ramey D. E., Continuous two stage, dual pathanaerobic fermentation of butanol and other organicsolvents using different strains of bacteria., U.S. patent5,753,474, 1998. Sabra W., Dietz D., Tjahjasari D., ZengA. P., Eng. Life Sci., 10 (2010), 407–421. Sabra W.,Dietz D., Zeng A. P., Appl. Microbiol. Biotechnol., 97(2013), 5771–5777. Sar atale G. D., Chen S. D., Lo Y.C., Saratale R. G., Chang J. S., J. Sci. Ind. Res., 67(2008), 962–979. Shah I. M., Dw or kin J., Curr. Biol., 19(2009), R689–R691. Shimizu H., Mizuguchi T., Tanaka E.,Shioya S., Appl Environ Microbiol, 65 (1999) 3134–3141.Slatt ery M., R ajbhandari I., Wesson K., Microb. Ecol., 41(2001), 90–96. Spiegelman D ., Whissell G., Greer C. W.,Can. J. Microbiol., 51 (2005), 355–386. St einbusch K.J., Hamelers H. V., Schaap J. D., Kampman C., Buisman C.J., Environ. Sci. Technol., 44 (2010), 513–517. Stew artE. J., J. Bacteriol., 194 (2012), 4151–4160. Tabasco R.,Garcia-Cayuela T., Pelaez C,. Requena T., Int J FoodMicrobiol, 132 (2009), 109–116. T an D., Xue Y. S.,Aibaidula G., Chen G. Q., Bioresour. Technol., 102 (2011),8130–8136. T odd E. C., Michaels B. S., Smith D., Greig

J. D., Bartleson C. A., J. Food Prot., 73 (2010),1937–1955. Ueno Y . F . H., Goto M., Environ. Sci.Technol., 41 (2007), 1413–1419. von Wintzingerode F.,Gobel U. B., Stackebrandt E., FEMS Microbiol. Rev., 21(1997) 213–229. V or avuthikunchai S. P., Bilasoi S.,Supamala O., Anaerobe, 12 (2006), 221–226. Wint ermut eE. H., Silver P. A., Genes Dev., 24 (2010), 2603–2614.Yumot o I., Yoshimune K., Method for production of lacticacid by non sterile fermentation., Patent no: 20120202254,2012. Zeng A. P., Biebl H., A dv. Biochem. Eng.Biotechnol., 74 (2002), 239–259. Zhang P. Y . H.,Biotechnol. Bioeng., 105 (2010), 663–677. Zhang P . Y. H.,Evans B. R., Mielenz J. R., Hopkins R. C., Adams M. W. W.,PLoS ONE, 2(5) (2007), e456.

8 Chapter 8: Extremophiles and Their Usein Biofuel Synthesis

Adachi, D., Koh, F., Hama, S., Ogino, C., Kondo, A., EnzymeMicrob Technol, 52 (2013), 331–335. Annamalai, N.,Rajeswari, M. V., Elayaraja, S., Balasubramanian, T.,Carbohydr Polym, 94 (2013), 409–415. Antoni, D., Zverlov,V. V., Schwarz, W. H., Appl Microbiol Biotechnol, 77(2007), 23–35.

Argyros, D. A., Tripathi, S. A., Barrett, T. F., Rogers, S.R., Feinberg, L. F., Olson, D. G., Foden, J. M., Miller,B. B., Lynd, L. R., Hogsett, D. A., Caiazza, N. C., ApplEnviron Microbiol, 77 (2011), 8288–8294.

Barnard, D., Casanueva, A., Tuffin, M., Cowan, D., EnvironTechnol, 31 (2010), 871–888. Baskaran, S., Ahn, H. J.,Lynd, L. R., Biotechnol Prog, 11 (1995), 276–281. Bayer, E.A., Lamed, R., White, B. A., Flint, H. J., Chem Rec, 8(2008), 364–377. Bayer, E. A., Morag, E., Lamed, R.,Trends Biotechnol, 12 (1994), 379–386. Bayer, E. A.,Shimon, L. J., Shoham, Y., Lamed, R., J Struct Biol, 124(1998), 221–234. Behzadi, S., Farid, M. M., Asia-Pac JChem Eng, 2 (2007), 480–486.

Bhalla, A., Bansal, N., Kumar, S., Bischoff, K. M., Sani,R. K., Bioresour Technol, 128 (2013), 751–759.

Bielen, A., Verhaart, M., van der Oost, J., Kengen, S.,Life, 3 (2013), 52–85. Bisen, P. S., Sanodiya, B. S.,Thakur, G. S., Baghel, R. K., Prasad, G. B. K. S.,Biotechnol Lett, 32 (2010), 1019–1030. Blow, N., Nature,453 (2008), 687–690. Brochier-Armanet, C., Forterre, P.,Archaea, 2 (2007), 83–93. Brodeur, G., Yau, E., Badal, K.,Collier, J., Ramachandran, K. B., Ramakrishnan, S., EnzymeRes, 2011 (2011), 787532. Brown, S. D., Guss, A. M.,Karpinets, T. V., Parks, J. M., Smolin, N., Yang, S., Land,M. L., Klingeman, D. M., Bhandiwad, A., Rodriguez, M., Jr.,Raman, B., Shao, X., Mielenz, J. R., Smith, J. C., Keller,M., Lynd, L. R., Proc Natl Acad Sci USA, 108 (2011),13752–13757. Bugg, T. D. H., Ahmad, M., Hardiman, E. M.,Singh, R., Curr Opin Biotechnol, 22 (2011), 394–400.Burdette, D. S., Jung, S.-H., Shen, G.-J., Hollingsworth,R. I., Zeikus, J. G., Appl Environ Microbiol, 68 (2002),1914–1918. Burton, S. G., Cowan, D. A., Woodley, J. M., NatBiotech, 20 (2002), 37–45. Cai, D., Zhang, T., Zheng, J.,Chang, Z., Wang, Z., Qin, P.-Y., Tan, T.-W., BioresourTechnol, 145 (2013), 97–102. Carriquiry, M. A., Du, X.,Timilsina, G. R., Energy Policy, 39 (2011), 4222–4234.Caspi, J., Irwin, D., Lamed, R., Li, Y., Fierobe, H.-P.,

Wilson, D. B., Bayer, E. A., J Biotechnol, 135 (2008),351–357.

Cava, F., Hidalgo, A., Berenguer, J., Extremophiles, 13(2009), 213–231.

Cavalcanti-Oliveira, E., da Silva, P. R., Ramos, A. P.,Aranda, D. A., Freire, D. M., Enzyme Res, 2011 (2010),618692. Chang, T., Yao, S., Appl Microbiol Biotechnol, 92(2011), 13–27.

Chiaramonti, D., Prussi, M., Ferrero, S., Oriani, L.,Ottonello, P., Torre, P., Cherchi, F., Biomass Bioenergy,46 (2012), 25–35. Chou, C.-J., Jenney, F. E., Adams, M. W.W., Kelly, R. M., Metab Eng, 10 (2008), 394–404. Collins,T., Gerday, C., Feller, G., FEMS Microbiol Rev, 29 (2005),3–23. Coolbear, T., Daniel, R. M., Morgan, H. W., Theenzymes from extreme thermophiles: bacterial sources,thermostabilities and industrial relevance, in Enzymes andProducts from Bacteria Fungi and Plant Cells, SpringerBerlin Heidelberg, 1992. Couñago, R., Shamoo, Y.,Extremophiles, 9 (2005), 135–144. Cowan, D. A., Arslanoglu,A., Burton, S. G., Cameron, R. A., Baker, G., Smith, J.J., Meyer, Q., Biochem Soc Trans, 32 (2004), 298–302.Cripps, R. E., Eley, K., Leak, D. J., Rudd, B., Taylor, M.,Todd, M., Boakes, S., Martin, S., Atkinson, T., Metab Eng,11 (2009), 398–408.

Currie, D. H., Herring, C. D., Guss, A. M., Olson, D. G.,Hogsett, D. A., Lynd, L. R., Biotechnol Biofuels, 6(2013), 32. Daniel, R. M., Cowan, D. A., Cell Mol Life Sci,57 (2000), 250–264. Del Cerro, C., Felpeto-Santero, C.,Rojas, A., Tortajada, M., Ramón, D., García, J. L., GenomeAnnounc, 1 (2013), e0007013. Demain, A. L., Newcomb, M.,Wu, J. H., Microbiol Mol Biol Rev, 69 (2005), 124–154.Demirbas, A., Energy Conversion Manag, 50 (2009), 14–34.Demirjian, D. C., Morís-Varas, F., Cassidy, C. S., CurrOpin Chem Biol, 5 (2001), 144–151.

Deng, Y., Olson, D. G., Zhou, J., Herring, C. D., Joe Shaw,A., Lynd, L. R., Metab Eng, 15 (2013), 151–158. Desai, S.G., Guerinot, M. L., Lynd, L. R., Appl MicrobiolBiotechnol, 65 (2004), 600–605.

Doi, R. H., Kosugi, A., Murashima, K., Tamaru, Y., Han, S.O., J Bacteriol, 185 (2003), 5907–5914. Ellis, L. D.,Holwerda, E. K., Hogsett, D., Rogers, S., Shao, X.,Tschaplinski, T., Thorne, P., Lynd, L. R., BioresourTechnol, 103 (2012), 293–299.

Empadinhas, N., Mendes, V., Simões, C., Santos, M. S.,Mingote, A., Lamosa, P., Santos, H., Costa, M. S. D.,Extremophiles, 11 (2007), 667–673. Feller, G., Gerday, C.,Nat Rev Micro, 1 (2003), 200–208. Feng, L., Wang, W.,Cheng, J., Ren, Y., Zhao, G., Gao, C., Tang, Y., Liu, X.,Han, W., Peng, X., Liu, R., Wang, L., Proc Natl Acad Sci,104 (2007), 5602–5607. Fjerbaek, L., Christensen, K. V.,Norddahl, B., Biotechnol Bioeng, 102 (2009), 1298–1315.Fong, J. C. N., Svenson, C. J., Nakasugi, K., Leong, C. T.C., Bowman, J. P., Chen, B., Glenn, D. R., Neilan, B. A.,Rogers, P. L., Extremophiles, 10 (2006), 363–372. Fuciños,P., González, R., Atanes, E., Sestelo, A. B. F.,Pérez-Guerra, N., Pastrana, L., Rúa, M. L., Methods MolBiol, 861 (2012), 239–266. Georgieva, T., Mikkelsen, M.,Ahring, B., Cent Eur J Biol, 2 (2007a), 364–377. Georgieva,T. I., Mikkelsen, M. J., Ahring, B. K., Appl BiochemBiotechnol, 145 (2008), 99–110. Georgieva, T. I., Skiadas,I. V., Ahring, B. K., Biotechnol Bioeng, 98 (2007b),1161–1170. Gomes, J., Steiner, W., Food Technol Biotechnol,42 (2004), 223–235. Goodarzi, H., Bennett, B. D., Amini,S., Reaves, M. L., Hottes, A. K., Rabinowitz, J. D.,Tavazoie, S., Mol Syst Biol, 6 (2010), 378.

Guimarães Freire, D. M., de Sousa, J. S.,Cavalcanti-Oliveira, E. D. A., Chapter 13—Biotechnologicalmethods to produce biodiesel, in Biofuels: AlternativeFeedstocks and Conversion Processes, (Ashok, P., Christian,L., Steven, C. R., Claude-Gilles, D., Edgard, G., eds.),Academic Press, Amsterdam, 2011.

Hahn-Hägerdal, B., Galbe, M., Gorwa-Grauslund, M. F.,Lidén, G., Zacchi, G., Trends Biotechnol, 24 (2006),549–556. Haki, G. D., Rakshit, S. K., Bioresour Technol, 89(2003), 17–34. Havlík, P., Schneider, U. A., Schmid, E.,Böttcher, H., Fritz, S., Skalský, R., Aoki, K., Cara, S.D., Kindermann, G., Kraxner, F., Leduc, S., McCallum, I.,Mosnier, A., Sauer, T., Obersteiner, M., Energy Policy, 39(2011), 5690–5702. He, Q., Hemme, C. L., Jiang, H., He,Z., Zhou, J., Bioresour Technol, 102 (2011), 9586–9592.Herrero, A. A., Gomez, R. F., Appl Environ Microbiol, 40(1980), 571–577. Herrero, A. A., Gomez, R. F., Roberts, M.F., Biochim Biophys Acta, 693 (1982), 195–204.

Hill, J., Nelson, E., Tilman, D., Polasky, S., Tiffany, D.,Proc Natl Acad Sci, 103 (2006), 11206–11210. Hu, Q.,Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M.,Seibert, M., Darzins, A., Plant J, 54 (2008), 621–639.Huang, R., Su, R., Qi, W., He, Z., Bioenerg. Res., 4(2011), 225–245. Huang, Y., Krauss, G., Cottaz, S.,Driguez, H., Lipps, G., Biochem J, 385 (2005), 581–588.

Huston, A. (2008). Biotechnological Aspects of Cold-AdaptedEnzymes. In Psychrophiles: From Biodiversity toBiotechnology (Margesin, R., Schinner, F., Marx, J.-C.,Gerday, C., eds.), Springer Berlin Heidelberg. pp.347–363.

Hyeon, J. E., Jeon, S. D., Han, S. O., Biotechnol Adv, 31(2013), 936–944. Inagaki, K., Nakahira, K., Mukai, K.,Tamura, T., Tanaka, H., Biosci Biotechnol Biochem, 62(1998), 1061–1067. Jang, Y.-S., Malaviya, A., Lee, J., Im,J. A., Lee, S. Y., Lee, J., Eom, M.-H., Cho, J.-H., Seung,D. Y., Biotechnol Prog, 29 (2013), 1083–1088. Jegannathan,K. R., Abang, S., Poncelet, D., Chan, E. S., Ravindra, P.,Crit Rev Biotechnol, 28 (2008), 253–264. Jenney, F. E.,Adams, M. W. W., Extremophiles, 12 (2008), 39–50.

Jessen, J. E., Orlygsson, J., J Biomed Biotechnol, 2012(2012), 186982. Jindou, S., Borovok, I., Rincon, M. T.,Flint, H. J., Antonopoulos, D. A., Berg, M. E., White, B.A., Bayer, E. A., Lamed, R., J Bacteriol, 188 (2006),7971–7976. Juan, J. C., Kartika, D. A., Wu, T. Y., Hin, T.Y., Bioresour Technol, 102 (2011), 452–460. Kádár, Z.,Szengyel, Z., Réczey, K., Ind Crops Prod, 20 (2004),103–110. Kanafusa-Shinkai, S., Wakayama, J. I., Tsukamoto,K., Hayashi, N., Miyazaki, Y., Ohmori, H., Tajima, K.,Yokoyama, H., J Biosci Bioeng, 115 (2013), 64–70.

Kanai, T., Imanaka, H., Nakajima, A., Uwamori, K., Omori,Y., Fukui, T., Atomi, H., Imanaka, T., J Biotechnol, 116(2005), 271–282. Kang, H.-J., Uegaki, K., Fukada, H.,Ishikawa, K., Extremophiles, 11 (2007), 251–256.

Karadag, D., Mäkinen, A. E., Efimova, E., Puhakka, J. A.,Bioresour Technol, 100 (2009), 5790–5795. Karnaouri, A.C., Topakas, E., Christakopoulos, P., Appl MicrobiolBiotechnol, 98 (2014), 231–242.

Keller, M., Zengler, K., Nat Rev Micro, 2 (2004), 141–150.Kim, B. C., Grote, R., Lee, D. W., Antranikian, G., Pyun,Y. R., Int J Syst Evol Microbiol, 51 (2001), 1539–1548.Kim, H.-W., Ishikawa, K., J Microbiol Biotechnol, 20(2010), 889–892. Kim, D.-H., Kim, M.-S., Bioresour Technol,127 (2013), 267–274. Klose, H., Röder, J., Girfoglio, M.,Fischer, R., Commandeur, U., Biotechnol Biofuels, 5(2012), 63.

Knežević, A., Milovanović, I., Stajić, M., Lončar, N.,Brčeski, I., Vukojević, J., Ćilerdžić, J., BioresourTechnol, 138 (2013), 117–123. Kotik, M., J Biotechnol, 144(2009), 75–82.

Koutsopoulos, S., van der Oost, J., Norde, W., Langmuir, 20(2004), 6401–6406. Kowalchuk, G., Speksnijder, A. C. L.,Zhang, K., Goodman, R., Veen, J., Microb Ecol, 53 (2007),475–485.

Krogh, K. R. M., Harris, P., Olsen, C., Johansen, K.,Hojer-Pedersen, J., Borjesson, J., Olsson, L., ApplMicrobiol Biotechnol, 86 (2010), 143–154. Kumar, L.,Awasthi, G., Singh, B., Biotechnology, 10 (2011), 121–135.Larsen, L., Nielsen, P., Ahring, B. K., Arch Microbiol, 168(1997), 114–119. Lee, D.-J., Show, K.-Y., Su, A., BioresourTechnol, 102 (2011), 8393–8402. Lee, M., Lee, D., Cho, J.,Kim, S., Park, C., Appl Biochem Biotechnol, 171 (2013),1118–1127. Li, H.-G., Luo, W., Gu, Q.-Y., Wang, Q., Hu,W.-J., Yu, X.-B., Bioresour Technol, 137 (2013a), 254–260.Li, S., Yu, X., Beattie, G. A., J Bacteriol, 195 (2013b),2415–2423. Li, W. F., Zhou, X. X., Lu, P., Biotechnol Adv,23 (2005), 271–281. Liang, M.-H., Jiang, J.-G., Prog LipidRes, 52 (2013), 395–408. Limauro, D., Cannio, R.,Fiorentino, G., Rossi, M., Bartolucci, S., Extremophiles,5 (2001), 213–219. Lin, L., Song, H., Tu, Q., Qin, Y.,Zhou, A., Liu, W., He, Z., Zhou, J., Xu, J., PLoS Genet, 7(2011), e1002318. Lin, L., Xu, J., Biotechnol Adv, 31(2013), 827-837. Luque, R., Herrero-Davila, L., Campelo, J.M., Clark, J. H., Hidalgo, J. M., Luna, D., Marinas, J.M., Romero, A. A., Energy Environ Sci, 1 (2008), 542–564.Lynd, L. R., van Zyl, W. H., McBride, J. E., Laser, M.,Curr Opin Biotechnol, 16 (2005), 577–583.

Lynd, L. R., Weimer, P. J., van Zyl, W. H., Pretorius, I.S., Microbiol Mol Biol Rev, 66 (2002), 506–577. Ma, F.,Hanna, M. A., Bioresour Technol, 70 (1999), 1–15. Macelroy,R., Biosystems, 6 (1974), 74–75. Madigan, M., Martinko, J.,Stahl, D., Clark, D., Brock Biology of Microorganisms(13th Edition), Benjamin Cummings 2010. Mai, V., Wiegel,J., Appl Environ Microbiol, 66 (2000), 4817–4821. Maki, M.,Leung, K. T., Qin, W., Int J Biol Sci, 5 (2009), 500–516.

Mäkinen, A. E., Nissilä, M. E., Puhakka, J. A., Int JHydrogen Energy, 37 (2012), 12234–12240. Mandrich, L.,Pezzullo, M., Rossi, M., Manco, G., Archaea, 2 (2007),109–115. Markou, G., Angelidaki, I., Georgakakis, D., ApplMicrobiol Biotechnol, 96 (2012), 631–645. Martínez, A. T.,Speranza, M., Ruiz-Dueñas, F. J., Ferreira, P., Camarero,S., Guillén, F., Martínez, M. J., Gutiérrez, A., del Río,J. C., Int Microbiol, 8 (2005), 195–204. Masui, D. C.,Zimbardi, A. L. R. L., Souza, F. H. M., Guimarães, L. H.S., Furriel, R. P. M., Jorge, J. A., World J MicrobiolBiotechnol, 28 (2012), 2689–2701.

Matassoli, A. L., Correa, I. N., Portilho, M. F., Veloso,C. O., Langone, M. A., Appl Biochem Biotechnol, 155(2009), 347–355. Maurelli, L., Giovane, A., Esposito, A.,Moracci, M., Fiume, I., Rossi, M., Morana, A.,Extremophiles, 12 (2008), 689–700. Mingardon, F., Bagert,J. D., Maisonnier, C., Trudeau, D. L., Arnold, F. H., ApplEnviron Microbiol, 77 (2011), 1436–1442. Moser, B., Invitro Cell Dev Biol-Plant, 45 (2009), 229–266. Moura, M. V.H., Dobler, L., Gutarra, M. L. E., Almeida, R. V., ProteinExpr Purif, 88 (2013), 26–32. Nahálka, J., J Ind MicrobiolBiotechnol, 35 (2008), 219–223. Naik, S. N., Goud, V. V.,Rout, P. K., Dalai, A. K., Renewable Sustainable EnergyRev, 14 (2010), 578–597. Nakayama, S., Kiyoshi, K.,Kadokura, T., Nakazato, A., Appl Environ Microbiol, 77(2011), 6470–6475. Nazina, T. N., Tourova, T. P.,Poltaraus, A. B., Novikova, E. V., Grigoryan, A. A.,Ivanova, A. E., Lysenko, A. M., Petrunyaka, V. V., Osipov,G. A., Belyaev, S. S., Ivanov, M. V., Int J Syst EvolMicrobiol, 51 (2001), 433–446.

Nigam, P. S., Singh, A., Prog Energy Combustion Sci, 37(2011), 52–68. Nitsos, C. K., Matis, K. A.,Triantafyllidis, K. S., ChemSusChem, 6 (2013), 110–122.

Oliveira, A. C., Rosa, M. F., J Amer Oil Chem Soc, 83(2006), 21–25.

Olson, D. G., McBride, J. E., Shaw, A. J., Lynd, L. R.,Curr Opin Biotechnol, 23 (2012), 396–405.

Oslowski, D. M., Jung, J.-H., Seo, D.-H., Park, C.-S.,Holden, J. F., Appl Environ Microbiol, 77 (2011),3169–3173. Pastor, J. M., Bernal, V., Salvador, M.,Argandona, M., Vargas, C., Csonka, L., Sevilla, A.,Iborra, J. L., Nieto, J. J., Canovas, M., J Biol Chem, 288(2013), 17769–17781. Patil, P. D., Deng, S., Fuel, 88(2009), 1302–1306. Peng, H., Wu, G., Shao, W., Anaerobe, 14(2008), 125–127. Pereira, J. H., Chen, Z., McAndrew, R. P.,Sapra, R., Chhabra, S. R., Sale, K. L., Simmons, B. A.,Adams, P. D., J Struct Biol, 172 (2010), 372–379. Piriya,P. S., Vasan, P. T., Padma, V. S., Vidhyadevi, U., Archana,K., Vennison, S. J., Biotechnol Res Int, 2012 (2012),817549. Prakash, P., Jayalakshmi, S. K., Prakash, B.,Rubul, M., Sreeramulu, K., World J Microbiol Biotechnol,28 (2012), 183–192. Ranganathan, S. V., Narasimhan, S. L.,Muthukumar, K., Bioresour Technol, 99 (2008), 3975–3981.Rao, L., Xue, Y., Zhou, C., Tao, J., Li, G., Lu, J. R., Ma,Y., Biochim Biophys Acta, 1814 (2011), 1695–1702.

Rastogi, G., Bhalla, A., Adhikari, A., Bischoff, K. M.,Hughes, S. R., Christopher, L. P., Sani, R. K., BioresourTechnol, 101 (2010), 8798–8806. Ribeiro, B. D., de Castro,A. M., Coelho, M. A., Freire, D. M., Enzyme Res, 2011(2011), 615803. Rondon, M. R., August, P. R., Bettermann,A. D., Brady, S. F., Grossman, T. H., Liles, M. R.,Loiacono, K. A., Lynch, B. A., MacNeil, I. A., Minor, C.,Tiong, C. L., Gilman, M., Osburne, M. S., Clardy, J.,Handelsman, J., Goodman, R. M., Appl Environ Microbiol, 66(2000), 2541–2547. Rothschild, L. J., Mancinelli, R. L.,Nature, 409 (2001), 1092–1101. Royon, D., Daz, M.,Ellenrieder, G., Locatelli, S., Bioresour Technol, 98(2007), 648–653.

Royter, M., Schmidt, M., Elend, C., Höbenreich, H.,Schäfer, T., Bornscheuer, U. T., Antranikian, G.,Extremophiles, 13 (2009), 769–783.

Ryu, H. S., Kim, H. K., Choi, W. C., Kim, M. H., Park, S.Y., Han, N. S., Oh, T. K., Lee, J. K., Appl MicrobiolBiotechnol, 70 (2006), 321–326.

Salama-Alber, O., Jobby, M. K., Chitayat, S., Smith, S. P.,White, B. A., Shimon, L. J. W., Lamed, R., Frolow, F.,Bayer, E. A., J Biol Chem, 288 (2013), 16827–16838.Salameh, M. D., Wiegel, J., Lipases from extremophiles andpotential for industrial applications, in Advances inApplied Microbiology (Allen I., Laskin, S. S., Geoffrey,M. G., eds.), Academic Press, 2007. Salis, A., Monduzzi,M., Solinas, V., Use of lipases for the production ofbiodiesel, in Industrial Enzymes (Polaina, J., MacCabe, A.,eds.), Springer Netherlands, 2007. Sathitsuksanoh, N.,George, A., Zhang, Y. H. P., J Chem Technol Biotechnol, 88(2013), 169–180. Scheller, H. V., Ulvskov, P., Annu RevPlant Biol, 61 (2010), 263–289. Schiraldi, C., De Rosa, M.,Trends Biotechnol, 20 (2002), 515–521. Schiraldi, C.,Giuliano, M., De Rosa, M., Archaea, 1 (2002), 75–86.Searchinger, T., Heimlich, R., Houghton, R. A., Dong, F.,Elobeid, A., Fabiosa, J., Tokgoz, S., Hayes, D., Yu,T.-H., Science, 319 (2008), 1238–1240. Shang, S.-M., Qian,L., Zhang, X., Li, K.-Z., Chagan, I., Arch Microbiol, 195(2013), 439–445. Shaw, A. J., Covalla, S. F., Miller, B.B., Firliet, B. T., Hogsett, D. A., Herring, C. D., MetabEng, 14 (2012), 528–532. Shaw, A. J., Podkaminer, K. K.,Desai, S. G., Bardsley, J. S., Rogers, S. R., Thorne, P.G., Hogsett, D. A., Lynd, L. R., Proc Natl Acad Sci USA,105 (2008), 13769–13774. Shimada, Y., Watanabe, Y.,Samukawa, T., Sugihara, A., Noda, H., Fukuda, H.,Tominaga, Y., J Amer Oil Chem Soc, 76 (1999), 789–793.Sims, R. E., Mabee, W., Saddler, J. N., Taylor, M.,

Bioresour Technol, 101 (2010), 1570–1580. Sims, R. E.,Taylor, M., Saddler, J. N., Mabee, W., From First to SecondGeneration Biofuel Technologies: An Overview of CurrentIndustry and RD&D Activities (International Energy Agency© OECD/IEA.), pp. 1–124, (2008). Singh, S. B., Pelaez, F.,Biodiversity, chemical diversity and drug discovery, inNatural Compounds as Drugs Volume I, Springer, 2008.Skinner, K., Leathers, T., J Ind Microbiol Biotechnol, 31(2004), 401–408. Smeets, E. M. W., Bouwman, L. F.,Stehfest, E., Van Vuuren, D. P., Posthuma, A., Glob ChangBiol, 15 (2009), 1–23.

Svetlitchnyi, V. A., Kensch, O., Falkenhan, D. A.,Korseska, S. G., Lippert, N., Prinz, M., Sassi, J.,Schickor, A., Curvers, S., Biotechnol Biofuels, 6 (2013),31. Tailliez, P., Girard, H., Longin, R., Beguin, P.,Millet, J., Appl Environ Microbiol, 55 (1989), 203–206.Talluri, S., Raj, S. M., Christopher, L. P., Bioresour.Technol., 139 (2013), 272–279.

Talarico, L. A., Gil, M. A., Yomano, L. P., Ingram, L. O.,Maupin-Furlow, J. A., Microbiology, 151 (2005), 4023–4031.Tang, Y. J., Sapra, R., Joyner, D., Hazen, T. C., Myers,S., Reichmuth, D., Blanch, H., Keasling, J. D., BiotechnolBioeng, 102 (2009), 1377–1386.

Taylor, M. P., Bauer, R., Mackay, S., Tuffin, M., Cowan, D.A., Extremophiles and their Application to BiofuelResearch, in Extremophiles, John Wiley & Sons, Inc., 2012.

Taylor, M. P., Eley, K. L., Martin, S., Tuffin, M. I.,Burton, S. G., Cowan, D. A., Trends Biotechnol, 27 (2009),398–405. Thompson, A. H., Studholme, D. J., Green, E. M.,Leak, D. J., Biotechnol Lett, 30 (2008), 1359–1365.Timmons, M. D., Knutson, B. L., Nokes, S. E., Strobel, H.J., Lynn, B. C., Appl Microbiol Biotechnol, 82 (2009),929–939. Tulp, M., Bohlin, L., Trends Pharmacol Sci, 23(2002), 225–231. Tyurin, M. V., Desai, S. G., Lynd, L. R.,Appl Environ Microbiol, 70 (2004), 883–890. van den Burg,B., Curr Opin Microbiol, 6 (2003), 213–218. van der Veen,D., Lo, J., Brown, S. D., Johnson, C. M., Tschaplinski, T.J., Martin, M., Engle, N. L., van den Berg, R. A.,Argyros, A. D., Caiazza, N. C., Guss, A. M., Lynd, L. R.,J Ind Microbiol Biotechnol, 40 (2013), 725–734. van Niel,E. W. J., Budde, M. A. W., de Haas, G. G., van der Wal, F.J., Claassen, P. A. M., Stams, A. J. M., Int J HydrogenEnergy, 27 (2002), 1391–1398. Vanholme, R., Demedts, B.,Morreel, K., Ralph, J., Boerjan, W., Plant Physiol, 153(2010), 895–905. Verma, D., Anand, A., Satyanarayana, T.,Appl Biochem Biotechnol, 170 (2013), 119–130. Vieille, C.,

Gregory Zeikus, J., Trends Biotechnol, 14 (1996), 183–190.Viikari, L., Alapuranen, M., Puranen, T., Vehmaanperae, J.,Siika-aho, M., Thermostable enzymes in lignocellulosehydrolysis, in Biofuels (Olsson, L., ed.), 2007.

Villeneuve, P., Muderhwa, J. M., Graille, J., Haas, M. J.,J Mol Catal B Enzym, 9 (2000), 113–148.

Wagner, A. O., Lins, P., Malin, C., Reitschuler, C.,Illmer, P., Sci Total Environ, 458–460C (2013), 256–266.Wagner, I. D., Ahmed, S., Zhao, W., Zhang, C. L., Romanek,C. S., Rohde, M., Wiegel, J., Int J Syst Evol Microbiol,59 (2009), 2685–2691. Wan, C., Li, Y., Biotechnol Adv, 30(2012), 1447–1457. Wang, W., Yan, L., Cui, Z., Gao, Y.,Wang, Y., Jing, R., Bioresour Technol, 102 (2011),9321–9324. Wang, Y., Liu, Q., Yan, L., Gao, Y., Wang, Y.,Wang, W., Bioresour Technol, 139 (2013), 113–119.Watanabe, Y., Shimada, Y., Sugihara, A., Noda, H., Fukuda,H., Tominaga, Y., J Amer Oil Chem Soc, 77 (2000), 355–360.Wawrik, B., Harriman, B. H., J Microbiol Methods, 80(2010), 262–266. Weiland, P., Appl Microbiol Biotechnol, 85(2010), 849–860. Wiegel, J., Ljungdahl, L., Arch Microbiol,128 (1981), 343–348. Wood, T., Garcia-Campayo, V.,Biodegradation, 1 (1990), 147–161. Xiangyuan, H., Shuzheng,Z., Shoujun, Y., Appl Biochem Biotechnol, 94 (2001),243–255. Xu, Q., Barak, Y., Kenig, R., Shoham, Y., Bayer,E. A., Lamed, R., J Bacteriol, 186 (2004), 5782–5789. Xu,Y., Du, W., Liu, D., Zeng, J., Biotechnol Lett, 25 (2003),1239–1241. Yaakob, Z., Mohammad, M., Alherbawi, M., Alam,Z., Sopian, K., Renewable Sustainable Energy Rev, 18(2013), 184–193. Yan, J., Li, A., Xu, Y., Ngo, T. P. N.,Phua, S., Li, Z., Bioresour Technol, 123 (2012), 332–337.Yang, K. S., Sohn, J.-H., Kim, H. K., J Biosci Bioeng, 107(2009a), 599–604. Yang, S.-J., Kataeva, I., Hamilton-Brehm,S. D., Engle, N. L., Tschaplinski, T. J., Doeppke, C.,Davis, M., Westpheling, J., Adams, M. W. W., Appl EnvironMicrobiol, 75 (2009b), 4762–4769. Yao, S., Mikkelsen, M.J., Appl Microbiol Biotechnol, 88 (2010), 199–208.

Yeoman, C. J., Han, Y., Dodd, D., Schroeder, C. M., Mackie,R. I., Cann, I. K. O., Adv Appl Microbiol, 70 (2010),1–55. Yoon, J.-J., Kim, K.-Y., Cha, C.-J., J Microbiol, 46(2008), 51–55. Zambare, V., Bhalla, A., Muthukumarappan,K., Sani, R., Christopher, L., Extremophiles, 15 (2011),611–618.

Zeng, X., Birrien, J.-L., Fouquet, Y., Cherkashov, G.,Jebbar, M., Querellou, J., Oger, P., Cambon-Bonavita,M.-A., Xiao, X., Prieur, D., ISME J, 3 (2009), 873–876.Zengler, K., Toledo, G., Rappé, M., Elkins, J., Mathur, E.

J., Short, J. M., Keller, M., Proc Natl Acad Sci, 99(2002), 15681–15686. Zhou, S., Iverson, A. G., Grayburn, W.S., Biotechnol Lett, 30 (2008), 335–342.

9 Chapter 9: Industrial Applications ofHalophilic Microorganisms

Arakawa, H., Tokunawa, M., Ishibashi, M., Tokunaga, M.,Halophilic properties and their manipulation andapplication, in Extremophiles. Sustainable Resources andBiotechnological Implications (Singh, O. V., ed.),WileyBlackwell, Hoboken, N. J., 2013.

Arias, S., del Moral, A., Ferrer, M. R., Tallon, R.,Quesada, E., Béjar, V., Extremophiles, 7 (2003), 319–326.Asker, D., Ohta, Y., J. Biosci. Bioeng., 88 (1999),617–621. Asker, D., Ohta, Y., Appl. Microbiol. Biotechnol.,58 (2002), 743–750. Bagai, R., Madamwar, D., Appl. Biochem.Biotechnol., 62l (1997), 213–218.

Barzegari, A., Hejazi, M. A., Hosseinzadeh, N., Eslami, S.,Aghdam, E. M., Hejazi, M. S., Mol. Biol. Rep., 37 (2010),3427–3430.

Begemann, M. B., Mormile, M. R., Sitton, O. C., Wall, J.D., Elias, D. A., Frontiers Microbiol., 3 (2012), 93.

Béjar, V., Llamas, I., Calco, C., Quesada, E., J.Biotechnol., 61 (1998), 135–141.

Ben-Amotz, A., Glycerol, β-carotene and dry algal mealproduction by commercial cultivation of Dunaliella, inAlgae Biomass (Shelef, G., Soeder, C. J., eds.), Elsevier,Amsterdam, 1980.

Ben-Amotz, A., J. Appl. Phycol., 7 (1995), 65–68.

Ben-Amotz, A., Dunaliella β-carotene. from science tocommerce, in Enigmatic Microorganisms and Life in ExtremeEnvironments (Seckbach, J., ed.), Kluwer AcademicPublishers, Dordrecht, 1999.

Ben-Amotz, A., Avron, M., Trends Biochem. Sci., 6 (1981),297–299.

Ben-Amotz, A., Avron, M., Ann. Rev. Microbiol., 37 (1983),95–119.

Ben-Amotz, A., Avron, M., The biotechnology of massculturing Dunaliella for products of commercial interest,in Algal and Cyanobacterial Biotechnology (Cresswell, R.C., Rees, T. A. V., Shah, N., eds.), Longman Scientificand Technical Press, Harlow, 1989.

Ben-Amotz, A., Mokady, S., Avron, M., Brit. J. Nutr., 59(1988), 443–449.

Ben-Mahrez, K., Thierry, D., Sorokine, I., Danna-Muller,A., Kohiyama, M., Brit. J. Cancer, 57 (1980), 529–534.

Ben-Mahrez, K., Sorokine, I., Thierry, D., Kawasumi, T.,Ishii, S., Salmon, R., Kohiyama, M., An archaebacterialantigen used to study immunological human response toc-myc oncogen product, in General and Applied Aspects ofHalophilic Microorganisms (Rodriguez-Valera, F., ed.),Plenum Press, New York, 1991. Bestvater, T., Louis, P.,Galinski, E. A., Saline Syst., 4 (2008), 12. Beyer, N.,Driller, H., Bünger, J., Seiden Öle Fette Wachse J., 126(2000), 26–29.

Birge, R. R., Sci. Am., (March 1995), 66–71.

Birge, R. R., Gillespie, N. B., Izaguire, E. W., Kusnetzow,A., Lawrence, A. F., Singh, D., Song, Q. W., Schmidt, E.,Stuart, J. A., Seetharaman, S., Wise, K. J., J. Phys.Chem. B, 103 (1999), 10746–10766. Borowitzka, M. A.,Microbiol. Sci., 3 (1986), 372–375. Borowitzka, M. A.Commercial production of microalgae: ponds, tanks, tubesand fermenters., J. Biotechnol., 70 (1999), 313–321.Borowitzka, L. I., Borowitzka, M. A., Moulton, T. P.,Hydrobiologia, (116/117) (1984), 115–121.

Bouchotroch, S., Quesada, E., Izquirdo, I., Rodríguez, M.,Béjar, V., J. Ind. Microbiol. Biotechnol., 24 (2000),374–378. Bünger, J., Driller, H., Skin Pharmacol. Physiol.,17 (2004), 232–237. Bünger, J., Axt, A., zur Lange, J.,Fritz, A., Degwert, J., Driller, H., The protectionfunction of compatible solute ectoin on the skin, skincells and its biomolecules with respect to UV-radiation,immunosuppression and membrane damage, in Proceedings ofthe XXI th IFSCC International Congress, Berlin, 2000.

Calvo, C., Ferrer, M. R., Martínez-Checa, F., Béjar, V.,Quesada, E., Appl. Biochem. Biotechnol., 55 (1995), 45–54.

Cánovas, D., Vargas, C., Iglesias-Guerra, F., Csonka, L.N., Rhodes, D., Ventosa, A., Nieto, J. J., J. Biol. Chem.,272 (1997), 25794–25801.

Castanier, S., Perthuisot, J.-P., Matrat, M., Morvan,J.-Y., Sed. Geol., 125 (1999), 9–21. Chaga, G., Porath,J., Illíni, T., Biomed. Chromatogr., 7 (1993), 256–261.

Chai, X.-J., Chen, H.-X., Xu, W.-Q., Xu, Y.-W., J. Appl.

Phycol., 25 (2013), 139–144. Chen, Z., Birge, R. R.,Trends Biotechnol., 11 (1993), 292–300. Chen, B. J., Chi,C. H., Biotechnol. Bioengin., 23 (1981), 1267–1287.

Chen, C. W., Don, T.-M., Yen, H.-F., Process Biochem., 41(2006), 2289–2296.

Childs, T. S., Webley, W. C., Vaccine, 30 (2012), 5942–5948.

Chu, L.-K., Yen, C.-W., El-Sayed. M. A., Biosens.Bioelectron., 26 (2010), 620–626.

Coronado, M.-J., Vargas, C., Mellado, E., Tegos, G.,Drainas, C., Nieto, J. J., Ventosa, A., Microbiology UK,146 (2000), 861–868.

DasSarma, S., Haladay, J., Ng, W. I., Recombinant Vectorand Process for Cell Flotation. Patent US6008051, 1999.

Davis, J. S., Importance of microorganisms in solar saltproduction, in Proceedings of the 4th Symposium on Salt,Vol. 1, (Coogan, A. H., ed.), Northern Ohio GeologicalSociety, Cleveland, 1974.

Davis, J. S., Biological management of solar saltworks, inProceedings of the 5 th International Symposium on Salt,Vol. 1, (Coogan, A. H., Hauber, L., eds.), The NorthernOhio Geological Society, Cleveland, 1979. De Philippis, R.,Margheri, M. C., Materassi, R., Vincenzini, M., Appl.Environ. Microbiol., 64 (1998), 1130–1132.

Del Campo, J. A., García-González, M., Guerrero, M. G.,Appl. Microbiol. Biotechnol., 74 (2007), 1163–1174.

Delgado-García, M., Valdivia-Urdiales, B.,Aguilar-González, C. N., ContrerasEsquivel, J. C.,Rodríguez-Herrera, R., J. Sci. Food Agric., 92 (2012),2575–2580.

Dimonte, A., Frache, S., Erokhin, V., Piccinini, G.,Demarchi, D., Milano, F., De Micheli, G., Carrara, S.,Biomacromolecules, 13 (2012), 3503–3509.

Dufossé, L., Galaup, P., Yaron, A., Malis Arad, S., Blanc,P., Chidambara Murthy, K. N., Ravishankar, G. A., TrendsFood Sci. Technol., 16 (2005), 389–406. Eichler, J.,Biotechnol. Adv., 19 (2001), 261–278.

Essghaier, B., Rouaissi, M., Boudabous, A., Jijakli, H.,Sadfi-Zouaoui, N., World J. Microbiol. Biotechnol., 26

(2010), 977–984.

Fallet, C., Rohe, P., Franco-Lara, E., Biotechnol.Bioengin., 107 (2010), 124–133.

Fernandez-Castillo, R., Rodriguez-Valera, F.,Gonzalez-Ramos, J., RuizBerraquero, F., Appl. Environ.Microbiol., 51 (1986), 214–216.

Frillingos, S., Linden, A., Niehaus, F., Vargas, C., Nieto,J. J., Ventosa, A., Antranikian, G., Drainas, C., J. Appl.Microbiol., 88 (2000), 495–503.

Frings, E., Sauer, T., Galinski, E. A., J. Biotechnol., 43(1995), 53–61. Fukushima, T., Mizuki, T., Echigo, A.,Inoue, A., Usami, R., Extremophiles, 9 (2005), 85–89.Galinski, E. A. (1989). The potential use of halophilicbacteria for the production of organic chemicals andenzyme protective agents, in Microbiology of ExtremeEnvironments and its Potential for Biotechnology, (DaCosta, M. S., Duarte, J. C., Williams, R. A. D., eds.),Elsevier Applied Science, London, 1989. Galinski, E. A.,Experientia, 49 (1993), 487–496. Galinski, E. A., Adv.Microb. Physiol., 37 (1995), 273–328.

Galinski, E. A., Lippert, K., Novel compatible solutes andtheir potential application as stabilizers in enzymetechnology, in General and Applied Aspects of HalophilicMicroorganisms (Rodriguez-Valera, F., ed.), Plenum Press,New York, 1991. Galinski, E. A., Louis, P., Compatiblesolutes: ectoine production and gene expression, inMicrobiology and Biogeochemistry of HypersalineEnvironments (Oren, A., ed.), CRC Press, Boca Raton, 1999.Galinski, E. A., Tindall, B. J., Biotechnological prospectsfor halophiles and halotolerant microorganisms, inMolecular Biology and Biotechnology of Extremophiles(Herbert, R. A., Sharp, R. J., eds.), (Blackie, Glasgow/Chapman and Hall), New York, 1992.

García-González, M., Moreno, J., Manzano, J. C., Florencio,F. J., Guerrero, M. G., J. Biotechnol., 115 (2005), 81–90.

Geng, D., Wang, Y., Wang, P., Li, W., Sun, U., J. Appl.Phycol., 15 (2003), 451–456.

Ghasemi, M. F., Shodjai-Arani, A., Moazami, N., ProcessBiochem., 43 (2008), 1077–1082. Ginzburg, B. Z., Liquidfuel (oil) from halophilic algae: a renewable source ofnon-polluting energy, in General and Applied Aspects ofHalophilic Microorganisms, (Rodriguez-Valera, F., ed.),

Plenum Press, New York, 1991.

Goldman, Y., Garti, N., Sasson, Y., Ginzburg, B.-Z., Bloch,M. R., Fuel, 59 (1980), 181–184.

Goldman, Y., Garti, N., Sasson, Y., Ginzburg, B.-Z., Bloch,M. R., Fuel, 60 (1981), 90–92. Gonzalez, R. O., Higa, L.H., Cutrullis, R. A., Bilen, M., Morelli, I., Roncaglia,D. I., Corral, R. S., Morilla, M. J., Petray, P. B.,Romero, E. L., BMC Biotechnol., 9 (2009), 71.

González-Paredes, A., Clarés-Naveros, B., Ruiz-Martínez,A., DurbánFornieles, J. J., Ramos-Cormenzana, A.,Monteoliva-Sánchez, M., Int. J. Pharmaceutics, 421 (2011),321–331.

Graf, R., Anzali, S., Buenger, J., Pfluecker, F., Driller,H., Clin. Dermatol., 26 (2008), 326–333.

Grammann, K., Volke, A., Kunte, H. J., J. Bacteriol., 184(2002), 3078–3085.

Guzmán, H., Van-Thuoc, D., Martín, J., Hatti-Kaul, R.,Quillaguamán. J., Appl. Microbiol. Biotechnol., 84 (2009),1069–1077. Hampp, N., Chem. Res., 100 (2000a), 1755–1776.Hampp, N., Appl. Microbiol. Biotechnol., 53 (2000b),633–639.

Harishchandra, R. K., Sachan, A. K., Kerth, A., Lentzen,G., Neuhaus, T., Galla, H.-J., Biochim. Biophys. Acta,1808 (2011), 2830–2840.

Hejazi, M. A., Andrysiewicz, E., Tramper, J., Wijffels, R.H., Biotechnol. Bioengin., 84 (2003), 591–596.

Hejazi, M. A., de Lamarliere, C., Rocha, J. M. S., Vermuë,M., Tramper, J., Wijffels, R. H., Biotechnol. Bioengin.,79 (2002), 29–36.

Hejazi, M. A., Holwerda, E., Wijffels, R. H., Biotechnol.Bioengin., 85 (2004a), 475–481.

Hejazi, M. A., Kleinegris, D., Wijffels, R. H., Biotechnol.Bioengin., 88, (2004b), 593–600.

Hejazi, M. A., Wijffels, R. H., Trends Biotechnol., 22(2004), 189–194.

Hezayen, F. F., Rehm, B. H. A., Eberhardt, R., Steinbüchel,A., Appl. Microbiol. Biotechnol., 54 (2000), 319–325.

Higa, L. H., Schilrreff, P., Perez, A. P., Iriarte, M. A.,Roncaglia, D. I., Morilla, M. J., Romero, E. L., Nanomed.Nanotechnol. Biol. Med., 8 (2012), 1319–1328.

Hillebrecht, J. R., Wise, K. J., Koscielecki, J. F., Birge,R. R., Meth. Enzymol., 388 (2004), 333–347. Hinrichsen, L.L., Montel, M. C., Talon, R., Int. J. Food Microbiol., 22(1994), 115–126. Hong, F. T., Biosystems, 19 (1986),223–236.

Hosseini Tafreshi, A., Shariati, M., J. Appl. Microbiol.,107 (2009), 14–35.

Huang, T.-Y., Duan, K.-J., Huang, S.-Y., Chen, C. W., J.Int. Microbiol. Biotechnol., 33 (2006), 701–706. Imhof,M., Pudewills, J., Rhinow, D., Chizhik, I., Hampp, N., J.Phys. Chem. B, 116 (2012), 9727–9731.

Jabbour, D., Sorger, A., Sahm, K., Antranikian, G., Appl.Microbiol. Biotechnol., 97 (2013) 2971–2978. Javor, B.,Hypersaline Environments. Microbiology and Biogeochemistry,Springer-Verlag, Berlin, 1989. Javor, B. J., J. Ind.Microbiol. Biotechnol., 28 (2002), 42–47. Jones, A. G.,Ewing, C. M., Melvin, M. V., Hydrobiologia, 82 (1981),391–406.

Kamekura, M., FEMS Microbiol. Rev., 39 (1986), 145–150.

Kamekura, M., Onishi, H., J. Bacteriol., 119 (1974),339–344.

Kamekura, M., Onishi, H., Can. J. Microbiol., 22 (1976),1567–1576.

Kamekura, M., Onishi, H., Can. J. Microbiol., 24 (1978a),703–709.

Kamekura, M., Onishi, H., J. Bacteriol., 133 (1978b), 59–65.

Kamekura, M., Hamakawa, T., Onishi, H., Appl. Environ.Microbiol., 44 (1982), 994–995.

Kanapathipillai, M., Lentzen, G., Sierks, M., Park, C. B.,FEBS Lett., 579 (2005), 4775–4780.

Kawata, Y., Aiba, S.-I., Biosci. Biotechnol. Biochem., 74(2010), 175–177.

Kivistö, A., Santala, V., Karp, M., Biores. Technol., 101

(2010), 8671–8677.

Kivistö, A., Santala, V., Karp. M., J. Biotechnol., 158(2012), 242–247.

Kleinegris, D. M. M., Janssen, M., Brandenburg, W. A.,Wijffels, R. H., Enz. Microb. Technol., 48 (2011),253–259.

Kobayashi, T., Kamekura, M., Kanlayakrit, W., Onishi, H.,Microbios, 46 (1986), 165–177.

Kobayashi, T., Okuzumi, M., Fujii, T., Fisheries Sci., 61(1995), 291–295.

Kobayashi, T., Kimura, B., Fujii, T., Int. J. FoodMicrobiol., 56 (2000), 211–218.

Koller, M., Hesse, P., Bona, R., Kutschera, C., Atlić, A.,Braunegg, G., Macromol. Biosci., 7 (2007), 218–226.

Kolp, S., Pietsch, M., Galinski, E. A., Gütschow, M.,Biochim. Biophys. Acta, 1764 (2006), 1234–1242.

Kothapalli, S.-R., Wu, P., Yelleswarapu, C. S., Rao, D. V.G. L. N., Appl. Phys. Lett., 85 (2004), 5836–5838.

Koyama, K., Yamaguchi, N., Miyasaka, N., Science 265(1994), 762–764.

Krahe, M., Antranikian, G., Märkl, H., FEMS Microbiol.Rev., 18 (1996), 271–285.

Küçükasik, F. K., Kazak, H., Güney, D., Finore, I., Poli,A., Yenigün, O., Nicolaus, B., Öner, E. T., Appl.Microbiol. Biotechnol., 89 (2011), 1729–1740.

Kushner, D. J., Biotechnol. Bioengin., 8 (1966), 237–245.

Lang, Y., Bai, L., Ren, Y., Zhang, L., Nagata. S.,Extremophiles, 15 (2011), 303–310.

Lata, D. B., Chandra, R., Kumar, A., Misra, A., Int. J.Hydrogen Energy, 32 (2007), 3293–3300.

Lentzen, G., Schwarz, T., Appl. Microbiol. Biotechnol., 72(2006), 623–634.

León, R., Martín, M., Vigara, J., Vilchez, C., Vega, J. M.,Biomol. Eng., 20 (2003), 177–182.

Lillo, J. G., Rodriguez-Valera, F., Appl. Environ.Microbiol., 56 (1990), 2517–2521.

Lippert, K., Galinski, E. A., Appl. Microbiol. Biotechnol.,37 (1992), 61–65.

Litchfield, C. D., J. Ind. Microbiol. Biotechnol., 38(2011), 1635–1647.

Llamas, I., del Moral, A., Martínez-Checa, F., Arco, Y.,Arias, S., Quesada, E., Antonie van Leeuwenhoek, 89(2006), 395–403.

Llamas, I., Amjres, H., Mata, J. A., Quesada, E., Béjar,V., Molecules, 17 (2012), 7103–7120.

Lopetcharat, K., Cjoi, Y. J., Park, J. W., Daeschel, M. A.,Food Rev. Int., 17 (2001), 65–88. Louis, P., Galinski, E.A., Microbiol. UK, 143 (1997), 1141–1149. Louis, P.,Trüper, H. G., Galinski, E. A., Appl. Microbiol.Biotechnol., 41 (1994), 648–688.

Margesin, R., Schinner, F., Extremophiles, 5 (2001), 73–83.

Martínez-Checa, F., Toledo, F. L., Vilchez, R., Quesada,E., Calvo, C., Appl. Microbiol. Biotechnol., 58 (2002),358–363. Masyuk, N. P., Ukr. Bot. Zh. 23 (1968), 12–18.

Mata, J. A., Béjar, V., Llamas, I., Arias, S., Bressollier,P., Tallon, R., Urdaci, M. C., Quesada, E., Res.Microbiol., 157 (2006), 827–835.

Melmer, G., Schwarz, T., Ectoines: a new type of compatiblesolutes with great commercial potential, in Encyclopediaof Life Support Systems (EOLSS), vol. II, Developed underthe Auspices of the UNESCO, Eolss Publishers, Oxford,2003.

Minegishi, H., Echigo, A., Shimane, Y., Kamekura, M.,Tanasupawat, S., Visessanguan, W., Usami, R., Int. J.Syst. Evol. Microbiol., 62 (2012), 2160–2162.

Min-Yu, L., Ono, H., Takano, M., Annu. Rep. Int. Cent.Coop. Res. Biotechnol. Japan, 16 (1993), 193–200.

Moghaieb, R. E. A., Tanaka, N., Saneoka, H., Murooka, Y.,Ono, H., Morikawa, H., Nakamura, A., Nguyen, N. T., Suwa,R., Fujita, K., Plant Cell Environ., 29 (2006), 173–182.

Moreno-Garrido, I., Cañavate, J. P., Agricult. Eng., 24(2001), 107–114.

Morris, G. A., Li, P., Puaud, M., Mitchell, J. R., Harding,S. E., Carbohydr. Polymers, 44 (2001), 261–268.

Nagata, S., Wang, Y., Oshima, A., Zhang, L., Miyake, H.,Sasaki, H., Ishida, A., Biotechnol. Bioengin., 99 (2007),941–948.

Nakayama, H., Yoshida, K., Ono, H., Murooka, Y., Shinmyo,A., Plant Physiol., 122 (2000), 1239–1247.

Namwong, S., Tanasupawat, S., Visessanguan, W., Kudo, T.,Itoh, T., Int. J. Syst. Evol. Microbiol., 57 (2007),2199–2203.

Oesterhelt, D., Bräuchle, C., Hampp, A., Quart. Rev.Biophys., 24 (1991), 425–478.

Onishi, H., J. Bacteriol., 109 (1972a), 570–574. Onishi,H., Can. J. Microbiol., 18 (1972b), 1617–1620. Onishi, H.,Hidaka, O., Can. J. Microbiol., 24 (1978), 1017–1023.

Onishi, H., Mori, T., Takeuchi, S., Tani, K., Kobayashi,T., Kamekura, M., Appl. Environ. Microbiol., 45 (1983),24–30.

Onishi, H., Sonoda, K., Appl. Environ. Microbiol., 38(1979), 616–620.

Onishi, H., Yokoi, H., Kamekura, M., An application of abioreactor with flocculated cells of halophilicMicrococcus varians subsp. halophilus with preferentiallyadsorbed halophilic nuclease H to 5�-nucleotideproduction, in General and Applied Aspects of HalophilicMicroorganisms (Rodriguez-Valera, F., ed.), Plenum Press,New York, 1991.

Onraedt, A. E., Wakcarius, B. A., Soetaert, W. K.,Vandamme. E. J., Biotechnol. Prog., 21 (2005), 1206–1212.Oren, A., Halophilic Microorganisms and Their Environments;Kluwer Scientific Publishers, Dordrecht, (2002a). Oren,A., J. Ind. Microbiol. Biotechnol., 28 (2002b), 56–63.Oren, A., Environ. Technol., 31 (2010), 825–834. Oren, A.,The family Halobacteriaceae, in The Prokaryotes. A Handbookon the Biology of Bacteria: Ecophysiology and Biochemistry,4th ed. (Rosenberg, E., DeLong, E. F., Thompson, F., Lory,S. and Stackebrandt, E., eds.), Springer, New York, inpress, 2013. Pandey, P. C., Anal. Chim. Acta, 568 (2006),

47–56.

Paramonov, N. A., Parolis, L. A. S., Parolis, H., Boán, I.F., Antón, J., RodríguezValera, F., Carbohydr. Res., 309(1998), 89–94.

Parolis, H., Parolis, L. A. S., Boán, I. F.,Rodríguez-Valera, F., Widmalm, G., Manca, C., Jansson,P.-E., Sutherland, I. W., Carbohydr. Res., 295 (1996),147–156.

Parolis, L. A. S., Parolis, H., Paramonov, N. A., Boán, I.F., Antón, J., RodríguezValera, F., Carbohydr. Res., 319(1999), 133–140.

Pastor, J. M., Salvador, M., Argandoña, M., Bernal, V.,Reina-Bueno, M., Czonka, L. N., Iborra, J. L., Vargas, C.,Nieto, J. J., Cánovas, M., Biotechnol. Adv., 28 (2010),782–801.

Patel, G. B., Sprott, G. D., Crit. Rev. Biotechnol., 19(1999), 317–357.

Pérez-Fernandez, M. E., Quesada, E., Galvez, J., Ruiz, C.,Immunopharmacol. Immunotoxicol., 22 (2000), 131–141.

Pfiffner, S. M., McInerney, M. J., Jenneman, G. E., Knapp,R. M., Appl. Environ. Microbiol., 51 (1986), 1224–1229.

Poli, A., Di Donato, P., Abbamondi, G. R., Nicolaus, B.,Archaea, 2011 (2011), 693253.

Post, F. J., Al-Harjan, F. A., Syst. Appl. Microbiol., 11(1988), 97–101.

Prieto, A., Pedro Cañavate, J., García-González, M., J.Biotechnol., 151 (2011), 180–185. Quesada, E., Bejar, V.,Calvo, C., Experientia, 49 (1993), 1037–1041.

Quillaguamán, J., Hashim, S., Bento, F., Mattiasson, B.,Hatti-Kaul, R., J. Appl. Microbiol., 99 (2005), 151–157.

Quillaguamán, J., Delgado, O., Mattiasson, B., Hatti-Kaul,R., Enz. Microb. Technol., 38 (2006), 148–154.

Quillaguamán, J., Muñoz, M., Mattiasson, B., Hatti-Kaul,R., Appl. Microbiol. Biotechnol., 74 (2007), 981–986.

Quillaguamán, J., Guzmán, H., Van-Thuoc, D., Hatti-Kaul,R., Appl. Microbiol. Biotechnol., 85 (2010), 1687–1696.

Raja, R., Hemaiswarya, S., Rengasamy, R., Appl. Microbiol.Biotechnol., 74 (2007), 517–523.

Raveendran, S., Dhandayuthapani, B., Nagaoka, Y., Yoshida,Y., Maekawa, T., Kumar, D. S., Carbohydr. Polymers, 92(2013), 1225–1233.

Rodríguez-Sáiz, M., Sanchez-Porro, C., De La Fuente, J. L.,Mellado, E., Barredo, J. L., Appl. Microbiol. Biotechnol.,77 (2007), 637–643.

Rodriguez-Valera, F., Biotechnological potential ofhalobacteria, in: The Archaebacteria: Biochemistry andBiotechnology. Biochemical Society Symposium no. 58(Danson, M. J., Hough, D. W. and Lunt G. G., eds.),Biochemical Society, High Holborn, London, 1992.

Rodriguez-Valera, F., Lillo, J. A. G., FEMS Microbiol.Rev., 103 (1992), 181–186.

Rodriguez-Valera, F., Lillo, J. A. G., Antón, J., Meseguer.I., Biopolymer production by Haloferax mediterranei, inGeneral and Applied Aspects of Halophilic Microorganisms,(Rodriguez-Valera, F., ed.), Plenum Press, New York, 1991.

Saishithi, P., Kasemsarn, B., Liston, J., Dollar, A. M., J.Food Sci., 31 (1966), 105–110.

Sánchez-Porro, C., Martin, S., Mellado, E., Ventosa. A., J.Appl. Microbiol., 94 (2003), 295–300.

Santos, C. A., Vieira, A. M., Fernandes, H. L., Empis, J.A., Novais, J. M., J. Chem. Technol. Biotechnol., 76(2001), 1147–1153.

Sauer, T., Galinski, E. A., Biotechnol. Bioengin., 57(1998), 306–313.

Schinzel, R., Burger, K. J., FEMS Microbiol. Lett., 37(1986), 325–329.

Schiraldi, C., Maresca, C., Catapano, A., Galinski, E. A.,De Rosa, M., Res. Microbiol., 157 (2006), 693–699.

Schubert, T., Maskow, T., Benndorf, D., Harms, H., Breuer,U., Appl. Environ. Microbiol., 73 (2007), 3343–3347.

Sediroglu, V., Eroglu, I., Yücel, M., Türker, L., Gündüz,U., J. Biotechnol., 70 (1999), 115–124.

Seki, A., Kubo, I., Sasabe, H., Tomioka, H., Appl. Biochem.Biotechnol., 48 (1994), 205–211.

Severina, L. O., Usenko, I. A., Plakunov, V. K.,Microbiology (Russia), 58 (1989), 441–445.

Severina, L. O., Usenko, I. A., Plakunov, V. K.,Microbiology (Russia), 59 (1990), 292–296.

Sinsuan, S., Rodtong, S., Yongsawatdigul, J., ProcessBiochem., 43 (2008), 185–192.

Söhlemann, P., Soppa, J., Oesterhelt, D., Lohse, M. J.,Naunyn-Schmiedeberg’s Arch. Pharmacol., 355 (1997),150–160.

Sremac, M., Stuart, E. S., BMC Biotechnol., 8 (2008), 9.

Stan-Lotter, H., Doppler, E., Jarosch, M., Radax, C.,Gruber, C., Inatomi, K., Extremophiles, 3 (1999), 153–161.

Stuart, E. S., Morshed, F., Sremac, M., DasSarma, S., J.Biotechnol., 88 (2001), 119–128.

Sudo, H., Burgess, J. G., Takemasa, H., Nakamura, N.,Matsunaga, T., Curr. Microbiol., 30 (1995), 219–222.

Tan, D., Xue, Y.-S., Aibaidula, G., Chen. G.-Q., Biores.Technol., 102 (2011), 8130–8136.

T apingkae, W., Tanasupawat, S., Itoh, T., Parkin, K. L.,Benjakul, S., Visessanguan, W., Valyasevi., R., Int. J.Syst. Evol. Microbiol., 58 (2008), 2378–2383.

Tapingkae, W., Parkin, K. L., Tanasupawat, S., Kruenate,J., Benjakul, S., Visessanguan, W., Food Chem., 120(2010a), 842–849.

Tapingkae, W., Tanasupawat, S., Parkin, K. L., Benjakul,S., Visessanguan, W., Enzyme Microb. Technol., 46 (2010b),92–99. Taran, M., J. Polym. Environ., 19 (2011a), 750–754.Taran, M., Petrol. Sci. Technol., 29 (2011b), 1264–1269.Taran, M., J. Hazard. Mater., 188 (2011c), 26–28.

Tegos, G., Vargas, C., Perysinakis, A., Koukkou, A. I.,Christogianni, A., Nieto, J. J., Ventosa, A., Drainas, C.,J. Appl. Microbiol., 89 (2000), 785–792.

Thomas, T., Galinski, E. A., Anaerobic High-Cell-Density

(HCD) Fermentation and Cyclic Production of CompatibleSolutes with Halophilic, Denitrifying Bacteria, inAbstracts of the First International Congress onExtremophiles, Estoril, Portugal, 2–6 June, 1996.

Thongthai, C., Siriwongpairat, M., The sequentialquantitation of microorganisms in traditionally fermentedfish sauce (Nam pla), in Post-Harvest Technology,Preservation and Quality of Fish in Southeast Asia(Reilly, P. J. A., Parry, R. W. H., Barile, L. E., eds.),International Foundation for Science, Stockholm, 1990.

Thongthai, C., Suntinanalert, P., Halophiles in thai fishsauce (Nam Pla), in General and Applied Aspects ofHalophilic Microorganisms (RodriguezValera, F., ed.),Plenum Press, New York, 1991.

Thongthai, C., McGenity, T. J., Suntinanalert, P., Grant.W. D., Lett. Appl. Microbiol., 14 (1992), 111–114. van denBosch, P. L. F., van Beusekom, O. C., Buisman, C. J. N.,Janssen, A. J. H., Biotechnol. Bioengin., 97 (2007),1053–1063.

Van Qua, D., Simidu, U., Taga, N., Can. J. Microbiol., 27(1981), 505–510.

Van-Thuoc, D., Guzman, H., Quillaguaman, J., Hatti-Kaul.R., J. Biotechnol., 147 (2010), 46–51. Ventosa, A., Nieto,J. J., World J. Microbiol. Biotechnol., 11 (1995), 85–94.Ventosa, A., Nieto, J. J., Oren, A., Microbiol. Mol. Biol.Rev., 62 (1998), 504–544. Vsevoldov, N. N., Dyukova, T.V., Trends Biotechnol., 12 (1994), 81–88.

Wainø, M., Ingvorsen, K., Extremophiles, 7 (2003), 87–93.

Walter, J. M., Greenfield, D., Liphardt, J., Curr. Opin.Biotechnol., 21 (2010), 265–270.

Wejse, P. L., Ingvorsen, K., Mortensen, K. K.,Extremophiles, 7 (2003), 423–431.

Whitfield, D. M., Yu, S. H., Dicaire, C. J., Sprott, G. D.,Carbohydrate Res., 345 (2010), 214–229.

Wise, K. J., Gillespie, N. B., Stuart, J. A., Krebs, M. P.,Birge, R. R., Trends Biotechnol., 20 (2002), 387–394.

Yachai, M., Tanasupawat, S., Itoh, T., Benjakul, S.,Visessanguan, W., Valyasevi, R., Int. J. Syst. Evol.Microbiol., 58 (2008), 2136–2140. Yokoi, H., Onishi, H.,

Agr. Biol. Chem. Tokyo, 54 (1990), 2573–2578.

Yoon, J.-H., Lu, K.-C., Kho, Y. H., Kang, K. H., Kim,C.-J., Park, J.-H., Int. J. Syst. Evol. Microbiol., 52(2002), 123–130.

Zhang, L.-h., Lang, Y.-j., Nagata, S., Extremophiles, 13(2009), 717–724.

Zhang, T., Datta, S., Eichler, J., Ivanova, N., Axen, S.D., Kerfeld, C. A., Chen, F., Kyrpides, N., Hugenholtz,P., Cheng, J.-F., Sale, K. L., Simmons, B., Rubin, E.,Green Chem., 13 (2011), 2083. Zhao, D., Cai, L., Wu, J.,Li, M., Liu, H., Han, J., Zhou, J., Xiang, H., Appl.Microbiol. Biotechnol., 97 (2013), 3027–3036. Zheng, W.,Chen, C., Cheng, Q., Wang, Y. Chu, C., Int.Immunopharmacol., 6 (2006), 1093–1099.

10 Chapter 10: Non-Pathogenic Pseudomonasas Platform for Industrial Biocatalysis

Abdel-Mawgoud A. M., Lépine F., Déziel E., Appl. Microbiol.Biotechnol., 86 (2010), 1323–1336. Almeida J. R. M.,Bertilsson M., Gorwa-Grauslund M. F., Gorsich S., Liden G.,Appl. Microbiol. Biotechnol., 82 (2009), 625–638.

Altenbuchner J., Siemann-Herzberg M., Syldatk C., Curr.Opin. Biotechnol., 12 (2001), 559–563. Anderson A. J.,Dawes E. A., Microbiol. Rev., 54 (1990), 450–472.Andreessen B., Lange A. B., Robenek H., Steinbuchel A.,Appl. Environ. Microbiol., 76 (2010), 622–626. Aono R.,Ito M., Inoue A., Horikoshi K., Biosci. Biotech. Bioch., 56(1992), 145–146. Asano Y., Yasuda T., Tani Y., Yamada H.,Agric. Biol. Chem., 46 (1982), 1183–1189. Ashina Y., SutoM., Endo T., In Encyclopedia of Bioprocess Technology:Fermentation, Biocatalysis, and Bioseparation (ed. MichaelC., Flickinger & Stephen W., Drew) John Wiley, 1999.

Bae J. W., Han J. H., Park M. S., Lee S. G., Lee E. Y.,Jeong Y. J., Park S., Biotechnol. Bioproc. E., 11 (2006),530–537.

Basu A., Apte S. K., Phale P. S., Appl. Environ.Microbiol., 72 (2006), 2226–2230.

Baumgarten T., Sperling S., Seifert J., von Bergen M.,Steiniger F., Wick L. Y., Heipieper H. J., Appl. Environ.Microbiol., 78 (2012), 6217–6224.

Blanche F., Cameron B., Crouzet J., Debussche L.,Levy-Schil S., Thibaut D. Polypeptides involved in thebiosynthesis of cobalamines and/or cobamides, dnasequences coding for these polypeptides, and theirpreparation and use. EP0516647 (1992).

Blanche F., Cameron B., Crouzet J., Debussche L., ThibautD., Vuilhorgne M., Leeper F. J., Battersby A. R., Angew.Chem., 107 (1995), 421–452. Blank L. M., Ebert B. E.,Buehler K., Bühler B., Antioxid. Redox. Sign., 13 (2010),349–394. Blank L. M., Ionidis G., Ebert B. E., Bühler B.,Schmid A., FEBS J., 275 (2008), 5173–5190.

Blank L. M., Küpper B., del Amor Villa E. M., Wichmann R.,Nowacki C. Foam Adsorption. WO2013087674 (2013).

Blank L., Rosenau F., Wilhelm S., Wittgens A., Tiso T.Means and methods for rhamnolipid production. WO2013041670(2013).

Bongaerts J., Krämer M., Müller U., Raeven L., Wubbolts M.,Metab. Eng., 3 (2001), 289–300. Borsotti G. P., Foa M.,Gatti N., Synthesis, 3 (1990), 207–208.

Bozell J. J., Petersen G. R., Green. Chem., 12 (2010),539–554.

Bucherer H. T., Steiner W., J. Prakt. Chem., 140 (1934),291–316.

Bühler B., Bollhalder I., Hauer B., Witholt B., Schmid A.,Biotechnol. Bioeng., 81 (2003), 683–694. Bühler B., ParkJ. B., Blank L. M., Schmid A., Appl. Environ. Microbiol.,74 (2008), 1436–1446.

Cameron B., Briggs K., Pridmore S., Brefort G., Crouzet J.,J. Bacteriol., 171 (1989), 547–557. Chen R., Biotechnol.Adv., 30 (2012), 1102–1107.

Cruden D. L., Wolfram J. H., Rogers R. D., Gibson D. T.,Appl. Environ. Microbiol., 58 (1992), 2723–2729.

Cunin R., Glansdorff N., Pierard A., Stalon V., Microbiol.Rev., 50 (1986), 314–352. De Bont J. A. M., TrendsBiotechnol., 16 (1998), 493–499. De Lorenzo V., Curr. Opin.Biotechnol., 19 (2008), 579–589.

De Lorenzo V., Clin. Microbiol. Infec., 15 (2009), 63–65.De Smet M. J., Eggink G., Witholt B., Kingma J., WynbergH., J. Bacteriol., 154 (1983), 870–878. Demain A. L., Ind.Biotechnol., 3 (2007), 269–283.

Demain A. L., Daniels H. J., Schnable L., White R. F.,Nature, 220 (1968), 1324–1325.

Derouazi M., Toussaint B., Quenee L., Epaulard O.,Guillaume M., Marlu R., Polack B., Appl. Environ.Microbiol., 74 (2008), 3601–3604. Draget K. I., SmidsrødO., Skjåk-Bræk G., Properties, Production and Patents vol.1, in Polysaccharides and Polyamides in the Food Industry(ed. Alexander Steinbüchel & Sang Ki Rhee) Wiley-VCH VerlagGmbH & Co. KGaA, 2005. Ebert B. E., Kurth F., Grund M.,Blank L. M., Schmid A., Appl. Environ. Microbiol., 77(2011), 6597–6605. Edberg F., Kalinowski B. E., HolmstromS. J., Holm K., Geobiology, 8 (2010), 278–292. Escapa I.F., Garcia J. L., Buhler B., Blank L. M., Prieto M. A.,Environ. Microbiol., 14 (2012), 1049–1063. Eschbach M.,Schreiber K., Trunk K., Buer J., Jahn D., Schobert M., J.Bacteriol., 186 (2004), 4596–4604.

Faizal I., Dozen K., Hong C. S., Kuroda A., Takiguchi N.,Ohtake H., Takeda K., Tsunekawa H., Kato J., J. Ind.Microbiol. Biotechnol., 32 (2005), 542–547.

Faizal I., Ohba M., Kuroda A., Takiguchi N., Ohtake H.,Honda H., Kato J., J. Environ. Biotechnol., 7 (2007),39–44. Fernandes P., Ferreira B. S., Cabral J. M., Int. J.Antimicrob. Agents., 22 (2003), 211–216.

Fiske M. J., Whitaker R. J., Jensen R. A., J. Bacteriol.,154 (1983), 623–631. Gaur R., Khare S. K., Biocatal.Biotransform., 29 (2011), 161–171. Gessard M., Ann. Inst.Pasteur., 12 (1892), 801–823. Gibson D. T. MicrobialDegradation of Organic Compounds. vol. 13 (Marcel Dekker,1984). Gosset G., Curr. Opin. Biotechnol., 20 (2009),651–658. Govan J. R., Fyfe J. A., Jarman T. R., J. Gen.Microbiol., 125 (1981), 217–220. Gross R., Hauer B., OttoK., Schmid A., Biotechnol. Bioeng., 98 (2007), 1123–1134.

Gross R., Lang K., Buhler K., Schmid A., Biotechnol.Bioeng., 105 (2010), 705–717.

Gruden N., Kostial K., Turjak-Zebic V., Skaric V., Arh.Hig. Rada. Toksikol., 21 (1970), 137–141. Halan B.,Buehler K., Schmid A., Trends Biotechnol., 30 (2012),453–465. Halan B., Schmid A., Buehler K., Biotechnol.Bioeng., 106 (2010), 516–527. Halan B., Schmid A., BuehlerK., Appl. Environ. Microbiol., 77 (2011), 1563–1571.

Han J. H., Park M. S., Bae J. W., Lee E. Y., Yoon Y. J.,Lee S. G., Park S., Enzyme Microb. Technol., 39 (2006),1264–1269. Hariprasad P., Chandrashekar S., Singh S. B.,Niranjana S. R., J. Basic Microbiol., (2013), doi:10.1002/jobm.201200491.

Hartmans S., van der Werf M. J., de Bont J. A. M., Appl.Environ. Microbiol., 56 (1990), 1347–1351. Hatti-Kaul R.,Tornvall U., Gustafsson L., Borjesson P., TrendsBiotechnol., 25 (2007), 119–124.

Hausmann S., Wilhelm S., Jaeger K. E., Rosenau F., FEMSMicrobiol. Lett., 282 (2008), 65–72.

Heerema L., Wierckx N., Roelands M., Hanemaaijer J. H.,Goetheer E., Verdoes D., Keurentjes J., Biochem. Eng. J.,53 (2011), 245–252. Heipieper H. J., de Bont J. A. M.,Appl. Environ. Microbiol., 60 (1994), 4440–4444. HeipieperH. J., Diefenbach R., Keweloh H., Appl. Environ.Microbiol., 58 (1992), 1847–1852. Heipieper H. J., Neumann

G., Cornelissen S., Meinhardt F., Appl. Microbiol.Biotechnol., 74 (2007), 961–973. Henkel M., Müller M. M.,Kügler J. H., Lovaglio R. B., Contiero J., Syldatk C.,Hausmann R., Process. Biochem., 47 (2012), 1207–1219.Hermes H. F. M., Sonke T., Peters P. J. H., Vanbalken J. A.M., Kamphuis J., Dijkhuizen L., Meijer E. M., Appl.Environ. Microbiol., 59 (1993), 4330–4334. Huertas M. J.,Duque E., Marques S., Ramos J. L., Appl. Environ.Microbiol., 64 (1998), 38–42.

Husken L. E., Beeftink R., de Bont J. A. M., Wery J., Appl.Microbiol. Biotechnol., 55 (2001), 571–577.

Husken L. E., Dalm M. C., Tramper J., Wery J., de Bont J.A., Beeftink R., J. Biotechnol., 88 (2001), 11–19.

Husken L. E., Oomes M., Schroen K., Tramper J., de Bont J.A. M., Beeftink R., J. Biotechnol., 96 (2002), 281–289.Ikura Y., Yoshida Y., Kudo T., J. Ferm. Bioeng., 83 (1997),604–607. Inoue A., Horikoshi K., Nature, 338 (1989),264–266.

Ishikawa T., Watabe K., Mukohara Y., Nakamura H., Biosci.Biotechnol. Biochem., 60 (1996), 612–615. Isken S., deBont J. A. M., Extremophiles, 2 (1998), 229–238.

Isken S., Derks A., Wolffs P. F. G., de Bont J. A. M.,Appl. Environ. Microbiol., 65 (1999), 2631–2635. Ito H.,Sakurai S., Tanaka T., Sato K., Enei J., Agric. Biol.Chem., 54 (1990), 699–705. Jagadeesh K. S., Kulkarni J.H., Krishnaraj P. U., Curr. Sci., 81 (2001), 882–883.Jarman T. R., Deavin L., Slocombe S., Righelato R. C., J.Gen. Microbiol., 107 (1978), 59–64.

Jimenez J. I., Minambres B., Garcia J. L., Diaz E.,Environ. Microbiol., 4 (2002), 824–841. Jin H., Cantin G.T., Maki S., Chew L. C., Resnick S. M., Ngai J., RetallackD. M., Protein. Expr. Purif., 78 (2011), 69–77. Jo S. J.,Matsumoto K., Leong C. R., Ooi T., Taguchi S., J. Biosci.Bioeng., 104 (2007), 457–463.

Johannes T. W., Zhao H., Curr. Opin. Microbiol., 9 (2006),261–267. Katsuwon J., Anderson A. J., Can. J. Microbiol.,38 (1992), 1026–1032. Kieboom J., De Bont J. A. M., InBacterial Stress Responses (ed. G. Storz & R.Hengge-Aronis) 393–402, American Society for Microbiology,2000.

Kieboom J., Dennis J. J., de Bont J. A. M., Zylstra G. J.,J. Biol. Chem., 273 (1998), 85–91. Kiener A., Angew. Chem.

Int. Edit., 31 (1992), 774–775.

Kilz S., Lenz C., Fuchs R., Budzikiewicz H., J. Mass.Spectrom., 34 (1999), 281–290. Kim S. E., Park S. H., ParkH. B., Park K. H., Kim S. H., Jung S. I., Shin J. H., JangH. C., Kang S. J., Chonnam. Med. J., 48 (2012), 91–95.

Kloepper J. W., Leong J., Teintze M., Schroth M. N., Curr.Microbiol., 4 (1980), 317–320.

Kloepper J. W., Schroth M. N., Miller T. D.,Phytopathology, 70 (1980), 1078–1082.

Koopman F., Wierckx N., de Winde J. H., Ruijssenaars H. J.,Proc. Natl. Acad. Sci. U.S.A, 107 (2010a), 4919–4924.

Koopman F., Wierckx N., de Winde J. H., Ruijssenaars H. J.,Bioresource. Technol., 101 (2010b), 6291–6296. Krab-HüskenL., Production of Catechols—Microbiology and Technology,PhD thesis. Wageningen University (2002). Kuhn D., BühlerB., Schmid A., J. Ind. Microbiol. Biotechnol., 39 (2012),1125–1133.

Kuhn D., Kholiq M. A., Heinzle E., Bühler B., Schmid A.,Green. Chem., 12 (2010), 815–827.

Landry T. D., Chew L., Davis J. W., Frawley N., Foley H.H., Stelman S. J., Thomas J., Wolt J., Hanselman D. S.,Regul. Toxicol. Pharm., 37 (2003), 149–168. Larsen B.,Salem D. M., Sallam M. A., Mishrikey M. M., Beltagy A. I.,Carbohydr. Res., 338 (2003), 2325–2336.

Lee S. Y., Wong H. H., Choi J., Lee S. H., Lee S. C., HanC. S., Biotechnol. Bioeng., 68 (2000), 466–470.

Leone S., Molinaro A., Alfieri F., Cafaro V., Lanzetta R.,Di Donato A., Parrilli M., Carbohydr. Res., 341 (2006),2456–2461.

Li K.-T., Liu D.-H., Li Y.-L., Chu J., Wang Y.-H., ZhuangY.-P., Zhang S.-L., Bioresource. Technol., 99 (2008),8516–8520. Li L., Komatsu T., Inoue A., Horikoshi K.,Biosci. Biotech. Bioch., 59 (1995), 2358–2359.

Li K.-T., Liu D.-H., Zhuang Y.-P., Wang Y.-H., Chu J.,Zhang S.-L., World. J. Microbiol. Biotechnol., 24 (2008),2525–2530.

Liao Y. C., Huang T. W., Chen F. C., Charusanti P., Hong J.S. J., Chang H. Y., Tsai S. F., Palsson B. O., Hsiung C.

A., J. Bacteriol., 193 (2011), 1710–1717. Loh K. C., CaoB., Enzyme Microb. Technol., 43 (2008), 1–12. Lovisolo P.P., Briatico-Vangosa G., Orsini G., Ronchi R., AngelucciR., Pharmacol. Res. Commun., 13 (1981), 163–174.

Lu S. E., Scholz-Schroeder B. K., Gross D. C., FEMSMicrobiol. Lett., 210 (2002), 115–121.

Madison L. L., Huisman G. W., Microbiol. Mol. Biol. Rev.,63 (1999), 21–53.

Mansfield J., Genin S., Magori S., Citovsky V., SriariyanumM., Ronald P., Dow M., Verdier V., Beer S. V., Machado M.A., Toth I., Salmond G., Foster G. D., Mol. Plant.Pathol., 13 (2012), 614–629.

Martens J. H., Barg H., Warren M. J., Jahn D., Appl.Microbiol. Biotechnol., 58 (2002), 275–285.

May T. B., Shinabarger D., Maharaj R., Kato J., Chu L.,DeVault J. D., Roychoudhury S., Zielinski N. A., Berry A.,Rothmel R. K., et al., Clin. Microbiol. Rev., 4 (1991),191–206.

Meijnen J. P., de Winde J. H., Ruijssenaars H. J., Int.Sugar J., 113 (2011), 24–30.

Meijnen J. P., Verhoef S., Briedjlal A. A., de Winde J. H.,Ruijssenaars H. J., Appl. Microbiol. Biotechnol., 90(2011), 885–893. Meyer D., Bühler B., Schmid A., Adv. Appl.Microbiol., 59 (2006), 53–91. Meyer J. M., Arch.Microbiol., 174 (2000), 135–142. Meyer J. M., Abdallah M.A., J. Gen. Microbiol., 107 (1978), 319–328. Meyer J. M.,Hornsperger J. M., J. Gen. Microbiol., 107 (1978), 329–331.Milne C. B., Eddy J. A., Raju R., Ardekani S., Kim P. J.,Senger R. S., Jin Y. S., Blaschek H. P., Price N. D., BMCSyst. Biol., 5 (2011), 130.

Mirshafiey A., Cuzzocrea S., Rehm B., Mazzon E., Saadat F.,Sotoude M., Scand. J. Immunol., 61 (2005), 435–441.

Moine G., Hohmann H.-P., Kurth R., Paust J., Hähnlein W.,Pauling H., B.-J. W., Kaesler B., In Ullmann’sEncyclopedia of Industrial Chemistry (ed. Elvers B.) JohnWiley and sons, 2011. Müller M. M., Hörmann B., Syldatk C.,Hausmann R., Appl. Microbiol. Biotechnol., 87 (2010),167–174.

Müller M. M., Kügler J. H., Henkel M., Gerlitzki M.,Hörmann B., Pöhnlein M., Syldatk C., Hausmann R., J.

Biotechnol., 162 (2012), 366–380. Nakajima H., KobayashiH., Aono R., Horikoshi K., Biosci. Biotech. Bioch., 56(1992), 1872–1873. Neal A. L., Ton J., Plant. Signal.Behav., 8 (2013), 8:e22655; PMID: 23221758;http://dx.doi.org/10.4161/psb.22655. Neumann G.,Cornelissen S., van Breukelen F., Hunger S., Lippold H.,Loffhagen N., Wick L. Y., Heipieper H. J., Appl. Environ.Microbiol., 72 (2006), 4232–4238.

Neumann G., Veeranagouda Y., Karegoudar T. B., Sahin O.,Mausezahl I., Kabelitz N., Kappelmeyer U., Heipieper H.J., Extremophiles, 9 (2005), 163–168.

Nijkamp K., van Luijk N., de Bont J. A. M., Wery J., Appl.Microbiol. Biotechnol., 69 (2005), 170–177.

Nijkamp K., Westerhof R. G. M., Ballerstedt H., de Bont J.A. M., Wery J., Appl. Microbiol. Biotechnol., 74 (2007),617–624.

Nikel P. I., de Lorenzo V., Metab. Eng., 15 (2013), 98–112.

Nikel P. I., Perez-Pantoja D., de Lorenzo V., Philos.Trans. R. Soc. B. Biol. Sci., 368 (2013). OECD., In TheApplication of Biotechnology to Industrial Sustainability(2001).

Ogawa J., Shimizu S., J. Mol. Catal. B-Enzym., 2 (1997),163–176. Ohta Y., Maeda M., Kudo T., Horikoshi K., J. Gen.Appl. Microbiol., 42 (1996), 349–354. Palleroni N. J.,Environ. Microbiol., 12 (2010), 1377–1383.

Panke S., de Lorenzo V., Kaiser A., Witholt B., Wubbolts M.G., Appl. Environ. Microbiol., 65 (1999), 5619–5623.

Panke S., Held M., Wubbolts M. G., Witholt B., Schmid A.,Biotechnol. Bioeng., 80 (2002), 33–41.

Panke S., Witholt B., Schmid A., Wubbolts M. G., Appl.Environ. Microbiol., 64 (1998), 2032–2043.

Panke S., Wubbolts M. G., Schmid A., Witholt B.,Biotechnol. Bioeng., 69 (2000), 91–100.

Park, So M., Bae J. W., Han J. H., Lee E. Y., Lee S. G.,Park S., J. Microbiol. Biotechnol., 16 (2006), 1032–1040.

Park J.-B., Bühler B., Panke S., Witholt B., Schmid A.,Biotechnol. Bioeng., 98 (2007), 1219–1229. Pearson J. P.,Pesci E. C., Iglewski B. H., J. Bacteriol., 179 (1997),

5756–5767. Peters V., Rehm B. H. A., Appl. Environ.Microbiol., 72 (2006), 1777–1783.

Pinkart H. C., White D. C., J. Bacteriol., 179 (1997),4219–4226.

Pinkart H. C., Wolfram J. W., Rogers R., White D. C., Appl.Environ. Microbiol., 62 (1996), 1129–1132.

Poblete-Castro I., Becker J., Dohnt K., dos Santos V. M.,Wittmann C., Appl. Microbiol. Biotechnol., 93 (2012),2279–2290. Poblete-Castro I., Binger D., Rodrigues A.,Becker J., Martins Dos Santos V. A., Wittmann C., Metab.Eng, 15 (2013), 113–123. Preusting H., van Houten R., HoefsA., van Langenberghe E. K., Favre-Bulle O., Witholt B.,Biotechnol. Bioeng., 41 (1993), 550–556.

Prieto M. A., Eugenio L. I. D., Galán B., Luengo J. M.,Witholt B., In Pseudomonas vol. 5 (ed. Ramos J. L.)Springer, 2007. Qi Q., Rehm B. H., Steinbuchel A., FEMSMicrobiol. Lett., 157 (1997), 155–162. Raghavan P. U. M.,Vivekanandan M., Int. Biodeter. Biodegr., 44 (1999),29–32.

Ramos-Gonzalez M. I., Godoy P., Alaminos M., Ben-Bassat A.,Ramos J. L., Appl. Environ. Microbiol., 67 (2001),4338–4341.

Ramos J. L., Duque E., Gallegos M. T., Godoy P.,Ramos-Gonzalez M. I., Rojas A., Teran W., Segura A., Annu.Rev. Microbiol., 56 (2002), 743–768. Ramos J. L., Duque E.,Huertas M. J., Haidour A., J. Bacteriol., 177 (1995),3911–3916. Ramos J. L., Marques S., van Dillewijn P.,Espinosa-Urgel M., Segura A., Duque E., Krell T.,Ramos-Gonzalez M. I., Bursakov S., Roca A., Solano J.,Fernadez M., Niqui J. L., Pizarro-Tobias P., Wittich R. M.,Trends Biotechnol., 29 (2011), 641–647. Rangwala S. H.,Fuchs R. L., Drahos D. J., Olins P. O., Biotechnology (NY), 9 (1991), 477–479.

Regenhardt D., Heuer H., Heim S., Fernandez D. U., StromplC., Moore E. R. B., Timmis K. N., Environ. Microbiol., 4(2002), 912–915. Rehm B. H., In Encyclopedia of IndustrialBiotechnology: Bioprocess, Bioseparation, and CellTechnology 1–15 (2009). Remminghorst U., Rehm B. H., InMicrobial Production of Biopolymers and PolymerPrecursors: Applications and Perspectives (ed. Bernd H. A.Rehm) Caister Academic Press, 2009. Retallack D. M., JinH., Chew L., Protein. Expr. Purif., 81 (2012), 157–165.

Roca A., Pizarro-Tobias P., Udaondo Z., Fernandez M.,Matilla M. A., MolinaHenares M. A., Molina L., Segura A.,Duque E., Ramos J. L., Environ. Microbiol., 15 (2013),780–794. Rojas A., Duque E., Mosqueda G., Golden G.,Hurtado A., Ramos J. L., Segura A., J. Bacteriol., 183(2001), 3967–3973. Rojas A., Duque E., Schmid A., HurtadoA., Ramos J. L., Segura A., Appl. Environ. Microbiol., 70(2004), 3637–3643. Rühl J., Hein E. M., Hayen H., SchmidA., Blank L. M., Microb. Biotechnol., 5 (2012), 45–58.

Ruijssenaars H. J., Sperling E. M. G. M., Wiegerinck P. H.G., Brands F. T. L., Wery J., de Bont J. A. M., J.Biotechnol., 131 (2007), 205–208.

Ryan P. R., Delhaize E., Jones D. L., Annu. Rev. Plant.Phys., 52 (2001), 527–560. Samanta S. K., Singh O. V.,Jain R. K., Trends Biotechnol., 20 (2002), 243–248.Sardessai Y., Bhosle S., Res. Microbiol., 153 (2002),263–268. Sardessai Y. N., Bhosle S., Biotechnol. Prog., 20(2004), 655–660.

Schmid A., Dordick J. S., Hauer B., Kiener A., Wubbolts M.,Witholt B., Nature, 409 (2001), 258–268.

Schmid A., Kollmer A., Mathys R. G., Witholt B.,Extremophiles, 2 (1998), 249–256.

Schulze B., Wubbolts M. G., Curr. Opin. Biotechnol., 10(1999), 609–615.

Segura A., Godoy P., van Dillewijn P., Hurtado A., ArroyoN., Santacruz S., Ramos J. L., J. Bacteriol., 187 (2005),5937–5945. Shrivastava R., Basu B., Godbole A., Mathew M.K., Apte S. K., Phale P. S., Microbiology, 157 (2011),1531–1540. Sikkema J., de Bont J. A., Poolman B., J. Biol.Chem., 269 (1994), 8022–8028. Sikkema J., de Bont J. A.,Poolman B., Microbiol. Rev., 59 (1995), 201–222. Sohn S.B., Kim T. Y., Park J. M., Lee S. Y., Biotechnol. J., 5(2010), 739–750. Son M., Moon Y., Oh M. J., Han S. B., ParkK. H., Kim J. G., Ahn J. H., Appl. Environ. Microbiol., 78(2012), 8454–8462. Steen A., Ütkür F. O., Borrero-de AcunaJ. M., Bunk B., Roselius L., Bühler B., Jahn D., SchobertM., J. Biotechnol., 163 (2013), 155–165. Steinbüchel A.,Macromol. Biosci., 1 (2001), 1–24. Straathof A. J., PankeS., Schmid A., Curr. Opin. Biotechnol., 13 (2002),548–556. Terpe K., Appl. Microbiol. Biotechnol., 72 (2006),211–222. Timmis K. N., Pieper D. H., Trends Biotechnol., 17(1999), 201–204. Tischler D., Groning J. A. D., KaschabekS. R., Schlomann M., Appl. Biochem. Biotechnol., 167(2012), 931–944.

Tripathi L., Wu L. P., Dechuan M., Chen J., Wu Q., Chen G.Q., Bioresour. Technol., 142 (2013), 225–231.

Udaondo Z., Duque E., Fernandez M., Molina L., de la TorreJ., Bernal P., Niqui J. L., Pini C., Roca A., Matilla M.A., Molina-Henares M. A., Silva-Jimenez H., Navarro-AvilesG., Busch A., Lacal J., Krell T., Segura A., Ramos J. L.,FEBS Lett., 586 (2012), 2932–2938. Udikovic-Kolic N., ScottC., Martin-Laurent F., Appl. Microbiol. Biotechnol., 96(2012), 1175–1189. Ütkür F. O., Gaykawad S., Bühler B.,Schmid A., J. Ind. Microbiol. Biotechnol., 38 (2011),1067–1077.

van de Meer J. R., van Meerven A. R. W., de Vries E. J., deVos W. M., Zehnder A. J. B., J. Bacteriol., 173 (1991),6–15.

van den Berg C., Wierckx N., Vente J., Bussmann P., de BontJ., van der Wielen L., Biotechnol. Bioeng., 100 (2008),466–472. van den Bergh P. A., Kunka B. S., Appl. Environ.Microbiol., 54 (1988), 2578–2579.

van den Tweel W. J. J., de Bont J. A. M., Vorage M. J. A.W., Marsman E. H., Tramper J., Koppejan J., Enzyme Microb.Technol., 10 (1988), 134–142.

Van Dillewijn P., Caballero A., Paz J. A., Gonzalez-PerezM. M., Oliva J. M., Ramos J. L., Environ. Sci. Technol.,41 (2007), 1378–1383.

van Putten R. J., van der Waal J. C., de Jong E., RasrendraC. B., Heeres H. J., de Vries J. G., Chem. Rev., 113(2013), 1499–1597.

Verhoef S., Ballerstedt H., Volkers R. J. M., de Winde J.H., Ruijssenaars H. J., Appl. Microbiol. Biotechnol., 87(2010), 679–690.

Verhoef S., Ruijssenaars H. J., de Bont J. A. M., Wery J.,J. Biotechnol., 132 (2007), 49–56.

Verhoef S., Wierckx N., Westerhof R. G. M., de Winde J. H.,Ruijssenaars H. J., Appl. Environ. Microbiol., 75 (2009),931–936.

Volkers R. J., de Jong A. L., Hulst A. G., van Baar B. L.,de Bont J. A., Wery J., Environ. Microbiol., 8 (2006),1674–1679.

Wang H. H., Zhou X. R., Liu Q., Chen G. Q., Appl.Microbiol. Biotechnol., 89 (2011), 1497–1507.

Watabe K., Ishikawa T., Mukohara Y., Nakamura H., J.Bacteriol., 174 (1992), 962–969.

Weber F. J., Ooijkaas L. P., Schemen R. M., Hartmans S., deBont J. A. M., Appl. Environ. Microbiol., 59 (1993),3502–3504.

Werpy T., Petersen G., Aden A., Bozell J., Holladay J.,White J., Manheim A. Top value added chemicals frombiomass—Results of screening for potential candidates fromsugars and synthesis gas (available athttp://www.osti.gov/bridge/ (PNNL-14808), 2004).

Wery J., de Bont J. A. M., In Pseudomonas vol. 3 (ed. RamosJ. L.) 609–634 Kluwer Academic, 2004.

Wery J., Mendes da Silva D. I., de Bont J. A., Appl.Microbiol. Biotechnol., 54 (2000), 180–185.

Wierckx N. Solvent-Tolerant Bioconversion: Construction andAnalysis of a Phenol Producing Pseudomonas Putida S12, PhDthesis, Delft University of Technology (2009). ISBN:978-90-9023963-7.

Wierckx N. J. P., Ballerstedt H., de Bont J. A. M., WeryJ., Appl. Environ. Microbiol., 71 (2005), 8221–8227.

Wierckx N. J. P., Ballerstedt H., de Bont J. A. M., deWinde J. H., Ruijssenaars H. J., Wery J., J. Bacteriol.,190 (2008), 2822–2830.

Wierckx N. J. P., Elink Schuurman T. D., Kuijper S. M.,Ruijssenaars H. J. Genetically modified cell and processfor use of said cell. WO2012064195 (2012).

Wierckx N., Koopman F., Bandounas L., de Winde J. H.,Ruijssenaars H. J., Microb. Biotechnol., 3 (2010),336–343.

Wierckx N., Koopman F., Ruijssenaars H. J., de Winde J. H.,Appl. Microbiol. Biotechnol., 92 (2011), 1095–1105.

Wierckx N., Ruijssenaars H. J., de Winde J. H., Schmid A.,Blank L. M., J. Biotechnol., 143 (2009), 124–129.

Wijte D., van Baar B. L., Heck A. J., Altelaar A. F., J.Proteome. Res., 10 (2011), 394–403.

Wittgens A., Tiso T., Arndt T. T., Wenk P., Hemmerich J.,Muller C., Wichmann R., Kupper B., Zwick M., Wilhelm S.,Hausmann R., Syldatk C., Rosenau F., Blank L. M., Microb.Cell. Fact., 10 (2011), 10:80 doi:10.1186/14752859-10-80.Yamada H., Kobayashi M., Biosci. Biotechnol. Biochem., 60(1996), 1391–1400.

Yamada H., Shimizu S., Kobayashi M., Chem. Rec., 1 (2001),152–161.

Zahir Z., Seed K. D., Dennis J. J., Extremophiles, 10(2006), 129–138.

Zinn M., Witholt B., Egli T., Adv. Drug. Deliv. Rev., 53(2001), 5–21.

11 Chapter 11: Use of Corynebacteriumglutamicum for the Production ofHigh-Value Chemicals from New CarbonSources

Date M., Yokoyama K., Umezawa Y., Matsui H., Kikuchi Y., J.Biotechnol., 110 (2004), 219–226. Datta R., Tsai S. P.,Bonsignore P., Moon S. H., Frank J. R., FEMS Microbiol.Rev., 16 (1995), 221–231. Delaunay S., Daran-Lapujade P.,Engasser J. M., Goergen J. L., J. Ind. Microbiol.Biotechnol., 31 (2004), 183–188. Delauna y S., Gourdon P.,Lapujade P., Mailly E., Oriol E., Engasser J. M., LindleyN. L., Goergen J. L., Enz. Microb. Biotechnol., 25 (1999),762–768. Demain A.L., Ind. Biotechnol., 3 (2007), 269–283.Denina I., Paegle L., Prouza M., Holatko J., Patek M.,Nesvera J., Ruklisha M., J. Ind. Microbiol. Biotechnol.,37 (2010), 689–699. Dies veld R., Tietze N., Furst O.,Reth A., Bathe B., Sahm H., Eggeling L., J. Mol.Microbiol. Biotechnol., 16 (2009), 198–207. Domingues L.,Guimaraes P. M. R., Oliveira C., Bioeng. Bugs, 1 (2010),164–171. Dominguez H., Cocaign-Bousquet M., Lindley N. D.,Appl. Microbiol. Biotechnol., 47 (1997), 600–603.Dominguez H., Lindley N. D., Appl. Env. Microbiol., 62(1996), 3878–3880. Dunlop A. P., Ind. Eng. Chem., 40(1948), 204–209. Eggeling L., Bott M. (eds.) Handbook ofCorynebacterium Glutamicum. (2005) CRC Press, Boca Raton,USA. Eggeling L., Krumbach K., Sahm H., J. Mol. Microbiol.Biotechnol., 3 (2001), 67–68. EIA (2012). U.S. EnergyInformation Administration. Annual Energy Review 2011.Available: http://www.eia.gov/totalenergy/data/annual/pdf/aer.pdf. 2012, Accessed 2013 June 13. Eikmanns B. J., J.Bacteriol., 174 (1992), 6076–6086. Eikmanns B. J., RittmannD., Sahm H., J. Bacteriol., 177 (1995), 774–782.

Engels V., Wendisch V. F., J. Bacteriol., 189 (2007),2955–2966. Geng F., Chen Z., Zheng P., Sun J., Zeng A. P.,Appl. Microbiol. Biotechnol., 97 (2013), 1963–1971.

Geor gi T., Rittmann D., Wendisch V. F., Metab. Eng., 7(2005), 291–301.

Gerstmeir R., Wendisch V. F., Schnicke S., Ruan H., FarwickM., Reinscheid D., Eikmanns B. J., J. Biotechnol., 104(2003), 99–122.

Gopinath V., Meiswinkel T. M., Wendisch V. F., NampoothiriK. M., Appl. Microbiol. Biotechnol., 92 (2011), 985–996.

Gopinath V., Murali A., Dhar K. S., Nampoothiri K. M.,Appl. Microbiol. Biotechnol., 93 (2012), 95–106. Gourdon

P., Baucher M. F., Lindley N. D., Guyonvarch A., Appl.Environ. Microbiol., 66 (2000), 2981–2987. Gruteser N.,Marin K., Kraemer R., Thomas G. H., Fems Microbiol. Lett.,336 (2012), 131–138. Gutmann M., Hoischen C., Krämer R.,Biochim. Biophys. Acta, 1112 (1992), 115–123. Hasegawa S.,Uematsu K., Natsuma Y., Suda M., Hiraga K., Jojima T., InuiM., Yukawa H., Appl. Environ. Microbiol., 78 (2012),865–875. Hashimoto K., Nakamura K., Kuroda T., Yabe I.,Nakamatsu T., Kawasaki H., Biosci. Biotechnol. Biochem.,74 (2010), 2546–2549.

Heider S. A., Peters-Wendisch P., Wendisch V. F., BMCMicrobiol., 12 (2012), 198. Hoischen C., Krämer R., Arch.Microbiol., 151 (1989), 342–347. Hoischen C., Krämer R., J.Bacteriol., 172 (1990), 3409–3416. Huang Y., Zhao K. X.,Shen X. H., Chaudhry M. T., Jiang C. Y., Liu S. J., Appl.Environ. Microbiol., 72 (2006), 7238–7245. Hueck C. J.,Hillen W ., Mol. Microbiol., 15 (1995), 395–401. Hüser A.T., Chassagnole C., Lindley N. D., Merkamm M., GuyonvarchA., Elisakova V., Patek M., Kalinowski J., Brune I.,Pühler A., Tauch A., Appl. Environ. Microbiol., 71(2005), 3255–3268. Hy eon J. E., Jeon W. J., Whang S. Y.,Han S. O., Enzyme Microb. Tech., 48 (2011), 371–377. Ikeda H., Ishikawa J., Hanamoto A., Shinose M., Kikuchi H.,Shiba T., Sakaki Y., Hattori M., Omura S., Nat.Biotechnol., 21 (2003), 526–531. Ikeda M., Mitsuhashi S.,Tanaka K., Hayashi M., Appl. Environ. Microbiol., 75(2009), 1635–1641. Ik eda M., Mizuno Y., Awane S., HayashiM., Mitsuhashi S., Takeno S., Appl. Microbiol.Biotechnol., 90 (2011), 1443–1451.

Inui M., Kawaguchi H., Murakami S., Vertes A. A., YukawaH., J. Mol. Microbiol. Biotechnol., 8 (2004), 243–254.Jäger W., Peters-Wendisch P., Kalinowski J., Pühler A.,Arch. Microbiol., 166 (1996), 76–82. Janausch I. G.,Zientz E., Tran Q. H., Kroger A., Unden G., Biochim.Biophys. Acta, 1553 (2002), 39–56.

Jensen J., Wendisch V. F., Microbial Cell Factories, 12(2013), 63. Jo J. H., Seol H. Y., Lee Y. B., Kim M. H.,Hyun H. H., Lee H. H., Can. J. Microbiol., 58 (2012),278–286. Jo S. J., Maeda M., Ooi T., Taguchi S., J. Biosci.Bioeng., 102 (2006), 233–236. Jo S. J., Matsumoto K., LeongC. R., Ooi T., Taguchi S., J. Biosci. Bioeng., 104 (2007),457–463. Jolkv er E., Emer D., Ballan S., Krämer R.,Eikmanns B. J., Marin K., J. Bacteriol., 191 (2009),940–948.

Kabus A., Georgi T., Wendisch V. F., Bott M., Appl.Microbiol. Biotechnol., 75 (2007), 47–53.

Kalino wski J., Bathe B., Bartels D., Bischoff N., Bott M.,Burkovski A., Dusch N., Eggeling L., Eikmanns B. J.,Gaigalat L., Goesmann A., Hartmann M., Huthmacher K.,Krämer R., Linke B., McHardy A. C., Meyer F., Mockel B.,Pfefferle W., Pühler A., Rey D. A., Rückert C., Rupp O.,Sahm H., Wendisch V. F., Wiegrabe I., Tauch A., J.Biotechnol., 104 (2003), 5–25. Kalino wski J., Cremer J.,Bachmann B., Eggeling L., Sahm H., Pühler A., Mol.Microbiol., 5 (1991), 1197–1204.

Kato O., Youn J. W., Stansen K. C., Matsui D., Oikawa T.,Wendisch V. F., BMC Microbiol., 10 (2010), 321.

Kawaguchi H., Sasaki M., Vertes A. A., Inui M., Yukawa H.,Appl. Microbiol. Biotechnol., 77 (2008), 1053–1062.

Kawaguchi H., Sasaki M., Vertes A. A., Inui M., Yukawa H.,Appl. Environ. Microbiol., 75 (2009), 3419–3429.

Kawaguchi H., Vertes A. A., Okino S., Inui M., Yukawa H.,Appl. Environ. Microbiol., 72 (2006), 3418–3428. Kelle R.,Hermann T., Bathe B., in Handbook of CorynebacteriumGlutamicum (Eggeling L., Bott M., eds.), CRC Press, BocaRaton, USA (2005) pp. 465–488. Kelle R., Hermann T.,Weuster-Botz D., Eggeling L., Krämer R., Wandrey C., J.Biotechnol., 50 (1996), 123–136. K ennerknecht N., SahmH., Yen M. R., Patek M., Saier M. H. Jr., Eggeling L., J.Bacteriol., 184 (2002), 3947–3956.

Khanna S., Goyal A., Moholkar V.S., Crit. Rev. Biotechnol.,32 (2012), 235–262. Kikuchi Y., Date M., Yokoyama K.,Umezawa Y., Matsui H., Appl. Environ. Microbiol., 69(2003), 358–366.

Kikuchi Y., Itaya H., Date M., Matsui K., Wu L. F., Appl.Microbiol. Biotechnol., 78 (2008), 67–74. Kikuchi Y.,Itaya H., Date M., Matsui K., Wu L. F., Appl. Environ.Microbiol., 75 (2009), 603–607. Kim H. J., Kim T . H., KimY., Lee H. S., J Bacteriol., 186 (2004), 3453–3460. KimuraE., L-Glutamate Production. In Handbook of Corynebacteriumglutamicum (Eggeling L., Bott M., eds), CRC Press, BocaRaton, USA (2005) pp. 439–464. Kimura E., Yagoshi C.,Kawahara Y., Ohsumi T., Nakamatsu T., Tokuda H., Biosci.Biotechnol. Biochem., 63 (1999), 1274–1278. Kind S., BeckerJ., Wittmann C., Metab. Eng., 15 (2013), 184–195. Kind S.,Jeong W. K., Schroder H., Zelder O., Wittmann C., Appl.Environ. Microbiol., 76 (2010), 5175–5180. Kind S., KreyeS., Wittmann C., Metab. Eng., 13 (2011), 617–627.Kinoshita S., Udaka S., Shimono M., J. Gen. Appl.

Microbiol., 3 (1957), 193–205. Klinke H. B., Thomsen A.B., Ahring B. K., Appl. Microbiol. Biotechnol., 66 (2004), 10–26. Kotrba P., Inui M., Yukawa H., Microbiology, 149(2003), 1569–1580. Krämer R., Lambert C., Hoischen C.,Ebbighausen H., Eur. J. Biochem., 194 (1990), 929–935. Krause F. S., Blombach B., Eikmanns B. J., Appl. Environ.Microbiol., 76 (2010a) 8053–8061. Krause F. S., HenrichA., Blombach B., Krämer R., Eikmanns B. J., Seibold G. M.,Appl. Environ. Microbiol., 76 (2010b), 370–374.

Krawczyk S., Raasch K., Schultz C., Hoffelder M., EggelingL., Bott M., FEBS Lett., 584 (2010), 1463–1468. KremlingA., Kremling S., Bettenbrock K., FEBS J., 276 (2009),594–602.

Krings E., Krumbach K., Bathe B., Kelle R., Wendisch V.F.,Sahm H., Eggeling L., J. Bacteriol., 188 (2006),8054–8061. Kr ömer J. O., Heinzle E., Schroder H., WittmannC., J. Bacteriol., 188 (2006), 609–618. Kronemeyer W.,Peekhaus N., Krämer R., Sahm H., Eggeling L., J.Bacteriol., 177 (1995), 1152–1158. Krubasik P., KobayashiM., Sandmann G., Eur. J. Biochem., 268 (2001a), 3702–3708.

Krubasik P., Takaichi S., Maoka T., Kobayashi M., MasamotoK., Sandmann G., Arch. Microbiol., 176 (2001b), 217–223.

Kruse D., Krämer R., Eggeling L., Rieping M., Pfefferle W.,Tchieu J. H., Chung Y. J., Saier M. H. Jr, Burkovski A.,Appl. Microbiol. Biotechnol., 59 (2002), 205–210. KuritaK., Mar. Biotechnol., 8 (2006), 203–226. Lambert C.,Erdmann A., Eikmanns M., Krämer R., Appl. Environ.Microbiol., 61 (1995), 4334–4342.

Lange C., Mustafi N., Frunzke J., Kennerknecht N., WesselM., Bott M., Wendisch V. F., J. Biotechnol., 158 (2012),231–241.

Lange C., Rittmann D., Wendisch V. F., Bott M., Sahm H.,Appl. Environ. Microbiol., 69 (2003), 2521–2532. Laslo T.,von Zaluskowski P., Gabris C., Lodd E., Rückert C., DangelP., Kalinowski J., Auchter M., Seibold G., Eikmanns B. J.,J. Bacteriol., 194 (2012), 941–955. Lee H. W ., Pan J. G.,Lebeault J. M., Appl. Microbiol. Biotechnol., 49 (1998), 9.Lee S. Y., Le T. H., Chang S. T., Park J. S., Kim Y. H.,Min J., Curr. Microbiol., 61 (2010), 596–600.Leuchtenberger W., Huthmacher K., Drauz K., Appl.Microbiol. Biotechnol., 69 (2005), 1–8. Liebl W ., SinskeyA. J., Schleifer K. H., J. Bacteriol., 174 (1992),1854–1861.

Lindner S. N., Knebel S., Pallerla S. R., Schoberth S. M.,Wendisch V. F., Appl. Microbiol. Biotechnol., 87 (2010),703–713. Lindner S. N., Meiswinkel T. M., Panhorst M., YounJ. W., Wiefel L., Wendisch V. F., J. Biotechnol., 159(2012), 216–224. Lindner S. N., Petrov D. P., Hagmann C.T., Henrich A., Krämer R., Eikmanns B. J., Wendisch V. F.,Seibold G. M., Appl. Environ. Microbiol., 79 (2013),2588–2595.

Lindner S. N., Seibold G. M., Henrich A., Krämer R.,Wendisch V. F., Appl. Environ. Microbiol., 77 (2011b),3571–3581.

Lindner S. N., Seibold G. M., Krämer R., Wendisch V. F.,Bioeng. Bugs, 2 (2011a) 291–295. List B., Tetrahedron,58 (2002), 5573–5590. Litsanov B., Brocker M., Bott M.,Microb. Biotechnol., 6 (2013), 189–195. Litsanov B., KabusA., Brocker M., Bott M., Microb. Biotechnol., 5 (2012),116–128. Matsumoto K., Kitagawa K., Jo S. J., Song Y.,Taguchi S., J. Biotechnol., 152 (2011), 144–146.

McDonald P., Henderson A. R., Heron S. J., in: TheBiochemistry of Silage (McDonald P., Henderson A. R.,Heron S. J., ed.), Chalcombe Publications, Aberystwyth(1991) pp. 81–152.

Meissner D., Vollstedt A., van Dijl J. M., Freudl R., Appl.Microbiol. Biotechnol., 76 (2007), 633–642.

Meiswinkel T. M., Gopinath V., Lindner S. N., NampoothiriK. M., Wendisch V. F., Microbiol. Biotechnol., 6 (2013b),131–140.

Meiswinkel T. M., Rittmann D., Lindner S. N., Wendisch V.F., Bioresour. Technol. (2013a), doi:10.1016/j.biortech.2013.02.053. Merkens H., Beckers G.,Wirtz A., Burkovski A., Curr. Microbiol., 51 (2005),59–65. Mimitsuka T., Sawai H., Hatsu M., Yamada K., Biosci.Biotechnol. Biochem., 71 (2007), 2130–2135. Moon M. W.,Kim H. J., Oh T. K., Shin C. S., Lee J. S., Kim S. J., LeeJ. K., FEMS Microbiol. Lett., 244 (2005), 259–266. MorbachS., Junger C., Sahm H., Eggeling L., J. Biosci. Bioeng.,90 (2000), 501–507. Morbach S., Kelle R., Winkels S., SahmH., Eggeling L., Appl. Microbiol. Biotechnol., 45 (1996),612–620. Morbach S., Sahm H., Eggeling L., Appl. Environ.Microbiol., 61 (1995), 4315–4320. Mussatto S. I., RobertoI. C., Biotechnol. Progr., 20 (2004), 134–139.

Mustafi N., Grunberger A., Kohlheyer D., Bott M., FrunzkeJ., Metab. Eng., 14 (2012), 449–457. Nak amura J., Hirano

S., Ito H., Wachi M., Appl. Environ. Microbiol., 73 (2007),4491–4498. Netzer R., Peters-Wendisch P., Eggeling L., SahmH., Appl. Environ. Microbiol., 70 (2004), 7148–7155.Neuner A., Heinzle E., Biotechnol. J., 6 (2011), 318–329.Neuner A., Wagner I., Sieker T., Ulber R., Schneider K.,Peifer S., Heinzle E., J. Biotechnol., 163 (2013),217–224. Niebisch A., Kabus A., Schultz C., Weil B., BottM., J. Biol. Chem., 281 (2006), 12300–12307. Niimi S.,Suzuki N., Inui M., Yukawa H., Appl. Microbiol.Biotechnol., 90 (2011), 1721–1729. Ohnishi J., KatahiraR., Mitsuhashi S., Kakita S., Ikeda M., FEMS Microbiol.Lett., 242 (2005), 265–274.

Okino S., Inui M., Yukawa H., Appl. Microbiol. Biotechnol.,68 (2005), 475–480. Okino S., Noburyu R., Suda M., JojimaT., Inui M., Yukawa H., Appl. Microbiol. Biotechnol., 81(2008b), 459–464. Okino S., Suda M., Fujikura K., Inui M.,Yukawa H., Appl. Microbiol. Biotechnol., 78 (2008a),449–454. Palmqvist E., Hahn-Hagerdal B., BioresourceTechnol., 74 (2000), 25–33. Paradis F. W., Warren R. A. J.,Kilburn D. G., Miller R. C., Gene, 61 (1987), 199–206. Parawira W., Tekere M., CRC Crit. Rev. Biotechnol., 31(2011), 20–31. Parche S., Burkovski A., Sprenger G. A.,Weil B., Krämer R., Titgemeyer F., J. Mol. Microbiol.Biotechnol., 3 (2001), 423–428. Park J. S., Shin S., Kim E.S., Kim P., Kim Y., Lee H. S., FEMS Microbiol. Lett., 322(2011), 8–14. P arsons J. W., Chemistry and distribution ofamino sugars in soils and soils organisms, in: SoilBiochemistry (Paul E. A., Ladd J. N., eds.), MarcelDekker, New York (1981) pp. 197–227. Patek M.,Branched-chain amino acids. In Amino AcidBiosynthesis–Pathways, Regulation and MetabolicEngineering (Wendisch V. F., ed.), Springer, Heidelberg,Germany (2007). Peoples O. P., Liebl W., Bodis M., Maeng P.J., Follettie M. T., Archer J. A., Sinskey A. J., Mol.Microbiol., 2 (1988), 63–72. Peters-Wendisch P., KreutzerC., Kalinowski J., Patek M., Sahm H., Eikmanns B. J.,Microbiology, 144 (1998), 915–927. Peters-Wendisch P.,Netzer R., Eggeling L., Sahm H., Appl. Microbiol.Biotechnol., 60 (2002), 437–441.

Peters-Wendisch P., Schiel B., Wendisch V. F., KatsoulidisE., Mockel B., Sahm H., Eikmanns B. J., J. Mol. Microbiol.Biotechnol., 3 (2001), 295–300.

Peters-Wendisch P., Stansen K. C., Götker S., Wendisch V.F., Appl. Microbiol. Biotechnol., 93 (2012), 2493–2502.Peters-Wendisch P., Stolz M., Etterich H., Kennerknecht N.,Sahm H., Eggeling L., Appl. Environ. Microbiol., 71(2005), 7139–7144. Qi S. W., Chaudhry M. T., Zhang Y., Meng

B., Huang Y., Zhao K. X., Poetsch A., Jiang C. Y., Liu S.,Liu S. J., Proteomics, 7 (2007), 3775–3787. Radmacher E.,Stansen K. C., Besra G. S., Alderwick L. J., Maughan W. N.,Hollweg G., Sahm H., Wendisch V. F., Eggeling L.,Microbiology, 151 (2005), 1359–1368.

Reinscheid D. J., Kronemeyer W., Eggeling L., Eikmanns B.J., Sahm H., Appl. Environ. Microbiol., 60 (1994),126–132. Riedel C., Rittmann D., Dangel P., Mockel B.,Petersen S., Sahm H., Eikmanns B. J., J. Mol. Microbiol.Biotechnol., 3 (2001), 573–583.

Rittmann D., Lindner S. N., Wendisch V. F., Appl. Environ.Microbiol., 74 (2008), 6216–6222.

Rittmann D., Schaffer S., Wendisch V. F., Sahm H., Arch.Microbiol., 180 (2003), 285–292.

Rumbold K., van Buijsen H. J. J., Gray V. M., vanGroenestijn J. W., Overkamp K. M., Slomp R. S., van derWerf M. J., Punt P. J., Bioeng. Bugs, 1 (2010), 359–366.Sakai S., Tsuchida Y., Nakamoto H., Okino S., Ichihashi O.,Kawaguchi H., Watanabe T., Inui M., Yukawa H., Appl.Environ. Microbiol., 73 (2007), 2349–2353.

Salim K., Haedens V., Content J., Leblon G., Huygen K.,Appl. Environ. Microbiol., 63 (1997) 4392–4400. Sasaki M.,Jojima T., Inui M., Yukawa H., Appl. Microbiol.Biotechnol., 81 (2008), 691–699. Sasaki M., Jojima T.,Inui M., Yukawa H., Appl. Microbiol. Biotechnol., 86(2010), 1057–1066. Sasaki M., Jojima T., Kawaguchi H., InuiM., Yukawa H., Appl. Microbiol. Biotechnol., 85 (2009),105–115. Scheele S., Oertel D., Bongaerts J., Evers S.,Hellmuth H., Maurer K. H., Bott M., Freudl R., Microb.Biotechnol., 6 (2013), 202–206.

Schneider J., Eberhardt D., Wendisch V. F., Appl.Microbiol. Biotechnol., 95 (2012a), 169–178.

Schneider J., Niermann K., and Wendisch V. F., Productionof the amino acids L-glutamate, L-lysine, L-ornithine andL-arginine from arabinose by recombinant Corynebacteriumglutamicum. J. Biotechnol., 154 (2011), 191–198.Schneider J., Peters-Wendisch P., Stansen K. C., Götker S.,Maximow S., Krämer R., Wendisch V. F., BMC Microbiol., 12(2012b), 6.

Schneider J., Wendisch V. F., Appl. Microbiol. Biotechnol.,88 (2010), 859–868.

Schneider J., Wendisch V. F., Appl. Microbiol. Biotechnol.,91 (2011), 17–30. Schrumpf B., Schwarzer A., Kalinowski J.,Pühler A., Eggeling L., Sahm H., J. Bacteriol., 173(1991), 4510–4516.

Schultz C., Niebisch A., Gebel L., Bott M., Appl.Microbiol. Biotechnol., 76 (2007), 691–700. Sch warz W.H., Appl. Microbiol. Biotechnol., 56 (2001), 634–649.Seibold G., Auchter M., Berens S., Kalinowski J., EikmannsB. J., J. Biotechnol., 124 (2006), 381–391. Sharkey M. A.,Maher M. A., Guyonvarch A., Engel P. C., Arch. Microbiol.,193 (2011), 731–740. Shen X. H., Jiang C. Y., Huang Y.,Liu Z. P., Liu S. J., Appl. Environ. Microbiol., 71(2005), 3442–3452. Shen X. H., Liu S. J., Sci. China Ser.C: Life Sci., 48 (2005), 241–249. Shen X. H., Liu Z. P .,Liu S. J., Biotechnol. Lett., 26 (2004), 575–580. Shi F.,Li Y., Biotechnol. Lett., 33 (2011), 2469–2474. Shiio I.,Ôtsuka S. I., Katsuya N., J. Biochem., 53 (1963), 333–340.Simic P., Sahm H., Eggeling L., J. Bacteriol., 183 (2001),5317–5324. Simic P., Willuhn J., Sahm H., Eggeling L.,Appl. Environ. Microbiol., 68 (2002), 3321–3327.

Sindelar G., Wendisch V. F., Appl. Microbiol. Biotechnol.,76 (2007), 677–689. Smith K. M., Cho K. M., Liao J. C.,Appl. Microbiol. Biotechnol., 87 (2010), 1045–1055. SoarezP. C., Oliveira A. C., Padovan J., Parise E. R., Ferraz M.B., Arq. Gastroenterol., 46 (2009), 241–247. Sodergard A.,Stolt M., Prog. Polym. Sci., 27 (2002), 1123–1163. Song Y.,Matsumoto K. I., Tanaka T., Kondo A., Taguchi S., J.Biosci. Bioeng., 115 (2013), 12–14. Song Y., MatsumotoK. I., Yamada M., Gohda A., Brigham C. J., Sinskey A. J.,Taguchi S., Appl. Microbiol. Biotechnol., 93 (2012),1917–1925. Stabler N., Oikawa T., Bott M., Eggeling L., J.Bacteriol., 193 (2011), 1702–1709.

Stansen C., Uy D., Delaunay S., Eggeling L., Goergen J. L.,Wendisch V. F., Appl. Environ. Microbiol., 71 (2005),5920–5928. Stevenson F. J., Organic forms of soil nitrogen,in: Nitrogen in Agricultural Soils American Society ofAgronomy (Stevenson F. J., ed.), Madison, Wisconsin, USA(1982) pp. 101–104. Stolz M., Peters-Wendisch P., EtterichH., Gerharz T., Faurie R., Sahm H., Fersterra H., EggelingL., Appl. Environ. Microbiol., 73 (2007), 750–755.

Takahashi C., Shirakawa J., Tsuchidate T., Okai N., HatadaK., Nakayama H., Tateno T., Ogino C., Kondo A., EnzymeMicrob. Tech., 51 (2012), 171–176. Takinami K., Yoshii H.,Yamada Y., Okada H., Kinoshita K., Amino Acid Nucleic AcidRes., 183 (1968), 120–160. Tateno T., Fukuda H., Kondo A.,Appl. Microbiol. Biotechnol., 77 (2007a), 533–541. Tateno

T., Fukuda H., Kondo A., Appl. Microbiol. Biotechnol., 74(2007b), 1213–1220. Tateno T., Okada Y., Tsuchidate T.,Tanaka T., Fukuda H., Kondo A., Appl. Microbiol.Biotechnol., 82 (2009), 115–121. Teramoto H., Shirai T.,Inui M., Yukawa H., Appl. Environ. Microbiol., 74 (2008),5290–5296. Teramoto H., Watanabe K., Suzuki N., Inui M.,Yukawa H., Appl. Microbiol. Biotechnol., 91 (2011),677–687. Tharanathan R. N., Kittur F. S., Crit. Rev. FoodSci. Nutr., 43 (2003), 61–87. Toyoda K., Teramoto H., GunjiW., Inui M., Yukawa H., J. Bacteriol., 195 (2013),1718–1726. Tsuchida T., Kubota K., Yoshihara Y., KikuchiK., Yoshinaga F., Agric. Biol. Chem., 51 (1987),2089–2094. Tsuchidate T., Tateno T., Okai N., Tanaka T.,Ogino C., Kondo A., Appl. Microbiol. Biotechnol., 90(2011), 895–901. Uhde A., Youn J. W., Maeda T., ClermontL., Matano C., Krämer R., Wendisch V. F., Seibold G. M.,Marin K., Appl. Microbiol. Biotechnol., 97 (2013),1679–1687. van Ooyen J., Noack S., Bott M., Reth A.,Eggeling L., Biotechnol. Bioeng., 109 (2012), 2070–2081.

V eit A., Rittmann D., Georgi T., Youn J. W., Eikmanns B.J., Wendisch V. F., J. Biotechnol., 140 (2009), 75–83.

V rljic M., Garg J., Bellmann A., Wachi S., Freudl R.,Malecki M. J., Sahm H., Kozina V. J., Eggeling L., SaierM. H. Jr., J. Mol. Microbiol. Biotechnol., 1 (1999),327–336. Watanabe K., Tsuchida Y., Okibe N., Teramoto H.,Suzuki N., Inui M., Yukawa H., Microbiology, 155 (2009),741–750.

Wendisch V. F., J. Biotechnol., 104 (2003), 273–285.

Wendisch V. F. (ed.), Microbiology monographs, in: AminoAcid Biosynthesis ~ Pathways, Regulation and MetabolicEngineering, vol. 5, Springer Berlin Heidelberg, Germany(2007).

Wendisch V. F., de Graaf A. A., Sahm H., Eikmanns B. J., J.Bacteriol., 182 (2000), 3088–3096.

Wendisch V. F., Spies M., Reinscheid D. J., Schnicke S.,Sahm H., Eikmanns B. J., Arch. Microbiol., 168 (1997),262–269. Wieschalk a S., Blombach B., Eikmanns B. J., Appl.Microbiol. Biotechnol., 94 (2012), 449–459. Wittmann C.,Becker J., The l-lysine story: from metabolic pathways toindustrial production, in: Amino Acid Biosynthesis ~Pathways, Regulation and Metabolic Engineering (WendischV. F., ed.), Springer Berlin Heidelberg, Germany (2007)pp. 39–70. Wyman C. E. (1999). Proc. 4th Biomass Conf. Am.,1 (1999), 867–872. Yao W., Chu C., Deng X., Zhang Y., Liu

M., Zheng P., Sun Z., Arch. Microbiol., 191 (2009),751–759. Yeh P., Sicard A. M., Sinskey A. J., Mol. Gen.Genet., 212 (1988a), 112–119. Yeh P., Sicard A. M., SinskeyA. J., Mol. Gen. Genet., 212 (1988b), 105–111. Yin L., ShiF., Hu X., Chen C., Wang X., J. Appl. Microbiol., 114(2013), 1369–1377.

Youn J. W., Jolkver E., Krämer R., Marin K., Wendisch V.F., J. Bacteriol., 190 (2008), 6458–6466.

Youn J. W., Jolkver E., Krämer R., Marin K., Wendisch V.F., J. Bacteriol., 191 (2009), 5480–5488.

Zahoor U. L., Hassan A., Lindner S., Wendisch V. F.,Comput. Struct. Biotechnol. J., 3 (2012), e201210004. ZhaoZ., Ding J. Y., Ma W. H., Zhou N. Y., Liu S. J., Appl.Environ. Microbiol., 78 (2012), 2596–2601.

12 Chapter 12: Applications of Enzymes inIndustrial Biodiesel Production

Abo M., Christensen M. W., Borch K., Production of fattyacid alkyl esters by use of two lipolytic enzymes. WO2006/072256.

Adamczak M., Bornscheuer U., Bednarski W., Eur. J. LipidSci. Technol., 111 (2009), 808–813. Anderson E. M.,Larsson K. M., Kirk O., Biocatal. Biotrans., 16 (1998),181–204.

Austic G., Burton R., Fan X., Fatty acid esterificationprocess. WO 2012/106701. Basheer S., Modified-immobilizedenzymes of high tolerance to hydrophilic substrates inorganic media. WO 2008/139455. Cesarini S., Diaz P.,Nielsen P., Process Biochem., 48 (2013), 484–487. ChistiY., Biotechnol. Adv., 25 (2007), 294–306.

Deng L., Xu X., Haraldsson G. G., Tan T., Wang F., J. Am.Oil Chem. Soc., 82 (2005), 341–347.

Du W., Liu D., Li L., Dai L., Biotechnol. Prog., 23 (2007),1087–1090.

Du W., Xu Y., Liu D., Zeng J., J. Mol. Catal. B: Enzym., 30(2004), 125–129. Fan X., Burton R., Open Fuels Energy Sci.J., 2 (2009), 100–109.

Fedosov S. N., Brask J., Pedersen A. K., Nordblad M.,Woodley J. M., Xu X., J. Mol. Catal. B: Enzym., 85–86(2013), 156–168. Fjerbaek L., Christensen K. V., NorddahlB., Biotechnol. Bioeng., 102 (2009), 1298–1315. Gong Y.,Jiang M., Biotechnol. Lett., 33 (2011), 1269–1284.

Gotor-Fernandez V., Busto E., Gotor V., Adv. Synth. Catal.,348 (2006), 797–812. Haas M. J., Michalski P. J., RunyonS., Nunez A., Scott K. M., J. Am. Oil Chem. Soc., 80(2003), 97–102. Hama S., Kondo A., Bioresour. Technol., 135(2013), 386–395.

Helwani Z., Othman M. R., Aziz N., Kim J., Fernando W. J.,Appl. Catal. A: General, 363 (2009), 1–10.

Holm H. C., Nielsen P. M., Christensen M. W., Production ofde-gummed fatty acid alkyl esters. WO 2006/133698. HvolbyA., J. Am. Oil Chem. Soc., 48 (1971), 503–509. Idris A.,Bukhari A., Biotechnol. Adv., 30 (2012), 550–563.

Knothe G., The history of vegetable oil-based diesel fuels,

in The Biodiesel Handbook (Knothe G., Gerpen J. V., KrahlJ., eds.), Urbana, Illinois, US: AOCS Press (2005), pp.4–16. Knothe G., Steidley K. R., Biores. Technol., 100(2009), 5796–5801. Komers K., Skopal F., Stloukal R.,Fett/Lipid, 99 (1997), 52–54.

Lee D. H., Kim J. M., Shin H. Y., Kang S. W., Kim S. W.,Biotechnol. Bioprocess Eng., 11 (2006), 522–525. Lee I.,Johnson L. A., Hammond E. G., J. Am. Oil Chem. Soc., 72(1995), 1155–1160.

Li L., Du W., Liu D., Wang L., J. Mol. Catal. B: Enzym., 43(2006), 58–62.

Mittelbach M., Wörgetter M., Pernkopf J., Junek H., EnergyAgric., 2 (1983), 369–384. Nielsen P. M., Brask J.,Fjerbaek L., Eur. J. Lipid Sci. Technol., 110 (2008),692–700.

Osório N. M., Fonseca M. M., Ferreira-Dias S., Eur. J.Lipid Sci. Technol., 108 (2006), 545–553. Pinto F.,Martins S., Gonçalves M., Costa P., Gulyurtlu I., Alves A.,Mendes B., Appl. Energy, 102 (2013), 272–282. Royon D.,Daz M., Ellenrieder G., Locatelli S., Biores. Technol., 98(2007), 648–653. Saunders P., Brask J., Improvedimmobilization supports for Candida antarctica lipase B,in Biocatalysis in polymer chemistry (Loos K., ed.),Weinheim, Germany: Wiley-VCH (2011), pp. 65–82. Shah S.,Gupta M. N., Process Biochem., 42 (2007), 409–414.

Shimada Y., Watanabe Y., Sugihara A., Baba T., Ooguri T.,Moriyama S., Terai T., Tominaga Y., J. Biosci. Bioeng., 92(2001), 19–23.

Shimada Y., Watanabe Y., Sugihara A., Tominaga Y., J. Mol.Catal. B: Enzym., 17 (2002), 133–142. Shimizu M., MoriwakiJ., Nishide T., Nakajima Y., J. Am. Oil Chem. Soc., 81(2004), 571–576.

Watanabe Y., Nagao T., Nishida Y., Takagi Y., Shimada Y.,J. Am. Oil Chem. Soc., 84 (2007), 1015–1021.

Watanabe Y., Shimada Y., Sugihara A., Tominaga Y., J. Mol.Catal. B: Enzym., 17 (2002), 151–155.

Xu Y., Nordblad M., Nielsen P. M., Brask J., Woodley J. M.,J. Mol. Catal. B: Enzym., 72 (2011), 213–219.

Xu Y., Nordblad M., Woodley J. M., J. Biotechnol., 162(2012), 407–414.

13 Chapter 13: Promiscuous Biocatalysts:Applications for Synthesis fromLaboratory to Industrial Scale

Fuhshuku K., Asano Y., J. Biotechnol., 153 (2011), 153–159.Fujieda N., Hasegawa A., Ishihama K., Itoh S., Chem. AsianJ., 7 (2012), 1203–1207. Gruber K. M., Purkarthofer T.,Skranc W., Griengl H., Adv. Synth. Catal., 349 (2007),1445–1450.

Guan Z., Fu J. P., He Y. H., Tetrahedron Lett., 53 (2012),4959–4961. Guimaraes C. R. W., Udier-Blagovic M., JorgensenW. L., J. Am. Chem. Soc., 127 (2005), 3577–3588.

Hammer S. C., Dominicus J. M., Syren P. O., Nestl B. M.,Hauer B., Tetrahedron, 68 (2012), 7624–7629. He T., Li K.,Wu M. Y., Feng X. W., Wang N., Wang H. Y., Yu X. Q., J.Mol. Catal. B: Enzym., 67 (2010),189–194. He Y. H., Li H.H., Chen Y. L., Xue Y., Yuan Y., Guan Z., Adv. Synth.Catal., 354 (2012a), 712–719. He Y. H., Hu W., Guan Z., J.Org. Chem., 77 (2012b), 200–207. Hu W., Guan Z., Deng X.,He Y. H., Biochimie, 94 (2012), 656–661. Hubbard B. K.,Koch M., Palmer D. R. J., Babbitt P. C., Gerlt J. A.,Biochemistry, 37 (1998), 14369–14375. Hult K., BerglundP., Trends Biotechnol., 25 (2007), 231–238.

Humble M. S., Berglund P., Eur. J. Org. Chem., 19 (2011),3391–3401. Hussain M. M., Walsh P. J., Acc. Chem. Res., 41(2008), 883–893. Isaksson D., Lindmark-Henrikson M.,Manoranjan T., Sjödin K., Högberg H. E., J. Mol. Catal. B:Enzym., 31 (2004), 31–37. Jensen R.A., Annu. Rev.Microbiol., 30 (1976), 409–425. Kapoor M., Gupta M. N.,Process Biochem., 47 (2012), 555–569. Kapoor M., MajumderA. B., Mukherjee J., Gupta M. N., Biocatal. Biotransfor.,30 (2012), 399–408. Kazlauskas R. J., Curr. Opin. Chem.Biol., 9 (2005), 195–201.

Khersonsky O., Tawfik D. S., Annu. Rev. Biochem., 79(2010), 471–505. Kitazume T., Ikeya T., Murata K., J. Chem.Soc., Chem. Commun. (1986), 1331–1333. Kitazume T., MurataK., J. Fluorine Chem., 36 (1987), 339–349. Kitazume T.,Murata K., Kokusho Y., Iwasaki S., J. Fluorine Chem., 39(1988), 75–86.

Kłossowski S., Wiraszka B., Berłozecki S., Ostaszewski R.,Org. Lett., 15 (2013), 566–569.

Kourist R., Miyauchi Y., Uemura D., Miyamoto K., Chem. Eur.J., 17 (2011), 557–563. Kumar A., Maurya R. A.,Tetrahedron Lett., 48 (2007), 4569–4571. Kusebauch B.,

Busch B., Scherlach K., Roth M., Hertweck C., Angew. Chem.Int. Ed., 48 (2009), 5001–5004. Lai Y. F., Zheng H., ChaiS. J., Zhang P. F., Chen X. Z., Green Chem., 12 (2010),1917–1918. Lemoult S. C., Richardson P. F., Roberts S. M.,J. Chem. Soc., Perkin Trans., 1 (1995), 89–91. Li C., FengX. W., Wang N., Zhou Y. J., Yu X. Q., Green Chem., 10(2008), 616–618. Li K., He T., Li C., Feng X. W., Wang N.,Yu X. Q. Green Chem., 11 (2009), 777–779. Li H. H., He Y.H., Guan Z., Catal. Commun., 12 (2011a), 580–582. Li H. H.,He Y. H., Yuan Y., Guan Z., Green Chem., 13 (2011b),185–189. Li C., Zhou Y. J., Wang N., Feng X. W., Li K., YuX. Q., J. Biotechnol., 150 (2010), 539–545. Li W. M., ZhouG. B., Zhang P. F., Heterocycles, 83 (2011), 2067–2077.Liese A., Seelbach K., Buchholz A., Haberland J.,Processes: Lyases EC 4. In Industrial Biotransformations(Liese A., Seelbach K., Wandrey C., eds.), Chapter 6,WILEY-VCH, Weinheim, 2006. Lin X. F., Cai Y., Wu Q., Wang,N., Singapore International Chemical Conference 3, 2003,O80, Singapore. Line K., Isupov M. N., Littlechild J. A.,J. Mol. Biol., 338 (2004), 519–532. Liu Z. Q., Liu B. K.,Wu Q., Lin X. F., Tetrahedran, 67 (2011), 9736–9740. Liu B.K., Qian X. Q., Wu Q., Lu D. S., Lin X. F., Enzyme Microb.Technol., 43 (2008), 375–380. Liu B. K., Wu Q., Lu D. S.,Chen X. Z., Lin X. F., J. Mol. Catal. B: Enzym., 73 (2011)85–89. Liu Z. Q., Xiang Z. W., Wu Q, Lin X. F., Biochimie,95 (2013), 1462–1465. López-Iglesias M., Busto E., GotorV., Gotor-Fernándeza V., Adv. Synth. Catal., 353 (2011),2345–2353. López-Serrano P., Jongejan J. A., van RantwijkF., Sheldon R. A., Tetrahedron: Asymmetr., 12 (2001),219–228. Lou F. W., Liu B. K., Wang J. L., Pan Q., Lin X.F., J. Mol. Catal.B: Enzym., 60(2009), 64–68.

Lou F. W., Liu B. K., Wu Q., Lu D. S., Lin X. F. Adv.Synth. Catal., 350(2008), 1959–1962.

Madalińska L., Kwiatkowska M., Cierpiał T., KiełbasińskiP., J. Mol. Catal. B: Enzym., 81 (2012), 25–30. MadeiraLau R., van Rantwijk F., Seddon K. R., Sheldon R. A., Org.Lett., 2 (2000), 4189–4191. Majumder A. B., Ramesh N. G.,Gupta M. N., Tetrahedron Lett., 50 (2009), 5190–5193.Marcelli T., van der Haas R. N. S., van Maarseveen J. H.,Hiemstra H., Angew. Chem. Int. Ed., 45 (2006), 929–931.Milner S. E., Moody T. S., Maguire A. R., Eur. J. Org.Chem. (2012), 3059–3067. Miura Y., Yamane T., Biotechnol.Lett., 19 (1997), 611–613. Monsalve L. N., Gillanders F.,Baldessari A., Eur. J. Org. Chem., 6 (2012), 1164–1170.Mutti F. G., Lara M., Kroutil M., Kroutil W., Chem. Eur.J., 16 (2010), 14142–14148. O’Brien P. J., Herschlag D.,Chem. Biol., 6 (1999), R91–R105. Okrasa K., Kazlauskas R.J., Chem. Eur. J., 12 (2006), 1587–1596. Picard M., Gross

J., Luebbert E., Toelzer S., Krauss S., van Pee K. H.,Berkessel A., Angew. Chem. Int. Ed., 36 (1997), 1196–1199.Priego J., Ortiz-Nava C., Carrillo-Morales M.,Lopez-Munguia A., Escalante J., Castillo E., Tetrahedron,65 (2009), 536–539. Purkarthofer T., Gruber K. M., KhadjawiM. G., Waich K., Skranc W., Mink D., Griengl H., Angew.Chem. Int. Ed., 45 (2006), 3454–3456. Puskas J. E., Sen M.Y., Seo K. S., J Polym Sci Part A: Polym Chem, 47 (2009),2959–2976. Qian C., Xu J.-M., Wu Q., Lv D.-S., Lin X. F.,Tetrahedron Lett., 48 (2007), 6100–6104. Rios M. Y.,Salazar E., Olivo H. F., Green Chem., 9 (2007), 459–462.Rios M. Y., Salazar E., Olivo H. F., J. Mol. Catal.B:Enzym., 54 (2008), 61–66. Rustoy E. M., Sato Y., Nonami H.,Erra-Balsells R., Baldessari A., Polymer, 48 (2007),1517–1525. Saito S., Yamamoto H., Chem.-Eur. J., 5 (1999),1959–1962. Sarma K., Borthakur N., Goswami A., TetrahedronLett., 48 (2007), 6776–6778.

Sarma K., Goswami A., Goswami B. C., Tetrahedron.Asymmetr., 20 (2009), 1295–1300.

Serafimov J. M., Gillingham D., Kuster S., Hilvert D., J.Am. Chem. Soc., 130 (2008), 7798–7799.

Serafimov J. M., Westfeld T., Meier B. H., Hilvert D., J.Am. Chem. Soc., 129 (2007), 9580–9581.

Steunenberg P., Sijm M., Zuilhof H., Sanders J. P. M.,Scott E. L., Franssen M. C. R., J. Org. Chem., 78 (2013),3802–3813. Strohmeier G. A., Sovic T., Steinkellner G.,Hartner F. S., Andryushkova A., Purkarthofer T., GliederA., Gruber K., Griengl H., Tetrahedron, 65 (2009),5663–5668. Svedendahl M., Carlqvist P., Branneby C., AllnO., Frise A., Hult K., Berglund P., Brinck T.,ChemBioChem, 9 (2008), 2443–2451. Svedendahl M., Hult K.,Berglund P., J. Am. Chem. Soc., 127 (2005), 17988–17989.Taglieber A., Hobenreich H., Daniel Carballeira J.,Mondiere R. J. G., Reetz M. T., Angew. Chem. Int. Ed., 46(2007), 8597–8600. Tai C. H., Cook P. F., Acc. Chem. Res.,34 (2001), 49–59. Tanaka N., Dumay V., Liao Q., Lange A.J., Wever R., Eur. J. Biochem., 269 (2002), 2162–2167.Tang R. C., Guan Z., He, Y. H., Zhu W., J. Mol. Catal. B:Enzym., 63 (2010), 62–67. Terao Y., Miyamoto K., Ohta H.,Chem. Commun., 34 (2006), 3600–3602. Terao Y., Miyamoto K.,Ohta H., Chem. Lett., 36 (2007), 420–421. Timokhin B. V.,Golubin A. I., Vysotskaya O. V., Kron V. A., Oparina L. A.,Gusarova N. K., Trofimov B. A., Chem. HeterocyclicCompounds, 38 (2002), 981–985.

Tokuriki N., Tawfik D. S., Science, 324 (2009), 203–207.

Törnvall U., Orellana-Coca C., Hatti-Kaul R., AdlercreutzD., Enzym. Microb. Technol., 40 (2007), 447–451. Torres L.L., Schließmann A., Schmidt M., Silva-Martin N., Hermoso J.A., Berenguer J., Bornscheuer U. T., Hidalgo A., Org.Biomol. Chem., 10 (2012), 3388–3392. Torre O., Alfonso I.,Gotor V., Chem. Commun., 15 (2004), 1724–1725. Torre O.,Gotor-Fernanderz V., Alfonso I., Garicia-Alles L. F., GotorV., Adv. Synth. Catal., 347 (2005), 1007–1014.

Tufvesson P., Adlercreutz D., Lundmarkb S., Mane M.,Hatti-Kaul R., J. Mol. Catal.B: Enzym., 54 (2008), 1–6.van de Velde F., Könemann L., Van Rantwijk F., Sheldon R.A., Chem. Commun., 17 (1998), 1891–1892.

Vongvilai P., Angelin M., Larsson R., Ramström O., Angew.Chem. Int. Ed., 46 (2007), 948–950.

Vongvilai P., Larsson R., Ramström O., Adv. Synth. Catal.,350 (2008), 448–452.

Vongvilai P., Linder M., Sakulsombat M., Humble M. S.,Berglund P., Brinck T., Ramström O., Angew. Chem. Int.Ed., 50 (2011), 6592–6595. Wang C. H., Guan Z., He Y. H.,Green Chem., 13 (2011), 2048–2054. Wang J. L., Li X., XieH. Y., Liu B. K., Lin X. F., J. Biotechnol., 145 (2010),240–243. Wang J. L., Liu B. K., Yin C., Wu Q., Lin X. F.,Tetrahedron, 67 (2011), 2689–2692. Wang J. L., Xu J. M.,Wu Q., Lu D. S., Lin X. F., Tetrahedron, 65 (2009),2531–2536. Warwel S., Demes C., Steinke G., J. Polym. Sci.Part A: Polym. Chem., 39 (2001), 1601–1609. Warwel S.,Klaas M. R., J. Mol. Catal.B: Enzym., 1 (1995), 29–35.

Whitman C. P., Arch. Biochem. Biophys., 402 (2002), 1–13.Wiles C., Hammond M. J., Watts P., Beilstein J. Org. Chem.,5 (2009), 27. Witayakran S., Ragauskas A. J., Eur. J. Org.Chem., 3 (2009), 358–363. Wu M. Y., Li K., He T., Feng X.W., Wang N., Wang X. Y., Yu X. Q., Tetrahedron, 67 (2011),2681–2688. Wu Q., Xu J. M., Xia L., Wang J. L., Lin X. F.,Adv. Synth. Catal., 351 (2009), 1833–1841. Wu W. B., WangN., Xu J. M., Wu Q., Lin X. F., Chem. Commun., 18 (2005a),2348–2350. Wu W. B., Xu J. M., Wu Q., Lv D. S., Lin X. F.,Synlett, 16 (2005b), 2433–2436. Wu W. B., Xu J. M., Wu Q.,Lin X. F., Adv. Synth. Catal., 348 (2006), 487–492. WuenschC., Gross J., Steinkellner G., Gruber K., Glueck S. M.,Faber K., Angew. Chem. Int. Ed., 52 (2013), 2293–2297. XieB. H., Li W., Liu Y., Li H. H., Guan Z., He Y. H.,Tetrahedron, 68 (2012a), 3160–3164. Xie B. H., Guan Z., HeY. H., Biocatal. Biotransfor., 30 (2012b), 238–244. Xie B.H., Guan Z., He Y. H., J. Chem. Technol. Biotechnol., 87

(2012c), 1709–1714.

Xie Z. B., Wang N., Jiang G. F., Yu X. Q., TetrahedronLett., 54 (2013), 945–948. Xiong Q., Zhu X., Wilson W. K.,Ganesan A., Matsuda S. P. T., J. Am. Chem. Soc., 125(2003), 9002–9003.

Xu J. C., Li W. M., Zheng H., Lai Y. F., Zhang P. F.,Tetrahedron, 67 (2011), 9582–9587. Xu F., Wang J. L., LiuB. K., Wu Q., Lin X. F., Green Chem., 13 (2011),2359–2361. Xu J. M., Yao S. P., Wu W. B., Lv D. S., LinX.-F. J. Mol. Catal. B: Enzym., 35 (2005), 122–127. Xu J.M., Zhang F., Liu B. K., Wu Q., Lin X. F., Chem. Commun.,20 (2007a), 2078–2080. Xu J. M., Zhang F., Wu Q., Zhang Q.Y., Lin X. F., J. Mol. Catal. B: Enzym., 49 (2007b),50–54.

Xue Y., Li L. P., He Y. H., Guan Z., Sci. Rep., 2 (2012),761. Yamamura K., Kaiser E. T., J. Chem. Soc. Chem. Commun.(1976), 830–831.

Yao S. P., Lv D. S., Wu Q., Cai Y., Xu S. H., Lin X. F.,Chem. Commun., 17 (2004), 2006–2007.

Yin D., Purpero V. M., Fujii R., Jing Q., Kazlauskas R. J.,Chem. Eur., J., 19 (2013), 3037–3046. Yuryev R., BriechleS., Gruber-Khadjawi M., Griengl H., Liese A., ChemCatChem,2 (2010), 981–986.

Zandvoort E., Geertsema E. M., Baas B., Quax W. J.,Poelarends G. J., Angew. Chem. Int. Ed., 51 (2012),1240–1243.

Zheng H., Mei Y. J., Du K., Shi Q. Y., Zhang P. F., Catal.Lett., 143 (2013), 298–301.

14 Chapter 14: Micromagnetic Porous andNon-Porous Biocatalyst Carriers

Arica M. Y., Altintas B., Bayramoglu G., Bioresour.Technol., 100 (2009), 665–669.

Atkinson B., Davies I. J., Trans. Chem. Eng., 52 (1974),248–259.

Ayhan F., Ayhan H., Piskin E., Tanyolac A., Bioresour.Technol., 81 (2002), 131–140.

Betancor L. M., Fuentes M., Dellamora-Ortiz G.,Lopez-Gallego F., Hidalgo A., Alonso-Morales N., Mateo C.,Guisan J. M., Fernandez-Lafuente R., J. Mol. Catal. B:Enzymatic, 32 (2005), 97–101.

Bortone N., Fidaleo M., Moresi M., Biotechnol. Progr., 28(2012), 1232–1244.

Bortone N., Fidaleo M., Moresi M., Chem. Eng. Transact., 32(2013), 1129–1134.

Bozhinova D., Galunsky B., Yueping G., Franzreb M., KosterR., Kasche V., Biotechnol. Lett., 26 (2004), 343–350.

Buchholz K., Kasche V., Bornscheuer U. T., BiocatalystsEnzyme Technol., Wiley-VCH, Weinheim (2005).

Chaplin M. F., Bucke C., Enzyme Technol., CambridgeUniversity Press, Cambridge (1990).

Clark D. S., Bailey J. E., Biotechnol. Bioeng., 79 (2002),539–549.

Damköhler G. Z., Elektrochem. Angew. Phys. Chem., 43(1937), 1–8.

Dincer A., Telefoncu A., J. Mol. Catal. B: Enzymatic, 45(2007), 10–14.

Emneus J., Gorton L., Anal. Chim. Acta, 276 (1993), 319–328.

Engasser J.-M., Horvath C., J. Theor. Biol., 42 (1973),137–155.

Gao S. L., Wang Y. J., Wang T., Luo G. S., Dai Y. Y.,Bioresour. Technol., 100 (2009), 996–999.

Gleeson O., Davies G.-L., Peschiulli A., Tekoriute R.,

Gun’ko Y. K., Connon S. J., Org. Biomol. Chem., 9 (2011),7929–7940.

Guedidi S. Y., Yurekli Y. A., Deratani A. P., Dejardin P.C., Innocent C. S. A., Altinkaya S. A. S., Roudesli S. A.,Yemenicioglu A., J. Membr. Sci., 365 (2010), 59–67.

Halling P. J., Dunnill P., Enz. Microb. Technol., 2 (1980),2–10.

Hayashi T., Ikada Y., Biotechnol. Bioeng., 35 (1990),518–524.

Herndl G., Mersmann A. B., Chem. Eng. Commun., 13 (1981),23–37.

Hoffmann C., Wissenschaftliche Berichte FZKA6915,Karlsruhe, (2003).

Jia H., Zhu G., Wang P., Biotechnol. Bioeng., 84 (2003),406–414.

Kalantari M., Kazemeini M., Tabandeh F., Arpanaei A., J.Mater. Chem., 22 (2012), 8385–8393.

Kasche V., Enz. Microb. Technol., 5 (1983), 2–13.

Kheirolomoom A., Khorasheh F., Fazelinia H., J. Biosci.Bioeng., 93 (2002), 125–129.

Kim J., Grate J. W., Wang P., Chem. Eng. Sci., 61 (2006),1017–1026.

Koneracká M., Kopčanský P., Timko M., Ramchand C. N.,Saiyed Z. M., Trevan M., de Sequeira A., Immob. Enz.Cells, Humana Press, (2006), 217–228.

Liao H. D., Chen D., Yuan L., Zheng M., Zhu Y. H., Liu X.M., Carbohydr. Polym., 82 (2010), 600–604.

Liao H. D., Yuan L., Tong C.-Y., Zhu Y.-H. D., Li D., LiuX.-M., Chem. J. Chin. Univ., 8 (2008), 1564–1568.

Lu A.-H., Salabas E. L., Schüth F., Angew. Chem. Int. Ed.,46 (2007), 1222–1244.

Magario I., Ma X., Neumann A., Syldatk C., Hausmann R., J.Biotechnol., 134 (2008), 72–78.

Mateo C., Palomo J. M., Fernandez-Lorente G., Guisan J. M.,

FernandezLafuente R., Enz. Microb. Technol., 40 (2007),1451–1463.

Montes T., Grazú V., Manso I., Galán B., López-Gallego F.,González R., Hermoso J. A., García J. L., Guisán J. M.,Fernández-Lafuente R., Adv. Synth. Catal., 349 (2007),459–464.

Netto, C. G. C. M., H. E. Toma H. E., Andrade L. H., J.Mol. Catal. B: Enzymatic, 86 (2012), 71–92.

Oh J.-T., Kim J.-H., Enz. Microb. Technol., 27 (2000),356–361.

Park H. J., McConnell J. T., Boddohi S., Kipper M. J.,Johnson P. A., Colloids Surf. B, 83 (2011), 198–203.

Pich A., Bhattacharya S., Adler H. J.-P., Wage T.,Taubenberger A., Li Z., van Pee K.-H., Böhmer U., Bley T.,Macromol. Biosci., 6 (2006), 301–310.

Robinson, P. J. P., Dunnill P. M. D., Lilly M. D.,Biotechnol. Bioeng., 15 (1973), 603–606.

Siso M. I. G., Graber M., Condoret J.-S., Combes D. J.,Chem. Technol. Biotechnol., 48 (1990), 185–200.

Thiele E. W., Industr. Eng. Chem., 31 (1939), 916–920.

Tischer W., Wedekind F., Biocatalysis-from Discovery toApplication, Springer Berlin Heidelberg, 200 (1999),95–126.

Truskey G. A., Yuan F., Katz D. F., Transport Phenomena inBiological Systems Pearson, Prentice Hall, (2004).

Walas S., Perry’s Chemical Engineers’ Handbook.,McGraw-Hill, New York (1997), 23–29.

Weisz P., Hicks J., Chem. Eng. Sci., 17 (1962), 265–275.

Weisz P. B., Science, 179 (1973), 433–440.

Wheeler A., Adv. Catal., 3 (1951), 249–327.

Wu Y., Wang Y., Luo G., Dai Y., Bioresour. Technol., 100(2009), 3459–3464.

Yamane T., J. Ferment. Technol., 59 (1981), 375–381.

Zhu Y., Kaskel S., Shi J., Wage T., van Pee K.-H., Chem.Mater., 19 (2007), 6408–6413.

15 Chapter 15: Robust Enzyme Preparationsfor Industrial Application

Krastanov A., Blazheva D., Stanchev V., Proc. Biochem., 42(2007), 1655–1659. Lee H. C., Kim J. H., Kim S. Y., Lee J.K., Appl. Environ. Microbiol., 74 (2008), 5183–5194.

Liese A., Seelbach K., Wandrey C. (eds.), IndustrialBiotransformations, Wiley-VCH, Weinheim, 2006. Lina B. A.R., Jonker D., Kozianowski G., Food Chem. Toxicol., 40(2002), 1375–1381.

Lorenz S., Weidenhagen R., Zeitschr. Zuckerind., 7 (1957),533–534.

Lu J., Nie K., Xie F., Wang F., Tan T., Proc. Biochem., 42(2007), 1367–1370. Lutz S., Bornscheuer U. T. (eds.),Protein Engineering Handbook, Wiley-VCH, Weinheim, 2008.Margaritis A., Kilonzo P. M., Production of ethanol usingimmobilised cell bioreactor systems, in Application ofCell Immobilisation Biotechnology (Nedovic V., WillaertR., eds.), Springer, New York, 2005.

Mariotti M. P., Yamanaka H., Araujo A. R., Trevisan H. C.,Braz. Arch. Biol. Technol., 51 (2008), 1233–1240.

McAllister M., Kelly C. T., Doyle E., Fogarty W. M.,Biotechnol. Lett., 12 (1990), 667–672.

Migneault I., Bertrand M. J., Waldron K. C., BioTechiques,37 (2004), 790–802.

Mühlhaus R., Jupke A., Mehrwald A., Fett/Lipid, 99 (1997),392–399. Nieguth R., Eckstein M., Thum O.,Ansorge-Schumacher M. B., Adv. Synth. Catal., 353 (2011),2522–2528.

Nieguth R., Wiemann L. O., Weißhaupt P., Eckstein M., ThumO., AnsorgeSchumacher M. B., Chem.Ing.Tec., 1–2 (2010),35–42. Oliveira C., Guimaraes P. M. R., Domingues L.,Biotechnol. Adv., 29 (2011), 600–609. Parker K., Salas M.,Nwosu V. C., Biotechnol. Mol. Biol. Rev., 5 (2010), 71–78.Parmar A., Kumar H., Marwaha S. S.,Kennedy J. F.,Biotechnol. Adv., 18 (2000), 289–301.

Parmjit S., Panesar S. K., Panesar R., Enzyme Res., 2010(2010), 1–15. Poulsen P. B., Biotechnol. Gen. Eng. Rev., 1(1984), 121–140.

Ravaud S., Robert X., Watzlawick H., Haser R., Mattes R.,

Aghajari N., FEBS Lett., 583 (2009), 1964–1968. Samanta T.B., Ind. J. Biotechnol., 11 (2012), 7–15.

Sarkki M.-L., Heikkilä H., Viljava T., EP0915986B1, 1997.Schiweck H., Alimenta, 19 (1980), 5–16.

Schiweck H., Bär A., Vogel R., Schwarz E., Kunz M., SugarAlcohols, Wiley-VCH, Weinheim, 2005. Schroen C. G. P. H.,Nierstrasz V. A., Kroon P. J., Bosma R., Janssen A. E. M.,Enzyme Microb. Technol., 24 (1999), 498–506.

Süddeutsche-Zucker-Aktiengesellschaft, DE1049800B, 1959.Sudhakaran V. K., Borkar P. S., Hindustan Antibiotic Bull.,27 (1985), 63– 119.

Tan T. W., Chen B. Q., Ye H., Biochem. Eng. J., 29 (2006),41–45. Thum O., Tenside Surf. Det., 41 (2004), 287–290.

Thum O., Ansorge-Schumacher M. B., Wiemann L. O., Buthe A.,EP2011865B1, 2009.

Thum O., Hilterhaus L., Liese A., EP2080807A2, 2009. ThumO., Oxenbøll K. M., SOFW J., 134 (2008), 44–47.

Tufvesson P., Lima-Ramos J., Nordblad M., Woodley J. M.,Org. Proc. Res. Dev., 15 (2011), 266–274. van den Sandt E.J. A. X., deVroom E., Chim. Oggi, 18 (2000), 72–75. vanLangen L. M., de Vroom, E. D., Rantwijk F. V., Sheldon R.A., FEBS Lett., 456 (1999), 89–92.

Vasic-Racki D., History of Industrial Biotransformations:Dreams and Realities, in Industrial Biotransformations(Liese A., Wandrey C., eds.), Wiley-VCH, Weinheim, 2006.Veronese T., Perlot P., FEBS Lett., 441 (1998), 348–352.Volpato G., Rodrigues R. C., Fernandez-Lafuente R., Curr.Med. Chem., 17 (2010), 3855–3865.

Wager S. A., Jekel P. A., Janssen D. B., Enzyme Microb.Technol., 40 (2007), 1335–1344.

Wallenfels K., Weil R., The Enzymes. 3rd ed. (Boyer P. D.,ed.) 7 (1972), pp. 617–663.

Weber S. S., Bovenberg R. A., Driessen A. J. M.,Biotechnol. J., 7 (2012), 225 –236.

Weissenburger H. W. O., Hoeven M. G. V. D., Recl. Trav.Chim. Pays-Bas, 89 (1970), 1081–1084.

White J. S., Am. J. Clin. Nutr., 88 (2008), 1716S–1721S.

Wiemann L. O., Nieguth R., Eckstein M., Naumann M., ThumO., AnsorgeSchumacher M. B., ChemCatChem, 1 (2009),455–462.

Wiemann L. O., Weißhaupt P., Nieguth R., Thum O.,Ansorge-Schumacher M. B., Org. Proc. Res. Dev., 13 (2009),617–620.

Windisch S., Zeitschr. Zuckerind., 9 (1958), 446.

Wu L., Birch R. G., J. Appl. Microbiol., 97 (2004), 93–103.

Yoshiyuki T., US3689362A, 1972.

16 Chapter 16: Hydrolases inNon-Conventional Media: Implications forIndustrial Biocatalysis

Adlercreutz P., Chem. Soc. Rev., 42 (2013), 6406–6436 AllenD. R., Mozhaev V. V., Valivety R. H. (2006), PatentUS7067291. Almarsson O., Klibanov A. M., Biotechnol.Bioeng., 49 (1996), 87–92. Ammazzalorso A., Amoroso R.,Bettoni G., De Filippis B., Fantacuzzi M., Giampietro L.,Maccallini C., Tricca M. L., Chirality, 20 (2008), 115–118.Attri P., Venkatesu P., Kumar A., Phys. Chem. Chem. Phys.,13 (2011), 2788–2796. Batistella L., Ustra M. K., RichettiA., Pergher S. B. C., Treichel H., Oliveira J. V., LerinL., Oliveira D., Bioprocess Biosyst. Eng., 35 (2012),351–358. Beier P., O’Hagan D., Chem. Commun., 16 (2002),1680–1681. Berberich J. A., Kaar J. L., Russell A. J.,Biotechnol. Prog., 19 (2003), 1029–1032. Blanchard L. A.,Brennecke J. F., Ind. Eng. Chem. Res., 40 (2001), 287–292.Borse B. N., Borude V. S., Shukla S. R., Curr. Chem. Lett.,1 (2012), 59–68. Cantone S., Hanefeld U., Basso A., GreenChem., 9 (2007), 954–971. Carrea G., Ottolina G., Riva S.,Trends Biotechnol., 13 (1995), 63–70. Carrea G., Riva S.,Angew. Chem. Int. Ed., 39 (2000), 2226–2254. Carrea G.,Riva S., Asymmetric Organic Synthesis with Enzymes. (GotorV, Alfonso I, Garcia-Urdiales E., ed.), Wiley-VCH VerlagGmbH & Co. KGaA; (2008), 1–20. Chakravorty D.,Parameswaran S., Dubey V. K., Patra S., Appl. Biochem.Biotechnol., 167 (2012), 439–461. Cheng Y. C., Tsai S. W.,Tetrahedron Asymm., 15 (2004), 2917–2920. Cherif S.,Gargouri Y., Bioresour. Technol., 101 (2010), 3732–3736.Clouthier C. M., Pelletier J. N., Chem. Soc. Rev., 41(2012), 1585. Cull S. G., Holbrey J. D., Vargas-Mora V.,Seddon K. R., Lye G. J., Biotechnol. Bioeng., 69 (2000),227–233. Dabirmanesh B., Daneshjou S., Sepahi A. A.,Ranjbar B., Khavari-Nejad R. A., Gill P., Heydari A.,Khajeh K., Int. J. Biol. Macromol., 48 (2011), 93–97.Damborsky J., Rorije E., Jesenska A., Nagata Y., KlopmanG., Peijnenburg W. J., Environ. Toxicol. Chem. Setac, 20(2001), 2681–2689.

De Diego T., Lozano P., Abad M. A., Steffensky K., VaultierM., Iborra J. L., J. Biotechnol., 140 (2009), 234–241. DeLos Rios A. P., Hernandez-Fernandez F. J., Martinez F. A.,Rubio M., Villora G., Biocatal. Biotransformation, 25(2007), 151–156.

Dhake K. P., Deshmukh K. M., Patil Y. P., Singhal R. S.,Bhanage B. M., J. Biotechnol., 156 (2011), 46–51. DochertyK. M., Charles F., Kulpa J., Green Chem., 7 (2005),185–189. Dolman M., Thalling P. J., Moore B. D.,

Biotechnol. Bioeng., 55 (1997), 278–282. Doukyu N., OginoH., Biochem. Eng. J., 48 (2010), 270–282. Eckstein M.,Sesing M., Kragl U., Adlercreutz P., Biotechnol. Lett., 24(2002a), 867–872. Eckstein M., Wasserscheid P., Kragl U.,Biotechnol. Lett., 24 (2002b), 763–767.

Engel P., Mladenov R., Wulfhorst H., Jäger G., Spiess A.C., Green Chem., 12 (2010), 1959–1966. Erbeldinger M.,Mesiano A. J., Russell A. J., Biotechnol. Prog., 16 (2000),1129–1131. Fan Y., Qian J., J. Mol. Catal. B Enzym., 66(2010), 1–7. Faulds C. B., Pérez-Boada M., Martínez A. T.,Bioresour. Technol., 102 (2011), 4962–4967.

Fischer F., Mutschler J., Zufferey D., J. Ind. Microbiol.Biotechnol., 38 (2011), 477–487. Fitzpatrick P. A.,Klibanov A. M., J. Am. Chem. Soc., 113 (1991), 3166–3171.Freemantle M., Chem. Eng. News Arch., 76 (1998), 32–37.Garcia S., Lourenço N. M. T., Lousa D., Sequeira A. F.,Mimoso P., Cabral J. M. S., Afonso C. A. M., Barreiros S.,Green Chem., 6 (2004), 466–470. Ghanem A., Aboul-Enein H.Y., Tetrahedron Asymm., 15 (2004), 3331–3351. Gorke J. T.,Okrasa K., Louwagie A., Kazlauskas R. J., Srienc F., J.Biotechnol., 132 (2007), 306–313. Gorke J. T., Srienc F.,Kazlauskas R. J., Chem. Commun., 10 (2008), 1235–1237.Graber M., Irague R., Rosenfeld E., Lamare S., Franson L.,Hult K., Biochim. Biophys. Acta BBA, 1774 (2007),1052–1057. Gremos S., Kekos D., Kolisis F., Bioresour.Technol., 115 (2012), 96–101. Griebenow K., Klibanov A. M.,Proc. Natl. Acad. Sci. U.S.A., 92 (1995), 10969–10976.Griebenow K., Klibanov A. M., J. Am. Chem. Soc., 118(1996), 11695–11700. Gubicza L., Kelemen-Horvàth I., J.Mol. Catal., 84 (1993), L27–L32. Ha S. H., Anh T. V., LeeS. H., Koo Y. M., Bioprocess Biosyst. Eng., 35 (2012),235–240.

Hanson R. L., Banerjee A., Comezoglu F. T., Mirfakhrae K.D., Patel R. N., Szarka L. J., Tetrahedron Asymm., 5(1994), 1925–1934. Hansen T. V., Waagen V., Partali V.,Anthonsen H. W., Anthonsen T., Tetrahedron Asymm., 6(1995), 499–504. Herbst D., Peper S., Niemeyer B., J.Biotechnol., 162 (2012), 398–403. Hildebrand J. H., CochranD. R. F., J. Am. Chem. Soc., 71 (1949), 22–25. Hobbs H. R.,Thomas N. R., Chem. Rev., 107 (2007), 2786–2820.Housaindokht M. R., Bozorgmehr M. R., Monhemi H., J.Supercrit. Fluids, 63 (2012), 180–186.

Hungerhoff B., Sonnenschein H., Theil F., Angew. Chem. Int.Ed., 40 (2001), 2492–2494. Iyer P. V., Ananthanarayan L.,Process Biochem., 43 (2008), 1019–1032. Jiang Y., Xia H.,Guo C., Mahmood I., Liu H., Biotechnol. Prog., 23 (2007),

829–835. Kaar J. L., Jesionowski A. M., Berberich J. A.,Moulton R., Russell A. J., J. Am. Chem. Soc., 125 (2003),4125–4131. Kaftzik N., Wasserscheid P., Kragl U., Org.Process Res. Dev., 6 (2002), 553–557. Kamiya N.,Matsushita Y., Hanaki M., Nakashima K., Narita M., GotoM., Takahashi H., Biotechnol. Lett., 30 (2008), 1037–1040.Kawashiro K., Sugahara H., Sugiyama S., Hayashi H.,Biotechnol. Bioeng., 53 (1997), 26–31. Ke T., Wescott C.R., Klibanov A. M., J. Am. Chem. Soc., 118 (1996),3366–3374. Kidd R. D., Sears P., Huang D. H., Witte K.,Wong C. H., Farber G. K., Protein Sci. Public. ProteinSoc., 8 (1999), 410–417. Kim K. W., Song B., Choi M. Y.,Kim M. J., Org. Lett., 3 (2001), 1507–1509. King J. W.,Snyder J. M., Frykman H., Neese A., Eur. Food Res.Technol., 212 (2001), 566–569. Klibanov A., TrendsBiotechnol., 15 (1997), 97–101. Klibanov A. M., Nature, 409(2001), 241–246. Klibanov A. M., Kirchner G. (1986), PatentUS4601987. Koudelakova T., Bidmanova S., Dvorak P., PavelkaA., Chaloupkova R., Prokop Z., Damborsky J., Biotechnol.J., 8 (2013), 32–45. Kurata A., Kitamura Y., Irie S.,Takemoto S., Akai Y., Hirota Y., Fujita T., Iwai K.,Furusawa M., Kishimoto N., J. Biotechnol., 148 (2010),133–138. Laane C., Biocatal., Biotransformation, 1 (1987),17–22.

Lal R., Pandey G., Sharma P., Kumari K., Malhotra S.,Pandey R., Raina V., Kohler H. P. E., Holliger C., JacksonC., et al., Microbiol. Mol. Biol. Rev., 74 (2010), 58–80.Lee S. H., Doherty T. V., Linhardt R. J., Dordick J. S.,Biotechnol. Bioeng., 102 (2009), 1368–1376. Lee J. K., KimM. J., J. Mol. Catal. B Enzym., 68 (2011), 275–278. Lee J.H., Kim S. B., Kang S. W., Song Y. S., Park C., Han S. O.,Kim S. W., Bioresour. Technol., 102 (2011), 2105–2108.Leon R., Fernandes P., Pinheiro H. M., Cabral J. M. S.,Enzyme Microb. Technol., 23 (1998), 483–500. Li C., J.Mol. Catal. B Enzym., 55 (2008), 152. Lindberg D., de laFuente Revenga M., Widersten M., J. Biotechnol., 147(2010), 169–171. Liu Y. Y., Lou W. Y., Zong M. H., Xu R.,Hong X., Wu H., Biocatal. Biotransformation, 23 (2005),89–95. Lou W. Y., Zong M. H., Liu Y. Y., Wang J. F., J.Biotechnol., 125 (2006a), 64–74. Lou W. Y., Zong M. H.,Smith T. J., Wu H., Wang J. F., Green Chem., 8 (2006b),509–512. Lou W. Y., Zong M. H., Wu H., Xu R., Wang J. F.,Green Chem., 7 (2005), 500–506. Lozano P., Green Chem., 12(2010), 555. Madeira Lau R., Van Rantwijk F., Seddon K. R.,Sheldon R. A., Org. Lett., 2 (2000), 4189–4191. MagnusonD. K., Bodley J. W., Evans D. F., J. Solut. Chem., 13(1984), 583–587. Malhotra S. V., Zhao H., Chirality, 17(2005), S240–S242. Marques M. P. C., Lourenco N. M. T.,Fernandes P., de Carvalho C. C. C. R., Green Solvents I:

Properties and Applications in Chemistry. Springer;(2012), 121–146. Marsh K., Boxall J., Lichtenthaler R.,Fluid Phase Equilibria, 219 (2004), 93–98. Maruyama T.,Kotani T., Yamamura H., Kamiya N., Goto M., Org. Biomol.Chem., 2 (2004), 524–527. Matsuda T., J. Biosci. Bioeng.,115 (2013), 233–241. Matsuda T., Kanamaru R., Watanabe K.,Kamitanaka T., Harada T., Nakamura K., Tetrahedron Asymm.,14 (2003), 2087–2091.

Matsuda T., Watanabe K., Harada T., Nakamura K., Arita Y.,Misumi Y., Ichikawa S., Ikariya T., Chem. Commun. Camb.Engl., 20 (2004), 2286–2287. Mattos C., Ringe D., Curr.Opin. Struct. Biol., 11 (2001), 761–764. Mohapatra S. C.,Hsu J. T., Biotechnol. Bioeng., 64 (1999), 213–220.Moniruzzaman M., Kamiya N., Goto M., Org. Biomol. Chem., 8(2010), 2887–2899. Morrison H. G., Sun C. C., NeervannanS., Int. J. Pharm., 378 (2009), 136–139. Mozga T., ProkopZ., Chaloupkova R., Damborsky J., Collect. Czechoslov.Chem. Commun., 74 (2009), 1195–1278. Mozhaev V. V.,Khmelnitsky Y. L., Sergeeva M. V., Belova A. B., KlyachkoN. L., Levashov A. V., Martinek K., Eur. J. Biochem., 184(1989), 597–602. Nakamura K., Takebe Y., Kitayama T., OhnoA., Tetrahedron Lett., 32 (1991), 4941–4944. Nakashima K.,Maruyama T., Kamiya N., Goto M., Org. Biomol. Chem., 4(2006), 3462–3467. Nishino T., Kotera M., Suetsugu M.,Murakami H., Urushihara Y., Polymer, 52 (2011), 830–836.Ogino, G., Yamada, S., Yasuda, I., Biochem. Eng. J., 5(2000), 219–223. Ogino H., Watanabe F., Yamada M., NakagawaS., Hirose T., Noguchi A., Yasuda M., Ishikawa H., J.Biosci. Bioeng., 87 (1999), 61–68. Pan S., Liu X., Xie Y.,Yi Y., Li C., Yan Y., Liu Y., Bioresour. Technol., 101(2010), 9822–9824. Park S., Kazlauskas R. J., Curr. Opin.Biotechnol., 14 (2003), 432–437. Patel R. N., Curr. Opin.Biotechnol., 12 (2001), 587–604. Patel R. N., Banerjee A.,Pendri Y. R., Liang J., Chen C. P., Mueller R., TetrahedronAsymm., 17 (2006), 175–178. Paulus W., Hauer B., Haring D.,Dietsche F. (2006), Patent US20060030013. Pazhang M.,Khajeh K., Ranjbar B., Hosseinkhani S., J. Biotechnol., 127(2006), 45–53. Persson M., Costes D., Wehtje E.,Adlercreutz P., Enzyme Microb. Technol., 30 (2002),916–923. Pfruender H., Amidjojo M., Kragl U., Weuster-BotzD., Angew. Chem. Int. Ed., 43 (2004), 4529–4531. ProkopZ., Oplustil F., DeFrank J., Damborsky J., Biotechnol. J.,1 (2006), 1370–1380. Raminelli C., Comasseto J. V.,Andrade L. H., Porto A. L. M., Tetrahedron Asymm., 15(2004), 3117–3122.

Reetz M. T., Wiesenhofer W., Francio G., Leitner W., Chem.Commun. Camb. Engl., 9 (2002), 992–993. Roberts N. J.,Seago A., Carey J. S., Freer R., Preston C., Lye G. J.,

Green Chem., 6 (2004), 475. Romero M. D., Calvo L., AlbaC., Daneshfar A., Ghaziaskar H. S., Enzyme Microb.Technol., 37 (2005), 42–48. Ross A. C., Bell G., Halling P.J., Biotechnol. Bioeng., 67 (2000), 498–503. Rossi R. F.Jr., Zepp C. M., Heefner D. L. (1996), Patent US5529929.Ruß C., Konig B., Green Chem., 14 (2012), 2969–2982. SchmidA., Dordick J. S., Hauer B., Kiener A., Wubbolts M.,Witholt B., Nature, 409 (2001), 258–268. Schofer S. H.,Kaftzik N., Wasserscheid P., Kragl U., Chem. Commun., 5(2001), 425–426. Sellek G. A., Chaudhuri J. B., EnzymeMicrob. Technol., 25 (1999), 471–482. Serdakowski A. L.,Dordick J. S., Trends Biotechnol., 26 (2008), 48–54.Shipovskov S., Biotechnol. Prog., 24 (2008), 1262–1266.Siirola E., Grischek B., Clay D., Frank A., Grogan G.,Kroutil W., Biotechnol. Bioeng., 108 (2011), 2815–2822.Simon L. M., Kotorman M., Szabo A., Nemcsok J., Laczko I.,Process Biochem., 42 (2007), 909–912. Singh M., Singh R.S., Banerjee U. C., J. Mol. Catal. B Enzym., 56 (2009),294–299. Stepankova V., Damborsky J., Chaloupkova R.,Biotechnol. J., 8 (2013a), 719–729. Stepankova V., KhabiriM., Brezovsky J., Pavelka A., Sykora J., Amaro M., MinofarB., Prokop Z., Hof M., Ettrich R., et al., ChemBioChem, 14(2013b), 819–827. Stucki G., Thueer M., Environ. Sci.Technol., 29 (1995), 2339–2345. Thomas M. F., Li L. L.,Handley-Pendleton J. M., van der Lelie D., Dunn J. J.,Wishart J. F., Bioresour. Technol., 102 (2011),11200–11203. Torres S., Castro G. R., Food Technol.Biotechnol., 2004 (2004), 271–277. Toth K., Sedlak E.,Musatov A., Zoldak G., J. Mol. Catal. B Enzym., 64 (2010),60–67. Tsuzuki W., Ue A., Nagao A., Biosci. Biotechnol.Biochem., 67 (2003), 1660–1666.

Ulbert O., Frater T., Belafi-Bako K., Gubicza L., J. Mol.Catal. B Enzym., 31 (2004), 39–45.

Ventura S. P. M., Santos L. D. F., Saraiva J. A., CoutinhoJ. A. P., World J. Microbiol. Biotechnol., 28 (2012),2303–2310.

Visser A. E., Swatloski R. P., Reichert W. M., Mayton R.,Sheff S., Wierzbicki A., Davis J. H. Jr, Rogers R. D.,Environ. Sci. Technol., 36 (2002), 2523–2529. Wallert S.,Drauz K., Grayson I., Groger H., Maria P. D. de, Bolm C.,Green Chem., 7 (2005), 602–605. Wang Y., Li Q., Zhang Z.,Ma J., Feng Y., J. Mol. Catal. B Enzym., 56 (2009),146–150. Wasserscheid, K., Angew. Chem. Int. Ed., 39(2000), 3772–3789. Watanabe K., Ueji S., J. Chem. Soc.Perkin 1, 12 (2001), 1386–1390. Watanabe K., Yoshida T.,Ueji S., Bioorganic Chem., 32 (2004), 504–515. WeingartnerH., Angew. Chem. Int. Ed., 47 (2008), 654–670. Wescott C.

R., Noritomi H., Klibanov A. M., J. Am. Chem. Soc., 118(1996), 10365–10370. Westerbeek A., Szymanski W., Wijma H.J., Marrink S. J., Feringa B. L., Janssen D. B., Adv.Synth. Catal., 353 (2011), 931–944. Weuster-Botz D., Chem.Rec. New York N, 7 (2007), 334–340. Xia X., Wang Y. H.,Yang B., Wang X., Biotechnol. Lett., 31 (2009), 83–87. XinJ., Zhao Y., Zhao G., Zheng Y., Ma X., Xia C., Li S.,Biocatal. Biotransformation, 23 (2005), 353–361. Xu K.,Klibanov A. M., J. Am. Chem. Soc., 118 (1996), 9815–9819.Yang R. L., Li N., Zong M. H., J. Mol. Catal. B Enzym., 74(2012), 24–28. Yang Z., Yue Y. J., Huang W. C., Zhuang X.M., Chen Z. T., Xing M., J. Biochem. (Tokyo), 145 (2009),355–364. Yang Z., Yue Y. J., Xing M., Biotechnol. Lett., 30(2008), 153–158. Yoon J. H., Mckenzie D., Enzyme Microb.Technol., 36 (2005), 439–446. Zaks A., Klibanov A.,Science, 224 (1984), 1249–1251. Zaks A., Klibanov A. M.,Proc. Natl. Acad. Sci. U.S.A., 82 (1985), 3192–3196. ZaksA., Klibanov A. M., J. Am. Chem. Soc., 108 (1986),2767–2768. Zaks A., Klibanov A. M., J. Biol. Chem., 263(1988), 8017–8021. Zhang T., Datta S., Eichler J., IvanovaN., Axen S. D., Kerfeld C. A., Chen F., Kyrpides N.,Hugenholtz P., Cheng J. F., et al., Green Chem., 13 (2011),2083–2090. Zhao H., J. Mol. Catal. B Enzym., 37 (2005),16–25.

Zhao H., Baker G. A., Holmes S., Org. Biomol. Chem., 9(2011a), 1908. Zhao H., Baker G. A., Holmes S., J. Mol.Catal. B Enzym., 72 (2011b), 163–167. Zhao H., Campbell S.M., Jackson L., Song Z., Olubajo O., Tetrahedron Asymm.,17 (2006), 377–383. Zhao H., Zhang C., Crittle T. D., J.Mol. Catal. B Enzym., 85–86 (2013), 243–247. Zhou L., WuJ., Hu X., Zhi X., Liao X., J. Agric. Food Chem., 57(2009), 1890–1895.

17 Chapter 17: Ene-Reductases fromCyanobacteria for Industrial Biocatalysis

Barna T., Messiha H. L., Petosa C., Bruce N. C., ScruttonN. S., Moody P. C. E., J. Biol. Chem., 277 (2002),30976–30983.

Barna T. M., Khan H., Bruce N. C., Barsukov I., Scrutton N.S., Moody P. C., J. Mol. Biol., 310 (2001), 433–447.

Bechtold M., Brenna E., Femmer C., Gatti F..G., Panke S.,Parmeggiani F., Sacchetti A., Org. Process Res. Dev., 16(2012), 269–276.

Blehert D. S., Fox B. G., Chambliss G. H., J. Bacteriol.,181 (1999), 6254–6263.

Bonrath W., Medlock J., Schütz J., Wüstenberg B., NetscherT., Hydrogenation. In Tech (2012), 69–90.

Bougioukou D. J., Walton A. Z., Stewart J. D., Chem.Commun. (Camb), 46 (2010), 8558–8560.

Bräutigam S., Dennewald D., Schürmann M., Lutje-SpelbergJ., Pitner W.-R., Weuster-Botz D., Enz. Microb. Technol.,45 (2009), 310–316.

Breithaupt C., Kurzbauer R., Schaller F., Stintzi A.,Schaller A., Huber R., Macheroux P., Clausen T., J. Mol.Biol., 392 (2009), 1266–1277.

Brenna E., Cosi S. L., Ferrandi E. E., Gatti F. G., MontiD., Parmeggiani F., Sacchetti A., Org. Biomol. Chem., 11(2013a), 2988–2996.

Brenna E., Fronza G., Fuganti C., Gatti F. G., Manfredi A.,Parmeggiani F., Ronchi P., J. Mol. Catal. B-Enzymatic, 84(2012a), 94–101.

Brenna E., Fronza G., Fuganti C., Monti D., Parmeggiani F.,J. Mol. Catal. B-Enzymatic, 73 (2011a), 17–21.

Brenna E., Fuganti C., Gatti F. G., Parmeggiani F.,Tetrahedron: Asymmetry, 20 (2009), 2694–2698.

Brenna E., Gatti F. G., Malpezzi L., Monti D., ParmeggianiF., Sacchetti A., J. Org. Chem., 78 (2013b), 4811–4822.

Brenna E., Gatti F. G., Manfredi A., Monti D., ParmeggianiF., Eur. J. Org. Chem., 2011 (2011b), 4015–4022.

Brenna E., Gatti F. G., Manfredi A., Monti D., ParmeggianiF., Org. Process Res. Dev., 16 (2012b), 262–268.

Brenna E., Gatti F. G., Manfredi A., Monti D., ParmeggianiF., Adv. Synth. Catal., 354 (2012c), 2859–2864.

Brenna E., Gatti F. G., Monti D., Parmeggiani F., SacchettiA., Chem.Cat.Chem, 4 (2012d), 653–659.

Brenna E., Gatti F. G., Monti D., Parmeggiani F., SacchettiA., Chem. Commun. (Camb), 48 (2012e), 79–81.

Brige A., Van den Hemel D., Carpentier W., De Smet L., VanBeeumen J. J., Biochem. J., 394 (2006), 335–344.

Chaparro-Riggers J. F., Rogers T. A., Vazquez-Figueroa E.,Polizzi K. M., Bommarius A. S., Adv. Synth. Catal., 349(2007), 1521–1531.

Choi D.-S., Huang S., Huang M., Barnard T. S., Adams R. D.,Seminario J. M., Tour J. M., J. Org. Chem., 63 (1998),2646–2655.

Clish C. B., Levy B. D., Chiang N., Tai H.-H., Serhan C.N., J. Biol. Chem., 275 (2000), 25372–25380.

De Rouville H.-P. J., Vives G., Tur E., Crassous J.,Rapenne G., New J. Chem., 33 (2009), 293–299.

Dennewald D., Pitner W.-R., Weuster-Botz D., ProcessBiochem., 46 (2011), 1132–1137.

Dobbs D. A., Vanhessche K. P. M., Brazi E., RautenstrauchV., Lenoir J.-Y., Genêt J.-P., Wiles J., Bergens S. H.,Angew. Chem. Int. Ed., 39 (2000), 1992–1995.

Ducat D. C., Way J. C., Silver P. A., 2011. TrendsBiotechnol., 29 (2011), 95–103.

Durchschein K., Fabian W. M. F., Macheroux P., Zangger K.,Trimmel G., Faber K., Org. Biomol. Chem., 9 (2011),3364–3369.

Durchschein K., Ferreira-da Silva B., Wallner S., MacherouxP., Kroutil W., Glueck S. M., Faber K., Green Chem., 12(2010), 616–619.

Durchschein K., Wallner S., Macheroux P., Schwab W.,Winkler T., Kreis W., Faber K., Eur. J. Org. Chem., 2012

(2012a), 4963–4968.

Durchschein K., Wallner S., Macheroux P., Zangger K.,Fabian W. M., Faber K., ChemBioChem, 13 (2012b),2346–2351.

Ehira S., Teramoto H., Inui M., Yukawa H., Microbiology,156 (2010): 1335–1341.

Fichan I., Larroche C., Gros J. B., J. Chem. Eng. Data, 44(1999), 56–62.

Fitzpatrick T. B., Amrhein N., Macheroux P., J. Biol.Chem., 278 (2003), 19891–19897.

Fitzpatrick T. B., Auweter S., Kitzing K., Clausen T.,Amrhein N., Macheroux P., Protein Expr. Purif., 36 (2004),280–291.

Fox K. M., Karplus P. A., Structure, 2(1994), 1089–1105.French C. E., Bruce N. C., Biochem. J., 301 (1994), 97–103.

Fryszkowska A., Fisher K., Gardiner J. M., Stephens G. M.,J. Org. Chem., 73 (2008), 4295–4298.

Fryszkowska A., Toogood H. S., Mansell D., Stephens G.,Gardiner J. M., Scrutton N. S., FEBS J., 279 (2012),4160–4171.

Fryszkowska A., Toogood H., Sakuma M., Gardiner J. M.,Stephens G. M., Scrutton N. S., Adv. Synth. Catal., 351(2009), 2976–2990.

Fu Y., Castiglione K., Weuster-Botz D., Biotechnol.Bioeng., 110 (2013), 1293–1301.

Fu Y., Hoelsch K., Weuster-Botz D., Process Biochem., 47(2012), 1988–1997.

Gao X., Ren J., Wu Q., Zhu D., Enzyme Microb. Technol., 51(2012), 26–34.

Goldberg K., Schroer K., Lutz S., Liese A., Appl.Microbiol. Biotechnol., 76 (2007), 249–255.

Goretti M., Ponzoni C., Caselli E., Marchigiani E.,Cramarossa M. R., Turchetti B., Buzzini P., Forti L,.Enzyme Microb. Technol., 45 (2009), 463–468.

Goretti M., Ponzoni C., Caselli E., Marchegiani E.,

Cramarossa M. R., Turchetti B., Forti L., Buzzini P.,Bioresour. Technol., 102 (2011), 3993–3998.

Hall M., Hauer B., Stuermer R., Kroutil W., Faber K.,Tetrahedron: Asymmetry, 17 (2006), 3058–3062.

Hall M., Stueckler C., Ehammer H., Pointner E., OberdorferG., Gruber K., Hauer B., Stuermer R., Kroutil W.,Macheroux P., et al., Adv. Synth. Catal., 350 (2008a),411–418.

Hall M., Stueckler C., Hauer B., Stuermer R., Friedrich T.,Breuer M., Kroutil W., Faber K., Eur. J. Org. Chem., 2008(2008b), 1511–1516.

Hall M., Stueckler C., Kroutil W., Macheroux P., Faber K.,Angew. Chem. Int. Ed., 46 (2007), 3934–3937.

He Y. M., Fan Q. H., Org. Biomol. Chem., 8 (2010), 2497–504.

Hildebrandt P., Musidlowska A., Bornscheuer U. T.,Altenbuchner J., Appl. Microbiol. Biotechnol., 59 (2002),483–487.

Hilker I., Gutiérrez M. C., Furstoss R., Ward J.,Wohlgemuth R., Alphand V., Nat. Protoc., 3 (2008),546–554.

Hirata T., Takarada A., Hegazy M.-E. F., Sato Y.,Matsushima A., Kondo Y., Matsuki A., Hamada H., J. Mol.Catal. B-Enzymatic, 32 (2005), 131–134.

Hoelsch K., Sührer I., Heusel M., Weuster-Botz D., Appl.Microbiol. Biotechnol., 97 (2013), 2473–2481

Hollmann F., Arends I. W. C. E., Holtmann D., Green Chem.,13 (2011), 2285–2313.

Hölsch K., Havel J., Haslbeck M., Weuster-Botz D., Appl.Environ. Microbiol., 74 (2008), 6697–6702.

Hölsch K., Weuster-Botz D, Enzyme Microb. Technol, 47(2010), 228–235.

Hult K., Berglund P., Trends Biotechnol., 25 (2007),231–238.

Kergomard A., Renard M. F., Veschambre H., J. Org. Chem.,47 (1982), 792–798.

Khan H., Harris R. J., Barna T., Craig D. H., Bruce N. C.,Munro A. W., Moody P. C. E., Scrutton N. S., J. Biol.Chem., 277 (2002), 21906–21912.

Kitzing K., Fitzpatrick T. B., Wilken C., Sawa J.,Bourenkov G. P., Macheroux P., Clausen T., J. Biol. Chem.,280 (2005), 27904–27913.

Knowles W. S., Angew. Chem. Int. Ed., 41 (2002), 1999–2007.

Kohli R. M., Massey V., J. Biol. Chem., 273 (1998),32763–32770.

Kratzer R., Pukl M., Egger S., Vogl M., Brecker L.,Nidetzky B., Biotechnol. Bioeng., 108 (2011), 797–803.

Leuenberger H. G. W., Boguth W., Widmer E., Zell R., Helv.Chim. Acta, 59 (1976), 1832–1849.

Lichty J. J., Malecki J. L., Agnew H. D.,Michelson-Horowitz D. J., Tan S., Protein Expr. Purif., 41(2005), 98–105.

List B., Yang J. W., Science, 313 (2006), 1584–1586.

Lowe J. R, Tolman W. B, Hillmyer M. A., Biomacromolecules,10 (2009), 2003–2008.

Mansell D. J., Toogood H. S., Waller J., Hughes J. M. X.,Levy C. W., Gardiner J. M., Scrutton N. S., ACS Catal., 3(2013), 370–379.

Messiha H. L., Munro A. W., Bruce N. C., Barsukov I.,Scrutton N. S., J. Biol. Chem., 280 (2005), 10695–10709.

Mueller N. J., Stueckler C., Hauer B., Baudendistel N.,Housden H., Bruce N. C., Faber K., Adv. Synth. Catal., 352(2010), 387–394.

Müller A., Hauer B., Rosche B., J. Mol. Catal. B:Enzymatic, 38 (2006), 126–130.

Müller A., Hauer B., Rosche B., Biotechnol. Bioeng., 98(2007a), 22–29.

Müller A., Stürmer R., Hauer B., Rosche B., Angew. Chem.,119 (2007b), 3380–3382. Noyori R., Angew. Chem. Int. Ed.,41 (2002), 2008–2022.

O’Brien P. J., Herschlag D., Chem. Biol., 6 (1999),

R91–R105.

Oberdorfer G., Steinkellner G., Stueckler C., Faber K.,Gruber K., Chem. Cat. Chem, 3 (2011), 1562–1566.

Ohta T., Miyake T., Seido N., Kumobayashi H., Takaya H., J.Org. Chem., 60 (1995), 357–363.

Ouellet S. G., Tuttle J. B., MacMillan D. W. C., J. Am.Chem. Soc., 127 (2005), 32–33.

Paul C. E., Gargiulo S., Opperman D. J., Lavandera I.,Gotor-Fernández V., Gotor V., Taglieber A., Arends I. W.C. E., Hollmann F., Org. Lett., 15 (2012), 180–183.

Pfruender H., Amidjojo M., Kragl U., Weuster-Botz D.,Angew. Chem. Int. Ed., 43 (2004), 4529–4531.

Pollard D. J., Woodley J. M., Trends Biotechnol., 25(2007), 66–73.

Richter N., Neumann M., Liese A., Wohlgemuth R., WeckbeckerA., Eggert T., Hummel W., Biotechnol. Bioeng., 106 (2010),541–52.

Rippka R., Deruelles J., Waterbury J. B., Herdman M.,Stanier R. Y., J. Gen. Microbiol., 111 (1979), 1–61.

Rohdich F., Wiese A., Feicht R., Simon H., Bacher A., J.Biol. Chem., 276 (2001), 5779–5787.

Schaller F., Biesgen C., Müssig C., Altmann T., Weiler E.W., Planta, 210 (2000), 979–984.

Shimoda K., Kubota N., Hamada H., Kaji M., Hirata T.,Tetrahedron Asymmetry, 15 (2004), 1677–1679.

Sikkema J., Debont J. A. M., Poolman B., Microbiol. Rev.,59 (1995), 201–222.

Silva V. D., Stambuk B. U., Nascimento M. D., J. Mol.Catal. B: Enzymatic, 77 (2012), 98–104. Simon H., PureAppl. Chem., 64 (1992), 1181–1186.

Simon A., Karl U., Expanding the scope of industrialbiocatalysis, Speciality Chemicals Magazine (January2010), 36–38.

Snape J. R., Walkley N. A., Morby A. P., Nicklin S., WhiteG. F., J. Bacteriol., 179 (1997), 7796–7802.

Stueckler C., Hall M., Ehammer H., Pointner E., Kroutil W.,Macheroux P., Faber K., Org. Lett., 9 (2007), 5409–5411.

Stueckler C., Reiter T. C., Baudendistel N., Faber K.,Tetrahedron, 66 (2010), 663–667.

Stuermer R., Hauer B., Hall M., Faber K., Curr. Opin. Chem.Biol., 11 (2007), 203–213.

Swiderska M. A., Stewart J. D., J. Mol. Catal. B:Enzymatic, 42 (2006), 52–54.

Tasnádi G., Winkler C. K., Clay D., Sultana N., Fabian W.M. F., Hall M., Ditrich K., Faber K., Chem. Eur. J., 18(2012), 10362–10367.

Tauber K., Hall M., Kroutil W., Fabian W. M., Faber K.,Glueck S. M., Biotechnol. Bioeng., 108 (2011), 1462–1467.

Tishkov V. I., Popov V. O., Biomol. Eng., 23 (2006), 89–110.

Toogood H. S., Fryszkowska A., Hare V., Fisher K.,Roujeinikova A., Leys D., Gardiner J. M., Stephens G. M.,Scrutton N. S., Adv. Synth. Catal., 350 (2008), 2789–2803.

Toogood H. S., Gardiner J. M., Scrutton N. S., ChemCatChem,2 (2010), 892–914.

Tufvesson P., Lima-Ramos J., Nordblad M., Woodley J. M.,Org. Process Res. Dev., 15 (2010), 266–274.

Utaka M., Konishi S., Mizuoka A., Ohkubo T., Sakai T.,Tsuboi S., Takeda A., J. Org. Chem., 54 (1989), 4989–4992.

Vaz A. D., Chakraborty S., Massey V., Biochemistry, 34(1995), 4246–4256.

Vermuë M., Sikkema J., Verheul A., Bakker R., Tramper J.,Biotechnol. Bioeng., 42 (1993), 747–758.

Vicenzi J. T., Zmijewski M. J., Reinhard M. R., Landen B.E., Muth W. L., Marler P. G., Enz. Microb. Technol., 20(1997), 494–499.

Warburg O., Christian W., Biochem. Z., 266 (1933), 377–411.

Wenda S., Illner S., Mell A., Kragl U., Green Chem., 13(2011), 3007–3047.

Weuster-Botz D., Chem. Rec., 7 (2007), 334–340.

Wichmann R., Vasic-Racki D., Adv. Biochem. Eng.Biotechnol., 92 (2005), 225–260.

Williams R. E., Rathbone D. A., Scrutton N. S., Bruce N.C., Appl. Environ. Microbiol., 70 (2004), 3566–3574.

Winkler C. K., Clay D., Davies S., O’Neill P., McDaid P.,Debarge S., Steflik J., Karmilowicz M., Wong J. W., FaberK., J. Org. Chem., 78 (2013), 1525–1533.

Winkler C. K., Stueckler C., Mueller N. J., Pressnitz D.,Faber K., Eur. J. Org. Chem., 33 (2010), 6354–6358.

Winkler C. K., Tasnádi G., Clay D., Hall M., Faber K., J.Biotechnol., 162 (2012), 381–389.

Wu J. T., Wu L. H., Knight J. A., Clin. Chem., 32 (1986),314–319.

Yang J. W., Hechavarria Fonseca M. T., Vignola N., List B.,Angew. Chem. Int. Ed., 44 (2004), 108–110.

Yanto Y., Winkler C. K., Lohr S., Hall M., Faber K.,Bommarius A. S., Org. Lett., 13 (2011), 2540–2543.

18 Chapter 18: Cytochrome P450Biocatalysts: Current Applications andFuture Prospects

Chen C. S., Jounaidi Y., Su T., Waxman D. J., Cancer GeneTherapy, 14 (2007), 935–944. Chen C. S., Jounaidi Y.,Waxman D. J., Drug Metabolism and Disposition: theBiological Fate of Chemicals, 33 (2005), 1261–1267. Chen C.S., Lin J. T., Goss K. A., He Y. A., Halpert J. R., WaxmanD. J., Molecular Pharmacology, 65 (2004), 1278–1285. ChenL., Waxman D. J., Current Pharmaceutical Design, 8 (2002),1405–1416. Coon M. J., Annual Review of Pharmacology andToxicology, 45 (2005), 1–25. Corsini A., Bortolini M.,Journal of Clinical Pharmacology, 53 (2013), 463–474.Damsten M. C., van Vugt-Lussenburg B. M., Zeldenthuis T.,de Vlieger J. S., Commandeur J. N., Vermeulen N. P.,Chemico-Biological Interactions, 171 (2008), 96–107.

Decloedt E. H., Maartens G., Smith P., Merry C., Bango F.,McIlleron H., PloS One, 7 (2012), e32173.

Dobrinas M., Cornuz J., Oneda B., Kohler Serra M., Puhl M.,Eap C. B., Clinical Pharmacology and Therapeutics, 90(2011), 117–125.

Doloff J. C., Su T., Waxman D. J., BMC Cancer, 10 (2010),487. Domanski T. L., Halpert J. R., Current DrugMetabolism, 2 (2001), 117–137.

Elbekai R. H., Korashy H. M., El-Kadi A. O., Current DrugMetabolism, 5 (2004), 157–167. Falck JR R. Y., Hainesa D.C., Tetrahedron Lett, 42 ( 2001), 4131–4133.

Fantuzzi A., Mak L. H., Capria E., Dodhia V., Panicco P.,Collins S., Gilardi G., Analytical Chemistry, 83 (2011),3831–3839. Fantuzzi A., Meharenna Y. T., Briscoe P. B.,Sassone C., Borgia B., Gilardi G., ChemicalCommunications, (2006), 1289–1291. Fraser A. G., ClinicalPharmacokinetics, 33 (1997), 79–90. Fujii T., Fujii Y.,Machida K., Ochiai A., Ito M., Bioscience, Biotechnology,and Biochemistry, 73 (2009), 805–810. Gannett P. M.,Kabulski J., Perez F. A., Liu Z., Lederman D., Locuson C.W., Ayscue R. R., Thomsen N. M., Tracy T. S., Journal ofthe American Chemical Society, 128 (2006), 8374–8375.

Gillam E. M., Archives of Biochemistry and Biophysics, 464(2007), 176–186.

Gillam E. M., Chemical Research in Toxicology, 21 (2008),220–231. Girvan H. M., Waltham T. N., Neeli R., Collins H.

F., McLean K. J., Scrutton N. S., Leys D., Munro A. W.,Biochemical Society Transactions, 34 (2006), 1173–1177.

Glieder A., Farinas E. T., Arnold F. H., NatureBiotechnology, 20 (2002), 1135–1139. Guengerich F. P.,Chemical Research in Toxicology, 21 (2008), 70–83.Guengerich F. P., Drug Metabolism and Pharmacokinetics, 26(2011), 3–14.

Halpert J. R., Domanski T. L., Adali O., Biagini C. P.,Cosme J., Dierks E. A., Johnson E. F., Jones J. P., Ortizde Montellano P., Philpot R. M., Sibbesen O., Wyatt W. K.,Zheng Z., Drug Metabolism and Disposition: the BiologicalFate of Chemicals, 26 (1998), 1223–1231.

Harford-Cross C. F., Carmichael A. B., Allan F. K., EnglandP. A., Rouch D. A., Wong L. L., Protein Engineering, 13(2000), 121–128. Hlavaty J., Petznek H., Holzmuller H., UrlA., Jandl G., Berger A., Salmons B., Gunzburg W. H.,Renner M., PloS One, 7 (2012), e40611.

Huang W., Johnston W. A., Hayes M. A., De Voss J. J.,Gillam E. M., Archives of Biochemistry and Biophysics, 467(2007), 193–205. Huang Z., Raychowdhury M. K., Waxman D.J., Cancer Gene Therapy, 7 (2000a), 1034–1042. Huang Z.,Roy P., Waxman D. J., Biochemical Pharmacology, 59 (2000b),961–972. Hull M. W., Montaner J. S., Annals of Medicine, 43(2011), 375–388. Hunt S., Current Opinion in MolecularTherapeutics, 3 (2001), 595–598.

Ignaszak A., Hendricks N., Waryo T., Songa E., Jahed N.,Ngece R., Al-Ahmed A., Kgarebe B., Baker P., Iwuoha E. I.,Journal of Pharmaceutical and Biomedical Analysis, 49(2009), 498–501. Inui H., Ohkawa H., Pest ManagementScience, 61 (2005), 286–291. Ishaq R., Naf C., Zebuhr Y.,Broman D., Jarnberg U., Chemosphere, 50 (2003), 1131–1150.

Isin E. M., Guengerich F. P., Biochimica et BiophysicaActa, 1770 (2007), 314–329.

Isin E. M., Guengerich F. P., Analytical and BioanalyticalChemistry, 392 (2008), 1019–1030.

Izzo A. A., Ernst E., Drugs, 69 (2009), 1777–1798.

James C. A., Xin G., Doty S. L., Strand S. E.,Environmental Science & Technology, 42 (2008), 289–293.Jennewein S., Rithner C. D., Williams R. M., Croteau R. B.,Proceedings of the National Academy of Sciences of theUnited States of America, 98 (2001), 13595–13600.

Johnston W. A., Huang W., De Voss J. J., Hayes M. A.,Gillam E. M., Journal of Biomolecular Screening, 13(2008), 135–141.

Johnston W. A., Huang W., De Voss J. J., Hayes M. A.,Gillam E. M., Drug Metabolism and Disposition: theBiological Fate of Chemicals, 35 (2007), 2177–2185.

Jones J. P., O’Hare E. J., Wong L. L., European Journal ofBiochemistry/FEBS, 268 (2001), 1460–1467. Jounaidi Y.,Chen C. S., Veal G. J., Waxman D. J., Molecular CancerTherapeutics, 5 (2006), 541–555.

Jounaidi Y., Hecht J. E., Waxman D. J., Cancer Research, 58(1998), 4391–4401. Jounaidi Y., Waxman D. J., CancerResearch, 64 (2004), 292–303. Jung S. T., Lauchli R.,Arnold F. H., Current Opinion in Biotechnology, 22 (2011),809–817.

Kan O., Griffiths L., Baban D., Iqball S., Uden M.,Spearman H., Slingsby J., Price T., Esapa M., Kingsman S.,Kingsman A., Slade A., Naylor S., Cancer Gene Therapy, 8(2001), 473–482. Kan O., Kingsman S., Naylor S., ExpertOpinion on Biological Therapy, 2 (2002), 857–868.Kawahigashi H., Hirose S., Ohkawa H., Ohkawa Y.,Biotechnology Advances, 25 (2007), 75–84. Kawahigashi H.,Hirose S., Ohkawa H., Ohkawa Y., Journal of MolecularMicrobiology and Biotechnology, 15 (2008), 212–219. KeizersP. H., Schraven L. H., de Graaf C., Hidestrand M.,Ingelman-Sundberg M., van Dijk B. R., Vermeulen N. P.,Commandeur J. N., Biochemical and Biophysical ResearchCommunications, 338 (2005), 1065–1074. Kim D., GuengerichF. P., Archives of Biochemistry and Biophysics, 432 (2004),102–108. Kim K. H., Kang J. Y., Kim D. H., Park S. H., KimD., Park K. D., Lee Y. J., Jung H. C., Pan J. G., Ahn T.,Yun C. H., Drug Metabolism and Disposition: the BiologicalFate of Chemicals, 39 (2011), 140–150. Kim D., Wu Z. L.,Guengerich F. P., The Journal of Biological Chemistry, 280(2005), 40319–40327. Klein R., Ruttkowski B., Schwab S.,Peterbauer T., Salmons B., Gunzburg W. H., Hohenadl C.,Journal of Biomedicine & Biotechnology, 2008 (2008),683505. Komives T., Gullner G., Zeitschrift furNaturforschung. C, Journal of Biosciences, 60 (2005),179–185. Kroon L. A., American Journal of Health-SystemPharmacy: AJHP: Official Journal of the American Societyof Health-System Pharmacists, 64 (2007), 1917–1921.

Kumar S., Expert Opinion on Drug Metabolism & Toxicology, 6(2010), 115–131. Kumar S., Chen C. S., Waxman D. J.,

Halpert J. R., The Journal of Biological Chemistry, 280(2005), 19569–19575. Kumar S., Halpert J. R., Biochemicaland Biophysical Research Communications, 338 (2005),456–464. Kumar S., Kumar A., Alcoholism, Clinical andExperimental Research, 35 (2011), 2121–2127. Kumar S., LiuH., Halpert J. R., Drug Metabolism and Disposition: theBiological Fate of Chemicals, 34 (2006), 1958–1965. KumarS., Sun L., Liu H., Muralidhara B. K., Halpert J. R.,Protein Engineering, Design & Selection: PEDS, 19 (2006),547–554. Kumar S., Zhao Y., Sun L., Negi S. S., Halpert J.R., Muralidhara B. K., Molecular Pharmacology, 72 (2007),1191–1199. Kwara A., Ramachandran G., Swaminathan S.,Expert Opinion on Drug Metabolism & Toxicology, 6 (2010),55–68. Lamb S. B., Lamb D. C., Kelly S. L., Stuckey D. C.,FEBS Letters, 431 (1998), 343–346.

Landwehr M., Hochrein L., Otey C. R., Kasrayan A., BackvallJ. E., Arnold F. H., Journal of the American ChemicalSociety, 128 (2006), 6058–6059. Lee S. H., Kwon Y. C., KimD. M., Park C. B., Biotechnology and Bioengineering, 110(2013), 383–390. Li Y., Drummond D. A., Sawayama A. M.,Snow C. D., Bloom J. D., Arnold F. H., NatureBiotechnology, 25 (2007), 1051–1056.

Lohr M., Hoffmeyer A., Kroger J., Freund M., Hain J., HolleA., Karle P., Knofel W. T., Liebe S., Muller P., Nizze H.,Renner M., Saller R. M., Wagner T., Hauenstein K.,Gunzburg W. H., Salmons B., Lancet, 357 (2001), 1591–1592.Lohr M., Hummel F., Faulmann G., Ringel J., Saller R., HainJ., Gunzburg W. H., Salmons B., Cancer Chemotherapy andPharmacology, 49 Suppl 1 (2002), S21–S24. Lu Y., CederbaumA. I., Free Radical Biology & Medicine, 44 (2008), 723–738.Ma J., Waxman D. J., Molecular Cancer Therapeutics, 6(2007), 2879–2890. Malaty L. I., Kuper J. J., Drug Safety:An International Journal of Medical Toxicology and DrugExperience, 20 (1999), 147–169. Martinez C. A., RupashingheS. G., Current Topics in Medicinal Chemistry, 13 (2013),1470–1490.

McGraw J., Waller D., Expert Opinion on Drug Metabolism &Toxicology, 8 (2012), 371–382. McLean K. J., Girvan H. M.,Munro A. W., Expert Opinion on Drug Metabolism &Toxicology, 3 (2007), 847–863. Mench M., Schwitzguebel J.P., Schroeder P., Bert V., Gawronski S., Gupta S.,Environmental Science and Pollution Research International,16 (2009), 876–900. Mie Y., Suzuki M., Komatsu Y., Journalof the American Chemical Society, 131 (2009), 6646–6647.Morant M., Bak S., Moller B. L., Werck-Reichhart D.,Current Opinion in Biotechnology, 14 (2003), 151–162.Nguyen T. A., Tychopoulos M., Bichat F., Zimmermann C.,

Flinois J. P., Diry M., Ahlberg E., Delaforge M., CorcosL., Beaune P., Dansette P., Andre F., de Waziers I.,Molecular Pharmacology, 73 (2008), 1122–1133. Nicoli R.,Bartolini M., Rudaz S., Andrisano V., Veuthey J. L.,Journal of Chromatography A, 1206 (2008), 2–10. Niemi M.,Backman J. T., Fromm M. F., Neuvonen P. J., Kivisto K. T.,Clinical Pharmacokinetics, 42 (2003), 819–850. Niemira M.,Wisniewska A., Mazerska Z., Postepy Biochemii, 55 (2009),279–289. Niwa T., Murayama N., Yamazaki H., Current DrugMetabolism, 10 (2009), 700–712. Niwa T., Murayama N.,Yamazaki H., Current Drug Metabolism, 12 (2011), 412–435.

O’Keefe D. P., Tepperman J. M., Dean C., Leto K. J., ErbesD. L., Odell J. T., Plant Physiology, 105 (1994), 473–482.Otey C. R., Bandara G., Lalonde J., Takahashi K., Arnold F.H., Biotechnology and Bioengineering, 93 (2006), 494–499.

Otey C. R., Landwehr M., Endelman J. B., Hiraga K., BloomJ. D., Arnold F. H., PLoS Biology, 4 (2006), e112. Pal D.,Mitra A. K., Journal of Neuroimmune Pharmacology: theOfficial Journal of the Society on NeuroImmunePharmacology, 1 (2006a), 323–339. Pal D., Mitra A. K.,Life Sciences, 78 (2006b), 2131–2145. Pesce S., Bouchez A.,Montuelle B., Reviews of Environmental Contamination andToxicology, 214 (2011), 87–124.

Qin X. S., Huang G. H., He L., Journal of EnvironmentalManagement, 90 (2009), 54–76.

Ro D. K., Paradise E. M., Ouellet M., Fisher K. J., NewmanK. L., Ndungu J. M., Ho K. A., Eachus R. A., Ham T. S.,Kirby J., Chang M. C., Withers S. T., Shiba Y., SarpongR., Keasling J. D., Nature, 440 (2006), 940–943. Roy P.,Waxman D. J., Toxicology in vitro: An International JournalPublished in Association with BIBRA, 20 (2006), 176–186.

Rylott E. L., Jackson R. G., Edwards J., Womack G. L.,Seth-Smith H. M., Rathbone D. A., Strand S. E., Bruce N.C., Nature Biotechnology, 24 (2006), 216–219. Sadeghi S.J., Ferrero S., Di Nardo G., Gilardi G.,Bioelectrochemistry, 86 (2012), 87–91. Sakaki T.,Biological & Pharmaceutical Bulletin, 35 (2012), 844–849.Salazar O., Cirino P. C., Arnold F. H., Chembiochem: AEuropean Journal of Chemical Biology, 4 (2003), 891–893.Sawayama A. M., Chen M. M., Kulanthaivel P., Kuo M. S.,Hemmerle H., Arnold F. H., Chemistry, 15 (2009),11723–11729.

Schneider E., Clark D. S., Biosensors & Bioelectronics, 39(2013), 1–13. Scripture C. D., Sparreboom A., Figg W. D.,

The Lancet Oncology, 6 (2005), 780–789.

Shafiee A., Hutchinson C. R., Biochemistry, 26 (1987),6204–6210. Shen Q., Chen Y. F., Wang T., Wu S. Y., Lu X.,Zhang L., Zhang F. Y., Jiang W. M., Wang G. F., Tang K.X., Genetics and Molecular Research: GMR, 11 (2012),3298–3309. Shi S., Klotz U., Clinical Pharmacokinetics, 51(2012), 77–104. Shumyantseva V. V., Bulko T. V., ArchakovA. I., Journal of Inorganic Biochemistry, 99 (2005),1051–1063.

Siminszky B., Corbin F. T., Ward E. R., Fleischmann T. J.,Dewey R. E., Proceedings of the National Academy ofSciences of the United States of America, 96 (1999),1750–1755. Singh B., Kaur J., Singh K., Critical Reviews inMicrobiology, 38 (2012), 152–167. Sueyoshi T., Negishi M.,Annual Review of Pharmacology and Toxicology, 41 (2001),123–143. Sun L., Chen C. S., Waxman D. J., Liu H., HalpertJ. R., Kumar S., Archives of Biochemistry and Biophysics,458 (2007), 167–174.

Talakad J. C., Wilderman P. R., Davydov D. R., Kumar S.,Halpert J. R., Archives of Biochemistry and Biophysics,494 (2010), 151–158.

Tsotsou G. E., Sideri A., Goyal A., Di Nardo G., GilardiG., Chemistry, 18 (2012), 3582–3588. Urlacher V. B.,Girhard M., Trends in Biotechnology, 30 (2012), 26–36. VailR. B., Homann M. J., Hanna I., Zaks A., Journal ofIndustrial Microbiology & Biotechnology, 32 (2005), 67–74.Van Aken B., Current Opinion in Biotechnology, 20 (2009),231–236. Van Aken B., Doty S. L., Biotechnology & GeneticEngineering Reviews, 26 (2010), 43–64. van Beilen J. B.,Holtackers R., Luscher D., Bauer U., Witholt B., Duetz W.A., Applied and environmental microbiology, 71 (2005),1737–1744. Walubo A., Expert Opinion on Drug Metabolism &Toxicology, 3 (2007), 583–598.

Warzecha H., Frank A., Peer M., Gillam E. M., Guengerich F.P., Unger M., Plant Biotechnology Journal, 5 (2007),185–191. Whitehouse C. J., Bell S. G., Tufton H. G., KennyR. J., Ogilvie L. C., Wong L. L., Chemical Communications,(2008), 966–968. Whitehouse C. J., Bell S. G., Wong L. L.,Chemical Society Reviews, 41 (2012), 1218–1260. Wijnen P.A., Op den Buijsch R. A., Drent M., Kuijpers P. M., NeefC., Bast A., Bekers O., Koek G. H., AlimentaryPharmacology & Therapeutics, 26 Suppl 2 (2007), 211–219.Xu F., Bell S. G., Lednik J., Insley A., Rao Z., Wong L.L., Angewandte Chemie, 44 (2005), 4029–4032. Yamada T. K.Y., Imaishi H., Ohkawa H., Pesticide Biochemistry and

Physiology, 68 ( 2000), 11–25. Zanger U. M., Klein K.,Frontiers in Genetics, 4 (2013), 24. Zhang Y., Liu J.,Journal of Hazardous Materials, 189 (2011), 357–362. ZhaoL., Guven G., Li Y., Schwaneberg U., Applied Microbiologyand Biotechnology, 91 (2011), 989–999. Zhao Y., Halpert J.R., Biochimica et Biophysica Acta, 1770 (2007), 402–412.Zhou S. F., Current Drug Metabolism, 9 (2008), 310–322.Zhou S. F., Xue C. C., Yu X. Q., Li C., Wang G.,Therapeutic Drug Monitoring, 29 (2007), 687–710.

19 Chapter 19: Laccases: GreenBiocatalysts for Greener Applications

Aehle, W., Baldwin, T. L., Janssen, G. G., Murray, C. J.,Van Gastel, F. J. C., Wang, H., Winetzky, D. S.,WO2003023067 A1, 2003.

Ahlawat S., Battan B., Dhiman S. S., Sharma J., Mandhan R.P., J. Ind. Microbiol. Biotechnol., 34 (2007), 763–770.

Ali M., Sreekrishnan T. R., Adv. Environ. Res., 5 (2001)175–196.

Alves A. M., Record E., Lomascolo A., Scholtmeijer K.,Asther M., Wessels J. G., Wosten H. A. B., Appl. Environ.Microbiol., 70 (2004), 6379–6384.

Arias M. E., Arenas M., Rodríguez J., Soliveri J., Ball A.S., Hernández M., Appl. Environ. Microb., 69 (2003),1953–1958.

Arora D. S., Sharma R. K., J. Anim. Feed Sci., 18 (2009),151–161.

Arora D. S., Sharma R. K., Appl. Biochem. Biotechnol., 160(2010), 1760–1788.

Baldrian P., FEMS Microbiol. Rev., 30 (2006), 215–242.

Banci L., Ciofi-Baffoni S., Tien M., Biochemistry, 38(1999), 3205–3210.

Battistuzzi G., Di Rocco G., Leonardi A., Sola M., J.Inorg. Biochem., 96 ( 2003), 503–506.

Bertrand G., Seances Acad. Sci., 123 (1896), 463–465.

Bertrand T., Jolivalt C., Briozzo P., Caminade E., Joly N.,Madzak C., Mougin C., Biochemistry, 41 (2002), 7325–7333.

Bourbonnais R., Leech D., Paice M. G., Biochim. Biophys.Acta, 1379 (1998), 381–390.

Bourbonnais R., Paice M. G., Freiermuth B., Bodie E.,Borneman S., Appl. Environ. Microbiol., 63 (1997),4627–4632.

Bourbonnais R., Paice, M. G., FEBS Lett., 267 (1990),99–102.

Burton S., Curr. Org. Chem., 7 (2003), 1317–1331.

Bustamante M. A., Paredes C., Moral R., Moreno-Caselles J.,Perez-Espinosa A., Perez-Murcia M. D., Water Sci.Technol., 51 (2005), 145–151.

Call H. P., Mücke I., J. Biotechnol., 53 (1997), 163–202.

Cañas A. I., Camarero S., Biotechnol. Adv., 28 (2010),694–705.

Cantarelli C., Brenna O., Giovanelli G., Rossi M., FoodBiotechnol., 3 (1989), 203–213.

Carballa M., Omil F., Lema J. M., Llompart M., García-JaresC., Rodríguez I., Gómez M., Ternes T. A., Water Res., 38(2004), 2918–2926.

Carballa M., Omil F., Lema J. M., Water Res., 39 (2005),4790–4796.

Chiacchierini E., Restuccia D., Vinci G., Food Sci.Technol. Int., 10 (2004), 373–382.

Chung K. T., Stevens E. Jr., Environ. Toxicol. Chem., 12(1993), 2121–2132.

Claus H., Micron, 35 (2004), 93–96.

Collins P. J., Kotterman M. J. J., Field J. A., Dobson A.D. W., Appl. Environ. Microbiol., 62 (1996) 4563–4567.

Conrad L. S., Sponholz W. R., Berker O., US patent,US6152966, 2000. Cooper P., Asian Text. J., 3 (1995),52–56.

Crestini C., Argyropoulos D. S., Bioorg. Med. Chem., 6(1998), 2161–2169.

Daughton C. G., Ternes T. A., Environ. Health. Perspect.,107 (1999), 907–938.

Dittmer, J. K., Patel, N. J., Dhawale, S. W., Dhawale, S.S., FEMS Microbiol. Lett., 149 (1997), 65–70.

Ducros V., Brzozowski A. M., Wilson K. S., Brown S. H.,Ostergaard P., Schneider P., Yaver D. S., Pedersen A. H.,Davies G. J., Nat. Struct. Biol., 5 (1998), 310–316.

Durán N., Esposito E., App. Cat. B-Environ., 28 (2000),

83–99.

Durão P., Bento I., Fernandes A. T., Melo E. P., Lindley P.F., Martins L. O., J. Biol. Inorg. Chem., 11 (2006),514–526.

Dwivedi U. N., Singh P., Pandey V. P., Kumar A., J. Molec.Catal. B, 68 (2011), 117–128.

Enguita F. J., Martins L. O., Henriques A. O., Carrondo M.A., J. Biol. Chem., 278 (2003), 19416–19425.

Esplugas S., Bila D., Krause L. G. T., Dezoti M., J.Hazard. Mater., 149 (2007), 631–642.

Felby C., Pedersen L. S., Nielsen B. R., Holzforschung, 5(1997), 281–286.

Franks, N. E., US6241849 B1, 2001.

Gallagher E., Agro Food Ind. Hi-Tech, 20 (2009), 34–37.

Galli C., Gentili P., J. Phys. Org. Chem., 17 (2004),973–977.

Garavaglia S., Cambria M. T., Miglio M., Ragusa S.,Lacobazzi V., Palmieri F., D’Ambrosio C., Scaloni A.,Rizzi M., J. Mol. Biol., 342 (2004), 1519–1531.

Gasparetti C., Biochemical and structural characterisationof the copper containing oxidoreductases catechol oxidase,tyrosinase, and laccase from ascomycete fungi, Ph.D.Thesis, Aalto University School of Chemical Technology,Espoo (Finland), 2012.

Gavnholt B., Larsen K., Physiol. Plant., 116 (2002),273–280.

Gianfreda L., Xu F., Bollag J.-M., Bioremediat. J., 3(1999), 1–25.

Givaudan A., Effosse A., Faure D., Potier P., Bouillant M.L., Bally R., FEMS Microbiol. Lett., 108 (1993), 205–210.

Golz-Berner K., Walzel B., Zastrow L., Doucet O.,International Patent Application, WO2004017931, 2004.

Hakulinen N., Andberg M., Kallio J., Koivula A., Kruus K.,Rouvinen J., J. Struct. Biol., 162 (2008), 29–39.

Hakulinen N., Kiiskinen L. L., Kruus K., Saloheimo M.,Paananen A., Koivula A., Rouvinen J., Nature Struct.Biol., 9 (2002), 601–605.

Hakulinen N., Kruus K., Koivula A., Rouvinen J., Biochem.Biophys. Res. Commun., 350 (2006), 929–934.

Hessel A., Allegre C., Maisseu M., Charbit F., Moulin P.,Guidelines and legislation for dye house effluents. J.Environ. Manage., 83 (2007), 171–180.

Hiramoto T., Abe K., International Patent, WO2004103329-A1,2004.

Hüttermann A., Mai C., Kharazipour A., Appl. Microbiol.Biotechnol., 55 (2001), 387–394.

Intra A., Nicotra S., Riva S., Daniel B., Adv. Synth.Catal., 347 (2005), 973–977.

Jaouani A., Sayadi S., Vanthournhout M., Penninckx M. J.,Enzyme Microb. Technol., 33 (2003), 802–809.

Johnson D. L., Thompson J. L., Brinkmann S. M., Schuller K.A., Martin L. L., Biochemistry, 42 (2003), 10229–10237.

Kajita S., Sugawara S., Miyazaki Y., Nakamura M., KatayamaY., Shishido K., Shishido K., Imura Y., Appl. Microbiol.Biotechnol., 66 (2004), 194–199.

Kataoka K., Komori H., Ueki Y., Konno Y., Kamitaka Y.,Kurose S., Tsujimura S., Higuchi Y., Kano K., Seo D.,Sakurai T., J. Mol. Biol., 373 (2007), 141–152.

Kim S., Moldes D., Cavaco-Paulo A., Enzyme Microb.Technol., 40 (2007), 1788–1793.

Kirk T. K., Fenn, P., Formation and action of theligninolytic system in basidiomycetes, in DecomposerBasidiomycetes (Franklin J. C., Hedges J. N., Swift M. J.,eds.), British Mycological Society Symposium 4, CambridgeUniversity Press, 1982.

Kudanga T., Nyanhongo G. S., Guebitz G. M., Burton S.,Enzyme Microb. Technol., 48 (2011), 195–208.

Kuhad R. C., Singh A., Eriksson K. E. L., Microorganismsand enzymes involved in the degradation of plant fibercell wall, in (Eriksson K. E. L., ed.), Biotechnology inthe Pulp and Paper Industry. Advances in Biochemical

Engineering/Biotechnology, Springer Verlag, Berlin, 1997.

Kulys J., Drungiliene A., Wollenberger U., KrikstopaitisK., Scheller F., Electroanalysis, 9 (1997), 213–218.Kümmerer K., Chemosphere, 45 (2001), 957–969.

Kunamneni A., Camarero S., García-Burgos C., Plou F. J.,Ballesteros A., Alcalde M., Microb. Cell Fact., 7 (2008a),32–49.

Kunamneni A., Plou F. J., Ballesteros A., Alcalde M.,Recent. Pat. Biotechnol., 2 (2008b), 10–24.

Kurisawa M., Chung J. E., Uyama H., Kobayashi S.,Biomacromolecules, 4 (2003), 1394–1399.

Kurniawatti S., Nicell J. A., Enzyme Microb. Technol., 41(2007), 353–361.

Kuuva T., Lantto R., Reinikainen T., Buchert J., Autio K.,Food Hydrocolloids, 17 (2003), 679–684.

Kuznetsov B. A., Shumakovich G. P., Koroleva, O. V.,Yaropolov, A. I., Biosens. Bioelectron., 16 (2001), 73–84.

Lawton T. J., Sayavedra-Soto L. A., Arp D. J., RosenzweigA. C., J. Biol. Chem., 284 (2009), 10174–10180.

Li X., Wei Z., Zhang M., Peng X., Yu G., Teng M., Gong, W.,Biochem. Biophys. Res. Commun., 354 (2007), 21–26.

Li, K., Xu, F., Eriksson, K.-E., Appl. Environ. Microbiol.,65 (1999), 2654–2660.

Littoz F., McClements, D. J., Food Hydrocolloids, 22(2008), 1203–1211.

Mai C., Majcherczyk A., Hütterman A., Enzyme Microb.Technol., 27 (2000), 167–175.

Malmström B. G., Annu. Rev. Biochem., 51 (1982), 21–59.

Mander G. J., Wang H., Bodie E., Wagner J., Vienken K.,Vinuesa C., Foster C., Leeder A. C., Allen, G., Hamill,V., Jansen G. G., Dunn-Colleman N, Karos M., Lemainen H.G., Subkowski T., Bollschweiler C., Turner, G., NüsleinB., Fischer R., Appl. Environ. Microbiol., 72 (2006),5020–5026.

Mathiasen T. E., PCT International Application, WO9521240

A2 (1995).

Minussi R. C., Pastore G. M., Duran N., Trends Food Sci.Technol., 13 (2002), 205–216.

Nicotra S., Cramarossa M. R., Mucci A., Pagnoni U. M., RivaS., Forti L., Tetrahedron, 60 (2004), 595–600.

Nyhanhongo G. S., Rodríguez Couto S., Gübitz G. M.,Chemosphere, 64 (2006), 359–370.

Okano K., Iida Y., Samurai M., Prasetya B., Usagawa T.,Watanabe, T., Anim. Sci. J., 77 (2006), 308–313.

Onesios K. M., Yu J. T., Bouwer E. J., Biodegradation, 20(2009), 441–466.

Palmer A. E., Randall D. W., Xu F., Solomon E. I., J. Am.Chem. Soc., 121 (1999), 7138–7149.

Palmore G. T. R., Kim H.-H., J. Electroanal. Chem., 565(1999), 110–117.

Petrovic M., Gonzalez S., Barceló D., Trends Anal. Chem.,22 (2003) 685–696.

Pilz R., Hammer E., Schauer F., Krag U., Appl. Microbiol.Biotechnol., 60 (2003), 708–712.

Piontek K., Antorini M., Choinowski T., J. Biol. Chem., 277(2002), 37663–37669.

Pointing S. B., Appl. Microbiol. Biotechnol., 57 (2001),20–33.

Quintanar L., Stoj C., Taylor A. B., Hart P. J., Kosman, D.J., Solomon, E. I., Acc. Chem. Res., 40 (2007), 445–452.

Renzetti S., Courtin C. M., Delcour J. A., Arendt E. K.,Food Chem., 119 (2010), 1465–1473.

Ribeiro D. S., Henrique S. M. B., Oliveira L. S., Macedo G.A., Fleuri L. F., Int. J. Food Sci. Technol., 45 (2010),635–641.

Rodríguez-Couto S., Toca-Herrera J. L., Biotechnol. Adv.,24 (2006), 500–513.

Rodríguez-Couto, S., Fungal laccases: a promisingeco-friendly approach for the removal of pharmaceutical

compounds, in (Garg N., Aeron A., eds.), Microbes inProcess, Nova Science Publishers, Hauppauge, 2014.

Rosana C., Minussi Y., Pastore G. M., Durany N., TrendsFood Sci. Technol., 13 (2002), 205–216.

Salony S., Garg N., Baranwal R., Chhabra M., Mishra S.,Chaudhuri T. K., Bisaria V. S., Biochim. Biophys. Acta,1784 (2008), 259–268.

Schilling B., Linden R. M., Kupper U., Lerch K., Curr.Genet., 22 (1992), 197–203.

Semenov A. N., Lomonosova I. V., Berezin V., Titov I.,Biotechnol. Bioeng., 42 (1993), 1137–1141.

Shi, C., Lund, H., Vogt, U., WO2001048304 A1, 2001.

Si J. Q., PCT International Application, WO 9428728 A1,1994.

Skálová T., Duskova J., Hasek J., Stepankova A., Koval T.,Ostergaard L. H., Dohnalek J., Acta Crystallogr. Sect. F.Struct. Biol. Cryst. Commun., 67 (2011), 27–32.

Solomon E. I, Sundaram U. M., Machonkin T. E., Chem. Rev.,96 (1996), 2563–2605.

Someya, K., Yoshino, T., Asai, Y., JP2003009856 A2, 2003.

Sponholz W. R., Grossmann M. K., Muno H., Hoffmann A., Ind.Bevande, 26 (1997), 602–607.

Sponholz W. R., Muno H., Die Wein-Wissenschaft, 49 (1994),17–22.

Stephen J. A., J. Chem. Technol. Biotechnol., 62 (1995),111–117.

Strong P. J., Burgess J. E., Bioremediation J., 12 (2008),70–87.

Thibault J.-F., Guillon F., Rombouts F. M., Gelation ofsugar beet pectin by oxidative coupling, in (Walter R.,ed.) The chemistry and technology of pectin, AcademicPress, New York, 1991.

Thurston C. F., Microbiology, 140 (1994), 19–26.

Trudeau F., Daigle F., Leech D., Anal. Chem., 69 (1997),

882–886.

Tsuchiya R., Petersen B. R., Christensens S., InternationalPatent, WO9909143A, 1999.

Tzanov T., Andreaus J., Guebitz G., Cavaco-Paulo A.,Electron. J. Biotechnol., 6 (2003b), 146–154.

Tzanov T., Basto C., Guebitz G. M., Cavaco-Paulo A.,Macromol. Mater. Eng., 288 (2003a), 807–810.

Tzanov T., Silva C. J. S. M., Zille A., Oliveira J.,Cavaco-Paulo A., Appl. Biochem. Biotechnol., 111 (2003c),1–13.

Uyama H., Kobayashi S., J. Mol. Catal. B Enzym., 19–20(2002), 117–127.

Vanhulle S., Trovaslet M., Enaud E., Lucas M., Sonveaux M.,Decock C., Onderwater R., Schneider Y.-J., Corbisie A.-M.,World J. Microb. Biot., 24 (2008), 337–344.

Wang X. H., Ma J. H., Jiang C. L., Brown W. D. Jr.,WO2007035481, 2007.

Waterman S. R., Hacham M., Panepinto J., Hu G., Shin S.,Williamson P. R., Infect. Immun., 75 (2007), 714–722.

Widsten P., Kandelbauer A., Enzyme Microb. Technol., 42(2008), 293–307.

Witayakran S., Ragauskas A. J., Adv. Synth. Catal., 351(2009), 1187–1209.

Wolfgang, A., Baldwin, T. M., Van Gastel, F. J. C.,Janssen, G. G., Murray, C. J., Wang, H., Winetzky, D. S.,US2005058996 A1, 2005.

Xu F. F., Biochemistry, 35 (1996), 7608–7614.

Xu F. F., J. Biol. Chem., 372 (1997), 924–928.

Xu F., Recent progress in laccase study: properties,enzymology, production and applications, in (Flickinger M.C., Drew S. W., eds.), The Encyclopedia of BioprocessingTechnology: Fermentation, Biocatalysis and Ioseparation,John Wiley & Sons, New York, 1999.

Xu F. F., Palmer A. E., Yaver D. S., Berka R. M., GambettaG. A., Brown S. H., Solomon E. I., J. Biol. Chem., 274

(1999), 12372–12375.

Xu F., Damhus T., Danielsen S., Ostergaard L. H., Catalyticapplications of laccase, in (Schmid R. D., Urlacher, V.B., eds.), Modern Biooxidation: Enzymes, Reactions andApplications, Wiley-VCH, Weinheim, 2007a.

Xu Q. H., Fu Y. J., Qin M. H., Qiu H. Y., Appita J., 60(2007b), 372–377.

Yoon, M. Y., WO98/27264, 1998. Yoshida H., J. Chem. Soc.,43 (1883), 472–486.

Yoshitake A., Katayama Y., Nakamura M., Iimura Y., KawaiS., Morohoshi N., J. Gen. Microbiol., 139 (1993), 179–185.

Zhao W., Ma Q., Xu S., Zhang H., CN1594729 A, 2005.

20 Chapter 20: Lipase-CatalyzedEpoxidation of Fatty Compounds andAlkenes

Abdullah B. M., Salih N., Salimon J., J Saudi Chem. Soc.(2011), article in press .

Abdulmalek E., Arumugam M., Basri M., Rahman M., Intl J.Mol. Sci., 13 (2012), 13140–13149.

Adam W., Mitchell C. M., Angew. Chem. Int. Ed., 35 (1996),533–535. Adhvaryu A., Erhan S. Z., Ind. Crops Products, 15(2002), 247–254.

Al‑ Mulla E., Yunus W., Ibrahim N., Rahman M., J. Mater.Sci., 45 (2010), 1942–1946.

Allain E. J., Hager L. P., Deng L., Jacobsen E. N., J. Am.Chem. Soc., 115 (1993), 4415–4416.

Anderson E. M., Larsson K. M., Kirk O., Biocatal.Biotransform., 16 (1998), 181–204.

Ankudey E. G., Olivo H. F., Peeples T. L., Green Chem., 8(2006), 923–926. Arkema-Inc. (2013), http://www .arkema‑inc.com/index.cfm?pag=16, 14.03.2013, 15:15.

Balcão V. M., Paiva A. L., Xavier Malcata F., EnzymeMicrob. Technol., 18 (1996), 392–416.

Bartlett P. D., Rec. Chem. Prog., 11 (1950), 47–50.

Behr A., Westfechtel A., Chem. Ingenieur Technik, 79(2007), 621–636.

Björkling F., Frykman H., Godtfredsen S. E., Kirk O.,Tetrahedron, 48 (1992), 4587–4592.

Björkling F., Godtfredsen S. E., Kirk O., J. Chem. Soc.,Chem. Commun., 19 (1990), 1301–1303.

Björkling F., Godtfredsen S. E., Kirk O., TrendsBiotechnol., 9 (1991) 360–363.

Blée E., Schuber F., J. Biol. Chem., 265 (1990),12887–12894.

Bornscheuer U. T., Bessler C., Srinivas R., Hari KrishnaS., Trends Biotechnol., 20 (2002), 433–437.

Buisman G., Surf. Coatings Intl. Part B: Coatings Trans.,82 (1999), 127–130.

Bunker S. P., Wool R. P., J. Polymer Sci. Part A: PolymerChem., 40 (2002), 451–458.

Cai C., Dai H., Chen R., Su C., Xu X., Zhang S., Yang L.,Eur. J. Lipid Sci. Technol., 110 (2008), 341–346.

Campanella A., Rustoy E., Baldessari A., Baltanás M. A.,Bioresour. Technol., 101 (2010), 245–254.

Carlson K., Kleiman R., Bagby M., J. Am. Oil Chem. Soc., 71(1994), 175–182.

Corrêa F. D. A., Sutili F. K., Miranda L. S. M., Leite S.G. F., De Souza R. O. M. A., Leal I. C. R., J. Mol. Catal.B: Enzymatic, 81 (2012), 7–11.

Crivello J. V., Narayan R., Chem. Mater., 4 (1992), 692–699.

Cuperus F. P., Bouwer S. T., Kramer G. F. H., Derksen J. T.P., Biocatal. Biotransform., 9 (1994), 89–96. Danov S. M.,Sulimov A. V., Ovcharova A. V., Russian J. Appl. Chem., 85(2012), 62–66.

de Jong E., Higson A., Walsh P., Wellisch M., BiofuelsBioprod. Bioref., 6 (2012), 606–624. Dembitsky V. M.,Tetrahedron, 59 (2003), 4701–4720.

Dexter A. F., Lakner F. J., Campbell R. A., Hager L. P., J.Am. Chem. Soc., 117 (1995), 6412–6413.

Dinda S., Patwardhan A. V., Goud V. V., Pradhan N. C.,Bioresour. Technol., 99 (2008), 3737–3744. Frykman H.,Isbell T., J. Am. Oil Chem. Soc., 74 (1997), 719–722.

Gamage P. K., O’Brien M., Karunanayake L., J. Natl. Sci.Found. Sri Lanka, 37 (2009), 229–240.

Gan L. H., Ooi K. S., Goh S. H., Gan L. M., Leong Y. C.,Eur. Polymer J., 31 (1995), 719–724.

Geigert J., Lee T. D., Dalietos D. J., Hirano D. S.,Neidleman S. L., Biochem. Biophys. Res. Commun., 136(1986), 778–782.

Gerbase A., Gregório J., Martinelli M., Brasil M., MendesA., J. Am. Oil Chem. Soc., 79 (2002), 179–181.

Gitin L., Habulin M., Knez Z., The Annals of the UniversityDunarea de Jos of Galati, in Fascucle VI—Food Technology,2005, p. 4.

Gitin L., Habulin M., Knez Z., Roum. Biotechnol. Lett., 11(2006), 2669–2674.

Hagstr öm A. E. V., Törnvall U., Nordblad M., Hatti‑KaulR., Woodley J. M., Biotechnol. Progr., 27 (2011), 67–76.

Hilker I., Bothe D., Prüss J., Warnecke H. J., Chem. Eng.Sci., 56 (2001) 427–432. Hwang H.-S., Erhan S., J. Am. OilChem. Soc., 78 (2001), 1179–1184. Hwang H.-S., Erhan S. Z.,Ind. Crops Prod., 23 (2006), 311–317. Ishiaku U. S.,Shaharum A., Ismail H., Ishak Z. A. M., Polymer Int., 45(1998), 83–91.

IS T A‑Mielke, Oil World Annual 2011 (2012).

Jaeger K.‑E., Eggert T., Curr. Opin. Biotechnol., 13(2002), 390–397.

Jarvie A. W. P., Overton N., Pourcain C. B. S., J. Chem.Soc. Perkin Trans., 1 (1999), 2171–2176.

Kahlich D., Wiechern U., Lindner J., Propylene oxide, inUllmann’s Encyclopedia of Industrial Chemistry, Wiley‑V CHVerlag GmbH & Co. KGaA, 2000.

Kennedy J. F., Kumar H., Panesar P. S., Marwaha S. S.,Goyal R., Parmar A., Kaur S., J. Chem. Technol.Biotechnol., 81 (2006), 866–876.

Kotlewska A. J., van Rantwijk F., Sheldon R. A., Arends I.W. C. E., Green Chem., 13 (2011), 2154–2160.

Kudanga T., Prasetyo E. N., Sipilä J., Nyanhongo G. S.,Guebitz G. M., Process Biochem., 45 (2010), 1557–1562.

Lane B. S., Burgess K., Chem. Rev., 103 (2003), 2457–2474.

Lathi P. S., Mattiasson B., Appl. Catal. B: Environ., 69(2007), 207–212.

Lee H. ‑J., Ghanta M., Busch D. H., Subramaniam B., Chem.Eng. Sci., 65 (2010), 128–134.

Lin H., Liu Y., W u Z.‑L., Tetrahedron: Asymmetry, 22(2011), 134–137.

Li n H., Qiao J., Liu Y., Wu Z.‑L., J. Mol. Catal. B:Enzymatic, 67 (2010), 236–241.

Lu H., Sun S., Bi Y., Yang G., Afr. J. Biotechnol., 11(2012), 12356–12363.

Lu H., Sun S., Bi Y., Yang G., Ma R., Yang H., Eur. J.Lipid Sci. Technol., 112 (2010), 1101–1105.

Meo‑Carbon‑Solutions, Marktanalyse für den BereichNachwachsender Rohstoffe im Rahmen des FörderprogrammsNachwachsende Rohstoffe des BMELV (2013), 36.

Miao S., Zhang S., Su Z., Wang P., J. Polymer Sci. Part A:Polymer Chem., 46 (2008), 4243–4248. Miura Y., Yamane T.,Biotechnol. Lett., 19 (1997), 611–613.

Moreira M. A., Nascimento M. G., Catal. Commun., 8 (2007),2043–2047.

Niederhauser W. D., Rohm & Hass Company, US Patent2.556.145 (1951), pp. 3.

Or ellana ‑Coca C., Adlercreutz D., Andersson M. M.,Mattiasson B., Hatti‑Kaul R., Chem. Phys. Lipids, 135(2005a), 189–199.

Orellana ‑Coca C., Camocho S., Adlercreutz D., MattiassonB., Hatti‑Kaul R., Eur. J. Lipid Sci. Technol., 107(2005c), 864–870.

Orellana ‑Coca C., Törnvall U., Adlercreutz D., MattiassonB., Hatti‑Kaul R., Biocatal. Biotransform., 23 (2005b),431–437. OrganicChemistryPortal (2011),http://www.organische-chemie.ch/OC/ Namen/priles1.gif,25.10.2011, 12:20.

Overeem A., Buisman G. J. H., Derksen J. T. P., Cuperus F.P., Molhoek L., Grisnich W., Goemans C., Ind. Crops Prod.,10 (1999), 157–165.

P ark J.‑B., Bühler B., Habicher T., Hauer B., Panke S.,Witholt B., Schmid A., Biotechnol. Bioeng., 95 (2006),501–512.

Payne G. B., Deming P. H., Williams P. H., J. Org. Chem.,26 (1961), 659–663.

Piazza G., Foglia T., J. Am. Oil Chem. Soc., 83 (2006),1021–1025.

Piazza G. J., Foglia T. A., Nuñez A., Biotechnol. Lett., 22(2000), 217–221.

Piazza G., Foglia T., Nuñez A., J. Am. Oil Chem. Soc., 78(2001), 589–592.

Piazza G. J., Nuñez A., Foglia T. A., J. Mol. Catal. B:Enzymatic, 21 (2003), 143–151.

Pleiss J., Fischer M., Barth S., Schmidt‑Dannert C., SyHai D., Grieb M., Christoph K., Knoll M., Kosian T.,Peiker M., Schwenger D., Steudle A., Strohmeier M., ThieleC., Tyagi S., Ke Quan T., Wagner F., Widmann M., Juhl P.B., Yu X., http://www.led.uni-stuttgart.de/.

Prileschajew N., Berichte der Deutsch. Chem. Ges., 42(1909), 4811–4815.

Rangarajan B., Havey A., Grulke E., Culnan P., J. Am. OilChem. Soc., 72 (1995), 1161–1169.

Rios L. A., Echeverri D. A., Franco A., Appl. Catal. A:General, 394 (2011), 132–137.

Rodrigues R. C., Fernandez‑Lafuente R., J. Mol. Catal. B:Enzymatic, 64 (2010), 1–22.

Rüsch gen. Klaas M., Warwel S., J. Am. Oil Chem. Soc., 73(1996), 1453–1457.

Rüsch gen. Klaas M., Warwel S., J. Mol. Catal. A: Chem.,117 (1997), 311–319.

R üsch gen. Klaas M., Warwal S., Proceedings of theDGMK‑Conference “Selective Oxidations in Petrochemistry”,Hamburg, 1998, pp. 233–239.

Rüsch gen. Klaas M., Warwel S., Org. Lett., 1 (1999),1025–1026.

Rüsch gen. Klaas M., Warwel S., Ind. Crops Prod., 9 (1999),125–132.

Rüsch gen. Klaas M., Warwel S., Nachwachsende Rohstoffe fürdie Chemie, 7. Symposium, Dresden (2001).

Salimon J., Abdullah B. M., Salih N., Arabian J. Chem.(2011a), article in press.

Salimon J., Salih N., Abdullah B. M., J. Biomed.Biotechnol., 2012 (2012), 11.

Salimon J., Salih N., Yousif E., J. Saudi Chem. Soc., 15(2011b), 195–201.

Sarma K., Bhati N., Borthakur N., Goswami A., Tetrahedron,63 (2007), 8735–8741.

Sarma K., Goswami A., Goswami B. C., Tetrahedron:Asymmetry, 20 (2009), 1295–1300.

Schmid R. D., Verger R., Angew. Chem. Int. Ed., 37 (1998),1608–1633.

Schneider R. D. C. S., Lara L. R. S., Bitencourt T. B.,Nascimento M. D. G., Nunes M. R. D. S., J. Brazilian Chem.Soc., 20 (2009), 1473–1477.

Seniha Güner F., Yaðcý Y., Tuncer Erciyes A., Progr.Polymer Sci., 31 (2006), 633–670.

Sharma B. K., Doll K. M., Erhan S. Z., Green Chem., 9(2007), 469–474.

Sharpless K. B., Michaelson R. C., J. Am. Chem. Soc., 95(1973), 6136–6137.

Sienel G., Rieth R., Rowbottom K. T., Epoxides, inUllmann’s Encyclopedia of Industrial Chemistry, Wile y‑VCH Verlag GmbH & Co. KGaA, 2000.

Silva W. S. D., Lapis A. A. M., Suarez P. A. Z., Neto B. A.D., J. Mol. Catal. B: Enzymatic, 68 (2011), 98–103.

Skouridou V., Stamatis H., Kolisis F. N., J. Mol. Catal. B:Enzymatic, 21 (2003b), 67–69.

Skouridou V., Stamatis H., Kolisis F. N., Biocatal.Biotransform., 21 (2003a), 285–290.

Sobczak J. M., Ziółkowski J. J., Appl. Catal. A: General,248 (2003), 261–268.

Sun S., Ke X., Cui L., Yang G., Bi Y., Song F., Xu X., Ind.Crops Prod., 33 (2011b), 676–682.

Sun S., Yang G., Bi Y., Liang H., J. Am. Oil Chem. Soc.(2011a), 1–5. Swern D., J. Am. Chem. Soc., 69 (1947),1692–1698. Swern D., Chem. Rev., 45 (1949), 1–68.

T ellez L. G., Vigueras‑Santiago E., Hernandez‑Lopez S.,Sociedad Mexicana de Ciencia y Tecnologia de Superficies yMater., 22 (2009), 5–10.

Tiran C., Lecomte J., Dubreucq E., Villeneuve P., OCL, 15(2008), 179–183.

Törn vall U., Börjesson P., Tufvesson L. M., Hatti‑Kaul R.,Ind. Biotechnol., 5 (2009a), 184–192.

Törn vall U., Fürst C. M., Hatti‑Kaul R., Hedström M.,Rapid Commun. Mass Spectrom., 23 (2009b), 2959–2964.

Törn vall U., Hedström M., Schillén K., Hatti‑Kaul R.,Biochimie, 92 (2010), 1867–1875.

Törn vall U., Orellana‑Coca C., Hatti‑Kaul R., AdlercreutzD., Enz. Microb. Technol., 40 (2007), 447–451.

Tsuji J., Yamamoto J., Ishino M., Oku N. (2006),http://www.sumitomo-chem.co.jp/english/rd/report/theses/docs/20060100_ely.pdf,03.05.2013, 10:11.

Tzialla A. A., Kalogeris E., Enotiadis A., Taha A. A.,Gournis D., Stamatis H., Mater. Sci. Eng.: B, 165 (2009),173–177.

Tzialla A. A., Kalogeris E., Gournis D., Sanakis Y.,Stamatis H., J. Mol. Catal. B: Enzymatic, 51 (2008),24–35.

USD A, W orld Markets and Trade (2013‑05), p. 6.

Uyama H., Kuwabara M., Tsujimoto T., Kobayashi S.,Biomacromolecules, 4 (2003), 211–215.

Venturello C., Alneri E., Ricci M., J. Org. Chem., 48(1983), 3831–3833.

Venturello C., D’Aloisio R., J. Org. Chem., 53 (1988),1553–1557.

Verger R., Trends Biotechnol., 15 (1997), 32–38.

Vlček T., Petrović Z., J. Am. Oil Chem. Soc., 83 (2006),247–252.

Wadumesthrige K., Salley S. O., Ng K. Y. S., Fuel Process.

Technol., 90 (2009), 1292–1299.

Warwel S., Brüse F., Demes C., Kunz M., Klaas M. R. G.,Chemosphere, 43 (2001b), 39–48.

Warwel S., Demes C., Steinke G., J. Polymer Sci. Part A:Polymer Chem., 39 (2001a), 1601–1609.

Warwel S., Rüsch gen. Klaas M., Journal of MolecularCatalysis B: Enzymatic, 1 (1995), 29–35.

Wiles C., Hammond M. J., Watts P., Beilstein J. Org. Chem.,5 (2009), 27.

Witnauer L. P., Knight H. B., Palm W. E., Koos R. E., AultW. C., Swern D., Ind. Eng. Chem., 47 (1955), 2304–2311.

Xu Y., Khaw N. R. B. J., Li Z., Green Chem., 11 (2009),2047–2051.

Xu Y., Li A., Jia X., Li Z., Green Chem., 13 (2011),2452–2458.

Yadav G. D., Borkar I. V., AIChE J., 52 (2006), 1235–1247.

Yadav G., Manjula Devi K., J. Am. Oil Chem. Soc., 78(2001), 347–351.

Y ah ya A. R. M., Anderson W. A., Moo‑Young M., Enz.Microb. Technol., 23 (1998), 438–450.

21 Chapter 21: Synthetic Potential ofDihydroxyacetone-Utilizing Aldolases

Althoff E. A., Wang L., Jiang L., Giger L., Lassila J. K.,Wang Z., Smith M., Hari S., Kast P., Herschlag D., HilvertD., Baker D., Prot. Sci., 21 (2012), 717–726.

Barbas C. F., Heine A., Zhong G. F., Hoffmann T.,Gramatikova S., Bjornestedt R., List B., Anderson J.,Stura E. A., Wilson I. A., Lerner R. A., Science, 278(1997), 2085–2092.

Bednarski M. D., Simon E. S., Bischofberger N., Fessner W.D., Kim M. J., Lees W., Saito T., Waldmann H., WhitesidesG. M., J. Am. Chem. Soc., 111 (1989), 627–635. BrovettoM., Gamenara D., Mendez P. S., Seoane G. A., Chem. Rev.,111 (2011), 4346–4403. Castillo J. A., Calveras J., CasasJ., Mitjans M., Vinardell M. P., Parella T., Inoue T.,Sprenger G. A., Joglar J., Clapés P., Org. Lett., 8 (2006),6067–6070. Castillo J. A., Guérard-Hélaine C., GutiérrezM., Garrabou X., Sancelme M., Schürmann M., Inoue T.,Hélaine V., Charmantray F., Gefflaut T., Hecquet L.,Joglar J., Clapés P., Sprenger G. A., Lemaire M., Adv.Synth. Catal., 352 (2010), 1039–1046. Charmantray F.,Dellis P., Hélaine V., Samreth S., Hecquet L., Eur. J. Org.Chem., 2006 (2006), 5526–5532.

Chen L. R., Dumas D. P., Wong C. H., J. Am. Chem. Soc., 114(1992), 741–748.

Choi K. H., Mazurkie A. S., Morris A. J., Utheza D., TolanD. R., Allen K. N., Biochemistry, 38 (1999), 12655–12664.Chou W. C., Chen L. H., Fang J. M., Wong C. H., J. Am.Chem. Soc., 116 (1994), 6191–6194. Clapés P., Garrabou X.,Adv Synth Catal, 353 (2011), 2263–2283. Clapés P., JoglarJ., Castillo J. A., Lozano C., WO 2008/025826 (2008).Clapés P., Fessner W. D., Sprenger G. A., Samland A. K.,Curr. Opin. Chem. Biol., 14 (2010a), 154–167. Clapés P.,Joglar J., Concia A. L., Castillo J. A., WO 2010/086482(2010b).

Compain P., Martin O. R. Iminosugars. From Synthesis toTherapeutic Application. Chichester, John Wiley & SonsLTD, 2007. Concia A. L., Lozano C., Castillo J. A., ParellaT., Joglar J., Clapés P., Chem. Eur. J., 15 (2009),3808–3816. Concia A. L., Gómez L., Bujons J., Parella T.,Vilaplana C., Cardona P. J., Joglar J., Clapés P., Org.Biomol. Chem., 11 (2013), 2005–2021.

Dean S. M., Greenberg W. A., Wong C. H., Adv. Synth.

Catal., 349 (2007), 1308–1320. DeLano W. L., The PyMOLMolecular Graphics System (2002), http://www. pymol.org.Delgado A., Eur. J. Org. Chem., 2008 (2008), 3893–3906.

Effenberger F., Null V., Ziegler T., Tetrahedron Lett., 33(1992a), 5157–5160.

Effenberger F., Straub A., Null V., Liebigs Annalen derChemie, 1992 (1992b), 1297–1301.

El Blidi L., Assaf Z., Camps Bres F., Veschambre H., ThéryV., Bolte J., Lemaire M., ChemCatChem, 1 (2009), 463–471.

Enders D., Voith M., Lenzen A., Angew. Chem. Int. Ed.Engl., 44 (2005), 1304–1325.

Espelt L., Bujons J., Parella T., Calveras J., Joglar J.,Delgado A., Clapés P., Chem. Eur. J., 11 (2005),1392–1401. Faber K., Formation of carbon-carbon bonds, inBiotransformations in Organic Chemistry, Springer Verlag,Berlin, 2004. Fanton J., Camps F., Castillo J. A.,Guérard-Hélaine C., Lemaire M., Charmantray F., HecquetL., Eur. J. Org. Chem., 2012 (2012), 203–210. Fesko K.,Gruber-Khadjawi M., ChemCatChem, 5 (2013), 1248–1272.Fessner W.-D., Enzyme-catalyzed aldol additions, in ModernAldol Reactions (Mahrwald R.), Wiley-VCH Verlag GmbH & Co.KGaA, Weinheim, Germany, 2004. Fessner W. D., Sinerius G.,Angew. Chem. Int. Ed. Eng., 33 (1994), 209–212. Fessner W.D., Walter C., Bioorg. Chem., 184 (1997), 97–194. FessnerW. D., Jennewein S., Biotechnological applications ofaldolases, in Biocatalysis in the Pharmaceutical andBiotechnological Industries (Patel R. N., Dekker M.), CRCPress, Boca Raton (FL), 2007. Fessner W. D., Aldolases:Enzymes for Making and Breaking of C–C Bonds, inAsymmetric Organic Synthesis with Enzymes (Gotor V.,Alfonso I., García Urdiales E.), Wiley-VCH Verlag GmbH &Co. KGaA, Weinheim, Germany, 2008.

Fessner W. D., Heyl D., Rale M., Catal. Sci. Technol., 2(2012), 1596–1601. Garrabou X., Castillo J. A.,Guérard-Hélaine C., Parella T., Joglar J., Lemaire M.,Clapés P., Angew. Chem. Int. Ed. Engl., 48 (2009),5521–5525. Garrabou X., Calveras J., Joglar J., Parella T.,Bujons J., Clapés P., Org. Biomol. Chem., 9 (2011a),8430–8436.

Garrabou X., Joglar J., Parella T., Crehuet R., Bujons J.,Clapés P., Adv. Synth. Catal., 353 (2011b), 89 – 99.

Gómez L., Molinar-Toribio E., Calvo-Torras M. A.,

Adelantado C., Juan M. E., Planas J. M., Canas X., LozanoC., Pumarola S., Clapés P., Torres J. L., Br. J. Nutr.,107 (2011), 1739–1746.

Gonzalez-Garcia E., Hélaine V., Klein G., Schürmann M.,Sprenger G. A., Fessner W. D., Reymond J. L., Chemistry, 9(2003), 893–899. Guérard-Hélaine C., Légeret B., FernandesC., Prévot V., Forano C., Lemaire M., New J. Chem., 35(2011), 776–779. Gutiérrez M., Parella T., Joglar J.,Bujons J., Clapés P., Chem. Commun., 47 (2011), 5762–5764.

Gutiérrez M. L., Garrabou X., Agosta E., Servi S., ParellaT., Joglar J., Clapés P., Chem. Eur. J., 14 (2008),4647–4656. Horecker B. L., Tsolas O., Lai C. Y., Aldolases,in The Enzymes (Boyer P. D.), Academic Press, New York,1972. Jia J., Huang W., Schörken U., Sahm H., Sprenger G.A., Lindqvist Y., Schneider G., Structure, 4 (1996),715–724. Jia J., Schörken U., Lindqvist Y., Sprenger G. A.,Schneider G., Protein Sci., 6 (1997), 119–124.

Jiang L., Althoff E. A., Clemente F. R., Doyle L.,Röthlisberger D., Zanghellini A., Gallaher J. L., BetkerJ. L., Tanaka F., Barbas C. F., 3rd, Hilvert D., Houk K.N., Stoddard B. L., Baker D., Science, 319 (2008),1387–1391.

Lehwess-Litzmann A., Neumann P., Parthier C., Ludtke S.,Golbik R., Ficner R., Tittmann K., Nat. Chem. Biol., 7(2011), 678–684. Machajewski T. D., Wong C. H., Angew.Chem. Int. Ed. Engl., 39 (2000), 1352–1375.

Markert M., Mahrwald R., Chem. Eur. J., 14 (2008), 40–48.

Meyer H.-P., Eichhorn E., Hanlon S., Lütz S., Schürmann M.,Wohlgemuth R., Coppolecchia R., Catal. Sci. Technol., 3(2013), 29–40. Mifsud M., Szekrenyi A., Joglar J., ClapésP., J. Mol. Catal. B: Enzymatic, 84 (2012), 102–107.

Mignon L., Goichot C., Ratel P., Cagnin G., Baudry M.,Praly J.-P., Boubia B. Ì., Barberousse V., Carbohydr.Res., 338 (2003), 1271–1282. Müller M., Adv. Synth. Catal.,354 (2012), 3161–3174.

Rale M., Schneider S., Sprenger G. A., Samland A. K.,Fessner W.-D., Chem. Eur. J., 17 (2011), 2623–2632.Samland A. K., Sprenger G. A., Appl. Microbiol.Biotechnol., 71 (2006), 253–264. Samland A. K., SprengerG. A., Int. J. Biochem. Cell. Biol., 41 (2009), 1482–1494.

Samland A. K., Rale M., Sprenger G. A., Fessner W. D.,

Chembiochem, 12 (2011), 1454–1474. Samland A. K., BaierS., Schürmann M., Inoue T., Huf S., Schneider G., SprengerG. A., Sandalova T., FEBS J., 279 (2012), 766–778.

Sánchez-Moreno I., García-García J. F., Bastida A.,García-Junceda E., Chem. Commun. (2004), 1634–1635.Sánchez-Moreno I., Hélaine V., Poupard N., Charmantray F.,Légeret B., Hecquet L., García-Junceda E., Wohlgemuth R.,Guérard-Hélaine C., Lemaire M., Adv. Synth. Catal., 354(2012a), 1725–1730. Sánchez-Moreno I., Nauton L., Théry V.,Pinet A., Petit J.-L., de Berardinis V., Samland A. K.,Guérard-Hélaine C., Lemaire M., J. Mol. Catal. B:Enzymatic, 84 (2012b), 9–14. Schneider S., Sandalova T.,Schneider G., Sprenger G. A., Samland A. K., J. Biol.Chem., 283 (2008), 30064–30072. Schneider S., Gutiérrez M.,Sandalova T., Schneider G., Clapés P., Sprenger G. A.,Samland A. K., Chembiochem, 11 (2010), 681–690.

Schümperli M., Pellaux R., Panke S., Appl. Microbiol.Biotechnol., 75 (2007), 33–45. Schürmann M., Ph. D.thesis, Forschungszentrum Jülich (2001). Schürmann M.,Sprenger G. A., J. Biol. Chem., 276 (2001), 11055–11061.Schürmann M., Schürmann M., Sprenger G., J. Mol. Catal. B:Enzymatic, 19–20 (2002), 247–252. Schürmann M., Mink D.,Hyett D. J., WO 2008/067997 (2008).

Simon G., Eljezi T., Légeret B., Charmantray F., CastilloJ. A., GuérardHélaine C., Lemaire M., Bouzon M., MarliereP., Hélaine V., Hecquet L., ChemCatChem, 5 (2013),784–795. Sprenger G. A., Schörken U., Sprenger G., Sahm H.,J. Bacteriol., 177 (1995), 5930–5936. Sprenger G. A.,Schürmann M., Schürmann M., Johnen S., Sprenger G., SahmH., Inoue T., Schörken U., C–C Bonding microbial enzymes:Thiamine diphosphate-dependent enzymes and class Ialdolases, in Asymmetric Synthesis with Chemical andBiological Methods (Enders D., Jaeger K. E.), Wiley-VCHVerlag GmbH & Co. KGaA, Weinheim, Germany, 2007.

Sudar M., Findrik Z., Vasic-Racki D., Clapés P., Lozano C.,Enzyme Microb. Technol., 53 (2013), 38–45. Sugiyama M.,Hong Z. Y., Whalen L. J., Greenberg W. A., Wong C. H., Adv.Synth. Catal., 348 (2006), 2555–2559.

Sugiyama M., Hong Z., Greenberg W. A., Wong C. H., Bioorg.Med. Chem., 15 (2007a), 5905–5911. Sugiyama M., Hong Z.,Liang P. H., Dean S. M., Whalen L. J., Greenberg W. A.,Wong C. H., J. Am. Chem. Soc., 129 (2007b), 14811–14817.Thorell S., Schürmann M., Sprenger G. A., Schneider G., J.Mol. Biol., 319 (2002), 161–171.

Wang L., Althoff E. A., Bolduc J., Jiang L., Moody J.,Lassila J. K., Giger L., Hilvert D., Stoddard B., BakerD., J. Mol. Biol., 415 (2012), 615–625. Widmann M., PleissJ., Samland A. K. Comput.Struct. Biotechnol. J., 2 (2012),doi:10.5936/csbj.201209016.

22 Chapter 22: The Hydantoinase Process:Recent Developments for the Production ofNon-Canonical Amino Acids

Altenbuchner, J., Mattes, R., Pietzsch, M., Syldatk, C.,Wiese, A., and Wilms, B., Degussa-Hüls A. G. (Frankfurt amMain, D-60287, DE), Universität, Stuttgart (Allmandring 31Stuttgart, D-70569, DE), Roche Diagnostics GmbH (SandhoferStrasse 116 Mannheim, D-68298, DE) 1999, WO/1999/051722A2.

Altenbuchner, J., Mattes, R., Syldatk, C., Wiese, A.,Wilms, B., Bommarius, A., and Tischer, W., Degussa (DE),Univ, Stuttgart (DE) 2002, EP1216304 A1.

Arcuri, M. B., Antunes, O. A. C., Machado, S. P., Almeida,C. H. F., Oestreicher, E. G., Amino Acids, 27 (2004),69–74.

Arnold, F. H., May, O., Drauz, K., and Bommarius, A.,California, Inst Techn OF. (US), Degussa (DE) 2005,EP1165763 B1.

Batisse, N., Weigel, P., Lecocq, M., Sakanyan, V., Appl.Environ. Microbiol., 63 (1997), 763–766.

Becker, U., Doderer, K., Osswald, S., Verseck, S., Wienand,W., Pharm. Technol., Sep 1, 2008 (2008).

Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G.,Bhat, T. N., Weissig, H., Shindyalov, I. N., Bourne, P.E., Nucleic Acids Res., 28 (2000), 235–242.

Bijleveld, W., Pol, R. V. D., and Vollinga, R. C., DSMSinochem Pharmaceuticals Netherlands B. V. (AlexanderFleminglaan 1, 2613 AX Delft, NL) 2012, EP2451948 A1.

Boesten, W. H. J., Kierkels, J. G. T., Assema, F. B. J.,Ruiz, P. L. M., Gonzalez, P. D., Gonzalez, L. J., andEscalera, H. S. D. L., DSM IP ASSETS BV (NL) 2006,EP1506294 B1.

Bommarius, D. A., Drauz, P. D. K., and Kottenhahn, D. M.,Degussa-Hüls AG (Marl, 45764, DE) 1999, EP0759475 B1.

Bommarius, A. S., Schwarm, M., and Drauz, K., Comparison ofdifferent chemoenzymatic process routes toenantiomerically pure amino acids, CHIMIA Int. J. Chem.,55(1–2) (2001), 50–59.

Bommarius, P. A., Verseck, D. S., Drauz, P. K., and Kula,P. M.-R., Degussa (DE) 2002, EP1199369 A3.

Bretschneider, U., Syldatk, C., and Rudat, J., Chem. Ing.Tech., 82 (1–2) 2010, 161–165.

Brooks, K. P., Jones, E. A., Kim, B. D., Sander, E. G.,Arch. Biochem. Biophys., 226 (1983), 469–483.

Cecere, F., Galli, G., Morisi, F., FEBS Lett., 57 (1975),192–194.

Cecere, F., Galli, G., Penna, G. D., Rappuoli, B.,Snamprogetti, S.P.A. (Milan, IT) 1977, US4065353.

Cheng, R. P., Gellman, S. H., Degrado, W. F., Chem. Rev.,101 (10) 2001, 3219–3232.

Cheon, Y. H., Kim, H. S., Han, K. H., Abendroth, J.,Niefind, K., Schomburg, D., Wang, J. M., Kim, Y.,Biochemistry, 41 (2002), 9410–9417.

Cheon, Y.-H., Park, H.-S., Kim, J.-H., Kim, Y., Kim, H.-S.,Biochemistry, 43 (2004), 7413–7420.

Cheon, Y. H., Park, H. S., Lee, S. C., Lee, D. E., Kim, H.S., J. Mol. Catal. B-Enzymatic, 26 (2003), 217–222.

Chung, J. H., Back, J. H., Lim, J. H., Park, Y. I., Han, Y.S., Enzyme. Microb. Technol., 30 (2002), 867–874.

Dinelli, D., Marconi, W., Cecere, F., Galli, G., Morisi,F., A new method for the production of optically activeamino acids, Enzyme Engineering (Pye, E. K., Weetall, H.H.), New York, Plenum, 3 (1978), 477–481. Dinelli, D.,Morisi, F., and Zaccardelli, D., Snam Progetti S.P.A. (SanDonato, Milanese, IT) 1976, US3964970.

Drauz, K., May, O., Bommarius, A., Syldatk, C.,Altenbuchner, J., Werner, M., Siemann-Herzberg, M.,Degussa (DE) 2006, EP1373522 B1.

Dürr, R., Vielhauer, O., Burton, S. G., Cowan, D. A.,Punal, A., Brandao, P. F. B., Bull, A. T., Syldatk, C., J.Mol. Catal. B Enzyme, 39 (2006), 160–165.

Engel, U., Syldatk, C., Rudat, J., AMB Express C7-33, 2(2012a), 1–13.

Engel, U., Syldatk, C., Rudat, J., Appl. Microbiol.

Biotechnol., 94 (2012b), 1221–1231.

Fleming, P. E., Mocek, U., Floss, H. G., J. Am. Chem. Soc.,115 (1993), 805–807.

Frackenpohl, J., Arvidsson, P. I., Schreiber, J. V.,Seebach, D., ChemBioChem, 2 (2001), 445–455.

Gojkovic, Z., Rislund, L., Andersen, B., Sandrini, M. P.B., Cook, P. F., Schnackerz, K. D., Piskur, J., NucleicAcids Res., 31 (2003), 1683–1692.

Gojkovic, Z., Sandrini, M. P. B., Piskur, J., Genetics, 158(2001), 999–1011.

Gross, C., Syldatk, C., Mackowiak, V., Wagner, F., J.Biotechnol., 14 (1990), 363.

Heras-Vázquez, F. J. L., Clemente-Jiménez, J. M.,Martínez-Rodríguez, S., Rodríguez-Vico, F., Hydantoinracemase: the key enzyme for the production of opticallypure α-amino acids, Modern Biocatalysis (Fessner, W.-D.,and Anthonsen, T.), Wiley-VCH Verlag GmbH & Co. KgaA(2009) 173–193.

Heras-Vazquez, F. J. L., Martinez-Rodriguez, S.,Mingorance-Cazorla, L., Clemente-Jimenez, J. M.,Rodriguez-Vico, F., Biochem. Biophys. Res. Commun., 303(2003), 541–547.

Höke, H., Krohn, K., Läufer, A., Lehmensiek, V., Syldatk,C., Wagner, F., Rütgerswerke A. G. (1990), DE3712539 A1.

Holm, L., and Sander, C., Proteins-Struct. Funct. Gen., 28(1) 1997, 72–82.

Hsu, S.-K., Lo, H.-H., Lin, W.-D., Chen, I. C., Kao, C.-H.,Hsu, W.-H., Process Biochem., 42 (2007), 856–862.

Hsu, W.-H., Hsu, S.-K., National Chung Hsing University(Taichung City, TW) 2008, US20080003640 A1.

Ikenaka, Y., Nanba, H., Yajima, K., Yamada, Y., Takano, M.,Takahashi, S., Biosci., Biotechnol., Biochem., 62 (1998a),1668–1671.

Ikenaka, Y., Nanba, H., Yamada, Y., Yajima, K., Takano, M.,and Takahashi, S., Biosci. Biotechnol. Biochem., 62 (5)1998b, 882–886.

Ikenaka, Y., Nanba, H., Yajima, K., Yamada, Y., Takano, M.,and Takahashi, S., Biosci., Biotechnol., Biochem., 63 (1)1999, 91–95.

Ikenaka, Y., Nanba, H. K., Takano, M., Yajima, K., Yamada,Y., and Takahashi, S., Kanegafuchi Kagaku Kogyo KabushikiKaisha (2–4 Nakanoshima 3-chome, Kita-ku Osaka-shi,Osaka-fu, 530, JP) 2004, EP0610517 B1.

Jacob, E., Henco, K., Marcinowski, S., and Schenk, G., BASFAG (1990), US4912044.

Kao, C.-H., Lo, H.-H., Hsu, S.-K., and Hsu, W.-H., J.Biotechnol. 134 (3–4) 2008, 231.

Kautz, J., and Schnackerz, K. D., Eur. J. Biochem., 181 (2)1989, 431–435.

Kierkels, J. G. T., and Boesten, W. H. J., DSM IP Assets B.V. (NL) 2004, EP1446492 A2.

Kikugawa, M., Kaneko, M., Fujimoto-Sakata, S., Maeda, M.,Kawasaki, K., Takagi, T., and Tamaki, N., Eur. J.Biochem., 219 (1–2) 1994, 393–399.

Kim, G. J., and Kim, H. S., Biochem. Biophys. Res. Commun.,243 (1) 1998, 96–100.

Kim, G. J., Lee, D. E., and Kim, H. S., J. Bacteriol., 182(24) 2000, 7021–7028.

Kira, I., Takenaka, Y., Nozaki, H., and Watanabe, K.,Ajinomoto KK (JP) 2005, EP1493809 A1.

Kishan, K. V. R., Vohra, R. M., Ganesan, K., Sharma, V. A.V. M., and Sharma, R., J. Mol. Biol. 347 (1) 2005, 95–105.

Kvalnes-Krick, K. L., and Traut, T. W., J. Biol. Chem., 268(8) 1993, 5686–5693.

Lapointe, G., Viau, S., Leblanc, D., Robert, N., and Morin,A., Appl. Environ. Microbiol., 60 (3) 1994, 888–895.Lazarus, R. A., J. Org. Chem., 55 (15) 1990, 4755–4757.

Leuchtenberger, W., Huthmacher, K., and Drauz, K., Appl.Microbiol. Biotechnol., 69 (1) 2005, 1–8.

Liese, A., Seelbach, K., and Wandrey, C., Industrialbiotransformations, 2nd, completely revised and enlargededition, Industrial Biotransformations (2006), Wiley.

Liljeblad, A., and Kanerva, L. T., Tetrahedron, 62 (25)2006, 5831–5854. Liu, M., and Sibi, M. P., Tetrahedron, 58(40) 2002, 7991–8035.

Lo, C.-K., Kao, C.-H., Wang, W.-C., Wu, H.-M., Hsu, W.-H.,Lin, L.-L., and Hu, H.-Y., Process Biochem., 44 (3) 2009,309–315.

Lundgren, S., Gojkovic, Z., Piskur, J., and Dobritzsch, D.,J. Biol. Chem., 278 (51) 2003, 51851–51862.

Makryaleas, K., and Drauz, K., Degussa AG(Weissfrauenstrasse 9, Frankfurt, D-60311, DE), RecordatiSA Chemical and Pharmaceutical Company (Corso, S.,Gottardo 54, Chiasso, 6830, CH) 1994, EP0400638 B1.

Martínez-Gómez, A. I., Clemente-Jiménez, J. M.,Rodríguez-Vico, F., Kanerva, L. T., Li, X.-G.,Heras-Vázquez, F. J. L., and Martínez-Rodríguez, S.,Process Biochem., 47 (12) 2012, 2090–2096.

Martínez-Gómez, A. I., Martinez-Rodriguez, S., Pozo-Dengra,J., Tessaro, D., Servi, S., Clemente-Jimenez, J. M.,Rodriguez-Vico, F., and Las HerasVazquez, F. J., Appl.Environ. Microbiol., 75 (2) 2009, 514–520.

Martinez-Rodriguez, S., Andujar-Sanchez, M., ClementeJimenez, J. M., Jara-Perez, V., Rodriguez-Vico, F., andLas Heras-Vazquez, F. J., Biochimie, 88 (7) 2006a, 837.

Martinez-Rodriguez, S., Andujar-Sanchez, M., Neira, J. L.,Clemente-Jimenez, J. M., Jara-Perez, V., Rodriguez-Vico,F., and Las Heras-Vazquez, F. J., Protein Sci., 15 (12)2006b, 2729–2738.

Martínez-Rodríguez, S., Clemente-Jiménez, J. M.,Rodríguez-Vico, F., and Las Heras-Vazquez, F. J., J. Mol.Microbiol. Biotechnol., 9 (1) 2005, 16.

Martinez-Rodriguez, S., Garcia-Pino, A., Las Heras-Vazquez,F. J., ClementeJimenez, J. M., Rodriguez-Vico, F., Loris,R., Garcia-Ruiz, J. M., and Gavira, J. A., ActaCrystallogr. Section F-Struct. Biol. CrystallizationCommun., 64 2008, 1135–1138.

Martinez-Rodriguez, S., Las Heras-Vazquez, F. J.,Clemente-Jimenez, J. M., and Rodriguez-Vico, F.,Biochimie, 86 (2) 2004a, 77–81.

Martinez-Rodriguez, S., Las Heras-Vazquez, F. J.,Mingorance-Cazorla, L., Clemente-Jimenez, J. M., andRodriguez-Vico, F., Appl. Environ. Microbiol., 70 (1)2004b, 625–630.

Martinez-Rodriguez, S., Martinez-Gomez, A. I.,Clemente-Jimenez, J. M., Rodriguez-Vico, F., Garcia-Ruiz,J. M., Las Heras-Vazquez, F. J., and Gavira, J. A., J.Struct. Biol., 169 (2) 2010b, 200–208.

Martinez-Rodriguez, S., Martinez-Gomez, A., Rodriguez-Vico,F., ClementeJimenez, J., and Las Heras-Vazquez, F. J.,Appl. Microbiol. Biotechnol., 85 2010a, 441–458.

May, O., Buchholz, S., Schwarm, M., Drauz, K., Turner, R.J., and Fotheringham, I., Evonik Degussa GmbH(Rellinghauser Strasse 1–11, 45128 Essen, DE) 2009,EP1558727 B1.

May, O., Drauz, K., and Buchholz, S., Degussa AG(Düsseldorf, DE) 2007, US7247465.

May, O., Habenicht, A., Mattes, R., Syldatk, C., andSiemann, M., Biol. Chem., 379 (6) 1998a, 743–747.

May, O., Nguyen, P. T., and Arnold, F. H., Nat Biotech., 18(3) 2000, 317–320.

May, O., Siemann, M., Pietzsch, M., Kiess, M., Mattes, R.,and Syldatk, C., J. Biotechnol., 61 (1) 1998b, 1. Mitsugi,K., Sano, K., Yokozeki, K., Yamada, K., Noda, I., Kagawa,T., Eguchi, C., Yasuda, N., Tamura, F., and Togo, K.,Ajinomoto Co., Inc. (Tokyo, JA) 1977, US4016037. Morin,A., Enzyme. Microb. Technol., 15 (3) 1993, 208–214.

Nakai, T., Hasegawa, T., Yamashita, E., Yamamoto, M.,Kumasaka, T., Ueki, T., Nanba, H., Ikenaka, Y., Takahashi,S., Sato, M., and Tsukihara, T., Structure, 8 (7) 2000,729–738.

Nakamori, S., Yokozeki, K., Mitsugi, K., Eguchi, C., andIwagami, H., Ajinomoto Company, Incorporated (Tokyo, JP)1980, US4211840.

Nanba, H., Ikenaka, Y., Yamada, Y., Yajima, K., Takano, M.,Ohkubo, K., Hiraishi, Y., Yamada, K., and Takahashi, S.,Biosci., Biotechnol., Biochem., 62 (10) 1998a, 1839–1844.

Nanba, H., Ikenaka, Y., Yamada, Y., Yajima, K., Takano, M.,and Takahashi, S., Biosci. Biotechnol. Biochem., 62 (5)

1998b, 875–881.

Nanba, H., Ikenaka, Y., Yamada, Y., Yajima, K., Takano, M.,and Takahashi, S., J. Biosci. Bioeng., 87 (2) 1999,149–154.

Nanba, H., Yamada, Y., Yajima, K., Takano, M., Ikenaka, Y.,Takahashi, S., and Ohashi, T., Kanegafuchi Kagaku KogyoKabushiki Kaisha (2–4 Nakanoshima 3-chome, Kita-kuOsaka-shi, Osaka, 530, JP) 2003, EP0725142 B1.

Nanba, H., Yasohara, Y., Hasegawa, J., and Takahashi, S.,Org. Process Res. Dev., 11 (3) 2007, 503–508.

Nishi, K., Yanagisawa, S., Nanba, H., Ueda, M., and Noro,N., Kaneka Corporation (2–4, Nakanoshima 3-chome, Kita-kuOsaka-shi, Osaka 530-8288, JP) 2007a, EP1852510 A1.

Nishi, K., Yanagisawa, S., Nanba, H., Ueda, M., and Noro,N., Kaneka Corporation (2–4, Nakanoshima 3-chome, Kita-kuOsaka-shi, Osaka 530-8288, JP) 2007b, EP1852510 A1.

Nozaki, H., Hashimoto, A., and Nakazawa, M., Ajinomoto Co.,Inc. (15-1 Kyobashi 1-chome, Chuo-ku, Tokyo 104–8315, JP)2007, EP1867730 A1.

Nozaki, H., Kira, I., Watanabe, K., and Yokozeki, K., J.Mol. Catal. B-Enzymatic, 32 (5–6) 2005a, 205–211.

Nozaki, H., Takenaka, Y., Kira, I., Watanabe, K., andYokozeki, K., J. Mol. Catal. B-Enzymatic, 32 (5–6) 2005b,213–218.

O’Neil, M., Hauer, B., Schneider, N., and Turner, N. J.,ACS Catal., 1 (9) 2011, 1014–1016.

Ogawa, J., Chung, M. C. M., Hida, S., Yamada, H., andShimizu, S., J. Biotechnol., 38 (1) 1994, 11–19.

Ogawa, J., Miyake, H., and Shimizu, S., Appl. Microbiol.Biotechnol., 43 (6) 1995, 1039–1043. Ogawa, J., andShimizu, S., Eur. J. Biochem., 223 (2) 1994, 625–630.Ogawa, J., and Shimizu, S., J. Mol. Catal. B: Enzym., 2(4–5) 1997, 163. Ogawa, J., and Shimizu, S., Curr. Opin.Biotechnol., 13 (4) 2002, 367–375.

Ohishi, T., Nanba, H., Sugawara, M., Izumida, M., Honda,T., Mori, K., Yanagisawa, S., Nagashima, N., and Inoue,K., Kaneka Corporation (2005), EP1550725 A1.

Ohishi, T., Nanba, H., Sugawara, M., Izumida, M., Honda,T., Mori, K., Yanagisawa, S., Ueda, M., Nagashima, N., andInoue, K., Tetrahedron Lett., 48 (19) 2007, 3437–3440.

Ohmachi, T., Narita, M., Kawata, M., Bizen, A., Tamura, Y.,and Asada, Y., Appl. Microbiol. Biotechnol., 65 (6) 2004,686–693.

Okumura, S., Tsugawa, R., Katsuya, N., and Takahashi, M.,Ajinomoto K. K. (1967), US3320135.

Olivieri, R., Angelini, L., Degen, L., and Fascetti, E.,Biotechnol. Bioeng., 23 (10) 1981, 2173–2183.

Olivieri, R., Fascetti, E., Angelini, L., and Degen, L.,Enzyme. Microb. Technol., 1 (3) 1979, 201–204.

Olivieri, R., Viglia, A., Degen, L., Angelini, L., andFascetti, E., Snamprogetti S.P.A. (Milan, IT) 1982,US4312948.

Pietzsch, M., Oberreuter, H., Petrovska, B., Ragnitz, K.,Syldatk, C., A. Ballesteros, F. J. P. J. L. I., andHalling, P. J., Immobilization of hydantoin cleavingenzymes from Arthrobacter aurescens DSM 3747-- Effect ofthe coupling method on the stability of theL-N-carbamoylase, Prog. Biotechnol., 15 (1998), 517–522.

Pietzsch, M., and Syldatk, C., Hydrolysis and Formation ofHydantoins, Enzyme Catalysis in Organic Synthesis (2002),Wiley-VCH Verlag GmbH 761–799.

Pietzsch, M., Syldatk, C., and Wagner, F., Ann. N. Y. Acad.Sci., 672 (1992), 478–483. Pietzsch, M., Waniek, T.,Smith, R. J., Bratovanov, S., Bienz, S., and Syldatk, C.,Monatshefte für Chemie/Chemical Monthly, 131 (6) 2000a,645–653.

Pietzsch, M., Wiese, A., Ragnitz, K., Wilms, B.,Altenbuchner, J., Mattes, R., and Syldatk, C., J.Chromatogr. B-Anal. Technol. Biomed. Life Sci., 737 (1–2)2000b, 179–186.

Pozo-Dengra, J., Martínez-Gómez, A. I., Martínez-Rodríguez,S., ClementeJiménez, J. M., Rodríguez-Vico, F., and LasHeras-Vázquez, F. J., J. Biotechnol. Progr., 26 (2010),954–959.

Rehdorf, J., Mihovilovic, M. D., and Bornscheuer, U. T.,Angew. Chem. Intl. Ed., 49 (26) 2010, 4506–4508.

Rudat, J., Brucher, B., and Syldatk, C., AMB Express C7, 112 (1) 2012, 1–10.

Runser, S. M., and Meyer, P. C., Eur. J. Biochem., 213 (3)1993, 1315–1324.

Rusnak-Müller, M., May, O., Hermsen, P. J., Straatman, H.M. M. G., Skranc, W., Boesten, W. H. J., Heemskerk, D.,Lange, B. D., and Sarakinos, G., DSM IP Assets B. V. (HetOverloon 1, 6411 TE Heerlen, NL) 2011, EP2267144 A3.

Sarakinos, G., Boesten, W. H. J., Heemskerk, D., and Lange,B. D., DSM Sinochem Pharmaceuticals Netherlands B. V.(Alexander Fleminglaan 1, 2613 AX Delft, NL) 2012,EP2150538 B1.

Sarakinos, G., and Lange, B. D., DSM IP Assets B. V. (HetOverloon 1, 6411 TE Heerlen, NL) 2011, EP2200981 B1.

Schnackerz, K. D., and Dobritzsch, D., Biochim. Biophys.Acta, Proteins Proteomics, 1784 (3) 2008, 431–444.

Schneider, N., Hauer, B., Ditrich, K., O’Neil, M., andTurner, N., BASF, SE (67056 Ludwigshafen, DE) 2012,EP2478098 A1. Seebach, D., and Gardiner, J., Acc. Chem.Res., 41 (10) 2008, 1366–1375. Seebach, D., and Matthews,J. L., Chem. Commun. (Cambridge, U. K.) (21) 1997,2015–2022.

Seibert, C. M., and Raushel, F. M., Biochemistry, 44 (17)2005, 6383–6391.

Servi, S., Syldatk, C., Vielhauer, O., and Tessaro, D.Poster Communication in Biotrans Delft (2005). Sheldon, R.A., Chem. Commun. (Cambridge, U. K.) (29) 2008, 3352–3365.

Shimizu, S., Shimada, H., Takahashi, S., Ohashi, T., Tani,Y., and Yamada, H., Agric. Biol. Chem., 44 (9) 1980,2233–2234.

Siemann, M., Alvarado-Marin, A., Pietzsch, M., and Syldatk,C., J. Mol. Catal. B: Enzym., 6 (3) 1999, 387.

Smith, R. J., Pietzsch, M., Waniek, T., Syldatk, C., andBienz, S., Tetrahedron: Asymmetry, 12 (1) 2001, 157–165.Steer, D. L., Lew, R. A., Perlmutter, P., Smith, A. I., andAguilar, M.-I., Curr. Med. Chem., 9 (2002), 811.

Suzuki, S., Henderson, P. J. F., J. Bacteriol., 188 (9)

2006, 3329–3336.

Suzuki, S., Onishi, N., and Yokozeki, K., Biosci.Biotechnol. Biochem., 69 (3) 2005a, 530–536.

Suzuki, S., Onishi, N., and Yokozeki, K., Ajinomoto Co.,Inc. (15-1 Kyobashi 1-chome, Chuo-ku, Tokyo 104-0031, JP)2011, EP1188826 B1.

Suzuki, S., Takenaka, Y., Onishi, N., and Yokozeki, K.,Biosci. Biotechnol. Biochem., 69 (8) 2005b, 1473–1482.

Suzuki, S., Yokozeki, K., and Henderson, P., Ajinomoto Co.,Inc. (Tokyo, JP) 2008, US7320794.

Syldatk, C., Läufer, A., Müller, R., and Höke, H.,Production of optically pure D- and L-α-amino acids bybioconversion of D,L-5-monosubstituted hydantoinderivatives, Microbial. Bioproducts., 41 (1990a), 29–75.

Syldatk, C., Mackowiak, V., Hoke, H., Gross, C., Dombach,G., and Wagner, F., J. Biotechnol., 14 (3–4) 1990b, 345.

Syldatk, C., May, O., Altenbuchner, J., Mattes, R., andSiemann, M., Appl. Microbiol. Biotechnol., 51 (3) 1999,293–309.

Syldatk, C., Müller, R., Pietzsch, M., and Wagner, F.,Microbial and Enzymatic Production of L-Amino Acids fromDL-5-Monosubstituted Hydantoins Biocatalytic Production ofAmino Acids, and Derivatives (Rozzel, J. D., and Wagner,W.) 1992, New York, Hanser Publishers.

Takahashi, S., Ohashi, T., Kii, Y., Kumagai, H., andYamada, H., J. Fermentation Technol., 57 (4) 1979,328–332.

Takenaka, Y., Kira, I., and Yokozeki, K., Ajinomoto Co.,Inc. (15-1, Kyobashi 1-chome, Chuo-ku, Tokyo, JP) 2011,EP1275723 B1.

Takenaka, Y., Suzuki, S., Onishi, N., and Yokozeki, K.,Ajinomoto Co., Inc. (Tokyo, JP) 2006, US7098020.

Tasnádi, G., Forró, E., and Füllöp, F., Tetrahedron:Asymmetry, 19 (17) 2008, 2072–2077. Tramper, J., TrendsBiotechnol., 3 (2) 1985, 45–50.

Tramper, J., and Luyben, K. C. A. M., PT-Procestechniek, 37(10) 1982, 97–101.

Viglia, A., Fascetti, E., Perricone, E., and Degen, L.,Snamprogetti S.P.A. (Milan, IT) 1981, US4248967.

Vogels, G. D., and Van Der Drift, C., Bacteriol. Rev., 40(2) 1976, 403–468.

Vreken, P., Van Kuilenburg, A. B. P., Hamajima, N.,Meinsma, R., Van Lenthe, H., Gohlich-Ratmann, G., Assmann,B. E., Wevers, R. A., and Van Gennip, A. H., Biochim. EtBiophys. Acta-Gene Struct. Exp., 1447 (2–3) 1999, 251–257.

Wagner, F., Hantke, B., Wagner, T., Drauz, K., andBommarius, A., Degussa (DE) 1998, EP0745678 A3.

Wagner, F., Syldatk, C., Lehmensiek, V., Krohn, K., Hoke,H., and Laufer, A., Ruetgerswerke A. G. (DE) 1990,EP0377083 A1.

Wagner, F., Voelkel, D., Bommarius, A., and Drauz, K.,Degussa (DE) 1995, EP0625571 A3.

Waldmann, G., Cook, P. F., and Schnackerz, K. D., ProteinPept. Lett., 12 (1) 2005, 69–73. Wallach, D. P., andGrisolia, S., J. Biol. Chem., 226 (1) 1957, 277–288. Walsh,T. A., Green, S. B., Larrinua, I. M., and Schmitzer, P. R.,Plant Physiol., 125 (2) 2001, 1001–1011.

Wang, W.-C., Hsu, W.-H., Chien, F.-T., and Chen, C.-Y., J.Mol. Biol., 306 (2) 2001, 251–261.

Ware, E., Chem. Rev. (Washington, DC, U. S.) 46 (3) 1950,403–470.

Watabe, K., Ishikawa, T., Mukohara, Y., and Nakamura, H.,J. Bacteriol., 174 (3) 1992a, 962–969.

Watabe, K., Ishikawa, T., Mukohara, Y., and Nakamura, H.,J. Bacteriol., 174 (11) 1992b, 3461–3466.

Watabe, K., Ishikawa, T., Mukohara, Y., and Nakamura, H.,J. Bacteriol., 174 (24) 1992c, 7989–7995. Weiner, B.,Szymanski, W., Janssen, D. B., Minnaard, A. J., andFeringa, B. L., Chem. Soc. Rev., 39 (5) 2010, 1656–1691.

Wiese, A., Pietzsch, M., Syldatk, C., Mattes, R., andAltenbuchner, J., J. Biotechnol., 80 (3) 2000, 217–230.

Wilms, B., Hauck, A., Reuss, M., Syldatk, C., Mattes, R.,Siemann, M., and Altenbuchner, J., Biotechnol. Bioeng., 73

(2) 2001a, 95–103.

Wilms, B., Wiese, A., Syldatk, C., Mattes, R., andAltenbuchner, J., J. Biotechnol., 86 (1) 2001b, 19–30.

Wilms, B., Wiese, A., Syldatk, C., Mattes, R.,Altenbuchner, J., and Pietzsch, M., J. Biotechnol., 68(2–3) 1999, 101–113. Wu, B., Szymanski, W., Wietzes, P., DeWildeman, S., Poelarends, G. J., Feringa, B. L., andJanssen, D. B., Chem. Bio. Chem., 10 (2) 2009, 338–344.

Wu, S., Liu, Y., Zhao, G., Wang, J., and Sun, W.,Biochimie, 88 (3–4) 2006, 237.

Yamada, H., Takahashi, S., Kii, Y., and Kumagai, H., J.Fermentation Technol., 56 (5) 1978a, 484–491.

Yamada, H., Takahashi, S., and Yoneda, K., KanegafuchiKagaku Kogyo Kabushiki Kaisha (Osaka, JA) 1978b,US4094741.

Yamada, H., Takahashi, S., and Yoneda, K., KanegafuchiKagaku Kogyo Kabushiki Kaisha (Osaka, JP) 1980a,US4242452.

Yamada, H. K., Takahashi, S. T., and Yoneda, K. A., 1980b,US4237227.

Yen, M.-C., Hsu, W.-H., and Lin, S.-C., Process Biochem.,45 (5) 2010, 667–674.

Yokozeki, K., Hirose, Y., and Kubota, K., Agric. Biol.Chem., 51 (3) 1987a, 737–746.

Yokozeki, K., and Kubota, K., Agric. Biol. Chem., 51 (3)1987, 721–728.

Yokozeki, K., Nakamori, S., Eguchi, C., Yamada, K., andMitsugi, K., Agric. Biol. Chem., 51 (2) 1987b, 355–362.

Yokozeki, K., Nakamori, S., and Yamanaka, S., Ajinomoto Co.Inc (1980), JP55114292.

Yokozeki, K., Nakamori, S., Yamanaka, S., Eguchi, C.,Mitsugi, K., and Yoshinaga, F., Agric. Biol. Chem., 51 (3)1987c, 715–719.

Yoon, J., Oh, B., Kim, K., Park, J. E., Wang, J., Kim,H.-S., and Kim, Y., Biochem. Biophys. Res. Commun., 310(2) 2003, 651–659.

23 Chapter 23: BiotechnologicalApproaches to Dipeptide Production

Aboulmagd E., Oppermann-Sanio F. B., Steinbüchel A., Arch.Microbiol., 174(5) (2000), 297–306.

Aboulmagd E., Voss I., Oppermann-Sanio F. B., SteinbüchelA., Biomacromolecules, 2(4) (2001), 1338–1842.

Agyei D., Danquah M. K., Biotechnol. Adv., 29(3) (2011),272–277. Albericio F., Curr. Opin. Chem. Biol., 8(3)(2004), 211–221.

Albini N., Auricchio S., Minisci F., Chem. Ind., 15 (1985),484–485.

Allen M. M., Hutchison F., Weathers P. J., J. Bacteriol.,141(2) (1980), 687–693.

Ariyoshi Y., Nagao M., Naotake N., US Patent no. 3,786,039(1974a).

Ariyoshi Y., Yamatani T., Uchiyama N., Yasuda N., Toi K.,US Patent no. US 3,833,553, (1974b).

Begum G., Cunliffe A., Leveritt M., Int. J. Sport. Nutr.Exerc. Metab., 15(5) (2005), 493–514.

Belshaw P. J., Walsh C. T., Stachelhaus T., Science,284(5413) (1999), 486–489.

Biegel A., Knütter I., Hartrodt B., Gebauer S., Theis S.,Luckner P., Kottra G., Rastetter M., Zebisch K., ThondorfI., Daniel H., Neubert K., Brandsch M., Amino. Acids,31(2) (2006), 137–156.

Björup P., Torres J. L., Adlercreutz P., Clapés P., Bioorg.Med. Chem., 6(7) (1998), 891–901.

Bongers J., Heimer E. P., Peptides, 15(1) (1994), 183–193.

Capellas M., Caminal G., Gonzalez G., López-Santín J.,Clapés P., Biotechnol. Bioeng., 56(4) (1997), 456–463.

Cassells J. M., Halling P. J., Biotechnol. Bioeng., 33(11)(1989), 1489–1494.

Chan W. C., White P. D., Fmoc solid phase peptidesynthesis: a practical approach. Oxford University Press(2000), 341 p. ISBN: 0-19-963724-5.

Daniel H., Spanier B., Kottra G., Weitz D., Physiology(Bethesda), 21 (2006), 93–102.

de Beer R. J., Zarzycka B., Mariman M., Amatdjais-GroenenH. I., Mulders M. J., Quaedflieg P. J., van Delft F. L.,Nabuurs S. B., Rutjes F. P., Chembiochem., 13(9) (2012),1319–1326.

Dieckmann R., Neuhof T., Pavela-Vrancic M., von Döhren H.,FEBS Lett., 498(1) (2001), 42–45.

Diniz S. C., Voss I., Steinbüchel A., Biotechnol. Bioeng.,93(4) (2006), 698–717.

Doekel S., Marahiel M. A., Chem. Biol., 7(6) (2000),373–384.

Doel M. T., Eaton M., Cook E. A., Lewis H., Patel T., CareyN. H., Nucleic Acids Res., 8(20) (1980), 4575–4592.

Du Vigneaud V., Ressler C., Swan J. M., Roberts C. W.,Katsoyannis P. G., Gordon S., J. Americ. Chem. Soc.,75(19) (1953), 4879–4880.

Frey K. M., Oppermann-Sanio F. B., Schmidt H., SteinbüchelA., Appl. Environ. Microbiol., 68(7) (2002), 3377–3384.

Frommeyer M., Steinbüchel A., Appl. Environ. Microbiol.,79(14) (2013), 4474–4483.

Furst P., J. Nutr., 131(9 Suppl) (2001), 2562S–258S.

Furst P., Pfaender P., Werner F., EP Patent no. EP 0087750(1985).

Goeters C., Wenn A., Mertes N., Wempe C., Van Aken H.,Stehle P., Bone H. G., Crit Care Med., 30(9) (2002),2032–2037.

Goodman M., Zapf C., Rew Y., Biopolymers, 60(3) (2001),229–245.

Guiotto A., Calderan A., Ruzza P., Borin G., Curr. Med.Chem., 12(20) (2005), 2293–2315.

Gulewitsch W. l. Amiradzibi S., Zeitschrift fürPhysiologische Chemie., 30 (1900), 565–573.

Guzmán F., Barberis S., Illanes A., Elec. J. of

Biotechnol., 10(2) (2007), 13.

Halling P. J., Enzyme Microb. Technol., 16(3) (1994),178–206.

Harris R.C., Sale C., Med. Sport. Sci., 59 (2012), 1–17.

Hines H. M., Sutfin D. C., Am. J. Physiol., 186(2) (1956),286–288.

Hipkiss A.R., Mol. Aspects Med., 32(4–6) (2011), 267–278.

Homandberg G. A., Mattis J. A., Laskowski M. Jr.,Biochemistry, 17(24) (1978), 5220–5227.

Ikeda H., Yagasaki M., Hashimoto S., WO Patent applicationno. 2006/001382 (2006).

Jakubke H. D., Kuhl P., Konnecke A., Angew. Chem. Int. Ed.Engl., 24 (1985), 85–93.

Keating T. A., Marshall C. G., Walsh C.T., Keating A.E.,Nat. Struct. Biol., 9(7) (2002), 522–526.

Khavinson V. K., Anisimov V. N., Dokl. Biol. Sci., 372(2000), 261–263.

Kitts D. D., Weiler K., Curr. Pharm. Des., 9(16) (2003),1309–1323.

Korhonen H., Pihlanto A., Curr. Pharm. Des., 13(8) (2007),829–843.

Krehenbrink M., Oppermann-Sanio F. B., Steinbüchel A.,Arch. Microbiol., 177(5) (2002), 371–380.

Kumar D., Bhalla T. C., Appl. Microbiol. Biotechnol., 68(6)(2005), 726–736.

Lombard C., Saulnier J., Wallach J. M., Protein Pept.Lett., 12(7) (2005), 621–629.

Matsufuji H., Matsui T., Seki E., Osajima K., Nakashima M.,Osajima Y., Biosci. Biotechnol. Biochem., 58(12) (1994),2244–2245.

Merrifield B., J. Americ. Chem. Soc., 85(14) (1963),2149–2154.

Mooibroek H., Oosterhuis N., Giuseppin M., Toonen M.,

Franssen H., Scott E., Sanders J., Steinbüchel A., Appl.Microbiol. Biotechnol., 77(2) (2007), 257–267.

Morihara K., Biomed. Biochim. Acta., 50(10–11) (1991),S15–S18.

Murata T., Horinouchi S., Beppu T., J. Biotechnol., 28(2–3)(1993), 301–312.

Murray B. A., FitzGerald R. J., Curr. Pharm. Des., 13(8)(2007), 773–791.

Nilsson B. L., Soellner M. B., Raines R. T., Ann. Rev.Biophys Biomol. Struct., 34 (2005), 91–118.

Nitta A., Nishioka H., Fukumitsu H., Furukawa Y., SugiuraH., Shen L., Furukawa S., J. Neurosci. Res., 78(2) (2004),250–258.

Noguchi T., Tehara N., Uesugi Y., Jung S., Imai N., Chem.Lett., 41 (2012), 42–43.

Oyama K., Kihara K., Chemtech., 14 (1984), 100–105.

Parker J. B., Walsh C.T., Biochemistry, 52(5) (2013),889–901.

Roth E., Ollenschlager G., Hamilton G., Simmel A., LangerK., Fekl W., Jakesz R., In vitro Cell Dev. Biol., 24(7)(1988), 696–698.

Sallam A., Kast A., Przybilla S., Meiswinkel T.,Steinbüchel A., Appl. Environ. Microbiol., 75(1) (2009),29–38.

Sallam A., Steinbüchel A., Appl. Microbiol. Biotechnol.,87(3) (2010), 815–828.

Sano T., Sugaya T., Inoue K., Mizutani S., Ono Y., KasaiM., Org. Process Res. Dev., 4 (2000), 147–152.

Sato M., Hosokawa T., Yamaguchi T., Nakano T., Muramoto K.,Kahara T., Funayama K., Kobayashi A., Nakano T., J. Agric.Food. Chem., 50(21) (2002), 6245–6252.

Schellenberger V., Jakubke H. D., Angew. Chem. Int. Ed.Engl., 30 (1991), 1437–1449.

Sieber S. A., Marahiel M. A., Chem. Rev., 105(2) (2005),715–738.

So J., Shin J., Kim B., Enz. and Microb. Technol., 26(2–4)(2000), 108–114.

Stachelhaus T., Huser A., Marahiel M. A., Chem Biol., 3(11)(1996), 913–921.

Stehle P., Pfaender P., Furst P., J. Chromatogr., 294(1984), 507–512.

Steinle A., Bergander K., Steinbüchel A., Appl. Environ.Microbiol., 75(11) (2009), 3437–3446.

Suzuki T., Hirano T., Suyama M., Comp. Biochem. Physiol.B., 87(3) (1987), 615–619.

Tabata K., Hashimoto S., Appl. Environ. Microbiol., 73(20)(2007), 6378–6385.

Tabata K., Ikeda H., Hashimoto S., J. Bacteriol., 187(15)(2005), 5195–5202.

Takagi H., Shiomi H., Ueda H., Amano H., Eur. J.Pharmacol., 55(1) (1979), 109–111.

Tsuji A., Tamai I., Hirooka H., Terasaki T., Biochem.Pharmacol., 36(4) (1987), 565–567.

van Unen D. J., Engbersen J. F., Reinhoudt D. N.,Biotechnol. Bioeng., 77(3) (2002), 248–255.

Voss I., Steinbüchel A., Metab Eng., 8(1) (2006), 66–78.

Weber T., Baumgartner R., Renner C., Marahiel M. A., HolakT. A., Structure., 8(4) (2000), 407–418.

Wiefel L., Bröker A., Steinbüchel A., Appl MicrobiolBiotechnol., 90(5) (2011), 1755–1762.

Yagasaki M., Hashimoto S., Appl Microbiol Biotechnol.,81(1) (2008), 13–22.

Yokoyama K., Chiba H., Yoshikawa M., Biosci BiotechnolBiochem., 56(10) (1992), 1541–1545.

Yokozeki K., Hara S., J Biotechnol., 115(2) (2005), 211–220.

Ziegler K., Diener A., Herpin C., Richter R., Deutzmann R.,Lockau W., Eur J Biochem., 254(1) (1998), 154–159.

24 Chapter 24: Synthetic Enzyme Cascadesfor Valuable Diols and Amino Alcohols:Smart Composition and OptimizationStrategies

Ansorge-Schumacher M. B., Greiner L., Schroeper F.,Mirtschin S., Hischer T., Biotechnol. J., 1 (2006),564–568. Ayhan P., Simsek I., Cifci B., Demir A. S., Org.Biomol. Chem., 9 (2011), 2602–2605. Baykal A. T.,Chakraborty S., Dodoo A., Jordan F., Bioorg. Chem., 34(2006), 380–392.

Beigi M., Loschonsky S., Lehwald P., Brecht V., Andrade S.L., Leeper F. J., Hummel W., Müller M., Org. Biomol.Chem., 11 (2013a), 252–256.

Beigi M., Waltzer S., Fries A., Eggeling L., Sprenger G.A., Müller M., Org. Lett., 15 (2013b), 452–455. BellucciG., Capitani I., Chiappe C., Marioni F., J. Chem. Soc., 15(1989), 1170–1171.

Baraibar A. G., von Lieres E., Wiechert W., Pohl M., RotherD., Top. Catal., (2013), DOI: 10.1007/s11244-013-0194-z.Bergmeier S. C., Tetrahedron, 56 (2000), 2561–2576.

Bränden C. I., Eklund H., Nordstrom B., Boiwe T., SoderlundG., Zeppezauer E., Ohlsson I., Akeson A., Proc. Natl.Acad. Sci. U S A, 70 (1973), 2439–2442.

Brown D. A., Khorlin A. A., Lesiak K., Ren W. Y., WO98/11882, (1998).

Brown D. A., Khorlin A. A., Lesiak K., Ren W. Y., US6,290,937 B1, (2001).

Brown D. A., Ren W. Y., WO 02/051395 A1, (2002).

Chenault H. K., Whitesides G. M., Appl. Biochem.Biotechnol., 14 (1987), 147–197.

Demir A. S., Pohl M., Janzen E., Müller M., J. Chem. Soc.Perkin Trans., 1, (2001), 633–635.

Demir A. S., Şeşenoglu O., Eren E., Hosrik B., Pohl M.,Janzen E., Kolter D., Feldmann R., Dünkelmann P., MüllerM., Adv. Synth. Catal., 344 (2002), 96–103.

Domínguez de María P., Pohl M., Gocke D., Gröger H.,Trauthwein H., Walter L., Müller M., Eur. J. Org. Chem.,18 (2007), 2940–2944. Dünkelmann P., Müller M., Spec. Chem.

Mag., (2011), 16–17.

Dunn P. J., Hii K. K., Krische M. J., Williams M. T.,Sustainable Catalysis: Challenges and Practices for thePharmaceutical and Fine Chemical Industries, 1st edn.;John Wiley & Sons, Hoboken (New Jersey) USA, (2013).

Edegger K., Stampfer W., Seisser B., Faber K., Mayer S. F.,Oehrlein R., Hafner A., Kroutil W., Eur. J. Org. Chem.,(2006), 1904–1909.

Eklund H., Bränden C. I., Jörnvall H., J. Mol. Biol., 102(1976), 61–73.

Engel S., Vyazmensky M., Geresh S., Barak Z., Chipman D.M., Biotechnol. Bioeng., 83 (2003), 833–840. Faber K.,Biotransformations in Organic Chemistry, New York:Springer, (2011).

Flavahan N. A., J. Pharm. Exp. Ther., 313 (2005), 432–439.

Frank R. A. W., Leeper F. J., Luisi B. F., Cell. Mol. LifeS., 64 (2007), 829–905. Freire R. S., Morais S. M.,Catunda-Junior F. E. A., Pinheiro D. C. S. N., Bioorgan.Med. Chem., 13 (2005), 4353–4358. Gawley R. E., Aubé J.Principles of Asymmetric Synthesis, 2nd edn.; ElsevierLimited, Oxford (GB), (2012).

Gerhards T., Mackfeld U., Bocola M., von Lieres E.,Wiechert W., Pohl M., Rother D., Adv. Synth. Catal., 354(2012), 2805–2820. Gocke D., Kolter G., Müller M., Pohl M.,Chem. Ing. Tech., 82 (2010), 81–86.

Gocke D., Nguyen C. L., Pohl M., Stillger T., Walter L.,Müller M., Adv. Synth. Catal., 349 (2007), 1425–1435.

Gocke D., Walter L., Gauchenova E., Kolter G., Knoll M.,Berthold C. L., Schneider G., Pleiss J., Müller M., PohlM., ChemBioChem, 9 (2008), 406–412.

Groeper J. A., Hitchcock S. R., Ferrence G. M.,Tetrahedron: Asymmetry, 17 (2006), 2884–2889.

Hawkins K. M., Smolke C. D., Nat. Chem. Biol., 4 (2008),564–573.

Hailes H., Rother D., Müller M., Westphal R., Ward J. M.,Pleiss J., Pohl M., FEBS J., 280 (2013), 6374–6394.

Hischer T., Gocke D., Fernandez M., Hoyos P., Alcantara A.

R., Sinisterra J. V., Hartmeier W., Ansorge-Schumacher M.B., Tetrahedron, 61 (2005), 7378–7383.

Höhne M., Bornscheuer U. T., ChemCatChem, 1 (2009), 42–51.

Höhne M., Bornscheuer U. T., Application of Transaminases,in Enzyme Catalysis in Organic Synthesis, 3rd ed.; DrauzK., Gröger H., May O., eds., Wiley-VCH, Weinheim(Germany), (2012).

Hollmann F., Arends I. W. C. E., Bühler K., ChemCatChem, 2(2010), 762–782.

Hopwood J., Truppo M. D., Turner N. J., Lloyd R. C., Chem.Commun., 47 (2011), 773–775.

Hoyos P., Sinisterra J.-V., Molinari F., Alcantara A. S.R., Dominguez de Maria P., Acc. Chem. Res., 43 (2010),288–299.

Husain S. M., Stillger T., Dünkelmann P., Lödige M., WalterL., Breitling E., Pohl M., Bürchner M., Krossing I.,Müller M., Romano D., Molinari F., Adv. Synth. Catal., 353(2011), 2359–2362.

Hwang B.-Y., Kim B.-G., Enzyme Microb. Technol., 34 (2004),429–436.

Iding H., Dünnwald T., Greiner L., Liese A., Müller M.,Siegert P., Grötzinger J., Demir A. S., Pohl M., Chem.Eur. J., 6 (2000), 1483–1495.

Ingram C. U., Bommer M., Smith M. E. B., Dalby P. A., WardJ. M., Hailes H. C., Lye G. J., Biotechnol. Bioeng., 96(2006), 559–569.

Ito C., Itoigawa M., Furukawa H., Tokuda H., Okuda Y.,Mukainaka T., Okuda M., Nishino H., Cancer Lett., 138(1999), 87–92.

Jakoblinnert A., Mladenov R., Paul A., Sibilla F.,Schwaneberg U., AnsorgeSchumacher M. B., Dominguez de MariaP. D., Chem. Commun., 47 (2011), 12230–12232. JakoblinnertA., Rother D., Green Chem., (2014), DOI:10.1039/c4gc00010b.

Jin M. Y., Kim S. M., Han H., Ryu do H., Yang J. W., Org.Lett., 13 (2011), 880–883.

Karzanov V. V., Bogatsky Y. A., Tishkov V. I., Egorov A.M., FEMS Microbiol. Lett., 60 (1989), 197–200.

Keinan E., Hafeli E. K., Seth K. K., Lamed R., J. Am. Chem.Soc., 108 (1986), 162–169.

Kihumbu D., Stillger T., Hummel W., Liese A., Tetrahedron:Asymmetry, 13 (2002), 1069–1072. Knoll M., Müller M.,Pleiss J., Pohl M., ChemBioChem, 7 (2006), 1928–1934.

Knox C., Law V., Jewison T., Liu P., Ly S., Frolkis A., PonA., Banco K., Mak C., Neveu V. and others, Nucleic AcidsRes., 39 (2011), 1035–1041.

Korkhin Y., Kalb A. J., Peretz M., Bogin O., Burstein Y.,Frolow F., J. Mol. Biol., 278 (1998), 967–981.

Koszelewski D., Tauber K., Faber K., Kroutil W., TrendsBiotechnol., 28 (2010), 324–332.

Krizevski R., Dudai N., Bar E., Lewinsohn E., J.Ethnopharmacol., 114 (2007), 432–438.

Kroutil W., Mischitz M., Faber K., J. Chem. Soc., PerkinTrans., 1, (1997), 3629–3636.

Kulig J., dissertation, Stereoselective synthesis ofvicinal diols with enzymatic cascade reactions.http://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=27545 (2014).

Kulig J., Frese A., Kroutil W., Pohl M., Rother D.,Biotechnol. Bioeng., 110 (2013), 1838–1848.

Kulig J., Simon R. C., Rose C. A., Husain S. M., Häckh M.,Lüdeke S., Zeitler K., Kroutil W., Pohl M., Rother D.,Catal. Sci. Technol., 2 (2012), 1580–1589.

Kurina-Sanz M., Bisogno F. R., Lavandera I., Orden A. A.,Gotor V., Adv. Synth. Catal., 351 (2009), 1842–1848.Kurlemann N., Liese A., Tetrahedron: Asymmetry, 15 (2004),2955–2958.

Kurutsch A., Richter M., Brecht V., Sprenger G. A., MüllerM., J. Mol. Catal. B: Enzym., 61 (2009), 56–66.

Lang H.-J., Kleemann H.-W., Scholz W., Albus U., DE4318658, (1994).

Lavandera I., Kern A., Ferreira-Silva B., Glieder A., deWildeman S., Kroutil W., J. Org. Chem., 73 (2008a),6003–6005.

Lavandera I., Oberdorfer G., Gross J., de Wildeman S.,Kroutil W., Eur. J. Org. Chem., (2008b), 2539–2543.

Lee H. K., Kang S., Choi E. B., J. Org. Chem., 77 (2012),5454–5460.

Lee S. W., Li G., Lee K. S., Jung J. S., Xu M. L., Seo C.S., Chang H. W., Kim S. K., Song D. K., Son J. K., Planta.Med., 69 (2003), 861–864.

Lehwald P., Richter M., Rohr C., Liu H. W., Müller M.,Angew. Chem. Int. Ed., 49 (2010), 2389–2392.

Lopez-Gallego F., Schmidt-Dannert C., Curr. Opin. Chem.Biol., 14 (2010), 174–183.

Mahmoud W. M., El-Sayed A. H., Coughlin R. W., Biotechnol.Bioeng., 36 (1990a), 47–54.

Mahmoud W. M., El-Sayed A. H., Coughlin R. W., Biotechnol.Bioeng., 36 (1990b), 55–63. Malik M. S., Park E. S., ShinJ. S., Appl. Microbiol. Biotechnol., 94 (2012), 1163–1171.

Mathew S., Shin G., Shon M., Yun H., Biotechnol. BioprocessEng., 18 (2013), 1–7.

Meyer D., Walter L., Kolter G., Pohl M., Müller M.,Tittmann K., J. Am. Chem. Soc., 133 (2011), 3609–3616.

Micromedex 2.0 ® , Micromedex ® Healthcare Series[Internet database]. Greenwood Village, Colo: ThomsonReuters (Healthcare) Inc., Updated periodically.

Mischitz M., Kroutil W., Wandel U., Faber K., Tetrahedron:Asymmetry, 6 (1995), 1261–1272. Müller M., Adv. Synth.Catal., 354 (2012), 3161–3174. Müller M., Gocke D., PohlM., FEBS J., 276 (2009), 2894–2940. Müller M., Sprenger G.A., Pohl M., Curr. Opin. Chem. Biol., 17 (2013), 261–270.

Müller U., Willnow P., Ruschig U., Hopner T., Eur. J.Biochem., 83 (1978), 485–498.

Natalia D., Greiner L., Leitner W., Ansorge-Schumacher M.B., J. Supercrit. Fluids, 62 (2012), 173–177.

Niefind K., Müller J., Riebel B., Hummel W., Schomburg D.,J. Mol. Biol., 327 (2003), 317–328.

Niefind K., Riebel B., Müller J., Hummel W., Schomburg D.,

Acta Crystallogr. D., 56 (2000), 1696–1698.

Notz W., List B., J. Am. Chem. Soc., 122 (2000), 7386–7387.Nugent T. C. (eds.), Chiral Amine Synthesis, 1st. edn.;Wiley-VCH, Weinheim (Germany), (2010).

O’Toole S. E., Rose C. A., Gundala S., Zeitler K., ConnonS. J., J. Org. Chem., 76 (2011), 347–357. Oda S., IsshikiK., Biosci. Biotechnol. Biochem., 72 (2008), 1364–1367.

Oroz-Guinea I., García-Junceda E., Curr. Opin. Chem. Biol.,17 (2013), 236–249.

Osprian I., Kroutil W., Mischitz M., Faber K.,Tetrahedron-Asymmetry, 8 (1997), 65–71.

Peretz M., Bogin O., Tel-Or S., Cohen A., Li G. S., Chen J.S., Burstein Y., Anaerobe, 3 (1997), 259–270.

Peretz M., Burstein Y., Biochemistry, 28 (1989), 6549–6555.

Peters J., Zelinski T., Minuth T., Kula M. R., Tetrahedron:Asymmetry, 4 (1993), 1683–1692.

Pohl M., Dresen C., Beigi M., Müller M. Acyloin and benzoincondensations, in Enzyme Catalysis in Organic Synthesis,3rd edn.; Drauz K., Gröger H., May O., eds., 3rd. edn.;Wiley-VCH, Weinheim (Germany), (2012).

Pohl M., Gocke D., Müller M., Thiamin-based enzymes forbiotransformations, in Handbook of Green Chemistry,Anastas P. T., eds.; 1st. edn.; Wiley-VCH, Weinheim(Germany), (2009).

Putman D. G., Hogenkamp D. J., Dasse O. A., Whittemore E.R., Jensen M. S., WO 2007/109288 A2, (2007).

Ricca E., Brucher B., Schrittwieser J. H., Adv. Synth.Catal., 353 (2011), 2239–2262. Ro D.-K., Paradise E. M.,Ouellet M., Fisher K. J., Newman K. L., Ndungu J. M., HoK. A., Eachus R. A., Ham T. S., Kirby J., et al., Nature,440 (2006), 940–943.

Rother D., Kolter G., Gerhards T., Berthold C. L.,Gauchenova E., Knoll M., Pleiss J., Müller M., SchneiderG., Pohl M., ChemCatChem, 3 (2011), 1587–1596.

Röthig T. R., Kulbe K. D., Buckmann F., Carrea G.,Biotechnol. Lett., 12 (1990), 353–356.

Rothman R. B., Vu N., Partilla J. S., Roth B. L., HufeisenS. J., Compton-Toth B. A., Birkes J., Young R., Glennon R.A., J. Pharmacol. Exp. Ther., 307 (2003), 138–145. RouhiA. M., CENEAR, 81 (2003), 56–61.

Rozzell J. D., Bioorg. Med. Chem., 7 (1999), 2253–2261.

Saito T., Maruyama R., Ono S., Yasukawa N., Kodaira K.,Nishizawa M., Ito S., Inoue M., Appl. Biochem.Biotechnol., 111 (2003), 185–190.

Santacoloma P. A., Gürkan S., Gernaey K. V., Woodley J. M.,Org. Process Res. Dev., 15 (2011), 203–212.

Sattler J. H., Fuchs M., Tauber K., Mutti F. G., Faber K.,Pfeffer J., Haas T., Kroutil W., Angew. Chem. Int. Ed., 51(2012), 9156–9159.

Savile C. K., Janey J. M., Mundorff E. C., Moore J. C., TamS., Jarvis W. R., Colbeck J. C., Krebber A., Fleitz F. J.,Brands J., et al., Science, 329 (2010), 305–309.

Schatzle S., Hohne M., Redestad E., Robins K.,Bornscheuer U. T., Anal. Chem., 81 (2009), 8244–8248.

Schatzle S., Hohne M., Robins K., Bornscheuer U. T.,Anal. Chem., 82 (2010), 2082–2086.

Schlieben N. H., Niefind K., Müller J., Riebel B., HummelW., Schomburg D., J. Mol. Biol., 349 (2005), 801–813.

Sehl T., Hailes H. C., Ward J. M., Wardenga R., von LieresE., Offermann H., Westphal R., Pohl M., Rother D., Angew.Chem. Int. Ed., (2013), 125 (2013), 6904–6908.

Sehl T., Simon R. C., Hailes H. C., Ward J. M., Schell U.,Pohl M., Rother D., J. Biotechnol., 159 (2012), 188–194.

Sehl T., Hailes H. C., Ward J. M., Menyes U., Pohl M.,Rother D., Green Chem., (2014), DOI:10.1039/C4GC00100A.

Sharpless K. B., Amberg W., Bennani Y. L., Crispino G. A.,Hartung J., Jeong K. S., Kwong H. L., Morikawa K., Wang Z.M., J. Org. Chem., 57 (1992), 2768–2771.

Shin H. S., Rogers P. L., Appl. Microbiol. Biotechnol., 44(1995), 7–14.

Shin H. S., Rogers P. L., Biotechnol. Bioeng., 49 (1996),52–62.

Simon R. C., Mutti F. G., Kroutil W., Drug Discov. Today:Technol., 10 (2013), e37–e44.

Song D. K., Son J. K., WO 03/084522 A1, (2003).

Stillger T., Pohl M., Wandrey C., Liese A., Org. ProcessRes. Dev., 10 (2006), 1172–1177. Straathof A. J. J., PankeS., Schmid A., Curr. Opin. Biotechnol., 13 (2002),548–556.

Sukumaran J., Hanefeld U., Chem. Soc. Rev., 34 (2005),530–542. Thayer A. M., Chem. Eng. News, 84 (2006), 15–25.

Tishkov V. I., Galkin A. G., Marchenko G. N., Tsygankov Y.D., Egorov A. M., Biotechnol. Appl. Biochem., 18 (1993),201–207.

Truppo M. D., Rozzell J. D., Moore J. C., Turner N. J.,Org. Biomol. Chem., 7 (2009), 395–398.

Tufvesson P., Jensen J. S., Kroutil W., Woodley J. M.,Biotechnol. Bioeng., 109 (2012), 2159–2162.

Tufvesson P., Lima-Ramos J., Jensen J. S., Al-Haque N.,Neto W., Woodley J. M., Biotechnol. Bioeng., 108 (2011),1479–1493.

Tufvesson P., Lima-Ramos J., Nordblad M., Woodley J. M.,Org. Process Res. Dev., 15 (2010), 266–274.

Vojtisek V., Netrval J., Folia Microbiol., 27 (1982),173–177.

Voss C. V., Gruber C. C., Faber K., Knaus T., Macheroux P.,Kroutil W., J. Am. Chem. Soc., 130 (2008), 13969–13972.

Wang Z., Cui Y.-T., Xu Z.-B., Qu J., J. Org. Chem., 73(2008), 2270–2274.

Ward J., Wohlgemuth R., Curr. Org. Chem., 14 (2010),1914–1927.

Ward O. P., Singh A., Curr. Opin. Biotechnol., 11 (2000),520–526.

Weckbecker A., Gröger H., Hummel W., Adv. Biochem.Eng./Biotechnol., 120 (2010), 195–242.

Westphal R., Waltzer S., Mackfeld U., Widmann M., Pleiss

J., Beigi M., Müller M., Rother D., P. P., Chem. Commun.,49 (2013), 2061–2063.

Wichmann R., Vasic-Racki D., Adv. Biochem.Eng./Biotechnol., 92 (2005), 225–260.

Wilcocks R., Ward O. P., Biotechnol. Bioeng., 39 (1992),1058–1063.

Wohlgemuth R., Curr. Opin. Biotechnol., 21 (2010), 713–724.

Woodley J. M. 2012. Reaction and Process Engineering, inEnzyme Catalysis in Organic Synthesis, 3rd edn.; Drauz K.,Gröger H., May O., eds., 3rd. edn.; Wiley-VCH, Weinheim(Germany), (2012).

Wu S. K., Li A. T., Chin Y. S., Li Z., ACS Catal., 3(2013), 752–759.

Yan L., Diansong Z., Ferguson S. S., Dorff P., Simpson T.R., Grimm S. W., Xenobiotica, 40 (2010), 721–729.

Zelinski T., Liese A., Wandrey C., Kula M. R., Tetrahedron:Asymmetry, 10 (1999), 1681–1687.

Zhang Y.-H. P., Biotechnol. Bioeng., 105 (2010), 663–677.

25 Chapter 25: Metabolic Engineering forthe Biosynthesis of Longevity MoleculesRapamycin and Resveratrol

Jeandet, P., Delaunois, B., Aziz, A., Donnez, D., Vasserot,Y., Cordelier, S., Courot, E., J. Biomed. Biotechnol.,2012 (2012), Article ID 579089, 14 pages.

Jung, W. S., Yoo, Y. J., Park, J. W., Park, S. R., Han, A.R., Ban, Y. H., Kim, E. J., Kim, E., Yoon, Y. J., Appl.Microbiol. Biotechnol., 91 (2011), 1389–1397. Kendrew, S.G. Petkovic, H., Gaisser, S., Ready, S. J., Gregory, M. A.,Coates, N. J., Nur-e-Alam, M., Warneck, T., Suthar, D.,Foster, T. A., McDonald, L., Schlingman, G., Koehn, F. E.,Skotnicki, J. S., Carter, G. T., Moss, S. J., Zhang,M.-Q., Martin, C. J., Sheridan, R. M., Wilkinson, B.,Metab. Eng., 15 (2013), 167–173. Kwan, D. H., Schulz, F.,Molecules, 16 (2011), 6092–115.

Lamming, D. W., Ye, L., Katajisto, P., Goncalves, M. D.,Saitoh, M., Stevens, D. M., Davis, J. G., Salmon, A. B.,Richardson, A., Ahima, R. S., Guertin, D. A., Sabatini, D.M., Baur, J. A., Science, 335 (2012), 1638–1643. Leontieva,O. V., Paszkiewicz, G., Demidenko, Z. N., Blagosklonny, M.V., Cell Death Dis., 4 (2013), e472.

Lim, C. G., Fowler, Z. L., Hueller, T., Schaffer, S.,Koffas, M. A., Appl. Environ. Microbiol., 77 (2011),3451–3460. Liu, M., Liu, F., Commun. Integr. Biol., 4(2011), 382–384. Miller, R. A., Harrison, D. E., Astle, C.M., Baur, J. A., Boyd, A. R., de Cabo, R., Fernandez, E.,Flurkey, K., Javors, M. A., Nelson, J. F., Orihuela, C. J.,Pletcher, S., Sharp, Z. D., Sinclair, D., Starnes, J. W.,Wilkinson, J. E., Nadon, N. L., Strong, R., J. Gerontol. ABiol. Sci. Med. Sci., 66 (2011), 191–201.

Mo, S., Ban, Y. H., Park, J. W., Yoo, Y. J., Yoon, Y. J.,J. Ind. Microbiol. Biotechnol., 36 (2009), 1473–1482.Murli, S., Kennedy, J., Dayem, L. C., Carney, J. R.,Kealey, J. T., J. Ind. Microbiol. Biotechnol., 30 (2003),500–509. Oud, B., van Maris, A. J., Daran, J. M., Pronk, J.T., FEMS Yeast Res., 12 (2012), 183–196.

Park, S. J., Ahmad, F., Philp, A., Baar, K., Williams, T.,Luo, H., Ke, H., Rehmann, H., Taussig, R., Brown, A. L.,Kim, M. K., Beaven, M. A., Burgin, A. B., Manganiello, V.,Chun, J. H., Cell, 148 (2012), 421–433. Price, N. L.,Gomes, A. P., Ling, A. J., Duarte, F. V., Martin-Montalvo,A., North, B. J., Agarwal, B., Ye, L., Ramadori, G.,Teodoro, J. S., Hubbard, B. P., Varela, A. T., Davis, J.

G., Varamini, B., Hafner, A., Moaddel, R., Rolo, A. P.,Coppari, R., Palmeira, C. M., de Cabo, R., Baur, J. A.,Sinclair, D. A., Cell Metab., 15 (2012), 675–690. Puranik,A. S., Dawson, E. R., Peppas, N. A., Int. J. Pharm., 441(2013), 665–679.

Reeves, A. R., Brikun, I. A., Cernota, W. H., Leach, B. I.,Gonzalez, M. C., Weber, J. M., Metab. Eng., 9 (2007),293–303. Schwecke, T., Aparicio, J. F., Molnár, I., König,A., Khaw, L. E., Haydock, S. F., Oliynyk, M., Caffrey, P.,Cortés, J., Lester, J. B., et al., Proc. Natl. Acad. Sci.U S A, 92 (1995), 7839–7843. Shin, S. Y., Jung, S. M., Kim,M. D., Han, N. S., Seo, J. H., Enzyme Microb. Technol., 51(2012), 211–216. Sinclair, D. A., Mech. Ageing Dev., 126(2005), 987–1002. Strong, R., Miller, R. A., Astle, C. M.,Baur, J. A., de Cabo, R., Fernandez, E., Guo, W., Javors,M., Kirkland, J. L., Nelson, J. F., Sinclair, D. A., Teter,B., Williams, D., Zaveri, N., Nadon, N. L., Harrison, D.E., J. Gerontol. A Biol. Sci. Med. Sci., 68 (2013), 6–16.Vézina, C., Kudelski, A., Sehgal, S. N., J. Antibiot.(Tokyo), 28 (1975), 721–726.

Vrijbloed, J. W., Zerbe-Burkhardt, K., Ratnatilleke, A.,Grubelnik-Leiser, A., Robinson, J. A., J. Bacteriol., 181(1999), 5600–5605.

Wang, Y., Halls, C., Zhang, J., Matsuno, M., Zhang, Y., Yu,O., Metab. Eng., 13 (2011), 455–463.

Wang, Y., and Yu, O., J Biotechnol., 157 (2012), 258–260.Xu, Q., Si, L. Y., Nutr. Res., 32 (2012), 648–658.

Zhu, X., Zhang, W., Chen, X., Wu, H., Duan, Y., Xu, Z.,Biotechnol. Bioeng., 107 (2010), 506–515.

26 Chapter 26: Detergent Proteases

Enzyme registration information by AMFEP REACH Consortium.Web information available athttp://www.enzymes-reach.org/docs/ERpC%2009%2005%20-%20Calculation%20of%20Tonnage%20of%20Enzyme%20Substance.pdf. EPA. Web information availableat http://iaspub.epa.gov/sor_internet/registry/substreg/searchandretrieve/searchbylist/search.do.

Estell D. A., Graycar T. P., Wells J. A., J. Biol. Chem.,260 (1985), 831–837.

Flindt M. L. H., Am. J. Ind. Med., 29 (1996), 99–110.

Graves K., Rozeboom G., Heng M., Glatz C., Biotechnol.Bioeng., 29 (2006), 346–352.

Graycar T., Knapp M., Ganshaw G., Daubermann J., Bott R.,J. Mol. Biol., 10 (1999), 97–109.

Graycar T. P., Ballinger M. D., Wells J. A., Subtilisins,in Alan J. Barrett, Neil D. Rawlings, J. Fred Woessner,eds., Handbook of Proteolytic Enzymes (2nd ed.) (2004),chapter 550, pp. 1786–1792, Elsevier Academic Press.

Hede P. D., Bach P., Jensen A. D., Powder Technol., 184(2008), 318–332. Heinzel M., Kyas A., Weide M., Breves R.,Bockmühl D. P., Int. J. Hyg. Environ Health, 213 (2010),334–337. HERA project on human and environmental riskassessment of detergent ingredients. HERA-project. Webinformation available at http://www.heraproject.com/RiskAssessment.cfm.

Herrmann H. A., Good I., Läufer A. in J. H. van Ee, O.Misset, E. J. Baas, eds., Enzymes in Detergency,Surfactant Science Series, vol. 69, Marcel Dekker Inc.,New York (1997), pp. 251–298.

Hombæk T., Jakobsen M., Dynesen J., Nielsen A. K., Arch.Microbiol., 182 (2004a), 467–474.

Hombæk T., Nielsen A. K., Dynesen J., Jakobsen M., FEMSMicrobiol. Lett., 236 (2004b), 145–151.

Jan J., Valle F., Bolivar F., Merino E., FEMS Microbiol.Lett., 183 (2000), 9–14.

Jones B., in A. Ventosa ed., Halophilic Microorganisms,Springer, 454 Berlin/ Heidelberg, New York (2004), pp.

275–284.

Jørgensen K., Bach P., Jensen A. D., Powder Technol., 149(2005), 157–167.

Jørgensen P. L., Tangbey M., Pedersen P. E., Hastrup S.,Diderichsen B., Jørgensen S. T., Appl. Environ.Microbiol., 66 (2000), 825–827.

Juntunen K. et al., WO 2012131023 (2012) Patent to ABEnzymes Oy.

Jürgen B., Tobisch S., Wümpelmann M., Gördes D., Koch A.,Thurow K., Albrecht D., Hecker M., Schweder T.,Biotechnol. Bioeng., 92 (2005), 277–298.

Kuhn P., Knapp M., Soltis S. M., Ganshaw G., Thoene M.,Bott R., Biochemistry, 37 (1998), 13446–13452.

Kumar, D., Savitri N., Thakur N., Verma R., Bhalla T. C.,Res. J. Microbiol., 3 (2008), 661–672.

Kunst F., Ogasawara N., Moszer I., Albertini A. M., AlloniG., Azevedo V., et al., Nature, 390 (1997) 249–256.

Larsen A. I., Johnsen C. R., Frickmann J., Mikkelsen S.,Occ. Environ. Med., 64 (2007), 763–768.

Lawson V. A., Steward J. D., Masters C. L., J. Gen. Virol.,88 (2007), 2905–2914.

Li Z., Roccatano D., Lorenz M., Schwaneberg U.,ChemBioChem., 13 (2012), 691–699. Maurer K. H., Curr.Opin. Biotechnol., 15 (2004), 330–334.

Maurer K. H., Gabler M., in H. Waldhoff, R. Spilker, eds.,Handbook of Detergents, Part C: Analysis, Marcel Dekker,New York (2005), pp. 471–486. Meesters G., Agglomerationsof enzymes, microorganisms and flavors, in A. D. Salman,M. J. Hounslow, J. P. K. Seville, eds., Handbook of PowderTechnology, vol. 11 (2007a), Elsevier, pp. 555–589.Meesters G., Particle strength in an industrialenvironment, A. D. Salman, M. Ghadiri and M. J. Hounslowin Handbook of Powder Technology, vol. 12. (2007b),Elsevier, pp. 915–939.

Nedwin G. E., Schaefer T., Falholt P., Chem. Eng. Progress,101 (2005), 48–55.

Ness J. E., Kim S., Gottmann A., Pak R., Krebber A.,

Borchert T. V., Govindarajan S., Miundorff E. C., MinshullJ., Nature Biotechnol., 20 (2002), 1251–1255.

Nielsen L. K., Simonsen O., in K. M. Ng, R. Gani, K.Dam-Johansen, eds., Chemical Product Design: Toward aPerspective through Case Studies. Elsevier, Amsterdam(2007), pp. 149–164.

Oh Y. K., Palsson B. O., Park S. M., Schilling C. H.,Mahadevan R., J. Biol. Chem., 282 (2007), 28791–28799.

Outtrup H., Jørgensen S. T., in R. Berkeley, M. Heyndrickx,N. Logan, P. de Vos, eds., Applications and Systematics ofBacillus and Relatives, Blackwell Science Ltd. (2002), pp.206–218. Pioch D., Jurgen B., Evers S., Maurer K.-H.,Hecker M., Schwede., T., Appl. Microbiol. Biotechnol., 78(2008), 719–728.

Ribitsch D., Karl W., Birner-Gruenberger R., Gruber K.,Eiteljoerg I., Remler P., Wieland S., Siegert P., Maurer,K.-H., Schwab H., J. Biotechnol., 150 (2010), 408–416.

Schallmey M. et al., Can J. Microbiol., 50 (2004), 1–17.

Stemmer W. P. C., Nature, 370 (1994a), 389–391.

Stemmer W. P. C., Proc. Natl. Acad. Sci. U S A, 91 (1994b),10747–10751.

Tobe S., Watanabe T., Hama I., Iwama M., Irie M., J. OleoSci., 54 (2005), 595–600.

Veith B., Herzberg C., Stecke S., Feesche J., Maurer K.-H.,Ehrenreich P., Bäumer S., Henne A., Liesegang H., MerklR., Ehrenreich A., Gottschalk G., J Mol. Microbiol., 7(2004), 204–211.

Waldeck J., Meyer-Rammes H., Wieland S., Feesche, J.,Maurer, K.-H., Meinhardt, F., J. Biotechnol., 130 (2007),124–132.

Wells J. A., Estell D. A., Trends Biochem. Sci., 13 (1988),291–297.

27 Chapter 27: Industrial StarchProcessing

Ara K., Saeki K., Igarashi K., Takaiwa M., Uemura T.,Hagihara H., Kawai S., Ito S., Biochim. Biophys. Acta,1243 (1995), 315–324.

Avella M., De Wlieger J. J., Errico M. E., Fischer S.,Vacca P., Volpe M. G., Food Chem., 93 (2005), 467–474.

Baldwin E. A., Nisperos M. O., Chen X., Hagenmaier R.,Postharvest Biol. Technol., 9 (1996), 151–163. BeMiller S.N., Starch-Starke, 49 (1997), 127–131.

Benaroudi N., Lee D. H., Goldberg A. L., J. Biol. Chem.,276 (2011), 24261–24267. Berendsen D. H., Food Chem.Toxicol., 40 (2002), 871–898.

Bhosale S. H., Rao M. B., Desphande V. V., Microbiol. Rev.,60 (1996), 280–300.

Brown S. H., Kelly R. M., Appl. Environ. Microbiol., 59(1993), 2614–2621.

Canganella F., Andrade C. M., Antranikian G., Appl.Microbiol. Biotechnol., 24 (1994), 239–245. ChristophersenC., Otzen D. E., Starch-Starke, 50 (1998), 39–45.

Chung H. J., Liu Q., Hoower R., Carbohydr. Polym., 75(2009), 436–447. Colonna P., Doublier J. I., Melcion J. P.,de Mouredon Fmercier C., Cereal. Chem., 61 (1984),538–543.

Córdoba A., Cuéllar N., González M., Medina J.,Carbohydrate Polym., 73 (2008), 409–416. Crabb D. W.,Mitchinson C., TIBTECH, 15 (1997), 49–353. Crabb D. W.,Shetty J. K., Curr. Opin. Microbiol., 2/3 (1999), 252–256.Crove J. H., Crove I. M., Nat. Biotechnol., 18 (2000),145–147.

Di Lernia I., Morana A., Ottombrino A., Fusco S., Rossi M.,De Rosa M., Extremophiles, 2 (1998), 409–416.

Filipkowski P., Pietrow O., Panek A., Synowiecki J., ActaBiochim. Pol., 59 (2012), 425–431. Gaillard T., Starchavailability and utilization, in Starch: Properties andPotential, John Wiley & Sons for SCI, Chichester U.K(1987). Galas E., Kalinowska H., Turkiewicz M.,Biotechnologia, 33 (1996), 165–176.

Garcia N. I., Ribba L., Dufresne A., Aranguren M., GoyanesS., Macromol. Mater. Eng., 294 (2009), 169–177.

Gerrard J. A., J. Cereal Sci., 26 (1997), 201–209.Ghohamhossei H., Schoenlechner R., J. Food Agric. Environ.,27 (2011), 27–29.

Gomes M. E., Ribeiro A. S., Malafaya P. B., Reiss R. L.,Cunha A., Biomaterials, 22 (2001), 883–889. Greenwood C.T., Muir D. D., Whitaker H. W., Starch-Starke, 29 (1977),343–347.

Guzman-Maldonado H., Paredes-Lopez O., Crit. Rev. Food Sci.Nutr., 35 (1995), 373–403.

Hansen M. R., Biennow A., Pedersen S., Wergard L., EngehenS., Food hydrocolloids, 221 (2008), 1551–1566.

Hedges A. R., in Starch Hydrolysis Products (Schenck F. W.,Hebeda R. E., eds.), VCH, New York (1992), 319–331.Higashiyama T., Pure Appl. Chem., 74 (2002), 1263–1269.

Hirsch J. B., Kokini J. L., Cereal Chem., 79 (2002),102–107.

Hoower R., Swamidas T., Vasanthan T., J. Food Biochem., 17(1994), 303–325.

Horvàthova V., Janeček S., Štrudic E., Biologia, 55 (2000),605–615.

Huali Tang H. X., Tang S., Zou P., J. Appl. Polymer Sci.,113 (2009), 34–40.

Jackson A., The manufacture of wheat starch, in StarchProduction Technology (Radley J. A. ed.), Appl. Sci.Publisher, London (1976).

Jain K. N., Roy I., Protein Sci., 18 (2008), 24–36.

James J. A., Lee B. H., J. Food Biochem., 21 (1997), 1–52.Jobling S., Curr. Opin. Plant Biol., 7 (2004), 210–218.

Jyothi A. N., Rujasekhara K. N., Moorthy S. N., SrekumanJ., Starch-Starke, 57 (2005), 556–563.

Katopo H., Kong Z., Jane Y. L., Carbohydr. Polym., 47(2002), 233–234.

Kavitha R., BeMiller J. N., Carbohydr. Polym., 37 (1998),

115–121. Kelly C. T., Fogarty W. M., Process Biochem., 18(1983), 6–12. Kim C. H., Nashiru O., Ko J. H., FEMSMicribiol. Lett., 138 (1996), 47–152.

Koch S., Shin H. J., Kim J. S., Lee D. S., Lee S. Y.,Biotecnol. Lett., 20 (1998), 757–761. Kuriki T., ImanakaT., J. Biosci. Bioeng., 87 (1999), 557–565.

Lasa I., Berenguer J., Microbiology, 9 (1993), 77–89.

Lawal O. S., Food Chem., 87 (2008), 205–218.

Lehmacher A., Bisswanger H., J. General Microbiol., 136(1990), 679–686.

Leszczyński W., Polish J. Food Nutr. Sci., 13 (2004), 17–50.

Leuschner C., Antranikian G., World J. Microbiol.Biotechnol., 11 (1995), 95–114.

Leveque E., Janeček S., Haye B., Belarbi A., Enzyme Microb.Technol., 26 (2000), 3–14.

Li H., Gao X., Wang Y., Zhang X., Tong Z., Int. J. Biol.Macromol., 52 (2013), 276–279.

Lins R. D., Pereira C. S., Hünenberger P. H., Proteins, 55,(2004), 177–186.

Liu H., Xia F., Yu L., Cheul L., Li L., Prog. Polym. Sci.,34 (2009), 1348–1368.

Loisel C., Mache Rezzoung Z., Doublier J. P., In TomasikP., Yuryer V. P., Berthoft (eds.) Polish Society of FoodTechnologists (2004).

Loisel C., Mache Rezzoung Z., Doublier J. P., In Starch:Progress in Structural Studies, Modifications andApplications, (Tomasik P., Yuryer V. P., Berthoft E.,eds.), Polish Society of Food Technologists, MalopolskaBranch (2004).

Lovino R., Zullo R., Rao M. A., Cassar L., Gianfreda L.,Polym. Degrad. Stabil., 93 (2008), 147–157.

Lu D. R., Xiao C. M., Xu S. J., Express Polym. Lett., 3(2009), 366–375.

Ma Y., Xue L., Sun D. W., Characteristic of trehalosesynthase from permeabilized Pseudomonas putida cells and

its application in converting maltose to trehalose. J.Food Eng., 77 (2006), 342–347.

Martin M. L., Hoseney R. C., Cereal Chem., 68 (1991),503–509.

Nafchi A. M., Moradpour M., Saeidi M., Alias A. K.,Starch/Stärke, 65 (2013), 61–72. Nakada T., Ikegami S.,Chaen H., Kubota M., Fukuda S., Sugimoto T., Kurimoto M.,Tsujisaka Y., Biosci. Biotech. Biochem., 60 (1996),263–266.

Neelam K., Sharma V., Lalit S., Int. Res. J. Pharm., 3(5)(2012), 25–31.

Niehaus F., Bertoldo C., Kahler M., Antranikian G., Appl.Microbiol. Biotechnol., 51 (1999), 711–729. Nishimoto T.,Nakada T., Chaen H., Fukuda S., Sugimoto T., Kurimoto M.,Tsujisaka Y., Biosci. Biotech. Biochem., 60 (1996),835–839.

Oh H. E., Pinder D. N., Hamar Y., Anema S. G., Wong M.,Food Hydrocolloids, 22 (2008), 150–155.

Pareta R., Edirinsinghe M. J., Carbohydr. Polym., 63(2006), 424–431. Parker K., Sallas M., Nwosu V. C.,Biotechnol. Mol. Biol. Rev., 5 (2010), 71–78.

Rasheed A., Ashok Kumar C. K., Sravanthi V. V. N. S. S.,Sci. Pharm., 76 (2008), 567–598.

Reis R. L., Cunha A. M., J. Mater. Sci. Mater. Med., 6(2008), 786–792.

Richards A. D., Krakowska S., Dexter L. B., Schmid H.,Wolterbeek A. P. M., Waalkens- Roser B., Trends Food Sci.Technol., 2 (1991), 166–169.

Roser B., Trends Food Sci. Technol., 2 (1991), 166–169.Salunke D., Kadam S. S., Jadhav S. J. (eds). Potato:Production, Processing and Products, Boston CRC Press,1991.

Shanks R., Kong I., Thermoplastic starch, in ThermoplasticPolymers (ElSonbati A., ed.), available fromhttp://www.intechopen.com (2012).

Shen G. J., Saha B. C., Lee Y. E., Bhatnagar L., Zeikus J.G., Biochem. J., 254 (1988), 35–840.

Singh V., Ali S. Z., Carbohydr. Polym., 41 (2000), 191–195.

Singh J., Kaur L., McCarthy O. J., Food Hydrocolloids, 21(2007), 1–22. Singh J., Kaur I., Singh N., Starch-Starke,55 (2004), 586–601. Synowiecki J., The use of starchprocessing enzymes in the food industry, In IndustrialEnzymes (Polaina J., MacCabe A. P., eds.), Springer,Dordrecht, The Netherlands (2007). Szejtli J., Med. Res.Rev.,14 (1994), 353–386.

Tachibana Y., Kuramura A., Shirasaka N., Suzuki Y., YmamotoT., Fujiwara S., Takagi M., Imanaka T., Appl. Environm.Microbiol., 65 (1999), 1991–1997.

Tang X., Alavi S., Herald T., Cereal Chem., 85 (2008),433–439.

Tomasik P., Zaranyika M. F., Nonconventional methods ofmodification of starch, In Advances in carbohydratechemistry and biochemistry (Horton D., ed.), New York:Academic Press, (1995). Tomasiak P., Zaranyika M. F.,Nonconventional methods of modification of starch, inBiochemistry (Horton D., ed.), New York, 296–298 (1995).Van der Maarel M. J. E. C., Euvering G. J. W., Binnema D.J., Bos H. T. P., Bergsma J., Med. Fac. Landbouw. Univ.Gent. 65 (2000), 231–234. Verberne P., Zwitserloot W.,Starch-Starke, 30 (1978), 337–338. Vieille C., Zeikus G.J., Microbiol. Mol. Biol. Rev., 65 (2001), 1–43. WunderlichB., J. Therm. Anal. Calorim., 106 (2011), 81–84.

Zdziebło A., Synowiecki J., Food Chem., 96 (2006), 8–13.

Zhu Y., Zhang J., Wie D., Wang Y., Chen X., Xing L., Li M.,Biosci. Biotechnol. Biochem., 72 (2008), 2019–2024.

28 Chapter 28: Algae: A Rich Source ofEnergy and High-Value Products

S., Morath S., Hilliou F., Agizi A., Perrineau M.-M., YoonH. S., Nat. Commun., 4 (2013), 1941. Black C. S., Nair R.,Int. J. Chem. Eng. Appl., 4 (2013), 310–314. Borowitzka M.A., J. Appl. Phycol., 25 (2013), 743–756. Bowler C.,Nature, 456 (2008), 239–244. Brányiková I., Maršálková B.,Doucha J., Brányik T., Bišová K., Zachleder V., Vítová M.,Biotechnol. Bioeng., 108 (2011), 766–776. Brennan L.,Owende P., Renew. Sustain. Energy Rev., 14 (2010), 557–577.

Bumbak F., Cook S., Zachleder V., Hauser S., Kovar K.,Appl. Microbiol. Biotechnol., 91 (2011), 31–46. CarriquiryM. A., Du X., Timilsina G. R., Second-Generation Biofuels,Economics and Policies, Polycy Research Working Paper 5406;The World Bank, Development Research Group, August 2010.Carvalho M., Matos M., Roca C., Reis M. A. M., NewBiotechnol., 31 (2014), 133–139. Chakdar H., Jadhav S.D., Dhar D. W., Pabbi S., J. Scientific Ind. Res., 71(2012), 13–20.

Chang J.-J., Ho F.-J., Ho C.-Y., Tsai T.-Y., Ke H.-M., WangH. T. C., Chen H.-L., Shih M.-C., Huang C.-C., Li W.-H.,Biotechnol. Biofuels (2012), 5:53.

Chang J.-J., Ho F.-J., Ho C.-Y., Wu Y.-C., Hou Y.-H., HuangC.-C., Shih M.-C., Li W.H., Biotechnol. Biofuels (2013),6:19.

Chang R. L., Ghamsari L., Manichalkul A., Hom E. F. Y.,Balaji S., Fu W., Shen Y., Hao T., Palsson B. Ø., SalehiAshtiani K., Papin J. A., Mol. Syst. Biol., 7:518 (2011).

Chen F., TIBTECH, 14 (1996), 421–426.

Chen G. Q., Chen F., Biotechnol. Lett., 28 (2006), 607–616.Chen Y.-R., Su Y.-S., Tu S.-L., Proc. Natl. Acad. Sci., U SA, 109 (2012), 8310–8315.

Chi Z., Pyle D., Wen Z., Frear C., Chen S., ProcessBiochem., 42 (2007), 1537–1545. Chisti Y., Biotechnol.Adv., 25 (2007), 294–306.

Christaki E., Bonos E., Giannenas I., Florou-Paneri P., J.Sci. Food Agric., 93 (2012), 5–11.

Clarens A. F., Resurreccion E. P., White M. A., Colosi L.M., Environ. Sci. Technol., 44 (2010), 1813–1819.

Clauditz A., Resch A., Wieland K. P., Peschel A., Götz F.,Infect. Immun., 74 (2006), 4950–4953.

Cornejo J., Willows R. D., Beale S. I., Plant J., 15(1998), 99–107.

Cucchinani E., Guerrini F., Penna A., Totti C., HarmfulAlgae, 7 (2008), 405–414. Currie D. H., Herring C. D.,Guss A. M., Olsor D. G., Hogsett D. A., Lynd L. R.,Biotechnol. Biofuels, 6 (2013), 32.

Cutzu R., Col A., Rosso F., Bardi L., Ciani M., Budroni M.,Zara G., Zara S., Mannazu I., World J. Microbiol.Biotechnol., 29 (2013), 1009–1017. Da Silva G. P., Mack M.,Contiero J., Biotechnol. Adv., 27 (2009), 30–39.

da Silva L. V., Tavares C. B., Amaral P. F. F., Coelho M.A. Z., Chem. Eng. Transact., 27 (2012), 199–204.

Daniell H., Singh N. D., Mason H., Streatfield S. J.,Trends Plant Sci., 14 (2009), 669–679. Das P., Lei W.,Aziz S. S., Obbard J. P., Bioresour. Technol., 102 (2011),3883–3887. DeGuire S. M., Ma S., Sulikowski G. A., Angew.Chem., 123 (2011), 10114–10116; Angew. Chem. Int. Ed., 50(2011), 9940–9942. Dismukes G. C., Carrieri D., BennetteN., Ananyev G. M., Posewitz M. C., Curr. Opin.Biotechnol., 19 (2008), 325–240. Dishisha T., Alvarez M.T., Hatti-Kaul R., Bioresour. Technol., 118 (2012),553–562.

Dragone G., Fernandes B., Vicente A. A., Teixera J. A.,Third Generation Biofuels from Microalgae, in CurrentResearch and Education Topics in Applied Microbiology andMicrobial Biotechnology (Méndez-Vilase A., ed.) (2010),1355–1366, © Formatex.

Drożdżyńska A., Leja K., Czaczyk K., BioTechnologia, 92(2011), 92–100. Eriksen N. T., Appl. Microbiol.Biotechnol., 80 (2008), 1–14.

Eriksen N. T., Riisgård F. K., Gunther W. S., LønsmannIversen J. J., J. Appl. Physicol., 19 (2007), 161–174.

Fan L.-H., Zhang Z.-J., Yu X.-Y., Xue Y.-X., Tan T.-W.,Proc. Natl. Acad. Sci., 109 (2012), 13260–13265.

Freitas A. C., Rodrigues D., Rocha-Santos T. A. P., GomesA. M. P., Duarte A. C., Biotechnol. Adv., 30 (2012),1506–1515.

Fu W., Guðmundsson O., Paglia G., Herjólfsson G., AndréssonO. S., Palsson B. Ø., Brynjólfsson S., Appl. Microbiol.Biotechnol., 97 (2013), 2395–2403.

Fukuda H., Enzymatic Production of Biodiesel in Biofuels(Soetaert W., Vandamme E. J., eds.), John Wiley & Sons,Ltd. (2009). Geier S., Buchholz R., BIOspektrum, 19 (2013),328–331. Gems D., Guardia Y., Antioxid. Redox. Signal., 19(2013), 321–329.

Glazer A. N., J. Appl. Phycol., 6 (1994), 105–112. Gómez P.I., Inostroza I., Pizarro M., Pérez J., AoB Plants, 5:plt026 (2013).

Gonzalez-Pajuero M., Meynial-Salles I., Mendes F.,Soucaille P., Vasconcelos I., Appl. Environ. Microbiol.,72 (2006), 96–101. Gouveia I., Coutinho C., Mendonca E.,Batista A. P., Sousa I., Bandera N. M., Raymuno A., J.Sci. Food Agric., 88 (2008), 891–896.

Gregory J. A., Topol A. B., Doerner D. Z., Mayfield S.,Appl. Environ. Microbiol., 79 (2013), 3917–3925.Grobbelaar J. U., Inorganic Algal Nutrition in Handbook ofMicroalgal Culture, Applied Phycology and Biotechnology(Richmond A., Hu Q., eds.), 2nd Ed., John Wiley and Sons,Ltd., Oxford, UK, 2013. Guan X. Y., Zhang W., Chi X. Y.,Lin H., Wang J., Quin S., Chinese Sci. Bull., 57 (2012),3294–3299.

Guedes A. C., Amaro H. M., Malkata F. X., Biotechnol.Prog., 27 (2011), 597–613. Guesnet P., Alessandri J.,Biochemie, 30 (2010), 1–6. Gupta A., Singh D., Barrow C.J., Puri M., Biochem. Eng. J., 76 (2013), 11–17. GyawallD., Tran R. T., Gueleserlan K. J., Tang L., Yang Y., J.Biomater. Sci. Polym. Ed., 21 (2010), 1761–1782.

Hagiwara Y., Sugushima M., Takahashi Y., Fukuyama K., Proc.Natl. Acad. Sci., U S A, 103 (2006), 27–32. Halim R.,Harun R., Webley P. A., Danquah M. K., BioprocessEngineering Aspects of Bioethanol and Biodiesel Productionfrom Microalgae, in Advanced Biofuels and Bioproducts (LeeJ. W., ed.), Springer Science + Business Media, New York(2013). Hallmann A., Transgenic Plant J., 1 (2007), 81–98.

Hansen C. F., Hemandez A., Mullan B. P., Moore K.,Trezona-Murray M., King R. H., Pluske J. R., Anim. Prod.Sci., 49 (2009), 154–161. Haraldsson G. G., Enrichment ofLipids with APA and DHA by Lipase, in Enzymes in LipidModification (Bornscheuer U. T., ed.), WILEY-VCH,Weinheim, 2000. Harman A., in Farmer’s Weekly

(http://farmersweekly.co.za/article.aspx?id=22385&h=Glycerine-shows-promise-as-cattle-feed), 28 May(2012).

Harun R., Danquah M. K., Forde G. M., J. Chem. Technol.Biotechnol., 85 (2010a), 199–203.

Harun R., Singh M., Forde G. M., Danquah M. K., EnergyRev., 14 (2010b), 1037–1047.

Havaux M., Kloppstech K., Planta, 213 (2001), 953–966.

Healy F. P., Crit. Rev. Microbiol., 3 (1973), 69–113.

Hempel F., Bozarth A. S., Lindenkamp N., Klingl A., ZaunerS., Linne U., Steinbüchel A., Maier U. G., Microbial CellFactories, 10 (2011), 81.

Hempel F., Maier U. G., Microbial Cell Factories, 11(2012), 126. Henrikson R., Algae Industry Magazyne, May 4,2011; AlgaeIndustryMagazine.com/special-report-spirulina-part-6. Himmi E. H., BoriesA., Boussaid A., Hassani L., Appl. Microbiol. Biotechnol.,53 (2000), 435–440. Hirano A., Ueda R., Hirayama S., OgushiY., Energy, 22 (1997), 137–142. Hirayama S., Ueda R.,Ogushi Y., Hirano A., Samejina Y., Hon-Nami K., Kunito S.,Stud. Surf. Sci. Catal., 114 (1998), 657–660. Hon-Nami K.,Appl. Biochem. Biotechnol., 131 (2006), 808–828. HorrocksL. A., Yeo Y. K., Pharmacal. Res., 40 (1999), 211–225.

Huang C.-F., Jiang Y.-F., Guo G.-L., Hwang W.-S.,Bioresour. Technol., 136 (2013), 446–453. Hyeon J.-E., YuK.-O., Suh D. J., Suh Y.-W., Lee S. E., Lee J., Han S. O.,FEMS Microbiol. Lett., 310 (2010), 39–47. Ibrahim M. H.A., Steinbüchel A., Appl. Environ. Microbiol., 75 (2009),6222–6231. Ikeda Y., Tsuji S., Satoh A., Ishikura M.,Shirasawa T., Shimizu T., J. Neurochem., 107 (2008),1730–1740. Imandi S. B., Bandaru V. V. R., Somalanka S. R.,Garapati H. R., Enzyme Microb. Technol., 40 (2007),1367–1372. Isaacson T., Ohad I., Beyer P., Hirschberg J.,Plant Physiol., 136 (2004), 4246–4255. Ito T., NakashimadaY., Senba K., Matsui T., Nishio N., J. Biosci. Bioeng., 100(2005) 260–265. Jahn U., Galano J.-M., Durant T., Angew.Chem., 120 (2008), 5978–6041; Angew. Chem. Int. Ed., 47(2008), 5894–5955. Jarvis G. N., Moore E. R. B., Thiele H.J., J. Appl. Microbiol., 83 (1997), 166–174. Javers J.,Gibbons W. R., Karunanithy C., Adv. Microbiol., 2 (2012),241–251. Jiao G., Yu G., Zhang J., Ewart H. S., Mar. Drugs,9 (2011), 196–223. Jinkerson R. E., Radakovits R., PosewitzM. C., Bioengineered, 4 (2013), 37–43.

Jones C. S., Luong T., Hannon M., Tran M., Gregory J. A.,Shen Z., Briggs S. P., Mayfield S. P., Appl. Microbiol.Biotechnol., 97 (2013), 1987–1995.

Jones C. S., Mayfield S. P., Curr. Opin. Biotechnol., 23(2012), 346–351. Khozin-Goldberg I., Cohen Z.,Phytochemistry, 67 (2006), 696–701. Kim S. H., Lee P. C.,J. Biol. Chem., 287 (2012), 21575–21583. Kim S., BaekS.-H., Li K., Hahn J.-S., Microbial Cell Factories, 12(2013), 14. Kind S., Wittmann C., Appl. Microbiol.Biotechnol., 91 (2011), 1287–1296. Klöck G., Internetdirectory of the microalgae biotechnology industry,Euractiv (2010). Knothe G., Energy Fuels, 22 (2008),1358–1364.

Könst P. M., Turras P. M. C. C. D., Franssen M. C. R.,Scott E. L., Sanders J. P. M., Adv. Synth. Catal., 352(2010), 1493–1502. Kotake-Nara E., Kushiro M., Zhang H.,Sugawara T., Miyashita K., Nagao A., J. Nutr., 131 (2001),3303–3306. Kotrba R., biodieselmagazine/com/articles/1797/the-glycerin-spread (2007).Kraus G. A., CLEAN Soil Air Water, 36 (2008), 648–651.Kuddus M., Singh P., Thomas G., Al-Hazimi A., BioMed. Res.Int., 2013 (2013), article ID 742859, 9 pages.Kusdiyantini E., Gaudin P., Goma G., Blanc P. J.,Biotechnol. Lett., 20 (1998), 929–934, Lam M. K., Lee K.T., Biotechnol. Adv., 30 (2012), 673–690. Lamers P. P., vande Laak C. C. W., Kaasenbrood P. S., Lorier J., Janssen M.,De Vos R. C. H., Bino R. J., Wijffels R. H., Biotechnol.Bioeng., 106 (2010), 638–648.

Lammens T. M., De Biase D., Franssen M. C. R., Scott E. L.,Sanders J. P. M., Green Chem., 11 (2009), 1562–1567.Lammens T. M., Potting J., Sanders J. P. M., De Broer I. J.M., Environ. Sci. Technol., 45 (2011), 8521–8528. Lee P.C., Lee W. G., Lee S. Y., Chang H. N., Biotechnol. Bioeng.,72 (2001), 41–48. Li C., Lesnik K. L., Liu H., Energies, 6(2013), 4739–4768. Li M.-H., Wu J., Liu X., Lin J.-P., WieD.-Z., Chen H., Bioresour. Technol., 101 (2010),8294–8299. Li Y., Wang B., Wu N., Lan C. Q., Appl.Microbiol. Biotechnol., 81 (2008), 629–626.

Licht F. O., 2009 World Ethanol Production Growth to HitFive-Year Low. World Ethanol and Biofuel Report, May 26(2009).

Licht F. O., World Biodiesel Production Estimated 2008:Growth Continues to Slow Down; World Ethanol and BiodieselReport, September 23 (2008). Lim D. K. Y., Garg S.,

Timmins M., Zhang E. S. B., Thomas-Hall S. R., SchuhmannH., Li Y., Schenk P. M., PloS ONE 7(7), (2012), e40751. LiuX., Osawa T., Astaxanthin Protects Neural Cells AgainstOxidative Damage and is a Potent Candidate for Brain Food,in Food Factors for Health Promotion (Yoshikawa T., ed.),Karger AG, Basel (2009).

Lü J., Sheahan C., Fu P., Energy Environ. Sci., 4 (2011),2451–2466.

Luo D., Hu Z., Choi D. G., Thomas V. M., Realff M. J.,Chance R. R., Environ. Sci. Technol., 44 (2010),8670–8677. Lynd L. R., van Zyl W. H., McBride J. E., LaserM., Curr. Opin. Biotechnol., 16 (2005), 577–583. Lynd L.R., Weimer P. J., van Zyl W. H., Pretorius I. S.,Microbiol. Mol. Biol. Rev., 66 (2002), 506–577. Ma J.K.-C., Drake P. M. W., Christou P., Nat. Rev. Gen., 4(2003), 794–805. Ma L., Lin X.-M., J. Sci. Food Agric., 90(2010), 2–12.

Mantzouridou F., Naziri E., Tsimidou M. Z., J. Agric. FoodChem., 56 (2008), 2668–2675. Martins D. A., Custódio L.,Barreire L., Pereira H., Ben-Hamadou R., Varela J.,Abu-Salah K. M., Mar. Drugs, 11 (2013), 2259–2281. Mata T.M., Martins A. A., Caetano N. S., Renew. Sustain. EnergyRev., 14 (2009), 217–232. Matsumoto M., Yokouchi H.,Suzuki N., Ohata H., Matsunaga T., Appl. Biochem.Biotechnol., 105–108 (2003), 247–254.

Mayfield S. P., Manuell A. L., Chen S., Wu J., Tran M.,Siefker D., Muto M., MarinNavarro J., Curr. Opin.Biotechnol., 18 (2007), 126–133.

Meier A. S., Design of Efficient Multienzymatic ReactionsforCellulosic Biomass Processing, inCarbohydrate-Modifying Biocatalysts (Grunwald P., ed.) PanStanford Publishing Pte. Ltd., 2011. Mittelbach M., ProcessTechnologies for Biodiesel Production, in Biofuels(Soetaert W., Vandamme E. J., eds.), John Wiley & Sons,Ltd. (2009).

Mooisbroek H., Osterhuis N., Giuseppin M., Tonen M.,Franssen H., Scott E., Sanders J., Steinbüchel A., Appl.Microbiol. Biotechnol., 77 (2007), 267–267.

Morgunov I. G., Kamzolova S. V., Lunina J. N., Appl.Microbiol. Biotechnol., 97 (2013), 7387–7397. Moyer M. W.Scientific American, January 30, 2013. Mu Y., Teng H.,Zhang D.-J., Wang W., Xiu Z.-I., Biotechnol. Lett., 28(2006), 1755–1759. Müller M. M., Hörmann B., Syldatk C.,

Hausmann R., Microbial Rhamnolipids, inCarbohydrate-Modifying Biocatalysts (Grunwald P., ed.), PanStanford Publishing Pte. Ltd., Singapore (2011). Naik S.N., Goud V. V., Rout P. K., Dalai A. K., Renew. Sustain.Energy Rev., 14 (2010), 578–597. Nakamura C. E., Whited G.M., Curr. Opin. Biotechnol., 14 (2003), 454–459. Naranjo J.M., Posoda J. A., Higuito J. C., Cardona C. A., Bioresour.Technol., 133 (2013), 38–44. Narayan B., Kumar C. S.,Sashima T., Maeda H., Hosokawa M., Miyashita K.,Composition, Functionality and Potential Applications ofSeaweed Lipids, in Biocatalysis and Bioenergy (Hou C. T.,Shaw J.-F., eds.), John Wiley & Sons Inc. (2008).

Ni H., Chen Q.-B., He G.-A., Wu G.-B., Yang Y.-F., J.Zheijang Univ. Sci. B, 9 (2008), 51–59. Nitschke M., CostaS. G. V. A., Contiero J., Biotechnol. Prog., 21 (2005),1593–1600.

OECD 2011, Future Prospects for Industrial Biotechnology.Okada T., Hosokawa M., Ono S., Miyashita K., EnzymaticProduction of Marine-Derived Protein Hydrolysates andTheir Bioactive Peptides for Use in Foods andNeutraceuticals, in Biocatalysis and Bioenergy (Hou C. T.,Shaw J.-F, eds.), John Wiley & Sons, Inc., 2008. OlofssonK., Bertilsson M., Lidén G., Biotechnol. Biofuels, 1(2008), 7.

Paschkow F. J., Watamull D. G., Campbell C. L., Am. J.Cardiol., 101 (2008), S58–S68.

Peralta-Yahya P. P., Zhang F., del Cardayre S. B., KeaslingJ. D., Nature, 488 (2012), 320–328.

Pereira A. G., Pacheco G. J., Tavares L. F., Neves B. C.,de A. Kronenberger F., Reis R. S., Reira D. M. G., Proc.Biochem., 40 (2013), 1271–1278. Pereira S. L., Leonard A.E., Mukerji P., Prostaglandin Leukot. Essent. Fat Acid(PLEFA), 68 (2003), 97–106.

Perez-Garcia O., Escalante F. M. E., de-Bashan L. E.,Bashan Y., Water Res., 45 (2011), 11–36.

Pittman J. K., Dean A. P., Osundeko O., Bioresour.Technol., 102 (2011), 17–25.

Porphy S. J., Farid M. M., ISRN Renew. Erg., 2012 (2012),article ID 156824.

Pukin A. V., Boeriu C. G., Scott E. L., Sanders J. P. M.,Fransen M. C. R., J. Mol. Catal. B Enzym., 65 (2010),

58–62. Radakovits R., Jinkerson R. E., Darzin A., PosewitzM. C., Eukaryotic Cell, 9 (2010), 486–501.

Radakovits R., Jinkerson R. E., Fuerstenberg S. I., Tae H.,Settlage R. E., Boore J. L., Posewitz M. C., NatureCommun., 3 (2012), 686. Rajfur M., Klos A., Waclawek M.,Equilibrium and studies on sorption of heavy metals fromsolutions by algae, in Environmental Engineering IV,Proceedings of the Conference on Environmental Engineering,4th (Pawlowski A., Dudzinska M. R., Pawlowski L., eds.),Lublin, Poland, Sept. 3–5, 2012; pp. 533–540; CRCPress/Balkema, Leiden NL (2013).

Rasala B. A., Lee P. A., Shen Z., Briggs S. P., Mendez M.,Mayfield S. P., PLoS ONE, 7 (2012): e43349.

Rasala B. A., Mayfield S. P, Bioeng. Bugs., 2 (2010),50–54. Razavi S. H., Mousavi S. M., Yeganeh H. M., Mark I.,J. Microbiol. Biotechnol., 17 (2007), 1591–1597. ReinhardtG. A., Paulsch D., Keller H., Chem. Ing. Tech., 85 (2013),313–317. Rentmeister A., Chem. Ing. Techn., 85 (2013),818–825. Rier S. T., Stevenson R. J., Hydrobiology, 489(2002), 179–184.

Rodolfi L., Zittelli G. C., Bassi N., Psadovani G., BiondiN., Bonini G., Tredice M. R., Biotechnol. Bioeng., 102(2009), 100–112. Ruiz-Marin A., Mendoza-Espinosa L. G.,Stephenson T., Bioresour. Technol., 101 (2010), 58–64.Salkia R. R., Deka S., Deka M., Sarma H., J. BasicMicrobiol., 52 (2012), 446–457. Sanders J. P. M., Clark J.H., Harmsen G. J., Heeres H. J., Heijnen J. J., Kersten S.R. A., van Swaaij W. P. M., Moulijn J. A., Chem. Eng.Process., 51 (2012), 117–136.

Sariaslani F. S., Annu. Rev. Microbiol., 61 (2007), 51–69.Saxena R. K., Pinki A., Sauragh S., Jasmine I., Biotechnol.Adv., 27 (2009), 895–913. Schenk P., Thomas-Hall S. R.,Stephens E., Marx U. C., Mussgnug J. H., Posten C., KruseO., Hankamer B., Bioenergy Res., 1 (2008), 20–43.

Schneider C., Niisuke K., Boeglin W. E., Voehler M., StecD. F., Porter N. A., Brash A. R., Proc. Natl. Acad. Sci.,U S A, 104 (2007), 18941–18945. Schwarz M. H., Appl.Microbiol. Biotechnol., 56 (2001), 634–649.

Scott E. L., Peter F., Sanders J. P. M., Appl. Microbiol.Biotechnol., 75 (2007), 751–762. Shabala L., McMeekin T.,Shabala S., Mar. Biotechnol., (2013); DOI 10.1007/s10226-013-9499-y. Sheehan J., Dunabay T., Benemann J.,Roessler P., A Look Back at the US Department of Energy’s

Aquatic Species Program: biodiesel from algae, NREL/TPreport no. 580-24190, 1998. Sheldon R. A., Arends I.,Hanefeld U., Green Chemistry and Catalysis, WILEYVCH VerlagGmbH & Co. KgaA., Weinheim, Germany, 2007. Shen X., Lin Y.,Jain R., Yuan Q., Yan Y., J. Ind. Microbiol. Biotechnol.,39 (2012), 1725–1729. Shirwaikar A., Parmar V., Khan S.,Int. J. Pharm. Life Sci., 2 (2011), 925–932. Simopoulos A.P., J. Am. Coll. Nutr., 21 (2002), 495–505. Sims B.,Biodiesel

Stenson W. F., Cort D., Rodgers J., Burakoff R.,DeSchreyver-Kecskemeti K., GramlichT. L., Beeken W., Ann.Intern. Med., 116 (1992), 609–614. Stephanopoulos G.,Science, 315 (2007), 801–804. Stephens E., Ross I. I., KingZ., Mussgnug J. H., Kruse O., Posten C., Borowitzka M. A.,Hankamer B., Nat. Biotechnol., 28 (2010), 126–128. StevensM. A. J., Vollenweider S., Meile L., Lacroix C., Microb.Cell Factories, 10 (2011), 61.

Sun J., Wen F., Si T., Xu J.-H., Zhao H., Appl. Environ.Microbiol., 78 (2012), 3837–3845. Tamaru Y., Doi R. D.,Bacterial Strategies for Plant Cell Degradation and TheirGenomic Information, in Carbohydrate-Modifying Biocatalysts(Grunwald P., ed.), Pan Stanford Publishing Pte. Ltd.,Singapore, 2011. Tang X., Tan Y., Zhu H., Zhao K., Shen W.,Appl. Environ. Microbiol., 75 (2009), 1628–1634.

Teixeira R. E., Green Chem., 14 (2012), 419–427.

Torres A., Fermoso F. G., Rincón B., Bartacek J., Botja R.,Jeison D., Challenges for Cost-Effective MicroalgaeAnaerobic Digestion; INTECH open science (2013),http://dx.doi.org/10.5772/55975. Transparency marketresearch (2013);

Tuck C. O., Pérez E., Horváth I., Sheldon R. A., PoliakoffM., Science, 337 (2012), 695–699. Ubalua A. O.,Biotechnol. Mol. Biol. Rev., 4 (2009), 118–127. Ukibe K.,Hashida K., Yoshida N., Takagi H., Appl. Environ.Microbiol., 75 (2009), 7205–7211. Voegele R. T., Sweet G.D., Boos W., J. Bacteriol., 175 (1993), 1087–1094.Vollenweides S., Lacroix C., Appl. Microbiol. Biotechnol.,64 (2004), 6–27. Wackett L. P., Microb. Biotechnol., 1(2008), 211–225. Walker T. L., Purton S., Becker D. K.,Collet C., Plant Cell Rep., 24 (2005), 629–641. Wang Z.,Yang S.-T., Bioresour. Technol., 137 (2013), 116–123.Wargacki A. J., Leonard E., Win M. N., Regitsky D. D.,Santos C. N. S., Kim P. B., Cooper S. R., Raisner R. M.,Herman A., Sivitz A. B., Lakshmanaswamy A., Kashiyama Y.,Baker D., Yoshikuni Y., Science, 335 (2013), 308–313. Wei

S., Song Q., Wei D., Prep. Biochem. Biotechnol., 37 (2007),67–76.

Wen F., Sun J., Zhao H., Appl. Environ. Microbiol., 76(2010), 1251–1260. Wiegel J. M., Dykstra M., Eur. J. Appl.Microbiol. Biotechnol., 20 (1984), 59–65. Willke T.,Vorlop K., Eur. J. Lipid Sci. Technol., 110 (2008),831–840. Wong K. H., Cheung P. C. K., Food Chem., 71(2000), 475–482. Woods P., Algenol Biofuel’s Direct toEthanol Technology, AlChe, Nahville, TN, 2009. Woods P.,Algenol Biofuels (2013); http://www.algenolbiofuels.com/.Work V. H., D’Adamo S., Radakovits R., Jinkerson R. E.,Posewitz M. C., Curr. Opin. Biotechnol., 23 (2012),290–297. Wu H., Volponi J. V., Oliver A. E., Parikh A. N.,Simmons B. A., Singh S., Proc. Natl. Acad. Sci. U S A, 108(2011), 3809–3814. Wu X.-J., Chang K., Luo J., Zhou M.,Scheer H., Zhao K.-H., Phytochem. Phytobiol. Sci., 12(2013), 1036–1040. Wyman C. E., Trends Biotechnol., 25(2007), 153–157.

Xiong W., Gao C. F., Yan D., Wu C., Wu Q. Y., Bioresour.Technol., 101 (2010), 2287–2293. Yamada S., Nabe K., IzuoN., Wada M., J. Ferment. Technol., 57 (1979), 215–220. YanY., Liao J. C., J. Ind. Microbiol. Biotechnol., 36 (2009),471–479.

Yang F., Hanna M. A., Sun R., Biotechnol. Biofuels, 5(2012), 13. Yang T.-W., Rao Z.-M., Zhang X., Xu M.-J., XuZ.-H., Yang S. T., Appl. Microbiol. Biotechnol., 97(2013), 7651–7658. Yazdani S. S., Gonzales R., Metab. Eng.,10 (2008), 340–351. Zeng A.-P., Biebl H., Adv. Biochem.Eng. Biotechnol., 74 (2002), 239–259. Zhang X., ShanmugamK. T., Ingram L. O., Appl. Environ. Microbiol., 76 (2010),2397–2401.

Zhang X. W., Zhang Y. M., Chen F., Process Biochem., 34(1999), 477–481. Zhang Y., Kumar A., Vadlani P. V.,Narayanan S., J. Chem. Technol. Biotechnol., 88 (2013),1321–1327.

Zhong Y.-J., Huang J.-C., Liu J., Li Y., Jiang Y., XuZ.-F., Sandmann G., Chen F., J. Exp. Botany, 62 (2011),3659–3669. Zhu C., Chiu S., Nakas J. P., Nomura C. T., J.Appl. Polym. Sci., 130 (2013), 1–13. Zhu C., Naqvi S.,Breitenbach J., Sandmann G., Christou P., Capell T., Proc.Natl. Acad. Sci. U S A, 105 (2008), 18232–18237.

29 Chapter 29: Enzyme-Catalysed Processesin a Potential Algal Biorefinery

Abo-Hashesh M., Wang R., Hallenbeck P. C., Bioresour.Technol., 102 (2011), 8414–8422.

Abo-Shady A. M., Mohamed Y. A., Lasheen T., BiologiaPlantarum, 35 (1993), 629–632.

Achitouv E., Metzger P., Rager M. N., Largeau C.,Phytochemistry, 65 (2004), 3159–3165.

Adams, J. B., Int. J. Food Sci .Technol., 26.1 (1991), 1–20.

Allakhverdiev S. I., Kreslavski V. D., Thavasi V.,Zharmukhamedov S. K., Klimov V. V., Nagata T., NishiharaH., Ramakrishna S., Photochem. Photobiol. Sci., 8 (2009),148–156.

Allakhverdiev S. I., Thavasi V., Kreslavski V. D.,Zharmukhamedov S. K., Klimov V. V., Ramakrishna S., Los D.A., Mimuro M., Nishihara H., Carpentier R., J. Photochem.Photobiol. C-Photochem. Rev., 11 (2010), 101–113.

Allard B., Rager M.-N., Templier J., Org. Geochem., 33(2002), 789–801.

Altin R., Cetinkaya S., Yücesu H. S., Energy ConversionManag., 42 (2001), 529–538.

Al -Z uhair S., Biofuels, Bioprod. Biorefining, 1 (2007),57–66.

Bajaj A., Lohan P., Jha P. N., Mehrotra R., J. Mol. Catal.B: Enzymatic, 62 (2010), 9–14. Achitouv E., Metzger P.,Rager M.-N., Largeau C., Phytochemistry., 65 (2004),3159–3165.

Behnke K., Ehlting B., Teuber M., Bauerfeind M., Louis S.,Haensch R., Polle A., Bohlmann J., Schnitzler J.-P., PlantJ., 51 (2007), 485–499.

Bentley F. K., Melis, A., Biotechnol. Bioeng., 109 (2012)100–109. doi: 10.1002/bit.23298.

Bisen P. S., Sanodiya B. S., Thakur G. S., Baghel R. K.,Prasad G. B. K. S., Biotechnol. Lett., 32 (2010),1019–1030.

Blankenship R. E., Molecular Mechanisms of Photosynthesis,

Oxford, UK, Blackwell Science (2002).

Blankenship R. E., Tiede D. M., Barber J., Brudvig G. W.,Fleming G., Ghirardi M., Gunner M. R., Junge W., Kramer D.M., Melis A., Moore T. A., Moser C. C., Nocera D. G.,Nozik A. J., Ort D. R., Parson W. W., Prince R. C., SayreR. T., Science, 332 (2011), 805–809.

Borodin V. B., Tsygankov A. A., Rao K. K., Hall D. O.,Biotechnol. Bioeng., 69 (2000), 478–485.

Bothe H., Schmitz O., Yates M. G., Newton W. E., Microbiol.Mol. Biol. Rev., 74 (2010), 529–551.

Brennan L., Owende P., Renew. Sustain. Energy Rev., 14(2010), 557–577.

Burris R. H., J. Biol. Chem., 266 (1991), 9339–9342.

Calvin M., Photosynth. Res., 1(1989), 3–16.

Calvin, M. (1992) Following the Trail of Light: AScientific Odyssey. American Chemical Society, Washington,DC.

Chappell J., Annu. Rev. Plant Physiol. Plant Mol. Biol., 46(1995), 521–547.

Chin H.-L., Chen Z.-S., Chou C. P., Biotechnol. Prog., 19(2003), 383–388.

Chisti Y., Biotechnol. Adv., 25 (2007), 294–306.

Chisti Y., Trends Biotechnol., 26 (2008), 126–131.

Chisti Y., Moo-Young M., Enzyme Microb. Technol., 8 (1986),194–204.

Choi S. P., Nguyen M. T., Sim S. J., Bioresour. Technol.,101 (2010), 5330–5336.

ColonLopez M., Sherman D. M., Sherman L. A., J. Bacteriol.,179 (1997), 4319–4327.

Cornelissen S., Koper M., Deng Y. Y., Biomass Bioenergy, 41(2012), 21–33.

Council W. E., 2007 Survey of Energy Resources, ExecutiveSummary (2007).

Das D., Veziroglu T. N., Int. J. Hydrogen Energy, 26(2001), 13–28.

Demirbas A., Appl. Energy, 88 (2011), 17–28.

Derenne S., Largeau C., Hetényi M., Brukner-Wein A., ConnanJ., Lugardon B., Geochim. Cosmochim. Acta, 61 (1997),1879–1889.

Dinga G. P., Int. J. Hydrogen Energy, 14 (1989), 777–784.

Domozych D. S., Ciancia M., Fangel J. U., Mikkelsen M. D.,Ulvskov P., Willats W. G. T., Frontiers Plant Sci., 3(2012), 1–7.

Ellis J. T., Hengge N. N., Sims R. C., Miller C. D.,Bioresour. Technol., 111 (2012), 491–495.

Eroglu E., Melis A., Bioresour. Technol., 101 (2010),2359–2366.

Eroglu E., Melis A., Bioresour. Technol., 102 (2011),8403–8413.

Falk O., MeyerPittr off R., Eur. J Lipid Sci. Technol., 106(2004), 837–843.

Falkowski P. G. A. R., A. J., Aquatic Photosynthesis, 2ndedn. Princeton, Princeton University Press (2007).

Fedorov A. S., Kosourov S., Ghirardi M. L., Seibert M. S.,Appl. Biochem. Biotechnol., 121 (2005), 403–412.

Ferrell J., Sarisky-Reed V., Fishman D., Majumdar R.,Morello J., Pate R., Yang J., National Algal BiofuelsTechnology Roadmap. US Department of Energy, Office ofEnergy Efficiency and Renewable Energy, Biomass Program(2010).

Fischer C. R., Klein-Marcuschamer D., Stephanopoulos G.,Metab. Eng., 10 (2008), 295–304.

Foley P. M., Beach E. S., Zimmerman J. B., Green Chem., 13(2011), 1399–1405.

Fu C. C., Hung T.-C., Chen Y.-J., Su C.-H., Wu W.-T.,Bioresour. Technol., 101 (2010), 8750–8754.

Gallon J. R., New Phytol., 122 (1992), 571–609.

Ghirardi M. L., Dubini A., Yu J., Maness P-C., Chem. Soc.Rev., 38 (2009), 52–61.

Ghirardi M., Togasaki R., Seibert M., Appl. Biochem.Biotechnol., 63–65 (1997), 141–151.

Glikson M., Lindsay K., Saxby J., Org. Geochem., 14 (1989),595–608.

Griffiths M. J., Harrison S. T. L., J. Appl. Phycol., 21(2009), 493–507.

Haki G. D., Rakshit S. K., Bioresour. Technol., 89 (2003),17–34.

Hansel A., Lindblad P., Appl. Microbiol. Biotechnol., 50(1998), 153–160.

Happe T., Kaminski A., Eur. J. Biochem., 269 (2002),1022–1032.

Harun R., Danquah M. K., Process Biochem., 46 (2011),304–309.

Hedberg H. D., AAPG Bull., 48, 11 (1964), 1755–1803.

Hidalgo P., Toro C., Ciudad G., Navia R., Rev. Environ.Sci. Bio./Technol., 12 (2013), 179–199.

Hillen L. W., Pollard G., Wake L. V., White N., Biotechnol.Bioeng., 24 (1982), 193–205.

Ho S.-H., Huang S.-W., Chen C.-Y., Hasunuma T., Kondo A.,Chang J.-S., Bioresour. Technol., 135 (2012), 191–198.

Ho S.-H., Kondo A., Hasunuma T., Chang J.-S., Bioresour.Technol., 143 (2013), 163–171.

Hu Q., Sommerfeld M., Jarvis E., Ghirardi M., Posewitz M.,Seibert M., Darzins A. l., Plant J., 54 (2008), 621–639.

Huang G. H., Chen F., Wei D., Zhang X. W., Chen G., Appl.Energy, 87 (2010), 38–46.

Jones C. S., Mayfield S. P., Curr. Opin. Biotechnol., 23(2012), 346–351.

Kim J. P., Kim K.-R., Choi S. P., Han S. J., Kim M. S., SimS. J., Int. J. Hydrogen Energy, 35 (2010), 13387–13391.

Kim Y.-H., Choi Y.-K., Park J., Lee S., Yang Y.-H., Kim H.J., Park T.-J., Kim Y. H., Lee S. H., Bioresour. Technol.,109 (2012), 312–315.

King, P., Ghirardi, M. L., Seibert, M. (2009).Oxygen-Resistant Hydrogenases and Methods for Designingand Making Same, U.S. Patent No. 7,501,270 B2. 23 pp.;NREL Report No. PT-270-45830.

Kirby J., Keasling J. D., Annu. Rev. Plant Biol., 60(2009), 335–355.

Kirchman D. L., Process in Microbial Ecology, Oxford,Oxford University Press (2012).

Kraxner F., Nordström E.-M., Havlík P., Gusti M., MosnierA., Frank S., Valin H., Fritz S., Fuss S., Kindermann G.,McCallum I., Khabarov N., Böttcher H., See L., Aoki K.,Schmid E., Máthé L., Obersteiner M., Biomass Bioenergy, 57(2013), 86–96.

Kruse O., Rupprecht J., Mussgnug J. H., Dismukes G. C.,Hankamer B., Photochem. Photobiol. Sci., 4 (2005),957–970.

Lange B. M., Rujan T., Martin W., Croteau R., Proc. Natl.Acad. Sci., U S A, 97 (2000), 13172–13177.

Lardon L., Helias A., Sialve B., Steyer J.-P., Bernard O.,Environ. Sci. Technol., 43 (2009), 6475–6481.

Laurinavichene T. V., Fedorov A. S., Ghirardi M. L.,Seibert M., Tsygankov A. A., Int. J. Hydrogen Energy, 31(2006), 659–667.

Lee S. K., Chou H., Ham T. S., Lee T. S., Keasling J. D.,Curr. Opin. Biotechnol., 19 (2008), 556–563.

Li S.-Y., Srivastava R., Suib S. L., Li Y., Parnas R. S.,Bioresour. Technol., 102 (2011), 4241–4250.

Lichtenthaler H. K., Biochem. Soc. Transact., 28 (2000),785–789.

Lindberg P., Park S., Melis A., Metabol. Eng., 12 (2010),70–79.

Lindberg P., Schutz K., Happe T., Lindblad P., Int. J.Hydrogen Energy, 27 (2002), 1291–1296.

Lindblad P., Christensson K., Lindberg P., Fedorov A.,Pinto F., Tsygankov A., Int. J. Hydrogen Energy, 27(2002), 1271–1281.

Lombard J., Moreira S., Mol. Biol. Evol., 28 (2011), 87–99.

Marin-Navarro J., Esquivel M. G., Moreno J., World J.Microbiol. Biotechnol., 26 (2010), 1785–1793.

Mastalerz M., Hower J. C., Organ. Geochem., 24 (1996),301–308.

Mathews J., Wang G., Int. J. Hydrogen Energy, 34 (2009),7404–7416.

Melis A., Plant Sci., 177 (2009), 272–280.

Melis A., Happe T., Photosynth. Res., 80 (2004), 401–409.

Melis A., Zhang L. P., Forestier M., Ghirardi M. L.,Seibert M., Plant Physiol., 122 (2000), 127–135.

Melnicki, M.R., Pinchuk, G. E., Hill, E. A., Kucek, L. A.,Fredrickson, J. K., Konopka, A. and Beliaev, A. S.,Sustained H 2 Production Driven by Photosynthetic WaterSplitting in a Unicellular Cyanobacterium. Mbio, 3 (2012).http://

Metzger P., Allard B., Casadevall E., Berkaloff C., CoutéA., J. Phycol., 26 (1990), 258–266.

Metzger P., Berkaloff C., Casadevall E., Coute A.,Phytochemistry, 24 (1985), 2305–2312.

Metzger P., Casadevall E., Tetrahedron Lett., 28 (1987),3931–3934.

Metzger P., Casadevall E., Pouet M. J., Pouet Y.,Phytochemistry, 24 (1985), 2995–3002.

Metzger P., Largeau C., Appl. Microbiol. Biotechnol., 66(2005), 486–496.

Miller B., Oschinski C., Zimmer W., Planta, 213 (2001),483–487.

Mounguengui R. W. M., Brunschwig C., Barea B., VilleneuveP., Blin J., Prog. Energy Combust. Sci., 39 (2013),441–456.

Nguyen M. T., Thu M., Choi S. P., Lee J., Lee J. H., Sim S.J., J. Microbiol. Biotechnol., 19 (2009), 161–166.

Nigam P. S., Singh A., Prog. Energy Combustion Sci., 37(2011), 52–68.

Northcote D. H., Goulding K. J., Horne R. W., Biochem. J.,70 (1958), 391.

Okada S., Devarenne T. P., Murakami M., Abe H., ChappellJ., Arch. Biochem. Biophys., 422 (2004), 110–118.

Patel B., Hellgardt K., Environ. Progr. Sustain. Energy, 32(2013), 1002–1012.

Patel B., Tamburic B., Zemichael F. W., Dechatiwongse P.,Hellgardt K., Algal Biofuels: A Credible Prospective?,ISRN Renewable Energy (2012).

Patil P. D., Gude V. G., Mannarswamy A., Deng S., Cooke P.,Munson-McGee S., Rhodes I., Lammers P., Nirmalakhandan N.,Bioresour. Technol., 102 (2011), 118–122.

Peralta-Yahya P. P. Z. F., del Cardayre S. B., Keasling J.D., Nature, 488 (2012), 320–328.

Poulter C. D., Phytochem. Rev., 5 (2006), 17–26.

Renaud S. M., Thinh L. V., Lambrinidis G., Parry D. L.,Aquaculture, 211 (2002), 195–214.

Rilling H. C., J. Biol. Chem., 241 (1966), 3233–3236.

Rodriguez-Concepcion M., Boronat A., Plant Physiol., 130(2002), 1079–1089.

Rohmer M., Knani M., Simonin P., Sutter B., Sahm H.,Biochem. J., 295 (1993), 517–524.

Rohmer M., Seemann M., Grosdemange-Billiard C.,Biosynthetic Routes to the Building Blocks of Isoprenoids,Biopolymers Online, Wiley-VCH Verlag GmbH & Co, KGaA(2005).

Sakurai H., Masukawa H., Marine Biotechnol., 9 (2007),128–145.

Sander K., Murthy G. S., Enzymatic Degradation ofMicroalgal Cell Walls, in ASABE Annual InternationalMeeting, Reno, Nevada (2009).

Sasiak K., Rilling H. C., Arch. Biochem. Biophys., 260(1988), 622–627.

Sasaki K., Saito T., Laemsae M., Oksman-Caldentey K.-M.,Suzuki M., Ohyama K., Muranaka T., Ohara K., Yazaki K.,Plant Cell Physiol., 48 (2007), 1254–1262.

Sato Y., Ito Y., Okada S., Murakami M., Abe H., TetrahedronLett., 44 (2003), 7035–7037.

Scott S. A., Davey M. P., Dennis J. S., Horst I., Howe C.J., Lea-Smith D. J., Smith A. G., Curr. Opin. Biotechnol.,21 (2010), 277–286.

Seemann M., Campos N., Rodriguez-Concepcion M., Ibanez E.,Duvold T., Tritsch D., Boronat A., Rohmer M., TetrahedronLett., 43 (2002), 1413–1415.

Seinfeld J. H., Spyros N. P., Atmospheric Chemistry andPhysics: from Air Pollution to Climate Change, John Wiley& Sons (2012).

Shah S., Sharma S., Gupta M. N., Indian J. Biochem.Biophys., 40 (2003), 392–399.

Sharkey, T. D. and Yeh, S., Ann. Rev. Plant Physiol. PlantMol. Biol., 52 (2001), 407– 436.doi:10.1146/annurev.arplant.52.1.407.http://dx.doi.org/10.1146/ annurev.arplant.52.1.407.

Sharkey T. D., Wiberley A. E., Donohue A. R., AnnalsBotany, 101 (2008), 5–18. Sharkey, T. D. A. Y. S., Annu.Rev. Plant Physiol. Plant Mol. Biol., 52 (2001), 407–436.

Sheehan J., Camobreco V., Duffield J., Graboski M.,Shapouri H., Life cycle inventory of biodiesel andpetroleum diesel for use in an urban bus. Final report.No. NREL/SR–580-24089, National Renewable Energy Lab.,Golden, CO (US) (1998).

Silver G. M., Fall R., Plant Physiol., 97 (1991), 1588–1591.

Singh A., Nigam P. S., Murphy J. D., Bioresour. Technol.,102 (2011), 26–34.

Singh J., Dartois A., Kaur L., Trends Food Sci. Technol.,21 (2010), 168–180.

Stephanopoulos G., Science, 315 (2007), 801–804.

Stucki S., Vogel F., Ludwig C., Haiduc A. G., BrandenbergerM., Energy Environ. Sci., 2 (2009), 535–541.

Subhadra B. G., Energy Policy, 38 (2010), 5892–5901.

Sun Y., Cheng J., Bioresour. Technol., 83 (2002), 1–11.

Tamburic B., Dechatiwongse P., Zemichael F. W., Maitland G.C., Hellgardt K., Phys. Chem. Chem. Phys., 15 (2013),10783–10794.

Tran D.-T., Chen C.-L., Chang J.-S., J. Biotechnol., 158(2012), 112–119.

Tran D.-T., Le B.-H., Lee D.-J., Chen C.-L., Wang H.-Y.,Chang J.-S.,Bioresour. Technol., 140 (2013), 179–186.

Tsygankov A. A., Appl. Biochem. Microbiol., 43 (2007),250–259.

Turpin D. H., J. Phycol., 27 (1991), 14–20.

Vanthoor-Koopmans M., Wijffels R. H., Barbosa M. J., EppinkM. H. M., Bioresour. Technol., 135 (2012), 142–149.

Vardon D. R., Sharma B. K., Scott J., Yu G., Wang Z.,Schideman L., Zhang Y., Strathmann T. J., Bioresour.Technol., 102 (2011), 8295–8303.

Versteegh G. J. M., Blokker P., Phycolog. Res., 52 (2004),325–339.

Voragen, A. G. J., Trends Food Sci. Technol., 9 (1998),328–335.

Vulfson E. N., Trends Food Sci. Technol., 4 (1993), 209–215.

Vyas A. P., Verma J. L., Subrahmanyam N., Fuel, 89 (2010),1–9.

Welsh E. A., Liberton M., Stoeckel J., Loh T., ElvitigalaT., Wang C., Wollam A., Fulton R. S.,. Clifton S. W.,Jacobs J. M., Aurora R., Ghosh B. K., Sherman L. A., SmithR. D., Wilson R. K., Pakrasi H. B., Proc. Natl. Acad.Sci., U S A, 105 (2008), 15094–15099.

Weselake R. J.,Taylor D. C., Rahman M. H., Shah S., LarocheA. L., McVetty P. B., Harwood J. L., Biotechnol. Adv., 27(2010), 866–878. Williams P. J. le B., Laurens L. M. L.,

Energy Environ. Sci., 3 (2010), 554–590.

Withers S., Keasling J., Appl. Microbiol. Biotechnol., 73(2007), 980–990.

Yeager C. M., Milliken C. E., Bagwell C. E., Staples L.,Berseth P. A., Sessions H. T., Int. J. Hydrogen Energy, 36(2011), 7487–7499.

Yusuf N. N. A. N., Kamarudin S. K., Yaakub Z., EnergyConversion Manag., 52 (2011), 2741–2751.

Zheng H., Yin J., Gao Z., Huang H., Ji X., Dou C., Appl,Biochem. Biotechnol., 164 (2011), 1215–1224.

30 Chapter 30: Biocatalytic Synthesis ofPolymers: A Contribution to GreenChemistry

MacDonald R. T., Pulapura S., Svirkin Y., Gross R. A.,Kaplan D. A., Akkara J., Macromolecules, 28 (1995), 73–78.Martinelle M., Holmquist M., Hult K., Biochim. Biophys.Acta, 1258 (1995), 272–276.

Matsumura S., Enzymatic Synthesis of Polyesters viaRing-opening Polymerization, in Enzyme-Catalyzed Synthesisof Polymers, Adv. Polym. Sci. (Kobayashi S., Ritter H.,Kaplan D., eds.), Springer-Verlag, Berlin Heidelberg, 194(2006), p. 98. Matsumura S., Beppu H., Tsukuda K., ToshimaK., Biotechnol. Lett., 18 (1996), 1041–1046. Matsumura S.,Tsukada K., Toshima K., Macromolecules, 30 (1997),3122–3124.

Miletic N., Loos K., Gross R. A., Enzymatic Polymerizationof Polyester, in Biocatalysis in Polymer Chemistry (LoosK., ed.), WILEY-VCH, Weinheim, 2011, pp. 83–130. NamekawaS., Suda S., Uyama H., Kobayashi S., Int. J. Biol.Macromol., 25 (1–3), (1999), 145–151.

Nishida H., Yamashita M., Nagashima M., Endo T., Tokiwa Y.,J. Polym. Sci. Polym. Chem. Ed., 38 (2000), 1560–1567.Nobes G. A. R., Kazalauskas R. J., Marchessault R. H.,Macromolecules, 29 (1996), 4829–4833. Okumara S., Iwai M.,Tominaga Y., Agric. Biol. Chem., 48 (1984), 2805–2808.Pandey A., Sailas B., Soccol R. C., Nigam P., Krieger N.,Soccol V. T., Biotechnol. Appl. Biochem., 29 (1999),119–131.

Peeters J. W., van Leeuwen O., Palmans A. R. A., Meijer E.W., Macromolecules, 38 (2005), 5587–5592. Schmid A.,Dordick J. S., Nature, 409 (2001), 258–268.

Schoemaker H. E., Mink D., Wubbolts M. G., Science, 299(2003), 1694–1697. Sharma R., Chisti Y., Banerjee U. C.,Biotechnol. Adv., 19 (2001), 627–662. Sivalingam G.,Chattopadhyay S., Madras G., Chem. Eng. Sci., 58 (2003),2911–2919. Spadiut O., Rittman S., Dietzsch C., Herwig C.,Eng. Life Sci., 13 (2013), 88–101. Srivastava R. K., J.Polym. Sci. Part. A Polym. Chem., 43 (2005), 4206–4216.Svirkin Y. Y., Xu J., Gross R. A., Kaplan D. L., Swift G.,Macromolecules, 29 (1996), 4591–4597.

Uppenberg J., Norin N., Öhrner M., Hult K., Klewegt G. J.,Patkar S., Waagen V., Anthonsen T., Jones T. A.,Biochemistry, 34 (1995), 16838–16851. Uyama H., Kikuchi H.,

Takeya K., Kobayashi S., Acta Polymerica, 47 (1996),357–360. Uyama H., Kobayashi S., Chem. Lett., 7 (1993),1149–1150. Uyama H., Kobayashi S., Morita M., Habaue S.,Okammoto Y., Macromolecules, 34 (2001), 6554–6556. UyamaH., Takeya K., Kobayashi S., Bull. Chem. Soc. Japan, 68(1995), 56–61. van Buijtenen J., van As B. A. C.,Verbruggen M., Roumen L., Vekemans J. A. J. M., PieterseK., Hilbers P. A. J., Hulshof L. A., Palmans A. R. A.,Meijer E. W., J. Am. Chem. Soc., 129(23), (2007),7393–7398.

Veld M. A. J., Palmans A. R. A., Hydrolases Part I: EnzymeMechanism, Selectivity and Control in the Synthesis ofWell-Defined Polymers, in Enzymatic Polymerisation, Adv.Polym. Sci. (Palmans A. R. A., Heise A., eds.),Springer-Verlag, Berlin Heidelberg, 237 (2010). Wallace J.S., Morrow C. J., J. Polym. Sci. Part A Polym. Chem.,27(10) (1989), 3271–3284. Wandrey C., Liese A., KihumbuD., Org. Proc. Res. Dev., 4 (2000), 286–290. Wu R.,Al-Azemi T. F., Bisht K. S., Biomacromolecules, 9 (2008),2921–2928. Xu J., Gross R. A., Kaplan D. L., Swift G.,Macromolecules, 29 (1996), 4582–4590. Yu M., Wen S., TanT., Eng. Life Sci., 10 (2010), 458–464.

31 Chapter 31: Bio-Based Chemicals andMaterials

Abdel-Rahman M., Tashiro Y., Sonomoto K., Biotechnol. Adv.,31 (2013), 877–902.

Adkins J., Pugh S., McKenna R., Nielsen D. R., FrontiersMicrobiol., 3 (2012), article 313. Agren R., Otero J. M.,Nielsen J., J. Ind. Microbiol. Biotechnol., 40 (2013),735–747.

Altaras N. E., Etzel M. R., Cameron D. C., Biotechnol.Progr., 17 (2001), 52–56.

Amarasekara A. S., Razzaq A., Bonham P., ISRN Polymer Sci.,2013, article ID 645169.

AMSilk (2013);http://www.amsilk.com/news/artikelansicht/article/amsilk-entwickelt-die-weltweit-erste-skalierbare-s.html.

Anastas P. T., Kirchhoff M. M., Acc. Chem. Res., 35 (2002),686–694.

Atsumi S., Hanai T., Liao J. C., Nature, 451 (2008), 86–89.

Atsumi S., Wu T. Y., Eckl E. M., Hawkins S. D., Appl.Microbiol. Biotechnol., 85 (2010), 651–657.

Beardslee T., Picataggio S., Lipid Technol., 24 (2012),223–225.

Biermann U., Friedt W., Lang S., Lühs W., Machmüller G.,Metzger J. O., Rüsch gen Klaas M., Schäfer H. J.,Schneider M. P., Angew. Chem., 112 (2000), 2292–2310;Angew. Chem. Int. Ed., 39 (2000), 2206–2224.

Blombach B., Riester T., Wieschalka S., Ziert C., Youn J.W., Wendisch V. F., Eickmanns B. J., Appl. Environ.,Microbiol, 77 (2011), 3300–3310.

Boisen A., Christensen T. B., Wu F., Gorbanev Y. Y., HansenT. S., Jensen J. S., Klitgaard S. K., Pedersen S.,Rilsager A., Ståhlberg T., Woodley J. M., Chem. Eng. Res.Design, 87 (2009), 1318–1327.

Bozell J. J., Moens L., Elliot D. C., Wang Y.,Neuenscwander G. G., Fitzpatrick S. W., Bilski R. J.,Jarnefeld J. L., Recour. Conserv. Recycl., 28 (2000),227–239.

Bozell J. J., Petersen G. R., Green Chem., 12 (2010),539–554.

Braskem; http://bioplastic-innovation.com/tag/braskem/,2013.

Brosse N., Dufour A., Memg X., Sun Q., Ragauskas A.,Biofuels, Bioprod. Bioref., DOI : 10.1002/bbb. (2012).

Brown S. H., Bashkirova L., Berka R., Chandler T., Doty T.,McCall K., McCulloch M., McFarland S., Thompson S., YaverD., Berry A., Appl. Microbiol. Biotechnol., 97 (2013),8903–8912. Cann A. F., Liao J. C., Appl. Microbiol.Biotechnol., 85 (2010), 893–899. Cann A. F., Liao J. C.,Appl. Microbiol. Biotechnol., 81 (2008), 89–98.

Chang J.-J., Ho F.-J., Ho C.-Y., Wu Y.-C., Hou Y.-H., HuangC.-C., Shih M.-C., Li W.-H., Biotechnol. Biofuels,6(2013), 19.

Chen X., Jiang Z.-H., Chen S., Qin W., Int. J. Biol. Sci.,6 (2010), 834–844. Chen Y., Nielsen J., Curr. Opin.Biotechnol., 24 (2013), 1–8.

Cheng C. L., Che P.-Y., Chen B.-Y., Lee W.-J., Chien L.-J.,Chang J.-S., Bioresour. Technol., 113 (2012), 58–64.Connor M. R., Cann A. F., Liao J. C., Appl. Microbiol.Biotechnol., 86 (2010), 1155–1164.

Corma A., Iborra S., Velty A., Chem. Rev., 107 (2007),2411–2502.

Cranford S. W., Tarakanova A., Pugno N. M., Buehler M. J.,Nature, 482 (2012), 72–76.

de Jong E., Higson A., Walsh P., Wellisch M., BiobasedChemicals, Value added Products from Biorefineries; IEABioenergy, task 42 Biorefinery (2012).

Di Cagno R., Mazzacane F., Rizello C. G., De Angeli S. M.,Giuliani G., Meloni M., De Servi B., Gobbetti M., Appl.Microbiol Biotechnol., 2009.

Djurdjevic I., Zelder O., Buchel W., Appl. Environ.Microbiol., 77 (2011), 320–323.

Dueber J. E., Wu G. C., Malmirchegini G. R., Moon T. S.,Petzold C. J., Wllal A. V., Prather K. L., Keasling J. D.,Nat. Biotechnol., 27 (2009), 753–759.

Dvorakova M., Valterova I., Saman D., Vanek T., Molecules,16 (2011), 10541–10555.

Dwidar M., Park J.-Y., Mitchell R. J., Sang B.-I., Sci.World J. (2012), article ID 471417.

Engel C. A. R., Straathof A. J., Zijlmans T. W., van GulikW. M., van der Wielen L. A. M., Appl. Microbiol.Biotechnol., 78 (2008), 379–389.

Erickson B., Nelson J. E., Winters P., Biotechnol J., 7(2012), 176–185.

European Bioplastics/University of Applied Sciences andArts, Hanover, May 2011.

Galetti A. M. R., Antonetti C., De Luise V., Licursi D., DiNasso N. N., BioResources, 7 (2012), 1824–1836. GallezotP., Chem. Soc. Rev., 41 (2012), 1538–1558.

Gogerty D. S., Bobik T. A., Appl. Environ. Microbiol., 76(2010), 8004–8010. Grunwald P., Preparation and Applicationof Immobilized Phospholipases, in Enzymes in LipidModification (Bornscheuer U. T., ed.), Wiley-VCH,Weinheim, 2000.

Hagn F., Kessler H., G. I. T. Laboratory J. (2012), 10–13.

Haselbek R., Trawick J. D., Niu W., Burgard A. P., USPatent App. 20130029381, 2013.

He M., Sun Y., Han B., Angew. Chem. Int. Ed., 125 (2013),9798–9812.

Heidebrecht A., Scheibel T., Adv. Appl. Microbiol., 82(2013), 115–153.

Himmel M. E., Ding S.-Y., Johnson D. K., Adney W. S.,Nimlos M. R., Brady J. W., Foust T. D., Science, 315(2007), 804–807.

Jäger G., Büchs J., Biotechnol. J., 7 (2012), 1122–1136.

Janda, K., Kristoufek, L., Zilberman, D. (2011). “Modelingthe Environmental and Socio-Economic Impacts of Biofuels,”IES Working Paper 33/2011. IES FSV. Charles University.

Jang J. S., Lee J., Malaviya A., Seung D. Y., Cho J. H.,Lee S. Y., Biotechnol. J., 7 (2012a), 186–198.

Jang Y.-S., Kim B., Shin J. H., Choi Y. J., Song C. W., LeeJ., Park H. G., Lee S. Y., Biotechnol. Bioeng., 109(2012b), 2437–2459. Jiang X., Meng X., Xian M., Appl.Microbiol. Biotechnol., 82 (2009), 995–1003.

Jiang, L., Wang J., Liang S., Wang X., Cen P. Xu Z., Appl.Biochem. Biotechnol., 160 (2010), 350–359.

Kamm B., Kamm M., Adv. Biochem. Engin/Biotechnol., 105(2007), 175–204.

Kamm B., Kamm M., Angew. Chem., 119 (2007a), 5146–5149;Angew. Chem. Int. Ed., 46 (2007a), 5056–5058.

Kim S., Baek S.-H., Li K., Hahn J.-S., Microbial. CellFactories, 12:14 (2013).

Klein-Marcuschamer D., Oleskowicz-Popiel P., Simmons B. A.,Blanch H. W., Biotechnol. Bioeng., 109 (2012), 1083–1087.

Kocabas A., Ogel Z. B., Bakir U., Ann. Microbiol. (2013);DOI 10.1007/s13213013-0634-9.

Koopman F., Wierckx N., de Winde J. H., Ruijssenaars H. J.,Bioresour. Technol., 101 (2010), 6291–6296.

Koutinas A. A., Du C., Wang R. H., Webb C., Production ofChemicals from Biomass, in Introduction to Chemicals fromBiomass (Clark J., Deswarte F., eds.), John Wiley & Sons,Ltd (2008).

Krivoruchko A., Serrano-Amatriain C., Chen Y., Siewers V.,Nielsen J., J. Ind. Microbiol., Biotechnol., 40 (2013),1051–1056.

Kuenz A., Gallenmüller Y., Willke T., Vorlop K.-D., Appl.Microbiol. Biotechnol., 96 (2012), 1209–1216.

Kulkarni N., Shendye A., Rao M., FEMS Microbiol. Rev., 23(1999), 411–456.

Küllenberg D., Taylor L. A., Schneider M., Massing U.,Lipids Health Dis., 11 (2012), 3.

Kumdam H., Murthy S. N., Gummadi S. N., AMB Express, 3(2013), 23.

Lee S., Ahn J., Kim Y.-G., Jung J.-K., Lee H., Lee E. G.,Int. J. Mol. Sci., 14 (2013), 1728–1739.

Leonard E., Runguphan W., O’Connor S., Prather K. J., Nat.Chem. Biol., 5 (2009), 292–300.

Leopoldina; Nationale Akademie der Wissenschaften:Bioenergie— Möglichkeiten und Grenzen (2012).

Leung C. C. F., Cheung A. S. Y., Zhang A. Y.-Z., Lam K. F.,Lin C. S. K., Biochem. Eng. J., 65 (2012), 10–15.

Li H., Qiu T., Huang G., Cao Y., Microb. Cell Factory, 9(2010), 85.

Li H., Liao J. C., Microb. Cell Factory, 12 (2013), 4. LiY., Cui F., Microbial Lactic Acid Production from RenewableResources, in Sustainable Biotechnology (Singh O. V.,Harvey S. P., eds), Springer Science + Business Media B.V. (2010).

Lin C., Dong H., Zhong J., Zyu D. D., Bao J., J.Biotechnol., 148 (2010), 105–112.

Liu Q., Ouyang S.-P., Kim J., Chen G.-Q., J. Biotechnol.,132 (2007), 273–279.

Lynd L. R., van Zyl W. H., McBride J. E., Laser M., Curr.Opin. Biotechnol., 16 (2005), 577–583.

Lynd L. R., Weimer P. J., van Zyl W. H., Pretorius I. S.,Microbiol. Mol. Biol. Rev., 66 (2002), 506–577.

Ma C., Wang A., Qin J., Li L., Ai X., Jiang T., Tang H., XuP., Appl. Microbiol. Biotechnol., 82 (2009), 49–57.

Machado I. M. P., Atsumi S., J. Biotechnol., 162 (2012),50–56.

McKenna R., Nielsen D. R., Metab. Eng., 13 (2011), 544–554.

Meiswinkel T. M., Gopinath V., Lindner S. N., NampoothiriK. M., Wendisch V. M., Microb. Biotechnol., 6 (2012),131–140.

Mendes F. S., Gonzásles-Pajuelo M., Cordier H., François J.M., Vasconcelos I., Appl. Microbiol. Biotechnol., 92(2011), 519–527.

Menegassi de Almeida R., Li J., Nederlof C., O’Conner P.,Makkee M., Moulijn J. A., ChemSusChem., 3 (2010), 325–328.

Meussen B. J., de Graaff L. H., Sanders J. P. M., WeusthuisR. A., Appl. Microbiol. Biotechnol., 94 (2012), 875–886.

Mimitsuka T., Sawai H., Hatsu M., Yamada K., Biosci.Biotechnol. Biochem., 71 (2007), 2130–2135.

Min K., Kim S., Yum T., Kim Y., Sang B.-I., Um Y., Appl.Microbiol. Biotechnol., 97 (2013), 5627–5634.

Mirata M. A., Heerd D., Schrader J., Process Biochem., 44(2009), 764–771.

Moon T. S. Yoon S. H., Lanza A. M., Roy-Mayhew J. D.,Prather K. L., Appl. Environ. Microbiol., 75 (2009),589–595.

Moon T. S., Dueber J. E., Shiue E., Prather K. L., Metab.Eng., 12 (2010), 298–305.

Mukherji R., Joshi-Navare K., Prabhune A., Appl. Biochem.Biotechnol., 169 (2013), 1753–1763.

Nakano S., Fukaya M., Horinouchi S., Appl. Environ.Microbiol., 72 (2006), 497–505.

Nielsen D. R., Yoon S. H., Yuan C. J., Prather K. L.,Biotechnol. J., 5 (2010), 274–284. Nova Institute,Germany, Industrial Biotechnol., 9 (2013), 81–84;www.biobased.eu/market_study.

OECD (2011); Future prospects for industrial biotechnology.

Okabe M., Lies D., Kanamasa S., Park E. Y., Appl.Microbiol. Biotechnol., 84 (2009), 597–606.

Ping Y., Ling H. Z., Song G., Ge J.-P., Biochem. J., 15(2013), 86–91.

Plastemart (2013);http://www.plastemart.com/Plastic-Technical-Article.

Plastics (2010);

Qi W. W., Vannelli T., Breinig S., Ben-Bassat A., GatenbyA. A., Haynie S. L., Sariaslani F., Metab. Eng., 9 (2007),268–256.

Qian Z. G., Xia X. X., Lee S. Y., Biotechnol. Bioeng., 108(2011), 93–103.

Qian Z.-H., Xia X.-X., Lee S. Y., Biotechnol. Bioeng., 104(2009), 651–662.

Raj S. M., Rathnasingh C.-A., Jo J. E., Park S., Proc.Biochem., 43 (2008), 1440–1446. Ravenstijn J., Ind.Biotechnol., 6 (2010), 252–263.

RESEARCHANDMARKETS, 2013(http://www.researchandmarkets.com/research/w3cb9t/renewable).

Sabra W., Dietz D., Zeng A. P., Appl. Microbiol.Biotechnol., 97 (2013), 5771–5777.

Saha B. C., Sakakibara Y., Cotta M. A., J. Ind. Microbiol.Biotechnol., 34 (2007), 519–523.

Sanders J. P. M., Clark J. H., Harmsen G. J., Heeres H. J.,Heijjnen J. J., Kersten S. R. A., van Swaaij W. P. M.,Moulijn J. A., Chem. Eng. Process., 51 (2012), 117–136.

Sanders J., van Ree R., Kamm B., Biofuels, Bioprod.Biorefin., 4 (2010), 243–244.

Saxena R. K., Anand P., Saran S., Isar J., Agarwal L.,Indian J. Microbiol., 50 (2010), 2–11.

Saxena R. K., Anand P., Saran S., Isar J., Biotechnol.Adv., 27 (2009), 895–913.

SBI Energy (2010),http://www.sbireports.com/Biorenewable-Chemicals2747396/.

Schneider J., Wendisch V. F., Appl. Microbiol. Biotechnol.,88 (2010), 859–868.

Schwab W., Fuchs C., Huang F.-L., Eur. J. Lipid Sci.Technol., 115 (2013), 3–8.

Smith C., Market update bioplastics:http://www.chem.umn.edu/csp/pdfs/ CWJune2012%20article.pdf(2012).

Stark A., Ondruschka B., Zaitsau D. H., Verevkin S. P., J.Chem. Eng. Data, 57 (2012), 2985–2991.

Steiger M. G., Blumhoff M. L., Mattanovich D., Sauer M.,Frontiers Microbiol., 4 (2013), Article 23.

Steinbüchel A., Pieper U., Appl. Microbiol. Biotechnol., 37

(1992), 1–6.

Stephanopoulos G., Science, 315 (2007), 801–804.

Sun J., Wen F., Si T., Xu J.-H., Zhao H., Appl. EnvironMicrobiol., 78 (2012), 3837–3845.

Swift K. A. D., Top. Catal., 27 (2004), 143–155.

Takahasi K., Inoue Y., Adv. Food Nutr. Res., 65 (2012),31–46.

Tamaru Y., Doi R. D., Bacterial Strategies for Plant CellDegradation and Their Genomic Information, inCarbohydrate-Modifying Biocatalysts (Grunwald P., ed.),Pan Stanford Publishing Pte. Ltd. (2011).

Tang S. L. J., Smith R. L., Poliakoff M., Green Chem., 7(2005), 761–762.

Tateno T., Okada Y., Tsuchidate T., Tanaka T., Fukuda H.,Kondo A., Appl. Microbiol. Biotechnol., 82 (2009),115–121.

Thompson R. C., Swan S. H., Moore C. J., Vom Saal F. S.,Philos. Trans. R. Soc. B Biol. Sci., 364 (2009),1973–1976.

Tsao G. T., Cao N. J., Du J., Gong C. S., Adv. Biochem.Eng. Biotechnol., 65 (1999), 243–280.

Tseng H. C., Harwell C. L., Martin C. H., Prather K. L.,Metab. Cell Factory, 9 (2010), 96.

Tufvesson P., Ekman A., Sardari R. R. R., Engdahl K.,Tufvesson L., Bioresour. Technol., in press (2013).

Ulbrich-Hofmann R., Phospholipases Used in LipidTransformations, in Enzymes in Lipid Modification(Bornscheuer U. T., ed.), Wiley-VCH, Weinheim, 2000.

Valdehuesa K. N. G., Liu H., Nisola G. M., Chung W.-Y., LeeS. H., Park S. J., Appl. Microbiol. Biotechnol., 97(2013), 3309–3321.

van Haveren J., Scott E. L., Sanders J., Biofuels Bioprod.Bioref., 2 (2008), 41–57.

van Leeuwen B. N. M., van der Wulp A. M., Duijnstee I., vanMaris A. J. A., Straathol A., Appl. Microbiol.

Biotechnol., 93 (2012), 1377–1387.

Vendrely C., Scheibel T., Macromol. Biosci., 7 (2007),401–409.

Villaverde J. J., Domingues R. M. A., Freire C. S. R.,Silvestre A. J., Neto C. P., Ligero P., de Vega A., J.Agr. Food Chem., 57 (2009), 3626–3631. Villaverde J. J.,Ligero P., de Vega A., Open Agr. J., 4 (2010), 102–110.

Wang A., Wang Y., Jiang T., Li L., Ma C., Xu P., Appl.Microbiol. Biotechnol., 87 (2010), 965–970.

Wang C., Thygesen A., Liu Y., Li Q., Yang M., Dang D., WangZ., Lin W., Xing J., Biotechnol. Biofuels, 6 (2013a), 74.

Wang H., Gurau G., Rogers R. D., Chem. Soc. Rev., 41(2012), 1519–1537.

Wang X., Sa N., Wang F.-H., Tian P.-F., Curr. Microbiol.,66 (2013), 293–299.

Weiß S., Tauber M., Somitsch W., Meincke R., Müller H.,Berg G., Guebitz G. M., Water Res., 44 (2010), 1970–1980.

Wen S., Liu L., Nie K. L., Deng L., Tan T. W., Fang W.,BioResources, 8 (2013), 2186–2194.

Werpy T., Petersen G., Top Value Added Chemicals fromBiomass, Vol. 1, Results of Screening for PotentialCandidates from Sugar and Synthesis Gas, US Department ofEnergy (DOE), 2004.

Whited G. M., Feher F. J., Benko D. A., Ind. Biotechnol., 6(2010), 152–163.

Wilkens E., Ringel A. K., Hortig D., Willke T., VorloppK.-D., Appl. Microbiol. Biotechnol., 93 (2012), 1057–1063.

Willke T., Vorlopp K.-D., Appl. Microbiol. Biotechnol., 66(2004), 131–142.

Wu J., Du G., Zhou J., Chen J., Metab. Eng., 16 (2013),48–55. Wyman C. E., Trends Biotechnol., 25 (2007), 153–157.

Xi Y.-I., Chen K.-Q., Dai W.-Y., Ma J.-F., Zhan M., JiangM., Wei P., Ouyang P.K., Bioresour Technol., 136 (2013),775–779.

Xia X.-X., Quian Z.-G., Ki C. S., Park Y. H., Kaplan D. L.,

Lee S. Y., Proc. Natl. Acad. Sci. U.S.A., 107 (2010),14059–14063.

Yim H., Haselbeck R., Niu W., Pujol-Baxley C., Burgard A.,Boldt J., Khandurina J., et al., Nat Chem. Biol., 7(2011), 445–452.

Zelle R. M., de Hulster E., van Winden W. A., de Waard P.,Dijkema C., Winkler A. A., Geertman J. M. A., van DijkenJ. P., Pronk J. T., van Maris A. J. A., Appl. Environ.Microbiol., 74 (2008), 427–434.

Zeng A. P., Sabra W., Curr. Opin. Biotechnol., 22 (2011),749–757.

Zhang J., Siika-aho M., Tenkanen M., Viikari L.,Biotechnol. Biofuels, 4 (2011), 60.

Zhang K., Sawaya M. R., Eisenberg D. S., Liao J. C., Proc.Natl. Acad. Sci. U.S.A., 105 (2008), 20653–20658.

Zhang X., Wang X., Shanmugam K. T., Ingram L. O., Appl.Environ. Microbiol., 77 (2011), 427–434.

Zhao J., Xu L., Wang Y., Zhao X., Wang J., Garza E., ManowR., Zhou S., Microb. Cell Factory, 12 (2013), 57.

Zhou S., Li L., Wei J., Qin Q., Genome Announc., 1, 3(2013), e00177-13.

Ziolkowska J., Simon L., J. Japan. Inst. Erg., 90 (2011),177–181.

Zwart R., van Ree R., Bio-Based Fischer-Tropsch DieselProduction Technologies, in Biofuels (Soetart W., VandammeE. J., eds.), Jon Wiley & Sons Ltd (2009).