nanotechnology in nutraceuticals - taylor & francis ebooks

247

Upload: khangminh22

Post on 16-Mar-2023

1 views

Category:

Documents


0 download

TRANSCRIPT

PRODUCTION TO CONSUMPTION

NANOTECHNOLOGYIN NUTRACEUTICALS

Nanotechnology in Nutraceuticals: Production to ConsumptionShampa Sen and Yashwant Pathak

Herbal Bioactives and Food Fortification: Extraction and FormulationD. Suresh Kumar

Handbook of MetallonutraceuticalsYashwant V. Pathak and Jayant N. Lokhande

Nutraceuticals and Health: Review of Human Evidence Somdat Mahabir and Yashwant V. Pathak

Marine Nutraceuticals: Prospects and Perspectives Se-Kwon Kim

Nutraceuticals: Basic Research/Clinical ApplicationsSeries Editor: Yashwant Pathak, PhD

CRC Press is an imprint of theTaylor & Francis Group, an informa business

Boca Raton London New York

NUTRACEUTICALS Basic Research/Clinical Applications

Edited byShampa Sen • Yashwant Pathak

PRODUCTION TO CONSUMPTION

NANOTECHNOLOGYIN NUTRACEUTICALS

CRC PressTaylor & Francis Group6000 Broken Sound Parkway NW, Suite 300Boca Raton, FL 33487-2742

© 2017 by Taylor & Francis Group, LLCCRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed on acid-free paperVersion Date: 20160328

International Standard Book Number-13: 978-1-4987-2188-2 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit-ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

Library of Congress Cataloging‑in‑Publication Data

Names: Sen, Shampa, editor. | Pathak, Yashwant, editor.Title: Nanotechnology in nutraceuticals : production to consumption / edited by Shampa Sen and Yashwant Pathak.Description: Boca Raton : Taylor & Francis, 2017. | Series: Nutraceuticals. Basic research/clinical applications ; 4 | “A CRC title.” | Includes bibliographical references and index.Identifiers: LCCN 2016012964 | ISBN 9781498721882Subjects: LCSH: Functional foods. | Nanotechnology.Classification: LCC QP144.F85 N36 2017 | DDC 613.2--dc23LC record available at http://lccn.loc.gov/2016012964

Visit the Taylor & Francis Web site athttp://www.taylorandfrancis.com

and the CRC Press Web site athttp://www.crcpress.com

I profoundly thankAlmightyMy familyMy friends

My students andEveryone

Who have inspired and helped me to complete this book

Shampa Sen

Our adoration to the Rishi-s, the forefathers, the pioneers and the pathfinders

Rig veda (10–14–15)

Yashwant V. Pathak

vii

Contents

Series Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

Editors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

Contributors . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

1 Recent Trends in Nutraceutical Research and Development: From Concept to Applications . . . . . . . . . . . . . . . . . . . . . . . 1Avipsha Sarkar, Alok Prakash, Yashwant V. Pathak, and Shampa Sen

2 Nanofood Materials Characteristics and Evaluations . . . . . . . . . . . . . . . . . . . . . . 23Harsh Chauhan and Dev Prasad

3 Principles for the Oversight of Nanotechnologies and Nanomaterials in Nutraceuticals and Functional Foods . . . . . 39Stanley Jean-Charles, Shampa Sen, and Yashwant V. Pathak

viii Contents

4 Metallic Nanoparticles in the Food Industry: Advantages and Limitations . . . . . 57Kumar Rajendran and Shampa Sen

5 Targeted Delivery of Nutraceuticals Using Nanoparticles . . . . . . . . . . . . . . . . . . 87Kumar Rajendran and Shampa Sen

6 Developments and Applications of Silver Nanoparticles in the Nutraceuticals Industry . . . . . . . . . . . 117Shanmuga Sundari I., Vithiya K., and Shampa Sen

7 Nanoemulsions in Food Science and Nutrition . . . . . . . . . . . . . . . . . . . . . . .135Shivendu Ranjan, Nandita Dasgupta, Chidambaram Ramalingam, and Ashutosh Kumar

8 Dietary Fibers and Etiology of Health and Disease: An Emerging Concept of Nanonutraceuticals . . . . . . . . . . . . . . . . .165Avipsha Sarkar and Shampa Sen

9 Nanotechnology in Probiotics and Prebiotics . . . . . . . . . . . . . . . . . . . . 177Kumar Rajendran, Shampa Sen, and P. Latha

10 Modeling and Simulation of Nanobiosystems with Special Reference to Functional Foods and Nutraceuticals . . . . . . . . . . . . . . . . . . . .197Sudharsana Sundarrajan and Mohanapriya Arumugam

11 Nanostructured Lipid Carriers . . . . . . . . . . . . 215Melanie Jameson, Anjali Hirani, and Yashwant V. Pathak

ixContents

12 Challenges in the Development of Functional Foods: Role of Nanotechnology . . . . . . . . . . . . . . . . . . 233Pranav K. Singh and Harjinder Singh

13 Nanotechnology in Nutraceuticals and Functional Foods: Production to Consumption . . . . . . . . . . . . . . . . . . . . . 265Corin Agoris, Muhammad Imam, Aditya Grover, and Yashwant V. Pathak

14 Industrial Production of Nanonutraceuticals . . . . . . . . . . . . . . 275Avipsha Sarkar, Shanmuga Sundari I., and Shampa Sen

15 Nanotechnology in Food Products: Implications in Regulatory Requirements . . . .289Charles Preuss, Abhishek Shah, and Yashwant V. Pathak

16 Nanotechnology-Based Nutraceuticals for Use in Cardiovascular Disease: Toward a Paradigm Shift in Adjuvant Therapy . . . . . . . . . . . . . . . . . . . . . . . . . . 301Ashim Malhotra

17 Nanonutraceuticals: Are They Safe? . . . . . . . 317Nandita Dasgupta, Shivendu Ranjan, Chidambaram Ramalingam, and Ashutosh Kumar

18 Consumer Acceptance of Nanotechnology-Based Foods and Food Innovations . . . . . . . . . . . . . . . . 345Jean Gaibort, Shampa Sen, and Yashwant V. Pathak

x Contents

19 Ethics and Economics of Nanonutraceuticals . . . . . . . . . . . . . . 357Alok Prakash, Shanmuga Sundari I., and Shampa Sen

20 Novel Nanoencapsulation Structures for Functional Foods and Nutraceutical Applications . . . . . . . . . . . . . . . . . . . . . . . .373Laura G. Gómez-Mascaraque, Jesús Ambrosio- Martín, Maria José Fabra, Rocío Pérez- Masiá, and Amparo López-Rubio

21 Mesoporous Silica Particles as Encapsulation and Delivery Systems for Food Ingredients and Nutraceuticals . . . 397Édgar Pérez-Esteve, María Ruiz-Rico, Ramón Martínez-Máñez, and José Manuel Barat

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439

xi

Series Preface

Mother Nature is the best scientist of nanotechnology. There are several nanomaterials created by Mother Nature that even with modern science development we cannot yet replicate. Nanoscience and technologies have been influencing practically every walk of life including computer sciences, electronics, communications, energy production, and medi-cine. The food industry is not lagging behind in application of nano-technology, with significant applications in nutraceuticals and functional food. Food products in today’s world are not only contributing to satisfy the appetite, but they also provide vital nutrients and contribute toward positive health outcomes for consumers.

In the food industry, nanotechnology is applied in many areas including developing nanoparticulate food materials such as micelles, liposomes, nanoemulsions, nanosuspensions, and biopolymeric nanomaterials and cubosomes. On the production side, nanosensors are helping to main-tain a high level of quality in products.

Some interesting applications of nanotechnology include protective effects of nanoparticles from oxidation, controlled release of nutrients, taste masking, delivery of nanocapsulated nutraceuticals, vitamins and flavors, detection of pathogens in food and nutraceuticals, food safety and quality enhancements, improved packaging, shelf-life extension, nanoadditives to enhance the quality of the product, antibacterial and self-cleaning packaging, and monitoring the quality of products during transport, transition, and long-term storage.

The scope of the series Nutraceuticals: Basic Research/Clinical Applications aims at bringing out a range of books edited by distinguished scientists and researchers who have significant experience in scientific pursuit and critical analysis. This series addresses various aspects of nutraceutical

xii Series Preface

products including the historical perspective, traditional knowledge base, analytical evaluations, green food, processing, and applications. The series will be very useful to not only the researchers and academi-cians but will be valuable reference books for personnel in the nutraceu-ticals and food industries.

The purpose of the inclusion of this book, Nanotechnology in Nutraceuticals: Production to Consumption, in the series is to cover the recent trends in the food industry, which has been significantly enhanced with the advent of nanotechnology. The forthcoming titles in the series will cover the topics of seaweed bioactives, nutrigenomics, botanical drug products, antioxidant nutraceuticals, and food powders.

The series has proven to be a very good resource for academicians, industrial scientists, and students in the area of nutraceutical basic research and clinical applications. We invite scientists and academicians working in this field to contribute to the series.

Yashwant V. PathakSeries Editor

xiii

Foreword

Changes in lifestyle, food habits, and other environmental conditions resulted in the emergence of drug-resistant diseases. The existing health care system may not be sufficient to provide the necessities to cure emerging diseases. Besides the rapid rise in technological advance-ments, there is an urgent push toward the development of innovative products in the prevention of diseases. Nutraceuticals are nutritional func-tional foods that are already in existence in the form of natural fruits and vegetables. These resources are given in various forms to man for maintaining body health and in preventing diseases. The best example could be Ayurveda, an Ancient Asian medical system that has provided nutraceuticals for several millennia in the form of Rasayana, proven to be potentially beneficial.

Numerous nutraceutical products are available in the market, and the food science and pharma sectors of competitive nutraceutical industries are developing such products. These products are verified to be expedi-ent, but lack stability, bioavailability, and permeability. Hence with the latest technological advancements, nanonutraceuticals were developed to afford a solution. Nanomaterials are nanosized particles in the range of 1 to 100 nm. Nutraceuticals delivered along with nanoparticles in different combinations have been found to be naturally efficient. This book’s chapters explain nanonutraceuticals in practice from production to consumption. The book specifically addresses concepts, techniques, and production methods of both nutraceuticals and nanoparticles, which are converted into nanonutraceuticals. As nanoparticles are toxic beyond a certain limit, implementing nanotechnology under correct regulations is considered to be more important. Hence, this book also addresses such issues as ethics and economics in nutraceutical production. Production of nutraceuticals has rapidly increased in the global nutraceutical market

xiv Foreword

and still emerges in delivering newer forms of nanonutraceuticals. Although pharma sectors play a major role in curing diseases, there is certainly a great need for developing nutraceuticals by nutraceuti-cal industries. The book conveys a key point about nanonutraceuticals: If nanonutraceuticals are produced following appropriate regulations, they can undeniably change the world in preventing life-threatening dis-eases, saving millions of lives.

I heartily congratulate the editors and contributing authors for their immense efforts in producing this book. The volume will be of great value to students, researchers, and practitioners engaged in the study and production of nanonutraceuticals.

Dr. Anand A. Samuel, BE, MS, PhDVice Chancellor

VIT University

xv

Preface

There has been a drastic breakthrough in the field of nanotechnol-ogy over the past few years. Nanotechnology is the science applying nanoscale materials in different areas that would be beneficial to human kind. Nanosized materials possess excellent properties when compared to their respective bulk forms. Hence, the field started growing rap-idly, from environmental to various medical applications. Such immense potential of nanotechnology has also recently touched the food indus-try. Food spoilage during processing, transport, and packaging can be reduced to a greater extent by applying the concept of nanotechnology. Nutraceuticals are functional foods or dietary supplements to facilitate prevention and cure of diseases. Nutraceuticals are more beneficial and possess no side effects, as mostly they are phytochemical compounds of natural resources. However, nutraceuticals retain less stability, efficacy, and bioavailability when they enter the human body system. Hence, to overcome such problems, nanotechnology was applied in the field of nutraceuticals.

This book contains the basics about nutraceuticals, nanotechnology, and various approaches and techniques used in nanonutraceutical industries. From this book, readers will gain basic knowledge about different forms of nutraceuticals and why they are important in today’s world. The first chapter gives a detailed review of the basics of nutraceuticals and their prospects in the food industry and human health. Organization of nutra-ceuticals, prior investigations done on nutraceuticals, and their applica-tions as antioxidants, prebiotics, and probiotics, and a few therapeutic applications are also highlighted.

The remaining chapters are framed in a format so that the reader can understand the fundamentals of nanotechnology and the concepts of

xvi Preface

applying nanomaterials in the food industry. Chapters 4 through 6 dis-cuss metallic nanoparticles and their applications in the food industry with specific reference to nutraceuticals. A detailed discussion on poten-tial functional properties of nutraceuticals such as antimicrobial activity, anti-inflammatory activity, and anticancer activity with their applications in targeted delivery are given in Chapter 5. The book covers topics on the current status of nutraceutical products on the commercial market, problems faced by nutraceutical industries, and the need for nanobased approaches.

Nanotechnology has reached the market in various applications, but they are at infancy in the area of nutraceuticals. There are various issues concerning nanomaterial toxicity toward humans and the environment. Hence, safety aspects of nutraceuticals and their applications with nanoparticles are discussed in the next few chapters. Nanoparticle toxic-ity, issues regarding the food industry, environment, ethics, and econom-ics in nutraceutical industries are also discussed. Consumer acceptance of nanotechnology-based food innovations, implications of regulatory requirements on production and marketing of nanonutraceuticals, and the rules and regulations that have to be followed during nanonutraceu-tical synthesizing, characterization, and marketing are discussed.

Though several topics on nutraceuticals and nanotechnology are not covered in this book due to space constraints, the readers would get an overview of nutraceuticals and nanotechnology. We thank and appreci-ate all the reviewers for providing critical comments and valuable sug-gestions to improve this book.

Shampa SenYashwant V. Pathak

xvii

Editors

Dr. Shampa Sen completed her PhD in envi-ronmental biotechnology at the Indian Institute of Technology, Guwahati, India. She is an asso-ciate professor in the School of Bio Sciences and Technology at VIT University, Vellore, India. With extensive experience in academia, she has more than 30 publications in environ-

mental biotechnology, bionanotechnology, and nutraceuticals. She has been actively involved in many professional development activities. Her research interests include biosynthesis of metallic nanoparticles, and nanoparticles in biomedical and environmental applications.

Dr. Yashwant V. Pathak completed his PhD in pharmaceutical technology at Nagpur University, India, and EMBA and MS in conflict manage-ment from Sullivan University, Louisville, Kentucky. He is a professor and associate dean for Faculty Affairs at the College of Pharmacy, University of South Florida, Tampa. With exten-sive experience in academia as well as industry,

he has more than 120 publications and one approved patent and five patent applications, including 15 books in nanotechnology, drug deliv-ery systems, nutraceuticals, conflict management, and cultural studies. He is editor of the Nutraceuticals: Basic Research/Clinical Applications series published by CRC Press. Some of the titles in the series include Handbook of Metallonutraceuticals, Marine Nutraceuticals: Prospects and Perspectives, and Nutraceuticals and Health: Review of Human Evidence. Pathak has a passion for travel, which has taken him to more

xviii Editors

than 80 countries. He has received many awards and scholarships inter-nationally. He is actively involved in much nonprofit organization work. His new research interests include the impact of microgravity/hyper-gravity on the stability of space pharmaceuticals with a special focus on mucoadhesive nanoproducts.

xix

Contributors

Corin AgorisMorsani College of MedicineUniversity of South FloridaTampa, Florida

Jesús Ambrosio-MartínInstitute of Agrochemistry

and Food TechnologyIATA-CSICPaterna (Valencia), Spain

Mohanapriya ArumugamSchool of Bio Sciences

and TechnologyVIT UniversityVellore, Tamil Nadu, India

José Manuel BaratGroup for Research

and Innovation FoodPolytechnic University of ValenciaValencia, Spain

Harsh ChauhanSchool of Pharmacy and Health

ProfessionalsCreighton UniversityOmaha, Nebraska

Nandita DasguptaSchool of Bio Sciences

and TechnologyVIT UniversityVellore, Tamil Nadu, India

Maria José FabraInstitute of Agrochemistry

and Food TechnologyIATA-CSICPaterna (Valencia), Spain

Jean GaibortCollege of PharmacyUniversity of South FloridaTampa, Florida

Laura G. Gómez-MascaraqueInstitute of Agrochemistry

and Food TechnologyIATA-CSICPaterna (Valencia), Spain

Aditya GroverMorsani College of MedicineUniversity of South FloridaTampa, Florida

xx Contributors

Anjali HiraniCollege of PharmacyUniversity of South FloridaTampa, Florida

Muhammad ImamMorsani College of MedicineUniversity of South FloridaTampa, Florida

Melanie JamesonCollege of PharmacyUniversity of South FloridaTampa, Florida

Stanley Jean-CharlesCollege of PharmacyUniversity of South FloridaTampa, Florida

Vithiya K.School of Bio Sciences

and TechnologyVIT UniversityVellore, Tamil Nadu, India

Ashutosh KumarSchool of Science and TechnologyAhmedabad UniversityAhmedabad, Gujarat, India

P. LathaSree Vidyanikethan College

of PharmacyTirupati, Andhra Pradesh, India

Amparo López-RubioInstitute of Agrochemistry

and Food TechnologyIATA-CSIC Paterna (Valencia), Spain

Ashim MalhotraSchool of PharmacyCollege of Health ProfessionsPacific UniversityHillsboro, Oregon

Ramón Martínez-MáñezInstitute of Molecular Recognition

and Technological Development (IDM)

Department of ChemistryPolytechnic University of ValenciaValencia, Spain

Yashwant V. PathakCollege of PharmacyUniversity of South FloridaTampa, Florida

Édgar Pérez-EsteveDepartment of Food TechnologyPolytechnical University

of ValenciaValencia, Spain

Rocío Pérez-MasiáInstitute of Agrochemistry

and Food TechnologyIATA-CSICPaterna (Valencia), Spain

Alok PrakashSchool of Bio Sciences

and TechnologyVIT UniversityVellore, Tamil Nadu, India

Dev PrasadFresenius KabiSkokie, Illinois

xxiContributors

Charles PreussMorsani College of MedicineUniversity of South FloridaTampa, Florida

Kumar RajendranSchool of Bio Sciences

and TechnologyVIT UniversityVellore, Tamil Nadu, India

Chidambaram RamalingamSchool of Bio Sciences

and TechnologyVIT UniversityVellore, Tamil Nadu, India

Shivendu RanjanSchool of Bio Sciences

and TechnologyVIT UniversityVellore, Tamil Nadu, India

María Ruiz-RicoDepartment of Food TechnologyPolytechnic University of ValenciaValencia, Spain

Avipsha SarkarSchool of Bio Sciences

and TechnologyVIT UniversityVellore, Tamil Nadu, India

Shampa SenSchool of Bio Sciences

and TechnologyVIT UniversityVellore, Tamil Nadu, India

Abhishek ShahMorsani College of MedicineUniversity of South FloridaTampa, Florida

Harjinder SinghRiddet InstituteMassey UniversityPalmerston North, New Zealand

Pranav K. SinghCollege of Dairy Science

and TechnologyGuru Angad Dev Veterinary and

Animal Sciences UniversityLudhiana, India

Shanmuga Sundari I.School of Bio Sciences

and TechnologyVIT UniversityVellore, Tamil Nadu, India

Sudharsana SundarrajanSchool of Bio Sciences

and TechnologyVIT UniversityVellore, Tamil Nadu, India

1

1Recent Trends in Nutraceutical Research and DevelopmentFrom Concept to Applications

Avipsha Sarkar, Alok Prakash, Yashwant V. Pathak, and Shampa Sen

1.1 Nutraceuticals: Basic concepts

Since ancient times, consuming food from plants has provided immense ben­efits to human health. To be precise, plants contain various phytochemical compounds, mostly polyphenols. These polyphenols are responsible for the aforementioned beneficial activity, as reported by various research studies. Recently pharmaceutical products that contain nutraceuticals as their active ingredient have appeared in health products. These active ingredients are comprised mainly of phytochemicals with bioactivity (Espín et al. 2007). The

Contents1.1 Nutraceuticals: Basic concepts ...................................................................1

1.1.1 Introduction .....................................................................................31.1.2 Classification of nutraceuticals .......................................................41.1.3 Prior investigation ...........................................................................51.1.4 Contemporary explorations ............................................................6

1.2 Nutraceuticals: Applications .......................................................................71.2.1 Nutraceuticals: A functional food ...................................................71.2.2 Functional food: Definition .............................................................81.2.3 Probiotics and prebiotics ................................................................91.2.4 Nutraceuticals: Antioxidants .........................................................101.2.5 Nutraceuticals: Antiaging ..............................................................131.2.6 Nutraceuticals: Anticancer.............................................................131.2.7 Nutraceuticals from algae: Functions ...........................................151.2.8 Nutraceuticals: Therapeutic applications ......................................161.2.9 Metallonutraceuticals ....................................................................18

1.3 Future research ........................................................................................191.4 Conclusion ................................................................................................19References .........................................................................................................20

2 Nanotechnology in Nutraceuticals

most popular phytochemicals used in the nutraceutical industry are antho­cyanins, resveratrol, isoflavones, and polyphenols like ellagic acid, proantho­cyanins, and flavanones. The Indian market has also taken the initiative to promote the concept of functional food (see Figure 1.1).

Nutraceuticals are basically diet supplements. They have been made accessible within a nonfood medium and are being used for the delivery of known bio­active agents in the health product industries. This is done to enhance human health by introducing dosages of active compounds from food in a higher amount than the amount that can be introduced by the consumption of normal food products. Figure 1.2 illustrates the research evidence that suggests nutra­ceuticals are safe as well as efficient as diet supplements and pharmaceuticals.

Indianmarket

Functionalfoods (60%)

Dietarysupplements

(40%)

Fortified fooditemsFunctionalbeverages

Vitamin andmineralsupplement

Chyawanprash

Proteinsupplement

Figure 1.1 The Indian market of nutraceuticals.

Nutraceuticals

Research evidence

Pharmaceuticals Diet supplements

Efficie

ncy Safety

Figure 1.2 Research evidence.

3Recent Trends in Nutraceutical Research and Development

1.1.1 IntroductionThere are several definitions for nutraceuticals, one of them being “food, or parts of food, that provide medical or health benefits, including the preven­tion and treatment of disease” (from Dr. Stephen DeFelice of the Foundation for Innovation in Medicine).

A nutraceutical, like lycopene, can be found in several forms. It can be obtained as a fraction of an intact food source, which is normally present in a tomato slice, or found from tomatoes as an element of a refined food, or as lycopene supplemented in a fruit juice as an embellished essence of the food, or pro­vided in supplemental form (Wildman 2006).

Any kind of food that is consumed is known to have a direct connection to human health. The term health refers to the physical, physiological, and mental state of a human being. It has been known from various studies that food derived from plants like nuts, spices, wine, fruits, grains, vegetables, and so on are beneficially associated with human health, predominantly being favorable to old­aged humans. The instances of age­related diseases, such as certain types of cancer (e.g., gastrointestinal cancer), cardiovascular diseases, and type 2 diabetes, are more prevalent with the increase in life expectancy of humans. By escalating the use of food products from plants, development of these chronic diseases can be delayed, as recommended by various health organizations all over the world.

Plant­derived food products show a positive effect on the reduction of chronic diseases due to the presence of phytochemicals. These phytochemicals are nonnutritive secondary metabolites and show a wide range of biological activ­ities. As bioactive compounds, these phytochemicals have low effectiveness in comparison to pharmaceutical products, but a perceptible long­term physi­ological effect can be seen if they are regularly ingested in the diet.

Dietary supplement is distinguished by the U.S. Dietary Supplement Health and Education Act (DSHEA) of 1994. A dietary supplement

• Is a product that consists of more than one nutritional ingredient like an amino acid, a vitamin, an aromatic plant, or mineral. It is a product (excluding tobacco) that is projected to increase the diet. In order to complement the diet, man escalates the entire daily intake of a nutri­tional substance like a mixture of several ingredients, an extract, a metabolite, or constituents.

• Is proposed in the form of liquid, capsule, or tablet for eating in medication.

• Incorporates accepted novel drug candidates, antibiotics that are licensed, or a marketed nutritional supplement that is an approved biologic before sanction, certification, or authorization.

4 Nanotechnology in Nutraceuticals

1.1.2 Classification of nutraceuticalsNutraceuticals can be classified based on food source (Figure 1.3) and mech­anism of action.

Food sources include plants, animals, and microbials.

• Plant sources: beta­glucan, ascorbic acid, gamma­tocotrienol, querce­tin, luteolin, cellulose, gallic acid, perillyl alcohol, indole­3­carbinol, pectin, daidzein, glutathione, potassium, allicin, d­limonene, genes­tein, lycopene, hemicellulose, lignin, capsaicin, alpha­tocopherol, zeaxanthin

• Animal sources: conjugated linoleic acid (CLA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), selenium, zinc

• Microbials: yeast, Bifidobacterium, Bacillus, Lactobacillus, Streptococcus

Modes of action include bone protective, anticancer, anti­inflammatory, blood lipid profile, and antioxidant.

• Anticancer: ellagic acid, capsaicin, genestein, daidzein, carnosol, alpha­tocotrienol, gamma­tocotrienol, CLA, limonene, ajoene, alpha­tocopherol, glycyrrhizin, curcumin, lutein, diallyl sulfide

• Constructive control on blood lipid profile: monounsaturated fatty acids (MUFAs), beta­glucan, delta tocotrienol, quercetin, resveratrol, gamma­tocotrienol, saponins, beta sitosterol, quercetin, omega­3 polyunsaturated fatty acids (PUFAs)

• Ascorbic acid• Quercetin• Luteolin• Cellulose• Lutein• Gallic acid• Daidzein• Allicin• Capsaicin• Lycopene• Zeaxanthin• Minerals• MUFA

• Eicosapentaenoic acid • Choline• Docosahexaenoic acid• Lecithin• Selenium• Zinc• Creatine

• Saccharomyces boulardii• B. longum• Bifidobacterium bifidum• L. acidophilus• Streptococcus salvarius

Plants Animals Microbials

Nutraceuticals from food sources

Figure 1.3 Nutraceuticals according to food source.

5Recent Trends in Nutraceutical Research and Development

• Antioxidants: ascorbic acid, tannins, CLA, tocotrienols, alpha toco­trienols, beta­carotene, polyphenols, lutein, catechins, gingerol, tocopherols, glutathione, indole­3­carbinol, ellagic acid, lycopene, hydroxytyrosol, oleuropein, gingerol, chlorogenic acid

• Anti­inflammatory: EPA, capsaicin, linolenic acid, quercetin, cur­cumin, DHA osteogenic, genistein, CLA, calcium, soy protein, daid­zein (Wildman 2006)

1.1.3 Prior investigationWidespread research on nutraceuticals has become popular since obesity, besides being a pro­inflammatory disease, has also been linked with type 2 diabetes, atherosclerosis, cancer, and other chronic diseases. Certain nutraceuticals work by antioxidant and anti­inflammatory mechanisms. The most generally studied among these is curcumin (yellow pigment derived from turmeric) as a cure for obesity and related disorders. By interacting with cells of the muscle and pancreas along with adipocytes and macro­phages, curcumin can suppress the pro­inflammatory factors like NF­κB, Wnt/β­catenin, and activators of transcription­3. It can activate peroxisome proliferator­activated receptor­γ and Nrf2 cell signaling pathways, thereby decreasing production of interleukin­6 as well as leptin, TNFs, and MCP­1 (Figure 1.4). Hence, there is an upregulation of adiponectin and other anti­inflammatory gene products. Other nutraceuticals, derived from cinnamon, cloves, and ginger, have been shown to be effective against obesity and insulin resistance (Aggarwal 2010).

HDL Antioxidant CPT-1

Leptin Curcumin

Resistin

AMPK PPAR-γ AdipocytesIL-6, IL-3

Hyp

ocho

leste

rem

ia

Figure 1.4 Functions of curcumin.

6 Nanotechnology in Nutraceuticals

1.1.4 Contemporary explorationsRecent research on anthocyanins has provided new insight to its health ben­efits. It has been suggested that the gene alteration due to the consumption of anthocyanins might be the reason. Current development in the research on nutraceuticals and anthocyanins has been possible because of rigorous animal trials and in vitro studies on animals. The current research is also strengthening from increasing the number of human trials. Health benefits include effects on brain cognitive function, visual capacity, ulcer protection, cancer prevention, obesity, and cardiovascular risk. There have been various studies that have shown the anthocyanins as a cause to improve the nocturnal vision in myopic patients. Purified anthocyanoside oligomers have been used for these studies. The patients were given repetitive dosage of anthocyano­side oligomers and it showed a positive effect on nocturnal vision in myopic subjects. Various other studies have shown that the berry extracts and antho­cyanins lead to an increment in cognitive performance, enhanced memory and reduction of ischemic damage to the brain. The current research reports have also shown that anthocyanins can lead to prevention of diabetes and obesity. This is because anthocyanins reduce the blood sugar level, adipose tissue and body weight gain. Dietary anthocyanin has been shown to prevent cardiovascular diseases in vitro and in vivo studies. It has been observed that consumption of anthocyanins leads to a reduced level of LDL cholesterol and total plasma cholesterol.

Garlic (Allium sativum L.) is a very important and common plant having both gastronomic and remedial uses coming up from its several biological activi­ties, which include antibiotic, anticancer, antithrombotic, and lipid­lowering cardiovascular effects. People have been well aware of the medicinal proper­ties of garlic for centuries, but there was no scientific evidence to support. However, recent research has helped us to understand the pharmacological properties of garlic and the associated products. Garlic is asexually propa­gated and difficult to grow by conventional means. The involvement of bio­technological processes such as tissue culture and gene transfer may possibly improve this crop. Due to new improvisations in instrumentation and dispen­sation technologies together with more cautious experimental methods, better harvests can be foreseen in the market (Bhagyalakshmi et al. 2005).

Garlic at a glance

• Garlic oil and benzyl salicylate reduces acetate and enhances propio­nate and butyrate proportions, which is an antimethanogenic effect.

• It breaks down the dietary protein.• The effects of saponins and tannins on rumen and microbial activ­

ity is quiescent.• Garlic is a fat­burning substance.

7Recent Trends in Nutraceutical Research and Development

Resveratrol (3,4′,5­trihydroxystilbene), a phytopolyphenolic component that belongs to a class of stilbenes (profusely found in several roots, grapes, ber­ries, and peanuts), got renewed interest after it was identified in red wine roughly two decades back. It is thought that resveratrol may be behind the “French paradox” (i.e., French people experience a moderately low frequency of coronary heart disease apparently due to the consumption of red wine). News on the prospect for resveratrol to expand life duration in cell culture as well as in lower model organisms and to prevent the expansion of cancer have prompted to explore the mechanisms and/or the probable benefits in­vitro as well as in various preclinical disease models. Resveratrol has been shown to inhibit myocardial ischemic­reperfusion damage along with atherosclerosis. Figure 1.5 illustrates the functions of resveratrol. It is also known to offer vasoprotection in rodent models of metabolic disorder and in aged mice with no expanding life span. Resveratrol is thought to impersonate the antiag­ing effects of caloric restraints in rodents. In spite of the mounting evidence that resveratrol confers cardiac and vascular shielding effects in premedical disease models, the accurate molecular and cellular procedures of its action remain vague. From the recent research it appears that resveratrol can evoke complex cellular feedbacks by promoting cell endurance, preserving cellular energetics, and inhibiting proinflammatory phenotypic alterations induced by oxidative stressors (Haskó and Pacher 2010).

1.2 Nutraceuticals: Applications1.2.1 Nutraceuticals: A functional foodNutraceuticals, with their versatile role in health effects, are also consid­ered as a potent functional food. But, sometimes the boundary between the nutraceuticals and functional food is not clear. This is because of the minute

Mitochondrial ROS

Glutathione peroxidase

Mitochondrial biogenesis

SIRT 1

Cellular H2O2 NF-KB Vascularinflammation

Endothelial apoptosis

Resveratrol Nrf2 Heme oxygenase

GSH synthase

Figure 1.5 Functions of resveratrol.

8 Nanotechnology in Nutraceuticals

difference in the concept of nutraceuticals and functional food; the differ­ence exists because of the volume or mass of consumption. Nutraceuticals, being concentrated food extracts or products, are usually considered to be consumed in small amounts, whereas functional food may be consumed in large amounts. The amount of bioactive compound might be the same in both nutraceuticals and functional food. This can be understood by the following example. Consider 100 mg of a food extract dissolved in 1 L of fruit juice. This makes a potent functional food. Whereas, the same amount of food extract (100 mg) when incorporated into a capsule or other nonfood matrix, makes it a nutraceutical. It is clear from the example that the amount of bioactive com­pound is the same in the functional food as well as the nutraceutical, but the concentration of bioactive compound is different. The consumption of func­tional food and nutraceutical in the example will provide the same dosage of bioactive compound. This leads to various issues in governmental regulations for nutraceuticals.

The consequence of food factors on health status has been acknowledged since ancient times. An ample array of food and other ingredients are being included as serviceable (functional) foods and natural fitness products that have a diverse range of bioactive compounds that are valued because of their role in the improvement of health as well as disease impediment. Phenolic along with polyphenolic components are known to act as antioxidants and LDL cholesterol oxidation inhibitors. They compose a very important class of secondary plant metabolites. Hence, both polyphenolics along with phe­nolics are known for their role in the circumvention of several forms of cancer and cardiovascular diseases. Additionally, food derived from marine sources has been thought as “heart food” due to omega­3. This is specifically known  to subjugate blood triacylglycerol as well as lowering cholesterol levels. Therefore, there is a strong belief that food ingredients from both plant as well as animal sources partake equally to improve and enhance human health (Shahidi 2006).

1.2.2 Functional food: DefinitionFunctional foods can be defined as a group of food products that upon regu­lar consumption provide a special effect on the physiological condition of humans that is beyond their nutritional properties. To be clearer, functional food provides a healthier status of the human physiology and a lower risk of occurrence for any disease. The International Food Information Council (IFIC) states functional foods are “foods or dietary components that may provide a health benefit beyond basic nutrition.” Another organization, the International Life Sciences Institute of North America (ILSI), states functional foods are “foods that by virtue of physiologically active food components pro­vide health benefits beyond basic nutrition.” Health Canada says functional food is “similar in appearance to a conventional food, consumed as part of the usual diet, with demonstrated physiological benefits, and/or to reduce

9Recent Trends in Nutraceutical Research and Development

the risk of chronic disease beyond basic nutritional functions” (Wildman and Kelley 2006). According to the Institute of Medicine’s Food and Nutrition Board, functional foods can be defined as “any food or food ingredient that may provide a health benefit beyond the traditional nutrients it contains.” In general there is no exact and precise definition of functional food because of its novelty, but several definitions given by different organizations share vari­ous common features.

1.2.3 Probiotics and prebioticsProbiotics are defined as live microbial food ingredients that constructively affect the host by recuperating its intestinal microbial balance. The candidate probiotics include

• Lactic acid bacteria, bacilli, yeasts, etc.• Lactobacilli and Bifidobacteria

Prebiotics are nondigestible food ingredients that usefully affect the host by selectively stimulating the growth of beneficial bacteria and/or by suppress­ing that of harmful bacteria in the colon, which have the potential to progress the host’s health. Prebiotics include oligosaccharides, dietary fiber, and resis­tant starch. The purpose of probiotics and prebiotics to the maneuvering of the microbial bionetwork of the human colon has in recent times seen many systematic advances. The probiotic genome sequencing has provided assets of original fresh information on these microbes. Along with this, communica­tions of probiotics with individual’s cells and with pathogens can be under­stood. Another way of modifying the microbial population in the colon is by means of prebiotic oligosaccharides. Advancements in knowledge about the metabolism of prebiotics have allowed people to regard this as a dietary inter­vention tool for specific populations and disease stages. Table 1.1 illustrates a basic comparative study between the probiotics and prebiotics.

The medical efficiency of prebiotics and probiotics has been proven in vari­ous experimental settings. Probiotics are experimentally proven to be respon­sible for side effects in vulnerable individuals including infections, metabolic

Table 1.1 Comparison of Probiotics and Prebiotics

Characteristic Probiotics Prebiotics

Definition Living active microbes when administered in adequate amount benefits the host

Nonliving, nondigestible special form of fiber

Properties More fragile, vulnerable to heat, over time may be killed

In the powdery form can survive acid, heat, and cold

Role Combat the harmful bacteria that reside in the gut Enrich the bacterial population in the intestines and perform their role

10 Nanotechnology in Nutraceuticals

behaviors, too much immune stimulation, and gene transfer. Infections occur less often compared to the other side effects. It generally occurs in patients who are sick and received medication (probiotics) because of rigorous medical circumstances.

Prebiotics apply an osmotic outcome in the intestinal lumen and are fermented in the colon. These might stimulate bloating and gaseousness. Large doses can induce diarrhea and pain in the abdomen, and gastroesophageal reflux has recently been correlated to the same. The tolerance and effectiveness of the drugs highly depends on the received dosage and other individual factors (Marteau and Seksik 2004).

1.2.4 Nutraceuticals: AntioxidantsThe bioactivity of polyphenols and other phytochemical ingredients, which constitute the nutraceutical products, are more or less associated with the antioxidant property of these compounds. The antioxidant property is basi­cally the free radical scavenging capacity of any chemical compound. Many chronic diseases basically arise from the free radical activity in the human physiological system. The scavenging of this free radical in the human physi­ological system by the antioxidant compound leads to reduction or no onset of the chronic diseases. Nutraceuticals have various attributes of which the antioxidant property is one. The antioxidant property of nutraceuticals is due to various phytochemical compounds present in food products. A few exam­ples of such phytochemical compounds are anthocyanins, proanthocyanidins, flavanones, and resveratrol.

The most important class of nutraceuticals with antioxidant properties are the carotenoids. Photosynthesis and photoprotection are the primary func­tions of this class of nutraceuticals. Carotenoids are specifically known to produce reactive oxygen species, with a special mention to singlet oxygen, produced by introduction to radiation as well as light. By reacting with free radicals, carotenoids have a tendency to form radicals themselves. The span of the succession of conjugated double bonds along with the various functional groups at the end and their characteristics tend to influence the reactivity. Removal of electrons that are unpaired mainly counterpoise the carotenoid radicals. These unpaired electrons of the molecules are located on top of the polyene string. This delocalization also allows additional reac­tions to occur at many sites on the radical molecules. Carotenoids are prin­cipally dominant in scavenging singlet oxygen obtained from light­induced lipid oxidation as well as radiation. Astaxanthin, zeaxanthin, and lutein are excellent in scavenging free radicals because of the unique end functional groups. When fixed with a surrounding that is highly oxidative (e.g., the environment of the lungs of smokers), carotenoids in large quantity may be harmful, though in smaller amounts they are beneficial against cancer and chronic diseases. Figure 1.6 illustrates the procarcinogenic and anticarcino­genic effects of carotenoids.

11Recent Trends in Nutraceutical Research and Development

The anthocyanin­based nutraceuticals are known for their high concentration of antioxidant capacity. The antioxidant capacity of these nutraceuticals is usually expressed as their in vitro antioxidant activity derived by the ORAC (oxygen radical antioxidant capacity) assay. There are several other health claims for the berry­derived nutraceutical products or anthocyanin­rich nutra­ceutical products (Matough et al. 2012). These claims include:

• “It promotes healthy brain function and mental clarity, healthy vision, cardiovascular health, and healthy blood sugar levels. It also prevents the effects of premature ageing.”

• “It reduces oxidative damage and inflammation in the nervous sys­tem; prevents LDL oxidation in blood vessels, reduces the risk of reti­nopathy and decreases eye fatigue.”

• “It helps maintain healthy brain function.”• “Natural vision enhancer that prevents retinopathy, improves capillary

fragility, and reduces inflammation.”• “Supports vision, improves blood glucose levels and memory.”• “May prevent some effects of premature aging, promotes healthy brain

function and mental clarity, cardiovascular health, healthy vision, relieves joint discomfort, maintain healthy blood glucose levels and reduce some other health risks.”

Flavanones such as naringenin or hesperidin are also used as an ingredient for nutraceuticals, though they are less represented in the current market than anthocyanin­containing and isoflavone­containing nutraceutical prod­ucts. Flavanone­containing nutraceuticals are currently prepared from citrus extracts and are marketed in the name of citrus bioflavonoid complex. They

Enhancement of carcinogenbinding to DNA

Oxidativedamage to DNA

Oxidative stress

Damaging levelsHighdose

Lowdose

Desirable levels

Immunemodulation Induction of cell

differentiation

Antiangiogenesis

Photoprotection

Antioxidant

Prooxidant

CarotenoidsOxidative metabolites andproducts

Figure 1.6 Procarcinogenic and anticarcinogenic functions of carotenoids.

12 Nanotechnology in Nutraceuticals

are also mixed with a large quantity of ascorbic acid or vitamin C. The health benefits of flavanone­derived nutraceuticals are less clearly stated than for other nutraceuticals and hence some of the benefits are very general such as “for maintaining proper health,” “immunity booster and powerful anti­oxidant,” “prevents heart diseases,” and “reduces the effects of aging.” For example, cranberry as well as its other constituents have traditionally been connected with inhibiting infections in the urinary tract and other health remunerations. Phenolic phytochemicals of the juice have been related to the aforementioned benefits that are presently identified to have prospective for prevention of chronic cardiovascular problems and development of cancer. Helicobacter pylori is considered to be associated with peptic ulcers along with cardiovascular problems and is one of the main pathogens related to humans. There are several restrictions for the currently accepted and used synthetic antimicrobials for managing the pathogens. This is because of the probable progress of little acquiescence as well as resistance. The scientists consider a mixture of antimicrobials compared to a distinct compound might be potentially more successful in managing H. pylori infections. The extracts of grape seed along with blueberry and cranberry have been investigated, which shows promising activity against infections related to H. pylori. The capability of oregano and blueberry as well as the extract of grape seed in a blend along with cranberry powder to increase the free radical quenching and antibacterial action against H. pylori has been investigated as well. The activity against H. pylori of the cranberry extracts and their alliances are inter­related with free radical scavenging activity and the occurrence of biphenyls along with polyphenolic phytochemicals. The action of the extract of cran­berry juice against H. pylori was appreciably enhanced by its coordinated amalgamation with oregano extract along with blueberry and grape seed. The lower efficiency of purified phenolics in prohibiting H. pylori in comparison with fruit powder at similar dosage levels propose a collaborative means of performance of the individual phenolics in the entire food background. Using mixtures of fruit juices with other fruits and herb extracts can produce exclu­sive functional aspects and may perhaps be an efficient strategy in mounting diet­based administration of H. pylori infections along with other oxidation­linked diseases (Vattem et al. 2010).

Star fruit (Averrhoacarambola L.) is a fine resource of natural free radical scavengers, and their polyphenolics components are the key antioxidants. According to current findings, the remainder of star fruit, that is usually redundant during the processing of juice, has antioxidant activity that is much higher than what was extracted via numerous assays that measure the antioxi­dant capability. The remains only accounted for 15% of the total weight, but in an optimized environment for extraction these contributed to 70% of the entire antioxidant activity and polyphenolic compounds. Freeze­dried pow­dery products, which attributed to around 5% of entire weight, had complete polyphenolic substance of 33.2 ± 3.6 mg gallic acid corresponding (GAE)/g sample and overall free radical scavenging activity of 3490 ± 310 along with

13Recent Trends in Nutraceutical Research and Development

3412 ± 290 mg L­ascorbic acid equivalent antioxidant capacity (AEAC) or 5270 ± 468 and 5152 ± 706 mg trolox equivalent antioxidant capacity (TEAC) per 100 g sample produced by 2,20­azino­bis­(3­ethylbenzthiazoline­6­sul­fonic acid) free radical (ABTS+) and 1,1­diphenyl­2­picryl­hydrazyl (DPPH) scavenging assays, respectively. Moreover observations suggested that it can reduce 510.3 ± 68.1 mol ferric by ferric reducing ability of plasma (FRAP) per gram of the sample. The residue pull out also shows very high antioxi­dant action in postponing oxidative rancidity of soya bean oil at 110°C. The free radical scavenging activities and polyphenolic outline of residue extracts were compared with extracts of regular standardized pyconogenol. The dis­similarities between star fruit and pyconogenol and its isomers were observed by performing high­performance liquid chromatography together with mass spectrometry. Results have suggested that the powder obtained from the resi­due may convey health remuneration due to elevated composition of phenol components and a profound antioxidant activity when utilized as a part of functional foods (Shui and Leong 2006).

1.2.5 Nutraceuticals: AntiagingAging is related to mitochondrial dysfunctions that are known to prompt membrane leakage, discharge of reactive oxygen species (ROS) and nitrogen, and successive induction of peroxidative reactions that result in biomolecules’ destruction and releasing of metals with magnification of free radicals release. Free radicals stimulate neuronal cell death enhancing tissue loss, which could be linked with memory damage. These pathological procedures are engaged in cardiovascular, neurodegenerative, and carcinogenic actions. Nutritional components taken from various functional foods that are bioactive (carnitine, ubiquinone, ginseng, antioxidant vitamins, ginkgo, phytoestrogens, tomato, curcumin, soy, melatonin, carnosine, polyphenols, etc.) can upgrade or even avert diseases. Fortification from persistent diseases of aging includes antioxi­dant actions, mitochondrial stabilizing functions, metal chelating processes, prevention of apoptosis of important cells, and initiation of cancer cell apo­ptosis. Functional foods and nutraceuticals offer a great promise to improve health and avert aging­related diseases (Ferrari 2004).

1.2.6 Nutraceuticals: AnticancerAmong U.S. adults one of the most dreaded diseases is pancreatic can­cer. Investigational research has established that pancreatic carcinoma can be shielded by the antioxidants that lower DNA damage due to oxidative changes. Numerous epidemiologic research has shown the inverse relation of antioxidant intake and pancreatic cancer, which also suggests that they possess free radical scavenging properties that can inhibit pancreatic cancer. Cancer reducing agents other than plants and food have been established to reduce the development and evolution of pancreatic cancer by regulating

14 Nanotechnology in Nutraceuticals

the cellular signaling pathways. The miRNAs and their expression that sup­presses tumors are predominantly enhanced by nutraceuticals that also lower the appearance of oncogenic microRNAs, which primarily lead to the inhibi­tion of growth and development of cancer cells. The self­revival or renewal of pancreatic cancer stem cell is also inhibited through alteration of cellular signaling arrangement. In addition, nutraceuticals can also control miRNAs and DNAs by epigenetically deregulating them, which in turn causes the nor­malization of the signaling pathways that were initially altered. Therefore, nutraceuticals might have a great deal of broader use in the avoidance and/or management of pancreatic cancer in amalgamation with conventional che­motherapeutics. Figure 1.6 illustrates the challenges and promises faced by the nutraceutical industry in cancer research. Nevertheless, more research including in vitro mechanistic observations, clinical trials, and in vivo experi­ments with animals are used to comprehend the importance of nutraceuticals in the hindrance and/or management of pancreatic cancer (Li et al. 2015). (See Figure 1.7.)

Epigallocatechin gallate (EGCG) along with genistein is considered to be the most important food­derived phytochemical due to its chemotherapeu­tic as well as chemopreventive functions. The vascular endothelial growth factor (VEFG) has a lowered expression via transcription, which in turn inhibits the instigation and progression of tumors due to the antiangio­genic activity of EGCG. The tumor progression is inhibited by downregulat­ing several signaling pathways by PI­3K­Akt kinase­NF­κB, and prohibiting

Cancer research and nutraceuticals

Promises Challenges

Targets NF-KB, EGFR, Akt

Deregulates epigeneticprogramming

Well tolerated

Pleiotropic activity

Insufficient preclinical datato advance combinatorialtherapy

Less prioritized

High systemicconcentrations difficult toachieve

Figure 1.7 Cancer and nutraceuticals.

15Recent Trends in Nutraceutical Research and Development

the phosphorylation of EGFR and the receptor of Her­2 in breast cancer cells where Her 2/neu is continuously expressed, which suggests apoptotic behavior in breast cancer cells that is independent of estrogen receptor. It also causes antimetastatic activity, and inhibits proteasome formation, insulin­like growth factor, and glucose­regulated protein (GRP78) action. The invasive property of tumors is critically dependent on Wnt signaling, which is inhibited by a transcriptional repressor HMG box transcription fac­tor 1. The expression of this repressor is enhanced by EGCG, which in turn prevents incursion of tumors.

The anticancer criteria that influence most of the experiments regarding EGCG are premedical. For further understanding of precise EGCG effects, clinical trials should be vigilantly planned to take in certain criteria that con­trol the effectiveness of EGCG. EGCG has diverse activities in ER­dependent and ER­independent receptors. Consequently, in order to understand the vari­ety of food desired to copy doses that are in vitro, the clinical trials and phar­macokinetics of doses in normal healthy breast cancer patients needs to be thoroughly understood (Saldanha and Tollefsbol 2012).

1.2.7 Nutraceuticals from algae: FunctionsFor many years diet and several beauty products have used numerous algal build up. This especially includes Haematococcus, Chlorella, Spirulina, and Dunaliella. Nonetheless, the path to acceptance and utilization of arrange­ments from novel species is long, and there are several barriers to surmount. Certain things are needed to achieve approval from the point of view of a large marketer and manufacturer of a large variety of products. The consid­erations and views of associations were taken into account: merchandise for­mulators with efficiency as their point of focus; mechanistic properties and assistance that is needed by regulatory staffs to ensure the product is good enough; quality guarantee of ingredients to ensure uniformity and depend­ability; promotion requirements as well as competition in terms of price; and trustworthy service to the customer by maintaining sufficient delivery (Gellenbeck 2012).

Functional sulfated polysaccharides present in red microalgae contain zeaxan­thin, dietary fibers, minerals, PUFAs, vitamins, and proteins. Experiments in rat models sustain the therapeutic activities of algae and the isolated polysac­charides. Algal products integrated into rat diets were initiated to significantly improve serum cholesterol, serum triglycerides, hepatic cholesterol, ratios of HDL/LADL, and enhanced fecal flow of neutral sterols as well as bile acids. Morphological and metabolic alterations were induced by utilization of algal food. These results recommend that red microalgae can be utilized as effec­tive hypocholesterolemic agents, and they also support the budding utiliza­tion of red microalgae as innovative nutraceuticals. Figure 1.8 illustrates the health benefits of algae (Dvir et al. 2009).

16 Nanotechnology in Nutraceuticals

1.2.8 Nutraceuticals: Therapeutic applicationsSickle cell anemia is a genetically acquired disease where the “SS” (diseased) individual consists of an atypical beta globin gene. A single base replace­ment in the β­globin subunit results in substitution of β­6 glutamic acid by valine that leads to the overwhelming medical manifestations of the syn­drome. This changeover causes radical decline in the solubility of sickle cell hemoglobin (HbS) while deoxygenated. Under such conditions, the HbS molecules polymerize to form an elongated intracellular mass of fibers that is accountable for the deformation of the biconcave disc red blood cells into a sickle­shaped structure. Initial­line clinical supervision of the disease is comprised of the use of hydroxyurea, amino acids supplements, penicillin, and antimalarial prophylaxis to administer the state and blood transfusions for the stabilization of the patient’s hemoglobin level. These are relatively costly and have associated risk factors. But, there is still a flicker of hope that concerns research of antisickling mechanisms of curative plants. This alternative phytotherapy has proven to not only reduce crisis but also reverse sickling (Imaga 2013).

Metabolic disorder represents a network of hazard factors associated with an increased risk of cardiovascular problems as well as type 2 diabetes. Incidence of diabetes and metabolic disorders along with the associated complications has various features that include reversed oxidative state and continuous platelet activation. Regardless of the accessibility of several interventions to neutralize the metabolic changes, which include proper diet, customary exercise, and weight management, epidemiological data are showing rapid increase in the problem, which in turn reflects the multi­factorial properties of the disease along with the inadequate fulfillment of

Healthbenefits

of algae

Anticoagulating

Antimicrobial Anticancer

Reducescholesterol

Figure 1.8 Benefits of algae.

17Recent Trends in Nutraceutical Research and Development

patients to already recognized strategies. Several diseases like diabetes mel­litus and metabolic disorders can be targeted using nutraceuticals and to modify biochemical endpoints. These involve compounds like vitamins C, D, and E; omega­3 fatty acids; nutritional fibers; and phytoestrogens. Quite a few areas of concern subsists regarding the use of nutritional supple­ments as well as nutraceuticals together with merchandise standardization, description of optimal dosage, and the probable side effects (Davì, Santilli, and Patrono 2010).

From curbing cancer or subjugating the aging process, elementary science thrives with ingredients that promise to curtail many diseases. But, human trials are mostly impossible. Here, resveratrol has been used as an example to reveal the massive difficulties in perceiving the endowing mechanistic behavior, pharmacokinetics, and concluding side effects of a natural com­ponent. Very little is known about resveratrol and its effects despite wide­ranging interest and endeavors and the hopeful results from research. The inability to appeal for natural products to high­funded, hefty companies that are associated with clinical trials pose a certain amount of difficulty because developing their own molecules provides better claim over intel­lectual property. Small companies face a different scientific dilemma: by trading goods that are unpatentable and producing their own mixes makes comparison of their findings with the others and academic labs difficult. Resveratrol and most other natural components tend to possess several appropriate targets having diverse dose reaction profiles, tissue distribu­tion, and modifiers. New approaches as well as prototypes are necessary to handle these challenges and address the various molecules that claim to be beneficial. Better formation of the available data, voluntary use of supplement tracking, and screening for potential side effects in a large scale along with legislation in order to increase the release of trial results are included as examples. The beneficial effects of resveratrol and its evidence are too sparse to be convincing; yet, the mounting list of studies on animals and other limited information provide strong justification for further study (Smoliga, Vang, and Baur 2012).

This meticulous exploration aims at the preformulation and advancement in the field of intra­articular drug delivery systems by increasing the release of curcumin from curcumin­conjugated magnetic nanoparticles for curing rheu­matoid arthritis. The studies involved in preformulation procedures like solu­bility; mismatched studies of drugs; magnetite (Fe3O4); and polymers with diverse stress surroundings, limit of detection (LOD), size of the nanoparticle, hygroscopicity, and thermal nature have been done.

Mohamed, Bharathidasan, and Raffick (2012) provided confirmation that for the successful preparation of magnetic nanosuspension, curcumin is appro­priate. Magnetite (Fe3O4) as well as methyl cellulose was utilized for the for­mulation magnetic nanosuspension by means of the solvent displacement procedure. To acquire data about mass, drug loading, morphology, particle

18 Nanotechnology in Nutraceuticals

size, sedimentation rate, pH, and drug release, physical as well as chemi­cal categorization was done by means of dissolution studies that were in vitro with hydrochloric acid (0.01N), 0.8% SLS at 370°C ± 0.50°C. Six formula­tions (F1–F6) were prepared, out of which curcumin release was maximum in the F6 formulation compared to the others. Figure 1.9 illustrates the nano­formulation that includes the core that is passivated with polymer to surface functionalize it.

1.2.9 MetallonutraceuticalsMetallonutraceuticals include calcium, iodine, iron, boron, chromium, copper, cobalt, magnesium, manganese, potassium, phosphorous, zinc, sodium chlo­ride, and selenium (see Table 1.2).

Polymer

Functional coating

Nanoparticles

Figure 1.9 Formulation of nanosuspension.

Table 1.2 Daily Sources of Metallonutraceuticals

Metal Source Daily Requirement

Calcium Milk, cheese, dairy products, cabbage, soybeans, bread, nuts, fish (sardines, pilchard)

Men: 700 mg; women: 700 mg

Iodine Ocean fish, shellfish, grains, cereals Men: 0.14 mg; women: 0.14 mg

Iron Liver, meat, beans, nuts, dried fruits, apricots, brown rice Men: 8.7 mg; women: 14.8 mg

Boron Green vegetables, fruits, nuts Men: <6 mg; women: <6 mg

Chromium Meat, whole grains, oats, lentils, spices Men: 0.025 mg; women: 0.025 mg

Cobalt Fish, nuts, spinach, green leafy vegetables, broccoli, oats Men: 0.0015 mg; women: 0.0015 mg

Copper Nuts, shellfish Men: 1.2 mg; women: 1.2 mg

Magnesium Fish, nuts, spinach, bread, meat, dairy foods Men: 300 mg; women: 270 mg

Potassium Banana, vegetables, lentils, nuts, seeds, milk, bread, fish, beef, chicken

Men: 3500 mg; women: 3500 mg

Selenium Bread, fish, meat, eggs Men: 0.075 mg; women: 0.06 mg

Sodium chloride Bacon, breakfast cereals, cheese, bread, savory snacks, tinned vegetables

Men: <6 gm; women: <6 gm

Zinc Meat, shellfish, milk, bread, cereal products, wheat germ Men: 9 mg; women: 7 mg

Source: Pathak YV, Lokhande JN, 2014, Handbook of Metallonutraceuticals, Boca Raton, FL: CRC Press.

19Recent Trends in Nutraceutical Research and Development

1.3 Future research

The future research in the field of nutraceuticals needs to include more human trials that can validate the health benefits derived during animal trials and in vitro experiments.

The composition and dosage of various nutraceutical products are still to be established and standardized. Future works should focus on the establish­ment of proper composition of nutraceutical product taking into consideration a particular health benefit.

The connection between health claims of the product, the sources of these health claims and the functional delivery of compounds are still the under­researched area in nutraceutical science (Hailu et al. 2015). There are several market surveys being done on the relationship between the health claims displayed by the nutraceutical manufacturer and the consumer demand. To provide these marketing surveys with a scientific approach, there is a need for research in molecular identification of nutraceutical compounds and their physiological effect on the human body. This requires expertise in analytical biology, chemistry, animal physiology, human behavior, market research, and many more scientific tools including statistical analysis.

The correlation of nutrition with infection has only been recently affirmed by scientists. Many scientists were initially skeptical, considered nutrition stud­ies as naïve, and didn’t believe the information from a huge number of food enthusiasts who have long boasted about the correlation between vitamins and nutrients in preventing many diseases. Food marketers now recognize nutraceuticals as a means of advertising for improving diets. However, some people view functional foods as just a marketing trick. Civic authorities should take a stand, so as to reveal the fact that their obligation lies with the health of people and not with the profit of the pharmaceutical, food, and other chemi­cal companies.

1.4 Conclusion

Nutraceuticals are present in almost all food ingredients in different concen­trations. The factors that affect human health are concentration and duration of supply. Diets rich in nutraceuticals along with regular exercise can reduce the risk of many diseases, manage stress, and maintain body weight.

Nutraceuticals may be beneficial to our health, but we are still in the learn­ing process about the possible damaging effects. Nutraceuticals are a set of new products that lie between foods and drugs, and, because of this, govern­mental bodies also face many challenges. Experts, including nutritionists and health professionals, should work collectively to plan appropriate guidelines to offer health and curative benefits to mankind.

20 Nanotechnology in Nutraceuticals

ReferencesAggarwal BB. 2010. “Targeting Inflammation­Induced Obesity and Metabolic Diseases by

Curcumin and Other Nutraceuticals.” Annual Review of Nutrition 30: 173–199. doi:10 .1146/annurev.nutr.012809.104755.

Bhagyalakshmi N, Thimmaraju R, Venkatachalam L, Murthy KN, Sreedhar RV. 2005. “Nutraceutical Applications of Garlic and the Intervention of Biotechnology.” Critical Reviews in Food Science and Nutrition 45(7–8): 607–621.

Davì G, Santilli F, Patrono C. 2010. “Nutraceuticals in Diabetes and Metabolic Syndrome.” Cardiovascular Therapeutics 28(4): 216–226. doi:10.1111/j.1755­5922.2010.00179.x.

Dvir I, Stark AH, Chayoth R, Madar Z, Arad SM. 2009. “Hypocholesterolemic Effects of Nutraceuticals Produced from the Red Microalga Porphyridium sp. in Rats.” Journal of Nutrients 1(2): 156–167. doi:10.3390/nu1020156.

Espín JC, García­Conesa MT, Tomás­Barberán FA. 2007. “Nutraceuticals: Facts and Fiction.” Phytochemistry 68(22–24): 2986–3008.

Ferrari CK. 2004. “Functional Foods, Herbs and Nutraceuticals: Towards Biochemical Mech­anisms of Healthy Aging.” Biogerontology 5(5): 275–289.

Gellenbeck KW. 2012. “Utilization of Algal Materials for Nutraceutical and Cosmeceutical Applications—What Do Manufacturers Need to Know?” Journal of Applied Phycology 24(3): 309–313.

Hailu AB, Henson S, Cranfield J. 2015. “Consumer Valuation of Functional Foods and Nutra­ceuticals in Canada. A Conjoint Study Using Probiotics.” Appetite 52(2): 257–265. doi:10 .1016/j.appet.2008.10.002.

Haskó G, Pacher P. 2010. “Endothelial Nrf2 Activation: A New Target for Resveratrol?” American Journal of Physiology: Heart and Circulatory Physiology 299(1): H10–H12. doi:10.1152/ajpheart.00436.2010.

Imaga NA. 2013. “Phytomedicines and Nutraceuticals: Alternative Therapeutics for Sickle Cell Anemia.” Scientific World Journal 2013. doi:10.1155/2013/269659.

Li Y, Go VL, Sarkar FH. 2015. “The Role of Nutraceuticals in Pancreatic Cancer Prevention and Therapy: Targeting Cellular Signaling, MicroRNAs, and Epigenome.” Pancreas 44(1): 1–10.

Marteau P, Seksik P. 2004. “Tolerance of Probiotics and Prebiotics.” Journal of Clinical Gastroenterology 38(6 suppl.): S67–S69.

Matough FA, Budin SB, Hamid ZA, Alwahaibi N, Mohamed J. 2012. “Role of Oxidative Stress and Antioxidants in Diabetic Complications.” Sultan Qaboos University Medical Journal 12(1): 5–18.

Mohamed J, Bharathidasan P, Raffick M. 2012. “Preformulation and Development of Curcumin Magnetic Nanosuspension Using Magnetite (Fe3O4) and Methyl Cellulose.” International Journal of Pharma and Bio Sciences 3(4): 419–432.

Pathak YV, Lokhande JN. 2014. Handbook of Metallonutraceuticals. Boca Raton, FL: CRC Press.

Saldanha SN, Tollefsbol TO. 2012. “The Role of Nutraceuticals in Chemoprevention and Chemotherapy and Their Clinical Outcomes.” Journal of Oncology. http://dx.doi .org/10.1155/2012/192464.

Shahidi F. 2006. “Functional Foods: Their Role in Health Promotion and Disease Prevention.” Journal of Food Science 69(5):R146–R149. doi:10.1111/j.1365­2621.2004.tb10727.x.

Shui G, Leong LP. 2006. “Residue from Star Fruit as Valuable Source for Functional Food Ingredients and Antioxidant Nutraceuticals.” Food Chemistry 97(2): 277–284.

Smoliga JM, Vang O, Baur JA. 2012. “Challenges of Translating Basic Research into Therapeutics: Resveratrol as an Example.” Journal of Gerontology: Series A, Biological Sciences and Medical Sciences 67(2): 158–167. doi:10.1093/gerona/glr062.

21Recent Trends in Nutraceutical Research and Development

Vattem DA, Lin YT, Ghaedian R, Shetty K. 2010. “Cranberry Synergies for Dietary Management of Helicobacter pylori Infections.” Process Biochemistry 40(5): 1583–1592. doi:10.1016 /j.procbio.2004.06.024.

Wildman, REC. 2006. Handbook of Nutraceuticals and Functional Food. 2nd ed. Boca Raton, FL: CRC Press.

Wildman REC, Kelley M. 2006. “Nutraceuticals and Functional Foods.” In Handbook of Nutraceuticals and Functional Foods, 2nd ed., edited by REC Wildman, 1–21. Boca Raton, FL: CRC Press.

References

1 1: Recent Trends in NutraceuticalResearch and Development: From Concept toApplications

Aggarwal BB. 2010. “Targeting InflammationInduced Obesityand Metabolic Diseases by Curcumin and OtherNutraceuticals.” Annual Review of Nutrition 30: 173–199.doi:10 .1146/annurev.nutr.012809.104755.

Bhagyalakshmi N, Thimmaraju R, Venkatachalam L, Murthy KN,Sreedhar RV. 2005. “Nutraceutical Applications of Garlicand the Intervention of Biotechnology.” Critical Reviewsin Food Science and Nutrition 45(7–8): 607–621.

Davì G, Santilli F, Patrono C. 2010. “Nutraceuticals inDiabetes and Metabolic Syndrome.” CardiovascularTherapeutics 28(4): 216–226.doi:10.1111/j.17555922.2010.00179.x.

Dvir I, Stark AH, Chayoth R, Madar Z, Arad SM. 2009.“Hypocholesterolemic Effects of Nutraceuticals Producedfrom the Red Microalga Porphyridium sp. in Rats.” Journalof Nutrients 1(2): 156–167. doi:10.3390/nu1020156.

Espín JC, GarcíaConesa MT, TomásBarberán FA. 2007.“Nutraceuticals: Facts and Fiction.” Phytochemistry68(22–24): 2986–3008.

Ferrari CK. 2004. “Functional Foods, Herbs andNutraceuticals: Towards Biochemical Mech anisms of HealthyAging.” Biogerontology 5(5): 275–289.

Gellenbeck KW. 2012. “Utilization of Algal Materials forNutraceutical and Cosmeceutical Applications—What DoManufacturers Need to Know?” Journal of Applied Phycology24(3): 309–313.

Hailu AB, Henson S, Cranfield J. 2015. “Consumer Valuationof Functional Foods and Nutra ceuticals in Canada. AConjoint Study Using Probiotics.” Appetite 52(2): 257–265.doi:10 .1016/j.appet.2008.10.002.

Haskó G, Pacher P. 2010. “Endothelial Nrf2 Activation: ANew Target for Resveratrol?” American Journal ofPhysiology: Heart and Circulatory Physiology 299(1):H10–H12. doi:10.1152/ajpheart.00436.2010.

Imaga NA. 2013. “Phytomedicines and Nutraceuticals:

Alternative Therapeutics for Sickle Cell Anemia.”Scientific World Journal 2013. doi:10.1155/2013/269659.

Li Y, Go VL, Sarkar FH. 2015. “The Role of Nutraceuticalsin Pancreatic Cancer Prevention and Therapy: TargetingCellular Signaling, MicroRNAs, and Epigenome.” Pancreas44(1): 1–10.

Marteau P, Seksik P. 2004. “Tolerance of Probiotics andPrebiotics.” Journal of Clinical Gastroenterology 38(6suppl.): S67–S69.

Matough FA, Budin SB, Hamid ZA, Alwahaibi N, Mohamed J.2012. “Role of Oxidative Stress and Antioxidants inDiabetic Complications.” Sultan Qaboos University MedicalJournal 12(1): 5–18.

Mohamed J, Bharathidasan P, Raffick M. 2012.“Preformulation and Development of Curcumin MagneticNanosuspension Using Magnetite (Fe 3 O 4 ) and MethylCellulose.” International Journal of Pharma and BioSciences 3(4): 419–432.

Pathak YV, Lokhande JN. 2014. Handbook ofMetallonutraceuticals. Boca Raton, FL: CRC Press.

Saldanha SN, Tollefsbol TO. 2012. “The Role ofNutraceuticals in Chemoprevention and Chemotherapy andTheir Clinical Outcomes.” Journal of Oncology.http://dx.doi .org/10.1155/2012/192464.

Shahidi F. 2006. “Functional Foods: Their Role in HealthPromotion and Disease Prevention.” Journal of Food Science69(5):R146–R149. doi:10.1111/j.13652621.2004.tb10727.x.

Shui G, Leong LP. 2006. “Residue from Star Fruit asValuable Source for Functional Food Ingredients andAntioxidant Nutraceuticals.” Food Chemistry 97(2): 277–284.

Smoliga JM, Vang O, Baur JA. 2012. “Challenges ofTranslating Basic Research into Therapeutics: Resveratrolas an Example.” Journal of Gerontology: Series A,Biological Sciences and Medical Sciences 67(2): 158–167.doi:10.1093/gerona/glr062.

Vattem DA, Lin YT, Ghaedian R, Shetty K. 2010. “CranberrySynergies for Dietary Management of Helicobacter pyloriInfections.” Process Biochemistry 40(5): 1583–1592.doi:10.1016 /j.procbio.2004.06.024.

Wildman, REC. 2006. Handbook of Nutraceuticals andFunctional Food. 2nd ed. Boca Raton, FL: CRC Press.

Wildman REC, Kelley M. 2006. “Nutraceuticals and FunctionalFoods.” In Handbook of Nutraceuticals and FunctionalFoods, 2nd ed., edited by REC Wildman, 1–21. Boca Raton,FL: CRC Press.

3 3: Principles for the Oversight ofNanotechnologies and Nanomaterials inNutraceuticals and Functional Foods

Aharonovich I, Castelletto S, Simpson DA, Su C-H, GreentreeAD, Prawer S. Diamond-based single-photon emitters.Reports on Progress in Physics 2011; 74(7).

Aluko RE. Bioactive carbohydrates. In Functional Foods andNutraceuticals, 5–8. New York: Springer, 2012a.

Aluko RE. Bioactive lipids. In Functional Foods andNutraceuticals, 23–35. New York: Springer, 2012b.

American Nutraceutical Association. Nutraceuticalinformation. 2009. http://www.ana-jana.org/nut_info_details.cfm?NutInfoID=4.

Archetti M, Döring TF, Hagen SB, Hughes NM, Leather SR, LeeDW, Lev-Yadun S et al. Unravelling the evolution of autumncolours: An interdisciplinary approach. Trends in Ecologyand Evolution (Amsterdam) 2009; 24(3):166–173.

Arora A, Padua GW. Review: Nanocomposites in foodpackaging, Journal of Food Science. 2010; 75:43–49.

Arora S, Rajwade JM, Paknikar KM. Nanotoxicology and invitro studies: The need of the hour. Toxicology andApplied Pharmacology 2012; 258(2):151–165.

Bagchi D. Nutraceuticals and functional foods regulationsin the United States and around the world. Toxicology2006; 221(1):1–3.

Bhushan, B. Introduction to nanotechnology. In Handbook ofNanotechnology, 1–13. Berlin: Springer, 2010.

Boehnke C, Reuter U, Flach U, Schuh-hofer S, Einhäupl KM,Arnold G. High-dose riboflavin treatment is efficacious inmigraine prophylaxis: An open study in a tertiary carecentre. European Journal of Neurology 2004; 11(7):475–477.

Carlsson JM. Graphene: Buckle or break. Nature Materials.2007; 6(11):801–802.

Carrillo C, Cavia Mdel M, Alonso-Torre SR. Oleic acidinhibits store-operated calcium entry in human colorectaladenocarcinoma cells. European Journal of Nutrition 2012;51(6):677–684.

Colombo B, Saraceno L, Comi G. Riboflavin and migraine: Thebridge over troubled mitochondria. Neurological Sciences2014; 35(Suppl 1):141–144.

Condò M, Posar A, Arbizzani A, Parmeggiani A. Riboflavinprophylaxis in pediatric and adolescent migraine. Journalof Headache and Pain 2009; 10(5):361–365.

Dam H, Schønheyder F. The occurrence and chemical nature ofvitamin K. Biochemical Journal 1936; 30(5):897–901.

Dement’ev, AP, Maslakov, KI. Chemical state of carbon atomson the surface of nanodiamond particles. Physics of theSolid State 2004; 46:678–680.

Doyle EM. Develop a novel method for removing fuel alcoholsfrom rice spirits using nanofiltration. Journal of FoodScience 2006; 75:25–29.

Doyon M, Labrecque J. Functional foods: A conceptualdefinition. British Food Journal 2008; 110(11):1133–1149.

Dresselhaus MS, Dresselhaus G, Avouris P. Carbon NanotubesSynthesis, Structure, Properties, and Applications.Berlin: Springer, 2001.

Epstein WV, Henke CJ, Yelin, EH, Katz PP. Effect ofparenterally administered gold therapy on the course ofadult rheumatoid arthritis. Annals of Internal Medicine1991; 114(6):437–444.

Ermakova A, Pramanik G, Cai JM, Algara-Siller G, Kasier U,Weil T, Tzenf YK et al. Detection of a few metallo-proteinmolecules using color centers in nanodiamonds. Nano Letters2013; 13(7):3305–3309.

Espin JC, Garcia-Conesa MT, Tomas-Barberan FA.Nutraceuticals: Facts and fiction. Phytochemistry 2007;68(22–24):2986–3008.

Evatt ML. Beyond vitamin status: Is there a role forvitamin D in Parkinson disease? Archives of Neurology2010; 67(7):795–797.

Evatt ML, Delong MR, Khazai N, Rosen A, Triche S,Tangpricha V. Prevalence of vitamin D insufficiency inpatients with Parkinson disease and Alzheimer disease.Archives of Neurology 2008; 65(10):1348–1352.

Falvo MR, Clary GJ, Taylor RM, Chi V, Brooks FP, Washburn

S, Superfine R. Bending and buckling of carbon nanotubesunder large strain. Nature 1997; 389(6651):582–584.

Fasolino A, Los JH, Katsnelson MI. Intrinsic ripples ingraphene. Nature Materials 2007; 6(11):858–861.

Föster S, Konrad M. From self-organising polymers to nano-and biomaterials. Journal of Materials Chemistry 2003;13:2671–2688.

Frohlich E, Roblegg E. Models for oral uptake ofnanoparticles in consumer products. Toxicology 2012;91(1–3):10–17.

Garlotta D. A literature review of poly(lactic acid).Journal of Polymers and the Environment 2001; 9(2):63–84.

Geiselmann M, Marty R, Garcia de Abajo JF, Quidant R. Fastoptical modulation of the fluorescence from a singlenitrogen-vacancy centre. Nature Physics 2013; 9:785–789.

Georgakilas V, Otyepka M, Bourlinos AB, Chandra V, Kim N,Kemp KC, Hobza P, Zboril R, Kim KS. Functionalization ofgraphene: Covalent and non-covalent approaches, derivativesand applications. Chemical Reviews 2012; 112(11):6156–6214.

Giovannucci E, Ascherio A, Rimm EB, Stampfer MJ, ColditzGA, Willett WC. Intake of carotenoids and retinol inrelation to risk of prostate cancer. Journal of theNational Cancer Institute 1995; 87(23):1767–1776.

Gruenhagen JA, Lai CY, Radu DR, Lin VS, Yeung ES. Real-timeimaging of tunable adenosine 5-triphosphate release from anMCM-41-type mesoporous silica nanosphere-based deliverysystem. Applied Spectroscopy 2005; 59(4):424–431.

Hannun YA, Obeid LM. Principles of bioactive lipidsignalling: Lessons from sphingolipids. Nature ReviewsMolecular Cell Biology 2008; 9(2):139–150.

Henningsson A, Bjorck I, Nyman M. Short-chain fatty acidformation at fermentation of indigestible carbohydrates.Scandinavian Journal of Nutrition/Naringsforskning 2001;45:165–168.

Holick CN, Michaud DS, Stolzenberg-Solomon R, Mayne ST,Pietinen P, Taylor PR, Virtamo J, Albanes D. Dietarycarotenoids, serum beta-carotene, and retinol and risk oflung cancer in the alpha-tocopherol, beta-carotene cohortstudy. American Journal of Epidemiology 2002;

156(6):536–547.

Johnson EJ, Russell RM. Beta-carotene. In Encyclopedia ofDietary Supplements, 2nd ed., edited by PM Coates, JMBetz, MR Blackman, GM Cragg, M Levine, J Moss, JD White,115–120. London: Informa Healthcare, 2010.

Kararli T. Comparison of the gastrointestinal anatomy,physiology, and biochemistry of humans and commonly usedlaboratory animals. Biopharmaceutics and Drug Disposition1995; 16(5):351–380.

Kim H, Liu X, Kobayashi T, Kohyama T, Wen FQ, Romberger D,Conner H et al. Ultra fine carbon black particles inhibithuman lung fibroblast-mediated collagen gel contraction.American Journal of Respiratory Cell and Molecular Biology2003; 28:111–121.

Kim JS, Kim YI, Song C, Yoon I, Park JW, Choi YB, Kim HT,Lee KS. Association of vitamin D receptor genepolymorphism and Parkinson’s disease in Koreans. Journal ofKorean Medical Science 2005; 20(3):495–498.

Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim SH etal. Antimicrobial effects of silver nanoparticles.Nanomedicine: Nanotechnology, Biology and Medicine 2007;3(1):95–101.

Knapen MH, Schurgers LJ, Vermeer C. Vitamin K2supplementation improves hip bone geometry and bonestrength indices in postmenopausal women. OsteoporosisInternational 2007; 18(7):963–972.

Kreilgaard M. Influence of microemulsions on cutaneous drugdelivery. Advanced Drug Delivery Reviews 2002; 54:S77–S98.

Kwan KH, Liu X, To MK, Yeung KW, Ho CM, Wong KK. Modulationof collagen alignment by silver nanoparticles results inbetter mechanical properties in wound healing.Nanomedicine 2011; 7(4):497–504.

Li N, Zhang X, Song Q, Su R, Zhang Q, Kong T, Liu L, Jin G,Tang M, Cheng G. The promotion of neurite sprouting andoutgrowth of mouse hippocampal cells in culture bygraphene substrates. Biomaterials 2011; 32(35):9374–9382.

Li YC, Kong J, Wei M, Chen ZF, Liu SQ, Cao LP. 1,25-Dihydroxyvitamin D (3) is a negative endocrineregulator of the renin-angiotensin system. Journal ofClinical Investigation 2002; 110(2):229–238.

Mannisto S, Smith-Warner SA, Spiegelman D, Albanes D,Anderson K, van den Brandt PA, Cerhan JR et al. Dietarycarotenoids and risk of lung cancer in a pooled analysis ofseven cohort studies. Cancer Epidemiology, Biomarkers andPrevention 2004; 13(1):40–48.

Maroon JC, Bost JW. Omega-3 fatty acids (fish oil) as ananti-inflammatory: An alternative to nonsteroidalanti-inflammatory drugs for discogenic pain. SurgicalNeurology 2006; 65(4):326–331.

Martel R, Derycke V, Lavoie C et al. Ambipolar electricaltransport in semiconducting singlewall carbon nanotubes.Physical Review Letters 2001; 87(25):256805.

Maynard AD. Nanotechnology: Assessing the risks. Nanotoday2006; 1(2):22–33.

Maynard AD, Aitken RJ, Butz T, Colvin V, Donaldson K,Oberdorster G, Philbert MA et al. Safe handling ofnanotechnology. Nature 2006; 444:267–269.

McConnell EL, Basit AW, Murdan S. Measurements of rat andmouse gastrointestinal, pH, fluid, and lymphoid tissue,and implications for in vivo experiments. Journal ofPharmacy and Pharmacology 2008; 60(1):63–70.

Mintmire JW, Dunlap BI, White CT. Are fullerene tubulesmetallic? Physical Review Letters 1992; 68(5):631–634.

Morris VJ, Parker R. Natural and designed self-assemblednanostructures in foods. The World of Food Science: FoodNanotechnology 2008. Accessed August 6, 2015. http://www.worldfoodscience.org/cms/?pid=1004050.

Mygind N. Structure and function of the respiratory tract.In Aerosols in Medicine. New York: Elsevier, 1985, p. 52.

Nadworny PL, Wang J, Tredget EE, Burrell RE.Anti-inflammatory activity of nanocrystalline silver in aporcine contact dermatitis model. Nanomedicine 2008;4(3):241–251.

Nel A, Xia T, Madler L, Li N. Toxic potential of materialsat the nanolevel. Science 2006; 311:622–627.

Newmark HL, Newmark J. Vitamin D and Parkinson’s disease—Ahypothesis. Movement Disorders 2007; 22(4):461–468.

Northrop-Clewes CA, Thurnham DI. The discovery andcharacterization of riboflavin. Annals of Nutrition andMetabolism 2012; 61(3):224–230.

Oberdörster G, Maynard A, Donaldson K, Castranova V,Fitzpatrick J, Ausman K, Carter J et al. Principles forcharacterizing the potential human health effects fromexposure to nanomaterials: Elements of a screeningstrategy. Particle and Fibre Toxicology 2005.http://www.particleandfibretoxicology.com/content/2/1/8.

Palosz B, Pantea C, Grzanka E, Stelmakh S, Proffen Th,Zerda TW, Palosz W. Investigation of relaxation ofnanodiamond surface in real and reciprocal spaces. Diamondand Related Materials 2006; 15(11–12):1813–1817.

Poland CA, Duffin R, Kinloch I, Maynard A, Wallace MAH,Seaton A, Stone V et al. Carbon nanotubes introduced intothe abdominal cavity of mice show asbestos-likepathogenicity in a pilot study. Nature Nanotechnology 2008;3(7):423–428.

Powers HJ. Riboflavin (vitamin B-2) and health. AmericanJournal of Clinical Nutrition 2003; 77(6):1352–1360.

Radu DR, Lai C-Y, Lin VS-Y. Intracellular mesoporous silicananosphere-based controlled release delivery device.Nature Biotechnology. Paper submitted.

Rhim JW, Hong SI, Ha CS. Tensile water vapour barrier andantimicrobial properties of PLA/ Nanoclay composite films.LWT—Food Science and Technology 2009; 42:612–617.

Riley T, Govender T, Stolnik S, Xiong CD, Garnett MC, IllumL, Davis SS. Colloidal stability and drug incorporationaspects of micellar-like PLA-PEG nanoparticles. Colloidsand Surfaces B: Biointerfaces 1999; 16:147–159.

Sahni D, Jea A, Mata JA, Marcano DC, Sivaganesan A, BerlinJM, Tatsui CE et al. Biocompatibility of pristine graphenefor neuronal interface. Journal of Neurosurgery Pediatrics2013; 11(5):575–583.

Sanguansri P, Augustin MA. Nanoscale materialsdevelopment—A food industry perspective. Trends in FoodScience and Technology 2006; 16:547–556.

Saraf, S. Recent developments in pharmaceuticalnanotechnology. The Pharmaceutical Magazine 2006; 1–3.

Scheppach W, Sommer H, Kirchner T, Paganelli GM, Bartram P,Christ1 S, Richter F, Dusel G, Kasper H. Effect ofbutyrate enemas on the colonic mucosa in distal ulcerativecolitis. Gastroenterology 1992; 103:51–56.

Schuhmann D, Kubicka-Muranyi M, Mirtschewa J, Gunther J,Kind P, Gleichmann E. Adverse immune reactions to gold. I.Chronic treatment with an Au (I) drug sensitizes mouse Tcells not to Au (I), but to Au (III) and inducesautoantibody formation. Journal of Immunology 1990;145(7):2132–2139.

Schurgers LJ, Barreto DV, Barreto FC, Liabeuf S, Renard C,Magdeleyns EJ, Vermeer C, Choukroun G, Massy ZA. Thecirculating inactive form of matrix gla protein is asurrogate marker for vascular calcification in chronickidney disease: A preliminary report. Clinical Journal ofthe American Society of Nephrology 2010; 5(4):568–575.

Schurgers LJ, Spronk HM, Soute BA, Schiffers PM, Demey JG,Vermeer C. Regression of warfarin-induced medialelastocalcinosis by high intake of vitamin K in rats. Blood2007; 109(7):2823–2831.

Schurgers LJ, Teunissen KJ, Knapen MH, Kwaijtaal M, vanDiest R, Appels A, Reutelingsperger CP, Cleutjens JP,Vermeer C. Novel conformation-specific antibodies againstmatrix gamma-carboxyglutamic acid (Gla) protein:Undercarboxylated matrix Gla protein as marker forvascular calcification. Arteriosclerosis, Thrombosis, andVascular Biology 2005; 25(8):1629–1633.

Shea MK, Booth SL, Miller ME, Burke GL, Chen H, Cushman M,Tracy RP, Kritchevsky SB. Association between circulatingvitamin K1 and coronary calcium progression incommunity-dwelling adults: The Multi-Ethnic Study ofAtherosclerosis. American Journal of Clinical Nutrition2013; 98(1):197–208.

Shipowick CD, Moore CB, Corbett C, Bindler R. Vitamin D anddepressive symptoms in women during the winter: A pilotstudy. Applied Nursing Research 2009; 22(3):221–225.

Shvedova AA, Kisin ER, Mercer R, Murray AR, Johnson VJ,Potapovich AL, Tyurina YY et al. Unusual inflammatory andfibrogenic pulmonary responses to single-walled carbonnanotubes in mice. American Journal of Physiology: LungCellular and Molecular Physiology 2005; 289(5):698–708.

Solomons NW. Vitamin A. In Present Knowledge in Nutrition,

9th ed., edited by B Bowman, R Russell, 157–183.Washington, DC: International Life Sciences Institute,2006.

Sriamornsak P. Chemistry of pectin and its pharmaceuticaluses: A review. Silpakorn University International Journal2003; 3(1):206–228.

St-Onge MP, Jones PJ. Greater rise in fat oxidation withmedium-chain triglyceride consumption relative tolong-chain triglyceride is associated with lower initialbody weight and greater loss of subcutaneous adiposetissue. International Journal of Obesity and RelatedMetabolic Disorders 2003; 27(12):1565–1571.

St-Onge MP, Jones PJ. Physiological effects of medium-chaintriglycerides: Potential agents in the prevention ofobesity. Journal of Nutrition 2002; 132(3):329–332.

Stenflo J, Fernlund P, Egan W, Roepstorff P. Vitamin Kdependent modifications of glutamic acid residues inprothrombin. Proceedings of the National Academy ofSciences USA 1974; 71(7):2730–2733.

Trouiller B, Reliene R, Westbrook A, Solaimani P, SchiestlRH. Titanium dioxide nanoparticles induce DNA damage andgenetic instability in vivo in mice. Cancer Research 2009;69(22):8784–8789.

Tsuji JS, Maynard AD, Howard PC, James JT, Lam CW, WarheitDB, Santamaria AB. Research strategies for safetyevaluation of nanomaterials, Part IV: Risk assessment ofnanoparticles. Toxicological Sciences 2006; 89:42–50.

Vermeer C. Vitamin K: The effect on health beyondcoagulation—An overview. Food and Nutrition Research 2012;56.

Vernia P, Marcheggiano A, Caprilli R, Frieri G, Corrao G,Valpiani D, Di Paolo MC, Paoluzi P, Torsoli A. Short-chainfatty acid topical treatment in distal ulcerative colitis.Alimentary Pharmacology and Therapeutics 1995; 9:309–313.

Wakefield G, Green M, Lipscomb S, Flutter B. Modifiedtitania nanomaterials for sunscreen applications ereducing free radical generation and DNA damage. MaterialsScience and Technology 2004; 20:985–988.

Warheit DB, Laurence BR, Reed KL, Roach DH, Reynolds GA,Webb TR. Comparative pulmonary toxicity assessment of

single-wall nanotubes in rats. Toxicological Sciences: AnOfficial Journal of the Society of Toxicology 2004;77:117–125.

Wehr E, Pilz S, Boehm BO, März W, Obermayer-Pietsch B.Association of vitamin D status with serum androgen levelsin men. Clinical Endocrinology (Oxford) 2010;73(2):243–248.

Weir A, Westerhoff P, Fabricius L, Hristovski K, von GoetzN. Titanium dioxide nanoparticles in food and personalcare products. Environmental Science and Technology 2012;46(4):2242–2250.

Weiss J, Takhistov P, McClements DJ. Functional materialsin food nanotechnology. Journal of Food Science 2006;71:1750.

Wiebel E. The Lung: Scientific Foundations. New York: RavePress, 1991.

Wilson CP, McNulty H, Ward M, Strain JJ, Trouton TG, HoeftBA, Weber B et al. Blood pressure in treated hypertensiveindividuals with the MTHFR 677TT genotype is responsive tointervention with riboflavin: Findings of a targetedrandomized trial. Hypertension 2013; 61(6):1302–1308.

Wilson CP, Ward M, McNulty H, Strain JJ, Trouton TG, PurvisJ, Scott JM. Riboflavin offers a targeted strategy formanaging hypertension in patients with the MTHFR 677TTgenotype: A 4-y follow-up. American Journal of ClinicalNutrition 2012; 95(3):766–772.

Witham MD, Nadir MA, Struthers AD. Effect of vitamin D onblood pressure: A systematic review and meta-analysis.Journal of Hypertension 2009; 27(10):1948–1954.

Xi G, Robinson E, Mania-Farnell B, Vanin EF, Shim KW, TakaoT, Allender EV et al. Convectionenhanced delivery ofnanodiamond drug delivery platforms for intracranial tumortreatment. Nanomedicine 2014; 10(2):381–391.

Xu M, Liang T, Shi M, Chen H. Graphene-like two-dimensional materials. Chemical Reviews 2013: 113; 3766–3798.

Yang Z, Zhang Y, Yang Y, Sun L, Han D, Li H, Wang C.Pharmacological and toxicological target organelles andsafe use of single-walled carbon nanotubes as drug carriersin treating Alzheimer disease. Nanomedicine 2010;6(3):427–441.

Young AJ, Lowe GM. Antioxidant and prooxidant properties ofcarotenoids. Archives of Biochemistry and Biophysics 2001;385(1):20–27.

Zaitsev AM. On the way to mass-scale production of perfectbulk diamonds. Proceedings of the National Academy ofScience USA 2008; 105(46):17591–17592.

4 4: Metallic Nanoparticles in the FoodIndustry: Advantages and Limitations

Adams, L. K., D. Y. Lyon, and P. J. J. Alvarez. 2006.Comparative ecotoxicity of nanoscale TiO 2 , SiO 2 andZnO water suspensions. Water Research 40: 3527–3532.

Ai, K., Y. Liu, and L. Lu. 2009. Hydrogen-bondingrecognition-induced color change of gold nanoparticles forvisual detection of melamine in raw milk and infantformula. Journal of the American Chemical Society 131(27):9496–9497.

Alfadul, S. M., and A. A. Elneshwy. 2010. Use ofnanotechnology in food processing, packaging and safetyreview. African Journal of Food Agriculture, Nutrition andDevelopment 10(6): 2719–2739.

An, J., M. Zhang, S. Wang, and J. Tang. 2008. Physical,chemical and microbiological changes in stored greenasparagus spears as affected by coating of silvernanoparticles-PVP. LWT—Food Science and Technology 41(6):1100–1107.

Araujo, E. A., N. J. de Andrade, L. H. M. da Silva, P. C.Bernardes, A. V. N. de Carvalho Teixeira, J. F. QueirozFialho et al. 2013. Modification of stainless steel surfacehydrophobicity by silver nanoparticles: Strategies toprevent bacterial adhesion in the food processing. Journalof Adhesion Science and Technology, 1–10.

Armstrong, A. R., G. Armstrong, J. Canales, and P. G.Bruce. 2004. TiO2-B nanowires. Angewandte ChemieInternational Edition 43: 2286–2288.

Avella, M., G. Bruno, M. E. Errico, G. Gentile, N.Piciocchi, A. Sorrentino, and M. G. Volpe. 2007.Innovative packaging for minimally processed fruits.Packaging Technology and Science 20(5): 325–335.

Avella, M., J. J. De Vlieger, M. E. Errico, S. Fischer, P.Vacca, and M. G. Volpe. 2005. Biodegradable starch/claynanocomposite films for food packaging applications. FoodChemistry 93(3): 467–474.

Azeredo, H. M. C. 2009. Nanocomposites for food packagingapplications. Food Research International 42(9):1240–1253.

Baan, R., K. Straif, Y. Grosse, B. Secretan, F. El

Ghissassi, V. Cogliano, and WHO International Agency forResearch on Cancer Monograph Working Group. 2006.Carcinogenicity of carbon black, titanium dioxide, andtalc. The Lancet Onology 7(4): 295–296.

Barnes, K. A., R. Sinclair, and D. Watson. 2007. ChemicalMigration and Food Contact Materials. Cambridge: WoodheadPublishing.

Barreca, D., E. Comini, A. P. Ferrucci, A. Gasparotto, C.Maccato, C. Maragno, G. Sberveglieri, and E. Tondello.2007. First example of ZnO−TiO 2 nanocomposites bychemical vapor deposition: Structure, morphology,composition, and gas sensing performances. Chemistry ofMaterials 19(23): 5642–5649.

Blasco, C., and Y. Pico. 2009. Prospects for combiningchemical and biological methods for integratedenvironmental assessment. TrAC Trends in AnalyticalChemistry 28(6): 745–747.

Böckmann, J., H. Lahl, T. Eckert, and B. Unterhalt. 2000.Blood titanium levels before and after oral administrationtitanium dioxide. Pharmazie 55: 140–143. (Article inGerman)

Borm, P. J., D. Robbins, S. Haubold, T. Kuhlbusch, H.Fissan, K. Donaldson et al. 2006. The potential risks ofnanomaterials: A review carried out for ECETOC. Particleand Fibre Toxicology 3(11): 1–35.

Borriello, C., A. De Maria, N. Jovic, A. Montone, M.Schwarz, and M. V. Antisari. 2009. Mechanochemicalexfoliation of graphite and its polyvinyl alcoholnanocomposites with enhanced barrier properties. Materialsand Manufacturing Processes 24(10–11): 1053–1057.

Bouwmeester, H., S. Dekkers, M. Y. Noordam, W. I. Hagens,A. S. Bulder, C. de Heer et al. 2009. Review of healthsafety aspects of nanotechnologies in food production.Regulatory Toxicology and Pharmacology 53(1): 52–62.

Bradley, E. L., L. Castle, and Q. Chaudhry. 2011.Applications of nanomaterials in food packaging with aconsideration of opportunities for developing countries.Trends in Food Science and Technology 22(11): 604–610.

Brinker, C. J., and G. Scherer. 1990. The Physics andChemistry of Sol–Gel Processing. San Diego, CA: AcademicPress.

Brody, A. L. 2007. Case studies on nanotechnologies forfood packaging. Food Technology 7: 102–107.

Canadian Centre for Occupational Health & Safety (CCOHS).2015. Titanium dioxide classified as possibly carcinogenicto humans. Accessed March 21, 2015. http://www.ccohs.ca/headlines/text186.html.

Card, J. W., T. S. Jonaitis, S. Tafazoli, and B. A.Magnuson. 2011. An appraisal of the published literatureon the safety and toxicity of food-related nanomaterials.Critical Reviews in Toxicology 41(1): 22–51.

Card, J. W., and B. A. Magnuson. 2010. A method to assessthe quality of studies that examine the toxicity ofengineered nanomaterials. International Journal ofToxicology 29(4): 402–410.

Cárdenas, G., J. Díaz, M. Meléndrez, C. Cruzat, and A. G.Cancino. 2009. Colloidal Cu nanoparticles /chitosancomposite film obtained by microwave heating for foodpackage applications. Polymer Bulletin 62(4): 511–524.

Carlotti, M. E., E. Ugazio, S. Sapino, I. Fenoglio, G.Greco, and B. Fubini. 2009. Role of particle coating incontrolling skin damage photoinduced by titaniananoparticles. Free Radical Research 43(3): 312–322.

Castellini, O. M., G. K. Walejko, C. E. Holladay, T. J.Theim, G. M. Zenner, and W. C. Crone. 2007. Nanotechnologyand the public: Effectively communicating nanoscale scienceand engineering concepts. Journal of Nanoparticle Research9(2): 183–189.

Cerrada, M. L., C. Serrano, M. Sánchez-Chaves, M.Fernández-García, F. Fernández-Martín, A. de Andrés, R. J.J. Riobóo, A. Kubacka, M. Ferrer, and M. Fernández-García.2008. Self-sterilized EVOH-TiO 2 nanocomposites:Interface effects on biocidal properties. AdvancedFunctional Materials 18(13): 1949– 1960.

Cha, D., and M. Chinnan. 2004. Biopolymer-basedantimicrobial packaging: A review. Critical Reviews inFood Science and Nutrition 44: 223–237.

Chaudhry, Q., and L. Castle. 2011. Food applications ofnanotechnologies: An overview of opportunities andchallenges for developing countries. Trends in Food Scienceand Technology 22: 595–603.

Chaudhry, Q., M. Scotter, J. Blackburn, B. Ross, A. Boxall,L. Castle, R. Aitken, and R. Watkins. 2008. Applicationsand implications of nanotechnologies for the food sector.Food Additives and Contaminants—Part A Chemistry,Analysis, Control, Exposure and Risk Assessment 25(3):241–258.

Chawengkijwanich, C., and Y. Hayata. 2008. Development ofTiO 2 powder-coated food packaging film and its ability toinactivate Escherichia coli in vitro and in actual tests.International Journal of Food Microbiology 123(3): 288–292.

Chen, X. X., B. Cheng, Y. X. Yang, A. Cao, J. H. Liu, L. J.Du, Y. Liu, Y. Zhao, and H. Wang. 2013. Characterizationand preliminary toxicity assay of nano-titanium dioxideadditive in sugar-coated chewing gum. Small 9: 1765–1774.

Cheng, Q., C. Li, V. Pavlinek, P. Saha, and H. Wang. 2006.Surface-modified antibacterial TiO2/Ag+ nanoparticles:Preparation and properties. Applied Surface Science252(12): 4154–4160.

Cho, W.-S., B.-C. Kang, J. K. Lee, J. Jeong, J.-H. Che, andS. H. Seok. 2013. Comparative absorption, distribution,and excretion of titanium dioxide and zinc oxidenanoparticles after repeated oral administration. ParticleFibre Toxicology 10: 9.

Choi, W. J., H. J. Kim, K. H. Yoon, O. H. Kwon, and C. I.Hwang. 2006. Preparation and barrier property ofpoly(ethylene terephthalate)/clay nanocomposite usingclay-supported catalyst. Journal of Applied PolymerScience 100: 4875–4879.

Cockburn, A., R. Bradford, N. Buck, A. Constable, G.Edwards, B. Haber et al. 2012. Approaches to the safetyassessment of engineered nanomaterials (ENM) in food. Foodand Chemical Toxicology 50(6): 2224–2242.

Comini, E., G. Faglia, G. Sberveglieri, D. Calestani, L.Zanotti, and M. Zha. 2005. Tin oxide nanobelts electricaland sensing properties. Sensors and Actuators B: Chemical111– 112: 2–6.

Comini, E., G. Faglia, G. Sberveglieri, and L. Zanotti.2006. Oxide nanobelts as conductometric gas sensors.Materials and Manufacturing Processes 21(3): 229–232.

Cubadda, F., F. Aureli, M. D’Amato, A. Raggi, and A.

Mantovani. 2013. Nanomaterials in the food sector: Newapproaches for safety assessment. Rapporti ISTISAN 13/48.

Cui, Y., H. Liu, M. Zhou, Y. Duan, N. Li, X. Gong, R. Hu,M. Hong, and F. Hong. 2011. Signaling pathway ofinflammatory responses in the mouse liver caused by TiO 2nanoparticles. Journal of Biomedical Materials ResearchPart A 96A: 221–229.

Currall, S. C., E. B. King, N. Lane, J. Madera, and S.Turner. 2006. What drives public acceptance ofnanotechnology? Nature Nanotechnology 1: 153–155.

Cushen, M., J. Kerry, M. Morris, M. Cruz-Romero, and E.Cummins. 2012. Nanotechnologies in the foodindustry—Recent developments, risks and regulation. Trendsin Food Science and Technology 24(1): 30–46.

Dadbin, S., M. Noferesti, and M. Frounchi. 2008. Oxygenbarrier LDPE/LLDPE/organoclay nano-composite films forfood packaging. Macromolecular Symposia 274(1): 22–27.

Duan, Y., J. Liu, L. Ma, N. Li, H. Liu, J. Wang et al.2010. Toxicological characteristics of nanoparticulateanatase titanium dioxide in mice. Biomaterials 31: 894–899.

Duncan, T. V. 2011. Applications of nanotechnology in foodpackaging and food safety: Barrier materials,antimicrobials and sensors. Journal of Colloid andInterface Science 363: 1–24.

DuPont. 2007. PuPont Ti-Pure1 titanium dioxide. Titaniumdioxide for coatings. Accessed March 2015.

DuPont. 2008. DuPont unveils TiO 2 -based light stabilizer,extends antistat additives range. Additives for Polymers2008(1): 5–6.

Duran, N., and P. D. Marcato. 2013. Nanobiotechnologyperspectives. Role of nanotechnology in the food industry:A review. International Journal of Food Science andTechnology 48(6): 1127–1134.

EC No 1907/2006. Regulation (EC) No 1907/2006 of theEuropean Parliament and of the Council of 18 December 2006concerning the Registration, Evaluation, Authorisation andRestriction of chemicals (REACH), establishing a EuropeanChemicals Agency, amending Directive 1999/45/EC andrepealing Council Regulation (EEC) No 793/93 andCommission Regulation (EC) No 1488/94 as well as Council

Directive 76/769/ EEC and Commission Directives 91/155/EEC,93/67/EEC, 93/105/EC and 2000/21/EC. Official Journal ofthe European Union.

EC No 1935/2004. Regulation (EC) No 1935/2004 of theEuropean Parliament and of the Council of 27 October 2004on materials and articles intended to come into contactwith food and repealing Directives 80/590/EEC and89/109/EEC. Official Journal of the European Union.

Emamifar, A. 2011. Applications of antimicrobial polymernanocomposites in food. In Advances in NanocompositeTechnology, edited by A. Hashim, 299–318. InTech, Rijeka,Croatia.

European Food Safety Authority (EFSA). 2008. Opinion the21st list of substances for food contact materials. EFSAJournal 2008: 888–890. http://www.efsa.europa.eu/en/scdocs/doc/888.pdf, 1e14.

European Food Safety Authority (EFSA) Scientific Committee.2011. Guidance on the risk assessment of the applicationof nanoscience and nanotechnologies in the food and feedchain. Scientific opinion. EFSA Journal 9(5): 2140.

European Parliament. 1994. European Parliament, CouncilDirective on Colours, 94/36/EC. OJEC 237: 13–29.

Fabian, E., R. Landsiedel, L. Ma-Hock, K. Wiench, W.Wohlleben, and B. van Ravenzwaay. 2008. Tissuedistribution and toxicity of intravenously administeredtitanium dioxide nanoparticles in rats. Archives ofToxicology 82: 151–157.

Fadeel, B., and A. E. Garcia-Bennett. 2010. Better safethan sorry: Understanding the toxicological properties ofinorganic nanoparticles manufactured for biomedicalapplications. Advanced Drug Delivery Reviews 62(3):362–374.

Fayaz, A. M., K. Balaji, M. Girilal, P. T. Kalaichelvan,and R. Venkatesan. 2009. Mycobased synthesis of silvernanoparticles and their incorporation into sodium alginatefilms for vegetable and fruit preservation. Journal ofAgricultural and Food Chemistry 57(14): 6246–6252.

Feng, Q. L., J. Wu, G. Q. Chen, F. Z. Cui, T. N. Kim, andJ. O. Kim. 2000. A mechanistic study of the antibacterialeffect of silver ions on Escherichia coli andStaphylococcus aureus. Journal of Biomedical Materials

Research 52(4): 662–668.

Fernández, A., P. Picouet, and E. Lloret. 2010a.Cellulose-silver nanoparticle hybrid materials to controlspoilage-related microflora in absorbent pads located intrays of fresh-cut melon. International Journal of FoodMicrobiology 142(1–2): 222–228.

Fernández, A., P. Picouet, and E. Lloret. 2010b. Reductionof the spoilage-related microflora in absorbent pads bysilver nanotechnology during modified atmosphere packagingof beef meat. Journal of Food Protection 73: 2263–2269.

Filho, J. C. C., R. A. Moreira, P. R. Crocker, D. A.Levison, and B. Corrin. 1991. Identification of titaniumpigment in drug addicts’ tissues. Histopathology 19:190–192.

Food Safety and Standards (FSS). 2011. India: Food safetyand standards (food product standards and food additives)regulation 2011. Gazette of India: Extraordinary 4:449–529.

Gao, G., Y. Ze, B. Li, X. Zhao, T. Zhang, L. Sheng et al.2012. Ovarian dysfunction and geneexpressed characteristicsof female mice caused by long-term exposure to titaniumdioxide nanoparticles. Journal of Hazardous Materials 243:19–27.

Gao, G., Y. Ze, X. Zhao, X. Sang, L. Zheng, X. Ze et al.2013. Titanium dioxide nanoparticleinduced testiculardamage, spermatogenesis suppression, and gene expressionalterations in male mice. Journal of Hazardous Materials258–259: 133–143.

Gatti, A. M., D. Tossini, A. Gambarelli, S. Montanari, andF. Capitani. 2009. Investigation of the presence ofinorganic micro- and nanosized contaminants in bread andbiscuits by environmental scanning electron microscopy.Critical Reviews in Food Science and Nutrition 49(3):275–282.

Glover, R. D., J. M. Miller, and J. E. Hutchison. 2011.Generation of metal nanoparticles from silver and copperobjects: Nanoparticle dynamics on surfaces and potentialsources of nanoparticles in the environment. ACS Nano 5:8950–8957.

Greiner, R. 2009. Current and projected applications ofnanotechnology in the food sector. Nutrire: Revista da

Sociedade Brasileira de Alimentação e Nutrição (Journal ofthe Brazilian Society for Food and Nutrition) 34(1):243–260.

Grobe, A., and M. E. Rissanen. 2012. Nanotechnologies inagriculture and food e an overview of different fields ofapplication, risk assessment and public perception. RecentPatents on Food, Nutrition and Agriculture 4(3): 176–186.

Gruere, G. P. 2012. Implications of nanotechnology growthin food and agriculture in OECD countries. Food Policy 37:191–198.

Gui, S. X., Z. L. Zhang, L. Zheng, Y. L. Cui, X. Y. Liu, N.Li et al. 2011. Molecular mechanism of kidney injury ofmice caused by exposure to titanium dioxide nanoparticles.Journal of Hazardous Materials 195: 365–370.

Gurr, J. R., A. S. Wang, C. H. Chen, and K. Y. Jan. 2005.Ultrafine titanium dioxide particles in the absence ofphotoactivation can induce oxidative damage to humanbronchial epithelial cells. Toxicology 213: 66–73.

Hadrup, N., K. Loeschner, A. Bergstrom, A. Wilcks, X. Gao,U. Vogel et al. 2012. Subacute oral toxicity investigationof nanoparticulate and ionic silver in rats. Archives ofToxicology 86: 543–551.

Halappanavar, S., P. Jackson, A. Williams, K. A. Jensen, K.S. Hougaard, U. Vogel et al. 2011. Pulmonary response tosurface-coated nanotitanium dioxide particles includesinduction of acute phase esponse genes, inflammatorycascades, and changes in microRNAs: A toxicogenomic study.Environmental and Molecular Mutagenesis 52: 425–439.

Han, W., Y. J. Yu, N. T. Li, and L. B. Wang. 2011.Application and safety assessment for nanocompositematerials in food packaging. Chinese Science Bulletin 56:1216–1225.

Handford, C. E., M. Dean, M. Henchion, M. Spence, C. T.Elliott, and K. Campbell. 2014. Implications ofnanotechnology for the agri-food industry: Opportunities,benefits and risks. Trends in Food Science and Technology40: 226–241.

Hu, A. W., and Z. H. Fu. 2003. Nanotechnology and itsapplications in packaging and packaging machinery.Packaging Engineering 24: 22–24.

Hu, R., X. Gong, Y. Duan, N. Li, Y. Che, Y. Cui, M. Zhou,C. Liu, H. Wang, and F. Hong. 2010. Neurotoxicologicaleffects and the impairment of spatial recognition memory inmice caused by exposure to TiO 2 nanoparticles.Biomaterials 31: 8043–8050.

Huang, Z., X. Zheng, D. Yan, G. Yin, X. Liao, Y. Kang, Y.Yao, D. Huang, and B. Hao. 2008. Toxicological effect ofZnO nanoparticles based on bacteria. Langmuir 24:4140–4144.

Huggins, C. B., and J. P. Froehlich. 1966. Highconcentration of injected titanium dioxide in abdominallymph nodes. Journal of Experimental Medicine 124:1099–1106.

Iles, D., G. Martinovic, and D. Kozak. 2011. Review ofpotential use, benefits and risks of nanosensors andnanotechnologies in food. Strojarstvo 53(2): 127–136.

International Agency for Research on Cancer (IARC). 2010.Carbon black, titanium dioxide, and talc. IARC Monographson the Evaluation of Carcinogenic Risks to Humans 93:1–452.

International Risk Governance Council. 2009. Policy Brief:Appropriate Risk Governance Strategies for NanotechnologyApplications in Food and Cosmetics. Geneva, Siwtzerland.Accessed March 16, 2015. http://www.irgc.org/IMG/pdf/irgc_nanotechnologies _food _and_cosmetics_policy_brief.pdf.

Jani, P., D. McCarthy, and A. T. Florence. 1994. Titaniumdioxide (rutile) particle uptake from the rat GI tract andtranslocation to systemic organs after oral administration.International Journal of Pharmaceutics 105: 157–68.

Japan External Trade Organization (JETRO). 2011.Specifications and standards for foods, food additives,etc. under the Food Sanitation Act. Accessed March 2015.www.jetro .go.jp/en/reports/regulations/pdf/foodext2010e.pdf.

Jin, T., D. Sun, J. Y. Su, H. Zhang, and H. J. Sue. 2009.Antimicrobial efficacy of zinc oxide quantum dots againstListeria monocytogenes, Salmonella enteritidis, andEscherichia coli O157:H7. Journal of Food Science 74(1):M46.

Jin, X., X. Jin, L. Chen, J. Jiang, G. Shen, and R. Yu.2009. Piezoelectric immunosensor with gold nanoparticles

enhanced competitive immunoreaction technique forquantification of aflatoxin. Biosensors and Bioelectronics24(8): 2580–2585.

Johnston, B. D., T. M. Scown, J. Moger, S. A. Cumberland,M. Baalousha, K. Linge, R. van Aerle, K. Jarvis, J. R.Lead, and C. R. Tyler. 2010. Bioavailability of nanoscalemetal oxides TiO 2 , CeO 2 , and ZnO to fish.Environmental Science and Technology 44(3): 1144–1151.

Joint FAO/WHO Expert Committee on Food Additives ( JECFA).1969. Thirtieth report of the Joint FAO/WHO ExpertCommittee on Food Additives. FAO Nutrition Meetings ReportSeries. WHO Technical Report Series, FAS70.36/NMRS46A-JECFA 13/55 to titanium dioxide (INS 171).

Jones, N., B. Ray, K. T. Ranjit, and A. C. Manna. 2008.Antibacterial activity of ZnO nanoparticle suspensions on abroad spectrum of microorganisms. FEMS Microbiology Letters279(1): 71–76.

Jovanovic, B. 2015. Titanium dioxide in human food.Integrated Environmental Assessment and Management 11(1):10–20.

Jovanovich, B., and D. Palic. 2012. Immunotoxicology ofnon-functionalized engineered nanoparticles in aquaticorganisms with special emphasis on fish: Review of currentknowledge, gap identification, and call for furtherresearch. Aquatic Toxicology 118– 119: 141–151.

Khot, L. R., S. Sankaran, J. M. Maja, R. Ehsani, and E. W.Schuster. 2012. Applications of nanomaterials inagricultural production and crop protection: A review. CropProtection 35: 64–70.

Kim, B., D. Kim, D. Cho, and S. Cho. 2003. Bactericidaleffect of TiO 2 photocatalyst on selected food-bornepathogenic bacteria. Chemosphere 52(1): 277–281.

Kim, J., J. W. Grate, and P. Wang. 2008. Nanobiocatalysisand its potential applications. Trends in Biotechnology26(11): 639–646.

Kim, Y. S., J. S. Kim, H. S. Cho, D. S. Rha, J. M. Kim, J.D. Park et al. 2008. Twenty-eight-day oral toxicity,genotoxicity, and gender-related tissue distribution ofsilver nanoparticles in Sprague-Dawley rats. InhalationToxicology 20: 575–583.

Kim, Y. S., M. Y. Song, J. D. Park, K. S. Song, H. R. Ryu,Y. H. Chung et al. 2010. Subchronic oral toxicity ofsilver nanoparticles. Particle and Fibre Toxicology 7: 20.

Kosseva, M. R., P. S. Panesar, G. Kaur, and J. F. Kennedy.2009. Use of immobilised biocatalysts in the processing ofcheese whey. International Journal of BiologicalMacromolecules 45: 437–447.

Kruis, F., H. Fissan, and B. Rellinghaus. 2000. Sinteringand evaporation characteristics of gas-phase synthesis ofsize-selected PbS nanoparticles. Materials Science andEngineering: B 69–70: 329–334.

Kuan, C. Y., W. Yee-Fung, K. H. Yuen, and M. T. Liong.2012. Nanotech: Propensity in foods and bioactives.Critical Reviews in Food Science and Nutrition 52(1):55–71.

Kumar, R., S. M. Roopan, A. Prabhakarn, V. G. Khanna and S.Chakroborty. 2012. Agricultural waste Annona squamosa peelextract: Biosynthesis of silver nanoparticles.Spectrochimica Acta Part A: Molecular and BiomolecularSpectroscopy 90: 173–176.

Kumar, R., and S. Sen. 2013. Biogenic magnetitenanoparticles. Research Journal of Pharmaceutical,Biological and Chemical Sciences 4(3): 1037–1043.

Kumar, R., K. Vithiya, B. Mahanty, and S. Sen. 2015.Biosynthesis of hematite nanoparticles and its cytotoxiceffect on HepG 2 cancer cells. International Journal ofBiological Macromolecules 74: 376–381.

Kumar, R., K. Vithiya, and S. Shampa. 2014. Bacterialtoxicity assessment of biosynthesized hematitenanoparticles. Proceedings of International conference onEnvironment and Energy.

Kuzma, J., J. Romanchek, and A. Kokotovich. 2008. Upstreamoversight assessment for agrifood nanotechnology: A casestudies approach. Risk Analysis 28(4): 1081–1098.

la Farré, M., S. Pérez, L. Kantiani, and D. Barcelo. 2008.Fate and toxicity of emerging pollutants, their metabolitesand transformation products in the aquatic environment.TrAC Trends in Analytical Chemistry 27(11): 991–1007.

Labille, J., J. H. Feng, C. Botta, D. Borschneck, M.Sammut, M. Cabie, M. Auffan, J. Rose, and J. Y. Bottero.

2010. Aging of TiO 2 nanocomposites used in sunscreen.Dispersion and fate of the degradation products in aqueousenvironment. Environmental Pollution 158(12): 3482–3489.

Lagarón, J. M., L. Cabedo, D. Cava, J. L. Feijoo, R.Gavara, and E. Gimenez. 2005. Improving packaged foodquality and safety. Part 2: Nanocomposites. Food Additivesand Contaminants 22(10): 994–998.

Landsiedel, R., L. Ma-Hock, A. Kroll, D. Hahn, J.Schnekenburger, K. Wiench, and W. Wohlleben. 2010. Testingmetal-oxide nanomaterials for human safety. AdvancedMaterials 22(24): 2601–2627.

Lee, D. G., K. M. Ponvel, M. Kim, S. Hwang, I. K. Ahn, andC. H. Lee. 2009. Immobilization of lipase on hydrophobicnano-sized magnetite particles. Journal of MolecularCatalysis B: Enzymatic 57: 62–66.

Lee, S. K., A. Mills, and A. Lepre. 2004. An intelligenceink for oxygen. Chemical Commu nications 2004(17):1912–1913.

Lee, S. K., M. Sheridan, and A. Mills. 2005. NovelUV-activated colorimetric oxygen indicator. Chemistry ofMaterials 17(10): 2744–2751.

Li, H., F. Li, L. Wang, J. Sheng, Z. Xin, L. Zhao et al.2009. Effect of nano-packing on preservation quality ofChinese jujube (Ziziphus jujuba Mill. var. inermis (Bunge)Rehd). Food Chemistry 114(2): 547–552.

Li, Q., S. Mahendra, D. Y. Lyon, L. Brunet, M. V. Liga, D.Li, and P. J. J. Alvarez. 2008. Antimicrobialnanomaterials for water disinfection and microbial control:Potential applications and implications. Water Research42(18): 4591–4602.

Linsinger, T. P., R. Peters, and S. Weigel. 2014.International interlaboratory study for sizing andquantification of Ag nanoparticles in food simulants bysingle-particle ICP-MS. Analytical and BioanalyticalChemistry 406: 3835–3843.

Liu, H., L. Ma, J. Zhao, J. Liu, J. Yan, J. Ruan, and F.Hong. 2009. Biochemical toxicity of nanoanatase TiO 2particles in mice. Biological Trace Element Research 129:170–180.

Loeschner, K., N. Hadrup, K. Qvortrup, A. Larsen, X. Gao,

U. Vogel et al. 2011. Distribution of silver in ratsfollowing 28 days of repeated oral exposure to silvernanoparticles or silver acetate. Particle and FibreToxicology 8: 18.

Loeschner K., J. Navratilova, C. Købler, K. Mølhave, S.Wagner, F. von der Kammer, and E. H. Larsen. 2013.Detection and characterization of silver nanoparticles inchicken meat by asymmetric flow field flow fractionationwith detection by conventional or single particle ICP-MS.Analytical and Bioanalytical Chemistry 405(25): 8185–8195.

Lomer, M. C. E., S. L. Grainger, R. Ede, A. P. Catterall,S. M. Greenfield, R. E. Cowan et al. 2005. Lack ofefficacy of a reduced microparticle diet in a multi-centredtrial of patients with active Crohn’s disease. EuropeanJournal of Gastroenterology and Hepatology 17: 377–384.

Lomer, M. C. E., R. S. J. Harvey, S. M. Evans, R. P. H.Thompson, and J. J. Powell. 2001. Efficacy andtolerability of a low microparticle diet in a double blind,randomized, pilot study in Crohn’s disease. EuropeanJournal of Gastroenterology & Hepatology 13: 101–106.

Lomer, M. C. E., C. Hutchinson, S. Volkert, S. M.Greenfield, A. Catterall, R. P. H. Thompson, and J. J.Powell. 2004. Dietary sources of inorganic microparticlesand their intake in healthy subjects and patients withCrohn’s disease. British Journal of Nutrition 92: 947–955.

Lomer, M. C. E., R. P. H. Thompson, J. Commisso, C. L.Keen, and J. J. Powell. 2000. Determination of titaniumdioxide in foods using inductively coupled plasma opticalemission spectrometry. Analyst 125: 2339–2343.

Lomer, M. C. E., R. P. H. Thompson, and J. J. Powell. 2002.Fine and ultrafine particles of the diet: Influence on themucosal immune response and association with Crohn’sdisease. Proceedings of the Nutrition Society 61: 123–130.

Luechinger, N. A., S. Loher, E. K. Athanassiou, R. N.Grass, and W. J. Stark. 2007. Highly sensitive opticaldetection of humidity on polymer/metal nanoparticle hybridfilms. Langmuir 23(6): 3473–3477.

Ma, X., J. Geisler-Lee, Y. Deng, and A. Kolmakov. 2010.Interactions between engineered nanoparticles (ENPs) andplants: Phytotoxicity, uptake and accumulation. Science ofthe Total Environment 408: 3053–3061.

Macwan, D. P., P. N. Dave, and S. Chaturvedi. 2011. Areview on nano-TiO 2 sol-gel type syntheses and itsapplications. Journal of Materials Science 46(11):3669–3686.

Magdolenova, Z., D. Bilanicová, G. Pojana, L. M. Fjellsbø,A. Hudecova, K. Hasplova et al. 2012. Impact ofagglomeration and different dispersions of titanium dioxidenanoparticles on the human related in vitro cytotoxicityand genotoxicity. Journal of Environmental Monitoring 14:455–464.

Magnuson, B. A., T. S. Jonaitis, and J. W. Card. 2011. Abrief review of the occurrence, use, and safety offood-related nanomaterials. Journal of Food Science 76(6):R126–R133.

Magnusson, M., K. Deppert, J. Malm, J. Bovin, and L.Samuelson. 1999. Gold nanoparticles: Production,reshaping, and thermal charging. Journal of NanoparticleResearch 1(2): 243–251.

Mahshid, S., M. Askari, and M. S. Ghamsari. 2007. Synthesisof TiO 2 nanoparticles by hydrolysis and peptization oftitanium isopropoxide solution. Journal of MaterialsProcessing Technology 189(1–3): 296–300.

Malik, A. K., C. Blasco, and Y. Pico 2010. Liquidchromatography–mass spectrometry in food safety. Journalof Chromatography A 1217(25): 4018–4040.

Mao, X., J. Huang, M. F. Leung, Z. Du, L. Ma, Z. Huang, P.Li, and L. Gu. 2006. Novel coreshell nanoparticles andtheir application in high-capacity immobilization ofenzymes. Applied Biochemistry and Biotechnology 135:229–239.

Marquis, B. J., S. A. Love, K. L. Braun, and C. L. Haynes.2009. Analytical methods to assess nanoparticle toxicity.Analyst 134(3): 425–439.

Messersmith, P. B., and E. P. Giannelis. 1995. Synthesisand barrier properties of poly(εcaprolactone)-layeredsilicate nanocomposites. Journal of Polymer Science Part A:Polymer Chemistry 33(7): 1047–1057.

Mills, A. 2005. Oxygen indicators and intelligent inks forpackaging food. Chemical Society Reviews 34(12):1003–1011.

Mills, A., and D. Hazafy. 2008. A solvent-basedintelligence ink for oxygen. Analyst 133(2): 213–218.

Mills, A., and D. Hazafy. 2009. Nanocrystalline SnO 2-based, UVB-activated, colourimetric oxygen indicator.Sensors and Actuators B: Chemical 136(2): 344–349.

Momin, J. K., C. Jayakumar, and J. B. Prajapati. 2013.Potential of nanotechnology in functional foods. EmiratesJournal of Food and Agriculture 25(1): 10–19.

Mousavi, S. R., and M. Rezaei. 2011. Nanotechnology inagriculture and food production. Journal of AppliedEnvironmental and Biological Sciences 1(10): 414–419.

Mura, S., G. Seddaiu, F. Bacchini, P. P. Roggero, and G. F.Greppi. 2013. Advances of nanotechnology inagro-environmental studies. Italian Journal of Agronomy8(3): e18.

National Industrial Chemicals Notification and AssessmentScheme (NICNAS) (2010). Australian Government. Gazette.

Nazarenko, S., P. Meneghetti, P. Julmon, B. G. Olson and S.Qutubuddin. 2007. Gas barrier of polystyrenemontmorillonite clay nanocomposites: Effect of minerallayer aggregation. Journal of Polymer Science Part B:Polymer Physics 45(13): 1733–1753.

Nogueira, C. M, W. M. de Azevedo, M. L. Dagli, S. H. Toma,A. Z. de Arruda Leite, M. L. Lordello et al. 2012.Titanium dioxide induced inflammation in the smallintestine. World Journal of Gastroenterology 18:4729–4735.

Olabarrieta, I., M. Gällstedt, I. Ispizua, J. R. Sarasua,and M. S. Hedenqvist. 2007. Properties of agedmontmorillonite-wheat gluten composite films. Journal ofAgricultural and Food Chemistry 55(16): 6406–6406.

Olmedo, D., D. Tasat, M. Guglielmotti, and R. Cabrini.2003. Titanium transport through the blood stream. Anexperimental study on rats. Journal of Materials Science:Materials in Medicine 14: 1099–1103.

Olmedo, D., D. Tasat, M. Guglielmotti, and R. Cabrini.2008. Biodistribution of titanium dioxide from biologiccompartments. Journal of Materials Science: Materials inMedicine 19: 3049–3056.

Osman, M. A., J. E. P. Rupp, and U. W. Suter. 2005. Gaspermeation properties of polyethylenelayered silicatenanocomposites. Journal of Materials Chemistry 15(12):1298–1304.

Osman, M. A., V. Mittal, M. Morbidelli, and U. W. Suter.2003. Polyurethane adhesive nanocomposites as gaspermeation barrier. Macromolecules 36(26): 9851–9858.

Park, E. J., E. Bae, J. Yi, Y. Kim, K. Choi, S. H. Lee, J.Yoon, B. C. Lee, and K. Park. 2010. Repeated-dose toxicityand inflammatory responses in mice by oral administrationof silver nanoparticles. Environmental Toxicology andPharmacology 30: 162–168.

Park, H. M., W. K. Lee, C. Y. Park, W. J. Cho, and C. S.Ha. 2003. Environmentally friendly polymer hybrids. PartI: Mechanical, thermal, and barrier properties ofthermoplastic starch/clay nanocomposites. Journal ofMaterials Science 38(5): 909–915.

Park, K. H. 2005. Preparation method antibacterial wheatflour by using silver nanoparticles. Korean IntellectualProperty Office (KIPO). Publication number/date1020050101529A/ 24.10.2005.

Pereira, D., P. P. Losada, I. Angulo, W. Greaves, and J. M.Cruz. 2009. Development of a polyamide nanocomposite forfood industry: Morphological structure, processing, andproperties. Polymer Composites 30(4): 436–444.

Peters, R., P. Brandhoff, S. Weigel, H. Marvin, H.Bouwmeester, K. Aschberger et al. 2014. Inventory ofnanotechnology applications in the agricultural, feed andfood sector. External Scientific Report,CFT/EFSA/FEED/2012/01. EFSA supporting publication EN-621:1–125.

Petrovic, M., M. la Farré, M. L. de Alda, S. Perez, C.Postigo, M. Kock et al.. 2010. Recent trends in the liquidchromatography–mass spectrometry analysis of organiccontaminants in environmental samples. Journal ofChromatography A 1217(25): 4004–4017.

Pico, Y., and D. Barcelo 2008. The expanding role of LC-MSin analyzing metabolites and degradation products of foodcontaminants. TrAC Trends in Analytical Chemistry 27(10):821–835.

Pimtong-Ngam, Y., S. Jiemsirilers, and S. Supothina. 2007.

Preparation of tungsten oxide– tin oxide nanocomposites andtheir ethylene sensing characteristics. Sensors andActuators A: Physical 139(1–2): 7–11.

Powell, J. J., N. Faria, E. Thomas-McKay, and L. C. Pele.2010. Origin and fate of dietary nanoparticles andmicroparticles in the gastrointestinal tract. Journal ofAutoimmunity 34: J226–J233.

Powell, J. J., R. S. J. Harvey, P. Ashwood, R.Wolstencroft, M. E. Gershwin, and R. P. H. Thompson. 2000.Immune potentiation of ultrafine dietary particles innormal subjects and patients with inflammatory boweldisease. Journal of Autoimmunity 14: 99–105.

Qian, B., Y. Guangyan, D. Pengchi, P. Feng, L. Hongjun, X.Youzhi et al. 2010. NMR-based metabonomic study of thesub-acute toxicity of titanium dioxide nanoparticles inrats after oral administration. Nanotechnology 21: 125105.

Rahman, Q., M. Lohani, E. Dopp, H. Pemsel, L. Jonas, D. G.Weiss, and D. Schiffmann. 2002. Evidence that ultrafinetitanium dioxide induces micronuclei and apoptosis inSyrian hamster embryo fibroblasts. Environmental HealthPerspectives 110: 797–800.

Ravichandran, R. 2010. Nanoparticles in drug delivery:potential green nanobiomedicine applications.International Journal of Green Nanotechnology: Biomedicine1: 108–130.

Ray, S. S., K. Yamada, M. Okamoto, Y. Fujimoto, A. Ogami,and K. Ueda. 2003. New polylactide / layered silicatenanocomposites. 5. Designing of materials with desiredproperties. Polymer 44(21): 6633–6646.

Rhim, J. W. 2006. The effect of clay concentration onmechanical and water barrier properties of chitosan-basednanocomposite films. Food Science and Biotechnology 15(6):925–930.

Richardson, S. D. 2009. Water analysis: Emergingcontaminants and current issues. Analytical Chemistry81(12): 4645–4677.

Richardson, S. D. 2010. Environmental mass spectrometry:Emerging contaminants and current issues. AnalyticalChemistry 82(12): 4742–4774.

Sanchez-Dominguez, M., M. Boutonnet, and C. Solans. 2009. A

novel approach to metal and metal oxide nanoparticlesynthesis: The oil-in-water microemulsion reaction method.Journal of Nanoparticle Research 11: 1823–1829.

Sanchez-Garcia, M. D., E. Gimenez, and J. M. Lagaron. 2007.Novel PET nanocomposites of interest in food packagingapplications and comparative barrier performance withbiopolyester nanocomposites. Journal of Plastic Film andSheeting 23(2): 133–148.

Sang, X., M. Fei, L. Sheng, X. Zhao, X. Yu, J. Hong et al.2013a. Immunomodulatory effects in the spleen-injured micefollowing exposure to titanium dioxide nanoparticles.Journal of Biomedical Materials Research Part A 102:3562–3572.

Sang, X., B. Li, Y. Ze, J. Hong, X. Ze, S. Gui et al.2013b. Toxicological mechanisms of nanosized titaniumdioxide-induced spleen injury in mice after repeatedperoral application. Journal of Agricultural and FoodChemistry 61: 5590–5599.

Sang, X., L. Zheng, Q. Sun, N. Li, Y. Cui, R. Hu et al.2012. The chronic spleen injury of mice followinglong-term exposure to titanium dioxide nanoparticles.Journal of Biomedical Materials Research Part A 100A:894–902.

Satterfield, T., M. Kandlikar, C. E. H. Beaudrie, J. Conti,and B. H. Harthorn. 2009. Anticipating the perceived riskof nanotechnologies. Nature Nanotechnology 4: 752–758.

Savolainen, K., H. Alenius, H. Norppa, L. Pylkkenen, T.Tuomi, and G. Kasper. 2010. Risk assessment of engineerednanomaterials and nanotechnologies—A review. Toxicology269(2–3): 92–104.

Sawai, J. 2003. Quantitative evaluation of antibacterialactivities of metallic oxide powders (ZnO, MgO and CaO) byconductimetric assay. Journal of Microbiological Methods54(2): 177–182

Schmidt-Ott, A. 1988. New approaches to in situcharacterization of ultrafine agglomerates. Journal ofAerosol Science 19(5): 553–557, 559–563.

Sharma, V., R. K. Shukla, N. Saxena, D. Parmar, M. Das, andA. Dhawan. 2009. DNA damaging potential of zinc oxidenanoparticles in human epidermal cells. Toxicology Letters185: 211–218.

Shinohara, N., N. Danno, T. Ichinose, T. Sasaki, H. Fukui,K. Honda, and M. Gamo. 2014. Tissue distribution andclearance of intravenously administered titanium dioxide(TiO 2 ) nanoparticles. Nanotoxicology 8: 132–141.

Siegrist, M. 2010. Predicting the future: Review of publicperception studies of nanotechnology. Human and EcologicalRisk Assessment 16: 837–846.

Siegrist, M., C. Keller, H. Kastenholz, S. Frey, and A.Wiek. 2007. Laypeople’s and experts’ perception ofnanotechnology hazards. Risk Analysis 27(1): 59–69.

Silvestre, C., D. Duraccio, and S. Cimmino. 2011. Foodpackaging based on polymer nanomaterials. Progress inPolymer Science 36(12): 1766–1782.

Singh, N., B. Manshian, G. J. S. Jenkins, S. M. Griffiths,P. M. Williams, T. G. G. Maffeis, C. J. Wright, and S. H.Doak. 2009. NanoGenotoxicology: The DNA damaging potentialof engineered nanomaterials. Biomaterials 30(23–24):3891–3914.

Sirousazar, M., M. Yari, B. F. Achachlouei, J. Arsalani,and Y. Mansoori. 2007. Polypropylene/ montmorillonitenanocomposites for food packaging. ePolymer 27: 305–313.

Smolkova, B., N. El Yamani, A. R. Collins, A. C. Gutleb,and M. Dusinska. 2015. Nanoparticles in food. Epigeneticchanges induced by nanomaterials and possible impact onhealth. Food and Chemical Toxicology 77: 64–73.

Sorrentino, A., G. Gorrasi, and V. Vittoria. 2007.Potential perspectives of bio-nano composites for foodpackaging applications. Trends in Food Science & Technology18: 84–95.

Sugibayashi, K., H. Todo, and E. Kimura. 2008. Safetyevaluation of titanium dioxide nanoparticles by theirabsorption and elimination profiles. Journal ofToxicological Sciences 33: 293–298.

Sun, D., T. Jin, J. Y. Su, H. Zhang, and H. J. Sue. 2009.Antimicrobial efficacy of zinc oxide quantum dots againstListeria monocytogenes, Salmonella enteritidis, andEscherichia coli O157:H7. Journal of Food Science 74(1):M46–M52.

Tassinari, R., F. Cubadda, G. Moracci, F. Aureli, M.

D’Amato, M. Valeri et al. 2014. Oral, shortterm exposure totitanium dioxide nanoparticles in Sprague-Dawley rat: Focuson reproductive and endocrine systems and spleen.Nanotoxicology 8: 654–662.

Tucci, P., G. Porta, M. Agostini, D. Dinsdale, I. Iavicoli,K. Cain et al. 2013. Metabolic effects of TiO 2nanoparticles, a common component of sunscreens andcosmetics, on human keratinocytes. Cell Death & Disease 4:e549.

Tung, T. T., M. Castro, T. Y. Kim, K. S. Suh, and J. F.Feller. 2014. High stability silver nanoparticles-graphene/poly(ionic liquid)-based chemoresistive sensorsfor volatile organic compounds detection. Analytical andBioanalytical Chemistry 406: 3995–4004.

Umbreit, T. H., S. Francke-Carroll, J. L. Weaver, T. J.Miller, P. L. Goering, N. Sadrieh, and M. E. Stratmeyer.2012. Tissue distribution and histopathological effects oftitanium dioxide nanoparticles after intravenous orsubcutaneous injection in mice. Journal of AppliedToxicology 32: 350–357.

U.S. Environmental Protection Agency (EPA). 2008. EPA’sReport on the Environment (2008 Final Report).http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid=190806.

U.S. Food and Drug Administration. 2009. Food additivespermitted for direct addition to food for humanconsumption; silver nitrate and hydrogen peroxide. FederalRegister 74(51): 11476–11478.

Varshney, M., L. Yang, X. L. Su, and Y. Li. 2005. Magneticnanoparticle-antibody conjugates for the separation ofEscherichia coli O157:H7 in ground beef. Journal of FoodProtection 68(9): 1804–1811.

Vidal-Vidal, J., J. Rivas, and M. A. López-Quintela. 2006.Synthesis of monodispersed maghemite nanoparticles by themicro emulsion method. Colloids and Surfaces A:Physicochemical and Engineering Aspects 288: 44–51.

Wang, J., N. Li, L. Zheng, S. Wang, Y. Wang, X. Zhao et al.2011. P38-Nrf-2 signaling pathway of oxidative stress inmice caused by nanoparticulate TiO 2 . Biological TraceElement Research 140: 186–197.

Wang, J., G. Zhou, C. Chen, H. Yu, T. Wang, Y. Ma et al.2007. Acute toxicity and biodistribution of different sized

titanium dioxide particles in mice after oraladministration. Toxicology Letters 168: 176–185.

Wang, Y., Z. Chen, T. Ba, J. Pu, T. Chen, Y. Song et al.2013. Susceptibility of young and adult rats to the oraltoxicity of titanium dioxide nanoparticles. Small 9(9–10):1742–1752.

Warheit, D. B., C. M. Sayes, K. L. Reed, and K. A. Swain.2008. Health effects related to nanoparticle exposures:Environmental, health and safety considerations forassessing hazards and risks. Pharmacology & Therapeutics120(1): 35–42.

Weir, A., P. Westerhoff, L. Fabricius, K. Hristovski, andN. von Goetz. 2012. Titanium dioxide nanoparticles in foodand personal care products. Environmental Science &Technology 46(4): 2242–2250.

Wu, J., G. R. Bai, J. Eastman, G. Zhou, and V. Vasudevan.2005. Synthesis of TiO 2 nanoparticles using chemicalvapor condensation. Materials Research Society SymposiaProceedings 879. doi:10.1557/PROC 879 Z7.12.

Wu, T. S., K. X. Wang, G. D. Li, S. Y. Sun, J. Sun, and J.S. Chen. 2010. Montmorillonitesupported Ag/TiO 2nanoparticles: An efficient visible-light bacteriaphotodegradation material. ACS Applied MaterialsInterfaces 2(2): 544–550.

Xie, G., C. Wang, J. Sun, and G. Zhong. 2011. Tissuedistribution and excretion of intravenously administeredtitanium dioxide nanoparticles. Toxicology Letters 205:55–61.

Yang, H., L. Qu, A. N. Wimbrow, X. Jiang, and Y. Sun. 2007.Rapid detection of Listeria monocytogenes bynanoparticle-based immunomagnetic separation and real-timePCR. International Journal of Food Microbiology 118(2):132–138.

Yano, K., A. Usuki, A. Okada, T. Kurauchi, and O.Kamigaito. 1993. Synthesis and cationicphotopolymerization of alkoxyallene monomers. Journal ofPolymer Science Part A: Polymer Chemistry 31(14):2493–2504.

Yeh, J.-M., S.-J. Liou, M.-C. Lai, Y.-W. Chang, C.-Y.Huang, C.-P. Chen et al. 2004. Comparative studies of theproperties of poly(methyl methacrylate)–clay nanocomposite

materials prepared by in situ emulsion polymerization andsolution dispersion. Journal of Applied Polymer Science94(5): 1936–1946.

Zhou, X. P., S. Y. Ni, X. Zhang, X. Q. Wang, X. H. Hu, andY. Zhou. 2008. Controlling shape and size of TiO 2nanoparticles with sodium acetate. Current Nanoscience4(4): 397–401.

Zhu, A., A. Cai, J. Zhang, H. Jia, and J. Wang. 2008.PMMA-grafted-silica/PVC nanocomposites: Mechanicalperformance and barrier properties. Journal of AppliedPolymer Science 108(4): 2189–2196.

5 5: Targeted Delivery of NutraceuticalsUsing Nanoparticles

Abreu, A. S., E. M. Castanheira, M. J. Queiroz, P. M.Ferreira, L. A. Vale-Silva, and E. Pinto. 2011.Nanoliposomes for encapsulation and delivery of thepotential antitumoral methyl6-methoxy-3-(4-methoxyphenyl)-1H-indole-2-carboxylate.Nanoscale Research Letters 6(1): 482.

Acosta, E. 2009. Bioavailability of nanoparticles innutrient and nutraceutical delivery. Current Opinion inColloid and Interface Science 14: 3–15.

Adwan, G., B. Abu-Shanab, K. Adwan, and F. Abu-Shanab.2006. Antibacterial effects of nutraceutical plants growingin Palestine on Pseudomonas aeruginosa. Turkish Journal ofBiology 30: 239–242.

Aggarwal, B. B., M. E. Van Kuiken, L. H. Iyer, K. B.Harikumar, and B. Sung. 2009. Molecular targets ofnutraceuticals derived from dietary spices: Potential rolein suppression of inflammation and tumorigenesis.Experimental Biology and Medicine (Maywood) 234: 825–849.

Ahmed, K., Y. Li, D. J. McClements, and H. Xiao. 2012.Nanoemulsion- and emulsion-based delivery systems forcurcumin: Encapsulation and release properties. FoodChemistry 132: 799–807.

Alexis, F., E. Pridgen, L. K. Molnar, and O. C. Farokhzad.2008. Factors affecting the clearance and biodistributionof polymeric nanoparticles. Molecular Pharmaceutics 5:505–515.

Ali, H., A. B. Shirode, P. W. Sylvester, and S. Nazzal.2010. Preparation, characterization, and anticancereffects of simvastatin-tocotrienol lipid nanoparticles.International Journal of Pharmaceutics 389: 223–231.

Allen, T. M., C. Hansen, F. Martin, C. Redemann, and A. F.Yau-Young. 1991. Liposomes containing synthetic lipidderivatives of poly(ethylene glycol) show prolongedcirculation half-lives in vivo. Biochimica et BiophysicaActa 1066(1): 29–36.

Ambrosone, C. B., S. E. McCann, J. L. Freudenheim, J. R.Marshall, Y. Zhang, and P. G. Shields. 2004. Breast cancerrisk in premenopausal women is inversely associated withconsumption of broccoli, a source of isothiocyanates, but

is not modified by GST genotype. Journal of Nutrition 134:1134–1138.

Amiri, A., and A. Bamosa. 2009. Phase I safety and clinicalactivity study of thymoquinone in patients with advancedrefractory malignant disease. Shiraz E-Med Journal 10:107–111.

Amiri, A., J. C. Chaumeil, S. Sfar, and C. Charrueau. 2012.Administration of resveratrol: What formulation solutionsto bioavailability limitations? Journal of ControlledRelease 158: 182–193.

Anand, P., H. B. Nair, B. Sung et al. 2010. Design ofcurcumin-loaded PLGA nanoparticles formulation withenhanced cellular uptake, and increased bioactivity invitro and superior bioavailability in vivo. BiochemicalPharmacology 79: 330–338.

Anantachoke, N., M. Makha, C. L. Raston, V. Reutrakul, N.C. Smith, and M. Saunders. 2006. Fine tuning theproduction of nanosized β-carotene particles using spinningdisk processing. Journal of the American Chemical Society128: 13847–13853.

Arruebo, M., R. Fernández-Pacheco, M. Ricardo Ibarra, andJ. Santamaría. 2007. Magnetic nanoparticles for drugdelivery. Nanotoday 2(3): 22–32.

Arulselvan, P., C. C. Wen, C. W. Lan, Y. H. Chen, W. C.Wei, and N. S. Yang. 2012. Dietary administration ofscallion extract effectively inhibits colorectal tumorgrowth: Cellular and molecular mechanisms in mice. PLoSOne 7: e44658.

Babu, B. H., H. N. Jayram, M. G. Nair, K. B. Ajaikumar, andJ. Padikkala. 2003. Free radical scavenging, antitumor andanticarcinogenic activity of gossypin. Journal ofExperimental and Clinical Cancer Research 22(4): 581–589.

Benichou, A., A. Aserin, and N. Garti. 2007. W/O/W doubleemulsions stabilized with WPIpolysaccharide complexes.Colloids and Surfaces A: Physicochemical and EngineeringAspects 294: 20–32.

Bennet, D., M. Marimuthu, S. Kim, and J. An. 2012. Dualdrug-loaded nanoparticles on self-integrated scaffold forcontrolled delivery. International Journal of Nanomedicine7: 3399–3419.

Bernal, J., J. A. Mendiola, E. Ibanez, and A. Cifuentes.2011. Advanced analysis of nutraceuticals. Journal ofPharmaceutical and Biomedical Analysis 55: 758–774.

Biasutto, L., A. Mattarei, E. Marotta et al. 2008.Development of mitochondria-targeted derivatives ofresveratrol. Bioorganic and Medicinal Chemistry Letters 18:5594–5597.

Bisht, S., G. Feldmann, S. Soni, R. Ravi, C. Karikar, andA. Maitra. 2007. Polymeric nanoparticleencapsulatedcurcumin (“nanocurcumin”): A novel strategy for humancancer therapy. Journal of Nanobiotechnology 5: 3.

Blanco, E., E. A. Bey, Y. Dong et al. 2007.Betalapachone-containing PEG-PLA polymer micelles as novelnanotherapeutics against NQO1-overexpressing tumor cells.Journal of Controlled Release 122: 365–374.

Bonnet, M., M. Cansell, A. Berkaoui, M. H. Ropers, M.Anton, and F. Leal-Calderon. 2009. Release rate profilesof magnesium from multiple W/O/W emulsions. FoodHydrocolloids 23: 92–101.

Carrera-Gonzalez, M. P., M. J. Ramírez-Expósito, M. D.Mayas, and J. M. Martınez-Martos. 2013. Protective role ofoleuropein and its metabolite hydroxytyrosol on cancer.Trends in Food Science & Technology 31: 92–99.

Cartiera, M. S., E. C. Ferreira, C. Caputo, M. E. Egan, M.J. Caplan, and W. M. Saltzman. 2010. Partial correction ofcystic fibrosis defects with PLGA nanoparticlesencapsulating curcumin. Molecular Pharmaceutics 7: 86–93.

Chanda, S., S. Dudhatra, and M. Kaneria. 2010.Antioxidative and antibacterial effects of seeds and fruitrind of nutraceutical plants belonging to the Fabaceaefamily. Food and Function 1(3): 308–315.

Chanda, S., and M. Kaneria. 2011. Indian nutraceuticalplant leaves as a potential source of naturalantimicrobial agents. In Science Against MicrobialPathogens: Communicating Current Research andTechnological Advances, edited by A. Méndez-Vilas,1251–1259. Badajoz, Spain: FORMATEX Research Center.

Chen, C. C., and G. Wagner. 2004. Vitamin E nanoparticlefor beverage applications. Chemical Engineering Researchand Design 82: 1432–1437.

Chen, F., Z. Shi, K. G. Neoh, and E. T. Kang. 2009.Antioxidant and antibacterial activities of eugenol andcarvacrol-grafted chitosan nanoparticles. Biotechnology andBioengineering 104: 30–39.

Chen, L., G. E. Remondetto, and M. Subirade. 2006. Foodprotein-based materials as nutraceutical delivery systems.Trends in Food Science & Technology 17: 272–283.

Chen, L. Y., and M. Subirade. 2007. Effect of preparationconditions on the nutrient release properties ofalginate–whey protein granularmicrospheres. EuropeanJournal of Pharmaceutics and Biopharmaceutics 65: 354–362.

Chen, S., Q. Zhao, L. R. Ferguson et al. 2011. Developmentof a novel probiotic delivery system based onmicroencapsulation with protectants. Applied Microbiologyand Biotechnology 93(4): 1447–1457.

Chingunpitak, J., S. Puttipipatkhachorn, P.Chavalitshewinkoon-Petmitr, Y. Tozuka, K. Moribe, and K.Yamamoto. 2008. Formation, physical stability and in vitroantimalarial activity of dihydroartemisinin nanosuspensionsobtained by co-grinding method. Drug Development andIndustrial Pharmacy 34: 314–322.

Cho, H. T., L. Salvia-Trujillo, J. Kim, Y. Park, H. Xiao,and D. J. McClements. 2014. Droplet size and compositionof nutraceutical nanoemulsions influences bioavailabilityof long chain fatty acids and coenzyme Q10. Food Chemistry156: 117–122.

Choi, H. S., W. Liu, P. Misra et al. 2007. Renal clearanceof nanoparticles. Nature Biotechnology 25(10): 1165–1170.

Contreras, J., J. Xie, Y. J. Chen et al. 2010.Intracellular uptake and trafficking of difluoroborondibenzoylmethane-polylactide nanoparticles in HeLa cells.ACS Nano 4: 2735–2747.

Cui, F., K. Shi, L. Zhang, A. Tao, and Y. Kawashima. 2006.Biodegradable nanoparticles loaded withinsulin–phospholipid complex for oral delivery:Preparation, in vitro characterization and in vivoevaluation. Journal of Controlled Release 114: 242–250.

Danhier, F., E. Ansorena, J. M. Silva, R. Coco, A. LeBreton, and V. Preat. 2012. PLGA-based nanoparticles: Anoverview of biomedical applications. Journal of ControlRelease 161: 505–522.

Das, R. K., N. Kasoju, and U. Bora. 2010. Encapsulation ofcurcumin in alginate-chitosanpluronic compositenanoparticles for delivery to cancer cells. Nanomedicine 6:153–160.

Das, S., and A. Chaudhury. 2011. Recent advances in lipidnanoparticle formulations with solid matrix for oral drugdelivery. AAPS PharmSciTech 12: 62–76.

Das, S., A. K. Mandal, A. Ghosh, S. Panda, N. Das, and S.Sarkar. 2008. Nanoparticulated quercetin in combating agerelated cerebral oxidative injury. Current Aging Science1: 169–174.

Day, L., M. Xu, P. Hoobin, I. Burgar, and M. A. Augustin.2007. Characterisation of fish oil emulsions stabilised bysodium caseinate. Food Chemistry 105: 469–479.

Demidenko, Z. N., and M. V. Blagosklonny. 2004.Flavopiridol induces p53 via initial inhibition of Mdm2 andp21 and, independently of p53, sensitizesapoptosis-reluctant cells to tumor necrosis factor. CancerResearch 64: 3653–3660.

Detoni, C. B., G. D. Souto, A. L. da Silva, A. R. Pohlmann,and S. S. Guterres. 2012. Photostability and skinpenetration of different E-resveratrol-loadedsupramolecular structures. Photochemistry and Photobiology88: 913–921.

Donsi, F., M. Sessa, H. Mediouni, A. Mgaidi, and G.Ferrari. 2011. Encapsulation of bioactive compounds innanoemulsion-based delivery systems. 11th InternationalCongress on Engineering and Food. Procedia Food Science 1:1666–1671.

El-Najjar, N., S. Dakdouki, N. Darwiche, M. El-Sabban, N.A. Saliba, and H. Gali-Muhtasib. 2008. Anti-colon cancereffects of Salograviolide A isolated from Centaureaainetensis. Oncology Reports 19: 897–904.

Erkan, N., G. Ayranci, and E. Ayranci. 2008. Antioxidantactivities of rosemary (Rosmarinus Officinalis L.)extract, blackseed (Nigella sativa L.) essential oil,carnosic acid, rosmarinic acid and sesamol. Food Chemistry110(1): 76–82.

Ernster, L., and G. Dallner. 1995. Biochemical,physiological and medical aspects of ubiquinone function.

Biochimica Biophysica Acta 1271: 195–204.

Fang, F., C. Gong, Z. Qian et al. 2009. Honokiolnanoparticles in thermosensitive hydrogel: Therapeuticeffects on malignant pleural effusion. ACS Nano 3:4080–4088.

Feijoo, S. C., W. W. Hayes, C. E. Watson, and J. H. Martin.1997. Effects of Microfluidizer ® Technology on Bacilluslicheniformis spores in ice cream mix. Journal of DairyScience 80: 2184–2187.

Fimognari, C., M. Nusse, M. Lenzi, D. Sciuscio, G.Cantelli-Forti, and P. Hrelia. 2006. Sulforaphaneincreases the efficacy of doxorubicin in mouse fibroblastscharacterized by p53 mutations. Mutation Research 601:92–101.

Fox, P. F., and P. L. H. McSweeney. 2003. Advanced DairyChemistry, Proteins Part A, vol. 1. 3rd ed. New York:Kluwer Academic/Plenum.

Freitas, C., and R. H. Müller. 1998. Spray-drying of solidlipid nanoparticles (SLN™). European Journal ofPharmaceutics and Biopharmaceutics 46: 145–151.

Friberg, S., K. Larsson, and J. Sjoblom. 2004. FoodEmulsions. 4th ed. Marcel Dekker: New York.

Gallaher, J. J., R. Hollender, D. G. Peterson, R. F.Roberts, and J. N. Coupland. 2005. Effect of compositionand antioxidants on the oxidative stability of fluid milksupplemented with an algae oil emulsion. InternationalDairy Journal 15: 333–341.

Gao, Y., W. Gu, L. Chen, Z. Xu, and Y. Li. 2008. The roleof daidzein-loaded sterically stabilized solid lipidnanoparticles in therapy for cardio-cerebrovasculardiseases. Biomaterials 29: 4129–4136.

Gbassi, G. K., and T. Vandamme. 2012. Probioticencapsulation technology: From microencapsulation torelease into the gut. Pharmaceutics 4: 149–163.

Gerson, M. 1978. The cure of advanced cancer by diettherapy: A summary of 30 years of clinicalexperimentation. Physiological Chemistry and Physics 10:449–464.

Ghosh, A., A. K. Mandal, S. Sarkar, S. Panda, and N. Das.

2009. Nanoencapsulation of quercetin enhances its dietaryefficacy in combating arsenic-induced oxidative damage inliver and brain of rats. Life Sciences 84: 75–80.

Gong, J., M. Chen, Y. Zheng, S. Wang, and Y. Wang. 2012.Polymeric micelles drug delivery system in oncology.Journal of Controlled Release 159: 312–323.

Gudipati, V., S. Sandra, D. J. McClements, and E. A.Decker. 2010. Oxidative stability and in vitrodigestibility of fish oil-in-water emulsions containingmultilayered membranes. Journal of Agricultural and FoodChemistry 58(13): 8093–8099.

Guo, L., Y. Peng, J. Yao, L. Sui, A. Gu, and J. Wang. 2010.Anticancer activity and molecular mechanism ofresveratrol-bovine serum albumin nanoparticles onsubcutaneously implanted human primary ovarian carcinomacells in nude mice. Cancer Biotherapy andRadiopharmaceuticals 25: 471–477.

Guo, W. M., L. Nie, D. Y. Wu et al. 2010. Avenanthramidesinhibit proliferation of human colon cancer cell lines invitro. Nutrition and Cancer 62: 1007–1016.

Gupta, V., A. Aseh, C. N. Rios, B. B. Aggarwal, and A. B.Mathur. 2009. Fabrication and characterization of silkfibroin-derived curcumin nanoparticles for cancer therapy.International Journal of Nanomedicine 4: 115–122.

Guri, A., I. Guelseren, and M. Corredig. 2013. Utilizationof solid lipid nanoparticles for enhanced delivery ofcurcumin in cocultures of HT29-MTX and Caco-2 cells. Foodand Function 4: 1410–1419.

Gursoy, R. N., and S. Benita. 2004. Self-emulsifying drugdelivery systems (SEDDS) for improved oral delivery oflipophilic drugs. Biomedicine and Pharmacotherapy 58:173–182.

Haidar, Z. S., R. C. Hamdy, and M. Tabrizian. 2008. Proteinrelease kinetics for core-shell hybrid nanoparticles basedon the layer-by-layer assembly of alginate and chitosan onliposomes. Biomaterials 29(9): 1207–1215.

Harivardhan, R. L., and R. S. R. Murthy. 2005.Etoposide-loaded nanoparticles made from glyceride lipids:Formulation, characterization, in vitro drug release, andstability evaluation. AAPS PharmSciTech 6(2): E158–E166.

Harris, L., G. Batist, R. Belt et al. 2002. Liposomeencapsulated doxorubicin compared with conventionaldoxorubicin in a randomized multicenter trial as first-linetherapy of metastatic breast carcinoma. Cancer 94: 25–36.

Hermansen, S. K., K. G. Christensen, S. S. Jensen, and B.W. Kristensen. 2011. Inconsistent immunohistochemicalexpression patterns of four different CD133 antibody clonesin glioblastoma. Journal of Histochemistry andCytochemistry 59: 391–407.

Holt, P. R. 1999. Dairy foods and prevention of coloncancer: Human studies. Journal of the American College ofNutrition 18: 379S–391S.

Horn, D., and J. Rieger. 2001. Organic nanoparticles in theaqueous phase—Theory, experiment, and use. AngewandteChemie International Edition 40: 4330–4361.

Hosokawa, M., M. Kudo, H. Maeda, H. Kohno, T. Tanaka, andK. Miyashita. 2004. Fucoxanthin induces apoptosis andenhances the antiproliferative effect of the PPAR gammaligand, troglitazone, on colon cancer cells. Biochimica etBiophysica Acta 1675: 113–119.

Hu, J., K. P. Johnston, and R. O. Williams III. 2004.Nanoparticle engineering processes for enhancing thedissolution rates of poorly water soluble drugs. DrugDevelopment and Industrial Pharmacy 30: 233–245.

Hwang, J. T., J. Ha, I. J. Park et al. 2007. Apoptoticeffect of EGCG in HT-29 colon cancer cells via AMPK signalpathway. Cancer Letters 247: 115–121.

Inkyo, M., T. Tahara, T. Iwaki, F. Iskandar, C. J. HoganJr., and K. Okuyama. 2006. Experimental investigation ofnanoparticle dispersion by beads milling with centrifugalbead separation. Journal of Colloid and Interface Science304(2): 535–540.

Iqbal, M. A., S. Md, J. K. Sahni, S. Baboota, S. Dang, andJ. Ali. 2012. Nanostructured lipid carriers system: Recentadvances in drug delivery. Journal of Drug Targeting 20:813–830.

Jaganathan, S. K., A. Mazumdar, D. Mondhe, and M. Mandal.2011. Apoptotic effect of eugenol in human colon cancercell lines. Cell Biology International 35: 607–615.

Jakobsson, M., and B. Sivik. 1994. Oxidative stability of

fish-oil included in a microemulsion. Journal ofDispersion Science and Technology 15(5): 611–619.

Jeong, M. R., H. Y. Kim, and J. D. Cha. 2009. Antimicrobialactivity of methanol extract from Ficus carica leavesagainst oral bacteria. Journal of Bacteriology and Virology39: 97–102.

Jeong, S. Y., S. J. Park, S. M. Yoon et al. 2009. Systemicdelivery and preclinical evaluation of Au nanoparticlecontaining beta-lapachone for radiosensitization. Journalof Controlled Release 139: 239–245.

Jia, L., D. Zhang, Z. Li et al. 2010. Nanostructured lipidcarriers for parenteral delivery of silybin:Biodistribution and pharmacokinetic studies. Colloids andSurfaces B: Biointerfaces 80: 213–218.

Jimoh, F. O., A. A. Adedapo, A. A. Aliero, and A. J.Afolayan. 2008. Polyphenolic contents and biologicalactivities of Rumex ecklonianus. Pharmaceutical Biology 46:333–340.

Joye, I. J., G. Davidov-Pardo, and D. J. McClements. 2014.Nanotechnology for increased micronutrientbioavailability. Trends in Food Science & Technology 40:168–182.

Junyaprasert, V. B., V. Teeranachaideekul, E. B. Souto, P.Boonme, and R. H. Muller. 2009. Q10-loaded NLC versusnanoemulsions: Stability rheology and in vitro skinpermeation. International Journal of Pharmaceutics 377:207–214.

Kakarala, M., D. E. Brenner, H. Korkaya, C. Cheng, K. Tazi,C. Ginestier, S. Liu, G. Dontu, and M. S. Wicha. 2010.Targeting breast stem cells with the cancer preventivecompounds curcumin and piperine. Breast Cancer Researchand Treatment 122: 777–785.

Kakkar, V., S. Singh, D. Singla, and I. P. Kaur. 2011.Exploring solid lipid nanoparticles to enhance the oralbioavailability of curcumin. Molecular Nutrition & FoodResearch 55: 495–503.

Kallifatidis, G., S. Labsch, V. Rausch et al. 2011.Sulforaphane increases drug-mediated cytotoxicity towardcancer stem-like cells of pancreas and prostate. MolecularTherapy 19: 188–195.

Kallifatidis, G., V. Rausch, B. Baumann et al. 2009.Sulforaphane targets pancreatic tumourinitiating cells byNF-kappaB-induced antiapoptotic signaling. Gut 58: 949–963.

Kalpana, K. B., M. Srinivasan, and V. P. Menon. 2009.Evaluation of antioxidant activity of hesperidin and itsprotective effect on H2O2 induced oxidative damage onpBR322 DNA and RBC cellular membrane. Molecular andCellular Biochemistry 323(1–2): 21–29.

Keller, B. C. 2001. Liposomes in nutrition. Trends in FoodScience and Technology 12: 25–31.

Khalil, N. M., T. C. do Nascimento, D. M. Casa et al. 2013.Pharmacokinetics of curcuminloaded PLGA and PLGA–PEG blendnanoparticles after oral administration in rats. Colloidsand Surfaces B: Biointerfaces 101: 353–360.

Khan, A. W., S. Kotta, S. H. Ansari, R. K. Sharma, and J.Ali. 2012. Potentials and challenges inself-nanoemulsifying drug delivery systems. Expert Opinionon Drug Delivery 9: 1305–1317.

Khanal, P., B. S. Kang, H. J. Yun, H. G. Cho, T. N.Makarieva, and H. S. Choi. 2011. Aglycon of rhizochalinfrom the Rhizochalina incrustata induces apoptosis viaactivation of AMPactivated protein kinase in HT-29 coloncancer cells. Biological and Pharmaceutical Bulletin 34:1553–1558.

Kim, S. Y., H. J. Kim, M. K. Lee et al. 2006. Naringintime-dependently lowers hepatic cholesterol biosynthesisand plasma cholesterol in rats fed high-fat andhigh-cholesterol diet. Journal of Medicinal Food 9(4):582–586.

Klibanov, A. L., K. Maruyama, V. P. Torchilin, and L.Huang. 1990. Amphipathic polyethyleneglycols effectivelyprolong the circulation time of liposomes. FEBS Letters268(1): 235–237.

Kosaraju, S. L., C. Tran, and A. Lawrence. 2006. Liposomaldelivery systems for encapsulation of ferrous sulfate:Preparation and characterization. Journal of LiposomeResearch 16: 347–358.

Kosaraju, S. L., R. Weerakkody, and M. A. Augustin. 2009.In-vitro evaluation of hydrocolloidbased encapsulated fishoil. Food Hydrocolloids 23(5): 1413–1419.

Kumari, A., S. K. Yadav, Y. B. Pakade, B. Singh, and S. C.Yadav. 2010a. Development of biodegradable nanoparticlesfor delivery of quercetin. Colloids and Surfaces B:Biointerfaces 80: 184–192.

Kumari, A., S. K. Yadav, and S. C. Yadav. 2010b.Biodegradable polymeric nanoparticles based drug deliverysystems. Colloids and Surfaces B: Biointerfaces 75: 1–18.

Kwon, G. S., M. Naito, M. Yokoyama, T. Okano, Y. Sakurai,and K. Kataoka. 1995. Physical entrapment of adriamycin inAB block copolymer micelles. Pharmaceutical Research 12:192–195.

Labhasetwar, V. 2005. Nanotechnology for drug and genetherapy: The importance of understanding molecularmechanisms of delivery. Current Opinion in Biotechnology16(6): 674–680.

Lacatusu, I., E. Mitrea, N. Badea, R. Stan, O. Oprea, andA. Maghea. 2013. Lipid nanoparticles based omega-3 fattyacids as effective carriers for lutein delivery.Preparation and in vitro characterization studies. Journalof Functional Foods 5: 1260–1269.

Lai, J., J. Chen, Y. Lu et al. 2009. Glycerylmonooleate/poloxamer 407 cubic nanoparticles as oral drugdelivery systems. I. In vitro evaluation and enhanced oralbioavailability of the poorly water-soluble drugsimvastatin. AAPS Pharm Sci Tech 10: 960–966.

Langer, R. 1990. New methods of drug delivery. Science 249:1527–1533.

Larsson, S. C., M. Kumlin, M. Ingelman-Sundberg, and A.Wolk. 2004. Dietary long-chain 3 fatty acids for theprevention of cancer: A review of potential mechanisms.American Journal of Clinical Nutrition 79: 935–945.

Lee, W., and T. Tsai. 2010. Preparation andcharacterization of liposomal coenzyme Q10 for in vivotopical application. International Journal of Pharmaceutics395: 78–83.

Li, C., X. Zhang, X. Huang, X. Wang, G. Liao, and Z. Chen.2013. Preparation and characterization of flexiblenanoliposomes loaded with daptomycin, a novel antibiotic,for topical skin therapy. International Journal ofNanomedicine 8: 1285–1292.

Li, F. Q., H. Su, X. Chen et al. 2009. Mannose 6-phosphatemodified bovine serum albumin nanoparticles for controlledand targeted delivery of sodium ferulate for treatment ofhepatic fibrosis. The Journal of Pharmacy and Pharmacology61: 1155–1161.

Li, F. Q., H. Su, J. Wang et al. 2008. Preparation andcharacterization of sodium ferulate entrapped bovine serumalbumin nanoparticles for liver targeting. InternationalJournal of Pharmaceutics 349: 274–282.

Li, H., X. Zhao, Y. Ma, G. Zhai, L. Li, and H. Lou. 2009.Enhancement of gastrointestinal absorption of quercetin bysolid lipid nanoparticles. Journal of Controlled Release133: 238–244.

Li, Y., T. Zhang, H. Korkaya et al. 2010. Sulforaphane, adietary component of broccoli/ broccoli sprouts, inhibitsbreast cancer stem cells. Clinical Cancer Research 16(9):2580–2590.

Liang, L., H. A. Tajmir-Riahi, and M. Subirade. 2008.Interaction of beta-lactoglobulin with resveratrol and itsbiological implications. Biomacromolecules 9: 50–56.

Liang, Y. Q., B. A. Chen, W. W. Wu et al. 2010. Effects ofmagnetic nanoparticle of Fe 3 O 4 on apoptosis induced byGambogic acid in U937 leukemia cells. Zhongguo Shi Yan XueYe Xue Za Zhi 18: 67–73.

Liedtke, S., S. Wissing, R. H. Müller, and K. Mäder. 2000.Influence of high pressure homogenisation equipment onnanodispersions characteristics. International Journal ofPharmaceutics 196: 183–185.

Lim, D. Y., Y. Jeong, A. L. Tyner, and J. H. Y. Park. 2007.Induction of cell cycle arrest and apoptosis in HT-29human colon cancer cells by the dietary compound luteolin.American Journal of Physiology: Gastrointestinal and LiverPhysiology 292: G66–G75.

Lim, S. B., A. Banerjee, and H. Onyuksel. 2012. Improvementof drug safety by the use of lipid based nanocarriers.Journal of Controlled Release 163: 34–45.

Lin, L., Y. Liu, H. Li, P. K. Li, J. Fuchs, H. Shibata, Y.Iwabuchi, and J. Lin. 2011. Targeting colon cancer stemcells using a new curcumin analogue, GO-Y030. BritishJournal of Cancer 105: 212–220.

Lin, L. C., C. T. Yeh, C. C. Kuo et al. 2012. Sulforaphanepotentiates the efficacy of imatinib against chronicleukemia cancer stem cells through enhanced abrogation ofWnt/betacatenin function. Journal of Agricultural and FoodChemistry 60: 7031–7039.

Liu, C., and C. Wu. 2010. Optimization of nanostructuredlipid carriers for lutein delivery. Colloids and SurfacesA: Physicochemical and Engineering Aspects 353: 149–156.

Liu, F., and D. Liu. 1995. Long-circulating emulsions(oil-in-water) as carriers for lipophilic drugs.Pharmaceutical Research 12: 1060–1064.

Liu, M., J. Dong, Y. Yang, X. Yang, and H. Xu. 2005.Anti-inflammatory effects of triptolide loadedpoly(D,L-lactic acid) nanoparticles on adjuvant-inducedarthritis in rats. Journal of Ethnopharmacology 97:219–225.

Liu, Y., and M. G. Nair. 2010. Capsaicinoids in the hottestpepper Bhut Jolokia and its antioxidant andantiinflammatory activities. Natural Product Communications5(1): 91–94.

Lomayeva, S. F., E. P. Yelsukov, G. N. Konygin et al. 2000.The influence of a surfactant on the characteristics ofthe iron powders obtained by mechanical milling in organicmedia. Colloids and Surfaces A: Physicochemical andEngineering Aspects 162: 279–284.

Longmire, M., P. L. Choyke, and H. Kobayashi. 2008.Clearance properties of nano-sized particles and moleculesas imaging agents: Considerations and caveats. Nanomedicine(London, England) 3(5): 703–717.

Lu, X., C. Ji, H. Xu et al. 2009. Resveratrol-loadedpolymeric micelles protect cells from Abeta-inducedoxidative stress. International Journal of Pharmaceutics375: 89–96.

Mahapatro, A., and D. K. Singh. 2011. Biodegradablenanoparticles are excellent vehicle for site directedin-vivo delivery of drugs and vaccines. Journal ofNanobiotechnology 9: 55.

Mahyar-Roemer, M., A. Katsen, P. Mestres, and K. Roemer.2001. Resveratrol induces colon tumor cell apoptosisindependently of p53 and precede by epithelialdifferentiation, mitochondrial proliferation and membrane

potential collapse. International Journal of Cancer 94:615–622.

Maldonado-Celis, M. E., S. Bousserouel, F. Gossé, C.Minker, A. Lobstein, and F. Raul. 2009. Differentialinduction of apoptosis by apple procyanidins intrail-sensitive human colon tumor cells and derivedtrail-resistant metastatic cells. Journal of CancerMolecules 5: 21–30.

Martínez, M. E., E. L. Giovannucci, G. A. Colditz et al.1996. Calcium, vitamin D, and the occurrence of colorectalcancer among women. Journal of the National CancerInstitute 88: 1375–1382.

Mashhadi, N. S., R. Ghiasvand, G. Askari, M. Hariri, L.Darvishi, and M. R. Mofid. 2013. Antioxidative andanti-inflammatory effects of ginger in health and physicalactivity: Review of current evidence. InternationalJournal of Preventive Medicine 4(1): S36–S42.

Matthews, R. T., L. Yang, S. Browne, M. Bail, and M. F.Beal. 1998. Coenzyme Q10 administration increases brainmitochondrial concentrations and exerts neuroprotectiveeffects. Proceedings of the National Academy of Sciences,USA 95: 8892–8897.

McClements, D. J. 2005a. Food Emulsions: Principles,Practice, and Techniques, 2nd ed. Boca Raton, FL: CRCPress.

McClements, D. J. 2005b. Theoretical analysis of factorsaffecting the formation and stability of multilayeredcolloidal dispersions. Langmuir 21(21): 9777–9785.

Mehnert, W., and K. Mader. 2001. Solid lipid nanoparticles:Production, characterization and applications. AdvancedDrug Delivery Reviews 47: 165–196.

Mei, Z., X. Li, Q. Wu, S. Hu, and X. Yang. 2005a. Theresearch on the anti-inflammatory activity andhepatotoxicity of triptolide-loaded solid lipidnanoparticle. Pharmacological Research 51: 345–351.

Mei, Z., Q. Wu, S. Hu, X. Li, and X. Yang. 2005b.Triptolide loaded solid lipid nanoparticle hydrogel fortopical application. Drug Development and IndustrialPharmacy 31: 161–168.

Metselaar, J. M., P. Bruin, L. W. T. de Boer et al. 2003. A

novel family of L-amino acid-based biodegradablepolymer-lipid conjugates for the development oflong-circulating liposomes with effective drug-targetingcapacity. Bioconjugate Chemistry 14(6): 1156–1164.

Miller, E. C., C. W. Hadley, S. J. Schwartz, J. W. Erdman,T. W. M. Boileau, and S. K. Clinton. 2002. Lycopene,tomato products, and prostate cancer prevention. Have weestablished causality? Pure and Applied Chemistry 74:1435–1441.

Misotti, A. M., and P. Gnagnarella. 2013. Vitaminsupplement consumption and breast cancer risk: A review.Ecancer Medical Science 7: 365.

Mobed, M., and T. M. S. Chang. 1998. Comparison ofpolymerically stabilized PEG-grafted liposomes andphysically adsorbed carboxymethylchitin andcarboxymethyl/glycolchitin liposomes for biologicalapplications. Biomaterials 19(13): 1167–1177.

Mozafari, M. R., A. Pardakhty, S. Azarmi, J. A. Jazayeri,A. Nokhodchi, and A. Omri. 2009. Role of nanocarriersystems in cancer nanotherapy. Journal of Liposome Research19: 310–321.

Mukerjee, A., and J. K. Vishwanatha. 2009. Formulation,characterization and evaluation of curcumin-loaded PLGAnanospheres for cancer therapy. Anticancer Research 29:3867–3875.

Mulik, R. S., J. Monkkonen, R. O. Juvonen, K. R. Mahadik,and A. R. Paradkar. 2010. ApoE3 mediated poly(butyl)cyanoacrylate nanoparticles containing curcumin: Study ofenhanced activity of curcumin against beta amyloid inducedcytotoxicity using in vitro cell culture model. MolecularPharmaceutics 7(3): 815–825.

Müller, R. H., S. Maaßen, H. Weyhers, and W. Mehnert. 1996.Phagocytic uptake and cytotoxicity of solid lipidnanoparticles (SLN) sterically stabilized with poloxamine908 and poloxamer 407. Journal of Drug Targeting 4(3):161–170.

Müller, R., S. Runge, V. Ravelli, A. Thünemann, W. Mehnert,and E. Souto. 2008. Cyclosporineloaded solid lipidnanoparticles (SLN1): Drug–lipid physicochemicalinteractions and characterization of drug incorporation.European Journal of Pharmaceutics and Biopharmaceutics 68:535–544.

Murakami, H., M. Kobayashi, H. Takeuchi, and Y. Kawashima.1999. Preparation of poly(D,Llactide-co-glycolide)nanoparticles by modified spontaneous emulsificationsolvent diffusion method. International Journal ofPharmaceutics 187: 143–152.

Murphy, M. P. 1997. Targeting bioactive compounds tomitochondria. Trends in Biotechnology 15: 326–330.

Murphy, M. P. 2001. Development of lipophilic cations astherapies for disorders due to mitochondrial dysfunction.Expert Opinion on Biological Therapy 1: 753–764.

Murphy, M. P., and R. A. J. Smith. 2000. Drug delivery tomitochondria: The key to mitochondrial medicine. AdvancedDrug Delivery Reviews 41: 235–250.

Nair, H. B., B. Sung, V. R. Yadav, R. Kannappan, M. M.Chaturvedi, and B. B. Aggarwal. 2010. Delivery ofantiinflammatory nutraceuticals by nanoparticles for theprevention and treatment of cancer. BiochemicalPharmacology 80: 1833–1843.

Nair, R., and S. Chanda. 2007. In vitro antimicrobialactivity of Psidium guajava L. leaf extracts againstclinically important pathogenic microbial strains.Brazilian Journal of Microbiology 38: 452–458.

Nascimento P. G., T. L. Lemos, A. M. Bizerra et al. 2014.Antibacterial and antioxidant activities of ursolic acidand derivatives. Molecules 19: 1317–1327.

Niwa, T., H. Takeuchi, T. Hino, N. Kunou, and Y. Kawashima.1993. Preparations of biodegradable nanospheres ofwater-soluble and insoluble drugs withD,L-lactide/glycolide copolymer by a novel spontaneousemulsification solvent diffusion method, and the drugrelease behavior. Journal of Controlled Release 25: 89–98.

Oerlemans, C., W. Bult, M. Bos, G. Storm, J. F. Nijsen, andW. E. Hennink. 2010. Polymeric micelles in anticancertherapy: Targeting, imaging and triggered release.Pharmaceutical Research 27: 2569–2589.

Olson, D. W., C. H. White, and C. E. Watson. 2003.Properties of frozen dairy desserts processed bymicrofluidization of their mixes. Journal of Dairy Science86: 1157–1162.

Pahlke, G., Y. Ngiewih, M. Kern, S. Jakobs, D. Marko, andG. Eisenbrand. 2006. Impact of quercetin and EGCG on keyelements of the Wnt pathway in human colon carcinomacells. Journal of Agricultural and Food Chemistry 54:7075–7082.

Pan, X. Y., P. Yao, and M. Jiang. 2007. Simultaneousnanoparticle formation and encapsulation driven byhydrophobic interaction of casein-graft-dextran andbeta-carotene. Journal of Colloid and Interface Science315: 456–463.

Pasche, S., J. Voros, H. J. Griesser, N. D. Spencer, and M.Textor. 2005. Effects of ionic strength and surface chargeon protein adsorption at PEGylated surfaces. The Journalof Physical Chemistry B 109: 17545–17552.

Patel, A. R., P. C. M. Heussen, J. Hazekamp, E. Drost, andK. P. Velikov. 2012. Quercetin loaded biopolymericcolloidal particles prepared by simultaneous precipitationof quercetin with hydrophobic protein in aqueous medium.Food Chemistry 133: 423–429.

Patel, A. R., Y. C. Hu, J. K. Tiwar, and K. P. Velikov.2010. Synthesis and characterisation of zein-curcumincolloidal particles. Soft Matter 6: 6192–6199.

Peukert, W., H. C. Schwarzer, and F. Stenger. 2005. Controlof aggregation in production and handling ofnanoparticles. Chemical Engineering and Processing 44:245–252.

Pool, H., S. Mendoza, H. Xiao, and D. J. McClements. 2013.Encapsulation and release of hydrophobic bioactivecomponents in nanoemulsion-based delivery systems: Impactof physical form on quercetin bioaccessibility. Food andFunction 4: 162–174.

Porteous, C. M., A. Logan, C. Evans et al. 2010. Rapiduptake of lipophilic triphenylphosphonium cations bymitochondria in vivo following intravenous injection:Implications for mitochondria-specific therapies andprobes Biochimica et Biophysica Acta 1800: 1009–1017.

Prasad, S., K. Phromnoi, V. R. Yadav, M. M. Chaturvedi, andB. B. Aggarwal. 2010. Targeting inflammatory pathways byflavonoids for prevention and treatment of cancer. PlantaMedica 76(11): 1044–1063.

Punfa, W., S. Yodkeeree, P. Pitchakarn, C. Ampasavate, and

P. Limtrakul. 2012. Enhancement of cellular uptake andcytotoxicity of curcumin-loaded PLGA nanoparticles byconjugation with anti-P-glycoprotein in drug resistancecancer cells. Acta Pharmacologica Sinica 33: 823–831.

Puri, A., K. Loomis, B. Smith et al. 2009. Lipid-basednanoparticles as pharmaceutical drug carriers: Fromconcepts to clinic. Critical Reviews in Therapeutic DrugCarrier Systems 26: 523–580.

Qian, C., E. A. Decker, H. Xiao, and D. J. McClements.2012. Nanoemulsion delivery systems: Influence of carrieroil on beta-carotene bioaccessibility. Food Chemistry 135:1440–1447.

Ravindran, J., H. B. Nair, B. Sung, S. Prasad, R. R.Tekmal, and B. B. Aggarwal. 2010. Thymoquinone poly(lactide-co-glycolide) nanoparticles exhibit enhancedantiproliferative, anti-inflammatory, andchemosensitization potential. Biochemical Pharmacology 79:1640–1647.

Ribeiro, H. S., B. S. Chua, S. Ichikwawab, and M. Nakajima.2008. Preparation of nanodispersions containingbeta-carotene by solvent displacement method. FoodHydrocolloids 22: 12–17.

Rocha, S., R. Generalov, M. O. C. Pereira, I. Peres, P.Juzenas, and M. A. Coelho. 2011. Epigallocatechingallate-loaded polysaccharide nanoparticles for prostatecancer chemoprevention. Nanomedicine (London) 6: 79–87.

Romanová, D., A. Vachálková, L. Cipák, Z. Ovesná, and P.Rauko. 2001. Study of antioxidant effect of apigenin,luteolin and quercetin by DNA protective method. Neoplasma48(2): 104–117.

Saadat, N., and S. V. Gupta. 2012. Potential role ofgarcinol as an anticancer agent. Journal of Oncology 2012:Article ID 647206.

Sahu, A., N. Kasoju, and U. Bora. 2008. Fluorescence studyof the curcumin–casein micelle complexation and itsapplication as a drug nanocarrier to cancer cells.Biomacromolecules 9: 2905–2912.

Sanad, R. A., N. S. Abdelmalak, T. S. Elbayoomy, and A. A.Badawi. 2010. Formulation of a novel oxybenzone-loadednanostructured lipid carriers (NLCs). AAPS Pharm SciTech11: 1684–1694.

Sanguansri, P., and M. A. Augustin. 2006. Nanoscalematerials development—A food industry perspective. Trendsin Food Science and Technology 17: 547–556.

Sanna, V., G. Pintus, A. M. Roggio et al. 2011. Targetedbiocompatible nanoparticles for the delivery of(–)-epigallocatechin 3-gallate to prostate cancer cells.Journal of Medicinal Chemistry 54: 1321–1332.

Scott, A. M., J. P. Allison, and J. D. Wolchok. 2012.Monoclonal antibodies in cancer therapy. Cancer Immunity12: 14.

Scott, A. M., J. D. Wolchok, and L. J. Old. 2012. Antibodytherapy of cancer. Nature Reviews Cancer 12: 278–287.

Seki, T., T. Hosono, T. Hosono-Fukao, K. Inada, R. Tanaka,J. Ogihara, and T. Ariga. 2008. Anticancer effects ofdiallyl trisulfide derived from garlic. Asia PacificJournal of Clinical Nutrition 17(1): 249–252.

Semo, E., E. Kesselman, D. Danino, and Y. D. Livney. 2007.Casein micelle as a natural nanocapsular vehicle fornutraceuticals. Food Hydrocolloids 21: 936–942.

Sessa, M., M. L. Balestrieri, G. Ferrari et al. 2014.Bioavailability of encapsulated resveratrol intonanoemulsion-based delivery systems. Food Chemistry 147:42–50.

Shan, B. E., M. X. Wang, and R. Q. Li. 2009. Quercetininhibit human SW480 colon cancer growth in associationwith inhibition of cyclin D1 and survivin expressionthrough Wnt/β-catenin signaling pathway. CancerInvestigation 27: 604–612.

Shao, J., X. Li, X. Lu et al. 2009. Enhanced growthinhibition effect of resveratrol incorporated intobiodegradable nanoparticles against glioma cells ismediated by the induction of intracellular reactive oxygenspecies levels. Colloids and Surfaces B: Biointerfaces 72:40–47.

Shapira, A., Y. G. Assaraf, and Y. D. Livney. 2009.Beta-casein nano-vehicles for oral delivery ofchemotherapeutic drugs. Nanomedicine 6(1): 119–126.

Sharma, R. 2009. Nutraceuticals and nutraceuticalsupplementation criteria in cancer: A literature survey.

Open Nutraceuticals Journal 2: 92–106.

Shikov, A. N., O. N. Pozharitskaya, I. Miroshnyk et al.2009. Nanodispersions of taxifolin: Impact of solid-stateproperties on dissolution behavior. International Journalof Pharmaceutics 377: 148–152.

Shmuely, H., N. Domniz, and D. Cohen. 2013. Probiotics inthe prevention of colorectal cancer. Current ColorectalCancer Reports 9: 31–36.

Shoji, Y., and H. Nakashima. 2004. Nutraceutics anddelivery systems. Journal of Drug Targeting 12: 385–391.

Shults, C. W., M. Flint Beal, D. Song, and D. Fontaine.2004. Pilot trial of high dosages of coenzyme Q10 inpatients with Parkinson’s disease. Experimental Neurology188: 491–494.

Shults, C. W., D. Oakes, K. Kieburtz et al. 2002. Effectsof coenzyme Q10 in early Parkinson disease: Evidence ofslowing of the functional decline. Archives of Neurology59: 1541–1550.

Si, H. Y., D. P. Li, T. M. Wang et al. 2010. Improving theanti-tumor effect of genistein with a biocompatiblesuperparamagnetic drug delivery system. Journal ofNanoscience and Nanotechnology 10(4): 2325–2331.

Siddiqui, I. A., V. M. Adhami, D. J. Bharali et al. 2009.Introducing chemoprevention as a novel approach for cancercontrol: Proof of principle with green tea polyphenolepigallocatechin-3-gallate. Cancer Research 69: 1712–1716.

Sihorkar, V., and S. P. Vyas. 2001. Potential ofpolysaccharide anchored liposomes in drug delivery,targeting and immunization. Journal of Pharmacy andPharmaceutical Sciences 4(2): 138–158.

Silva, A. P., B. R. Nunes, M. C. De Oliveira et al. 2009.Development of topical nanoemulsions containing theisoflavone genistein. Pharmazie 64: 32–35.

Singh, A. V., D. Xiao, K. L. Lew, R. Dhir, and S. V. Singh.2004. Sulforaphane induces caspasemediated apoptosis incultured PC-3 human prostate cancer cells and retardsgrowth of PC-3 xenografts in vivo. Carcinogenesis 25:83–90.

Singh, B., S. Bandopadhyay, R. Kapil, R. Singh, and O.

Katare. 2009. Self-emulsifying drug delivery systems(SEDDS): Formulation development, characterization, andapplications. Critical Reviews in Therapeutic Drug CarrierSystems 26: 427–521.

Slattery, M. L., K. P. Curtin, S. L. Edwards, and D. M.Schaffer. 2004. Plant foods, fiber, and rectal cancer.American Journal of Clinical Nutrition 79: 274–281.

Smith, R. A. J., G. F. Kelso, F. H. Blaikie et al. 2003.Using mitochondria-targeted molecules to studymitochondrial radical production and its consequences.Biochemical Society Transactions 31: 1295–1299.

Smith, R. A. J., G. F. Kelso, A. M. James, and M. P.Murphy. 2004. Targeting coenzyme Q derivatives tomitochondria. Methods in Enzymology 382: 45–67.

Son, S., J. H. Kim, H. Y. Sohn et al. 2007. Antioxidativeand hypolipidemic effects of diosgenin, a steroidalsaponin of yam (Dioscorea spp.), on high-cholesterol fedrats. Bioscience, Biotechnology, and Biochemistry 71(12):3063–3071.

Sonaje, K., J. L. Italia, G. Sharma, V. Bhardwaj, K. Tikoo,and M. N. Kumar. 2007. Development of biodegradablenanoparticles for oral delivery of ellagic acid andevaluation of their antioxidant efficacy againstcyclosporine A-induced nephrotoxicity in rats.Pharmaceutical Research 24: 899–908.

Srinivasan, S., S. Koduru, R. Kumar et al. 2009. Diosgenintargets Akt-mediated prosurvival signaling in human breastcancer cells. International Journal of Cancer 125(4):961–967.

Subramaniam, D., S. Ponnurangam, P. Ramamoorthy, D.Standing, R. J. Battafarano, S. Anant, and P. Sharma.2012. Curcumin induces cell death in esophageal cancercells through modulating Notch signaling. PloS One 7:e30590.

Sugiarto, M., A. Ye, and H. Singh. 2009. Characterisationof binding of iron to sodium caseinate and whey proteinisolate. Food Chemistry 114: 1007–1013.

Suh, Y., F. Afaq, J. J. Johnson, and H. Mukhtar. 2009. Aplant flavonoid fisetin induces apoptosis in colon cancercells by inhibition of COX-2 and Wnt/EGFR/NF-κB-signallingpathways. Carcinogenesis 30: 300–307.

Sunila, E. S., and G. Kuttan. 2004. Immunomodulatory andantitumor activity of Piper longum Linn. and Piperine.Journal of Ethnopharmacology 90: 339–346.

Suwannateep, N., W. Banlunara, S. P. Wanichwecharungruang,K. Chiablaem, K. Lirdprapamongkol, and J. Svasti. 2011.Mucoadhesive curcumin nanospheres: Biological activity,adhesion to stomach mucosa and release of curcumin into thecirculation. Journal of Controlled Release 151: 176–182.

Swaminathan, S. K., E. Roger, U. Toti, L. Niu, J. R.Ohlfest, and J. Panyam. 2013. CD133Targeted paclitaxeldelivery inhibits local tumor recurrence in a mouse modelof breast cancer. Journal of Controlled Release 171:280–287.

Takeuchi, H., H. Kojima, T. Toyoda, H. Yamamoto, T. Hino,and Y. Kawashima. 1999. Prolonged circulation time ofdoxorubicin-loaded liposomes coated with a modifiedpolyvinyl alcohol after intravenous injection in rats.European Journal of Pharmaceutics and Biopharmaceutics48(2): 123–129.

Takeuchi, H., H. Kojima, H. Yamamoto, and Y. Kawashima.2000. Polymer coating of liposomes with a modifiedpolyvinyl alcohol and their systemic circulation and RESuptake in rats. Journal of Controlled Release 68(2):195–205.

Tan, B., Y. Liu, K. Chang, B. K. W. Lim, and G. N. C. Chiu.2012. Perorally active nanomicellar formulation ofquercetin in the treatment of lung cancer. InternationalJournal of Nanomedicine 7: 651–661.

Tan, C. P., and M. Nakajima. 2005. β-Carotenenanodispersions: Preparation, characterization andstability evaluation. Food Chemistry 92: 661–671.

Tanaka, T., M. Shnimizu, and H. Moriwaki. 2012. Cancerchemoprevention by carotenoids. Molecules 17: 3202–3242.

Tang, S., D. Gao, T. Zhao, J. Zhou, and X. Zhao. 2013. Anevaluation of the anti-tumor efficacy of oleanolicacid-loaded PEGylated liposomes. Nanotechnology 24: 235102.

Teeranachaideekul, V., R. H. Muller, and V. B.Junyaprasert. 2007. Encapsulation of ascorbyl palmitate innanostructured lipid carriers (NLC)—Effects of formulationparameters on physicochemical stability. International

Journal of Pharmaceutics 340: 198–206.

Teeranachaideekul, V., E. B. Souto, V. B. Junyaprasert, andR. H. Muller. 2007. Cetyl-palmitate based NLC for topicaldelivery of coenzyme Q10—Development, physicochemicalcharacterization and in vitro release studies. EuropeanJournal of Pharmaceutics and Biopharmaceutics 67: 141–148.

Teskac, K., and J. Kristl. 2010. The evidence for solidlipid nanoparticles mediated cell uptake of resveratrol.International Journal of Pharmaceutics 390: 61–69.

Todaka, Y., M. Nakamura, S. Hattori, K. Tsuchiya, and M.Umemoto. 2003. Synthesis of ferrite nanoparticles bymechanochemical processing using a ball mill. MaterialsTransactions 44(2): 277–284.

Torchilin, V. P. 2001. Structure and design of polymericsurfactant-based drug delivery systems. Journal ofControlled Release 73: 137–172.

Torchilin, V. P. 2007. Micellar nanocarriers:Pharmaceutical perspectives. Pharmaceutical Research 24:1–16.

Tsai, Y. M., C. F. Chien, L. C. Lin, and T. H. Tsai. 2011.Curcumin and its nano-formulation: The kinetics of tissuedistribution and blood–brain barrier penetration.International Journal of Pharmaceutics 416: 331–338.

Tunick, M. H., D. L. Van Hekken, P. H. Cooke, and E. L.Malin. 2002. Transmission electron microscopy of mozzarellacheeses made from microfluidized milk. Journal ofAgricultural and Food Chemistry 50: 99–103.

Türk, M., P. Hils, B. Helfgen, K. Schaber, H. J. Martin,and M. A. Wahl. 2002. Micronization of pharmaceuticalsubstances by the Rapid Expansion of SupercriticalSolutions (RESS): A promising method to improvebioavailability of poorly soluble pharmaceutical agents.Journal of Supercritical Fluids 22: 75–84.

Uner, M. 2006. Preparation, characterization andphysico-chemical properties of solid lipid nanoparticles(SLN) and nanostructured lipid carriers (NLC): Theirbenefits as colloidal drug carrier systems. Pharmazie 61:375–386.

Urbinati, G., V. Marsaud, and J. M. Renoir. 2012.Anticancer drugs in liposomal nanodevices: A target

delivery for a targeted therapy. Current Topics inMedicinal Chemistry 12: 1693–1712.

Vuillemard, J. C. 1991. Recent advances in the large-scaleproduction of lipid vesicles for use in food products:Microfluidization. Journal of Microencapsulation 8:547–562.

Wang, G., J. J. Wang, G. Y. Yang et al. 2012. Effects ofquercetin nanoliposomes on C6 glioma cells throughinduction of type III programmed cell death. InternationalJournal of Nanomedicine 7: 271–280.

Ward, P., S. Fasitsas, and S. E. Katz. 2002. Inhibition,resistance development, and increased antibiotic andantimicrobial resistance caused by nutraceuticals. Journalof Food Protection 65(3): 528–533.

Xiong, F. L., H. B. Chen, X. L. Chang, Y. J. Yang, H. B.Xu, and X. L. Yang. 2005. Research progress oftriptolide-loaded nanoparticles delivery systems.Conference Proceedings of the IEEE Engineering in Medicineand Biology Society 5: 4966–4969.

Yallapu, M. M., M. Jaggi, and S. C. Chauhan. 2010. Scope ofnanotechnology in ovarian cancer therapeutics. Journal ofOvarian Research 3: 19.

Yallapu, M. M., M. Jaggi, and S. C. Chauhan. 2012. Curcuminnanoformulations: A future nanomedicine for cancer. DrugDiscovery Today 17: 71–80.

Yang, Y., B. Kim, and J. Y. Lee. 2013. Astaxanthinstructure, metabolism, and health benefits. Journal ofHuman Nutrition and Food Science 1: 1003–1014.

Yang, Y., and D. J. McClements. 2013. Vitamin Ebioaccessibility: Influence of carrier oil type ondigestion and release of emulsified alphatocopherolacetate. Food Chemistry 141: 473–481.

Yao, J., J. P. Zhou, and Q. N. Ping. 2007. Characteristicsof nobiletin-loaded nanoemulsion and its in vivodistribution in mice. Yao Xue Xue Bao 42: 663–668.

Yen, F. L., T. H. Wu, L. T. Lin, T. M. Cham, and C. C. Lin.2009. Naringenin-loaded nanoparticles improve thephysicochemical properties and the hepatoprotective effectsof naringenin in orally-administered rats withCCl(4)-induced acute liver failure. Pharmaceutical

Research 26: 893–902.

Zabar, S., U. Lesmes, I. Katz, E. Shimoni, and H.Bianco-Peled. 2010. Structural characterization ofamylose-long chain fatty acid complexes produced via theacidification method. Food Hydrocolloids 24(4): 347–357.

Zaki, N. M. 2014. Progress and problems in nutraceuticalsdelivery. Journal of Bioequivalence & Bioavailability6(3): 075–077.

Zhang, W., C. Yan, J. May, and C. J. Barrow. 2009. Wheyprotein and gum Arabic encapsulated omega-3 lipids theeffect of material properties on coacervation. Agro FoodIndustry Hi-Tech 20(4): 18–21.

Zhang, Z., H. Bu, Z. Gao, Y. Huang, F. Gao, and Y. Li.2010. The characteristics and mechanism of simvastatinloaded lipid nanoparticles to increase oral bioavailabilityin rats. International Journal of Pharmaceutics 394(1–2):147–153.

Zhou, X. J., X. M. Hu, Y. M. Yi, and J. Wan. 2009.Preparation and body distribution of freeze dried powderof ursolic acid phospholipid nanoparticles. DrugDevelopment and Industrial Pharmacy 35: 305–310.

Zimet, P., and Y. D. Livney. 2009. Beta-lactoglobulin andits nanocomplexes with pectin as vehicles for omega-3polyunsaturated fatty acids. Food Hydrocolloids 23:1120–1126.

Zimet, P., D. Rosenberg, and Y. D. Livney. 2011.Re-assembled casein micelles and casein nanoparticles asnano-vehicles for u-3 polyunsaturated fatty acids. FoodHydrocolloids 25: 1270–1276.

Zorofchian, M. S., H. Abdul Kadir, P. Hassandarvish, H.Tajik, S. Abubakar, and K. Zandi. 2014. A review onantibacterial, antiviral, and antifungal activity ofcurcumin. BioMed Research International 2014: 186864.

Zu, Y. G., S. Yuan, X. H. Zhao, Y. Zhang, X. N. Zhang, andR. Jiang. 2009. Preparation, activity and targetingability evaluation in vitro on folate mediatedepigallocatechin-3-gallate albumin nanoparticles. Yao XueXue Bao 44: 525–531.

6 6: Developments and Applications ofSilver Nanoparticles in theNutraceuticals Industry

Abu-Zied, Bahaa M., and Abdullah M. Asiri. 2014. “AnInvestigation of the Thermal Decomposition of SilverAcetate as a Precursor for Nano-Sized Ag-Catalyst.” Thermochimica Acta 581 (April): 110–17.doi:10.1016/j.tca.2014.02.020.

Ahmad, A., Z. Wang, R. Ali, M. Y. Maitah, D. Kong, S.Banerjee et al. 2010. “ApoptosisInducing Effect of GarcinolIs Mediated by NF-kappaB Signaling in Breast CancerCells.” Journal of Cellular Biochemistry 109: 1134–41.

Ahmed, Shakeel, Mudasir Ahmad, Babu Lal Swami, and SaiqaIkram. 2015. “Plants Extract Mediated Synthesis of SilverNanoparticles for Antimicrobial Applications: A GreenExpertise.” Journal of Advanced Research, March.doi:10.1016/j.jare.2015.02.007.

Ashkarran, Ali Akbar. 2010. “A Novel Method for Synthesisof Colloidal Silver Nanoparticles by Arc Discharge inLiquid.” Current Applied Physics 10(6): 1442–1447.doi:10.1016 /j.cap.2010.05.010.

Aslan, Kadir, Zoya Leonenko, Joseph R. Lakowicz, and ChrisD. Geddes. 2005. “Fast and Slow Deposition of SilverNanorods on Planar Surfaces: Application to Metal-EnhancedFluorescence.” The Journal of Physical Chemistry B 109(8):3157–3162. doi:10.1021 / jp045186t.

Chaudhry, Qasim, Michael Scotter, James Blackburn, BryonyRoss, Alistair Boxall, Laurence Castle, Robert Aitken, andRichard Watkins. 2008. “Applications and Implications ofNanotechnologies for the Food Sector.” Food Additives &Contaminants: Part A 25(3): 241–258.doi:10.1080/02652030701744538.

Chauhan, Baby, Gopal Kumar, Nazia Kalam, and Shahid H.Ansari. 2013. “Current Concepts and Prospects of HerbalNutraceutical: A Review.” Journal of AdvancedPharmaceutical Technology & Research 4(1): 4–8.doi:10.4103/2231-4040.107494.

Chopra, Ian. 2007. “The Increasing Use of Silver-BasedProducts as Antimicrobial Agents: A Useful Development ora Cause for Concern?” Journal of Antimicrobial Chemotherapy59(4): 587–90. doi:10.1093/jac/dkm006.

Dash, Siddhartha Shrivastava, Tanmay Bera, Arnab Roy,Gajendra Singh, P. Ramachandrarao, and Debabrata Dash.2007. “Characterization of Enhanced Antibacterial Effectsof Novel Silver Nanoparticles.” Nanotechnology 18(22):225103. http://stacks.iop.org /0957-4484/18/i=22/a=225103.

Devi, Lamabam Sophiya, and S. R. Joshi. 2014.“Ultrastructures of Silver Nanoparticles BiosynthesizedUsing Endophytic Fungi.” Journal of Microscopy andUltrastructure 3(1): 29–37.doi:10.1016/j.jmau.2014.10.004.

Duncan, Timothy V. 2011. “Applications of Nanotechnology inFood Packaging and Food Safety: Barrier Materials,Antimicrobials and Sensors.” Journal of Colloid andInterface Science 363(1): 1–24.doi:10.1016/j.jcis.2011.07.017.

Duraipandy, N., Rachita Lakra, Srivatsan KunnavakkamVinjimur, Debasis Samanta, Purna Sai K., and ManikantanSyamala Kiran. 2014. “Caging of Plumbagin on SilverNanoparticles Imparts Selectivity and Sensitivity toPlumbagin for Targeted Cancer Cell Apoptosis.” Metallomics6(11): 2025–33. doi:10.1039/C4MT00165F.

Farias, Charles B. B., Aline Ferreira Silva, Raquel DinizRufino, Juliana Moura Luna, José Edson Gomes Souza, andLeonie Asfora Sarubbo. 2014. “Synthesis of SilverNanoparticles Using a Biosurfactant Produced in Low-CostMedium as Stabilizing Agent.” Electronic Journal ofBiotechnology 17(3): 122–125.doi:10.1016/j.ejbt.2014.04.003.

Fung, M. C., and D. L. Bowen. 1996. “Silver Products forMedical Indications: Risk-Benefit Assessment.” Journal ofToxicology Clinical Toxicology 34: 119–126. doi:10.3109/15563659609020246.

Gulbranson, Scott H., Joseph A. Hud, and Ronald C. Hansen.2000. “Argyria Following the Use of Dietary SupplementsContaining Colloidal Silver Protein.” Cutis 66(5): 373–374.

Gupta, Subash C., JiHye Kim, Sahdeo Prasad, and Bharat B.Aggarwal. 2010. “Regulation of Survival, Proliferation,Invasion, Angiogenesis, and Metastasis of Tumor Cellsthrough Modulation of Inflammatory Pathways byNutraceuticals.” Cancer and Metastasis Reviews 29(3):405–434. doi:10.1007/s10555-010-9235-2.

Hatchett, David W., and Henry S. White. 1996.

“Electrochemistry of Sulfur Adlayers on the Low-IndexFaces of Silver.” The Journal of Physical Chemistry100(23): 9854–9859. doi:10.1021/jp953757z.

Hathcock, J. 2001. “Dietary Supplements: How They Are Usedand Regulated.” Journal of Nutrition 131: 1114–17.

Huang, Ling, Maolin L. Zhai, Dewu W. Long, Jing Peng, LingXu, Guozhong Z. Wu, Jiuqiang Q. Li, and Genshuan S. Wei.2008. “UV-Induced Synthesis, Characterization and FormationMechanism of Silver Nanoparticles in AlkalicCarboxymethylated Chitosan Solution.” Journal ofNanoparticle Research 10(7): 1193–1202.doi:10.1007/s11051-007-9353-0.

Jeevanandam, P., Chamarthi K. Srikanth, and Suchi Dixit.2010. “Synthesis of Monodisperse Silver Nanoparticles andTheir Self-Assembly through Simple Thermal DecompositionApproach.” Materials Chemistry and Physics 122(2–3):402–407. doi:10.1016 /j.matchemphys.2010.03.015.

Khalil, Mostafa M. H., Eman H. Ismail, Khaled Z.El-Baghdady, and Doaa Mohamed. 2014. “Green Synthesis ofSilver Nanoparticles Using Olive Leaf Extract and ItsAntibacterial Activity.” Arabian Journal of Chemistry7(6): 1131–1139. doi:10.1016/j.arabjc.2013.04.007.

Kim, Jun Sung, Eunye Kuk, Kyeong Nam Yu, Jong-Ho Kim, SungJin Park, Hu Jang Lee, So Hyun Kim et al. 2007.“Antimicrobial Effects of Silver Nanoparticles.”Nanomedicine: Nanotechnology, Biology, and Medicine 3:95–101. doi:10.1016/j.nano.2006.12.001.

Laban, Geoff, Loring F. Nies, Ronald F. Turco, John W.Bickham, and Maria S. Sepúlveda. 2010. “The Effects ofSilver Nanoparticles on Fathead Minnow (PimephalesPromelas) Embryos.” Ecotoxicology 19(1): 185–195.doi:10.1007/s10646-009-0404-4.

Lankveld, D. P. K., A. G. Oomen, P. Krystek, A. Neigh, A.Troost-de Jong, C. W. Noorlander, J. C. H. Van Eijkeren,R. E. Geertsma, and W. H. De Jong. 2010. “The Kinetics ofthe Tissue Distribution of Silver Nanoparticles ofDifferent Sizes.” Biomaterials 31(32): 8350–8361.doi:10.1016/j.biomaterials.2010.07.045.

Lansdown, A. B. G. 2007. “Critical Observations on theNeurotoxicity of Silver.” Critical Reviews in Toxicology37(3): 237–250. doi:10.1080/10408440601177665.

Lee, K. J., Prakash D. Nallathamby, Lauren M. Browning,Christopher J. Osgood, and XiaoHong Nancy Xu. 2007. “InVivo Imaging of Transport and Biocompatibility of SingleSilver Nanoparticles in Early Development of ZebrafishEmbryos.” ACS Nano 1(2): 133–143. doi:10.1021/nn700048y.

Lee, Yong-Ju, Jiwon Kim, Jeehyun Oh, Sujin Bae, SungkyuLee, In Seok Hong, and Sang-Ho Kim. 2012. “Ion-ReleaseKinetics and Ecotoxicity Effects of Silver Nanoparticles.”Environmental Toxicology and Chemistry 31(1): 155–159.doi:10.1002/etc.717.

Li, Chia Chen, Shinn Jen Chang, Fan Jun Su, Shu Wei Lin,and Yi Chun Chou. 2013. “Effects of Capping Agents on theDispersion of Silver Nanoparticles.” Colloids and SurfacesA: Physicochemical and Engineering Aspects 419: 209–215.doi:10.1016 /j.colsurfa.2012.11.077.

Li, Kai, Xiaotong Jia, Aiwei Tang, Xibin Zhu, Huan Meng,and Yingfeng Wang. 2012. “Preparation of Spherical andTriangular Silver Nanoparticles by a Convenient Method.”Integrated Ferroelectrics 136(1): 9–14.doi:10.1080/10584587.2012.686405.

Li, Y., P. Leung, L. Yao et al. 2007. “Green Synthesis ofSilver Nanoparticles Using Capsicum Annuum Leaf Extract.”Green Chemistry 9: 852–858.

Lu, Liang, and Xueqin An. 2015. “Silver NanoparticlesSynthesis Using H2 as Reducing Agent inToluene–supercritical CO2 Microemulsion.” Journal ofSupercritical Fluids 99: 29–37.doi:10.1016/j.supflu.2014.12.024.

Miao, A. J., Z. Luo, C. S. Chen, W. C. Chin, P. H.Santschi, and A. Quigg. 2010. “Intracellular Uptake: APossible Mechanism for Silver Engineered NanoparticleToxicity to a Freshwater Alga Ochromonas Danica.” PLoS ONE5(12): e15196.

Mittal, Amit Kumar, Sanjay Kumar, and Uttam Chand Banerjee.2014. “Quercetin and Gallic Acid Mediated Synthesis ofBimetallic (Silver and Selenium) Nanoparticles and TheirAntitumor and Antimicrobial Potential.” Journal of Colloidand Interface Science 431: 194–199.doi:10.1016/j.jcis.2014.06.030.

Mukherjee, Priyabrata, Absar Ahmad, Deendayal Mandal,Satyajyoti Senapati, Sudhakar R. Sainkar, Mohammad I Khan,Renu Parishcha et al. 2001. “Fungus-Mediated Synthesis of

Silver Nanoparticles and Their Immobilization in theMycelial Matrix: A Novel Biological Approach toNanoparticle Synthesis.” Nano Letters 1(10). AmericanChemical Society: 515–19. doi:10.1021/nl0155274.

Park, Jason Y., Sam F. Y. Li, and Larry J. Kricka. 2006.“Letter to the Editor.” Clinical Chemistry 52(2).

Paul, Sanjeeta, and Archana Chugh. 2011. “Assessing theRole of Ayurvedic ‘Bhasms’ as Ethno-Nanomedicine in theMetal Based Nanomedicine Patent Regime.” Journal ofIntellectual Property Rights 16: 509–515.

Poinern, G. E. J., P. Chapman, M. Shah, and D. Fawcett.2013. “Green Biosynthesis of Silver Nanocubes Using theLeaf Extracts from Eucalyptus Macrocarpa.” Nano Bulletin2(1): 130101.

Prabhu, Sukumaran, and Eldho K. Poulose. 2012. “SilverNanoparticles: Mechanism of Antimicrobial Action,Synthesis, Medical Applications, and Toxicity Effects.”International Nano Letters 2(1): 1–10.doi:10.1186/2228-5326-2-32.

Project on Emerging Nanotechnologies. 2013.http://www.nanotechproject.org/cpi.

Raab, Christina, Myrtill Simkó, André Gazsó, UlrichFiedeler, and Michael Nentwich. 2011. “What Are SyntheticNanoparticles?” Nano Trust Dossiers. http://epub.oeaw.ac.at/0xc1aa500e0x00254418.pdf.

Ravindra, Sakey, Antoine F. Mulaba-Bafubiandi, V.Rajinikanth, K. Varaprasad, N. Narayana Reddy, and K.Mohana Raju. 2012. “Development and Characterization ofCurcumin Loaded Silver Nanoparticle Hydrogels forAntibacterial and Drug Delivery Applications.” Journal ofInorganic and Organometallic Polymers and Materials 22(6):1254–1262. doi:10.1007/s10904-012-9734-4.

Remita, S., P. Fontaine, E. Lacaze, Y. Borensztein, H.Sellame, R. Farha, C. Rochas, M. Goldmann. 2007. “X-RayRadiolysis Induced Formation of Silver Nano-Particles: ASAXS and UV– visible Absorption Spectroscopy Study.”Nuclear Instruments and Methods in Physics ResearchSection B 263(2): 436–440.

Rhim, Jong-Whan, Long-Feng Wang, Yonghoon Lee, and Seok-InHong. 2014. “Preparation and Characterization ofBio-Nanocomposite Films of Agar and Silver Nanoparticles:

Laser Ablation Method.” Carbohydrate Polymers 103: 456–465.doi:10.1016/j.carbpol .2013.12.075.

Rishi, R. K. 2006. “Nutraceuticals: Borderline between Foodand Drug?” Pharma Review, 51–53.

Royal Commission on Environmental Pollution (RCEP). 2008.“Novel Materials in the Environment: The Case ofNanotechnology.” http://www.rcep.org.uk/.

Salari, Zeinab, Firoozeh Danafar, Shima Dabaghi, and SayedAhmad Ataei. 2014. “Sustainable Synthesis of SilverNanoparticles Using Macroalgae Spirogyra Varians andAnalysis of Their Antibacterial Activity.” Journal ofSaudi Chemical Society. doi:10.1016 /j.jscs.2014.10.004.

Schultz, W. B., and L. Barclay. 2009. “A Hard Pill ToSwallow: Barriers to Effective FDA Regulation ofNanotechnology-Based Dietary Supplements.”http://www.nanotechproject.org/process/assets/files/7056/pen17_final.pdf.

Senjen, Rye. 2009. “Nano and Biocidal Silver: Extreme GermKillers Present a Growing Threat to Public Health.”Friends of the Earth.

Shivaji, S., S. Madhu, and Shashi Singh. 2011.“Extracellular Synthesis of Antibacterial SilverNanoparticles Using Psychrophilic Bacteria.” ProcessBiochemistry 46(9): 1800–1807.doi:10.1016/j.procbio.2011.06.008.

Sivakumar, P., P. Karthika, P. Sivakumar, N. G.Muralidharan, S. Renganathan, and P. Devendran. 2013.“Bio-Synthesis of Silver Nano Cubes from Active CompoundQuercetin-3-O-Β-DD-Galactopyranoside Containing PlantExtract and Its Antifungal Application.” Asian Journal ofPharmaceutial and Clinical Research 6: 76–79.

Sondi, Ivan, and Branka Salopek-Sondi. 2004. “SilverNanoparticles as Antimicrobial Agent: A Case Study on E.Coli as a Model for Gram-Negative Bacteria.” Journal ofColloid and Interface Science 275(1): 177–182.doi:10.1016/j.jcis.2004.02.012.

Soutter, Will. 2012.

Srivatsan, Kunnavakkam Vinjimur, N. Duraipandy, ShajithaBegum, Rachita Lakra, Usha Ramamurthy, Purna SaiKorrapati, and Manikantan Syamala Kiran. 2015. “Effect of

Curcumin Caged Silver Nanoparticle on CollagenStabilization for Biomedical Applications.” InternationalJournal of Biological Macromolecules 75: 306–315.doi:10.1016/j.ijbiomac.2015.01.050.

Syed, Asad, Supriya Saraswati, Gopal C. Kundu, and AbsarAhmad. 2013. “Biological Synthesis of Silver NanoparticlesUsing the Fungus Humicola Sp. and Evaluation of TheirCytoxicity Using Normal and Cancer Cell Lines.”Spectrochimica Acta. Part A, Molecular and BiomolecularSpectroscopy 114: 144–147. doi:10.1016/j.saa.2013.05.030.

Varaprasad, K., Y. Murali Mohan, K. Vimala, and K. MohanaRaju. 2011. “Synthesis and Characterization ofHydrogel-Silver Nanoparticle-Curcumin Composites for WoundDressing and Antibacterial Application.” Journal of AppliedPolymer Science 121(2): 784–796. doi:10.1002/app.33508.

Wiley, Benjamin J., Yeechi Chen, Joseph M. McLellan, YujieXiong, Zhi-Yuan Li, David Ginger, and Younan Xia. 2007.“Synthesis and Optical Properties of Silver Nanobars andNanorice.” Nano Letters 7(4): 1032–1036.doi:10.1021/nl070214f.

Wong, Kenneth K. Y., Stephanie O. F. Cheung, Liuming Huang,Jun Niu, Chang Tao, Chi Ming Ho, Chi Ming Che, and Paul K.H. Tam. 2009. “Further Evidence of the Anti-InflammatoryEffects of Silver Nanoparticles.” ChemMedChem 4: 1129–1135.doi:10.1002/cmdc.200900049.

Xiu, Zong-Ming, Qing-Bo Zhang, Hema L. Puppala, Vicki L.Colvin, and Pedro J. J. Alvarez. 2012. “NegligibleParticle-Specific Antibacterial Activity of SilverNanoparticles.” Nano Letters 12(8): 4271–4275.doi:10.1021/nl301934w.

Yacaman, Jose Ruben Morones, Jose Luis Elechiguerra,Alejandra Camacho, Katherine Holt, Juan B. Kouri, JoseTapia Ramírez, and Miguel Jose. 2005. “The BactericidalEffect of Silver Nanoparticles.” Nanotechnology 16(10):2346. http://stacks.iop .org /0957-4484/16/i=10/a=059.

Yan, Yang, Ke-Bin Chen, Hao-Ran Li, Wei Hong, Xiao-bin Hu,and Zhou Xu. 2014. “Capping Effect of Reducing Agents andSurfactants in Synthesizing Silver Nanoplates.”Transactions of Nonferrous Metals Society of China 24(11):3732–3738. doi:10.1016 / S1003-6326(14)63522-6.

Yin, L., Y. Cheng, B. Epinasse, B. P. Colman, M. Auffan, M.Wiesner, J. Rose, J. Liu, and E. S. Barnhardt. 2011. “More

than Ions: The Effects of Silver Nanoparticles on LoliumMultiflorum.” Environmental Sciences and Technology 45(6):2360–2367.

Young, K., Y. Xia, and X. Lu. 2007. “Synthesis and GalvanicReplacement Reaction of Silver Nanocubes in OrganicMedium.” Journal of Young Investigators 16(4).

7 7: Nanoemulsions in Food Science andNutrition

Abbas, Shabbar, Mohanad Bashari, Waseem Akhtar, Wei Wei Li,and Xiaoming Zhang. 2014. “Process Optimization ofUltrasound-Assisted Curcumin Nanoemulsions Stabilized byOSA-Modified Starch.” Ultrasonics Sonochemistry 21(4):1265–1274.

Abbas, Shabbar, Eric Karangwa, Mohanad Bashari, KhizarHayat, Xiao Hong, Hafiz Rizwan Sharif, and Xiaoming Zhang.2015. “Fabrication of Polymeric Nanocapsules fromCurcumin-Loaded Nanoemulsion Templates by Self-Assembly.”Ultrasonics Sonochemistry 23: 81–92.

Acosta, Edgar. 2009. “Bioavailability of Nanoparticles inNutrient and Nutraceutical Delivery.” Current Opinion inColloid and Interface Science.doi:10.1016/j.cocis.2008.01.002.

Akhter, Sohail, Gaurav K. Jain, Farhan J. Ahmad, Roop K.Khar, Neelu Jain, Zeenat I. Khan, and SushamaTalegaonkar. 2008. “Investigation of Nanoemulsion Systemfor Transdermal Delivery of Domperidone: Ex-vivo and invivo Studies.” Current Nanoscience.doi:10.2174/157341308786306071.

Ammar, H. O., H. A. Salama, M. Ghorab, and A. A. Mahmoud.2010. “Development of Dorzolamide Hydrochloride in SituGel Nanoemulsion for Ocular Delivery.” Drug Developmentand Industrial Pharmacy 36: 1330–1339.doi:10.3109/03639041003801885.

Anandharamakrishnan, C. 2014. Techniques forNanoencapsulation of Food Ingredients.doi:10.1007/978-1-4614-9387-7.

Anton, Nicolas, Jean Pierre Benoit, and Patrick Saulnier.2008. “Design and Production of Nanoparticles Formulatedfrom Nano-Emulsion Templates—A Review.” Journal ofControlled Release. doi:10.1016/j.jconrel.2008.02.007.

Anuchapreeda, Songyot, Yoshinobu Fukumori, SiripornOkonogi, and Hideki Ichikawa. 2012. “Preparation of LipidNanoemulsions Incorporating Curcumin for Cancer Therapy.”Journal of Nanotechnology. doi:10.1155/2012/270383.

Araújo, F. A., R. G. Kelmann, B. V. Araújo, R. B. Finatto,H. F. Teixeira, and L. S. Koester. 2011. “Development andCharacterization of Parenteral Nanoemulsions Containing

Thalidomide.” European Journal of Pharmaceutical Sciences42(3): 238–245. doi:10.1016 /j.ejps.2010.11.014.

Azeem, Adnan, Mohammad Rizwan, Farhan J. Ahmad, ZeenatIqbal, Roop K. Khar, M. Aqil, and Sushama Talegaonkar.2009. “Nanoemulsion Components Screening and Selection: ATechnical Note.” AAPS PharmSciTech 10: 69–76. doi:10.1208/ s12249-008-9178-x.

Badawi, Alia A., Hanan M. El-Laithy, Riad K. El Qidra, HalaEl Mofty, and Mohamed El Dally. 2008. “Chitosan BasedNanocarriers for Indomethacin Ocular Delivery.” Archives ofPharmacal Research 31: 1040–1049.doi:10.1007/s12272-001-1266-6.

Baker, J. R., T. Hamouda, A. Shih, and A. Myc. 2003.“Non-Toxic Antimicrobial Compositions and Methods of Use.”Google Patents. http://www.google.com/patents/US6559189.

Baugh, S., T. Hnat, and F. Leaders. 2006. “Non-ToxicAntimicrobial Compositions and Methods Using Pro-OxidativePolyphenols and Antioxidants.” Google Patents. http://www.google.co.in/patents/WO2006079109A2?cl=en.

Bouchemal, K., S. Briançon, E. Perrier, and H. Fessi. 2004.“Nano-Emulsion Formulation Using SpontaneousEmulsification: Solvent, Oil and Surfactant Optimisation.”International Journal of Pharmaceutics 280: 241–251.doi:10.1016/j.ijpharm.2004.05.016.

Brenner, S., and R. W. Horne. 1959. “A Negative StainingMethod for High Resolution Electron Microscopy ofViruses.” Biochimica et Biophysica Acta. doi:10.1016/0006-3002 (59)90237-9.

Burapapadh, Kanokporn, Mont Kumpugdee-Vollrath, DoungdawChantasart, and Pornsak Sriamornsak. 2010. “Fabrication ofPectin-Based Nanoemulsions Loaded with Itraconazole forPharmaceutical Application.” Carbohydrate Polymers 82(2):384–393. doi:10.1016/j .carbpol.2010.04.071.

Calderilla-Fajardo, S. B., J. Cázares-Delgadillo, R.Villalobos-García, D. Quintanar-Guerrero, A.Ganem-Quintanar, and R. Robles. 2006. “Influence of SucroseEsters on the In Vivo Percutaneous Penetration of OctylMethoxycinnamate Formulated in Nanocapsules, Nanoemulsion,and Emulsion.” Drug Development and Industrial Pharmacy32(1): 107–113. doi:10.1080/03639040500388540.

Chau, Chi F., Shiuan Huei Wu, and Gow Chin Yen. 2007. “The

Development of Regulations for Food Nanotechnology.”Trends in Food Science and Technology. doi:10.1016/j.tifs.2007.01.007.

Chaudhry, Qasim, and Laurence Castle. 2011. “FoodApplications of Nanotechnologies: An Overview ofOpportunities and Challenges for Developing Countries.”Trends in Food Science & Technology.doi:10.1016/j.tifs.2011.01.001.

Cheftel, J. Claude. 2011. “Emerging Risks Related to FoodTechnology.” NATO Science for Peace and Security Series A:Chemistry and Biology, 223–254. doi:10.1007 /978-94-007-1100-6-13.

Choi, Young Keun, Bijay K. Poudel, Nirmal Marasini, KwanYeol Yang, Jeong Whan Kim, Jong Oh Kim, Han Gon Choi, andChul Soon Yong. 2012. “Enhanced Solubility and OralBioavailability of Itraconazole by Combining MembraneEmulsification and Spray Drying Technique.” InternationalJournal of Pharmaceutics 434: 264–271.doi:10.1016/j.ijpharm.2012.05.039.

Choudhury, Hira, Bapi Gorain, Sanmoy Karmakar, EashaBiswas, Goutam Dey, Rajib Barik, Mahitosh Mandal, andTapan Kumar Pal. 2014. “Improvement of Cellular Uptake, invitro Antitumor Activity and Sustained Release Profile withIncreased Bioavailability from a Nanoemulsion Platform.”International Journal of Pharmaceutics 460: 131– 143.doi:10.1016/j.ijpharm.2013.10.055.

Dasgupta, Nandita, Shivendu Ranjan, Deepa Mundekkad,Chidambaram Ramalingam, Rishi Shanker, and Ashutosh Kumar.2015a. “Nanotechnology in Agro-Food: From Field to Plate.”Food Research International 69( January): 381–400.doi:10.1016/j.foodres .2015.01.005.

Dasgupta, Nandita, Shivendu Ranjan, Shraddha Mundra,Chidambaram Ramalingam, and Ashutosh Kumar. 2015b.“Fabrication of Food Grade Vitamin E Nanoemulsion by LowEnergy Approach, Characterization and Its Application.”International Journal of Food Properties.doi:10.1080/10942912.2015.1042587.

Dasgupta, Nandita, Shivendu Ranjan, Bhavapriya Rajendran,Venkatraman Manickam, Chidambaram Ramalingam, G. S.Avadhani, and Kumar Ashutosh. 2015c. “Thermal Co-ReductionApproach to Vary Size of Silver Nanoparticle: Its Microbialand Cellular Toxicology.” Environmental Science andPollution Research International. Epub.

Dasgupta, Sandipan, Sanjay Dey, Supratik Choudhury, andBhaskar Mazumder. 2013. “Topical Delivery of Aceclofenacas Nanoemulsion Comprising Excipients Having OptimumEmulsification Capabilities: Preparation, Characterizationand in vivo Evaluation.” Expert Opinion on Drug Delivery10: 411–420. doi:10.1517/17425247.2013.749234.

Dasgupta, Sandipan, Surajit K. Ghosh, Subhabrata Ray,Surendra Singh Kaurav, and Bhaskar Mazumder. 2014. “Invitro & in vivo Studies on Lornoxicam Loaded NanoemulsionGels for Topical Application.” Current Drug Delivery 11:132–138. doi:10.2174/15672 018113106660063.

Davidov-Pardo, Gabriel, and David Julian McClements. 2015.“Nutraceutical Delivery Systems: Resveratrol Encapsulationin Grape Seed Oil Nanoemulsions Formed by SpontaneousEmulsification.” Food Chemistry 167: 205–212.doi:10.1016/j.foodchem.2014.06.082.

Desai, Ankita, Tushar Vyas, and Mansoor Amiji. 2008.“Cytotoxicity and Apoptosis Enhancement in Brain TumorCells upon Coadministration of Paclitaxel and Ceramide inNanoemulsion Formulations.” Journal of PharmaceuticalSciences 97(7): 2745–2756. doi:10.1002/jps.21182.

Donsì, Francesco, Marianna Annunziata, and GiovannaFerrari. 2013. “Microbial Inactivation by High PressureHomogenization: Effect of the Disruption Valve Geometry.”Journal of Food Engineering 115: 362–370.doi:10.1016/j.jfoodeng.2012.10.046.

Donsì, Francesco, Marianna Annunziata, Mariarenata Sessa,and Giovanna Ferrari. 2011. “Nanoencapsulation ofEssential Oils to Enhance Their Antimicrobial Activity inFoods.” LWT—Food Science and Technology 44: 1908–1914.doi:10.1016/j.lwt.2011.03.003.

Donsì, Francesco, Marianna Annunziata, MariarosariaVincensi, and Giovanna Ferrari. 2012. “Design ofNanoemulsion-Based Delivery Systems of NaturalAntimicrobials: Effect of the Emulsifier.” Journal ofBiotechnology 159: 342–350.doi:10.1016/j.jbiotec.2011.07.001.

Dowling, Ann P. 2004. “Development of Nanotechnologies.”Materials Today. doi:10.1016 / S1369-7021(04)00628-5.

Ezhilarasi, P. N., P. Karthik, N. Chhanwal, and C.Anandharamakrishnan. 2013. “Nanoencapsulation Techniques

for Food Bioactive Components: A Review.” Food andBioprocess Technology. doi:10.1007/s11947-012-0944-0.

Fathi, Milad, M. R. Mozafari, and M. Mohebbi. 2012.“Nanoencapsulation of Food Ingredients Using Lipid BasedDelivery Systems.” Trends in Food Science and Technology.doi:10.1016/j.tifs.2011.08.003.

Finke, Jan Henrik, Svea Niemann, Claudia Richter, ThomasGothsch, Arno Kwade, Stephanus Büttgenbach, and ChristelCharlotte Müller-Goymann. 2014. “Multiple Orifices inCustomized Microsystem High-Pressure Emulsification: TheImpact of Design and Counter Pressure on HomogenizationEfficiency.” Chemical Engineering Journal 248: 107–121.doi:10.1016/j.cej.2013.12.105.

Ganta, Srinivas, and Mansoor Amiji. 2009. “Coadministrationof Paclitaxel and Curcumin in Nanoemulsion Formulations toOvercome Multidrug Resistance in Tumor Cells.” MolecularPharmaceutics 6(3): 928–939. doi:10.1021/mp800240j.

Ganta, Srinivas, Dipti Deshpande, Anisha Korde, and MansoorAmiji. 2010. “A Review of Multifunctional NanoemulsionSystems to Overcome Oral and CNS Drug Delivery Barriers.”Molecular Membrane Biology 27: 260–273.doi:10.3109/09687688.2010.497971.

Ghosh, Vijayalakshmi, Amitava Mukherjee, and NatarajanChandrasekaran. 2013a. “Ultrasonic Emulsification ofFood-Grade Nanoemulsion Formulation and Evaluation of ItsBactericidal Activity.” Ultrasonics Sonochemistry 20:338–44. doi:10.1016/j.ultsonch .2012.08.010.

Ghosh, Vijayalakshmi, S. Saranya, Amitava Mukherjee, andNatarajan Chandrasekaran. 2013b. “Cinnamon OilNanoemulsion Formulation by Ultrasonic Emulsification:Investigation of Its Bactericidal Activity.” Journal ofNanoscience and Nanotechnology 13: 114–122.doi:10.1166/jnn.2013.6701.

Goldstein, Joseph, Dale Newbury, David Joy, Charles Lyman,Patrick Echlin, Eric Lifshin, Linda Sawyer, and JosephMichael. 2003. Scanning Electron Microscopy and X-RayMicroanalysis. Scanning Electron Microscopy. Vol. 1. NewYork: Springer.

Gutiérrez, Francisco J., Silvia M. Albillos, ElviraCasas-Sanz, Ziortza Cruz, Carlos GarcíaEstrada, AnaGarcía-Guerra, José García-Reverter et al. 2013. “Methodsfor the Nanoencapsulation of Β-Carotene in the Food

Sector.” Trends in Food Science and Technology.doi:10.1016/j.tifs.2013.05.007.

Hagigit, Tal, Muhammad Abdulrazik, Faty Valamanesh,Francine Behar-Cohen, and Simon Benita. 2012. “OcularAntisense Oligonucleotide Delivery by Cationic Nanoemulsionfor Improved Treatment of Ocular Neovascularization: AnIn-Vivo Study in Rats and Mice.” Journal of ControlledRelease 160: 225–231. doi:10.1016/j.jconrel.2011.11.022.

Halliday, J. 2015. “EFSA Opens the Floor onNanotechnology.” http://www.foodnavigator

Hatanaka, Junya, Hina Chikamori, Hideyuki Sato, ShinyaUchida, Kazuhiro Debari, Satomi Onoue, and Shizuo Yamada.2010. “Physicochemical and PharmacologicalCharacterization of Alpha-Tocopherol-Loaded Nano-EmulsionSystem.” International Journal of Pharmaceutics 396(1–2):188–193. doi:10.1016/j.ijpharm.2010.06.017.

Hatanaka, Junya, Yoshihiro Kimura, Zhogn Lai-Fu, SatomiOnoue, and Shizuo Yamada. 2008. “Physicochemical andPharmacokinetic Characterization of Water-Soluble CoenzymeQ10 Formulations.” International Journal of Pharmaceutics363: 112–117. doi:10.1016/j.ijpharm.2008.07.019.

Hatziantoniou, S., G. Deli, Y. Nikas, C. Demetzos, and G.Th. Papaioannou. 2007. “Scanning Electron Microscopy Studyon Nanoemulsions and Solid Lipid Nanoparticles ContainingHigh Amounts of Ceramides.” Micron 38(8): 819–823.doi:10.1016/j.micron.2007.06.010.

He, Wei, Yi Lu, Jianping Qi, Lingyun Chen, Fuqiang Hu, andWei Wu. 2013. “NanoemulsionTemplated Shell-CrosslinkedNanocapsules as Drug Delivery Systems.” InternationalJournal of Pharmaceutics 445: 69–78.doi:10.1016/j.ijpharm.2013.01.072.

Hingant, Bénédicte, and Virginie Albe. 2010. “Nanosciencesand Nanotechnologies Learning and Teaching in SecondaryEducation: A Review of Literature.” Studies in ScienceEducation. doi:10.1080/03057267.2010.504543.

Hoeller, Sonja, Andrea Sperger, and Claudia Valenta. 2009.“Lecithin Based Nanoemulsions: A Comparative Study of theInfluence of Non-Ionic Surfactants and the CationicPhytosphingosine on Physicochemical Behaviour and SkinPermeation.” International Journal of Pharmaceutics370(1–2): 181–186. doi:10.1016/j.ijpharm.2008.11.014.

Jans, Hilde, Xiong Liu, Lauren Austin, Guido Maes, and QunHuo. 2009. “Dynamic Light Scattering as a Powerful Toolfor Gold Nanoparticle Bioconjugation and BiomolecularBinding Studies.” Analytical Chemistry 81: 9425–9432.doi:10.1021/ac901822w.

Jiang, Lim Chaw, Mahiran Basri, Dzolkhifli Omar, MohdBasyaruddin Abdul Rahman, Abu Bakar Salleh, and Raja NoorZaliha Raja Abdul Rahman. 2013. “Green NanoemulsionLadenGlyphosate Isopropylamine Formulation in SuppressingCreeping Foxglove (A. Gangetica), Slender Button Weed (D.Ocimifolia) and Buffalo Grass (P. Conjugatum).” PestManagement Science 69: 104–111. doi:10.1002/ps.3371.

Jo, Yeon-Ji, and Yun-Joong Kwon. 2014. “Characterization ofΒ-Carotene Nanoemulsions Prepared by MicrofluidizationTechnique.” Food Science and Biotechnology 23(1): 107–13.

Joe, Manoharan Melvin, K. Bradeeba, RengasamyParthasarathi, Palanivel Karpagavinaya Sivakumaar, PuneetSingh Chauhan, Sherlyn Tipayno, Abitha Benson, and TongminSa. 2012a. “Development of Surfactin Based NanoemulsionFormulation from Selected Cooking Oils: Evaluation forAntimicrobial Activity against Selected Food AssociatedMicroorganisms.” Journal of the Taiwan Institute ofChemical Engineers 43: 172–180.doi:10.1016/j.jtice.2011.08.008.

Joe, Manoharan Melvin, Puneet Singh Chauhan, K. Bradeeba,Charlotte Shagol, Palanivel Karpagavinaya Sivakumaar, andTongmin Sa. 2012b. “Influence of Sunflower Oil BasedNanoemulsion (AUSN-4) on the Shelf Life and Quality ofIndo-Pacific King Mackerel (Scomberomorus Guttatus) SteaksStored at 20°C.” Food Control 23: 564–570.doi:10.1016/j.foodcont.2011.08.032.

Joseph, Sonja, and Heike Bunjes. 2014. “Evaluation ofShirasu Porous Glass (SPG) Membrane Emulsification for thePreparation of Colloidal Lipid Drug Carrier Dispersions.”European Journal of Pharmaceutics and Biopharmaceutics 87:178–186. doi:10.1016/j .ejpb.2013.11.010.

Karthikeyan, Ramalingam, Bennett T. Amaechi, H. RalphRawls, and Valerie A. Lee. 2011. “Antimicrobial Activityof Nanoemulsion on Cariogenic Streptococcus Mutans.”Archives of Oral Biology 56: 437–445.doi:10.1016/j.archoralbio.2010.10.022.

Kelmann, Regina G., Gislaine Kuminek, Helder F. Teixeira,and Letícia S. Koester. 2007. “Carbamazepine Parenteral

Nanoemulsions Prepared by Spontaneous EmulsificationProcess.” International Journal of Pharmaceutics 342:231–239. doi:10.1016/j.ijpharm .2007.05.004.

Kingsley, J. Danie, Shivendu Ranjan, Nandita Dasgupta, andProud Saha. 2013. “Nanotechnology for Tissue Engineering:Need, Techniques and Applications.” Journal of PharmacyResearch 7: 200–204. doi:10.1016/j.jopr.2013.02.021.

Kong, Ming, and Hyun Jin Park. 2011. “StabilityInvestigation of Hyaluronic Acid Based Nanoemulsion andIts Potential as Transdermal Carrier.” CarbohydratePolymers 83(3): 1303–1310.doi:10.1016/j.carbpol.2010.09.041.

Kumar, Mukesh, Ambikanandan Misra, A. K. Babbar, A. K.Mishra, Puspa Mishra, and Kamla Pathak. 2008. “IntranasalNanoemulsion Based Brain Targeting Drug Delivery System ofRisperidone.” International Journal of Pharmaceutics 358:285–291. doi:10.1016/j .ijpharm.2008.03.029.

Kuo, Fonghsu, Balajikarthick Subramanian, Timothy Kotyla,Thomas A. Wilson, Subbiah Yoganathan, and Robert J.Nicolosi. 2008. “Nanoemulsions of an Anti-Oxidant SynergyFormulation Containing Gamma Tocopherol Have EnhancedBioavailability and AntiInflammatory Properties.”International Journal of Pharmaceutics 363: 206–213.doi:10.1016/j.ijpharm.2008.07.022.

Kwon, Soon Sik, Bong Ju Kong, Wan Goo Cho, and Soo NamPark. 2015. “Formation of Stable Hydrocarbon Oil-in-WaterNanoemulsions by Phase Inversion Composition Method atElevated Temperature.” Korean Journal of ChemicalEngineering 32(3): 540–46.

Lallemand, Frederic, Philippe Daull, Simon Benita, RonaldBuggage, and Jean-Sebastien Garrigue. 2012. “SuccessfullyImproving Ocular Drug Delivery Using the CationicNanoemulsion, Novasorb.” Journal of Drug Deliverydoi:10.1155/2012/604204.

Landry, Kyle S., Yuhua Chang, David Julian McClements, andLynne McLandsborough. 2014. “Effectiveness of a NovelSpontaneous Carvacrol Nanoemulsion against SalmonellaEnterica Enteritidis and Escherichia Coli O157: H7 onContaminated Mung Bean and Alfalfa Seeds.” InternationalJournal of Food Microbiology 187: 15–21. doi:10.1016/j.ijfoodmicro.2014.06.030.

Laouini, Abdallah, Hatem Fessi, and Catherine Charcosset.

2012. “Membrane Emulsification: A Promising Alternativefor Vitamin E Encapsulation within Nano-Emulsion.” Journalof Membrane Science 423–424: 85–96.doi:10.1016/j.memsci.2012.07.031.

Lee, Sung Je, Seung Jun Choi, Yan Li, Eric Andrew Decker,and David Julian McClements. 2011. “Protein-StabilizedNanoemulsions and Emulsions: Comparison of PhysicochemicalStability, Lipid Oxidation, and Lipase Digestibility.”Journal of Agricultural and Food Chemistry 59(1): 415–427.doi:10.1021/jf103511v.

Leong, T. S. H., T. J. Wooster, S. E. Kentish, and M.Ashokkumar. 2009. “Minimising Oil Droplet Size UsingUltrasonic Emulsification.” Ultrasonics Sonochemistry 16:721–727. doi:10.1016/j.ultsonch.2009.02.008.

Li, Po Hsien, and Been Huang Chiang. 2012. “ProcessOptimization and Stability of D-Limonene-in-WaterNanoemulsions Prepared by Ultrasonic Emulsification UsingResponse Surface Methodology.” Ultrasonics Sonochemistry19(1): 192–197. doi:10.1016 /j.ultsonch.2011.05.017.

Liang, Rong, Shiqi Xu, Charles F. Shoemaker, Yue Li, FangZhong, and Qingrong Huang. 2012. “Physical andAntimicrobial Properties of Peppermint Oil Nanoemulsions.”Journal of Agricultural and Food Chemistry 60(30):7548–7555. doi:10.1021/jf301129k.

Lim, Chaw Jiang, Mahiran Basri, Dzolkhifli Omar, MohdBasyaruddin Abdul Rahman, Abu Bakar Salleh, Raja NoorZaliha Raja Abdul Rahman, and Ahmad Selamat. 2012. “GreenNano-Emulsion Intervention for Water-Soluble GlyphosateIsopropylamine (IPA) Formulations in Controlling EleusineIndica (E. Indica).” Pesticide Biochemistry and Physiology102: 19–29. doi:10.1016/j.pestbp.2011.10.004.

Liu, Chi Hsien, and Shin Ying Yu. 2010. “CationicNanoemulsions as Non-Viral Vectors for Plasmid DNADelivery.” Colloids and Surfaces B: Biointerfaces 79(2):509–515. doi:10.1016/j.colsurfb.2010.05.026.

Losso, Jack N., Armen Khachatryan, Masahiro Ogawa, J. SamGodber, and Fred Shih. 2005. “Random Centroid Optimizationof Phosphatidylglycerol Stabilized Lutein-EnrichedOil-in-Water Emulsions at Acidic pH.” Food Chemistry 92(4):737–744. doi:10.1016/j .foodchem.2004.12.029.

Luykx, D. M. A. M., R. J. B. Peters, S. M. Van Ruth, and H.Bouwmeester. 2008. “A Review of Analytical Methods for the

Identification and Characterization of Nano DeliverySystems in Food.” Journal of Agricultural and FoodChemistry 56: 8231–8247. doi:10.1021/jf8013926.

Maddinedi, Sireesh Babu, Badal Kumar Mandal, ShivenduRanjan, and Nandita Dasgupta. 2015. “Diastase AssistedGreen Synthesis of Size-Controllable Gold Nanoparticles.”Royal Society of Chemistry 5(34): 26727–26733.doi:10.1039/C5RA03117F.

Mangematin, Vincent, and Steve Walsh. 2012. “The Future ofNanotechnologies.” Technovationdoi:10.1016/j.technovation.2012.01.003.

Masaki, Yoko, Makoto Tanaka, and Toshiaki Nishikawa. 2003.“Physicochemical Compatibility of Propofol-LidocaineMixture.” Anesthesia and Analgesia 97(6): 1646– 1651.doi:10.1213/01.ANE.0000087802.50796.FB.

McClements, David Julian. 2011. “Edible Nanoemulsions:Fabrication, Properties, and Functional Performance.” SoftMatter doi:10.1039/c0sm00549e.

McClements, David Julian. 2013. “Edible LipidNanoparticles: Digestion, Absorption, and PotentialToxicity.” Progress in Lipid Researchdoi:10.1016/j.plipres.2013.04.008.

Morales, D., J. M. Gutiérrez, M. J. García-Celma, and Y. C.Solans. 2003. “A Study of the Relation betweenBicontinuous Microemulsions and Oil/Water Nano-EmulsionFormation.” Langmuir 19: 7196–7200. doi:10.1021/la0300737.

Mou, Dongsheng, Huabing Chen, Danrong Du, Chengwen Mao,Jiangling Wan, Huibi Xu, and Xiangliang Yang. 2008.“Hydrogel-Thickened Nanoemulsion System for TopicalDelivery of Lipophilic Drugs.” International Journal ofPharmaceutics 353: 270–276.doi:10.1016/j.ijpharm.2007.11.051.

Nam, Yoon Sung, Jin Woong Kim, JaeYoon Park, Jongwon Shim,Jong Suk Lee, and Sang Hoon Han. 2012. “Tocopheryl AcetateNanoemulsions Stabilized with Lipid-Polymer HybridEmulsifiers for Effective Skin Delivery.” Colloids andSurfaces B: Biointerfaces 94: 51–57.doi:10.1016/j.colsurfb.2012.01.016.

Nazarzadeh, Elijah, Tania Anthonypillai, and ShahriarSajjadi. 2013. “On the Growth Mechanisms ofNanoemulsions.” Journal of Colloid and Interface Science

397: 154– 162. doi:10.1016/j.jcis.2012.12.018.

Ostertag, Felix, Jochen Weiss, and David Julian McClements.2012. “Low-Energy Formation of Edible Nanoemulsions:Factors Influencing Droplet Size Produced by EmulsionPhase Inversion.” Journal of Colloid and Interface Science388: 95–102. doi:10.1016/j .jcis.2012.07.089.

Pant, Megha, Saurabh Dubey, P. K. Patanjali, S. N. Naik,and Satyawati Sharma. 2014. “Insecticidal Activity ofEucalyptus Oil Nanoemulsion with Karanja and JatrophaAqueous Filtrates.” International Biodeterioration andBiodegradation 91: 119–127.doi:10.1016/j.ibiod.2013.11.019.

Pathan, Inayat Bashir, and C. Mallikarjuna Setty. 2011.“Enhancement of Transdermal Delivery of Tamoxifen CitrateUsing Nanoemulsion Vehicle.” International Journal ofPharmTech Research 3(1): 287–297.

Peshkovsky, Alexey S., Sergei L. Peshkovsky, and SimonBystryak. 2013. “Scalable HighPower Ultrasonic Technologyfor the Production of Translucent Nanoemulsions.” ChemicalEngineering and Processing: Process Intensification 69:77–82. doi:10.1016/j .cep.2013.02.010.

Pieter, Walstra. 1993. “Principles of Emulsion Formation.”Chemical Engineering Science 48: 333–349.doi:10.1016/0009-2509(93)80021-H.

Preetz, Claudia, Anton Hauser, Gerd Hause, Armin Kramer,and Karsten Mäder. 2010. “Application of Atomic ForceMicroscopy and Ultrasonic Resonator Technology onNanoscale: Distinction of Nanoemulsions from Nanocapsules.”European Journal of Pharmaceutical Sciences 39(1–3):141–151. doi:10.1016/j.ejps.2009.11.009.

Quintanilla-Carvajal, María Ximena, Brenda HildelizaCamacho-Díaz, Lesvia Sofia Meraz-Torres, José JorgeChanona-Pérez, Liliana Alamilla-Beltrán, AntonioJimenéz-Aparicio, and Gustavo F. Gutiérrez-López. 2010.“Nanoencapsulation: A New Trend in Food EngineeringProcessing.” Food Engineering Reviews 2: 39–50. doi:10.1007/s12393-009-9012-6.

Ragelle, Héloïse, Sylvie Crauste-Manciet, Johanne Seguin,Denis Brossard, Daniel Scherman, Philippe Arnaud, and GuyG. Chabot. 2012. “Nanoemulsion Formulation of FisetinImproves Bioavailability and Antitumour Activity in Mice.”International Journal of Pharmaceutics 427: 452–459.

doi:10.1016/j.ijpharm.2012.02.025.

Ramalingam, Karthikeyan, Bennett T. Amaechi, Rawls H.Ralph, and Valerie A. Lee. 2012. “Antimicrobial Activityof Nanoemulsion on Cariogenic Planktonic and BiofilmOrganisms.” Archives of Oral Biology 57: 15–22.doi:10.1016/j.archoralbio.2011. 07 .001.

Ranjan, Shivendu, and Nandita Dasgupta. 2013. “ProposalGrant ‘NanoToF: Toxicological Evaluation for NanoparticlesUsed in Food’. PI: Dr. C. Ramalingam, Co-PI: Dr. AshutoshK and Dr. Ramanathan K.” dbtepromis.nic.in.

Ranjan, Shivendu, Nandita Dasgupta, Arkadyuti RoyChakraborty, S. Melvin Samuel, Chidambaram Ramalingam,Rishi Shanker, and Ashutosh Kumar. 2014. “Nanoscience andNanotechnologies in Food Industries: Opportunities andResearch Trends.” Journal of Nanoparticle Research 16(6):1–23. doi:10.1007/s11051-014-2464-5.

Rein, Maarit J., Mathieu Renouf, Cristina Cruz-Hernandez,Lucas Actis-Goretta, Sagar K. Thakkar, and Marcia da SilvaPinto. 2013. “Bioavailability of Bioactive Food Compounds:A Challenging Journey to Bioefficacy.” British Journal ofClinical Pharmacology 75: 588–602.doi:10.1111/j.1365-2125.2012.04425.x.

Saberi, Amir Hossein, Yuan Fang, and David JulianMcClements. 2013. “Fabrication of Vitamin E-EnrichedNanoemulsions: Factors Affecting Particle Size UsingSpontaneous Emulsification.” Journal of Colloid andInterface Science 391(1): 95–102. doi:10.1016/j.jcis.2012.08.069.

Saberi, Amir Hossein, Yuan Fang, and David JulianMcClements. 2014. “Effect of Salts on Formation andStability of Vitamin E-Enriched Mini-Emulsions Produced bySpontaneous Emulsification.” Journal of Agricultural andFood Chemistry 62(46): 11246–11253.

Sadtler, Véronique, Marianna Rondon-Gonzalez, AudreyAcrement, Lionel Choplin, and Emmanuelle Marie. 2010.“PEO-Covered Nanoparticles by Emulsion Inversion Point(EIP) Method.” Macromolecular Rapid Communications 31:998–1002. doi:10.1002 / marc.200900835.

Sadurní, N., C. Solans, N. Azemar, and M. J. García-Celma.2005. “Studies on the Formation of O/W Nano-Emulsions, byLow-Energy Emulsification Methods, Suitable forPharmaceutical Applications.” European Journal of

Pharmeceutical Sciences 26(5): 438–445.

Sakeena, M. H. F., F. A. Muthanna, Z. A. Ghassan, M. M.Kanakal, S. M. Elrashid, A. S. Munavvar, and M. N. Azmin.2010. “Formulation and in vitro Evaluation of Ketoprofen inPalm Oil Esters Nanoemulsion for Topical Delivery.”Journal of Oleo Science 59: 223–228.doi:10.5650/jos.59.223.

Sanguansri, Peerasak, and Mary Ann Augustin. 2006.“Nanoscale Materials Development—A Food IndustryPerspective.” Trends in Food Science & Technology.doi:10.1016/j .tifs.2006.04.010.

Sathishkumar, M., K. Sneha, S. W. Won, C. W. Cho, S. Kim,and Y. S. Yun. 2009. “Cinnamon Zeylanicum Bark Extract andPowder Mediated Green Synthesis of Nano-Crystalline SilverParticles and Its Bactericidal Activity.” Colloids andSurfaces B: Biointerfaces 73: 332–338.doi:10.1016/j.colsurfb.2009.06.005.

Schalbart, P., M. Kawaji, and K. Fumoto. 2010. “Formationof Tetradecane Nanoemulsion by Low-Energy EmulsificationMethods.” International Journal of Refrigeration 33(8):1612–1624. doi:10.1016/j.ijrefrig.2010.09.002.

Shah, P., D. Bhalodia, and P. Shelat. 2010. “Nanoemulsion:A Pharmaceutical Review.” Systematic Reviews in Pharmacy.doi:10.4103/0975-8453.59509.

Shakeel, Faiyaz, and Wafa Ramadan. 2010. “TransdermalDelivery of Anticancer Drug Caffeine from Water-in-OilNanoemulsions.” Colloids and Surfaces B: Biointerfaces 75:356–362. doi:10.1016/j.colsurfb.2009.09.010.

Shakeel, Faiyaz, Sheikh Shafiq, Nazrul Haq, Fars K.Alanazi, and Ibrahim A. Alsarra. 2012. “Nanoemulsions asPotential Vehicles for Transdermal and Dermal Delivery ofHydrophobic Compounds: An Overview.” Expert Opinion on DrugDelivery. doi:10.15 17/17425247.2012.696605.

Shams, K., and H. Ahi. 2013. “Synthesis of 5A ZeoliteNanocrystals Using Kaolin via Nanoemulsion- UltrasonicTechnique and Study of Its Sorption Using a Known KeroseneCut.” Microporous and Mesoporous Materials 180: 61–71.doi:10.1016/j .micromeso.2013.06.019.

Shams, K., and S. J. Mirmohammadi. 2007. “Preparation of 5AZeolite Monolith Granular Extrudates Using Kaolin:Investigation of the Effect of Binder on Sieving/adsorption

Properties Using a Mixture of Linear and Branched ParaffinHydrocarbons.” Microporous and Mesoporous Materials 106:268–277. doi:10.1016/j.micromeso.2007.03.007.

Sharma, Nitin, Mayank Bansal, Sharad Visht, P. Sharma, andG. Kulkarni. 2010. “Nanoemulsion: A New Concept ofDelivery System.” Chronicles of Young Scientists 1: 2–6.

Silva, Hélder Daniel, Miguel Ângelo Cerqueira, and AntónioA. Vicente. 2012. “Nanoemulsions for Food Applications:Development and Characterization.” Food and BioprocessTechnology. doi:10.1007/s11947-011-0683-7.

Singh, Kamalinder K., and Sharvani K. Vingkar. 2008.“Formulation, Antimalarial Activity and Biodistribution ofOral Lipid Nanoemulsion of Primaquine.” InternationalJournal of Pharmaceutics 347: 136–143.doi:10.1016/j.ijpharm.2007.06.035.

Sonneville-Aubrun, O., J. T. Simonnet, and F. L’Alloret.2004. “Nanoemulsions: A New Vehicle for SkincareProducts.” Advances in Colloid and Interface Science108–109: 145–149. doi:10.1016/j.cis.2003.10.026.

Sugumar, Saranya, Vijayalakshmi Ghosh, M. Joyce Nirmala,Amitava Mukherjee, and Natarajan Chandrasekaran. 2014.“Ultrasonic Emulsification of Eucalyptus Oil Nanoemulsion:Antibacterial Activity against Staphylococcus Aureus andWound Healing Activity in Wistar Rats.” UltrasonicsSonochemistry 21: 1044–1049. doi:10.1016/j.ultsonch. 2013.10.021.

Sugumar, Saranya, Joyce Nirmala, Vijayalakshmi Ghosh,Haridasan Anjali, Amitava Mukherjee, and NatarajanChandrasekaran. 2013. “Bio-Based Nanoemulsion Formulation,Characterization and Antibacterial Activity againstFood-Borne Pathogens.” Journal of Basic Microbiology 53:677–685. doi:10.1002/jobm.201200060.

Sun, Hongwu, Kaiyun Liu, Wei Liu, Wenxiu Wang, ChunliangGuo, Bin Tang, Jiang Gu et al. 2012. “Development andCharacterization of a Novel Nanoemulsion Drug-DeliverySystem for Potential Application in Oral Delivery ofProtein Drugs.” International Journal of Nanomedicine 7:5529–5543. doi:10.2147/IJN.S36071.

Tadros, Tharwat, P. Izquierdo, J. Esquena, and C. Solans.2004. “Formation and Stability of Nano-Emulsions.”Advances in Colloid and Interface Science.doi:10.1016/j.cis .2003.10.023.

Tang, Siah Ying, Parthasarathy Shridharan, and ManickamSivakumar. 2013. “Impact of Process Parameters in theGeneration of Novel Aspirin Nanoemulsions—ComparativeStudies between Ultrasound Cavitation and Microfluidizer.”Ultrasonics Sonochemistry 20(1): 485–497.doi:10.1016/j.ultsonch.2012.04.005.

Tiede, K., A. B. A. Boxall, S. P. Tear, J. Lewis, H. David,and M. Hassellov. 2008. “Detection and Characterization ofEngineered Nanoparticles in Food and the Environment.” FoodAdditives and Contaminants—Part A Chemistry, Analysis,Control, Exposure and Risk Assessment 25: 795–821.doi:10.1080/02652030802007553.

Tubesha, Z., and M. Ismail. 2014. “Characterization andChemical Stability Studies for Thymoquinone-Rich Fraction(TQRF) Nanoemulsion Prepared by High PressureHomogenizer.” PharmaNutrition 2(3): 112.

Vijayalakshmi, Ghosh, Amitava Mukherjee, and NatarajanChandrasekaran. 2014. “EugenolLoaded AntimicrobialNanoemulsion Preserves Fruit Juice Against, MicrobialSpoilage.” Colloids and Surfaces B: Biointerfaces 114:392–397. doi:10.1016/j.colsurfb.2013.10.034.

Vishwanathan, Rohini, Thomas A. Wilson, and Robert J.Nicolosi. 2009. “Bioavailability of a Nanoemulsion ofLutein Is Greater than a Lutein Supplement.” NanoBiomedicine and Engineering. doi:10.5101/nbe.v1i1.p38-49.

Walker, Rebecca M., Eric A. Decker, and David J.McClements. 2015. “Physical and Oxidative Stability ofFish Oil Nanoemulsions Produced by SpontaneousEmulsification: Effect of Surfactant Concentration andParticle Size.” Journal of Food Engineering. doi:10.1016/j.jfoodeng.2015.04.028.

Wang, Xiaoyong, Yan Jiang, Yu Wen Wang, Mou Tuan Huang, ChiTang Ho, and Qingrong Huang. 2008. “EnhancingAnti-Inflammation Activity of Curcumin through O/WNanoemulsions.” Food Chemistry 108: 419–424.doi:10.1016/j.foodchem.2007.10.086.

Watanabe, M., and D. B. Williams. 2006. “The QuantitativeAnalysis of Thin Specimens: A Review of Progress from theCliff-Lorimer to the New Ζ-Factor Methods.” Journal ofMicroscopy. doi:10.1111/j.1365-2818.2006.01549.x.

Weirong, Liu, Dejun Sun, Caifu Li, Qian Liu, and Jian Xu.

2006. “Formation and Stability of Paraffin Oil-in-WaterNano-Emulsions Prepared by the Emulsion Inversion PointMethod.” Journal of Colloid and Interface Science 303:557–563. doi:10.1016/j.jcis .2006.07.055.

Weiss, J., E. A. Decker, D. J. McClements, K.Kristbergsson, T. Helgason, and T. Awad. 2008. “SolidLipid Nanoparticles as Delivery Systems for Bioactive FoodComponents.” Food Biophysics 3: 146–154.doi:10.1007/s11483-008-9065-8.

Williams, David B., and C. Barry Carter. 2009. TransmissionElectron Microscopy: A Textbook for Materials Science.Materials Science. 4 vols.doi:10.1007/978-1-61779-415-5_23.

Wooster, Tim J., Matt Golding, and Peerasak Sanguansri.2008. “Impact of Oil Type on Nanoemulsion Formation andOstwald Ripening Stability.” Langmuir 24: 12758–12765.doi:10.1021/la801685v.

XpertArena. 2015. “Safety Concerns of Nanomaterials: AnExpert’s Critics.” http://www .xpertarena .com.

Yin, Li Jun, Boon Seang Chu, Isao Kobayashi, and MitsutoshiNakajima. 2009. “Performance of Selected Emulsifiers andTheir Combinations in the Preparation of Β-CaroteneNanodispersions.” Food Hydrocolloids 23: 1617–1622.doi:10.1016/j.foodhyd.2008.12 .005.

Yu, Hailong, and Qingrong Huang. 2012. “Improving the OralBioavailability of Curcumin Using Novel Organogel-BasedNanoemulsions.” Journal of Agricultural and Food Chemistry60: 5373–5379. doi:10.1021/jf300609p.

Zahi, Mohamed Reda, Pingyu Wan, Hao Liang, and Qipeng Yuan.2014. “Formation and Stability of D-LimoneneOrganogel-Based Nanoemulsion Prepared by a High-PressureHomogenizer.” Journal of Agricultural and Food Chemistry62(52): 12563–12569.

Zhou, Huafeng, Yang Yue, Guanlan Liu, Yan Li, Jing Zhang,Qiu Gong, Zemin Yan, and Mingxing Duan. 2010. “Preparationand Characterization of a Lecithin Nanoemulsion as aTopical Delivery System.” Nanoscale Research Letters 5:224–230. doi:10.1007 / s11671-009-9469-5.

8 8: Dietary Fibers and Etiology ofHealth and Disease: An Emerging Conceptof Nanonutraceuticals

Anderson JW et al. 2009. Health benefits of dietary fiber.Nutrition Reviews 67(4): 188–205.

Arimi JM, Duggan E, O’Riordan ED, O’Sullivan M, Lyng JG.2008. Microwave expansion of imitation cheese containingresistant starch. Journal of Food Engineering 88: 254–262.

Benavente-Garcia J, del Castillo JA. 1997. Uses andproperties of citrus flavonoids. Journal of Agriculturaland Food Chemistry 45: 4505–4515.

Bengoechea OG, Guerrero JA, McClements DJ. 2011. Formationand characterization of lactoferrin/pectin electrostaticcomplexes: Impact of composition, pH, and thermaltreatment. Food Hydrocolloids 25(5): 1227–1232.

Benshitrit RC, Levi CS, Tal SL, Shimoni E, Lesmes U. 2012.Development of oral food-grade delivery systems: Currentknowledge and future challenges. Food and Function 3:10–21.

Berdanier C. 1997. Advanced Nutrition Micronutrients. BocaRaton, FL: CRC Press, 27–29.

Bingham SA, Day NE, Lubern R, Ferrari P, Slimani N, NoratT, Clavel-Chapelon F et al. 2003. Dietary fibre in foodand protection against colorectal cancer in the EuropeanProspective Investigation into Cancer and Nutrition (EPIC):An observational study. Lancet 361: 1496–1501.

Blecker C, Chevalier JP, van Herck JC, Fougnies C, DeroaneC, Paquot M. 2001. Inulin: Its physicochemical propertiesand technological functionality. Recent Research Development in Agricultural and Food Chemistry 5: 125–131.

Braddock RJ. 1999. Handbook of Citrus ByProducts andProcessing Technology. New York: John Wiley & Sons,117–133.

Burkitt DP. 1971. Epidemiology of cancer of the colon andrectum. Cancer 28: 3–13.

Burkitt DP. 1978. Colonic-rectal cancer: Fiber and otherdietary factors. American Journal of Clinical Nutrition31: S58–S64.

Cao J, Zhou NJ. 2005. Progress in antitumor studies ofchitosan. Chinese Journal of Biochemical Pharmaceutics26(2): 127–127.

Chen L, Remondetto GE, Subirade M. 2006. Food protein-basedmaterials as nutraceutical delivery systems. Trends inFood Science & Technology 17(5): 272–283.

Chow CK. 2001. Fatty Acids in Food and Their HealthImplications. New York: Routledge.

Cohn R, Cohn AL. 1997. Subproductos del procesado de lasfrutas. Procesado de frutas, Acribia, Zaragoza 213–228.

Cushen M, Kerry J, Morris M, Cruz-Romero M, Cummins E.2012. Nanotechnologies in the food industry—Recentdevelopments, risks and regulation [Review]. Trends in FoodScience & Technology 24(1): 30–46.

de Munter JS, Hu FB, Spiegelman D, Franz M, van Dam RM.2007. Whole grain, bran, and germ intake and risk of type2 diabetes: A prospective cohort study and systematicreview. PLoS Medicine 4(8): e261.

Dickinson E. 2008. Interfacial structure and stability offood emulsions as affected by protein- polysaccharideinteractions. Soft Matter 4(5): 932–942.

Englyst HN, Kingman SM, Cummings JH. 1992. Classificationand measurement of nutritionally important starchfractions. European Journal of Clinical Nutrition 46(2):33–50.

Fuentes-Zaragoza E, Riquelme-Navarrete MJ, Sánchez-ZapataE, Pérez-Álvarez JA. 2010. Resis tant starch as functionalingredient: A review. Food Research International 43:931–942.

Goldberg M, Langer R, Jia X. 2007. Nanostructured materialsfor applications in drug delivery and tissue engineering.Journal of Biomaterials Science. Polymer Edition 18(3):241–268.

Gorinstein S, Martin-Belloso O, Park Y-S, Haruekit R, LojekA, Ciz M, Caspi A, Libman I, Trakhtenberg S. 2001.Comparison of some biochemical characteristics of differentcitrus fruits. Food Chemistry 74: 309–315.

Gould JM, Jasberg BK, Cote GL. 1989. Structure–functionrelationships of alkaline peroxidetreated lignocellulose

from wheat straw. Cereal Chemistry 66(3): 213–217.

Izquierdo L, Sendra JM. 2003. Citrus fruits: Compositionand characterization. Encyclopedia of Food Sciences andNutrition. Oxford: Academic Press, Elsevier Science Ltd.

Jasberg BK, Gould JM, Warner K. 1989. High-fibre, noncalorie flour substitute for baked foods. Effect ofalkaline peroxide-treated lignolcellulose on doughproperties. Cereal Chemistry 66(3): 209–213.

Jeong YI, Jin SG, Kim IY, Pei J, Wen M, Jung TY, Moon KS,Jung S. 2010. Doxorubicinincorporated nanoparticlescomposed of poly(ethylene glycol)-grafted carboxymethylchitosan and antitumor activity against glioma cells invitro. Colloids and Surfaces. B, Biointerfaces 79(1):149–155.

Jones OG, Lesmes U, Dubin P, McClements DJ. 2010. Effect ofpolysaccharide charge on formation and properties ofbiopolymer nanoparticles created by heat treatment of[beta]-lactoglobulin-pectin complexes. Food Hydrocolloids24(4): 374–383.

Jones OG, McClements DJ. 2010. Biopolymer nanoparticlesfrom heat-treated electrostatic protein–polysaccharidecomplexes: Factors affecting particle characteristics.Journal of Food Science 75(2): N36–N43.

Larrauri JA. 1999. New approaches in the preparation ofhigh dietary fibre powders from fruit by-products. Trendsin Food Science and Technology 10: 3–8.

Laurikainen T, Harkonen H, Autio K, Poutanen K. 1998.Effects of enzymes in fiber-enriched baking. Journal ofthe Science of Food and Agriculture 76: 239–249.

Lesmes U, McClements DJ. 2009. Structure-functionrelationships to guide rational design and fabrication ofparticulate food delivery systems. Trends in Food Science &Technology 20(10): 448–457.

Liversidge GG. 2011. Controlled release andnanotechnologies: Recent advances and futureopportunities. Drug Development and Delivery 11: 1–7.

Livney YD. 2010. Milk proteins as vehicles for bioactives.Current Opinion in Colloid & Interface Science 15(1–2):73–83.

Lyon MR, Reichert RG. 2010. The effect of a novel viscouspolysaccharide along with lifestyle changes on short-termweight loss and associated risk factors in overweight andobese adults: An observational retrospective clinicalprogram analysis. Alternative Medicine Review 15(1):68–75.

Maeda Y, Kimura Y. 2004. Antitumor effects of variouslow-molecular-weight chitosans are due to increasednatural killer activity of intestinal intraepitheliallymphocytes in sarcoma 180-bearing mice. Journal ofNutrition 134(4): 945–950.

Marín FR, Frutos MJ, Pérez-Álvarez JA, Martınez-Sánchez F,Del JA. 2002. Flavonoids as nutraceuticals: Structuralrelated antioxidant properties and their role on ascorbicacid preservation. Studies in Natural Products Chemistry26: 741–778.

Matalanis A, Jones OG, McClements DJ. 2011. Structuredbiopolymer-based delivery systems for encapsulation,protection, and release of lipophilic compounds. FoodHydrocolloids 25(8): 1865–1880.

Mayo Clinic Staff. 2015. Dietary fiber: Essential for ahealthy diet. Mayo Clinic.

McClements DJ. 2010. Design of nano-laminated coatings tocontrol bioavailability of lipophilic food components.[Review]. Journal of Food Science 75(1): R30–R42.

McClements DJ, Rao J. 2011. Food-grade nanoemulsions:Formulation, fabrication, properties, performance,biological fate, and potential toxicity. Critical Reviewsin Food Science and Nutrition 51(4): 285–330.

Merisko-Liversidge E, Liversidge G, Cooper E. 2003.Nanosizing: A formulation approach forpoorly-water-soluble compounds. European Journal ofPharmaceutical Sciences 18: 113–123.

Mutungi C, Onyango C, Jaros D, Henle T, Rohm H. 2009.Determination of optimum conditions for enzymaticdebranching of cassava starch and synthesis of resistantstarch type III by using central composite rotatabledesign. Starch 61: 367–376.

Nagpal R et al. 2011. Bioactive peptides derived from milkproteins and their health beneficial potentials: An update.Food & Function 2(1): 18–27.

Nesterenko A, Alric I, Silvestre F, Durrieu V. 2013.Vegetable proteins in microencapsulation: A review ofrecent interventions and their effectiveness. IndustrialCrops and Products 42: 469–479.

Noronha N, O’Riordan ED, O’Sullivan M. 2007. Replacement offat with functional fibre in imitation cheese.International Dairy Journal 17: 1073–1082.

Panagiotou T, Fisher RJ. 2008. Form nanoparticles viacontrolled crystallization: A “bottomup” approach. ChemicalEngineering Progress 104(10): 33–39.

Panagiotou T, Fisher RJ. 2011. Enhanced transportcapabilities via nanotechnologies: Impacting bio-efficacy,controlled release strategies and novel chaperones. Journalof Drug Delivery article ID 902403.

Panagiotou T, Mesite S, Fisher RJ. 2009. Production ofnorfloxacin nano-suspensions using microfluidics reactiontechnology (MRT) through solvent/anti-solventcrystallization. Industrial and Engineering ChemistryResearch 48(4): 1761–1771.

Peinado I, Lesmes U, Andrés A, McClements JD. 2010.Fabrication and morphological characterization ofbiopolymer particles formed by electrostatic complexationof heat treated lactoferrin and anionic polysaccharides.Langmuir 26(12): 9827–9834.

Pongjanta J, Utaipattanaceep A, Naivikul O, Piyachomkwan K.2009. Debranching enzyme concentration effect onphysicochemical properties and α-amylase hydrolysis rate ofresistant starch type III from amylose rice starch.Carbohydrate Polymers 78: 5–9.

Rabinow BE. 2004. Nanosuspensions in drug delivery. NatureReviews Drug Discovery 3(9): 785–796.

Rabinow BE. 2005. Pharmacokinetics of nanosuspensions.Proceedings of the Nanotechnology for Drug DeliveryConference, Philadelphia.

Regand A, Goff HD. 2003. Structure and icerecrystallisation in frozen stabilised ice cream modelsystems. Food Hydrocolloids 17: 95–102.

Robson AA. 2011. Food nanotechnology: Water is the key tolowering the energy density of processed foods. Nutrition

and Health 20(3–4): 231–236.

Sajilata MG, Singhal RS, Kulkarni PR. 2006. Resistantstarch: A review. Comprehensive Reviews in Food Scienceand Food Safety 5: 1–17.

Sangnark, A, Noomhorm A. 2003. Effect of particle sizes onfunctional properties of dietary fibre prepared fromsugarcane bagasse. Food Chemistry 80: 221–229.

Sangnark A, Noomhorm A. 2004. Chemical, physical and bakingproperties of dietary fiber prepared from rice straw. FoodResearch International 37: 66–74.

Scala J. 1975. The physiological effects of dietary fiber.American Chemical Society Symposium Series. Philadelphia:Lippincott.

Schroeder N, Gallaher DD, Arndt EA, Marquart L. 2009.Influence of whole grain barley, whole grain wheat, andrefined rice-based foods on short-term satiety and energyintake. Appetite 53(3): 363–369.

Schulze MB, Schulz M, Heidemann C, Schienkiewitz A,Hoffmann K, Boeing H. 2007. Fiber and magnesium intake andincidence of type 2 diabetes: A prospective study andmeta-analysis. Archives of Internal Medicine 167(9):956–965.

Soukoulis, Lebesi D, Tzia C. 2009. Enrichment of ice creamwith dietary fibre: Effects on rheological properties, icecrystallisation and glass transition phenomena. FoodChemistry 115: 665–671.

Tas AA, El SN. 2000. Determination of nutritionallyimportant starch fractions of some Turkish breads. FoodChemistry 70(4): 493–497.

Thebaudin JY, Lefebvre AC, Harrington M, Bourgeois CM.1997. Dietary fibers: Nutritional and technologicalinterest. Trends Food Science and Technology 8: 41–48.

Tomita M, Wakabayashi H, Shin K, Yamauchi K, Yaeshima T,Iwatsuki K. 2009. Twenty-five years of research on bovinelactoferrin applications. Biochimie 91(1): 52–57.

Torzsas T, Kendall C, Sugano M, Iwamoto Y, Rao A. 1996. Theinfluence of high and low molecular weight chitosan oncolonic cell proliferation and aberrant crypt focidevelopment in CF1 mice. Food and Chemical Toxicology

34(1): 73–77.

Trowell H. 1976. Definition of dietary fiber and hypothesisthat it is a protective factor in certain diseases.American Journal of Clinical Nutrition 29: 417–427.

Trowell H. 1978. Diabetes mellitus and dietary fiber ofstarchy foods. American Journal of Clinical Nutrition 31:S53–S57.

Trowell H, Burkitt D. 1977. Dietary fiber andcardiovascular disease. Artery 3: 107–119.

Tuomilehto J, Lindstrom J, Eriksson JG, Valle TT,Hamalainen H, Ilanne-Parikka P, KeinanenKiukaanniemi S etal. 2001. Prevention of type 2 diabetes mellitus by changesin lifestyle among subjects with impaired glucosetolerance. New England Journal of Medicine 344(18):1343–1350.

Ubbink J, Burbidge A, Mezzenga R. 2008. Food structure andfunctionality: A soft matter perspective. Soft Matter4(8): 1569–1581.

Velikov KP, Pelan E. 2008. Colloidal delivery systems formicronutrients and nutraceuticals. Soft Matter 4(10):1964–1980.

Wakabayashi H, Yamauchi K, Takase M. 2006. Lactoferrinresearch, technology and applications. International DairyJournal 16(11): 1241–1251.

Wang J, Rosell MS, Barber CB. 2002. Effect of the additionof different fibers on wheat dough performance and breadquality. Food Chemistry 79: 221–226.

Wang ZQ, Yu Y, Zhang XH, Floyd ZE, Boudreau A, Lian K,Cefalu WT. 2012. Comparing the effects of nano-sizedsugarcane fiber with cellulose and psyllium on hepaticcellular signaling in mice. International Journal ofNanomedicine 7: 2999–3012.

Wang ZQ, Zuberi AR, Zhang XH, Macgowan J, Qin J, Ye X, SonL et al. 2007. Effects of dietary fibers on weight gain,carbohydrate metabolism, and gastric ghrelin geneexpression in mice fed a high-fat diet. Metabolism 56(12):1635–1642.

9 9: Nanotechnology in Probiotics andPrebiotics

Albertini, B., B. Vitali, N. Passerini, F. Cruciani, M. DiSabatino, L. Rodriguez, and P. Brigidi. 2010. Developmentof microparticulate systems for intestinal delivery ofLactobacillus acidophi lus and Bifidobacterium lactis.European Journal of Pharmaceutical Sciences 40: 359–366.

Aller, R., D. A. De Luis, O. Izaola, R. Conde, M. GonzalezSagrado, D. Primo, B. De La Fuente, and J. Gonzalez. 2011.Effect of a probiotic on liver aminotransferases innonalcoholic fatty liver disease patients: A double blindrandomized clinical trial. European Review for Medical andPharmacological Sciences 15(9): 1090–1095.

Al-Sheraji, S. H., A. Ismail, M. Y. Manap, S. Mustafa, andR. M. Yusuf. 2012a. Survival and activity ofBifidobacteria during refrigerated storage of yoghurtcontaining Mangifera pajang fibres polysaccharides.Journal of Food Science 77: M624–M630.

Al-Sheraji, S. H., A. Ismail, M. Y. Manap, S. Mustafa, R.M. Yusuf, and F. A. Hassan. 2012b. Fermentation andnon-digestibility of Mangifera pajang fibrous and itspolysaccharide. Journal of Functional Foods 4: 933–940.

Al-Sheraji, S. H., A. Ismail, M. Y. Manap, S. Mustafa, R.M. Yusuf, and F. A. Hassan. 2013. Prebiotics as functionalfoods: A review. Journal of Functional Foods 5: 1542–1553.

Anal, A. K., and H. Singh. 2007. Recent advances inmicroencapsulation of probiotics for industrialapplications and targeted delivery. Trends Food Science andTechnology 18(5): 240–251.

Anandharamakrishnan, C., C. D. Rielly, and A. G. Stapley.2010. Spray-freeze-drying of whey proteins atsub-atmospheric pressures. Dairy Science & Technology90(2–3): 321–334.

Anu Bhushani, J., and C. Anandharamakrishnan. 2014.Electrospinning and electrospraying techniques: Potentialfood based applications. Trends in Food Science andTechnology 38(1): 21–33.

Audet, P., C. Paquin, and C. Lacroix. 1990. Batchfermentations with a mixed culture of lactic acid bacteriaimmobilized separately in κ-carrageenan locust bean gum gelbeads. Applied Microbiology and Biotechnology 32: 662–668.

Azmi, A. F. M. N., S. Mustafa, D. M. Hashim, and Y. A.Manap. 2012. Prebiotic activity of polysaccharidesextracted from Gigantochloa Levis (buluh beting) shoots.Molecules 17: 1635–1651.

Bengmark, S. 1998. Ecological control of thegastrointestinal tract. The role of probiotic flora. Gut42: 2–7.

Bennet, J. D., and M. Brinkman. 1989. Treatment ofulcerative colitis by implantation of normal colonic flora.Lancet 1(8630): 164.

Bielecka, M., E. Biedrzycka, and A. Majkowska. 2002.Selection of probiotics and prebiotics for synbiotics andconfirmation of their in vivo effectiveness. Food ResearchInternational 35: 125–131.

Bomba, A., R. Nemcová, S. Gancarcíková, R. Herich, P. Guba,and D. Mudronová. 2002. Improvement of the probioticeffect of micro-organisms by their combination withmaltodextrins, fructo-oligosaccharides and polyunsaturatedfatty acids. Br J Nutr 88 Suppl 1: S95–9.

Bornet, F. R. J., F. Brouns, Y. Tashiro, and V. Duville.2002. Nutritional aspect of short-chainfructooligosaccharieds: Natural occurrence, chemistry,physiology and health implications. Digestive and LiverDisease 34: S111–S120.

Bovee-Oudenhoven, I. M., S. J. ten Bruggencate, M. L.Lettink-Wissink, and R. van der Meer. 2003. Dietaryfructo-oligosaccharides and lactulose inhibit intestinalcolonisation but stimulate translocation of Salmonella inrats. Gut 52: 1572–1578.

Burgain, C., C. Gaiani, M. Linder, and J. Scher. 2011.Encapsulation of probiotic living cells: From laboratoryscale to industrial applications. Journal of FoodEngineering 104: 467–483.

Campbell, J. M., G. C. Fahey Jr., and B. W. Wolf. 1997.Selected indigestible oligosaccharides affect large bowelmass, cecal and fecal short-chain fatty acids, pH andmicroflora in rats. Journal of Nutrition 127: 130–136.

Capela, P., T. K. C. Hay, and N. P. Shah. 2006. Effect ofcryoprotectants, prebiotics and microencapsulation onsurvival of probiotic organisms in yoghurt and freeze-dried

yoghurt. Food Research International 39(2): 203–211.

Chalova, V. I., J. M. Lingbeck, Y. M. Kwon, and S. C.Ricke. 2008. Extracellular antimutagenic activities ofselected probiotic Bifidobacterium and Lactobacillus spp.as a function of growth phase. Journal of EnvironmentalScience and Health, Part B: Pesticides, Food Contaminants,and Agricultural Wastes 43(2): 193–198.

Champagne, C. P., and K. Kailasapathy. 2008. Encapsulationof probiotics. In Delivery and Controlled Release ofBioactives in Foods and Nutraceuticals, edited by N. Garti,344– 369. Cambridge, UK: Woodhead Publishing.

Chan, E. S., and Z. Zhang. 2002. Encapsulation of probioticbacteria Lactobacillus acidophi lus by direct compression.Food and Bioproducts Processing 80: 78–82.

Chandramouli, V., K. Kailasapathy, P. Peiris, and M. Jones.2004. An improved method of microencapsulation and itsevaluation to protect Lactobacillus spp. in simulatedgastric conditions. Journal of Microbiological Methods 56:27–35.

Chang, T. L.-Y., C.-H. Chang, D. A. Simpson et al. 2003.Inhibition of HIV infectivity by a natural human isolateof Lactobacillus jensenii engineered to express functionaltwodomain CD4. Proceedings of the National Academy ofSciences of the United States of America 100: 11672–11677.

Chávarri, M., I. Marañón, R. Ares, F. C. Ibáñez, F. Marzo,and M. D. C. Villarán. 2010. Microencapsulation of aprobiotic and prebiotic in alginate–chitosan capsulesimproves survival in simulated gastro-intestinalconditions. International Journal of Food Microbiology142(1–2): 185–189.

Chen, M. J., and K. N. Chen. 2007. Applications ofprobiotic encapsulation in dairy products. InEncapsulation and Controlled Release Technologies in FoodSystems, edited by J. M. Lakkis, 83–107. Ames, Iowa:Wiley-Blackwell.

Cherbut, C., C. Michel, and G. Lecannu. 2003. The prebioticcharacteristics of fructooligosaccharides are necessary forreduction of TNBS-induced colitis in rats. Journal ofNutrition 133: 21–27.

Chonan, O., R. Takahashi, and M. Watanuki. 2001. Role andactivity of gastrointestinal microflora in absorption of

calcium and magnesium in rats fed β-1,4 linkedgalactooligosaccharides. Bioscience, Biotechnology, andBiochemistry 65: 1872–1875.

Crittenden, R. G., and M. J. Playne. 1996. Production,properties and applications of foodgrade oligosaccharides.Trends in Food Science and Technology 7: 353–361.

Crittenden, R., A. Laitila, P. Forsell, J. Matto, M.Saarela, T. Mattila-Sandholm, and P. Myllarinen. 2001.Adhesion of bifidobacteria to granular starch and itsimplications in probiotic technologies. Applied andEnvironmental Microbiology 67(8): 3469–3475.

De Vos, P., M. M. Faas, M. Spasojevic, and J. Sikkema.2010. Encapsulation for preservation of functionality andtargeted delivery of bioactive food components.International Dairy Journal 20(4): 292–302.

Dinakar, P., and V. V. Mistry. 1994. Growth and viabilityof Bifidobacterium bifidum in cheddar cheese. Journal ofDairy Science 77(10): 2854–2864.

Ding, W. K., and N. P. Shah. 2007. Acid, bile, and heattolerance of free and microencapsulated probiotic bacteria.Journal of Food Science 72(9): M446–M450.

Ding, W. K., and N. P. Shah. 2009. An improved method ofmicroencapsulation of probiotic bacteria for theirstability in acidic and bile conditions during storage.Journal of Food Science 74: M53–M61.

Doleyres, Y., C. Paquin, M. LeRoy, and C. Lacroix. 2002.Bifidobacterium longum ATCC 15707 cell production duringfree- and immobilized-cell cultures in MRS-whey permeatemedium. Applied Microbiology and Biotechnology 60: 168–173.

Doleyres, Y., I. Fliss, and C. Lacroix. 2004. Continuousproduction of mixed lactic starters containing probioticsusing immobilized cell technology. Biotechnology Progress20: 145–150.

Donders, G. G., B. Van Bulck, P. Van deWalle, R. R. Kaiser,G. Pohlig, S. Gonser, and F. Graf. 2010. Effect oflyophilized lactobacilli and 0.03 mg estriol (Gynoflor ® )on vaginitis and vaginosis with disrupted vaginalmicroflora: A multicenter, randomized, single-blind,active-controlled pilot study. Gynecologic and ObstetricInvestigation 70: 264–272.

Dugas, B., A. Mercenier, I. Lenoir-Wijnkoop, C. Arnaud, N.Dugas, and E. Postaire. 1999. Immunity and probiotics.Immunology Today 20: 387–390.

Dunne, C., and F. Shanahan. 2002. Role of probiotics in thetreatment of intestinal infections and inflammation.Current Opinion in Gastroenterology 18: 40–45.

Eguchi, S., M. Takatsuki, M. Hidaka, A. Soyama, T.Ichikawa, and T. Kanematsu. 2011. Perioperative synbiotictreatment to prevent infectious complications in patientsafter elective living donor liver transplantation: Aprospective randomized study. American Journal of Surgery201(4): 498–502.

Ehrström, S., K. Daroczy, E. Rylander, C. Samuelsson, U.Johannesson, B. Anzén, and C. Pahlson. 2010. Lactic acidbacteria colonization and clinical outcome after probioticsupplementation in conventionally treated bacterialvaginosis and vulvovaginal candidiasis. Microbes andInfection 12: 691–699.

Elmer, G. W., C. M. Surawicz, and L. V. McFarland. 1996.Biotherapeutic agents: A neglected modality for thetreatment and prevention of selected intestinal and vaginalinfections. Journal of the American Medical Association275: 870–876.

European Food Safety Authority (EFSA). 2007. Introductionof a Qualified Presumption of Safety (QPS) approach forassessment of selected microorganisms referred to EFSA—Opinion of the Scientific Committee.http://www.efsa.europa.eu/en/efsajournal doc /587.pdf.

Facchinetti, F., G. Dante, L. Pedretti, P. Resasco, E.Annessi, and D. Dodero. 2013. The role of oral probioticfor bacterial vaginosis in pregnant women. A pilot study.Minerva Ginecologica 65: 215–221.

FAO/WHO. 2001. Health and nutritional properties ofprobiotics in food including powder milk and live lacticacid bacteria. Report of a Joint FAO/WHO ExpertConsultation. http://www.fao.org/es/ESN/Probio/report.pdf.

FAO/WHO. 2002. Guidelines for evaluation of probiotics infood. Report of a Joint FAO/ WHO Working Group on DraftingGuidelines for the Evaluation of Probiotics in Food.http://www.fao.org/es/ESN/Probio/probio.htm.

Fávaro-Trindade, C. S., and C. R. F. Grosso. 2002.

Microencapsulation of L. acidophilus (La05) and B. Lactis(Bb-12) and evaluation of their survival at the pH valuesof the stomach and in bile. Journal of Microencapsulation19(4): 485–494.

Flynn, S., D. Van Sinderen, G. M. Thornton, H. Holo, I. F.Nes, and J. K. Collins. 2002. Characterization of thegenetic locus responsible for the production of ABP-118, anovel bacteriocin produced by the probiotic bacteriumLactobacillus salivarius subsp. Salivarius UCC118.Microbiology 148: 973–984.

Forsythe, P., and J. Bienenstock. 2010. Immunomodulation bycommensal and probiotic bacteria. ImmunologicalInvestigations 39(4–5): 429–448.

Frost & Sullivan. 2009. Probiotics in Foods andBeverages—Strategic Assessment of the Indian Market.

Fukuda, M., O. Kanauchi, Y. Araki, A. Andoh, K. Mitsuyama,K. Takagi, A. Toyonaga et al. 2002. Prebiotic treatment ofexperimental colitis with germinated barley foodstuff: Acomparison with probiotic or antibiotic treatment.International Journal of Molecular Medicine 9: 65–70.

Fung, W. Y., K. H. Yuen, and M. T. Liong. 2011.Agrowaste-based nanofibers as a probiotic encapsulant:Fabrication and characterization. Journal of Agriculturaland Food Chemistry 59(15): 8140–8147.

Furrie, E., S. Macfarlane, A. Kennedy, J. H. Cummings, S.V. Walsh, D. A. O’Neil, and G. T. MacFarlane. 2005.Synbiotic therapy (Bifidobacterium longum/Synergy 1)initiates resolution of inflammation in patients withactive ulcerative colitis: A randomised controlled pilottrial. Gut 54: 242–249.

Gardiner, G., R. P. Ross, J. K. Collins, G. Fitzgerald, andC. Stanton. 1998. Development of a probiotic cheddarcheese containing human-derived Lactobacillus paracaseistrains. Applied and Environmental Microbiology 64(6):2192–2199.

Gardiner, G. E., R. P. Ross, J. M. Wallace, F. P. Scanlan,P. Jägers, G. Fitzgerald, J. K. Collins, and C. Stanton.1999. Influence of a probiotic adjunct culture ofEnterococcus faecium on the quality of cheddar cheese.Journal of Agricultural and Food Chemistry 47(12):4907–4916.

Gbassi, G. K., T. Vandamme, S. Ennahar, and E. Marchioni.2009. Microencapsulation of Lactobacillus plantarum spp inan alginate matrix coated with whey proteins. International Journal of Food Microbiology 129: 103–105.

Gionchetti, P., F. Rizzello, U. Helwig, A. Venturi, K. M.Lammers, P. Brigidi, B. Vitali, G. Poggioli, M. Miglioli,and M. Campieri. 2003. Prophylaxis of pouchitis onset withprobiotic therapy: A double-blind, placebo-controlledtrial. Gastroenterology 124: 1202–1209.

Gionchetti, P., F. Rizzello, A. Venturi, P. Brigidi, D.Matteuzzi, G. Bazzocchi, G. Poggioli, M. Miglioli, and M.Campieri. 2000. Oral bacteriotherapy as maintenancetreatment in patients with chronic pouchitis: Adouble-blind, placebo-controlled trial. Gastroenterology119: 305–309.

Gouin, S. 2004. Microencapsulation: industrial appraisal ofexisting technologies and trends. Trends in Food Scienceand Technology 15(7–8): 330–347.

Graff, S., S. Hussain, J. C. Chaumeil, and C. Charrueaul.2008. Increased intestinal delivery of viableSaccharomyces boulardii by encapsulation in microspheres.Pharmaceutical Research 25: 1290–1296.

Groboillot, A. F., C. P. Champagne, G. F. Darling, and D.Poncelet. 1993. Membrane formation by interfacialcross-linking of chitosan for microencapsulation ofLactococcus lactis. Biotechnology and Bioengineering42(10): 1157–1163.

Guandalini, S. 2006. Probiotics for children: Use indiarrhea. Journal of Clinical Gastro enterology 40(3):244–248.

Guerin, D., J. C. Vuillemard, and M. Subirade. 2003.Protection of Bifidobacteria encapsulated inpolysaccharide-protein gel beads against gastric juice andbile. Journal of Food Protection 66: 2076–2084.

Gulewicz, P., D. Ciesiołka, J. Frias, C. Vidal-Valverde, S.Frejnagel, K. Trojanowska, and K. Gulewicz. 2003. Simplemethod of isolation and purification of alpha-galactosidesfrom legumes. Journal of Agricultural and Food Chemistry48: 3120–3123.

Hansen, L. T., P. M. Allan-Wojtas, Y. L. Jin, and A. T.Paulson. 2002. Survival of Ca-alginate microencapsulated

Bifidobacterium spp. in milk and simulated gastrointestinalconditions. Food Microbiology 19: 35–45.

Heidebach, T., P. Först, and U. Kulozik. 2009a.Microencapsulation of probiotic cells by means ofrennet-gelation of milk proteins. Food Hydrocolloids 23(7):1670–1677.

Heidebach, T., P. Först, and U. Kulozik. 2009b.Transglutaminase-induced caseinate gelation for themicroencapsulation of probiotic cells. International DairyJournal 19(2): 77–84.

Heidebach, T., P. Först, and U. Kulozik. 2010. Influence ofcasein-based microencapsulation on freeze-drying andstorage of probiotic cells. Journal of Food Engineering98(3): 309–316.

Hemalatha, R., P. Mastromarino, B. A. Ramalaxmi, N. V.Balakrishna, and B. Sesikeran. 2012. Effectiveness ofvaginal tablets containing lactobacilli versus pH tabletson vaginal health and inflammatory cytokines: Arandomized, double-blind study. European Journal ofClinical Microbiology & Infectious Diseases 31: 3097–3105.

Heunis, T., O. Bshena, B. Klumperman, and L. Dicks. 2011.Release of bacteriocins from nanofibers prepared withcombinations of poly(D,L-lactide) (PDLLA) and poly(ethyleneoxide) (PEO). International Journal of Molecular Sciences12(4): 2158–2173.

Heunis, T. D. J., M. Botes, and L. M. T. Dicks. 2010.Encapsulation of Lactobacillus plantarum 423 and itsbacteriocin in nanofibers probiotics and antimicrobialproteins. Probiotics and Antimicrobial Proteins 2(1):46–51.

Hoentjen, F., G. W. Welling, H. J. Harmsen, X. Zhang, J.Snart, G. W. Tannock, K. Lien, T. A. Churchill, M.Lupicki, and L. A. Dieleman. 2005. Reduction of colitis byprebiotics in HLA-B27 transgenic rats is associated withmicroflora changes and immunomodulation. Inflammatory BowelDiseases 11: 977–985.

Hou, R. C, M. Y. Lin, M. M. Wang, and J. T. Tzen. 2003.Increase of viability of entrapped cells of Lactobacillusdelbrueckii ssp. bulgaricus in artificial sesame oilemulsion. Journal of Dairy Science 86(2): 424–428.

Hu, B., Q. Gong, Y. Wang, Y. Ma, J. Li, and W. Yu. 2006.

Prebiotic effects of neoagaro- oligosaccharides preparedby enzymatic hydrolysis of agarose. Anaerobe 12: 260–266.

Huebner, J., R. L. Wehling, and R. W. Hutkins. 2007.Functional activity of commercial prebiotics. InternationalDairy Journal 17: 770–775.

Hyndman, C. L., A. F. Groboillot, D. Poncelet, C. P.Champagne, and R. J. Neufeld. 1993. Microencapsulation ofLactococcus lactis within cross-linked gelatin membranes.Journal of Chemical Technology and Biotechnology 56:259–263.

ICMR-DBT. 2011. Guidelines for evaluation of probiotics infood. Accessed September 16, 2015.http://www.icmr.nic.in/guide/PROBIOTICS_GUIDELINES.pdf.

Ishibashi, N., and S. Yamazaki. 2001. Probiotics andsafety. American Journal of Clinical Nutrition 73:465S–470S.

Isolauri, E., H. Majamaa, T. Arvola, I. Rantala, E.Virtanen, and H. Arvilommi. 1993. Lactobacillus caseistrain GG reverses increased intestinal permeabilityinduced by cow milk in suckling rats. Gastroenterology105: 1643–1650.

Johansen, H. N., V. Glitso, and K. E. B. Knudsen. 1996.Influence of extraction solvent and temperature on thequantitative determination of oligosaccharides from plantmaterials by high-performance liquid chromatography.Journal of Agricultural and Food Chemistry 44: 1470–1474.

Kanamori, Y., M. Sugiyama, K. Hashizume, N. Yuki, M.Morotomi, and R. Tanaka. 2004. Experience of long-termsynbiotic therapy in seven short bowel patients withrefractory enterocolitis. Journal of Pediatric Surgery 39:1686–1692.

Kanauchi, O., T. Nakamura, K. Agata, K. Mitsuyama, and T.Iwanaga. 1998. Effects of germinated barley foodstuff ondextran sulfate sodium-induced colitis in rats. Journal ofGastroenterology 33: 179–188.

Kanauchi, O., T. Suga, M. Tochihara, T. Hibi et al. 2002.Treatment of ulcerative colitis by feeding with germinatedbarley foodstuff: First report of a multicenter opencontrol trial. Journal of Gastroenterology 37(14): 67–72.

Kaneko, T., T. Kohmoto, H. Kikuchi, M. Shiota, H. Iino, and

T. Mitsuoka. 1994. Effects of isomaltooligosaccharideswith different degrees of polymerization on human faecalbifidobacteria. Bioscience, Biotechnology, and Biochemistry58: 2288–2290.

Kebary, K. M. K. 1996. Viability of Bifidobacterium bifidumand its effect on quality of frozen Zabady. Food ResearchInternational 29: 431–437.

Kleessen, B., L. Hartmann, and M. Blaut. 2001.Oligofructose and long-chain inulin: Influence on the gutmicrobial ecology of rats associated with a human faecalflora. British Journal of Nutrition 86: 291–300.

Klein, J., and D. K. Vorlop. 1985. Immobilizationtechniques: Cells. In Comprehensive Bio tech nology,edited by C. L. Cooney and A. E. Humphrey, 542–550. Oxford,UK: Pergamon Press.

Kourkoutas, Y., L. Bosnea, S. Taboukos, C. Baras, D.Lambrou, and M. Kanellaki. 2006. Probiotic cheeseproduction using Lactobacillus casei cells immobilized onfruit pieces. Journal of Dairy Science 89: 1439–1451.

Krasaekoopt, W., B. Bhandari, and H. Deeth. 2003.Evaluation of encapsulation techniques of probiotics foryoghurt. International Dairy Journal 13(1): 3–13.

Kruis, W., E. Schütz, P. Fric, B. Fixa, G. Judmaiers, andM. Stolte. 1997. Double-blind comparison of an oralEscherichia coli preparation and mesalazine in maintainingremission of ulcerative colitis. Alimentary Pharmacology &Therapeutics 11: 853–858.

Kühbacher, T., S. J. Ott, U. Helwig, T. Mimura et al. 2006.Bacterial and fungal microbiota in relation to probiotictherapy (VSL#3) in pouchitis. Gut 55: 833–841.

Lara-Villoslada, F., E. Debras, A. Nieto, A. Concha, J.Galvez, E. Lopez-Huertas, J. Boza, C. Obled, and J. Xaus.2005. Oligosaccharides isolated from goat milk reduceintestinal inflammation in a rat model of dextran sodiumsulfate-induced colitis. Clinical Nutrition 25: 477–488.

Larsson, P. G., E. Brandsborg, U. Forsum, S. Pendharkar, K.K. Andersen, S. Nasic, L. Hammarström and H. Marcotte.2011. Extended antimicrobial treatment of bacterialvaginosis combined with human lactobacilli to find the besttreatment and minimize the risk of relapses. BMCInfectious Diseases 11: 223.

Lee, J. S., D. S. Cha, and H. J. Park. 2004. Survival offreeze-dried Lactobacillus bulgaricus KFRI 673 inchitosan-coated calcium alginate microparticles. Journal ofAgricultural and Food Chemistry 52: 7300–7305.

Levri, K. M., K. Ketvertis M. Deramo, J. H. Merenstein andF. D’Amico. 2005. Do probiotics reduce adult lactoseintolerance? A systematic review. The Journal of FamilyPractice 54(7): 613–620.

Li, D., J. M. Kim, Z. Jin, and J. Zhou. 2008. Prebioticeffectiveness of inulin extracted from edible burdock.Anaerobe 14: 29–34.

Li, X. Y., X. G. Chen, D. S. Cha, H. J. Park, and C. S.Liu. 2009. Microencapsulation of a probiotic bacteria withalginate-gelatin and its properties. Journal ofMicroencapsulation 26: 315–324.

Liong, M. T. 2008. Roles of probiotics and prebiotics incolon cancer prevention: Postulated mechanisms and in-vivoevidence. International Journal of Molecular Sciences 9(5):854–863.

Livney, Y. D. 2010. Milk proteins as vehicles forbioactives. Current Opinion in Colloid and InterfaceScience 15(1–2): 73–83.

Lopez-Rubio, A., and J. M. Lagaron. 2012. Whey proteincapsules obtained through electrospraying for theencapsulation of bioactives. Innovative Food Science andEmerging Technologies 13: 200–206.

Lopez-Rubio, A., E. Sanchez, Y. Sanz, and J. M. Lagaron.2009. Encapsulation of living bifidobacteria in ultrathinPVOH electrospun fibers. Biomacromolecules 10(10):2823–2829.

Lopez-Rubio, A., E. Sanchez, S. Wilkanowicz, Y. Sanz, andJ. M. Lagaron. 2012. Electrospinning as a useful techniquefor the encapsulation of living bifidobacteria in foodhydrocolloids. Food Hydrocolloids 28(1): 159–167.

Madsen, K. L., J. S. Doyle, L. D. Jewell, M. M. Tavernini,and R. N. Fedorak. 1999. Lactobacillus species preventscolitis in interleukin 10 gene-deficient mice.Gastroenterology 116: 1107–1114.

Mandal, S., A. K. Puniya, and K. Singh. 2006. Effect of

alginate concentrations on survival of microencapsulatedLactobacillus casei NCDC-298. International Dairy Journal16: 1190–1195.

Manning, T. S., and G. R. Gibson. 2004. Prebiotics. BestPractice & Research Clinical Gastro enterology 18:287–298.

Martín, R., N. Soberón, F. Vázquez, and J. E. Suárez. 2008.Vaginal microbiota: Composition, protective role,associated pathologies, and therapeutic perspectives.Enfermedades Infecciosas y Microbiología Clínica 26:160–167.

Martinez, R. C. R., S. A. Franceschini, M. C. Patta, S. M.Quintana, R. C. Candido, J. C. Ferreira, E. C. DeMartinis, and G. Reid. 2009a. Improved treatment ofvulvovaginal candidiasis with fluconazole plus probioticLactobacillus rhamnosus GR-1 and Lactobacillus reuteriRC-14. Letters in Applied Microbiology 48: 269–274.

Martinez, R. C. R., S. A. Franceschini, M. C. Patta, S. M.Quintana, B. C. Gomes, E. C. De Martinis, and G. Reid.2009b. Improved cure of bacterial vaginosis with singledose of tinidazole (2 g), Lactobacillus rhamnosus GR-1,and Lactobacillus reuteri RC-14: A randomized,double-blind, placebo-controlled trial. Canadian Journal ofMicrobiology 55: 133–138.

Martinez-Villaluenga, C., J. Frias, C. Vidal-Valverde andR. Gomez. 2005. Raffinose family of oligosaccharides fromlupin seeds as prebiotics: Application in dairy products.Journal of Food Protection 68: 1246–1252.

McBain, A. J., and G. T. MacFarlane. 2001. Modulation ofgenotoxic enzyme activities by nondigestibleoligosaccharide metabolism in-vitro human gut bacterialsystem. Journal of Medical Microbiology 50: 833–842.

McCarthy, J., L. O’Mahony, L. O’Callaghan, B. Shiel, E. E.Vaughan, N. Fitzsimons, J. Fitzgibbon, G. C. O’Sullivan,B. Kiely, J. K. Collins, and F. Shanahan. 2003. Doubleblind, placebo controlled trial of two probiotic strainsin interleukin 10 knockout mice and mechanistic link withcytokine balance. Gut 52: 975–980.

Moreau, N. M., L. J. Martin, C. S. Toquet et al. 2003.Restoration of the integrity of rat caecocolonic mucosa byresistant starch, but not by fructo-oligosaccharides, indextran sulfate sodium-induced experimental colitis.

British Journal of Nutrition 90: 75–85.

Mortazavian, A. M., A. Azizi, M. R Ehsani, S. H. Razavi, S.M. Mousavi, S. Sohrabvandi, and J. A. Reinheimer. 2008.Survival of encapsulated probiotic bacteria in Iranianyogurt drink (Doogh) after the product exposure tosimulated gastrointestinal conditions. Milchwissenschaft63(4): 427–429.

Munro, I. C., P. M. Newberne, V. R. Young, and A. Bar.2004. Safety assessment of gammacyclodextrin. RegulatoryToxicology and Pharmacology 39: S3–S13.

Nader-Macías, M. E. F., and M. S. Juárez Tomás. 2015.Profiles and technological requirements of urogenitalprobiotics. Advanced Drug Delivery Reviews.http://dx.doi.org/10.1016/j .addr.2015.03.016.

Nader-Macías, M. E. F., C. S. Ruiz De, V. S. Ocaña, and M.S. Juárez Tomás. 2008. Advances in the knowledge andclinical applications of lactic acid bacteria as probioticsin the urogenital tract. Current Women’s Health Reviews 4:240–257.

Nazzaro, F., F. Fratianni, R. Coppola, A. Sada, and P.Orlando. 2009. Fermentative ability of alginate-prebioticencapsulated Lactobacillus acidophilus and survival undersimulated gastrointestinal conditions. Journal ofFunctional Foods 1: 319–323.

O’Mahony, L., M. Feeney, S. O’Halloran, L. Murphy, B.Kiely, J. Fitzgibbon, G. Lee, G. O’Sullivan, F. Shanahan,and J. K. Collins. 2001. Probiotic impact on microbialflora inflammation and tumor development in IL-10 knock outmice. Alimentary Pharmacology & Therapeutics 15:1219–1225.

O’Riordan, K., D. Andrews, K. Buckle, and P. Conway. 2001.Evaluation of microencapsulation of a Bifidobacteriumstrain with starch as an approach to prolonging viabilityduring storage. Journal of Applied Microbiology 91:1059–1066.

Ooi, L. G., and M. T. Liong. 2010. Cholesterol-loweringeffects of probiotics and prebiotics: A review of in vivoand in vitro findings. International Journal of MolecularSciences 11(6): 2499–522.

Ouwehand, A. C., K. Tiihonen, H. Mäkivuokko, and N.Rautonen. 2007. Synbiotics: Combining the benefits of pre-

and probiotics. In Functional Dairy Products, 2nd ed.,edited by M. Saarela, 195–213. Boca Raton, FL: WoodheadPublishing.

Parkar, S. G., E. L. Redgate, R. Wibisono, X. Luo, E. T. H.Koh, and R. Schröder. 2010. Gut health benefits ofkiwifruit pectins: Comparison with commercial functionalpolysaccharides. Journal of Functional Foods 2: 210–218.

Parvez, S., K. A. Malik, S. Ah Kang, and H. Y. Kim. 2006.Probiotics and their fermented food products arebeneficial for health. Journal of Applied Microbiology100(6): 1171–1185.

Perez-Conesa, D., G. Lopez, and G. Ros. 2005. Fermentationcapabilities of bifidobacteria using nondigestibleoligosaccharides, and their viability as probiotics incommercial powder infant formula. Journal of Food Science70: 279–285.

Picot, A., and C. Lacroix. 2004. Encapsulation ofbifidobacteria in whey protein-based microcapsules andsurvival in simulated gastrointestinal conditions and inyoghurt. International Dairy Journal 14(6): 505–515.

Pimentel-González, D. J., R. G. Campos-Montiel, C.Lobato-Calleros, R. Pedroza-Islas, and E. J.Vernon-Carter. 2009. Encapsulation of Lactobacillusrhamnosus in double emulsions formulated with sweet whey asemulsifier and survival in simulated gastrointestinalconditions. Food Research International 42(2): 292–297.

Ramchandran, L., and N. P. Shah. 2010. Characterization offunctional, biochemical and textural properties ofsymbiotic low-fat yogurts during refrigerates storage.LWT–Food Science and Technology 43(5): 819–827.

Rao, A. V., N. Shiwnarain, and I. Maharaj. 1989. Survivalof microencapsulated Bifidobac terium pseudolongum insimulated gastric and intestinal juices. Canadian Instituteof Food Science and Technology Journal 22: 345–349.

Rembacken, B. J., A. M. Snelling, P. M. Hawkey, D. M. Axon,and A. T. R. Axon. 1999. Nonpathogenic Escherichia coliversus mesalazine for the treatment of ulcerative colitis:A randomised trial. Lancet 354: 635–639.

Roberfroid, M. 2002. Functional food concept and itsapplication to prebiotics. Digestive and Liver Disease 34:S105–S110.

Roberfroid, M. B. 1998. Prebiotics and synbiotics: Conceptsand nutritional properties. British Journal of Nutrition80: S197–S202.

Rousseau, V., J. P. Lepargneur, C. Roques, M.Remaud-Simeon, and F. Paul. 2005. Prebiotic effects ofoligosaccharides on selected vaginal lactobacilli andpathogenic microorganisms. Anaerobe 11: 145–153.

Rumi, G., R. Tsubouchi, M. Okayama, S. Kato, G. Mozsik, andK. Takeuchi. 2004. Protective effect of lactulose ondextran sulfate sodium-induced colonic inflammation inrats. Digestive Diseases and Sciences 49: 1466–1472.

Sajilata, M. G., R. S. Singhal, and P. R. Kulkarni. 2006.Resistant starch—A review. Compre hensive Reviews in FoodScience and Food Safety 5(1): 1–17.

Sako, T., K. Matsumoto, and R. Tanaka. 1999. Recentprogress on research and applications of non-digestiblegalactooligosaccharides. International Dairy Journal 9:69–80.

Salalha, W., J. Kuhn, Y. Dror, and E. Zussman. 2006.Encapsulation of bacteria and viruses in electrospunnanofibres. IOP Publishing Ltd Nanotechnology 17: 18.

Sartor, R. B. 2004. Therapeutic manipulation of the entericmicroflora in inflammatory bowel diseases: Antibiotics,probiotics, and prebiotics. Gastroenterology 126:1620–1633.

Sheu, T. Y., R. T. Marshall, and H. Heymann. 1993.Improving survival of culture bacteria in frozen dessertsby microentrapment. Journal of Dairy Science 76: 1902–1907.

Soh, S. E., D. Q. Ong, I. Gerez, X. Zhang, P. Chollate, L.P. Shek, B. W. Lee, and M. Aw. 2010. Effect of probioticsupplementation in the first 6 months of life on specificantibody responses to infant Hepatitis B vaccination.Vaccine 28(14): 2577–2579.

Stadlbauer, V., R. P. Mookerjee, S. Hodges, G. A. Wright,N. A. Davies, and R. Jalan. 2008. Effect of probiotictreatment on deranged neutrophil function and cytokineresponses in patients with compensated alcoholiccirrhosis. Journal of Hepatology 48(6): 945–951.

Stanton, C., G. Gardiner, P. B. Lynch, J. K. Collins, G.

Fitzgerald, and R. P. Ross. 1998. Probiotic cheese.International Dairy Journal 8(5–6): 491–496.

Stapleton, A. E., M. Au-Yeung, T. M. Hooton et al. 2011.Randomized, placebo-controlled phase 2 trial of aLactobacillus crispatus probiotic given intravaginally forprevention of recurrent urinary tract infection. ClinicalInfectious Diseases 52: 1212–1217.

Stewart, M. L., D. A Timm, and J. L. Slavin. 2008.Fructooligosaccharides exhibit more rapid fermentationthan long-chain inulin in an in vitro fermentation system.Nutrition Research 28: 329–334.

Stojanović, N., D. Plećaš, and S. Plešinac. 2012. Normalvaginal flora, disorders and application of probiotics inpregnancy. Archives of Gynecology and Obstetrics 286:325–332.

Su, P., A. Henriksson, and H. Mitchell. 2007. Selectedprebiotics support the growth of probiotic mono-cultures invitro. Anaerobe 13: 134–139.

Sultana, K., G. Godward, N. Reynolds, R. Arumugaswamy, andP. Peiris. 2000. Encapsulation of probiotic bacteria withalginate–starch and evaluation of survival in simulatedgastrointestinal conditions and in yogurt. InternationalJournal of Food Microbiology 62(1–2): 47–55.

Sun, W., and M. W. Griffiths. 2000. Survival ofbifidobacteria in yogurt and simulated gastric juicefollowing immobilization in gellan–xanthan beads.International Journal of Food Microbiology 61(1): 17–25.

Szajewska, H., and J. Z. Mrukowicz. 2005. Use of probioticsin children with acute diarrhea. Pediatric drugs 7(2):111–122.

Ten Bruggencate, S. J., I. M. Bovee-Oudenhoven, M. L.Lettink-Wissink, and R. Van der Meer. 2005. Dietaryfructooligosaccharides increase intestinal permeability inrats. Journal of Nutrition 135: 837–842.

Truelstrup-Hansen, L., P. M. Allan-Wojotas, Y. L. Jin, andA. T. Paulson. 2002. Survival of Ca-alginatemicroencapsulated Bifidobacterium spp. in milk andsimulated gastrointestinal conditions. Food Microbiology19(1): 35–45.

Vázquez, M. J., J. L. Alonso, H. Domínguez, and J. C.

Parajo. 2000. Xylooligosaccharides: Manufacture andapplications. Trends in Food Science and Technology 11:387–393.

Vicariotto, F., M. Del Piano, L. Mogna, and G. Mogna. 2012.Effectiveness of the association of 2 probiotic strainsformulated in a slow release vaginal product, in womenaffected by vulvovaginal candidiasis: A pilot study.Journal of Clinical Gastroenterology 46: S73–S80.

Villamiel, M., N. Corzo, M. I. Foda, F. Montes, and A.Olano. 2002. Lactulose formation catalysed byalkaline-substituted sepiolites in milk permeate. FoodChemistry 76: 7–11.

Vitali, B., F. Cruciani, M. E. Baldassarre et al. 2012.Dietary supplementation with probiotics during latepregnancy: Outcome on vaginal microbiota and cytokinesecretion. BMC Microbiology 12: 236.

Wake Forest University Baptist Medical Center. 2008.Hydrogen peroxide has a complex role in cell health.ScienceDaily. http://www.sciencedaily.com/releases/2008/01/080102134129.htm.

Wang, X., M. Huang, F. Yang, H. Sun, X. Zhou, Y. Guo, X.Wang, and M. Zhang. 2015. Rapeseed polysaccharides asprebiotics on growth and acidifying activity of probioticsin vitro. Carbohydrate Polymers 125: 232–240

Weichselbaum, E. 2009. Probiotics and health: A review ofthe evidence. Nutrition Bulletin 34(4): 340–373.

Yu, Z.-T., C. Chen, D. E. Kling et al. 2012. The principalfucosylated oligosaccharides of human milkoligosaccharides of human milk exhibit prebiotic propertieson cultured infant microbiota. Glycobiology 23: 169–177.

10 10: Modeling and Simulation ofNanobiosystems with Special Reference toFunctional Foods and Nutraceuticals

Andersen, Oyvind M., and Kenneth R. Markham, eds.Flavonoids: Chemistry, Biochemistry and Applications CRCPress, 2005. Accessed August 27, 2015. https://www .crcpress

Aqvist, J., P. Sandblom, T. A. Jones, M. E. Newcomer, W. F.van Gunsteren, and O. Tapia. “Molecular DynamicsSimulations of the Holo and Apo Forms of Retinol BindingProtein. Structural and Dynamical Changes Induced byRetinol Removal.” Journal of Molecular Biology 192, no. 3(December 5, 1986): 593–603.

Blondel, A., J. P. Renaud, S. Fischer, D. Moras, and M.Karplus. “Retinoic Acid Receptor: A Simulation Analysis ofRetinoic Acid Binding and the Resulting ConformationalChanges.” Journal of Molecular Biology 291, no. 1 (August6, 1999): 101–115. doi:10 .1006/jmbi.1999.2879.

Brown, Kenneth L., Xiang Zou, and Helder M. Marques.“NMR-Restrained Molecular Modeling of Cobalt Corrinoids:Cyanocobalamin (Vitamin B12) and Methylcobalt Corrinoids.”Journal of Molecular Structure: THEOCHEM 453, no. 1–3(October 30, 1998): 209–224.doi:10.1016/S0166-1280(98)00206-1.

Cerezo, Javier, José Zúñiga, Adolfo Bastida, AlbertoRequena, and José Pedro Cerón-Carrasco. “ConformationalChanges of β-Carotene and Zeaxanthin Immersed in a ModelMembrane through Atomistic Molecular Dynamics Simulations.”Physical Chemistry Chemical Physics 15, no. 17 (2013):6527. doi:10.1039/c3cp43947j.

Coward, Lori, Neil C. Barnes, Kenneth D. R. Setchell, andStephen Barnes. “Genistein, Daidzein, and TheirBeta-Glycoside Conjugates: Antitumor Isoflavones in SoybeanFoods from American and Asian Diets.” Journal ofAgricultural and Food Chemistry 41, no. 11 (November 1,1993): 1961–1967. doi:10.1021/jf00035a027.

Cui, Fengchao, Kecheng Yang, and Yunqi Li. “Investigate theBinding of Catechins to Trypsin Using Docking andMolecular Dynamics Simulation.” PLOS ONE 10, no. 5 (May 4,2015): e0125848. doi:10.1371/journal.pone.0125848.

Della-Longa, Stefano, and Alessandro Arcovito.“Intermediate States in the Binding Process of Folic Acid

to Folate Receptor α: Insights by Molecular Dynamics andMetadynamics.” Journal of Computer-Aided Molecular Design29, no. 1 ( January 2015): 23–35. doi:10.1007/s10822-014-9801-8.

Furse, Kristina E., Derek A. Pratt, Claus Schneider, AlanR. Brash, Ned A. Porter, and Terry P. Lybrand. “MolecularDynamics Simulations of Arachidonic Acid-DerivedPentadienyl Radical Intermediate Complexes with COX-1 andCOX-2: Insights into Oxygenation Regio- andStereoselectivity.” Biochemistry 45, no. 10 (2006):3206–3218.

Grossfield, Alan, Scott E. Feller, and Michael C. Pitman.“A Role for Direct Interactions in the Modulation ofRhodopsin by Omega-3 Polyunsaturated Lipids.” Proceedingsof the National Academy of Sciences of the United Statesof America 103, no. 13 (2006): 4888–4893.

Jiang, Ping, Weifeng Li, Joan-Emma Shea, and Yuguang Mu.“Resveratrol Inhibits the Formation of Multiple-Layeredβ-Sheet Oligomers of the Human Islet Amyloid PolypeptideSegment 22-27.” Biophysical Journal 100, no. 6 (March 16,2011): 1550– 1558. doi:10.1016/j.bpj.2011.02.010.

Jones, Peter J. H., and Suhad S. AbuMweis. “Phytosterols asFunctional Food Ingredients: Linkages to CardiovascularDisease and Cancer.” Current Opinion in Clinical Nutritionand Metabolic Care 12, no. 2 (March 2009): 147–151.

Karkola, Sampo, and Kristiina Wähälä. “The Binding ofLignans, Flavonoids and Coumestrol to CYP450 Aromatase: AMolecular Modelling Study.” Molecular and CellularEndocrinology 301, no. 1–2 (March 25, 2009): 235–244.doi:10.1016/j.mce.2008.10.003.

Lof, Marie, and Elisabete Weiderpass. “Impact of Diet onBreast Cancer Risk.” Current Opinion in Obstetrics &Gynecology 21, no. 1 (February 2009): 80–85. doi:10.1097 /GCO.0b013e32831d7f22.

MacKay, Dylan S., and Peter J. H. Jones. “Phytosterols inHuman Nutrition: Type, Formulation, Delivery, andPhysiological Function.” European Journal of Lipid Scienceand Technology 113, no. 12 (December 2011): 1427–1432.doi:10.1002/ejlt.201100100.

Madhan, B., P. Thanikaivelan, V. Subramanian, J. RaghavaRao, Balachandran Unni Nair, and T. Ramasami. “MolecularMechanics and Dynamics Studies on the Interaction of Gallic

Acid with Collagen-Like Peptides.” Chemical Physics Letters346, no. 3–4 (October 2001): 334–40.doi:10.1016/S0009-2614(01)00910-1.

Mahaddalkar, Tejashree, Charu Suri, Pradeep Kumar Naik, andManu Lopus. “Biochemical Characterization and MolecularDynamic Simulation of β-Sitosterol as a TubulinBindingAnticancer Agent.” European Journal of Pharmacology 760(August 2015): 154–162. doi:10.1016/j.ejphar.2015.04.014.

Manas, Eric S., Zhang B. Xu, Rayomand J. Unwalla, andWilliam S. Somers. “Understanding the Selectivity ofGenistein for Human Estrogen Receptor-β Using X-RayCrystallography and Computational Methods.” Structure 12,no. 12 (December 2004): 2197–2207.doi:10.1016/j.str.2004.09.015.

Marques, Helder M., Ricky P. Hicks, and Kenneth L. Brown.“Solution Structure of Cyanocobalamin (vitamin B12) byNMR-Restrained Molecular Dynamics and Simulated AnnealingCalculations.” Chemical Communications, no. 12 (January 1,1996): 1427– 1428. doi:10.1039/CC9960001427.

Mascayano, Carolina, Gabriel Núñez, Waldo Acevedo, andMarcos Caroli Rezende. “Binding of Arachidonic Acid andTwo Flavonoid Inhibitors to Human 12- and 15-Lipoxygenases:A Steered Molecular Dynamics Study.” Journal of MolecularModeling 16, no. 5 (May 2010): 1039–1045.doi:10.1007/s00894-009-0616-9.

Neuringer, Martha. “Infant Vision and Retinal Function inStudies of Dietary Long-Chain Polyunsaturated Fatty Acids:Methods, Results, and Implications.” The American Journalof Clinical Nutrition 71, no. 1 (2000): 256S–267S.

Nyberg, Pia, MerjaYlipalosaari, Timo Sorsa, and Tuula Salo.“Trypsins and Their Role in Carcinoma Growth.”Experimental Cell Research 312, no. 8 (May 1, 2006):1219–28. doi:10.1016/j.yexcr.2005.12.024.

Olausson, Bjoern E. S., Alan Grossfield, Michael C. Pitman,Michael F. Brown, Scott E. Feller, and Alexander Vogel.“Molecular Dynamics Simulations Reveal SpecificInteractions of Post-Translational Palmitoyl Modificationswith Rhodopsin in Membranes.” Journal of the AmericanChemical Society 134, no. 9 (March 7, 2012): 4324–31.doi:10.1021 / ja2108382.

Qin, Shan-Shan, Zhi-Wu Yu, and Yang-Xin Yu. “Structural andKinetic Properties of α-Tocopherol in Phospholipid

Bilayers, a Molecular Dynamics Simulation Study.” TheJournal of Physical Chemistry B 113, no. 52 (December 31,2009): 16537–16546. doi:10 .1021/jp9074306.

Richard, Tristan, Alison D. Pawlus, Marie-Laure Iglésias,Eric Pedrot, Pierre Waffo-Teguo, Jean-Michel Mérillon, andJean-Pierre Monti. “Neuroprotective Properties ofResveratrol and Derivatives.” Annals of the New YorkAcademy of Sciences 1215 (January 2011): 103–108.doi:10.1111/j.1749-6632.2010.05865.x.

Soreide, K., E. A. Janssen, H. Körner, and J. P. A. Baak.“Trypsin in Colorectal Cancer: Molecular BiologicalMechanisms of Proliferation, Invasion, and Metastasis.”The Journal of Pathology 209, no. 2 ( June 2006):147–156. doi:10.1002/path.1999.

Van Aalten, D. M., J. B. Findlay, A. Amadei, and H. J.Berendsen. “Essential Dynamics of the CellularRetinol-Binding Protein—Evidence for Ligand-InducedConformational Changes.” Protein Engineering 8, no. 11(November 1995): 1129–1135.

Verma, Sharad, Amit Singh, and Abha Mishra. “Quercetin andTaxifolin Completely Break MDM2–p53 Association: MolecularDynamics Simulation Study.” Medicinal Chemistry Research22, no. 6 ( June 2013): 2778–87.doi:10.1007/s00044-012-0274-9.

Von Fircks, Anne, Stefan Naumann, Rudolf Friedemann, andStephan König. “Molecular Dynamics Simulations on theCoenzyme Thiamin Diphosphate in Apoenzyme Environment.”Molecular Modeling Annual 2, no. 9 (September 27, 1996):312–318. doi:10.1007/s0089460020312.

Yuan, Minggui, Minxian Luo, Yao Song, Qiu Xu, XiaofengWang, Yi Cao, Xianzhang Bu, Yanliang Ren, and Xiaopeng Hu.“Identification of Curcumin Derivatives as HumanGlyoxalase I Inhibitors: A Combination of BiologicalEvaluation, Molecular Docking, 3D-QSAR and MolecularDynamics Simulation Studies.” Bioorganic & MedicinalChemistry 19, no. 3 (February 2011): 1189–1196.doi:10.1016/j.bmc.2010.12.039.

Zazza, Costantino, and Nico Sanna. “Photoabsorption Spectraof a Natural Polyphenol Compound for TherapeuticApplications: The Protocatechuic Acid in Dilute WaterSolution at Room Temperature.” Physical Chemistry ChemicalPhysics 12, no. 15 (2010): 3859. doi:10.1039/b925237a.

Zeng, Jianping, Aimin Wang, Xuedong Gong, Jingwen Chen,Song Chen, and Feng Xue. “Molecular Dynamics Simulation ofDiffusion of Vitamin C in Water Solution.” Chinese Journalof Chemistry 30, no. 1 ( January 1, 2012): 115–120.doi:10.1002/cjoc.201180459.

Zhao, Guijun, P. V. Subbaiah, Evan Mintzer, See-Wing Chiu,Eric Jakobsson, and H. L. Scott. “Molecular DynamicSimulation Study of Cholesterol and Conjugated Double Bondsin Lipid Bilayers.” Chemistry and Physics of Lipids 164,no. 8 (November 2011): 811–818.doi:10.1016/j.chemphyslip.2011.09.008.

11 11: Nanostructured Lipid Carriers

Abbaspour, N., Hurrell, R., and Kelishadi, R. (2014).Review on iron and its importance for human health.Journal of Research in Medical Sciences: The OfficialJournal of Isfahan University of Medical Sciences, 19(2),164–174.

Alfadul, S. M., and Elneshwy, A. A. (2010). Use ofnanotechnology in food processing, packaging andsafety—Review. African Journal of Food, Agriculture,Nutrition and Development, 10(6), 2719.

Anandharamakrishnan, C. (2014). Techniques forNanoencapsulation of Food Ingredients. New York: Springer.

Augustin, M. A., and Hemar, Y. (2009). Nano- andmicro-structured assemblies for encapsulation of foodingredients. Chemical Society Review, 38(4), 902–912. doi:10.1039/b801739p.

Barnadas-Rodriguez, R., and Sabes, M. (2001). Factorsinvolved in the production of liposomes with ahigh-pressure homogenizer. International Journal ofPharmaceutics, 213(1–2), 175–186.

Chaudhry, Q., Scotter, M., Blackburn, J., Ross, B., Boxall,A., Castle, L. et al. (2008). Applications andimplications of nanotechnologies for the food sector. FoodAdditives and Contaminants. Part A, Chemistry, Analysis,Control, Exposure, and Risk Assessment, 25(3), 241–258.doi: 10.1080/02652030701744538.

De Vogel-van den Bosch, J., van den Berg, S. A., Bijland,S., Voshol, P. J., Havekes, L. M., Romijn, H. A. et al.(2011). High-fat diets rich in medium- versus long-chainfatty acids induce distinct patterns of tissue specificinsulin resistance. Journal of Nutritional Biochemistry,22(4), 366–371. doi: 10.1016/j.jnutbio.2010.03.004.

Dierick, N. A., Decuypere, J. A., Molly, K., Van Beek, E.,and Vanderbeke, E. (2002). The combined use oftriacylglycerols (TAGs) containing medium chain fatty acids(MCFAs) and exogenous lipolytic enzymes as an alternativeto nutritional antibiotics in piglet nutrition: II. Invivo release of MCFAs in gastric cannulated and slaughteredpiglets by endogenous and exogenous lipases; effects onthe luminal gut flora and growth performance. LivestockProduction Science, 76(1–2), 1–16. doi:http://dx.doi.org/10.1016 /S0301-6226(01)00331-1.

Ding, B., Xia, S., Hayat, K., and Zhang, X. (2009).Preparation and pH stability of ferrous glycinateliposomes. Journal of Agricultural and Food Chemistry,57(7), 2938–2944. doi: 10.1021/jf8031205.

Ding, B., Zhang, X., Hayat, K., Xia, S., Jia, C., Xie, M.,and Liu, C. (2011). Preparation, characterization and thestability of ferrous glycinate nanoliposomes. Journal ofFood Engineering, 102, 202–208. doi:10.1016/j.jfoodeng.2010.08.022.

Domb, A. J. (2006). Lipospheres for controlled delivery ofsubstances. Drugs and the Pharmaceutical Sciences, 158,297–316.

Fangueiro, J. F., Parra, A., Silva, A. M., Egea, M. A.,Souto, E. B., Garcia, M. L., and Calpena, A. C. (2014).Pharmaceutical nanotechnology: Validation of a highperformance liquid chromatography method for thestabilization of epigallocatechin gallate. InternationalJournal of Pharmaceutics, 475, 181–190. doi:10.1016/j.ijpharm .2014.08.053.

Fathi, M., Mozafari, M. R., and Mohebbi, M. (2012).Nanoencapsulation of food ingredients using lipid baseddelivery systems. Trends in Food Science and Technology,23(1), 13–27. doi:http://dx.doi.org/10.1016/j.tifs.2011.08.003.

Fathi, M., Varshosaz, J., Mohebbi, M., and Shahidi, F.(2013). Hesperetin-loaded solid lipid nanoparticles andnanostructure lipid carriers for food fortification:Preparation, characterization, and modeling. Food andBioprocess Technology 6(6), 1464–1475.

Gasco, M. R. (1993). Method for producing solid lipidmicrospheres having a narrow size distribution. US PatentNo. 5250236.

Goyal, P., Goyal, K., Vijaya Kumar, S. G., Singh, A.,Katare, O. P., and Mishra, D. N. (2005). Liposomal drugdelivery systems—Clinical applications. Acta Pharmaceutica(Zagreb, Croatia), 55(1), 1–25.

Gramdorf, S., Hermann, S., Hentschel, A., Schrader, K.,Müller, R. H., Kumpugdee-Vollrath, M., and Kraume, M.(2008). Crystallized miniemulsions: Influence of operatingparameters during high-pressure homogenization on size andshape of particles. Colloids and Surfaces A:

Physicochemical and Engineering Aspects, 331, 108–113. doi:10.1016/j .colsurfa.2008.07.016.

Gutiérrez, J. M., González, C., Maestro, A., Solè, I., Pey,C. M., and Nolla, J. (2008). Nanoemulsions: Newapplications and optimization of their preparation. CurrentOpinion in Colloid and Interface Science, 13, 245–251.doi: 10.1016/j.cocis.2008.01.005.

Hallberg, L., and Hulthen, L. (2000). No advantage of usingferrous bisglycinate as an iron fortificant. AmericanJournal of Clinical Nutrition, 72(6), 1592–1593.

Hentschel, A., Gramdorf, S., Muller, R. H., and Kurz, T.(2008). Beta-carotene-loaded nanostructured lipidcarriers. Journal of Food Science, 73(2), N1–N6. doi:10.1111/j .1750-3841.2007.00641.x.

Hintz, T., Matthews, K. K., and Di, R. (2015). The use ofplant antimicrobial compounds for food preservation.BioMed Research International. doi: 10.1155/2015/246264.

Hurrell, R. F., Lynch, S., Bothwell, T., Cori, H., Glahn,R., Hertrampf, E., Kratky, Z. et al. (2004). Enhancing theabsorption of fortification iron. A SUSTAIN Task Forcereport. International Journal for Vitamin and NutritionResearch, 74(6), 387–401. doi: 10.1024/0300-9831.74.6.387.

Iannotti, L. L., Tielsch, J. M., Black, M. M., and Black,R. E. (2006). Iron supplementation in early childhood:Health benefits and risks. American Journal of ClinicalNutrition, 84(6), 1261–1276.

Jenning, V., Thünemann, A. F., and Gohla, S. H. (2000).Characterisation of a novel solid lipid nanoparticlecarrier system based on binary mixtures of liquid and solidlipids. International Journal of Pharmaceutics, 199,167–177. doi: 10.1016/S0378 -5173(00)00378-1.

Layrisse, M., Garcia-Casal, M. N., Solano, L., Baron, M.A., Arguello, F., Llovera, D., and Tropper, E. (2000).Iron bioavailability in humans from breakfasts enrichedwith iron bis-glycine chelate, phytates and polyphenols.Journal of Nutrition, 130(9), 2195–2199.

Liu, C.-H., and Wu, C.-T. (2010). Optimization ofnanostructured lipid carriers for lutein delivery. Colloidsand Surfaces A: Physicochemical and Engineering Aspects,353, 149–156. doi: 10.1016/j.colsurfa.2009.11.006.

Liu, G., Wang, J., and Xia, Q. (2012). Application ofnanostructured lipid carrier in food for the improvedbioavailability. European Food Research and Technology,234(3), 391– 398. doi: 10.1007/s00217-011-1645-z.

Liu, W., Liu, J., Xie, M., Liu, C., Liu, W., and Wan, J.(2009). Characterization and high-pressuremicrofluidization-induced activation of polyphenoloxidasefrom Chinese pear (Pyrus pyrifolia Nakai). Journal ofAgricultural and Food Chemistry, 57(12), 5376–5380. doi:10.1021/jf9006642.

Livney, Y. D. (2015). Nanostructured delivery systems infood: Latest developments and potential future directions.Current Opinion in Food Science, 3, 125–135. doi: http://dx.doi.org/10.1016/j.cofs.2015.06.010.

Ma, Q. H., Kuang, Y. Z., Hao, X. Z., and Gu, N. (2009).Preparation and characterization of tea polyphenols andvitamin E loaded nanoscale complex liposome. Journal ofNanoscience and Nanotechnology, 9(2), 1379–1383.

Marten, B., Pfeuffer, M., and Schrezenmeir, J. (2006).Medium-chain triglycerides. International Dairy Journal,16, 1374–1382.

Mason, T. G., Wilking, J. N., Meleson, K., Chang, C. B.,and Graves, S. M. (2006). Nanoemulsions: Formation,structure, and physical properties. Journal of Physics:Condensed Matter, 18(41).

McClements, D. J., and Li, Y. (2010). Structuredemulsion-based delivery systems: Controlling the digestionand release of lipophilic food components. Advances inColloid and Interface Science, 159, 213–228. doi:10.1016/j.cis.2010.06.010.

Mimura, É. C. M., Breganó, J. W., Dichi, J. B., Gregório,E. P., and Dichi, I. (2008). Comparison of ferrous sulfateand ferrous glycinate chelate for the treatment of irondeficiency anemia in gastrectomized patients. Nutrition,24(7–8), 663–668. doi: http://dx.doi.org/10.1016/j.nut.2008.03.017.

Mozafari, M. R. (2010). Nanoliposomes: Preparation andanalysis. Methods in Molecular Biology, 605, 29–50. doi:10.1007/978-1-60327-360-2_2.

Muller, R. H., Mader, K., and Gohla, S. (2000). Solid lipidnanoparticles (SLN) for controlled drug delivery—A review

of the state of the art. European Journal of Pharmaceuticsand Biopharmaceutics, 50(1), 161–177.

Norton, J. E., Espinosa, Y. G., Watson, R. L., Spyropoulos,F., and Norton, I. T. (2015). Functional foodmicrostructures for macronutrient release and delivery.Food and Function, 6(3), 663–678.

Olivares, M., Pizarro, F., Pineda, O., Name, J. J.,Hertrampf, E., and Walter, T. (1997). Milk inhibits andascorbic acid favors ferrous bis-glycine chelatebioavailability in humans. Journal of Nutrition, 127(7),1407–1411.

Penalva, R., Esparza, I., Agüeros, M., Gonzalez-Navarro, C.J., Gonzalez-Ferrero, C., and Irache, J. M. (2015). Caseinnanoparticles as carriers for the oral delivery of folicacid. Food Hydrocolloids, 44, 399–406. doi:10.1016/j.foodhyd.2014.10.004.

Pineda, O., and Ashmead, H. D. (2001). Effectiveness oftreatment of iron-deficiency anemia in infants and youngchildren with ferrous bis-glycinate chelate. Nutrition,17(5), 381–384.

Puntarulo, S. (2005). Iron, oxidative stress and humanhealth. Molecular Aspects of Medicine, 26(4–5), 299–312.doi: http://dx.doi.org/10.1016/j.mam.2005.07.001.

Radtke, M., Souto, E. B., and Muller, R. H. (2005).Nanostructured lipid carriers: A novel generation of solidlipid drug carriers. Pharmaceutical Technology Europe,17(4), 45.

Ragelle, H., Crauste-Manciet, S., Seguin, J., Brossard, D.,Scherman, D., Arnaud, P., and Chabot, G. G. (2012).Nanoemulsion formulation of fisetin improvesbioavailability and antitumour activity in mice.International Journal of Pharmaceutics, 427(2), 452–459.

Ravichandran, R. (2010). Nanotechnology applications infood and food processing: Innovative green approaches,opportunities and uncertainties for global market.International Journal of Green Nanotechnology: Physics andChemistry, 1(2), P72– P96. doi: 10.1080/19430871003684440.

Reza Mozafari, M., Johnson, C., Hatziantoniou, S., andDemetzos, C. (2008). Nanoliposomes and their applicationsin food nanotechnology. Journal of Liposome Research,18(4), 309–327. doi: 10.1080/08982100802465941.

Riegsecker, S., Wiczynski, D., Kaplan, M. J., and Ahmed, S.(2013). Potential benefits of green tea polyphenol EGCG inthe prevention and treatment of vascular inflammation inrheumatoid arthritis. Life Sciences, 93(8), 307–312.

Schumann, K., Schafer, S. G., and Forth, W. (1986). Ironabsorption and biliary excretion of transferrin in rats.Research in Experimental Medicine (Berlin), 186(3),215–219.

Severino, P., Santana, M. H. A., and Souto, E. B. (2012).Optimizing SLN and NLC by 2(2) full factorial design:Effect of homogenization technique. Materials Science andEngineering C 32(6), 1375–1379.doi:10.1016/j.msec.2012.04.017.

Shakeel, F., and Ramadan, W. (2010). Transdermal deliveryof anticancer drug caffeine from water-in-oilnanoemulsions. Colloids and Surfaces B: Biointerfaces, 75,356–362. doi:10.1016/j.colsurfb.2009.09.010.

Shpigelman, A., Cohen, Y., and Livney, Y. D. (2012).Thermally-induced β-lactoglobulin–EGCG nanovehicles:Loading, stability, sensory and digestive-release study.Food Hydrocolloids, 29, 57–67. doi:10.1016/j.foodhyd.2012.01.016.

Tadros, T., Izquierdo, P., Esquena, J., and Solans, C.(2004). Formation and stability of nanoemulsions. Advancesin Colloid and Interface Science, 108, 303–318.doi:10.1016/j .cis.2003.10.023.

Takahashi, M., Inafuku, K., Miyagi, T., Oku, H., Wada, K.,Imura, T., and Kitamoto, D. (2006). Efficient preparationof liposomes encapsulating food materials using lecithinsby a mechanochemical method. Journal of Oleo Science,56(1), 35-42.

Tamjidi, F., Shahedi, M., Varshosaz, J., and Nasirpour, A.(2013). Nanostructured lipid carriers (NLC): A potentialdelivery system for bioactive food molecules. InnovativeFood Science and Emerging Technologies, 19, 29–43.doi:http://dx.doi.org/10.1016/j .ifset.2013.03.002.

Taylor, T. M., Davidson, P. M., Bruce, B. D., and Weiss, J.(2005). Liposomal nanocapsules in food science andagriculture. Critical Reviews in Food Science andNutrition, 45(7–8), 587–605.doi:10.1080/10408390591001135.

Teeranachaideekul, V., Muller, R. H., and Junyaprasert, V.B. (2007). Encapsulation of ascorbyl palmitate innanostructured lipid carriers (NLC)—Effects of formulationparameters on physicochemical stability. InternationalJournal of Pharmaceutics, 340(1–2), 198–206.doi:10.1016/j.ijpharm.2007.03.022.

Tortorella, S., and Karagiannis, T. C. (2014). Transferrinreceptor-mediated endocytosis: A useful target for cancertherapy. The Journal of Membrane Biology 247(4), 291–307.

Trotta, M., Debernardi, F., and Caputo, O. (2003).Preparation of solid lipid nanoparticles by a solventemulsification–diffusion technique. International Journalof Pharmaceutics, 257, 153–160.doi:10.1016/S0378-5173(03)00135-2.

Uner, M. (2006). Preparation, characterization andphysico-chemical properties of solid lipid nanoparticles(SLN) and nanostructured lipid carriers (NLC): Theirbenefits as colloidal drug carrier systems. Pharmazie,61(5), 375–386.

Weiss, J., Decker, E., McClements, D. J., Kristbergsson,K., Helgason, T., and Awad, T. (2008). Solid lipidnanoparticles as delivery systems for bioactive foodcomponents. Food Biophysics, 3(2), 146–154.doi:10.1007/s11483-008-9065-8.

Yang, S., Liu, C., Liu, W., Yu, H., Zheng, H., Zhou, W.,and Hu, Y. (2013). Preparation and characterization ofnanoliposomes entrapping medium-chain fatty acids andvitamin C by lyophilization. International Journal ofMolecular Science, 14(10), 19763–19773. doi:10.3390/ijms141019763.

Yao, M., McClements, D. J., and Xiao, H. (2015). Improvingoral bioavailability of nutraceuticals by engineerednanoparticle-based delivery systems. Current Opinion inFood Science, 2, 14–19. doi:10.1016/j.cofs.2014.12.005.

Yao, M., Xiao, H., and McClements, D. J. (2014). Deliveryof lipophilic bioactives: Assembly, disassembly, andreassembly of lipid nanoparticles. Annual Review of FoodScience and Technology, 5, 53–81.

12 12: Challenges in the Development ofFunctional Foods: Role of Nanotechnology

Aguilera, J. M. (1995). Gelation of whey proteins. FoodTechnology 49(10): 83–89.

Akkermans, C., Venema, P., van der Goot, A. J., Gruppen,H., Bakx, E. J., Boom, R. M., and van der Linden, E.(2008). Peptides are building blocks of heat-inducedfibrillar protein aggregates of β-lactoglobulin formed atpH 2. Biomacromolecules 9(5): 1474–1479.

Amar, I., Aserin, A., and Garti, N. (2003). Solubilizationpatterns of lutein and lutein esters in food gradenon-ionic microemulsions. Journal of Agricultural and FoodChemistry 51(16): 4775–4781.

Anal, A. K., and Singh, H. (2007). Recent advances inmicroencapsulation of probiotics for industrialapplications and targeted delivery. Trends in Food Scienceand Technology 18(5): 240–251.

Augustin, M. A., and Hemar, Y. (2009). Nano-andmicro-structured assemblies for encapsulation of foodingredients. Chemical Society Reviews 38(4): 902–912.

Augustin, M. A., Sanguansri, L., and Bode, O. (2006).Maillard reaction products as encapsulants for fish oilpowders. Journal of Food Science 71(2): 25–32.

Bae, E. K., and Lee, S. J. (2008). Microencapsulation ofavocado oil by spray drying using whey protein andmaltodextrin. Journal of Microencapsulation 25(8): 549–560.

Beaulieu, L., Savoie, L., Paquin, P., and Subirade, M.(2002). Elaboration and characterization of whey proteinbeads by an emulsification/cold gelation process:Application for the protection of retinol.Biomacromolecules 3(2): 239–248.

Benichou, A., Aserin, A., and Garti, N. (2004). Doubleemulsions stabilized with hybrids of natural polymers forentrapment and slow release of active matters. Advances inColloid and Interface Science 9: 29–41.

Benkouider, C. (2005). The world’s emerging markets.Functional foods and nutraceuticals. Accessed 09/10/12.http://www.ffnmag.com/NH/ASP/strArticleID/770/strSite /FFNSite/articleDisplay.asp.

Bigliardi, B., and Galati, F. (2013). Innovation trends inthe food industry: The case of functional foods. Trends inFood Science and Technology 31(2): 118–129.

Brennan, R. O. (1977). Nutrigenetics: New Concepts forRelieving Hypoglycemia. New York: Signet.

Bröring, S., Martin Cloutier, L., and Leker, J. (2006). Thefront end of innovation in an era of industry convergence:Evidence from nutraceuticals and functional foods. R&DManagement 36(5): 487–498.

Bueschelberger, H. G. (2004). Lecithins. In Emulsifiers inFood Technology, edited by R. J. Whitehurst. Oxford:Wiley-Blackwell.

Burey, P., Bhandari, B. R., Howes, T., and Gidley, M. J.(2008). Hydrocolloid gel particles: Formation,characterization, and application. Critical Reviews in FoodScience and Nutrition 48: 361–377.

Burgain, J., Gaiani, C., Linder, M., and Scher, J. (2011).Encapsulation of probiotic living cells: From laboratoryscale to industrial applications. Journal of FoodEngineering 104(4): 467–483.

Buszello, K., and Müller, B. W. (2000). Emulsions as drugdelivery systems. In Pharmaceutical Emulsions andSuspensions, edited by F. Nielloud and G. Marti-Mestres,pp. 191–228. New York: Marcel Dekker.

Canselier, J. P., Delmas, H., Wilhelm, A. M., and Abismaïl,B. (2002). Ultrasound emulsification — An overview. Journalof Dispersion Science and Technology 23(1): 333–349.

Capek, I. (2004). Degradation of kinetically-stable o/wemulsions. Advances in Colloid and Interface Science107(2–3): 125–155.

Champagne, C. P., and Fustier, P. (2007).Microencapsulation for the improved delivery of bioactivecompounds into foods. Current Opinion in Biotechnology 18:184–190.

Chen, L., Remondetto, G., and Subirade, M. (2006). Foodprotein-based materials as nutraceutical delivery systems.Trends in Food Science and Technology 17(5): 272–283.

Cheng, Z., Al Zaki, A., Hui, J. Z., Muzykantov, V. R., andTsourkas, A. (2012). Multifunctional nanoparticles: Cost

versus benefit of adding targeting and imagingcapabilities. Science 338: 903–910.

Chiu, Y. C., and Yang, W. L. (1992). Preparation of vitaminE microemulsion possessing high resistance to oxidation inair. Colloids and Surfaces 63(4): 311–322.

Cho, Y. H., Shim, H. K., and Park, J. (2003). Encapsulationof fish oil by an enzymatic gelation process usingtransglutaminase cross-linked proteins. Journal of FoodScience 68(9): 2717–2723.

Contor, L. (2001). Functional food science in Europe.Nutrition, Metabolism and Cardiovascular Diseases 11(4Suppl): 20–23.

de Vos, P., Faas, M. M., Spasojevic, M., and Sikkema, J.(2010). Encapsulation for preservation of functionalityand targeted delivery of bioactive food components.International Dairy Journal 20(4): 292–302.

Desai, K. G. H., and Park, H. J. (2005). Recentdevelopments in microencapsulation of food ingredients.Drying Technology 23(7): 1361–1394.

Dickinson, E. (1992). An Introduction to Food Colloids.Oxford: Oxford University Press.

Dobson, C. M. (2003). Protein folding and misfolding.Nature 426(6968): 884–890.

Drusch, S., and Berg, S. (2008). Extractable oil inmicrocapsules prepared by spray-drying: Localization,determination and impact on oxidative stability. FoodChemistry 109: 17–24.

Drusch, S., and Mannino, S. (2009). Patent based review onindustrial approaches for the microencapsulation of oilsrich in polyunsaturated fatty acids. Trends in Food Scienceand Technology 20: 237–244.

El-Aasser, M. S., and Sudol, E. D. (2004). Miniemulsions:Overview of research and applications. Journal of CoatingsTechnology and Research 1(1): 21–31.

Euromonitor. (2010a). Cardiovascular health: A key area offunctional food and drinks development. London: EuromonitorInternational. www.euromonitor.com.

Euromonitor. (2010b). Navigating wellbeing: Today and

tomorrow in functional food and drinks-world. London:Euromonitor International. www.euromonitor.com.

Farhud, D. D., Yeganeh, M. Z., and Yeganeh, M. Z. (2010).Nutrigenomics and nutrigenetics. Iranian Journal of PublicHealth 39(4): 1.

Flanagan, J., Kotegaard, K., Pinder, D. N., Rades, T., andSingh, H. (2006). Solubilisation of soybean oil inmicroemulsions using various surfactants. FoodHydrocolloids 20: 253–260.

Flanagan, J., and Singh, H. (2006). Microemulsions: Apotential delivery system for bioactives in food. CriticalReviews in Food Science and Nutrition 46: 221–237.

Floury, J., Desrumaux, A., Axelos, M. A. V., and Legrand,J. (2003). Effect of high pressure homogenisation onmethylcellulose as food emulsifier. Journal of FoodEngineering 58(3): 227–238.

Forgiarini, A., Esquena, J., González, C., and Solans, C.(2001). Formation of nano- emulsions by low-energyemulsification methods at constant temperature. Langmuir17(7): 2076–2083.

Frewer, L., Scholderer, J., and Lambert, N. (2003).Consumer acceptance of functional foods: Issues for thefuture. British Food Journal 105(10): 714–731.

Friberg, S., Larsson, K., and Sjoblom, J. (2004). FoodEmulsions, 4th ed. New York: Marcel Dekker.

Gao, W., Vecchio, D., Li, J., Zhu, J., Zhang, Q., Fu, V.,Li, J., Thamphiwatana, S., Lu, D., and Zhang, L. (2014).Hydrogel containing nanoparticle-stabilized liposomes fortopical antimicrobial delivery. ACS Nano 8: 2900–2907.

Gaonkar, A. G., and Bagwe, R. P. (2003). Microemulsions infoods: Challenges and applications. In Surfactant ScienceSeries. Adsorption and Aggregation of Surfactants inSolution, edited by K. L. Mittal and D. O. Shah, 407–430.New York: Marcel Dekker.

García-Fuentes, M., Torres, D., and Alonso, M. J. (2003).Design of lipid nanoparticles for the oral delivery ofhydrophilic macromolecules. Colloids and Surfaces B:Biointerfaces 27(2–3): 159–168.

Garti, N., Aserin, A., Watchtel, E., Gans, O., and Shaul,

Y. (2001). Water solubilization in nonionic microemulsionsstabilized by grafted siliconic emulsifiers. Journal ofColloid and Interface Science 233(2): 286–294.

Garti, N., and Bisperink, C. (1998). Double emulsions:Progress and applications. Current Opinion in Colloid andInterface Science 3(6): 657–667.

Garti, N., Clement, V., Leser, M., Aserin, A., and Fanun,M. (1999). Sucrose ester microemulsions. Journal ofMolecular Liquids 80(2–3): 253–296.

Garti, N., Yaghmur, A., Aserin, A., Spernath, A., Elfakess,R., and Ezrahi, S. (2003). Solubilization of activemolecules in microemulsions for improved environmentalprotection. Colloids and Surfaces A: Physicochemical andEngineering Aspects 230(1–3): 183–190.

Gharsallaoui, A., Roudaut, G., Chambin, O., Voilley, A.,and Saurel, R. (2007). Applications of spray-drying inmicroencapsulation of food ingredients: An overview. FoodResearch International 40: 1107–1121.

Gibbs, F., Kermasha, S., Alli, I., and Mulligan, C. N.(1999). Encapsulation in the food industry: A review.International Journal of Food Sciences and Nutrition 50(3):213–224.

Graça, J. S., de Oliveira, R. F., de Moraes, M. L., andFerreira, M. (2014). Amperometric glucose biosensor basedon layer-by-layer films of microperoxidase-11 andliposomeencapsulated glucose oxidase. Bioelectrochemistry96: 37–42.

Graveland-Bikker, J. F., and de Kruif, C. G. (2006). Uniquemilk protein based nanotubes: Food and nanotechnologymeet. Trends in Food Science and Technology 17(5): 196–203.

Graves, B. and Weiss, H. (1992). Encapsulation techniques.Encyclopedia of Food Science and Technology 2: 697–703.

Gutiérrez, J. M., González, C., Maestro, A., Solè, I., Pey,C. M., and Nolla, J. (2008). Nanoemulsions: Newapplications and optimization of their preparation. CurrentOpinion in Colloid and Interface Science 13(4): 245–251.

Haruyama, T. (2003). Micro- and nanobiotechnology forbiosensing cellular responses. Advanced Drug DeliveryReviews 55: 393–401.

Hasler, C. M. (2002). Functional foods: Benefits, concernsand challenges—A position paper from the American Councilon Science and Health. Journal of Nutrition 132:3772–3781.

Heasman, M. and Mellentin, J. (2001). The Functional FoodsRevolution: Healthy People, Healthy Profits? London:Earthscan Publications Ltd.

Institute of Food Technology (IFT). (2005). Expert reporton functional foods: Opportunities and challenges. IFTExpert Report, pp. 7–10. Washington, DC: Institute of FoodTechnology.

Imafidon, G. I., and Spanier, A. M. (1994). Unraveling thesecret of meat flavor. Trends in Food Science andTechnology 5: 315–321.

Iscan, Y., Wissing, S. A., Hekimoglu, S., and Müller, R. H.(2005). Solid lipid nanoparticles (SLN (TM)) for topicaldrug delivery: Incorporation of the lipophilic drugsN,N-diethylm-toluamide and vitamin K. Pharmazie 60(12):905–909.

Izquierdo, P., Esquena, J., Tadros, T. F., Dederen, C.,Garcia, M. J., Azemar, N., and Solans, C. (2002).Formation and stability of nano-emulsions prepared usingthe phase inversion temperature method. Langmuir 18(1):26–30.

Izquierdo, P., Feng, J., Esquena, J., Tadros, T. F.,Dederen, J. C., Garcia, M. J., Azemar, N., and Solans, C.(2005). The influence of surfactant mixing ratio onnano-emulsion formation by the pit method. Journal ofColloid and Interface Science 285(1): 388–394.

Joubran, R. F., Parris, N., Lu, D., and Trevino, S. (1994).Synergetic effect of sucrose and ethanol on formation oftriglyceride microemulsions. Journal of Dispersion Scienceand Technology 15(6): 687–704.

Kargar, M. (2014). Emulsion design for protection ofchemically sensitive bioactive ingredients. Ph.D. thesis,the University of Birmingham, Alabama.

Keller, B. (2001). Liposomes in nutrition. Trends in FoodScience and Technology 12: 25–31.

Kentish, S., Wooster, T. J., Ashokkumar, M., Balachandran,S., Mawson, R., and Simons, L. (2008). The use of

ultrasonics for nanoemulsion preparation. Innovative FoodScience and Emerging Technologies 9(2): 170–175.

Kleef, V. E., Trijp, H. C., Luning, P., and Jongen, W. M.(2002). Consumer-oriented functional food development: Howwell do functional disciplines reflect the “voice of theconsumer”? Trends in Food Science and Technology 13(3):93–101.

Kong, B., and Xiong, Y. L. (2006). Antioxidant activity ofzein hydrolysates in a liposome system and the possiblemode of action. Journal of Agricultural and Food Chemistry54: 6059–6068.

Kosaraju, S. L. (2005). Colon targeted delivery systems:Review of polysaccharides for encapsulation and delivery.Critical Reviews in Food Science and Nutrition 45(4):251–258.

Kotilainen, L., Rajalahti, R., Ragasa, C., and Pehu, E.(2006). Health enhancing foods: Opportunities forstrengthening the sector in developing countries.Discussion Paper 30. Washington, DC: World Bank.

Krasaekoopt, W., Bhandari, B., and Deeth, H. (2003).Evaluation of encapsulation techniques of probiotics foryoghurt. International Dairy Journal 13(1): 3–13.

Krasaekoopt, W., Bhandari, B., and Deeth, H. C. (2004). Theinfluence of coating materials on some properties ofalginate beads and survivability of microencapsulatedprobiotic bacteria. Inte rnational Dairy Journal 14:737–743.

Kussmann, M., Raymond, F., and Affolter, M. (2006).OMICS-driven biomarker discovery in nutrition and health.Journal of Biotechnology 124: 758–787.

Lagorce, A. (2009). Functional foods bring healthy returns.http://www.marketwatch.com /story/functionalfoods-bring-healthy-returns-2009-12-09.

Landfester, K., Eisenblätter, J., and Rothe, R. (2004).Preparation of polymerizable miniemulsions byultrasonication. JCT Research 1(1): 65–68.

Langer, R. (1990). New methods of drug delivery. Science249: 1527–1533.

Lasic, D. D. (1998). Novel applications of liposomes.

Trends in Biotechnology 16: 307–321.

Lawrence, M. J. and Rees, G. D. (2000). Microemulsion-basedmedia as novel drug delivery systems. Advanced DrugDelivery Reviews 45: 89–121.

Lim, S. J., and Kim, C. K. (2002). Formulation parametersdetermining the physicochemical characteristics of solidlipid nanoparticles loaded with all-trans retinoic acid.International Journal of Pharmaceutics 243(1–2): 135–146.

Liu, W., Liu, J., Liu, W., Li, T., and Liu, C. (2013).Improved physical and in vitro digestion stability of apolyelectrolyte delivery system based on layer-by-layerself-assembly alginate –chitosan-coated nanoliposomes.Journal of Agricultural and Food Chemistry 61: 4133–4144.

Liu, W., Liu, W.-L., Liu, C.-M., Liu, J.-H., Yang, S.-B.,Zheng, H.-J., Lei, H.-W. et al. (2011). Medium-chain fattyacid nanoliposomes for easy energy supply. Nutrition 27:700–706.

Liu, W., Ye, A., Liu, C., Liu, W., and Singh, H. (2012).Structure and integrity of liposomes prepared from milk-or soybean-derived phospholipids during in vitro digestion.Food Research International 48(2): 499–506.

Liu, W., Ye, A., and Singh, H. (2015). Progress inapplications of liposomes in food systems. InMicroencapsulation and Microspheres for Food Applications,edited by L. M. C. Sagis, 151–170. New York: AcademicPress.

Loveday, S. M., Rao, M. A., Creamer L. K., and Singh, H.(2009). Factors affecting rheological characteristics offibril gels: The case of β-lactoglobulin and α-lactalbumin.Journal of Food Science 74(3): R47–R55.

Mark-Herbert, C. (2002). Functional foods for added value.Doctoral dissertation, Swedish University of AgriculturalSciences, Uppsala.

Mark-Herbert, C. (2004). Innovation of a new productcategory—Functional foods. Technovation 24: 713–719.

McClements, D. J. (2004). Food Emulsions: Principles,Practice, and Techniques, 2nd ed. Boca Raton, FL: CRCPress.

McClements, D. J. (2005). Theoretical analysis of factors

affecting the formation and stability of multilayeredcolloidal dispersions. Langmuir 21(21): 9777–9785.

McClements, D. J. (2010). Design of nano-laminated coatingsto control bioavailability of lipophilic food components.Journal of Food Science 75(1): R30–R42.

McClements, D. J., and Rao, J. (2011). Food-gradenanoemulsions: Formulation, fabrication, properties,performance, biological fate, and potential toxicity.Critical Reviews in Food Science and Nutrition 51(4):285–330.

McClements, D. J., Decker, E. A., and Park, Y. (2007).Physicochemical and structural aspects of lipid digestion.In Understanding and Controlling the Microstructure ofComplex Foods, edited by D. J. McClements, pp. 483–503.Boca Raton, FL: Woodhead Publishing.

McClements, D. J., Decker, E. A., and Park, Y. (2009).Controlling lipid bioavailability through physicochemicaland structural approaches. Critical Reviews in Food Scienceand Nutrition 49(1): 48–67.

McClements, D. J., Decker, E. A., Park, Y., and Weiss, J.(2008). Designing food structure to control stability,digestion, release and absorption of lipophilic foodcomponents. Food Biophysics 3: 219–228.

McClements, D. J., Decker, E. A., Park, Y., and Weiss, J.(2009). Structural design principles for delivery ofbioactive components in nutraceuticals and functionalfoods. Critical Reviews in Food Science and Nutrition49(6): 577–606.

Menrad, K. (2003). Market and marketing of functional foodin Europe. Journal of Food Engineering 56(2): 181–188.

Milner, J. (2000). Functional foods: The US perspective.American Journal of Clinical Nutrition 71: 1654S–1659S.

Mollet, B., and Rowland, I. (2002). Functional foods: Atthe frontier between food and pharma. Current Opinion inBiotechnology 13(5): 483–485.

Morales, D., Gutiérrez, J. M., Garcia-Celma, M. J., andSolans, Y. C. (2003). A study of the relation betweenbicontinuous microemulsions and oil/water nano-emulsionformation. Langmuir 19(18): 7196–7200.

Mozafari, M. R., Pardakhty, A., Azarmi, S., Jazayeri, J.A., Nokhodchi, A., and Omri, A. (2009). Role ofnanocarrier systems in cancer nanotherapy. Journal ofLiposome Research 19: 310–321.

Muller, M., and Kersten, S. (2003). Nutrigenomics: Goalsand strategies. Nature Reviews Genetics 4: 315–322.

Muller, R. H., Maassen, S., Weyhers, H., and Mehnert, W.(1996). Phagocytic uptake and cytotoxicity of solid lipidnanoparticles (SLN) sterically stabilized with poloxamine908 and poloxamer 407. Journal of Drug Targeting 4:161–170.

Müller, R. H., Radtke, M., and Wissing, S. A. (2002). Solidlipid nanoparticles (SLN) and nanostructured lipid carriers(NCL) in cosmetic and dermatological preparations. AdvancedDrug Delivery Reviews 54(Suppl. 1): S131–S155.

Murray, S. (2007). Food: The world’s biggest industry.www.forbes.com/2007/11/11 /

Muschiolik, G. (2007). Multiple emulsions for food use.Current Opinion in Colloid and Interface Science 12(4–5):213–220.

Mutch, D. M., Wahli, W., and Williamson, G. (2005).Nutrigenomics and nutrigenetics: The emerging faces ofnutrition. FASEB Journal 19(12): 1602–1616.

Newman, G. C., and Huang, C. (1975). Structural studies onphophatidylcholine–cholesterol mixed vesicles.Biochemistry 14: 3363–3370.

Onwulata, C. I. (2012). Encapsulation of new activeingredients. Annual Review of Food Science and Technology3: 183–202.

Palou, A., Serra, F., and Pico, C. (2003). General aspectson the assessment of functional foods in the EuropeanUnion. European Journal of Clinical Nutrition 57(Suppl. 1):S12–S17.

Palzer, S. (2009). Food structures for nutrition, healthand wellness. Trends in Food Science and Technology 20(5):194–200.

Parris, N., Joubran, R. F., and Lu, D. (1994). Triglyceridemicroemulsions—Effect of non-ionic surfactants and thenature of the oil. Journal of Agricultural and Food

Chemistry 42(6): 1295–1299.

Peer, D., Karp, J. M., Hong, S., Farokkhzad, O. C.,Margalit, R., and Langer, R. (2007). Nanocarriers as anemerging platform for cancer therapy. Nature Nanotechnology2: 751–760.

Pelletier, X., Belbraouet, S., Mirabel, D., Mordret, F.,Perrin, J L., Pages, X., and Debry, G. (1995). A dietmoderately enriched in phytosterols lowers plasmacholesterol concentrations in normocholesterolemic humans.Annals of Nutrition and Metabolism 39(5): 291–295.

Pinnamaneni, S., Das, N. G., and Das, S. K. (2003).Comparison of oil-in-water emulsions manufactured bymicrofluidization and homogenization. Pharmazie 58(8):554–558.

Pople, P. V., and Singh, K. K. (2006). Development andevaluation of topical formulation containing solid lipidnanoparticles of vitamin A. AAPS PharmSciTech 7(4):E63–E69.

Puri, A., Loomis, K., Smith, B., Lee, J. H., Yavlovich, A.,and Heldman, E. (2009). Lipidbased nanoparticles aspharmaceutical drug carriers: From concepts to clinic.Critical Reviews in Therapeutic Drug Carrier Systems 26:523–580.

Rang, M. J., and Miller, C. A. (1999). Spontaneousemulsification of oils containing hydrocarbon, non-ionicsurfactant, and oleyl alcohol. Journal of Colloid andInterface Science 209(1): 179–192.

Regmi, A., and Gehlhar, M. J. (2005). New directions inglobal food markets. US Department of Agriculture,Agriculture Information Bulletin Number 794.

Reid, A. A., Vuillemard, J. C., Britten, M., Arcand, Y.,Farnworth, E., and Champagne, C. P. (2005).Microentrapment of probiotic bacteria in a Ca 2+ -inducedwhey protein gel and effects on their viability in adynamic gastro-intestinal model. Journal ofMicroencapsulation 22(6): 603–619.

Robertfroid, M. B. (2000a). Concepts and strategy offunctional science: The European perspective. AmericanJournal of Clinical Nutrition 71: 1660–1664.

Robertfroid, M. B. (2000b). A European consensus of

scientific concepts of functional foods. Nutrition 16:689–691.

Rodrigues, M. M. A., Simioni, A. R., Primo, F. L.,Siqueira-Moura, M. P., Morais, P. C., and Tedesco, A. C.(2009). Preparation, characterization and in vitrocytotoxicity of BSAbased nanospheres containing nanosizedmagnetic particles and/or photosensitizer. Journal ofMagnetism and Magnetic Materials 321(10): 1600–1603.

Sadler, J. (2005). Innovation in functional food anddrinks. Business Insights Ltd.

Sagis, L. M. C., Veerman, C., and van der Linden, E.(2004). Mesoscopic properties of semiflexible amyloidfibrils. Langmuir 20(3): 924−927.

Saupe, A., Wissing, S. A., Lenk, A., Schmidt, C., andMuller, R. H. (2005). Solid lipid nanoparticles (SLN) andnanostructured lipid carriers (NLC)—Structuralinvestigations on two different carrier systems.Bio-Medical Materials and Engineering 15(5): 393–402.

Saura-Calixto, F. (2011). Dietary fiber as a carrier ofdietary antioxidants: An essential physiological function.Journal of Agricultural and Food Chemistry 59: 43–49.

Shah, R. B., Zidan, A. S., Funck, T., Tawakkul, M. A.,Nguyenpho, A., and Khan, M. A. (2007). Quality by design:Characterization of self-nano-emulsified drug deliverysystems (SNEDDs) using ultrasonic resonator technology.International Journal of Pharmaceutics 341(1): 189–194.

Sherry, M., Charcosset, C., Fessi, H., and Greige-Gerges,H. (2013). Essential oils encapsulated in liposomes: Areview. Journal of Liposome Research 23: 268–275.

Shimoni, E. (2009). Nanotechnology for foods: Deliverysystems. In IUFoST World Congress Book: Global Issues inFood Science and Technology, 412–424. Amsterdam: Elsevier.

Shinoda, K., and Saito, H. (1968). The effect oftemperature on the phase equilibria and the types ofdispersions of the ternary system composed of water,cyclohexane, and nonionic surfactant. Journal of Colloidand Interface Science 26(1): 70–74.

Side, C. (2006). Overview on marketing functional foods inEurope. Functional food network general meeting. (Citedfrom Siro, I., Kapolna, E., Kapolna, B., and Lugasi, A.

(2008). Functional food. Product development, marketing andconsumer acceptance— A review. Appetite 51(3): 456–467.

Simopoulos, A. P. (2010). Nutrigenetics/nutrigenomics.Annual Review of Public Health 31: 53–68.

Simopoulos, A. P., and Childs, B., eds. (1990). GeneticVariation and Nutrition (World Review of Nutrition andDietetics, vol. 63). Basel: Karger.

Simopoulos, A. P., and Nestel, P., eds. (1997). GeneticVariation and Dietary Response (World Review of Nutritionand Dietetics, vol. 80). Basel: Karger.

Simopoulos, A. P., and Ordovas, J. M., eds. (2004).Nutrigenetics and Nutrigenomics (World Review of Nutritionand Dietetics, vol. 93). Basel: Karger.

Singh, H. and Havea, P. (2003). Thermal denaturation,aggregation and gelation of whey proteins. In AdvancedDairy Chemistry, vol. 1, Proteins, part B, 3rd ed., editedby P. F. Fox and P. L. H. McSweeney, 1261–1287. New York:Kluwer Academic/Plenum.

Singh, H., Thompson, A., Liu, W., and Corredig, M. (2012).Liposomes as food ingredients and nutraceutical deliverysystems. In Encapsulation Technologies and Delivery Systemsfor Food Ingredients and Nutraceuticals, edited by N. Gartiand D. J. McClements, 287–318. Cambridge: WoodheadPublishing.

Siro, I., Kaplona, E., Kaplona, B., and Lugasi, A. (2008).Functional food. Product development, marketing, andconsumer acceptance—A review. Appetite 51: 456–467.

Sloan, A. E. (2000). The top ten functional food trends.Food Technology 54: 33–62.

Solans, C., Esquena, J., Forgiarini, A. M., Usón, N.,Morales, D., Izquierdo, P., Azemar, N., and Garcia-Celma,M. J. (2003). Nanoemulsions: Formation, properties andapplications. In Adsorption and Aggregation of Surfactantsin Solution, edited by K. L. Mittal and D. O. Shah,525–554. New York: Marcel Dekker.

Solans, C., Izquierdo, P., Nolla, J., Azemar, N., andGarcia-Celma, M. J. (2005). Nano-emulsions. CurrentOpinion in Colloid and Interface Science 10(3–4): 102–110.

Solè, I., Maestro, A., González, C., Solans, C., and

Gutiérrez, J. M. (2006). Optimization of nano-emulsionpreparation by low-energy methods in an ionic surfactantsystem. Langmuir 22(20): 8326–8332.

Souto, E. B., Wissing, S. A., Barbosa, C. M., and Muller,R. H. (2004). Development of a controlled releaseformulation based on SLN and NLC for topical clotrimazoledelivery. International Journal of Pharmaceutics 278(1):71–77.

Spence, J. T. (2006). Challenges related to the compositionof functional foods. Journal of Food Composition andAnalysis 19: S4–S6.

Spernath, A., Yaghmur, A., Aserin, A., Hoffman, R. E., andGarti, N. (2002). Food-grade microemulsions based onnon-ionic emulsifiers: Media to enhance lycopenesolubilization. Journal of Agricultural and Food Chemistry50(23): 6917–6922.

Spernath, A., Yaghmur, A., Aserin, A., Hoffman, R. E., andGarti, N. (2003). Self-diffusion nuclear magneticresonance, microstructure transitions, and solubilizationcapacity of phytosterols and cholesterol in Winsor IVfood-grade microemulsions. Journal of Agricultural andFood Chemistry 51(8): 2359–2365.

Stanton, C., Ross, R. P., Fitzgerald, G. F., and Sinderen,V. D. (2005). Fermented functional foods based onprobiotics and their biogenic metabolites. Current Opinionin Biotechnology 16: 198–203.

Tadros, T., Izquierdo, P., Esquena, J., and Solans, C.(2004). Formation and stability of nanoemulsions. Advancesin Colloid and Interface Science 108–109: 303–318.

Tan, C., Xue, J., Abbas, S., Feng, B., Zhang, X., and Xia,S. (2014). Liposome as a delivery system for carotenoids:Comparative antioxidant activity of carotenoids as measuredby ferric reducing antioxidant power, DPPH assay and lipidperoxidation. Journal of Agricultural and Food Chemistry62: 6726–6735.

Taneja, A., and Singh, H. (2012). Challenges for thedelivery of long-chain n-3 fatty acids in functionalfoods. Annual Review of Food Science and Technology 3:105–123.

Tarver, T. (2006). Food nanotechnology—IFT scientificstatus summary on potential application of nanotechnology

in food application. Food Technology 11: 23–26.

Taylor, P. (1998). Ostwald ripening in emulsions. Advancesin Colloid and Interface Science 75(2): 107–163.

Tcholakova, S., Denkov, N. D., and Danner, T. (2004). Roleof surfactant type and concentration for the mean drop sizeduring emulsification in turbulent flow. Langmuir 20(18):7444–7458.

Thomas, P. R. and Earl, R., eds. (1994). Committee onOpportunities in the Nutrition and Food Science, Instituteof Medicine. Opportunities in the nutrition and foodsciences: Research challenges and the next generation ofinvestigators. Washington, DC: National Academy Press.

Thompson, A. K., and Singh, H. (2006). Preparation ofliposomes from milk fat globule membrane phospholipidsusing a microfluidiser. Journal of Dairy Science 89:410–419.

Uner, M., Wissing, S. A., Yener, G., and Muller, R. H.(2004). Influence of surfactants on the physical stabilityof solid lipid nanoparticle (SLN) formulations. Pharmazie59(4): 331–332.

Usón, N., Garcia, M. J., and Solans, C. (2004). Formationof water-in-oil (W/O) nano- emulsions in a water/mixednon-ionic surfactant/oil systems prepared by a low-energyemulsification method. Colloids and Surfaces A:Physicochemical and Engineering Aspects 250(1–3): 415–421.

Vaclavik, V. A., and Christian, E. W. (2007). Foodemulsions and foams. In Essentials of Food Science, 3rded. New York: Springer.

van der Graaf, S., Schroen, C. G. P. H., and Boom, R. M.(2005). Preparation of double emulsions by membraneemulsification—A review. Journal of Membrane Science251(1–2): 7–15.

van der Linden, E., and Venema, P. (2007). Self-assemblyand aggregation of proteins. Current Opinion in Colloidand Interface Science 12(4−5): 158−165.

van Ommen, B. (2004). Nutrigenomics. Nutrition 20(1): 4–8.

van Soest, J. G. (2007). Encapsulation of fragrances andflavours: A way to control odour and aroma in consumerproducts. In Flavours and Fragrances, edited by R. Berger,

439–455. Berlin: Springer.

Vega, C., and Roos, Y. H. (2006). Invited review:Spray-dried dairy and dairy-like emulsions: Compositionalconsiderations. Journal of Dairy Science 89: 383–401.

Walstra, P. (1996). Dispersed systems: basicconsiderations. In Food Science and Technology, pp.95–156. New York: Marcel Dekker.

Wang, S., Su, R., Nie, S., Sun, M., Zhang, J., Wu, D., andMousa, M. N. (2014). Application of nanotechnology inimproving bioavailability and bioactivity of diet-derivedphytochemicals. Journal of Nutritional Biochemistry 25:363–376.

Westesen, B., and Siekmann, K. (1997). Investigation of thegel formation of phospholipidstabilized solid lipidnanoparticles. International Journal of Pharmaceutics151(1): 35–45.

Wissing, S. A., Kayser, O., and Müller, R. H. (2004). Solidlipid nanoparticles for parenteral drug delivery. AdvancedDrug Delivery Reviews 56(9): 1257–1272.

Wissing, S. A., and Muller, R. G. (2002). The influence ofthe crystallinity of lipid nanoparticles on their occlusiveproperties. International Journal of Pharmaceutics242(1–2): 377–379.

Wolf, P. A., and Havekotte, M. J. (1989). Microemulsions ofoil in water and alcohol. US Patent 4,835,002.

Wooster, T. J., Golding, M., and Sanguansri, P. (2008).Impact of oil type on nanoemulsion formation and Ostwaldripening stability. Langmuir 24(22): 12758–12765.

Young, Y. (2000). Functional foods and the Europeanconsumer. In Functional Foods. II. Claims and Evidence,edited by J. Buttriss and M. Saltmarsh. London: The RoyalSociety of Chemistry.

Zhang, I., Gu, F. X., Chan, J. M., Waang, A. Z., Langer, R.S., and Farokhzad, O. C. (2008). Nanoparticles inmedicine: Therapeutic applications and developments.Clinical Pharmacology and Therapeutics 83: 761–769.

Zhou, W., Liu, W., Zou, L., Liu, W., Liu, C., Liang, R.,and Chen, J. (2014). Storage stability and skin permeationof vitamin C liposomes improved by pectin coating. Colloids

and Surfaces B: Biointerfaces 117: 330–337.

13 13: Nanotechnology in Nutraceuticalsand Functional Foods: Production toConsumption

Alfadul, S., and Elneshwy, A. (2010). Use of nanotechnologyin food processing, packaging and safety—Review. AfricanJournal of Food, Agriculture, Nutrition and Development,10(6), 2719.

Casolania, N., Greehy, G. M., Fantini, A., Chiodo, E., andMccarthy, M. B. (2015). Consumer perceptions ofnanotechnology applications in Italian wine. ItalianJournal of Food Science, 27(2), 93–107.

Chaudhry, Q., Castle, L., and Watkins, R. D. (2010).Nanotechnologies in food [electronic resource]. Cambridge:Royal Society of Chemistry.

Chun, A. L. (2009). Will the public swallow nanofood?Nature Nanotechnology, 4(12), 790–791.doi:10.1038/nnano.2009.359.

Conti, J., Satterfield, T., and Harthorn, B. H. (2011).Vulnerability and social justice as factors in emergentU.S. nanotechnology risk perceptions. Risk Analysis: AnInternational Journal, 31(11), 1734–1748.doi:10.1111/j.1539-6924.2011.01608.x.

Cook, A. J., and Fairweather, J. R. (2007). Intentions ofNew Zealanders to purchase lamb or beef made usingnanotechnology. British Food Journal, 109, 675–688.

Costa-Font, M., Gil, J. M., and Traill, W. B. (2008).Consumer acceptance, valuation of and attitudes towardsgenetically modified food: Review and implications for foodpolicy. Food Policy, 33, 99–111.doi:10.1016/j.foodpol.2007.07.002.

De Bakker, E., de Lauwere, C., Hoes, A., and Beekman, V.(2014). Responsible research and innovation in miniature:Information asymmetries hindering a more inclusive“nanofood” development. Science and Public Policy (SPP),41(3), 294–305.

Doubleday, R. (2007). Risk, public engagement andreflexivity: Alternative framings of the public dimensionsof nanotechnology. Health, Risk and Society, 9(2), 211–227.doi: 10.1080/13698570701306930.

Dudo, A., Choi, D.-H., and Scheufele, D. A. (2011). Food

nanotechnology in the news. Coverage patterns and thematicemphases during the last decade. Appetite, 56, 78–89.

Duncan, T. V. (2011). The communication challengespresented by nanofoods. Nature Nanotechnology, 6(11), 683.doi:10.1038/nnano.2011.193.

Eliasi, J. R., and Dwyer, J. T. (2002). Kosher and Halal:Religious observances affecting dietary intakes. Journalof the American Dietetic Association, 102(7), 911–913.

Fischer, A., van Dijk, H., de Jonge, J., Rowe, G., andFrewer, L. (2013). Attitudes and attitudinal ambivalencechange towards nanotechnology applied to food production.Public Understanding of Science, 22(7), 817–831.

Fuentes, M. A., and Fuentes, C. A. (2015). Risk stories inthe media: Food consumption, risk and anxiety. Food,Culture and Society: An International Journal ofMultidisciplinary Research, 18, 71–87.doi:10.2752/175174415X14101814953882.

“How to swallow nanofood.” Editorial. (2010). NewScientist, 206(2761), 5.

Jung, H. J., and Lee, J. (2014). The impacts of science andtechnology policy interventions on university research:Evidence from the U.S. National Nanotechnology Initiative.Research Policy, 43, 74–91.doi:10.1016/j.respol.2013.07.001.

Kumari, A., and Yadav, S. K. (2014). Nanotechnology inagri-food sector. Critical Reviews in Food Science andNutrition, 54(8), 975–984.

“A meaty question: Who should regulate kosher and halalfood?” (2013). The Economist, February 9.

“Nanofood for thought.” Editorial. (2010). NatureNanotechnology, 5(2), 89. doi:10.1038 /nnano.2010.22.

“News in brief: FDA to implement Nanotechnology Task Forcerecommendations.” (2007). Nature Reviews Drug Discovery,6, 690–691.

O’Leary, S. E., and Governo, D. M. (2014). Size v.substance: Consumer expectations and nanomaterials inproducts. Claims, June 1, 26.

Patra, D., Ejnavarzala, H., and Basu, P. K. (2009).

Nanoscience and nanotechnology: Ethical, legal, social andenvironmental issues. Current Science, 96(5), 651–657.

Peter D. Hart Research Associates. (2009). Nanotechnology,synthetic biology and public opinion: A report of findingsbased on a national survey of adults.

Salvi, L. (2015). The EU’s “soft reaction” tonanotechnology regulation in the food sector. EuropeanFood and Feed Law Review, 10(3), 186–193.

Shan, L. C., Panagiotopoulos, P., Regan, Á., De Brún, A.,Barnett, J., Wall, P., and McConnon, Á. (2015).Interactive communication with the public: Qualitativeexploration of the use of social media by food and healthorganizations. Journal of Nutrition Education andBehavior, 47(1), 104–108.

Watson, S. B., Gergely, A., and Janus, E. R. (2011). Whereis “agronanotechnology” heading in the United States andEuropean Union? Natural Resources and Environment, 26(1),8.

14 14: Industrial Production ofNanonutraceuticals

Ananga A, Georgiev V, Ochieng J, Phills B, Tsolova V. 2012.Production of anthocyanins in grape cell cultures: Apotential source of raw material for pharmaceutical, food,and cosmetic industries. In The Mediterranean GeneticCode—Grapevine and Olive, 247–287. Rijeka, Croatia:InTech.

Anklam E, Berg H, Mathiasson L, Sharman M, Ulberth F. 1998.Supercritical fluid extraction (SFE) in food analysis: Areview. Food Additives and Contaminants 15: 729–750.

Arakawa O. 1991. Effect of temperature on anthocyaninaccumulation in apple fruit as affected by cultivar, stageof fruit ripening and bagging. Journal of HorticulturalScience 66(6): 763–768.

Augustin MA. 2001. Functional foods: An adventure in foodformulation. Food Australia 53: 428–432.

AyalaZavala JF, VegaVega V, RosasDomínguez C,PalafoxCarlos H, VillaRodriguez JA, Wasim Siddiqui Md, DávilaAviña JE, GonzálezAguilar GA. 2011. Agroindustrialpotential of exotic fruit byproducts as a source of foodadditives. Food Research International 44(7): 1866–1874.

Babic I, Amiot MJ, Aubert S. 1993a. Changes in phenoliccontent in fresh readytouse shred ded carrots duringstorage. Journal of Food Science 58(2): 351–356.

Babic I, Amiot MJ, NguyenThe C, Aubert S. 1993b.Accumulation of chlorogenic acid in shredded carrotsduring storage in an oriented polypropylene film. Journalof Food Science 58(4): 840–841.

Belem MAF. 1999. Application of biotechnology in theproduct development of nutraceuti cals in Canada. Trendsin Food Science & Technology 10(3): 101–106.

Bhat KP, Lantvit D, Christov K, Mehta RG, Moon RC, PezzutoJM. 2001. Estrogenic and anti estrogenic properties ofresveratrol in mammary tumor models. Cancer Research61(20): 7456–7463.

Bhat VB, Madyastha KM. 2000. CPhycocyanin: A potentperoxyl radical scavenger in vivo and in vitro.Biochemical and Biophysical Research Communications 275:20–25.

Borowitzka MA, Borowitzka LJ, eds. 1988. Micro-AlgalBiotechnology. Cambridge: Cambridge University Press.

Cai Z, Kastell A, Knorr D, Smetanska I. 2012. Exudation: Anexpanding technique for con tinuous production and releaseof secondary metabolites from plant cell suspension andhairy root cultures. Plant Cell Reports 31(3): 461–477.

Castro MD, JiménezCarmona MM, Fernández Pérez V. 1999.Towards more rational tech niques for the isolation ofvaluable essential oils from plants. Trends in AnalyticalChemistry 19: 708–716.

Chemat F, Vian AM, Cravotto G. 2012. Green extraction ofnatural products: Concepts and principles. InternationalJournal of Molecular Science 13(7): 8615–8627.

Colova (Tsolova) VM, Bordallo PN, Phills BR, Bausher M.2007. Synchronized somatic embryo development inembryogenic suspensions of grapevine Muscadiniarotundifolia (Michx.) Small. Vitis 46: 15–18.

Conn S, Curtin C, Bézier A, Franco C, Zhang W. 2008.Purification, molecular cloning, and characterization ofglutathione Stransferases (GSTs) from pigmented Vitisvinifera L. cell suspension cultures as putativeanthocyanin transport proteins. Journal of ExperimentalBotany 59(13): 3621–3634.

Cormier F, Brion F, Do CB, Moresoli C. 1996. Development ofprocess strategies for anthocyaninbased food colorantproduction using Vitis vinifera cell cultures. In PlantCell Culture Secondary Metabolism toward IndustrialApplication, edited by F DiCosmo, M Misawa, 167–186. BocaRaton, FL: CRC Press.

Craker L, Wetherbee P. 1972. Ethylene, light andanthocyanin synthesis. Plant Physiology 49: 20.

Curry E. 1997. Temperatures for optimum anthocyaninaccumulation in apple tissue. Journal of HorticulturalScience 72(5): 723–729.

Cysewski GR, Lorenz RT. 2004. Industrial production ofmicroalgal cellmass and secondary products—Species ofhigh potential. In Handbook of Microalgal Culture:Biotechnology and Applied Phycology, edited by A.Richmond. Oxford: Blackwell.

Davis G, Ananga A, Krastanova S, Sutton S, Ochieng JW,Leong S, Tsolova V. 2012. Elevated gene expression inchalcone synthase enzyme suggests an increased productionof flavonoids in skin and synchronized red cell culturesof North American native grape berries. DNA Cell Biology31(6): 939–945.

Dixon R, Paiva N. 1995. Stressinduced phenyl propanoidmetabolism. Plant Cell 7: 1085–1097.

Dong Y, Mitra D, Kootstra A, Lister C, Lancaster J. 1995.Postharvest stimulation of skin color in Royal Gala apple.Journal of the American Society of Horticultural Science120(1): 95–100.

Donnez D, Kim KH, Antoine S, Conreux A, De Luca V, JeandetP, Clement C, Courot C. 2011. Bioproduction of resveratroland viniferins by an elicited grapevine cell culture in a2 L stirred bioreactor. Process Biochemistry 46: 1056–1062.

Dufossé L, Galaup P, Yaron A, Arad SM, Blanc P, Murthy KNC,Ravishankar GA. 2005. Microorganisms and microalgae assources of pigments for food use: A scientific odd ity oran industrial reality? Trends in Food Science & Technology16(9): 389–406.

Estrada JE, Bermejo Bascos P, Villar del Fresno AM. 2001.Antioxidant activity of different fractions of Spirulinaplatensis protean extract. Il Farmaco 56: 497–500.

Ezhilarasi PN, Karthik P, Chhanwal N, AnandharamakrishnanC. 2012. Nanoencapsulation techniques for food bioactivecomponents. Food and Bioprocess Technology 2013(6):628–647.

Faragher J, Brohier R. 1984. Anthocyanin accumulation inapple skin during ripening: Regulation by ethylene andphenylalanine ammonialyase. Scientia Horticulturae 22:89–96.

Ferreres F, Gil M, Castaner M, TomasBarberan, F. 1997.Phenolic metabolites in red pig mented lettuce (Lactucasativa). Changes with minimal processing and cold storage.Journal of Agricultural and Food Chemistry 45: 4249–4254.

Georgiev M, Georgiev V, Penchev P, Antonova D, PavlovA, Ilieva M, Popov S. 2010. Volatile metabolic profilesof cell suspension cultures of Lavandula vera, Nicotianatabacum and Helianthus annuus, cultivated under differentregimes. Engineering in Life Sciences 10: 148–157.

GilChávez GJ, Villa JA, AyalaZavala JF, Heredia JB,Sepulveda D, Yahia EM, GonzálezAguilar GA. 2013.Technologies for extraction and production of bioactivecompounds to be used as nutraceuticals and foodingredients: An overview. Comprehensive Reviews in FoodScience and Food Safety 12(1): 5–23.

Howard L, Griffin L. 1993. Lignin formation and surfacediscoloration of minimally pro cessed carrot sticks.Journal of Food Science 58(5): 1065–1067.

Japan Health Food & Nutrition Food Association. 1995. Listof food for specified health use.

Kaufmann B, Christen P. 2002. Recent extraction techniquesfor natural products: Microwave assisted extraction andpressurised solvent extraction. Phytochemical Analysis 13:105–113.

Ke D, Saltveit M. 1988. Plant hormone interaction andphenolic metabolism in the regulation of russet spottingin iceberg lettuce. Plant Physiology 88: 1136–1140.

King JW. 2002. Supercritical fluid extraction: Presentstatus and prospects. Grasas y Aceites 53(1): 8–21.

Klahorst SJ. 2006. Flavour and innovation meet. World ofFood Ingredients 26–30.

Klont R. 1999. Healthy ingredients driving innovation.World of Food Ingredients 43–23.

Kwak NS, Jukes DJ. 2001. Functional foods Part 2: Theimpact on current regulatory termi nology. Food Control109–117.

Lafuente T, LopezGalvez G, Cantwell M, Yang SF. 1996.Factors influencing etyleneinduced isocoumarin formationand increased respiration in carrots. Journal of theAmerican Society of Horticultural Science 121(3): 537–542.

Lang Q, Wai CM. 2001. Supercritical fluid extraction inherbal and natural product studies: A practical review.Talanta 53: 771–782.

Lewis C, Walker J, Lancaster J. 1999. Changes inanthocyanin, flavonoid and phenolic acid concentrationsduring development and storage of coloured potato (Solanumtuberusum L.) tubers. Journal of the Science and Food

Agriculture 79: 311–316.

Luque de Castro MD, GarciaAyuso LE. 1998. Soxhletextraction of solid materials: An out dated technique witha promising innovative future. Analytica Chimica Acta 369:1–10.

Marr R, Gamse T. 2000. Use of supercritical fluids fordifferent processes including new developments—A review.Chemical Engineering and Processing 39: 19–28.

Meireles A, Angela M. 2003. Supercritical extraction fromsolid: Process design data. Current Opinion in Solid Stateand Materials Science 7: 321–330.

Miszczak A, Forney C, Prange R. 1995. Development of aromavolatiles and color dur ing postharvest ripening of “Kent”strawberries. Journal of the American Society ofHorticultural Science 120(4): 650–655.

Mollet B, Lacroix C. 2007. Where biology and technologymeet for better nutrition and health. Current Opinion inBiotechnology 18: 154–155.

Orive G, Anitua E, Pedraz JL, Emerich, DF. 2009.Biomaterials for promoting brain protection, repair andregeneration. Nature Reviews Neuroscience 10: 682–692.

Percival G, Baird L. 2000. Influence of storage uponlightinduced chlorogenic acid accu mulation in potatotubers (Solanum tuberosum L.). Journal of Agriculture andFood Chemistry 48: 2476–2482.

Perez A, Sanz C, Richardson D, Olias J. 1993. Methyljasmonate promotes—Carotene syn thesis and chlorophylldegradation in Golden Delicious apple peel. Journal ofPlant Growth Regulation 12: 163–167.

Reay PF. 1999. The role of low temperatures in thedevelopment of the red blush on apple fruit (GrannySmith). Scientia Horticulturae 79: 113–119.

Saniewski M, Miszczak A, KawaMiszczak L,WegrzynowiczLesiak E, Miyamoto K, Ueda J. 1998. Effectsof methyl jasmonate on anthocyanin accumulation, ethyleneproduc tion, and CO 2 evolution in uncooled and cooledtulip bulbs. Journal of Plant Growth Regulation 17: 33–37.

Sapers G, Hicks K, Burgher A, Hargrave D, Sondey S, BilykA. 1986. Anthocyanin patterns in ripening Thornless

blackberries. Journal of the American Society ofHorticultural Science 111(6): 945–950.

Smith BL, Marcotte M, Harrison G. 1996. A comparativeanalysis of the regulatory framework affecting functionalfood development and commercialization in Canada, Japan,the European Union and the United States of America.Inter/Sect Alliance Inc. Ottawa, Ontario.

Smith J, Carter E, eds. 2010. Functional Food ProductDevelopment. Oxford: WileyBlackwell.

Smith RM. 2002. Extractions with superheated water. Journalof Chromatography A 975: 31–46.

Tan S. 1979. Relationships and interaction betweenphenylalanine ammonialyase (PAL), phe nylalanineammonialyase inactivating system (PALIS), and anthocyaninin apples. Journal of the American Society ofHorticultural Science 104(5): 581–586.

Tilay A, Annapure U. 2012. Novel simplified and rapidmethod for screening and isola tion of polyunsaturatedfatty acids producing marine bacteria. BiotechnologyResearch International.

Vinatoru M. 2001. An overview of the ultrasonicallyassisted extraction of bioactive prin ciples from herbs.Ultrasonics Sonochemistry 8: 303–313.

Wang L, Weller CL. 2006. Recent advances in extraction ofnutraceuticals from plants. Trends in Food Science andTechnology 17(6): 300–312.

Wilson SA, Roberts SC. 2012. Recent advances towardsdevelopment and commercialization of plant cell cultureprocesses for the synthesis of biomolecules. PlantBiotechnology Journal 10(3): 249–268.

Yin Y, Borges G, Sakuta M, Crozier A, Ashihara H. 2012.Effect of phosphate deficiency on the content andbiosynthesis of anthocyanins and the expression of relatedgenes in suspensioncultured grape (Vitis sp.) cells.Plant Physiology and Biochemistry 55: 77–84.

15 15: Nanotechnology in Food Products:Implications in Regulatory Requirements

All About Feed. 2013. Nano technology in animal feed. ReedBusiness. Accessed January 23, 2015.

Barik T, Sahu B, Swain V. 2008. Nanosilica-from medicine topest control. Parasitol Res 103:253–258.

Boehm AL, Martinon I, Zerrouk R, Rump E, Fessi H. 2003.Nanoprecipitation technique for the encapsulation ofagrochemical active ingredients. J Microencapsul20(4):433–441.

Carrin M, Buglione M, Lozano J. 2007. Removal of darkcompounds from fruit juices by membrane separation. ProcEur Cong Chem Eng (ECCE-6):1–10. Accessed January 20,2015.http://www.nt.ntnu.no/users/skoge/prost/proceedings/ecce6_sep07/upload/512.pdf.

Chen H, Yada R. 2011. Nanotechnoogies in agriculture: Newtools for sustainable development. Trends Food Sci Technol22(11):585–594.

Cioffi N, Torsi L, Ditaranto N, Sabbatini L, Zambonin PG,Tantillo G, Bleve-Zacheo T, Traversa E. 2004. Antifungalactivity of polymer-based copper nanocomposite coatings.Appl Phys Lett 85(12):2417–2419.

da Silva A, Deda D, da Róz A, Prado, RA, Carvalho CC,Viviani V, Leite FL. 2013. Nanobiosensors based onchemically modified AFM probes: A useful tool formetsulfuron-methyl detection. Sensors (Basel)13(2):1477–1489.

Das M, Preuss C. 2014. Carbon nanotubes and pulmonarytoxicity. In Biointeractions of Nanomaterials, edited by VSutariya, Y Pathak, chapter 6. Boca Raton, FL: CRC Press.

de Azeredo H. 2009. Nanocomposites for food packagingapplications. Food Res Intl 42:1240–1253.

Environmental Protection Agency (EPA). 2014. Pollutionprevention and toxics: Control of nanoscale materialsunder the toxic substances control act. Accessed January26, 2015.

Erickson B. 2009. Nanoceuticals: Dietary supplements madewith nanotechnology are hitting the market with little

government oversight. Chemical and Engineering News.Accessed January 15, 2015.http://www.pubs.acs.org/cen/government/87/8706gov3 .html.

ETC Group (Action Group on Erosion, Technology andConcentration). 2003. Down on the farm: The impact ofnanoscale technologies on food and agriculture. Ottawa, ON:ETC Group. Accessed January 23, 2015.http://www.nanowerk.com/nanotechnology /reports/reportpdf/report10.pdf.

European Commission. 2011. Commission Recommendation of 18October 2011 on the Definition of Nanomaterial. OfficialJournal of the European Union. Accessed January 7, 2015.

Food and Agriculture Organization. 2009. Expert meeting onhow to feed the world in 2050. FAO Headquarters, June24–26. Accessed January 5, 2015. http://www.fao.org/fileadmin

Food and Drug Administration (FDA). 2014. Guidance forindustry considering whether an FDA-regulated productinvolves the application of nanotechnology. AccessedJanuary 23, 2015.

Hussein M, Rahman N, Sarijo S, Zainal Z. 2012.Herbicide-intercalated zinc layered hydroxide nanohybridfor a dual-guest controlled release formulation. Int J MolSci 13(6):7328–7342.

Janjarasskul T, Krochta J. 2010. Edible packagingmaterials. Ann Rev Food Sci Technol 1:415–448.

Kalia A, Parshad V. 2015. Novel trends to revolutionizepreservation and packaging of fruits/ fruit products:Microbiological and nanotechnological perspectives. CritRev Food Sci Nutr 55:159–182.

Kanimozhi V, Chinnamuthu C. 2012. Engineering core/hallowshell nano-materials to load herbicide active ingredientfor controlled release. Res J Nanosci Nanotechnol2(2):58–69.

Kumar J, Shakil N, Khan M, Malik K, Walia S. 2011.Development of controlled release formulations ofcarbofuran and imidacloprid and their bioefficacyevaluation against aphid, Aphis gossypii and leafhopper,Amrascabiguttulabiguttula Ishida on potato crop. J EnvironSci Health B 46(8):678–682.

Kumari A, Yadav S. 2014. Nanotechnology in agri-foodsector. Crit Rev Food Sci Nutri 54:975–984.

Kuzma J, VerHage P. 2006. Nanotechnology in agriculture andfood production: Anticipated applications. Woodrow WilsonInternational Center for Scholars. Project on EmergingNanotechnologies and the Consortium on Law, Values andHealth and Life Sciences, September.

Li Y, Cu Y, Luo D. 2005. Multiplexed detection of pathogenDNA with DNA-based fluorescence nanobarcodes. NatBiotechnol 23(7):885–889.

Li Z. 2003. Use of surfactant-modified zeolite asfertilizer carriers to control nitrate release.Microporous Mesoporous Mater 61:181–188.

Magnuson B, Jonaitis T, Card J. 2011. A brief review of theoccurrence, use, and safety of food-related nanomaterials.J Food Sci 76(6):R126–R133.

McLamore E, Diggs A, Calvo Marzal P, Shi J, Blakeslee JJ,Peer WA, Murphy AS, Porterfield DM. 2010. Non-invasivequantification of endogenous root auxin transport using anintegrated flux microsensor technique. Plant J63(6):1004–1016.

Millán G, Agosto F, Vázquez M. 2008. Use of clinoptiloliteas a carrier for nitrogen fertilizers in soils of thePampean regions of Argentina. Cien Inv Agr 35(3):293–302.

Miller G, Senjen R. 2008. Out of the laboratory and ontoour plates: Nanotechnology in food and agriculture. Reportprepared for Friends of the Earth Australia, Friends ofthe Earth Europe and Friends of the Earth United States andsupported by Friends of the Earth Germany. AccessedJanuary 20, 2015. http://www.libcloud.s3.amazonaws

Pathak Y, Preuss C. 2012. Orally delivered nanoparticledrug delivery systems for dental applications and theirtoxicity on systemic organs. In Nanobiomaterials inClinical Dentistry, edited by K Subramani, W Ahmed, JHartsfield, chapter 24. Elsevier.

Pineda L, Sawosz E, Lauridsen C, Engberg RM, Elnif J,Howtowy A, Sawosz F, Chwalibog A. 2012. Influence of inovo injection and subsequent provision of silvernanoparticles on growth performance, microbial profile,and immune status of broiler chickens. Open Access AnimPhysiol 2012(4):1–8.

Rai V, Acharya S, Dey N. 2012. Implications ofnanobiosensors in agriculture. J Biomater Nanobiotchnol3:315–324.

Rao K, Paria S. 2013. Use of sulfur nanoparticles as agreen pesticide on Fusarium solani and Venturia inaequalisphytopathogens. RSC Advances 3 (26):10471–10478.

Sasson Y, Levy-Ruso G, Toledano O, Ishaaya I. 2007.Nanosuspensions: Emerging novel agrochemical formulations.In Insecticides Design Using Advanced Technologies, editedby I Ishaaya, R Nauen, AR Horowitz, 1–39. Berlin:Springer-Verlag.

Scott N, Chen H., eds. 2002. Nanoscale science andengineering for agriculture and food systems. NationalPlanning Workshop, Washington, DC, November 18–19. AccessedJanuary 6, 2015.http://www.nseafs.cornell.edu/web.roadmap.pdf.

Sekhon B. 2014. Nanotechnology in agri-food production: Anoverview. Nanotechnol Sci Appl 7:31–53.

Stanley S. Biological nanoparticles and their influence onorganisms. 2014. Curr Opin Biotechnol 28:69–74.

Su H, Zhang M, Bosze W, Lim J, Myung N. 2013. Metalnanoparticles and DNA co- functionalized single-walledcarbon nanotube gas sensors. Nanotechnology 24(50):505502.

Wang J, Gerlach J, Savage N, Cobb G. 2013. Necessity andapproach to integrated nanomaterial legislation andgovernance. Sci Total Environ 442:56–62.

Yen F, Wu T, Lin L, Cham T, Lin C. 2009. Naringenin loadednanoparticles improve the physicochemical properties andthe hepatoprotective effects of naringenin inorallyadministered rats with CCl4-induced acute liverfailure. Pharm Res 26(4):893–902.

Yu H, Huang Q. 2010. Enhanced in vitro anti-cancer activityof curcumin encapsulated in hydrophobically modifiedstarch. Food Chem 119:669–674.

Yuan Y, Gao Y, Mao L, Zhao J. 2008. Optimisation ofconditions for the preparation of [beta]-carotenenanoemulsions using response surface methodology. Food Chem107(3):1300–1306.

16 16: Nanotechnology-BasedNutraceuticals for Use in CardiovascularDisease: Toward a Paradigm Shift inAdjuvant Therapy

Bai Y, Yu B, Xu X, Jin Z, Tian Y, Lu L. Comparison ofencapsulation properties of major garlic oil components byhydroxypropyl β-cyclodextrin. Eur Food Res Technol 2010;231(4): 519–524.

Bang H, Dyerberg J. The composition of food consumed byGreenlandic Eskimos. Acta Medica Scandinavica 1973; 73:200–269.

Barrow CJ, Nolan C, Holub BJ. Bioequivalence ofencapsulated and microencapsulated fishoil supplementation.J Funct Foods 2009; 1(1): 38–43.

Bhagavan HN, Chopra RK. Coenzyme Q10: Absorption, tissueuptake, metabolism and pharmacokinetics. Free Radic Res2006; 40(5): 445–453.

Bhathena J, Martoni C, Kulamarva A, Urbanska AM, MalhotraM, Prakash S. Orally delivered microencapsulated liveprobiotic formulation lowers serum lipids inhypercholesterolemic hamsters. J Med Food 2009; 12(2):310–319.

Bjelakovic G, Gluud C. Surviving antioxidant supplements. JNat Cancer Inst 2007; 99(10): 742–743.

Centers for Disease Control and Prevention (CDC). Heartdisease facts. Accessed November 30, 2015.http://www.cdc.gov/heartdisease/facts.htm.

DeFelice SL. The nutraceutical revolution: Its impact onfood industry R&D. Trends in Food Science and Technology1995; 6(2): 59–61.

Earnest CP, Hammar MK, Munsey M, Mikus CR, David RM,Bralley JA, Church TS. Microencapsulated foods as afunctional delivery vehicle for omega-3 fatty acids:A pilot study. J Int Soc Sports Nutr 2009; 6: 12.

Farmingham Heart Study. Accessed November 30, 2015.https://www.framinghamheartstudy .org.

Lachman L, Lieberman HA, Kanig JI. The Theory and Practiceof Industrial Pharmacy. Philadelphia: Lea and Febiger,1970.

Mann GE, Spoerry A. Studies of a surfactant andcholesteremia in the Maasai. Am J Clin Nutr 1974; 27:464–469.

National Heart, Lung, and Blood Institute. Conqueringcardiovascular disease. Accessed November 30, 2015.http://www.nhlbi.nih.gov/news/spotlight/success/conquering-cardiovascular-disease.

Niibori K, Yokoyama H, Crestanello JA, Whitman GJR. Acuteadministration of liposomal coenzyme Q10 increasesmyocardial tissue levels and improves tolerance to ischemiareperfusion injury. J Surg Res 1998; 79: 141–145.

Rimm EB, Stampfer MJ, Ascherio A, Giovannucci E, ColditzGA, Willett WC. Vitamin E consumption and the risk ofcoronary heart disease in men. N Engl J Med 1993; 328 (20):1450–1456.

Sanders ME. Probiotics: Definition, sources, selection, anduses. Clin Infect Dis 2008; 46 (suppl 2): S58–S61.

Suntres ZE. Liposomal antioxidants for protection againstoxidant-induced damage. J Toxicol 2011; 152474.

Urano S, Kitahara M, Kato Y, Hasegawa Y, Matsuo M. Membranestabilizing effect of vitamin E: Existence of a hydrogenbond between α-tocopherol and phospholipids in bilayerliposomes. J Nutr Sci Vitaminol 1990; 36(6): 513–519.

Wang J, Cao Y, Sun B, Wang C. Physicochemical and releasecharacterization of garlic oil-βcyclodextrin inclusioncomplexes. Food Chem 2011; 127(I4): 1680–1685.

Yokoyama H, Lingle DM, Crestanello JA, Kamelgard J, KottBR, Momeni R, Millili J, Mortensen SA, Whitman GJ.Coenzyme Q10 protects coronary endothelial function fromischemia reperfusion injury via an antioxidant effect.Surgery 1996; 120(2): 189–196.

17 17: Nanonutraceuticals: Are They Safe?

Albanese, Alexandre, and Warren C. W. Chan. 2011. “Effectof Gold Nanoparticle Aggregation on Cell Uptake andToxicity.” ACS Nano 5: 5478–89. doi:10.1021/nn2007496.

Alfadul, S. M, and A. A Elneshwy. 2010. “Use ofNanotechnology in Food Processing, Packaging andSafety—Review.” African Journal of Food, Agriculture,Nutrition and Development. doi:10.4314/ajfand.v10i6.58068.

Alger, Heather, Dragan Momcilovic, David Carlander, andTimothy V. Duncan. 2014. “Methods to Evaluate Uptake ofEngineered Nanomaterials by the Alimentary Tract.”Comprehensive Reviews in Food Science and Food Safety13(4): 705–729. doi:10 .1111/1541-4337.12077.

Ames, Bruce N., Joyce McCann, and Edith Yamasaki. 1975.“Methods for Detecting Carcinogens and Mutagens with theSalmonella/Mammalian-Microsome Mutagenicity Test.”Mutation Research/Environmental Mutagenesis and RelatedSubjects 31(6): 347– 363.doi:http://dx.doi.org/10.1016/0165-1161(75)90046-1.

An, Hongjie, Qingdai Liu, Qiaoli Ji, and Bo Jin. 2010. “DNABinding and Aggregation by Carbon Nanoparticles.”Biochemical and Biophysical Research Communications 393:571–576. doi:10.1016/j.bbrc.2010.02.006.

Arora, Amit, and G. W. Padua. 2010. “Review: Nanocompositesin Food Packaging.” Journal of Food Science.doi:10.1111/j.1750-3841.2009.01456.x.

Asare, Nana, Christine Instanes, Wiggo J. Sandberg, MagneRefsnes, Per Schwarze, Marcin Kruszewski, and GunnarBrunborg. 2012. “Cytotoxic and Genotoxic Effects of SilverNanoparticles in Testicular Cells.” Toxicology 291: 65–72.doi:10.1016/j.tox.2011.10.022.

Baer, D. R., D. J. Gaspar, P. Nachimuthu, S. D. Techane,and D. G. Castner. 2010. “Application of Surface ChemicalAnalysis Tools for Characterization of Nanoparticles.”Analytical and Bioanalytical Chemistry 396: 983–1002.doi:10.1007/s00216-009-3360-1.

Bakand, Shahnaz, Amanda Hayes, and Finance Dechsakulthorn.2012. “Nanoparticles: A Review of Particle ToxicologyFollowing Inhalation Exposure.” Inhalation Toxicology.doi:10.3109/08958378.2010.642021.

Bandyopadhyay, Susmita, Jose R. Peralta-Videa, and Jorge L.Gardea-Torresdey. 2013. “Advanced Analytical Techniquesfor the Measurement of Nanomaterials in Food andAgricultural Samples: A Review.” Environmental EngineeringScience 30: 118–125. doi:10.1089/ees.2012.0325.

Barchowsky, Aaron, and Kimberley A. O’Hara. 2003.“Metal-Induced Cell Signaling and Gene Activation in LungDiseases.” Free Radical Biology and Medicine. doi:10.1016/ S0891-5849(03)00059-5.

Barnes, Clifford A., Andreas Elsaesser, Joanna Arkusz, AnnaSmok, Jadwiga Palus, Anna Leśniak, Anna Salvati et al.2008. “Reproducible Comet Assay of Amorphous SilicaNanoparticles Detects No Genotoxicity.” Nano Letters 8:3069–3074. doi:10.1021 / nl801661w.

Baweja, Lokesh, Deepak Gurbani, Rishi Shanker, Alok K.Pandey, V. Subramanian, and Alok Dhawan. 2011.“C60-Fullerene Binds with the ATP Binding Domain of HumanDNA Topoiosmerase II Alpha.” Journal of BiomedicalNanotechnology 7: 177–178.

Benyamini, Hadar, Alexandra Shulman-Peleg, Haim J. Wolfson,Bogdan Belgorodsky, Ludmila Fadeev, and Michael Gozin.2006. “Interaction of C60-Fullerene and Carboxyfullerenewith Proteins: Docking and Binding Site Alignment.”Bioconjugate Chemistry 17: 378– 386. doi:10.1021/bc050299g.

Bergamaschi, E., O. Bussolati, A. Magrini, M. Bottini, L.Migliore, S. Bellucci, I. Iavicoli, and A. Bergamaschi.2006. “Nanomaterials and Lung Toxicity: Interactions withAirways Cells and Relevance for Occupational Health RiskAssessment.” International Journal of Immunopathology andPharmacology 19(Suppl. 4): 3–10.

Berhanu, Deborah, Agnieszka Dybowska, Superb K. Misra,Chris J. Stanley, Pakatip Ruenraroengsak, Aldo R.Boccaccini, Teresa D. Tetley, Samuel N. Luoma, Jane A.Plant, and Eugenia Valsami-Jones. 2009. “Characterisationof Carbon Nanotubes in the Context of Toxicity Studies.”Environmental Health: A Global Access Science Source8(Suppl. 1): S3. doi:10.1186/1476-069X-8-S1-S3.

Böckmann, J., H. Lahl, T. Eckert, and B. Unterhalt. 2000.“Blood Titanium Levels before and after OralAdministration Titanium Dioxide.” Die Pharmazie 55(2):140–143.

Borm, Paul J. A., and Wolfgang Kreyling. 2004.

“Toxicological Hazards of Inhaled Nanoparticles—PotentialImplications for Drug Delivery.” Journal of Nanoscience andNanotechnology 4: 521–531. doi:10.1166/jnn.2004.081.

Cadenas, E., and K. J. Davies. 2000. “Mitochondrial FreeRadical Generation, Oxidative Stress, and Aging.” FreeRadical Biology & Medicine 29: 222–230. doi:10.1016 / S0891-5849(00)00317-8.

Chan, George H., Jing Zhao, George C. Schatz, and RichardP. Van Duyne. 2008. “Localized Surface Plasmon ResonanceSpectroscopy of Triangular Aluminum Nanoparticles.”Journal of Physical Chemistry C 112(36): 13958–13963.doi:10.1021/jp804088z.

Chen, Zhangjian, Yun Wang, Te Ba, Yang Li, Ji Pu, TianChen, Yanshuang Song et al. 2014. “Genotoxic Evaluation ofTitanium Dioxide Nanoparticles in vivo and in vitro.”Toxicology Letters 226(3): 314–319.doi:http://dx.doi.org/10.1016/j.toxlet.2014.02.020.

Corredor, Charlie, Mark D. Borysiak, Jay Wolfer, PaulWesterhoff, and Jonathan D. Posner. 2015. “ColorimetricDetection of Catalytic Reactivity of Nanoparticles inComplex Matrices.” Environmental Science & Technology49(6): 3611–3618. doi:10.1021 / es504350j.

Crosera, Matteo, Massimo Bovenzi, Giovanni Maina, GianpieroAdami, Caterina Zanette, Chiara Florio, and FrancescaFilon Larese. 2009. “Nanoparticle Dermal Absorption andToxicity: A Review of the Literature.” InternationalArchives of Occupational and Environmental Health.doi:10.1007/s00420-009-0458-x.

Cushen, M., J. Kerry, M. Morris, M. Cruz-Romero, and E.Cummins. 2012. “Nanotechnologies in the FoodIndustry—Recent Developments, Risks and Regulation.” Trendsin Food Science and Technology.doi:10.1016/j.tifs.2011.10.006.

Dasgupta, Nandita, Shivendu Ranjan, Deepa Mundekkad,Chidambaram Ramalingam, Rishi Shanker, and Ashutosh Kumar.2015a. “Nanotechnology in Agro-Food: From Field to Plate.”Food Research International 69(January): 381–400.doi:10.1016/j.foodres.2015.01.005.

Dasgupta, Nandita, Shivendu Ranjan, Shraddha Mundra,Chidambaram Ramalingam, and Ashutosh Kumar. 2015b.“Fabrication of Food Grade Vitamin E Nanoemulsion by LowEnergy Approach, Characterization and Its Application.”

International Journal of Food Properties.doi:10.1080/10942912.2015.1042587.

Dasgupta, Nandita, Shivendu Ranjan, Bhavapriya Rajendran,Venkatraman Manickam, Chidambaram Ramalingam, G. S.Avadhani, and Ashutosh Kumar. 2015c. “Thermal Co-ReductionApproach to Vary Size of Silver Nanoparticle: Its Microbialand Cellular Toxicology.” Environmental Science andPollution Research International 23(5): 4149–4163.

Dehalu, Vincent, Stefan Weigel, Sabina Rebe, Ringo Grombe,Raimar Löbenberg, and Philippe Delahaut. 2012. “Productionand Characterization of Antibodies against CrosslinkedGelatin Nanoparticles and First Steps toward Developing anELISA Screening Kit.” Analytical and BioanalyticalChemistry 403: 2851–2857. doi:10.1007 /s00216-012-5793-1.

Dhawan, Alok, R. Shanker, M. Das, and K. C. Gupta. 2011.“Guidance for Safe Handling of Nanomaterials.” Journal ofBiomedical Nanotechnology 7: 218–224.

Dhawan, Alok, V. Sharma, and D. Parmar. 2009.“Nanomaterials: A Challenge for Toxicologists.”Nanotoxicology 3: 1–9. doi:10.1080/17435390802578595.

Dhawan, Alok, and Vyom Sharma. 2010. “Toxicity Assessmentof Nanomaterials: Methods and Challenges.” Analytical andBioanalytical Chemistry. doi:10.1007/s00216-010-3996-x.

Dobrzyńska, Małgorzata M., Aneta Gajowik, JoannaRadzikowska, Anna Lankoff, Maria Dušinská, and MarcinKruszewski. 2014. “Genotoxicity of Silver and TitaniumDioxide Nanoparticles in Bone Marrow Cells of Rats invivo.” Toxicology 315: 86–91. doi:http://dx.doi.org/10.1016/j.tox.2013.11.012.

Elder, A., I. Lynch, K. Grieger, S. Chan-Remillard, A.Gatti, H. Gnewuch, E. Kenawy et al. 2009. “Human HealthRisks of Engineered Nanomaterials: Critical Knowledge Gapsin Nanomaterials Risk Assessment.” In Nanomaterials: Risksand Benefits, edited by I. Linkov and J. Steevens, 3–29.doi:10.1007/978-1-4020-9491-0_1.

Fabricius, Anne-Lena, Lars Duester, Björn Meermann, andThomas A. Ternes. 2014. “ICP-MSBased Characterization ofInorganic Nanoparticles—Sample Preparation and Off-LineFractionation Strategies.” Analytical and BioanalyticalChemistry 406(2): 467–479. doi:10.1007/s00216-013-7480-2.

Finette, Barry A., Heather Kendall, and Pamela M. Vacek.

2002. “Mutational Spectral Analysis at the HPRT Locus inHealthy Children.” Mutation Research—Fundamental andMolecular Mechanisms of Mutagenesis 505: 27–41.doi:10.1016/S0027-5107(02)00119-7.

Guo, Yuan-Yuan, Jun Zhang, Yi-Fan Zheng, Jun Yang, andXin-Qiang Zhu. 2011. “Cytotoxic and Genotoxic Effects ofMulti-Wall Carbon Nanotubes on Human Umbilical VeinEndothelial Cells in vitro.” Mutation Research 721:184–191. doi:10.1016/j.mrgentox.2011.01.014.

Gupta, S., P. Brouwer, S. Bandyopadhyay, S. Patil, R.Briggs, J. Jain, and S. Seal. 2005. “TEM/ AFM Investigationof Size and Surface Properties of Nanocrystalline Ceria.”Journal of Nanoscience and Nanotechnology 5(7): 1101–1107.

He, Qin, WenMin Yuan, Ji Liu, and ZhiRong Zhang. 2008.“Study on in vivo Distribution of Liver-TargetingNanopaticles Encapsulating Thymidine Kinase Gene (TK Gene)in Mice.” Journal of Materials Science: Materials inMedicine 19(2): 559–565. doi:10.1007 /s10856-007-3182-7.

Heinemann, M., and H. G. Schäfer. 2009. “Guidance forHandling and Use of Nanomaterials at the Workplace.” Human& Experimental Toxicology 28: 407–411. doi:10.1177/0960327109105149.

Heng, Boon Chin, Xinxin Zhao, Eng Chok Tan, NurulainKhamis, Aarti Assodani, Sijing Xiong, Christiane Ruedl,Kee Woei Ng, and Joachim Say Chye Loo. 2011. “Evaluationof the Cytotoxic and Inflammatory Potential ofDifferentially Shaped Zinc Oxide Nanoparticles.” Archivesof Toxicology 85: 1517–1528. doi:10.1007/s00204-011-0722-1.

Hirose, Akihiko. 2013. “International Trend of Guidance forNanomaterial Risk Assessment.” Yakugaku Zasshi: Journal ofthe Pharmaceutical Society of Japan 133: 175–180.doi:10.1248/yakushi.12-00244-4.

Hradil, J., A. Pisarev, M. Babic, and D. Horak. 2007.“Dextran-Modified Iron Oxide Nanoparticles.” ChinaParticuology 5: 162–168. doi:10.1016/j.cpart.2007.01.003.

Huang, Jiale, Qingbiao Li, Daohua Sun, Yinghua Lu, YuanboSu, Xin Yang, Huixuan Wang et al. 2007. “Biosynthesis ofSilver and Gold Nanoparticles by Novel Sundried CinnamomumCamphora Leaf.” Nanotechnology 18(10): 105104. doi:10.1088/0957 -4484/18/10/105104.

Huang, Qingrong, Hailong Yu, and Qiaomei Ru. 2010.

“Bioavailability and Delivery of Nutraceuticals UsingNanotechnology.” Journal of Food Science 75(1): R50–R57.doi:10.1111/j.1750-3841.2009.01457.x.

Hwang, Myungsil, Eun Ji Lee, Se Young Kweon, Mi Sun Park,Ji Yoon Jeong, Jun Ho Um, Sun Ah Kim, Bum Suk Han, KwangHo Lee, and Hae Jung Yoon. 2012. “Risk AssessmentPrinciple for Engineered Nanotechnology in Food and Drug.”Toxicological Research 28(2): 73–79.doi:10.5487/TR.2012.28.2.073.

Ismail, Ismail Hassan, Tabasum Imran Wadhra, and OlaHammarsten. 2007. “An Optimized Method for DetectingGamma-H2AX in Blood Cells Reveals a SignificantInterindividual Variation in the Gamma-H2AX Response amongHumans.” Nucleic Acids Research 35.doi:10.1093/nar/gkl1169.

Jani, P., G. W. Halbert, J. Langridge, and A. T. Florence.1990. “Nanoparticle Uptake by the Rat GastrointestinalMucosa: Quantitation and Particle Size Dependency.” TheJournal of Pharmacy and Pharmacology 42: 821–826.doi:10.1111/j.2042-7158.1990 .tb07033.x.

Jasmine, Li, Sindu Muralikrishnan, Cheng-Teng Ng, Lin-YueLanry Yung, and Boon-Huat Bay. 2010. “Nanoparticle-InducedPulmonary Toxicity.” Experimental Biology and Medicine235: 1025–1033. doi:10.1258/ebm.2010.010021.

Jeong, Su-Hun, Hyosung Choi, Jin Young Kim, and Tae-WooLee. 2015. “Silver-Based Nanoparticles for Surface PlasmonResonance in Organic Optoelectronics.” Particle & ParticleSystems Characterization 32(2): 164–175.doi:10.1002/ppsc.201400117.

Jin, Peng, Yongsheng Chen, Shengbai B. Zhang, and ZhongfangChen. 2012. “Interactions between Al12X (X = Al, C, N andP) Nanoparticles and DNA Nucleobases/base Pairs:Implications for Nanotoxicity.” Journal of MolecularModeling 18(2): 559–568. doi:10.1007/s00894-011-1085-5.

Jones, Clinton F., and David W. Grainger. 2009. “In VitroAssessments of Nanomaterial Toxicity.” Advanced DrugDelivery Reviews. doi:10.1016/j.addr.2009.03.005.

Jugan, Mary-Line, Sabrina Barillet, AngeliqueSimon-Deckers, Nathalie Herlin-Boime, Sylvie Sauvaigo,Thierry Douki, and Marie Carriere. 2012. “Titanium DioxideNanoparticles Exhibit Genotoxicity and Impair DNA RepairActivity in A549 Cells.” Nanotoxicology.

doi:10.3109/17435390.2011.587903.

Kain, J., H. L. Karlsson, and L. Möller. 2012. “DNA DamageInduced by Micro- and Nanoparticles—Interaction with FPGInfluences the Detection of DNA Oxidation in the CometAssay.” Mutagenesis 27: 491–500. doi:10.1093/mutage/ges010.

Kalpana, Sastry, Shrivastava Anshul, and N. H. Rao. 2013.“Nanotechnology in Food Processing Sector—An Assessment ofEmerging Trends.” Journal of Food Science and Technology.doi:10.1007/s13197-012-0873-y.

Kalpana, Sastry, H. B. Rashmi, and N. H. Rao. 2010.“Nanotechnology Patents as R & D Indicators for DiseaseManagement Strategies in Agriculture.” Journal ofIntellectual Property Rights 15: 197–205.

Kansara, Krupa, Pal Patel, Darshini Shah, Ritesh K. Shukla,Sanjay Singh, Ashutosh Kumar, and Alok Dhawan. 2015. “TiO2Nanoparticles Induce DNA Double Strand Breaks and CellCycle Arrest in Human Alveolar Cells.” Environmental andMolecular Mutagenesis 56(2): 204–217.doi:10.1002/em.21925.

Kansara, Krupa, Pal Patel, Darshini Shah, N. V. SrikanthVallabani, Ritesh K. Shukla, Sanjay Singh, Ashutosh Kumar,and Alok Dhawan. 2014. “TiO2 Nanoparticles InduceCytotoxicity and Genotoxicity in Human Alveolar Cells.”Molecular Cytogenetics 7 (Suppl 1). Springer: P77.doi:10.1186/1755-8166-7-S1-P77.

Karimi, M. A., S. Z. Mohammadi, A. Mohadesi, A.Hatefi-Mehrjardi, M. Mazloum-Ardakani, L. SotudehniaKorani, and A. Askarpour Kabir. 2011. “Determination ofsilver(I) by Flame Atomic Absorption Spectrometry afterSeparation/preconcentration Using Modified MagnetiteNanoparticles.” Scientia Iranica 18(3): 790–796.doi:http://dx.doi .org/10.1016/j.scient.2011.06.008.

Karlsson, Hanna L. 2010. “The Comet Assay in NanotoxicologyResearch.” Analytical and Bioanalytical Chemistry.doi:10.1007/s00216-010-3977-0.

Karlsson, Hanna L., Johanna Gustafsson, Pontus Cronholm,and Lennart Möller. 2009. “Size-Dependent Toxicity ofMetal Oxide Particles—A Comparison between Nano- andMicrometer Size.” Toxicology Letters 188: 112–118.doi:10.1016/j.toxlet .2009.03.014.

Kettiger, Helene, Angela Schipanski, Peter Wick, and Jörg

Huwyler. 2013. “Engineered Nanomaterial Uptake and TissueDistribution: From Cell to Organism.” InternationalJournal of Nanomedicine. doi:10.2147/IJN.S49770.

Khan, Mohd Imran, Akbar Mohammad, Govil Patil, S. A. H.Naqvi, L. K. S. Chauhan, and Iqbal Ahmad. 2012. “Inductionof ROS, Mitochondrial Damage and Autophagy in LungEpithelial Cancer Cells by Iron Oxide Nanoparticles.”Biomaterials 33: 1477–1488.doi:10.1016/j.biomaterials.2011.10.080.

Kim, Ahn E. K., B. K. Jee, H. K. Yoon, K. H. Lee, and Y.Lim. 2009. “Nanoparticulate-Induced Toxicity and RelatedMechanism in vitro and in vivo.” Journal of NanoparticleResearch 11: 55–65.

Kim, Ha Ryong, Mi Jie Kim, Soo Yeun Lee, Seung Min Oh, andKyu Hyuck Chung. 2011. “Genotoxic Effects of SilverNanoparticles Stimulated by Oxidative Stress in HumanNormal Bronchial Epithelial (BEAS-2B) Cells.” MutationResearch 726: 129–135. doi:10.1016/j.mrgentox.2011.08.008.

Kingsley, J. Danie, Shivendu Ranjan, Nandita Dasgupta, andProud Saha. 2013. “Nanotechnology for Tissue Engineering:Need, Techniques and Applications.” Journal of PharmacyResearch 7: 200–204. doi:10.1016/j.jopr.2013.02.021.

Kisin, Elena R., Ashley R. Murray, Michael J. Keane,Xiao-Chun Shi, Diane SchweglerBerry, Olga Gorelik, SivaramArepalli et al. 2007. “Single-Walled Carbon Nanotubes:Geno- and Cytotoxic Effects in Lung Fibroblast V79 Cells.”Journal of Toxicology and Environmental Health. Part A 70:2071–2079. doi:10.1080/15287390701601251.

Kumar, Arun, Prashant Kumar, Ananthitha Anandan, Teresa F.Fernandes, Godwin A. Ayoko, and George Biskos. 2014.“Engineered Nanomaterials: Knowledge Gaps in Fate,Exposure, Toxicity, and Future Directions.” Journal ofNanomaterials, article 130198.

Kumar, Ashutosh, and Alok Dhawan. 2013a. “Nano-Safety,Standardization and Certification.” In Manual on CriticalIssues in Nanotechnology R&D Management: An Asia-PacificPerspective.

Kumar, Ashutosh, and Alok Dhawan. 2013b. “Genotoxic andCarcinogenic Potential of Engineered Nanoparticles: AnUpdate.” Archives of Toxicology. doi:10.1007 / s00204-013-1128-z.

Kumar, Ashutosh, Alok K. Pandey, Shashi S. Singh, RishiShanker, and Alok Dhawan. 2011a. “Engineered ZnO and TiO2Nanoparticles Induce Oxidative Stress and DNA DamageLeading to Reduced Viability of Escherichia Coli.” FreeRadical Biology and Medicine 51(10): 1872–1881.doi:10.1016/j.freeradbiomed.2011.08.025.

Kumar, Ashutosh, Alok K. Pandey, Shashi S. Singh, RishiShanker, and Alok Dhawan. 2011b. “Cellular Uptake andMutagenic Potential of Metal Oxide Nanoparticles inBacterial Cells.” Chemosphere 83(8): 1124–1132.doi:10.1016/j.chemosphere.2011.01.025.

Kumar, Ashutosh, Mojgan Najafzadeh, Badie K. Jacob, AlokDhawan, and Diana Anderson. 2015. “Zinc OxideNanoparticles Affect the Expression of p53, Ras p21 andJNKs: An Ex vivo/in vitro Exposure Study in RespiratoryDisease Patients.” Mutagenesis 30(2): 237–245.doi:10.1093/mutage/geu064.

Kunzmann, Andrea, Britta Andersson, Tina Thurnherr, HaraldKrug, Annika Scheynius, and Bengt Fadeel. 2011.“Toxicology of Engineered Nanomaterials: Focus onBiocompatibility, Biodistribution and Biodegradation.”Biochimica et Biophysica Acta— General Subjects.doi:10.1016/j.bbagen.2010.04.007.

Lee, Jeong Chae, Young Ok Son, Poyil Pratheeshkumar, andXianglin Shi. 2012. “Oxidative Stress and MetalCarcinogenesis.” Free Radical Biology and Medicine.doi:10.1016/j .freeradbiomed.2012.06.002.

Lewis, David J., Christopher Bruce, Sylvain Bohic, PeterCloetens, Stephen P. Hammond, Darren Arbon, SarahBlair-Reid, Zoe Pikramenou, and Boris Kysela. 2010.“Intracellular Synchrotron Nanoimaging and DNADamage/genotoxicity Screening of Novel LanthanideCoatedNanovectors.” Nanomedicine 5(10): 1547–1557. doi:10.2217 /nnm.10.96.

Li, S. D. and Leaf Huang. 2008. “Pharmacokinetics andBiodistribution of Nanoparticles.” Molecular Pharmaceutics5(4): 496–504. doi:10.1021/mp800049w.

Li, Yan, David H. Chen, Jian Yan, Ying Chen, Roberta A.Mittelstaedt, Yongbin Zhang, Alexandru S. Biris, Robert H.Heflich, and Tao Chen. 2012. “Genotoxicity of SilverNanoparticles Evaluated Using the Ames Test and in vitroMicronucleus Assay.” Mutation Research/ Genetic Toxicologyand Environmental Mutagenesis 745(1–2): 4–10.

doi:http://dx.doi .org/10.1016/j.mrgentox.2011.11.010.

Love, Sara A., Melissa A. Maurer-Jones, John W. Thompson,Yu-Shen Lin, and Christy L. Haynes. 2012. “AssessingNanoparticle Toxicity.” Annual Review of AnalyticalChemistry. doi:10.1146/annurev-anchem-062011-143134.

Luo, Cheng, Egon Urgard, Tõnu Vooder, and Andres Metspalu.2011. “The Role of COX-2 and Nrf2/ARE in Anti-Inflammationand Antioxidative Stress: Aging and Anti-Aging.” MedicalHypotheses 77(2): 174–178. doi:http://dx.doi.org/10.1016/j.mehy.2011.04.002.

Maddinedi, Sireesh Babu, Badal Kumar Mandal, ShivenduRanjan, and Nandita Dasgupta. 2015. “Diastase AssistedGreen Synthesis of Size-Controllable Gold Nanoparticles.”RSC Advances 5(34): 26727–26733. doi:10.1039/C5RA03117F.

Maenosono, Shinya, Rie Yoshida, and Soichiro Saita. 2009.“Evaluation of Genotoxicity of AmineTerminatedWater-Dispersible FePt Nanoparticles in the Ames Test andin vitro Chromosomal Aberration Test.” The Journal ofToxicological Sciences. doi:10.2131 /jts.34.349.

Magdolenova, Zuzana, Andrew Collins, Ashutosh Kumar, AlokDhawan, Vicki Stone, and Maria Dusinska. 2014. “Mechanismsof Genotoxicity. A Review of in vitro and in vivo Studieswith Engineered Nanoparticles.” Nanotoxicology 8(January):233–278. doi:10 .3109/17435390.2013.773464.

Magnuson, Bernadene A., Tomas S. Jonaitis, and Jeffrey W.Card. 2011. “A Brief Review of the Occurrence, Use, andSafety of Food-Related Nanomaterials.” Journal of FoodScience. doi:10.1111/j.1750-3841.2011.02170.x.

McClements, David Julian. 2015. “Encapsulation, Protection,and Release of Hydrophilic Active Components: Potentialand Limitations of Colloidal Delivery Systems.” Advancesin Colloid and Interface Science.doi:http://dx.doi.org/10.1016/j .cis .2015.02.002.

McClements, David Julian, Eric Andrew Decker, Yeonhwa Park,and Jochen Weiss. 2009. “Structural Design Principles forDelivery of Bioactive Components in Nutraceuticals andFunctional Foods.” Critical Reviews in Food Science andNutrition 49: 577–606. doi:10.1080/10408390902841529.

Mihranyan, Albert, Natalia Ferraz, and Maria Stromme. 2012.“Current Status and Future Prospects of Nanotechnology inCosmetics.” Progress in Materials Science. doi:10.1016

/j.pmatsci.2011.10.001.

Monica, John C., and Geert van Calster. 2010. “ANanotechnology Legal Framework.” In NanotechnologyEnvironmental Health and Safety, 97–140.doi:10.1016/B978-0-8155 -1586-9.10004-0.

Montes-Burgos, Iker, Dorota Walczyk, Patrick Hole, JonathanSmith, Iseult Lynch, and Kenneth Dawson. 2010.“Characterisation of Nanoparticle Size and State prior toNanotoxicological Studies.” Journal of NanoparticleResearch 12: 47–53. doi:10.1007 /s11051-009-9774-z.

Morris, V. J. 2011. “Emerging Roles of EngineeredNanomaterials in the Food Industry.” Trends inBiotechnology. doi:10.1016/j.tibtech.2011.04.010.

Mortelmans, Kristien, and Errol Zeiger. 2000. “The AmesSalmonella/microsome Mutagenicity Assay.” MutationResearch/Fundamental and Molecular Mechanisms ofMutagenesis 455(1–2): 29–60.doi:http://dx.doi.org/10.1016/S0027-5107(00)00064-6.

Murdock, Richard C., Laura Braydich-Stolle, Amanda M.Schrand, John J. Schlager, and Saber M. Hussain. 2008.“Characterization of Nanomaterial Dispersion in SolutionPrior to in vitro Exposure Using Dynamic Light ScatteringTechnique.” Toxicological Sciences 101: 239–253.doi:10.1093/toxsci/kfm240.

Oberdörster, Günter, Eva Oberdörster, and Jan Oberdörster.2005. “Nanotoxicology: An Emerging Discipline Evolvingfrom Studies of Ultrafine Particles.” Environmental HealthPerspectives. doi:10.1289/ehp.7339.

Ostrowski, Anja, Daniel Nordmeyer, Alexander Boreham,Cornelia Holzhausen, Lars Mundhenk, Christina Graf,Martina C. Meinke et al. 2015. “Overview about theLocalization of Nanoparticles in Tissue and CellularContext by Different Imaging Techniques.” BeilsteinJournal of Nanotechnology 6: 263–280.

Pietroiusti, Antonio, Luisa Campagnolo, and Bengt Fadeel.2013. “Interactions of Engineered Nanoparticles withOrgans Protected by Internal Biological Barriers.” Small.doi: 10.1002/smll.201201463.

Powers, Kevin W., Maria Palazuelos, Brij M. Moudgil, andStephen M. Roberts. 2007. “Characterization of the Size,Shape, and State of Dispersion of Nanoparticles for

Toxicological Studies.” Nanotoxicology 1(1): 42–51.doi:10.1080/17435390701314902.

Pulido, Marisa D., and Alan R. Parrish. 2003.“Metal-Induced Apoptosis: Mechanisms.” MutationResearch—Fundamental and Molecular Mechanisms ofMutagenesis. doi:10.1016/j.mrfmmm.2003.07.015.

Quarta, Alessandra, Alberto Curcio, Hamilton Kakwere, andTeresa Pellegrino. 2012. “Polymer Coated InorganicNanoparticles: Tailoring the Nanocrystal Surface forDesigning Nanoprobes with Biological Implications.”Nanoscale 4(11): 3319–3334. doi:10.1039 /C2NR30271C.

Ranjan, Shivendu, and Nandita Dasgupta. 2013. “ProposalGrant ‘NanoToF: Toxicological Evaluation for NanoparticlesUsed in Food’. PI: Dr. C. Ramalingam, Co-PI: Dr. AshutoshK and Dr. Ramanathan K.” dbtepromis.nic.in.

Ranjan, Shivendu, Nandita Dasgupta, Arkadyuti RoyChakraborty, S. Melvin Samuel, Chidambaram Ramalingam,Rishi Shanker, and Ashutosh Kumar. 2014. “Nanoscience andNanotechnologies in Food Industries: Opportunities andResearch Trends.” Journal of Nanoparticle Research 16(6):1–23. doi:10.1007/s11051-014-2464-5.

Ravichandran, R. 2010. “Nanotechnology Applications in Foodand Food Processing: Innovative Green Approaches,Opportunities and Uncertainties for Global Market.”International Journal of Green Nanotechnology: Physics andChemistry 1(2): P72–P96. doi:10.1080/19430871003684440.

Rico, Cyren M., Sanghamitra Majumdar, Maria Duarte-Gardea,Jose R. Peralta-Videa, and Jorge L. Gardea-Torresdey.2011. “Interaction of Nanoparticles with Edible Plants andTheir Possible Implications in the Food Chain.” Journal ofAgricultural and Food Chemistry. doi:10.1021/jf104517j.

Savolainen, Kai, Harri Alenius, Hannu Norppa, LeaPylkkänen, Timo Tuomi, and Gerhard Kasper. 2010. “RiskAssessment of Engineered Nanomaterials andNanotechnologies—A Review.” Toxicology.doi:10.1016/j.tox.2010.01.013.

Sayes, Christie M., Kenneth L. Reed, and David B. Warheit.2007. “Assessing Toxicology of Fine and Nanoparticles:Comparing in vitro Measurements to in vivo PulmonaryToxicity Profiles.” Toxicological Sciences 97: 163–180.doi:10.1093/toxsci/kfm018.

Sayes, Christie M., and David B. Warheit. 2009.“Characterization of Nanomaterials for ToxicityAssessment.” Wiley Interdisciplinary Reviews: Nanomedicineand Nanobiotechnology. doi:10.1002/wnan.58.

Scalf, Jennifer, and Paul West. 2006. “Part I: Introductionto Nanoparticle Characterization with AFM.” PacificNanotechnology.

Selin, C. 2007. “Expectations and the Emergence ofNanotechnology.” Science, Technology & Human Values.doi:10.1177/0162243906296918.

Sharma, Vyom, Diana Anderson, and Alok Dhawan. 2012. “ZincOxide Nanoparticles Induce Oxidative DNA Damage andROS-Triggered Mitochondria Mediated Apoptosis in HumanLiver Cells (HepG2).” Apoptosis: An International Journalon Programmed Cell Death 17: 852–870.doi:10.1007/s10495-012-0705-6.

Sharma, Vyom, Ashutosh Kumar, and Alok Dhawan. 2012.“Nanomaterials: Exposure, Effects and ToxicityAssessment.” Proceedings of the National Academy ofSciences, India Section B: Biological Sciences 82(1):3–11. doi:10.1007/s40011-012-0072-7.

Shinohara, Naohide, Kyomu Matsumoto, Shigehisa Endoh, JunkoMaru, and Junko Nakanishi. 2009. “In vitro and in vivoGenotoxicity Tests on Fullerene {C60} Nanoparticles.”Toxicology Letters 191(2–3): 289–296.doi:http://dx.doi.org/10.1016/j .toxlet.2009.09.012.

Shukla, Ritesh K., Ashutosh Kumar, Deepak Gurbani, Alok K.Pandey, Shashi Singh, and Alok Dhawan. 2013a. “TiO2Nanoparticles Induce Oxidative DNA Damage and Apoptosis inHuman Liver Cells.” Nanotoxicology 7(1): 48–60.doi:10.3109/17435390.2011.629747.

Shukla, Ritesh K., Ashutosh Kumar, Naga Veera SrikanthVallabani, Alok K. Pandey, and Alok Dhawan. 2013b.“Titanium Dioxide Nanoparticle-Induced Oxidative StressTriggers DNA Damage and Hepatic Injury in Mice.”Nanomedicine (London, England). doi:10.2217 /nnm.13.100.

Shukla, Ritesh K., Vyom Sharma, Alok K. Pandey, ShashiSingh, Sarwat Sultana, and Alok Dhawan. 2011.“ROS-Mediated Genotoxicity Induced by Titanium DioxideNanoparticles in Human Epidermal Cells.” Toxicology invitro: An International Journal Published in Associationwith BIBRA 25(1): 231–241. doi:10.1016/j.tiv.2010.11.008.

Sotto, Di Antonella, Massimo Chiaretti, Giovanna AngelaCarru, Stefano Bellucci, and Gabriela Mazzanti. 2009.“Multi-Walled Carbon Nanotubes: Lack of Mutagenic Activityin the Bacterial Reverse Mutation Assay.” ToxicologyLetters 184: 192–197. doi:10.1016/j .toxlet.2008.11.007.

Stark, Wendelin J. 2011. “Nanoparticles in BiologicalSystems.” Angewandte Chemie— International Edition.doi:10.1002/anie.200906684.

Stone, Vicki, Helinor Johnston, and Roel P. F. Schins.2009. “Development of in vitro Systems for Nanotoxicology:Methodological Considerations.” Critical Reviews inToxicology 39(7): 613–626. doi:10.1080/10408440903120975.

Tervonen, Tommi, Igor Linkov, José Rui Figueira, JefferySteevens, Mark Chappell, and Myriam Merad. 2009.“Risk-Based Classification System of Nanomaterials.”Journal of Nanoparticle Research 11: 757–766.doi:10.1007/s11051-008-9546-1.

Valko, M., H. Morris, and M. T. D. Cronin. 2005. “Metals,Toxicity and Oxidative Stress.” Current MedicinalChemistry 12: 1161–1208. doi:10.2174/0929867053764635.

Wang, Deyan, Linlin Sun, Wei Liu, Weiwei Chang, Xiang Gao,and Zhenxin Wang. 2009. “Photoinduced DNA Cleavage byAlpha-, Beta-, and Gamma-Cyclodextrin-Bicapped C60Supramolecular Complexes.” Environmental Science &Technology 43: 5825–5829.

Warheit, David B. 2008. “How Meaningful Are the Results ofNanotoxicity Studies in the Absence of Adequate MaterialCharacterization?” Toxicological Sciences 101(2): 183– 185.doi:10.1093/toxsci/kfm279.

Weibel, A., R. Bouchet, F. Boulc’h, and P. Knauth. 2005.“The Big Problem of Small Particles: A Comparison ofMethods for Determination of Particle Size inNanocrystalline Anatase Powders.” Chemistry of Materials17: 2378–2385. doi:10.1021/cm0403762.

Wise, Kelsey, and Murphy Brasuel. 2011. “The Current Stateof Engineered Nanomaterials in Consumer Goods and WasteStreams: The Need to Develop Nanoproperty-QuantifiableSensors for Monitoring Engineered Nanomaterials.”Nanotechnology, Science and Applications 4(July): 73–86.doi:10.2147/NSA.S9039.

Wu, Yun Long, Nirupama Putcha, Kee Woei Ng, David TaiLeong, Chwee Teck Lim, Say Chye Joachim Loo, and XiaodongChen. 2013. “Biophysical Responses upon the Interaction ofNanomaterials with Cellular Interfaces.” Accounts ofChemical Research 46(3): 782– 791. doi:10.1021/ar300046u.

Xie, Guangping, Jiao Sun, Gaoren Zhon G., Liyi Shi, andDawei Zhan G. 2010. “Biodistribution and Toxicity ofIntravenously Administered Silica Nanoparticles in Mice.”Archives of Toxicology 84: 183–190.doi:10.1007/s00204-009-0488-x.

XpertArena. 2015. “Safety Concerns of Nanomaterials: AnExpert’s Critics.” www.xpertarena .com.

Yada, Rickey Y., Neil Buck, Richard Canady, Chris DeMerlis,Timothy Duncan, Gemma Janer, Lekh Juneja et al. 2014.“Engineered Nanoscale Food Ingredients: Evaluation ofCurrent Knowledge on Material Characteristics Relevant toUptake from the Gastrointestinal Tract.” ComprehensiveReviews in Food Science and Food Safety 13(4): 730–744.doi:10.1111/1541-4337.12076.

Yamakoshi, Yoko, Safwan Aroua, Thach-Mien Duong Nguyen,Yuko Iwamoto, and Tsuyoshi Ohnishi. 2014. “Water-SolubleFullerene Materials for Bioapplications: PhotoinducedReactive Oxygen Species Generation.” Faraday Discuss. 173:287–296. doi:10.1039 / C4FD00076E.

Yan, Li, and Xianfeng Chen. 2013. “Nanomaterials for DrugDelivery.” In Nanocrystalline Materials: TheirSynthesis-Structure-Property Relationships andApplications, 221– 268.doi:10.1016/B978-0-12-407796-6.00007-5.

Yu, Hailong, and Qingrong Huang. 2013. “Bioavailability andDelivery of Nutraceuticals and Functional Foods UsingNanotechnology.” In Bio-Nanotechnology, 593–604. BlackwellPublishing. doi:10.1002/9781118451915.ch35.

18 18: Consumer Acceptance ofNanotechnology-Based Foods and FoodInnovations

Brown, J. L., Ping, Y. C. (2003). Consumer perception ofrisk associated with eating genetically engineered soybeansis less in the presence of a perceived consumer benefit.Journal of the American Dietetic Association 103(2):208–214.

Chau, C. F., Wu, S. H., Yen, G. C. (2007). The developmentof regulations for food nanotechnology. Trends in FoodScience & Technology 18: 269–280.

Chaudhry, Q., Castle, L. (2011). Food applications ofnanotechnologies: An overview of opportunities andchallenges for developing countries. Trends Food Scienceand Technology 22(11): 595–603.

Chellaram, C., Murugaboopathi, G., John, A. A., Sivakumar,R., Ganesan, S., Krithika, S., Priya, G. (2014).Significance of nanotechnology in food industry. APCBEEProcedia 8: 109–113.

Cobb, M. D., Macoubrie, J. (2004). Public perceptions aboutnanotechnology: Risks, benefits and trust. Journal ofNanoparticle Research 6(4): 395–405.

Coles, D., Frewer, L. J. (2013). Nanotechnology applied toEuropean food production—A review of ethical andregulatory issues. Trends in Food Science & Technology 34:32–43.

Chen, H., Yada, R. (2011). Nanotechnologies in agriculture:New tools for sustainable development. Trends in FoodScience and Technology 22: 585–594.

Chen, M. F., Lin, Y. P., Cheng, T. J. (2013). Publicattitudes towards nanotechnology applications in Taiwan.Technovation 33: 88–96.

Dasgupta, N., Ranjan, S., Mundekkad, D., Ramalingam, C,Shanker, R., Kumar, A. (2015). Nanotechnology inargo-food: From field to plate. Food Research International69: 381–400.

Dudo, A., Choi. D. H., Scheufele, D. A. (2011). Foodnanotechnology in the news. Coverage patterns and thematicemphases during the last decade. Appetite 56: 78–89.

Ezhilarasi, P. N., Karthik, P., Chhanwal, N.,Anandharamakrishnan, C. (2013). Nanoencapsulationtechniques for food bioactive components: A review. Foodand Bioprocess Technology 6(3): 628–647.

FAO/WHO. (2010). FAO/WHO expert meeting on the applicationof nanotechnologies in the food and agriculture sectors:Potential food safety implications. Meeting report. Foodand Agriculture Organization of the United Nations andWorld Health Organization.http://www.fao.org/docrep/012/i1434e/i1434e00.pdf.

Handford, C. E., Dean, M., Henchion, M., Spence, M.,Elliott, C. T., Campbell, K. (2014). Implications ofnanotechnology for the agri-food industry: Opportunities,benefits and risks. Trends in Foods Science and Technology40: 226–241.

Hart Research Associates. (2007). Awareness of andattitudes toward nanotechnology and federal regulatoryagencies.

Huang, J. Y., Li, X., Zhou, W. (2015). Safety assessment ofnanocomposite for food packaging application. Trends inFood Science and Technology 45(2): 187–199.

Huang, Q., Yu, H., Ru, Q. (2010) Bioavailability anddelivery of nutraceuticals using nanotechnology. Journal ofFood Science 75(1): 50–57.

International Risk Governance Council. (2009). Policybrief: Appropriate risk governance strategies fornanotechnology applications in food and cosmetics.http://www.irgc

Jackson, C. J. C., Paliyath, G. (2011). Functional foodsand nutraceuticals. In Functional Foods, Nutraceuticals,and Degenerative Disease Prevention, edited by G. Paliyath,M. Bakovic, K. Shetty, chap. 2. Oxford: Wiley-Blackwell.doi:10.1002/9780470960844.ch2.

Joye, I. J., Pardo, G. D., McClements, D. J. (2014).Nanotechnology for increased micronutrient bioavailability.Trends in Food Science and Technology 40: 168–182.

Kalpana Sastry, S., Rashmi, H. B., Rao, N. H. (2011).Nanotechnology for enhancing food security in India. FoodPolicy 36: 391–400.

Kalpana Sastry, S., Rashmi, H. B., Rao, N. H., Ilyas, S. M.

(2010). Integrating nanotechnology into argi-food systemsresearch in India: A conceptual framework. TechnologicalForecasting and Social Change 77: 639–648.

Khan, A. S. (2012). Nanotechnology: Ethical and SocialImplications. Boca Raton, FL: CRC Press.

Lagaron, J. M., and Lopez-Rubio, A. (2010). Latestdevelopments and future trends in food packaging andbiopackaging. In Innovation in Food Engineering NewTechniques and Products, edited by M. Laura Passos, C. P.Ribeiro, 485 –508. Boca Raton, FL: CRC Press.

Lee, C.-J., Scheufele, D. A., Lewenstein, B. V. (2005).Public attitudes toward emerging technologies. ScienceCommunication 27(2): 240–267.

Lux Research. (2006). The Nanotech Report. 4th ed. NewYork: Lux Research.

Market Attitude Research Services. (2009). Australiancommunity attitudes about nanotechnology 2005–2009.Department of Industry, Innovation, Science and Research,Australia.

McClements, D. J. (2014). Nanoparticle- andmicroparticle-based delivery systems for lipophilicbioactive components. Journal of Food Science 72:R109–R124.

McClements, D. J., Decker, E. A., Park, Y., Weiss, J.(2009). Structural design principles for delivery ofbioactive components in nutraceutical and functional foods.Critical Reviews in Food Science and Nutrition 49(6):577–606.

Mihindukulasuriya, S. D. F., Lim, L. T. (2014).Nanotechnology development in food packaging: A review.Trends in Food Science & Technology 40: 149–167.

Nicolia, A., Manzo, A., Veronesi, F., Rosellini, D. (2014).An overview of the last 10 years of genetically engineeredcrop safety research. Critical Review of Biotechnology34(1): 77–88.

Penyala, N. R., Pena-Mendez, E. M., Havel, J. (2008).Silver or silver nanoparticles: A hazardous threat to theenvironment and human health? Nature Nanotechnology 3:423–428.

Pronk, M. E. J., Wijnhoven, S. W. P., Bleeker, E. A. J.,Heugens, E. H. W., Peijnenburg, W. J. G. M., Luttik, R.,Hakkert, B. C. (2009). Nanomaterials under REACH:Nanosilver as a case study-RIVM report. Bilthoven, TheNetherlands.

Ranjan, S., Dasgupta, N., Chakraborty, A. R., Samuel, S.M., Ramalingam, C., Shanker, R., Kumar, A. (2014).Nanoscience and nanotechnologies in food industries:Opportunities and research trends. Journal of NanoparticleResearch 16: 2464–2487.

Rashidi, L., Khosravi-Darani, K. (2011). The applicationsof nanotechnology in food industry. Critical Reviews inFood Science and Nutrition 51(8): 723–730. doi:10.1080/10408391003785417.

Ravichandran, R. (2010). Nanotechnology applications infood and food processing: Innovative green approaches,opportunities and uncertainties for global market.International Journal of Green Nanotechnology: Physics andChemistry 1(2): 72–96.

Roco, M. C., C. A. Mirkin, and M. C. Hesam. (2010).Nanotechnology research directions for societal needs in2020: Retrospective and outlook. WTEC Study onNanotechnology Research Directions, World TechnologyEvaluation Center, Arlington, Virginia.

Roosen, J., Bieberstein, A., Blanchemanche, S., Goddard,E., Marrette, S., Vandermoere, F. (2015). Trust andwillingness to pay for nanotechnology food. Food Policy 33:75–83.

Sanguansri, P., Augustin, M. A. (2006). Nanoscale materialsdevelopment—A food industry perspective. Trends inBiotechnology 17: 547–556.

Shin, G. H., Kim, J. T., Park, H. J. (2015). Recentdevelopments in nanoformulations of lipophilic functionalfoods. Trends in Food Science & Technology 46(1): 1–14.

Sozer, N., Kokini, J. L. (2009). Nanotechnology and itsapplications in the food sector. Trends in Biotechnology27(2): 82–89.

Sutariya, V. B., Pathak, Y., eds. (2015). Biointeractionsof Nanomaterials. Boca Raton, FL: CRC Press.

Tolaymat, T., Badawy, A. E., Sequeira, R., Genaidy, A.

(2015). An integrated science-based methodology to assesspotential risks and implications of engineerednanomaterials. Journal of Hazardous Materials 298:270–281.

UN News. (2013). World population projected to reach 9.6billion by population. Department of Economic and SocialAffairs. http://www.un.org/en/development/desa/news/popu

Vidigal, M., Minim, V. P. R., Simiqueli, A. S., Souza, P.H. P., Balbino, D. F., Minim, L. A. (2015). Foodtechnology neophobia and consumer attitudes towards foodsproduced by new and conventional technologies: A casestudy in Brazil. LWT—Food Science and Technology 60:832–840.

Waldron, A. M., Spencer, D., Batt, C. A. (2006). Thecurrent state of public understanding of nanotechnology.Journal of Nanoparticle Research 8(5): 569–575.

Xu, M. S., Fujita, D., Kajiwara, S., Minowa, T., Li X.,Takemura, T., Iwai, H., Hanagata, N. (2010). Contributionof physicochemical characteristics of nanooxides tocytotoxicity. Biomaterials 31: 8022–8031.

19 19: Ethics and Economics ofNanonutraceuticals

Acosta, E. 2009. “Bioavailability of Nanoparticles inNutrient and Nutraceutical Delivery.” Current Opinion inColloid and Interface Sciencedoi:10.1016/j.cocis.2008.01.002.

Andrade, A. L., Domingues, R. Z., Fabris, J. M., and Goes,A. M. 2012. “Safety of Magnetic Iron Oxide-CoatedNanoparticles in Clinical Diagnostics and Therapy.” InToxic Effects of Nanomaterials.doi:10.2174/97816080528371120101.

Annunziata, A., and Vecchio, R. 2013. “Consumer Perceptionof Functional Foods: A Conjoint Analysis with Probiotics.”Food Quality and Preference 28: 348–355. doi:10.1016/j.foodqual.2012.10.009.

Armand, V. C, Schutz, H. G., and Lesher, L. L. 2007.“Consumer Perceptions of Foods Processed by Innovative andEmerging Technologies: A Conjoint Analytic Study.”Innovative Food Science and Emerging Technologies 8:73–83. doi:10.1016/j.ifset.2006.07.002.

Atkinson, C., Frankenfeld, C. L., and Lampe, J. W. 2005.“Gut Bacterial Metabolism of the Soy Isoflavone Daidzein:Exploring the Relevance to Human Health.” ExperimentalBiology and Medicine (Maywood, N.J.) 230: 155–170.doi:230/3/155 [pii].

Barakat, N., and Jiao, H. 2010. “Proposed Strategies forTeaching Ethics of Nanotechnology.” NanoEthics 4: 221–228.doi:10.1007/s11569-010-0100-0.

Basu, S. K., Thomas, J. E., and Acharya, S. N. 2007.“Prospects for Growth in Global Nutraceutical andFunctional Food Markets: A Canadian Perspective.”Australian Journal of Basic and Applied Sciences 1:637–649.

Bisht, S., Feldmann, G., Soni, S., Ravi, R., Karikar, C.,Maitra, A., and Maitra, A. 2007. “PolymericNanoparticle-Encapsulated Curcumin (‘nanocurcumin’): ANovel Strategy for Human Cancer Therapy.” Journal ofNanobiotechnology 5: 3. doi:10.1186/1477-3155-5-3.

Carpentier, S., Knaus, M., and Suh, M. 2009. “Associationsbetween Lutein, Zeaxanthin, and Age-Related MacularDegeneration: An Overview.” Critical Reviews in Food

Science and Nutrition 49: 313–326.doi:10.1080/10408390802066979.

Cheng, L. C., Jiang, X., Wang, J., Chen, C., and Liu, R. S.2013. “Nano-Bio Effects: Interaction of Nanomaterials withCells.” Nanoscale 5: 3547–3569. doi:10.1039/c3nr34276j.

Dillard, C. J., and German, J. B. 2000. “Phytochemicals:Nutraceuticals and Human Health.” Journal of the Scienceof Food and Agriculture doi:10.1002/1097-0010(20000915)80:12<1744::AID-JSFA725>3.0.CO;2-W.

Espín, C. J., Garcia-Conesa, M. T., and Tomás-Barberán, F.A. 2007. “Nutraceuticals: Facts and Fiction.”Phytochemistry doi:10.1016/j.phytochem.2007.09.014.

Evans, A., Tzeng, I., and Picciola, M. 2013. “You Are WhatThey Eat: A Guide To Winning the ‘Nutraceuticals’ Market.”Accessed July 30, 2015. http://www.lek.com/sites/default /

Fanny, R., Kennedy, J., and Wills, J. 2011. “Consumers andNew Food Technologies.” Trends in Food Science andTechnology 22: 99–111. doi:10.1016/j.tifs.2010.09.001.

Farré, M., Gajda-Schrantz, K., Kantiani, L., and Barceló,D. 2009. “Ecotoxicity and Analysis of Nanomaterials in theAquatic Environment.” Analytical and BioanalyticalChemistry 393: 81–95. doi:10.1007/s00216-008-2458-1.

Food Safety and Standards Authority of India (FSSAI).2015a. “Order.” Accessed August 8, 2015.http://www.fssai.gov.in/Portals/0/Pdf/Order_Nestle.pdf.

Food Safety and Standards Authority of India (FSSAI).2015b. “Press Release.” Accessed August 8, 2015.

Gaston, A., and Gambaro, A. 2007. “Influence of Gender, Ageand Motives Underlying Food Choice on PerceivedHealthiness and Willingness to Try Functional Foods.”Appetite 49: 148–158. doi:10.1016/j.appet.2007.01.006.

Getu, H., Boecker, A., Henson, S., and Cranfield, J. 2009.“Consumer Valuation of Functional Foods and Nutraceuticalsin Canada. A Conjoint Study Using Probiotics.” Appetite 52:257. doi:10.1016/j.appet.2008.10.002.

Glenn, L. M., and D’Agostino, L. 2012. “The Moveable Feast:Legal, Ethical, and Social Implications of ConvergingTechnologies on Our Dinner Tables 111.” NortheasternUniversity Law Journal 4: 111–131.

James, G. 1990. “Perrier Recalls Its Water in U.S. afterBenzene Is Found in Bottles” International New York Times,February 10. Accessed February 10, 2014. http://www

Judith, R. 2002. “Tylenol Made a Hero of Johnson & Johnson:The Recall That Started Them All.” International New YorkTimes, March 23. Accessed February 10, 2014. http://www.nytimes.com/2002/03/23/your-money/23iht-mjj_ed3_.html.

Kim, K. J., Sung, W. S., Moon, S. K., Choi, J. S., Kim, J.G., and Lee, D. G. 2008. “Antifungal Effect of SilverNanoparticles on Dermatophytes.” Journal of Microbiologyand Biotechnology 18: 1482–1484. doi:7490.

Lin, J.-K., and Weng, M.-S. 2006. “Flavonoids asNutraceuticals.” In The Science of Flavonoids, 213–238.doi:10.1007/978-0-387-28822-2.

Magiorkinis, E., Beloukas, A., and Diamantis, A. 2011.“Scurvy: Past, Present and Future.” European Journal ofInternal Medicine. doi:10.1016/j.ejim.2010.10.006.

Marcia, C. T. R. V., Minim, V. P. R., Simiqueli, A. A.,Souza, P. H. P., Balbino, D. F., and Minim, L. A. 2015.“Food Technology Neophobia and Consumer Attitudes towardFoods Produced by New and Conventional Technologies: ACase Study in Brazil.” LWT—Food Science and Technology 60:832–840. doi:10.1016/j.lwt.2014.10.058.

Mishra, S., and Kalpana, P. 2008. “The Effect of Curcumin(Turmeric) on Alzheimer’s Disease: An Overview.” Annals ofIndian Academy of Neurology 11: 13–19. doi:10.4103/0972-2327.40220.

Mitroff, I. I., and Anagnos, G. 2000. “Managing CrisesBefore They Happen.” Soundview Executive Book Summaries23(2).

Nel, A., Xia, T., Mädler, L., and Li, N. 2006. “ToxicPotential of Materials at the Nanolevel.” Science (NewYork) 311: 622–627. doi:10.1126/science.1114397.

Pal, S., Tak, Y. K., and Song, J. M. 2007. “Does theAntibacterial Activity of Silver Nanoparticles Depend onthe Shape of the Nanoparticle? A Study of the Gram-NegativeBacterium Escherichia Coli.” Applied and EnvironmentalMicrobiology 73: 1712–1720. doi:10 .1128/AEM.02218-06.

Podila, R., and Brown, J. M. 2013. “Toxicity of Engineered

Nanomaterials: A Physicochemical Perspective.” Journal ofBiochemical and Molecular Toxicology doi:10.1002/jbt.21442.

Roduner, E. 2006. “Size Matters: Why Nanomaterials AreDifferent.” Chemical Society Reviews 35: 583–592.doi:10.1039/b502142c.

Shahidi, F., and Naczk, M. 2006. Phenolics in Food andNutraceuticals. Boca Raton, FL: CRC Press.

Sohaimy, S. 2012. “Functional Foods andNutraceuticals—Modern Approach to Food Science.” WorldApplied Sciences Journaldoi:10.5829/idosi.wasj.2012.20.05.66119.

Tino, B. L., and Scholderer, J. 2007. “Functional Foods inEurope: Consumer Research, Market Experiences andRegulatory Aspects.” Trends in Food Science & Technology18: 231–234. doi:10.1016/j.tifs.2006.12.006.

Toula, P., Grunert, K. G., and Krystallis, A. 2015.“Consumer Value Perceptions of Food Products from EmergingProcessing Technologies: A Cross-Cultural Exploration.”Food Quality and Preference 39: 95–108.doi:10.1016/j.foodqual.2014.06.009.

Yu, H., and Huang, Q. 2013. “Bioavailability and Deliveryof Nutraceuticals and Functional Foods UsingNanotechnology.” In Bio-Nanotechnology: A Revolution inFood, Biomedical and Health Sciences, 593–604.doi:10.1002/9781118451915.ch35.

20 20: Novel Nanoencapsulation Structuresfor Functional Foods and NutraceuticalApplications

Aceituno-Medina, M., López-Rubio, A., Mendoza, S., andLagaron, J. M. (2013a). Development of novel ultrathinstructures based in amaranth (Amaranthus hypochondriacus)protein isolate through electrospinning. FoodHydrocolloids, 31(2), 289–298.

Aceituno-Medina, M., Mendoza, S., Lagaron, J. M., andLópez-Rubio, A. (2013b). Development and characterizationof food-grade electrospun fibers from amaranth protein andpullulan blends. Food Research International, 54(1),667–674.

Aceituno-Medina, M., Mendoza, S., Lagaron, J. M., andLópez-Rubio, A. (2014). Photoprotection of folic acid uponencapsulation in food-grade amaranth (Amaranthushypochondriacus L.) protein isolate—Pullulan electrospunfibers. LWT—Food Science and Technology, 62, 970–975.

Aceituno-Medina, M., Mendoza, S., Rodríguez, B. A.,Lagaron, J. M., and López-Rubio, A. (2015). Improvedantioxidant capacity of quercetin and ferulic acid duringin-vitro digestion through encapsulation within food-gradeelectrospun fibers. Journal of Functional Foods, 12,332–341.

Amna, T., Hassan, M. S., Pandeya, D. R., Khil, M.-S., andHwang, I. H. (2013). Classy nonwovens based on animate L.gasseri-inanimate poly (vinyl alcohol): Upstreamapplication in food engineering. Applied Microbiology andBiotechnology, 97(10), 4523–4531.

Anal, A. K., and Singh, H. (2007). Recent advances inmicroencapsulation of probiotics for industrialapplications and targeted delivery. Trends in Food Scienceand Technology, 18(5), 240–251.

Barras, A., Mezzetti, A., Richard, A., Lazzaroni, S., Roux,S., Melnyk, P., Betbeder, D., and Monfilliette-Dupont, N.(2009). Formulation and characterization ofpolyphenol-loaded lipid nanocapsules. InternationalJournal of Pharmaceutics, 379, 270–277.

Bocanegra, R., Gaonkar, A. G., Barrero, A., Loscertales, I.G., Pechack D., and Marquez, M. (2005). Production ofcocoa butter microcapsules using an electrospray process.Journal of Food Science, 70(8), e492–e497.

Bock, N., Dargaville, T. R., and Woodruff, M. A. (2012).Electrospraying of polymers with therapeutic molecules:State of the art. Progress in Polymer Science, 37(11),1510–1551.

Bonino, C. A., Krebs, M. D., Saquing, C. D., Jeong, S. I.,Shearer, K. L., Alsberg, E., and Khan, S. A. (2011).Electrospinning alginate-based nanofibers: From blends tocrosslinked low molecular weight alginate-only systems.Carbohydrate Polymers, 85(1), 111–119.

Braithwaite, M. C., Tyagi, C., Tomar, L. K., Kumar, P., andChoonara, V. P. (2014). Nutraceuticalbased therapeutics andformulation strategies augmenting their efficiency tocomplement modern medicine: An overview. Journal ofFunctional Foods, 6, 82–99.

Burnside, E. (2014). Hydrocolloids and gums asencapsulating agents. In Microencapsulation in the FoodIndustry, edited by A. G. Gaonkar, N. Vasisht, A. R. Khare,and R. Sobel, 241–250. San Diego, CA: Elsevier.

Camerlo, A., Bühlmann-Popa, A. M., Vebert-Nardin, C.,Rossi, R., and Fortunato, G. (2014). Environmentallycontrolled emulsion electrospinning for the encapsulationof temperature-sensitive compounds. Journal of MaterialsScience, 49(23), 8154–8162.

Camerlo, A., Vebert-Nardin, C., Rossi, R. M., and Popa, A.M. (2013). Fragrance encapsulation in polymeric matrices byemulsion electrospinning. European Polymer Journal,49(12), 3806–3813.

Chang, D., Abbas, S., Hayat, K., Xia, S., Zhang, X., Xie,M. et al. (2010). Encapsulation of ascorbic acid inamorphous maltodextrin employing extrusion as affected bymatrix/ corn ratio and water content. International Journalof Food Science and Technology, 45, 1895–1901.

Cho, D., Nnadi, O., Netravali, A., and Joo, Y. L. (2010).Electrospun hybrid soy protein/PVA fibers. MacromolecularMaterials and Engineering, 295(8), 763–773.

Commane, D., Hughes, R., Shortt, C., and Rowland, I.(2005). The potential mechanisms involved in theanti-carcinogenic action of probiotics. Mutatation Research591(12), 276–289.

Comunian, T. A., Thomazini, M., Alves, A. J. G., Matos

Junior, F. E., Balieiro, J. C. C., and Favaro-Trindade, C.S. (2013). Microencapsulation of ascorbic acid by complexcoacervation: Protection and controlled release. FoodResearch International, 52(1), 373–379.

de Freitas Zompero, R. H., López-Rubio, A., De Pinho, S.C., Lagaron, J. M., and Gaziola de la Torre, L. (2015).Hybrid encapsulation structures based on β-carotene-loadednanoliposomes within electrospun fibers. Colloids andSurfaces B: Biointerfaces. doi:http://dx.doi.org/doi:10.1016/j.colsurfb.2015.03.015.

Desai, K. G. H., and Park, H. J. (2005). Recentdevelopments in microencapsulation of food ingredients.Drying Technology, 23(7), 1361–1394.

Desai, K. G. H., Liu, C., and Park, H. J. (2005).Characteristics of vitamin C immobilized particles andsodium alginate beads containing immobilized particles.Journal of Microencapsulation, 22, 363–376.

Dror, Y., Ziv, T., Makarov, V., Wolf, H., Admon, A., andZussman, E. (2008). Nanofibers made of globular proteins.Biomacromolecules, 9(10), 2749–2754.

Eldem, T., Speiser, P., and Hincal, A. (1991). Optimizationof spray-dried and -congealed lipid micropellets andcharacterization of their surface morphology by scanningelectron microscopy. Pharmaceutical Research, 8, 47–54.

Esposito, E., Cervellati, F., Menegatti, E., Nastruzzi, C.,and Cortesi, R. (2002). Spray dried Eudragitmicroparticles as encapsulation devices for vitamin C.International Journal of Pharmaceutics, 242, 329–334.

Fathi, M., Martín, A., and McClements, D. J. (2014).Nanoencapsulation of food ingredients using carbohydratebased delivery systems. Trends in Food Science andTechnology, 39, 18–39.

Fernandez, A., Torres-Giner, S., and Lagaron, J. M. (2009).Novel route to stabilization of bioactive antioxidants byencapsulation in electrospun fibers of zein prolamine. FoodHydrocolloids, 23, 1427–1432.

Fuenmayor, C. A., Mascheroni, E., Cosio, M. S.,Piergiovanni, L., Benedetti, S., Ortenzi, M., Schiraldi,A., and Mannino, S. (2013). Encapsulation of R-(+)-limonenein edible electrospun nanofibers. Chemical EngineeringTransactions, 32, 1771–1776.

Fung, W.-Y., Yuen, K.-H., and Liong, M.-T. (2011).Agrowaste-based nanofibers as a probiotic encapsulant:Fabrication and characterization. Journal of Agriculturaland Food Chemistry, 59(15), 8140–8147.

Gómez-Mascaraque, L. G., Lagaron, J. M., and López-Rubio,A. (2015). Electrosprayed gelatin microparticles as ediblecarriers for the encapsulation of polyphenols of interestin functional foods. Food Hydrocolloids, 49, 42–52.

Grassi, M., Grassi, G., Lapasin, R., and Colombo, I.(2007). Drug release from matrix systems. In UnderstandingDrug Release and Absorption Mechanisms: A Physical andMathematical Approach, 371–479. Boca Raton, FL: CRC Press.

Greiner, A., Wendorff, J. H., Yarin, A. L., and Zussman, E.(2006). Biohybrid nanosystems with polymer nanofibers andnanotubes. Applied Microbiology and Biotechnology, 71,387–393.

Horrocks, L. A., and Yeo, Y. K. (1999). Health benefits ofdocosahexaenoic acid (DHA). Pharmacological Research, 40,211–225.

Hu, J., Wei, J., Liu, W., and Chen, Y. (2013). Preparationand characterization of electrospun PLGA/gelatin nanofibersas a drug delivery system by emulsion electrospinning.Journal of Biomaterials Science, Polymer Edition, 24(8),972–985.

Huang, Z. M., Zhang, Y. Z., Ramakrishna, S., and Lim, C. T.(2004). Electrospinning and mechanical characterization ofgelatin nanofibers. Polymer, 45(15), 5361.

Hwang, Y. K., Jeong, U., and Cho, E. C. (2008). Productionof uniform-sized polymer coreshell microcapsules by coaxialelectrospraying. Langmuir, 24(6), 2446–2451.

Jaworek, A., and Sobczyk, A. T. (2008). Electrosprayingroute to nanotechnology: An overview. Journal ofElectrostatics, 66(3–4), 197–219.

Jiang, H. L., Zhao, P. C., and Zhu, K. J. (2007).Fabrication and characterization of zein-based nanofibrousscaffolds by an electrospinning method. MacromolecularBioscience, 7(4), 517.

Jyothi, N. V. N., Prasanna, P. M., Sakarkar, S. N., Prabha,K. S., Ramaiah, P. S., and Srawan, G. Y. (2010).

Microencapsulation techniques, factors influencingencapsulation efficiency. Journal of Microencapsulation,27(3), 187–197.

Kayaci, F., Sen, H. S., Durgun, E., and Uyar, T. (2014).Functional electrospun polymeric nanofibers incorporatinggeraniol-cyclodextrin inclusion complexes: High thermalstability and enhanced durability of geraniol. FoodResearch International, 62, 424–431.

Kim, H. H. Y., and Baianu, I. C. (1991). Novel liposomemicroencapsulation techniques for food applications.Trends in Food Science and Technology, 2, 55–61.

Kim, W., and Kim, S. S. (2010). Multishell encapsulationusing a triple coaxial electrospray system. AnalyticalChemistry, 82(11), 4644–4647.

Kirby, C., Whittle, C., Rigby, N., Coxon, D., and Law, B.(1991). Stabilization of ascorbic acid bymicroencapsulation in liposomes. International Journal ofFood Science and Technology, 26, 437–449.

Knezevic, Z., Gosak, D., Hraste, M., and Jalsenjako, I.(1998). Fluid-bed microencapsulation of ascorbic acid.Journal of Microencapsulation, 15, 237–252.

Koo, S. Y., Cha, K. H., Song, D.-G., Chung, D., and Pan,C.-H. (2014). Microencapsulation of peppermint oil in analginate–pectin matrix using a coaxial electrospray system.International Journal of Food Science and Technology,49(3), 733–739.

Kriegel, C., Arrechi, A., Kit, K., McClements, D. J., andWeiss, J. (2008). Fabrication, functionalization, andapplication of electrospun biopolymer nanofibers. CriticalReviews in Food Science and Nutrition, 48(8), 775–797.

Kriegel, C., Kit, K. M., McClements, D. J., and Weiss, J.(2009). Electrospinning of chitosan– poly (ethylene oxide)blend nanofibers in the presence of micellar surfactantsolutions. Polymer, 50(1), 189–200.

Ladikos, D., and Lougovois, V. (1990). Lipid oxidation inmuscle foods: A review. Food Chemistry, 35(4), 295–314.

Le Bon, C., Nicolai, T., and Durand, D. (1999). Kinetics ofaggregation and gelation of globular proteins afterheat-induced denaturation. Macromolecules, 32(19),6120–6127.

Lee, K. E., Cho, S. H., Lee, H. B., Jeong, S. Y., and Yuk,S. H. (2003). Microencapsulation of lipid nanoparticlescontaining lipophilic drug. Journal of Microencapsulation,20, 489–496.

Lee, K. Y., Jeong, L., Kang, Y. O., Lee, S. J., and Park,W. H. (2009). Electrospinning of polysaccharides forregenerative medicine. Advanced Drug Delivery Reviews,61(12), 1020–1032.

Lee, Y.-H., Bai, M.-Y., and Chen, D.-R. (2011). Multidrugencapsulation by coaxial tri-capillary electrospray.Colloids and Surfaces B: Biointerfaces, 82(1), 104–110.

Leusner, S., Lakkis, J., Van Lengerich, B. H., and Jarl, T.(2002). Oligosaccharide encapsulated mineral and vitaminingredients. U.S. patent 6468568.

Li, D., and Xia, Y. (2004). Electrospinning of nanofibers:Reinventing the wheel? Advanced Materials, 16(14),1151–1170.

Li, Y., Lim, L.-T., and Kakuda, Y. (2009). Electrospun zeinfibers as carriers to stabilize (-)-epigallo catechingallate. Journal of Food Science, 74(3), C233–C240.

López-Rubio, A., and Lagaron, J. M. (2012). Whey proteincapsules obtained through electrospraying for theencapsulation of bioactives. Innovative Food Science andEmerging Technologies, 13, 200–206.

López-Rubio, A., Sanchez, E., Sanz, Y., and Lagaron, J. M.(2009). Encapsulation of living bifidobacteria inultrathin PVOH electrospun fibers. Biomacromolecules,10(10), 2823–2829.

López-Rubio, A., Sanchez, E., Wilkanowicz, S., Sanz, Y.,and Lagaron, J. M. (2012). Electrospinning as a usefultechnique for the encapsulation of living bifidobacteria infood hydrocolloids. Food Hydrocolloids, 28(1), 159–167.

Lye, H.-S., Kuan, C. Y., Ewe, J.-A., Fung, W.-Y., andLiong, M.-T. (2009). The improvement of hypertension byprobiotics: Effects on cholesterol, diabetes, renin, andphytoestrogens. International Journal of MolecularSciences, 10, 3755–3775.

Malaki, N. A., Wright, A. J., and Corredig, M. (2010).Interfacial design of protein-stabilized emulsions for

optimal delivery of nutrients. Food and Function, 1(2),141–148.

Mascheroni, E., Fuenmayor, C. A., Cosio, M. S., DiSilvestro, G., Piergiovanni, L., Mannino, S., andSchiraldi, A. (2013). Encapsulation of volatiles innanofibrous polysaccharide membranes for humidity-triggeredrelease. Carbohydrate Polymers, 98(1), 17–25.

Matthews, J. A., Wnek, G. E., Simpson, D. G., and Bowlin,G. L. (2002). Electrospinning of collagen nanofibers.Biomacromolecules, 3(2), 232.

McClements, D. J. (2004). Protein-stabilized emulsions.Current Opinion in Colloid and Interface Science, 9(5),305–313.

McClements, D. J. (2011). Edible nanoemulsions:Fabrication, properties, and functional performance. SoftMatter, 7(6), 2297–2316.

McClements, D. J. (2012a). Advances in fabrication ofemulsions with enhanced functionality using structuraldesign principles. Current Opinion in Colloid and InterfaceScience, 17(5), 235–245.

McClements, D. J. (2012b). Nanoemulsions versusmicroemulsions: Terminology, differences, andsimilarities. Soft Matter, 8(6), 1719–1729.

McClements, D. J., Decker, E. A., and Weiss, J. (2007).Emulsion-based delivery systems for lipophilic bioactivecomponents. Journal of Food Science, 72, 109–124.

Moomand, K., and Lim, L.-T. (2014). Oxidative stability ofencapsulated fish oil in electrospun zein fibres. FoodResearch International, 62, 523–532.

Moomand, K., and Lim, L.-T. (2015). Effects of solvent andn-3 rich fish oil on physicochemical properties ofelectrospun zein fibres. Food Hydrocolloids, 46, 191–200.

Muller, R. H., Radtke, M., and Wissing, S. A. (2002).Nanostructured lipid matrices for improvedmicroencapsulation of drugs. International Journal ofPharmaceutics, 242, 121–128.

Nagarajan, R., Drew, C., and Mello, C. M. (2007).Polymer-micelle complex as an aid to electrospinningnanofibers from aqueous solutions. Journal of Physical

Chemistry C, 111(44), 16105–16108.

Neo, Y. P., Ray, S., Jin, J., Gizdavic-Nikolaidisa, M.,Nieuwoudta, M. K., Liu, D., and Quek, S. Y. (2013).Encapsulation of food grade antioxidant in naturalbiopolymer by electrospinning technique: A physicochemicalstudy based on zein-gallic acid system. Food Chemistry,136(2), 1013–1021.

Nesterenko, A., Alric, I., Silvestre, F., and Durrieu, V.(2013). Vegetable proteins in microencapsulation: A reviewof recent interventions and their effectiveness. Crops andProducts, 42(1), 469–479.

Nie, H., Dong, Z., Arifin, D. Y., Hu, Y., and Wang, C. H.(2010). Core/shell microspheres via coaxialelectrohydrodynamic atomization for sequential and parallelrelease of drugs. Journal of Biomedical Materials ResearchPart A, 95(3), 709–716.

Nieuwland, M., Geerdink, P., Brier, P., van den Eijnden,P., Henket, T. M. M. J., Langelaan, M. L. P., Stroeks, N.,Van Deventer, H. C., and Martin, A. H. (2013). Food-gradeelectrospinning of proteins. Innovative Food Science andEmerging Technologies, 20, 269–275.

Onwulata, C. I. (2013). Microencapsulation and functionalbioactive foods. Journal of Food Processing andPreservation, 37(5), 510–532.

Patel, A. R., Heussen, P. C. M., Hazekamp, J., Dorst, E.,and Velikov, K. P. (2012). Quercetin loaded biopolymericcolloidal particles prepared by simultaneous precipitationof quercetin with hydrophobic protein in aqueous medium.Food Chemistry, 133, 423–429.

Patino, J. M. R., and Pilosof, A. M. (2011).Protein–polysaccharide interactions at fluid interfaces.Food Hydrocolloids, 25(8), 1925–1937.

Pereira, H. V. R., Saraiva, K. P., Carvalho, L. M. J.,Andrade, L. R., Pedrosa, C., and Pierucci, A. (2009).Legumes seeds protein isolates in the production ofascorbic acid microparticles. Food Research International,42, 115–121.

Pérez-Masiá, R., Lagaron, J. M., and López-Rubio, A.(2014a). Morphology and stability of ediblelycopene-containing micro- and nanocapsules producedthrough electrospraying and spray drying. Food and

Bioprocess Technology, 8(2), 459–470.

Pérez-Masiá, R., Lagaron, J. M., and López-Rubio, A.(2014b). Development and optimization of novelencapsulation structures of interest in functional foodsthrough electrospraying. Food and Bioprocess Technology,7(11), 3236–3245.

Pérez-Masiá, R., Lagaron, J. M., and López-Rubio, A.(2014c). Surfactant-aided electrospraying of low molecularweight carbohydrate polymers from aqueous solutions.Carbohydrate Polymers, 101(1), 249–255.

Pérez-Masiá, R., López-Rubio, A., Fabra, M. J., andLagaron, J. M. (2014d). Use of electrohydrodynamicprocessing to develop nanostructured materials for thepreservation of the cold chain. Innovative Food Scienceand Emerging Technologies, 26, 415–423.

Pérez-Masiá, R., López-Nicolás, R., Periago, M. J., Ros,G., Lagaron, J. M., and LópezRubio, A. (2015).Encapsulation of folic acid in food hydrocolloids throughnanospray drying and electrospraying for nutraceuticalapplications. Food Chemistry, 168(1), 124–133.

Picon, A., Gaya, P., Medina, M., and Nuñez, M. (1994). Theeffect of liposome encapsulation of chymosin derived byfermentation on manchego cheese ripening. Journal of DairyScience, 77, 16–23.

Renkema, J. M. S., Gruppen, H., and van Vliet, T. (2002).Influence of pH and ionic strength on heat-inducedformation and rheological properties of soy protein gels inrelation to denaturation and their protein compositions.Journal of Agricultural and Food Chemistry, 50(21),6064–6071.

Renkema, J. M. S., Lakemond, C. M. M., de Jongh, H. H. J.,Gruppen, H., and van Vliet, T. (2000). The effect of pH onheat denaturation and gel forming properties of soyproteins. Journal of Biotechnology, 79(3), 223–230.

Righetto, A. M., and Netto, F. M. (2006). Vitamin Cstability in encapsulated green West Indian cherry juiceand in encapsulated synthetic ascorbic acid. Journal ofScience and Food Agricultural, 86, 1202–1208.

Sharma, R., and Lal, D. (2005). Fortification of milk withmicroencapsulated vitamin C and its thermal stability.Journal of Food Science and Technology, 42, 191–194.

Singh, B. N., Shankar, S., and Srivastava, R. K. (2011).Green tea catechin, epigallocatechin3-gallate (EGCG):Mechanisms, perspectives and clinical applications.Biochemical Pharmacology, 82, 1807–1821.

Song, F., Wang, X.-L., and Wang, Y.-Z. (2011).Poly(N-isopropylacrylamide)/poly (ethylene oxide) blendnanofibrous scaffolds: Thermo-responsive carrier forcontrolled drug release. Colloids and Surfaces B:Biointerfaces, 88(2), 749–754.

Sparks, R. E., Jacods, I. C., and Mason, N. S. (1999).Microencapsulation. In Pharmaceutical Unit Operations:Coating, edited by K. E. Avis, A. J. Shukla, and R.-K.Chang, 177–222. Boca Raton, FL: CRC Press.

Stephen, A. M., and Phillips, G. O. (2004). FoodPolysaccharides and Their Applications. Vol. 160. BocaRaton, FL: CRC Press.

Talwar, S., Krishnan, A. S., Hinestroza, J. P.,Pourdeyhimi, B., and Khan, S. A. (2010). Electrospunnanofibers with associative polymer-surfactant systems.Macromolecules, 43(18), 7650–7656.

Tewes, F., Boury, F., and Benoit, J.-P. (2006).Biodegradable microspheres: Advances in productiontechnology. In: Microencapsulation: Methods and IndustrialApplications, edited by S. Benita, 1–44. Boca Raton, FL:CRC Press.

Torres-Giner, S., Martinez-Abad, A., Ocio, M. J., andLagaron, J. M. (2010). Stabilization of a nutraceuticalomega-3 fatty acid by encapsulation in ultrathinelectrosprayed zein prolamine. Journal of Food Science,75(6), N69–N79.

Toublan, F. J. J. (2014). Fats and waxes inmicroencapsulation of food ingredients. InMicroencapsulation in the Food Industry, edited by A. G.Gaonkar, N. Vasisht, A. R. Khare, and R. Sobel, 253–265.San Diego, CA: Elsevier.

Trindade, M. A., and Grosso, C. R. F. (2000). The stabilityof ascorbic acid microencapsulated ingranules of ricestarch and in gum Arabic. Journal of Microencapsulation,17(2), 169–176.

Uddin, M. S., Hawlader, M. N., and Zhu, H. J. (2001).

Microencapsulation of ascorbic acid: Effect of processvariables on product characteristics. Journal ofMicroencapsulation, 18, 199–209.

van der Linden, E., and Foegeding, E. A. (2009). Gelation:Principles, models and applications to proteins. In ModernBiopolymer Science, edited by S. Kasapis, I. Norton, andJ. Ubbink, 29–91. San Diego, CA: Academic Press.

van Vliet, T., Lakemond, C. M. M., and Visschers, R.(2004). Rheology and structure of milk protein gels.Current Opinion in Colloid and Interface Science, 9(5),298–304.

Velikov, K. P. (2012). Colloidal emulsions and particles asmicronutrient and nutraceutical delivery systems. InEncapsulation Technologies and Delivery Systems for FoodIngredients and Nutraceuticals, edited by N. Garti, and J.D. McClements, 338–404. Philadelphia: Woodhead Publishing.

Wechtersbach, L., Polak, T., Ulrih, N. P., and Cigić, B.(2011). Stability and transformation of products formedfrom dimeric dehydroascorbic acid at low pH. FoodChemistry, 119(3), 965–973.

Wongsasulak, S., Patapeejumruswong, M., Weiss, J.,Supaphol, P., and Yoovidhya, T. (2010). Electrospinning offood-grade nanofibers from cellulose acetate and eggalbumen blends. Journal of Food Engineering, 98(3),370–376.

Wu, T. H., Yen, F. L., Lin, L. T., Tsai, T. R., Lin, C. C.,and Cham, T. M. (2008). Preparation, physicochemicalcharacterization, and antioxidant effects of quercetinnanoparticles. International Journal of Pharmaceutics,346, 160–168.

Wu, X.-M., Branford-White, C. J., Yu, D.-G., Chatterton, N.P., and Zhu, L.-M. (2011). Preparation of core-shell PANnanofibers encapsulated α-tocopherol acetate and ascorbicacid 2-phosphate for photoprotection. Colloids and SurfacesB: Biointerfaces, 82(1), 247–252.

Wu, Y., Liao, I.-C., Kennedy, S. J., Du, J., Wang, J.,Leong, K. W., and Clark, R. L. (2010). Electrosprayedcore–shell microspheres for protein delivery. ChemicalCommunications, 46(26), 4743–4745.

Xie, J., Ng, W. J., Lee, L. Y., and Wang, C.-H. (2008).Encapsulation of protein drugs in biodegradable

microparticles by co-axial electrospray. Journal of Colloidand Interface Science, 317(2), 469–476.

Xie, J. B., and Hsieh, Y. L. (2003). Ultra-high surfacefibrous membranes from electrospinning of naturalproteins: Casein and lipase enzyme. Journal of MaterialsSciences, 38(10), 2125.

Yang, J.-M., Zha, L.-S., Yu, D.-G., and Liu, J. (2013).Coaxial electrospinning with acetic acid for preparingferulic acid/zein composite fibers with improved drugrelease profiles. Colloids and Surfaces B: Biointerfaces,102, 737–743.

Yi, F., Guo, Z. X., Hu, P., Fang, Z. X., Yu, J., and Li, Q.(2004). Mimetics of eggshell membrane protein fibers byelectrospinning. Macromolecular Rapid Communications,25(10), 1038.

Zhang, L., and Kosaraju, S. L. (2007). Biopolymericdelivery system for controlled release of polyphenolicantioxidants. European Polymer Journal, 43, 2956–2966.

21 21: Mesoporous Silica Particles asEncapsulation and Delivery Systems forFood Ingredients and Nutraceuticals

Acosta, C., Pérez-Esteve, E., Fuenmayor, C. A., Benedetti,S., Cosio, M. S., Soto, J. et al. (2014). Polymercomposites containing gated mesoporous materials foron-command controlled release. ACS Applied Materials andInterfaces, 6(9), 6453–6460.

Agostini, A., Mondragón, L., Bernardos, A., Martínez-Máñez,R., Marcos, M. D., Sancenón, F. et al. (2012a). Targetedcargo delivery in senescent cells using capped mesoporoussilica nanoparticles. Angewandte Chemie InternationalEdition, 51(42), 10556–10560.

Agostini, A., Mondragón, L., Coll, C., Aznar, E., Marcos,M. D., Martínez-Máñez, R. et al. (2012b). Dualenzyme-triggered controlled release on capped nanometricsilica mesoporous supports. ChemistryOpen, 1(1), 17–20.

Agostini, A., Mondragón, L., Pascual, L., Aznar, E., Coll,C., Martínez-Manez, R. et al. (2012c). Design ofenzyme-mediated controlled release systems based on silicamesoporous supports capped with ester-glycol groups.Langmuir, 28(41), 14766–14776.

Angelos, S., Yang, Y. W., Patel, K., Stoddart, J. F., andZink, J. I. (2008). pH-Responsive supramolecular nanovalvesbased on cucurbit[6]uril pseudorotaxanes. Angewandte ChemieInternational Edition, 47(12), 2222–2226.

Arcos, D., and Vallet-Regí, M. (2013). Bioceramics for drugdelivery. Acta Materialia, 61(3), 890–911.

Arts, I. C., and Hollman, P. C. (2005). Polyphenols anddisease risk in epidemiologic studies. The AmericanJournal of Clinical Nutrition, 81(1), 317S–325S.

Aznar, E., Marcos, M. D., Martínez-Manez, R., Sancenón,F., Soto, J., Amorós, P., and Guillem, C. (2009a). pH- andphoto-switched release of guest molecules from mesoporoussilica supports. Journal of the American Chemical Society,131(19), 6833–6843.

Aznar, E., Martínez-Máñez, R., and Sancenón, F. (2009b).Controlled release using mesoporous materials containinggate-like scaffoldings. Expert Opinion on Drug Delivery,6(6), 643–655.

Balas, F., Manzano, M., Horcajada, P., and Vallet-Regí, M.(2006). Confinement and controlled release ofbisphosphonates on ordered mesoporous silica-basedmaterials. Journal of the American Chemical Society,128(25), 8116–8117.

Beck, J. S., Vartuli, J. C., Roth, W. J., Leonowicz, M. E.,Kresge, C. T., Schmitt, K. D. et al. (1992). A new familyof mesoporous molecular sieves prepared with liquid crystaltemplates. Journal of the American Chemical Society,114(27), 10834–10843.

Berlier, G., Gastaldi, L., Ugazio, E., Miletto, I., Iliade,P., and Sapino, S. (2013). Stabilization of quercetinflavonoid in MCM-41 mesoporous silica: Positive effect ofsurface functionalization. Journal of Colloid and InterfaceScience, 393, 109–118.

Bernardos, A., Aznar, E., Marcos, M. D., Martínez-Máñez,R., Sancenón, F., Soto, J. et al. (2009).Enzyme-responsive controlled release using mesoporoussilica supports capped with lactose. Angewandte Chemie,121(32), 5998–6001.

Bernardos, A., Marina, T., Žáček, P., Pérez-Esteve, É.,Martínez-Mañez, R., Lhotka, M. et al. (2014). Antifungaleffect of essential oil components against Aspergillusniger when loaded into silica mesoporous supports. Journalof the Science of Food and Agriculture.

Bernardos, A., Mondragon, L., Aznar, E., Marcos, M. D.,Martínez-Manez, R., Sancenón, F. et al. (2010).Enzyme-responsive intracellular controlled release usingnanometric silica mesoporous supports capped with“saccharides.” ACS Nano, 4(11), 6353–6368.

Bernardos, A., Mondragón, L., Javakhishvili, I., Mas, N.,de la Torre, C., Martínez-Máñez, R. et al. (2012).Azobenzene polyesters used as gate-like scaffolds innanoscopic hybrid systems. Chemistry-A European Journal,18(41), 13068–13078.

Brühwiler, D. (2010). Postsynthetic functionalization ofmesoporous silica. Nanoscale, 2, 887–892.

Burguete, P., Beltrán, A., Guillem, C., Latorre, J.,Pérez-Pla, F., Beltrán, D., and Amorós, P. (2012). Porelength effect on drug uptake and delivery by mesoporoussilicas. ChemPlusChem, 77(9), 817–831.

Cao, Z., Yang, L., Yan, Y., Shang, Y., Ye, Q., Qi, D. etal. (2013). Fabrication of nanogel core– silica shell andhollow silica nanoparticles via an interfacial sol–gelprocess triggered by transition-metal salt in inversesystems. Journal of Colloid and Interface Science, 406,139–147.

Casasús, R., Marcos, M. D., Martínez-Máñez, R., Ros-Lis, J.V., Soto, J., Villaescusa, L. A. et al. (2004). Toward thedevelopment of ionically controlled nanoscopic moleculargates. Journal of the American Chemical Society, 126(28),8612–8613.

Chandrasekar, G., Vinu, A., Murugesan, V., and Hartmann, M.(2005). Adsorption of vitamin E on mesoporous silicamolecular sieves. Studies in Surface Science and Catalysis,158, 1169–1176.

Charnay, C., Begu, S., Tourne-Peteilh, C., Nicole, L.,Lerner, D. A., and Devoisselle, J. M. (2004). Inclusion ofibuprofen in mesoporous templated silica: Drug loading andrelease property. European Journal of Pharmaceutics andBiopharmaceutics, 57, 533–540.

Cho, E.-B., Kwon, K.-W., and Char, K. (2001). Mesoporousorganosilicas prepared with PEOcontaining triblockcopolymers with different hydrophobic moieties. Chemistryof Materials, 13(11), 3837–3839.

Clifford, N. W., Iyer, K. S., and Raston, C. L. (2008).Encapsulation and controlled release of nutraceuticalsusing mesoporous silica capsules. Journal of MaterialsChemistry, 18(2), 162–165.

Climent, E., Bernardos, A., Martínez-Máñez, R., Maquieira,A., Marcos, M. D., Pastor-Navarro, N., and Amorós, P.(2009). Controlled delivery systems using antibody-cappedmesoporous nanocontainers. Journal of the American ChemicalSociety, 131(39), 14075–14080.

Climent, E., Martínez-Máñez, R., Sancenón, F., Marcos, M.D., Soto, J., Maquieira, A., and Amorós, P. (2010).Controlled delivery using oligonucleotide-capped mesoporoussilica nanoparticles. Angewandte Chemie InternationalEdition, 49(40), 7281–7283.

Colilla, M., González, B., and Vallet-Regí, M. (2013).Mesoporous silica nanoparticles for the design of smartdelivery nanodevices. Biomaterials Science, 1(2), 114–134.

Coll, C., Bernardos, A., Martínez-Máñez, R., and Sancenón,F. (2013). Gated silica mesoporous supports for controlledrelease and signaling applications. Accounts of ChemicalResearch, 46(2), 339–349.

Coll, C., Mondragón, L., Martínez-Máñez, R., Sancenón, F.,Marcos, M. D., Soto, J. et al. (2011). Enzyme-mediatedcontrolled release systems by anchoring peptide sequenceson mesoporous silica supports. Angewandte ChemieInternational Edition, 50(9), 2138–2140.

Contado, C., Ravani, L., and Passarella, M. (2013). Sizecharacterization by sedimentation field flow fractionationof silica particles used as food additives. AnalyticaChimica Acta, 788, 183–192.

Cotea, V. V., Luchian, C. E., Bilba, N., and Niculaua, M.(2012). Mesoporous silica SBA-15, a new adsorbent forbioactive polyphenols from red wine. Analytica ChimicaActa, 732, 180–1855.

de la Torre, C., Agostini, A., Mondragón, L., Orzáez, M.,Sancenón, F., Martínez-Máñez, R., and Pérez-Payá, E.(2014). Temperature-controlled release by changes in thesecondary structure of peptides anchored onto mesoporoussilica supports. Chemical Communications, 50(24),3184–3186.

El Haskouri, J., de Zárate, D. O., Guillem, C., Latorre,J., Caldés, M., Beltrán, A. et al. (2002). Silica-basedpowders and monoliths with bimodal pore systems. ChemicalCommunications, (4), 330–331.

El Mourabit, S., Guillot, M., Toquer, G., Cambedouzou, J.,Goettmann, F., and Grandjean, A. (2012). Stability ofmesoporous silica under acidic conditions. RSC Advances, 2,10916–10924.

Fathi, M., Martin, A., and McClements, D. J. (2014).Nanoencapsulation of food ingredients using carbohydratebased delivery systems. Trends in Food Science andTechnology, 39(1), 18–39.

Fathi, M., Mozafari, M. R., and Mohebbi, M. (2012).Nanoencapsulation of food ingredients using lipid baseddelivery systems. Trends in Food Science and Technology,23(1), 13–27.

Firestein, S. (2001). How the olfactory system makes senseof scents. Nature, 413(6852), 211–218.

Garcia-Bennett, A., Terasaki, O., Che, S., and Tatsumi, T.(2004). Structural investigations of AMS-n mesoporousmaterials by transmission electron microscopy. Chemistry ofMaterials, 16(5), 813–821.

Gargiulo, N., Attianese, I., Buonocore, G. G., Caputo, D.,Lavorgna, M., Mensitieri, G., and Lavorgna, M. (2013).α-Tocopherol release from active polymer films loaded withfunctionalized SBA-15 mesoporous silica. Microporous andMesoporous Materials, 167, 10–15.

Grudzien, R. M., Grabicka, B. E., and Jaroniec, M. (2006).Effective method for removal of polymeric template fromSBA-16 silica combining extraction and temperature-controlled calcination. Journal of Materials Chemistry,16(9), 819–823.

Han, L., Gao, C., Wu, X., Chen, Q., Shu, P., Ding, Z., andChe, S. (2011). Anionic surfactants templating route forsynthesizing silica hollow spheres with different shellporosity. Solid State Sciences, 13(4), 721–728.

He, Q., and Shi, J. (2011). Mesoporous silica nanoparticlebased nano drug delivery systems: Synthesis, controlleddrug release and delivery, pharmacokinetics andbiocompatibility. Journal of Materials Chemistry, 21,5845–5855.

He, Q., Zhang, Z., Gao, Y., Shi, J., and Li, Y. (2009).Intracellular localization and cytotoxicity of sphericalmesoporous silica nano-and microparticles. Small, 5(23),2722–2729.

Heikkilä, T., Salonen, J., Tuura, J., Hamdy, M. S., Mul,G., Kumar, N. et al. (2007). Mesoporous silica materialTUD-1 as a drug delivery system. International Journal ofPharmaceutics, 331(1), 133–138.

Hernandez, R., Tseng, H. R., Wong, J. W., Stoddart, J. F.,and Zink, J. I. (2004). An operational supramolecularnanovalve. Journal of the American Chemical Society,126(11), 3370–3371.

Hisamatsu, K., Shiomi, T., Matsuura, S. I., Nara, T. Y.,Tsunoda, T., Mizukami, F., and Sakaguchi, K. (2012).α-Amylase immobilization capacities of mesoporous silicaswith different morphologies and surface properties.Journal of Porous Materials, 19(1), 95–102.

Huh, S., Wiench, J. W., Yoo, J.-C., Pruski, M., and Lin V.S.-Y. (2003). Organic functionalization and morphologycontrol of mesoporous silicas via a co-condensationsynthesis method. Chemistry of Materials, 15, 4247–4256.

Inagaki, S., Fukushima, Y., and Kuroda, K. (1993).Synthesis of highly ordered mesoporous materials from alayered polysilicate. Journal of the Chemical Society,Chemical Communications, 8, 680–682.

Izquierdo-Barba, I., Sousa, E., Doadrio, J. C., Doadrio, A.L., Pariente, J. P., Martínez, A. et al. (2009a).Influence of mesoporous structure type on the controlleddelivery of drugs: Release of ibuprofen from MCM-48,SBA-15 and functionalized SBA-15. Journal of SolGel Scienceand Technology, 50(3), 421–429.

Izquierdo-Barba, I., Vallet-Regí, M., Kupferschmidt, N.,Terasaki, O., Schmidtchen, A., and Malmsten, M. (2009b).Incorporation of antimicrobial compounds in mesoporoussilica film monolith. Biomaterials, 30(29), 5729–5736.

Janatova, A., Bernardos, A., Smid, J., Frankova, A.,Lhotka, M., Kourimská, L., Pulkrabeka, J., and Kloucek, P.(2015). Long-term antifungal activity of volatile essentialoil components released from mesoporous silica materials.Industrial Crops and Products, 67, 216–220.

Jansen, J. C., Shan, Z., Marchese, L., Zhou, W., Puil, N.v. d., and Maschmeyer, T. (2001). A new templating methodfor three-dimensional mesopore networks. ChemicalCommunications, (8), 713–714.

Kalemba, D., and Kunicka, A. (2003). Antibacterial andantifungal properties of essential oils. Current MedicinalChemistry, 10(10), 813–829.

Kaneda, M., Tsubakiyama, T., Carlsson, A., Sakamoto, Y.,Ohsuna, T., Terasaki, O. et al. (2002). Structural studyof mesoporous MCM-48 and carbon networks synthesized inthe spaces of MCM-48 by electron crystallography. TheJournal of Physical Chemistry B, 106(6), 1256–1266.

Kapoor, M. P., Vinu, A., Fujii, W., Kimura, T., Yang, Q.,Kasama, Y. et al. (2010). Self-assembly of mesoporoussilicas hollow microspheres via food grade emulsifiers fordelivery systems. Microporous and Mesoporous Materials,128(1), 187–193.

Khushalani, D., Kuperman, A., Ozin, G. A., Tanaka, K.,

Coombs, N., Olken, M. M., and Garcés, J. (1995).Metamorphic materials: Restructuring siliceous mesoporousmaterials. Advanced Materials, 7(10), 842–846.

Kim, T. W., Kleitz, F., Paul, B., and Ryoo, R. (2005).MCM-48-like large mesoporous silicas with tailored porestructure: Facile synthesis domain in a ternary triblockcopolymerbutanol-water system. Journal of the AmericanChemical Society, 127(20), 7601–7610.

Knežević, N. Ž., Trewyn, B. G., and Lin, V. S. Y. (2011).Light-and pH-responsive release of doxorubicin from amesoporous silica-based nanocarrier. Chemistry-A EuropeanJournal, 17(12), 3338–3342.

Kruk, M., Jaroniec, M., Antochshuk, V., and Sayari, A.(2002). Mesoporous silicate-surfactant composites withhydrophobic surfaces and tailored pore sizes. The Journalof Physical Chemistry B, 106(39), 10096–10101.

Kupferschmidt, N., Xia, X., Labrador, R. H., Atluri, R.,Ballell, L., and Garcia-Bennett, A. E. (2013). In vivooral toxicological evaluation of mesoporous silicaparticles. Nanomedicine (London), 8(1), 57–64.

Kwak, H.-S. (2014). Overview of nano- andmicroencapsulation for foods. In Nano- andMicroencapsulation for Foods, edited by H.-S. Kwak, chap.1. Oxford: Wiley-Blackwell.

Lai, C. Y., Trewyn, B. G., Jeftinija, D. M., Jeftinija, K.,Xu, S., Jeftinija, S., and Lin, V. S. (2003). A mesoporoussilica nanosphere-based carrier system with chemicallyremovable CdS nanoparticle caps for stimuli-responsivecontrolled release of neurotransmitters and drug molecules.Journal of the American Chemical Society, 125(15),4451–4459.

Landry, C. C., Tolbert, S. H., Gallis, K. W., Monnier, A.,Stucky, G. D., Norby, P., and Hanson, J. C. (2001). Phasetransformations in mesostructured silica/surfactantcomposites. Mechanisms for change and applications tomaterials synthesis. Chemistry of Materials, 13(5),1600–1608.

Lei, J., Fan, J., Yu, C., Zhang, L., Jiang, S., Tu, B., andZhao, D. (2004). Immobilization of enzymes in mesoporousmaterials: Controlling the entrance to nanospace.Microporous and Mesoporous Materials, 73(6), 121–128.

Li, Z. Z., Wen, L. X., Shao, L., and Chen, J. F. (2004).Fabrication of porous hollow silica nanoparticles andtheir applications in drug release control. Journal ofControlled Release, 98(2), 245–254.

Li-Hong, W., Xin, C., Hui, X., Li-Li, Z., Jing, H.,Mei-Juan, Z. et al. (2013). A novel strategy to designsustained-release poorly water-soluble drug mesoporoussilica microparticles based on supercritical fluidtechnique. International Journal of Pharmaceutics, 454(1),135–142.

Limnell, T., Santos, H. A., Mäkilä, E., Heikkilä, T.,Salonen, J., Murzin, D. Y. et al. (2011). Drug deliveryformulations of ordered and nonordered mesoporous silica:Comparison of three drug loading methods. Journal ofPharmaceutical Sciences, 100(8), 3294–3306.

Liu, F., Yuan, P., Wan, J. J., Qian, K., Wei, G. F., Yang,J. et al. (2011). Periodic mesoporous organosilicas withcontrolled pore symmetries for peptides enrichment. Journalof Nanoscience and Nanotechnology, 11(6), 5215–5222.

Liu, R., Zhao, X., Wu, T., and Feng, P. (2008). Tunableredox-responsive hybrid nanogated ensembles. Journal ofthe American Chemical Society, 130(44), 14418–14419.

Lucock, M., and Yates, Z. (2009). Folic acid fortification:A double-edged sword. Current Opinion in ClinicalNutrition and Metabolic Care, 12(6), 555–564.

Luo, Z., Deng, Y., Zhang, R., Wang, M., Bai, Y., Zhao, Q.et al. (2015). Peptide-laden mesoporous silicananoparticles with promoted bioactivity andosteo-differentiation ability for bone tissue engineering.Colloids and Surfaces B: Biointerfaces, 131, 73–82.

Ma, Z., Bai, J., Wang, Y., and Jiang, X. (2014). Impact ofshape and pore size of mesoporous silica nanoparticles onserum protein adsorption and RBCs hemolysis. ACS AppliedMaterials and Interfaces, 6(4), 2431–2438.

Madene, A., Jacquot, M., Scher, J., and Desobry, S. (2006).Flavour encapsulation and controlled release—A review.International Journal of Food Science and Technology,41(1), 1–21.

Madieh, S., Simone, M., Wilson, W., Mehra, D., andAugsburger, L. (2007). Investigation of drug-porousadsorbent interactions in drug mixtures with selected

porous adsorbents. Journal of Pharmaceutical Sciences,96(4), 851–863.

Mal, N. K., Fujiwara, M., and Tanaka, Y. (2003).Photocontrolled reversible release of guest molecules fromcoumarin-modified mesoporous silica. Nature, 421(6921),350–353.

Manzano, M., Aina, V., Arean, C. O., Balas, F., Cauda, V.,Colilla, M. et al. (2008). Studies on MCM-41 mesoporoussilica for drug delivery: Effect of particle morphology andamine functionalization. Chemical Engineering Journal,137(1), 30–37.

Mas, N., Agostini, A., Mondragón, L., Bernardos, A.,Sancenón, F., Marcos, M. D. et al. (2013).Enzyme-responsive silica mesoporous supports capped withazopyridinium salts for controlled delivery applications.Chemistry-A European Journal, 19(4), 1346–1356.

Mellaerts, R., Jammaer, J. A., Van Speybroeck, M., Chen,H., Humbeeck, J. V., Augustijns, P. et al. (2008).Physical state of poorly water soluble therapeuticmolecules loaded into SBA-15 ordered mesoporous silicacarriers: A case study with itraconazole and ibuprofen.Langmuir, 24(16), 8651–8659.

Mondragón, L., Mas, N., Ferragud, V., de la Torre, C.,Agostini, A., Martínez-Máñez, R. et al. (2014).Enzyme-responsive intracellular-controlled release usingsilica mesoporous nanoparticles capped withε-poly-L-lysine. Chemistry—A European Journal, 20(18),5271–5281.

Muth, O., Schellbach, C., and Fröba, M. (2001). Triblockcopolymer assisted synthesis of periodic mesoporousorganosilicas (PMOs) with large pores. ChemicalCommunications, (19), 2032–2033.

Nguyen, T. D., Liu, Y., Saha, S., Leung, K. C. F.,Stoddart, J. F., and Zink, J. I. (2007). Design andoptimization of molecular nanovalves based onredox-switchable bistable rotaxanes. Journal of theAmerican Chemical Society, 129(3), 626–634.

Nieto, A., Balas, F., Colilla, M., Manzano, M., andVallet-Regí, M. (2008). Functionalization degree of SBA-15as key factor to modulate sodium alendronate dosage.Microporous and Mesoporous Materials, 116(1), 4–13.

Nishiyama, N., Tanaka, S., Egashira, Y., Oku, Y., andUeyama, K. (2003). Vapor-phase synthesis of mesoporoussilica thin films. Chemistry of Materials, 15(4),1006–1011.

Pal, N., and Bhaumik, A. (2013). Soft templating strategiesfor the synthesis of mesoporous materials: Inorganic,organic–inorganic hybrid and purely organic solids.Advances in Colloid and Interface Science, 189, 21–41.

Pandey, K. B., and Rizvi, S. I. (2009). Plant polyphenolsas dietary antioxidants in human health and disease.Oxidative Medicine and Cellular Longevity, 2(5), 270–278.

Park, S.-Y., Barton, M., and Pendleton, P. (2012).Controlled release of allyl isothiocyanate for bacteriagrowth management. Food Control Volume, 23(2), 478–484.

Pérez-Esteve, É., Fuentes, A., Coll, C., Acosta, C.,Bernardos, A., Amorós, P. et al. (2015). Modulation offolic acid bioaccessibility by encapsulation inpH-responsive gated mesoporous silica particles.Microporous and Mesoporous Materials, 202, 124–132.

Pérez-Esteve, É., Oliver, L., García, L., Nieuwland, M., deJongh, H. H., Martinez-Manez, R., and Barat, J. M.(2014). Incorporation of mesoporous silica particles ingelatine gels: Effect of particle type and surfacemodification on physical properties. Langmuir, 30(23),6970–6979.

Pérez-Esteve, É., Ruiz-Rico, M., de la Torre, C.,Villaescusa, L. A., Sancenón, F., Marcos, M. D. et al.(2016a). Encapsulation of folic acid in different silicaporous supports: A comparative study. Food Chemistry, 196,66–75.

Pérez-Esteve, É., Ruiz-Rico, M., Martínez-Máñez, R. andBarat, J. M. (2016b). Mesoporous silica-based supports forthe controlled and targeted release of bioactive moleculesin the gastrointestinal tract. Journal of Food Science, inpress.

Popat, A., Liu, J., Lu, G. Q. M., and Qiao, S. Z. (2012). ApH-responsive drug delivery system based on chitosan coatedmesoporous silica nanoparticles. Journal of MaterialsChemistry, 22(22), 11173–11178.

Popova, M., Szegedi, A., Mavrodinova, V., Tušar, N. N.,Mihály, J., Klébert, S. et al. (2014). Preparation of

resveratrol-loaded nanoporous silica materials withdifferent structures. Journal of Solid State Chemistry,219, 37–42.

Qiao, Z. A., Zhang, L., Guo, M., Liu, Y., and Huo, Q.(2009). Synthesis of mesoporous silica nanoparticles viacontrolled hydrolysis and condensation of silicon alkoxide.Chemistry of Materials, 21(16), 3823–3829.

Quan, G. L., Chen, B., Wang, Z. H., Wu, H., Huang, X. T.,Wu, L. N., and Wu, C. B. (2012). Improving the dissolutionrate of poorly water-soluble resveratrol by the orderedmesoporous silica. Yao Xue Xue Bao, 47(2), 239–243.

Rashidi, L., Vasheghani-Farahani, E., Rostami, K., Gangi,F., and Fallahpour, M. (2013). Mesoporous silicananoparticles as a nanocarrier for delivery of vitamin C.Iranian Journal of Biotechnology, 11(4), 209–213.

Riikonen, J. (2012). Modification, characterization andapplications of mesoporous siliconbased drug carriers.Solid State: Processes and Analysis, 45.

Ruiz-Rico, M., Daubenschüz, H., Pérez-Esteve, É., Barat, J.M., and Martínez-Máñez, R. (2015a). Enhanced stability offolic acid by encapsulation in pH responsive gatedmesoporous silica particles. Proceedings of the WorldCongress on New Technologies (NewTech 2015).

Ruiz-Rico, M., Fuentes, C., Pérez-Esteve, É.,Jiménez-Belenguer, A. I., Quiles, A., Marcos, M. D. et al.(2015b). Bactericidal activity of caprylic acid entrappedin mesoporous silica nanoparticles. Food Control, 56,77–85.

Salonen, J., Kaukonen, A. M., Hirvonen, J., and Lehto, V.P. (2008). Mesoporous silicon in drug deliveryapplications. Journal of Pharmaceutical Sciences, 97(2),632–653.

Santos, H. A., ed. (2014). Porous Silicon for BiomedicalApplications. Cambridge: Woodhead Publishing.

Sapino, S., Ugazio, E., Gastaldi, L., Miletto, I., Berlier,G., Zonari, D., and Oliaro-Bosso, S. (2015). Mesoporoussilica as topical nanocarriers for quercetin:Characterization and in vitro studies. European Journal ofPharmaceutics and Biopharmaceutics, 89, 116–125.

Sayari, A., and Hamoudi, S. (2001). Periodic mesoporous

silica-based organic-inorganic nanocomposite materials.Chemistry of Materials, 13(10), 3151–3168.

Slowing, I. I., Vivero-Escoto, J. L., Wu, C. W., and Lin,V. S. Y. (2008). Mesoporous silica nanoparticles ascontrolled release drug delivery and gene transfectioncarriers. Advanced Drug Delivery Reviews, 60(11),1278–1288.

Takimoto, A., Shiomi, T., Ino, K., Tsunoda, T., Kawai, A.,Mizukami, F., and Sakaguchi, K. (2008). Encapsulation ofcellulase with mesoporous silica (SBA-15). Microporous andMesoporous Materials, 116(1), 601–606.

Tanev, P. T., and Pinnavaia, T. J. (1995). A neutraltemplating route to mesoporous molecular sieves. Science,267(5199), 865–867.

Tang, F., Li, L., and Chen, D. (2012). Mesoporous silicananoparticles: Synthesis, biocompatibility and drugdelivery. Advanced Materials, 24(12), 1504–1534.

Tischer, W., and Wedekind, F. (1999). Immobilized enzymes:Methods and applications. In Biocatalysis: From Discoveryto Application, edited by W.-D. Fessner, 95–126. Berlin:Springer.

Trewyn, B. G., Slowing, I. I., Giri, S., Chen, H. T., andLin, V. S. (2007). Synthesis and functionalization of amesoporous silica nanoparticle based on the sol-gel processand applications in controlled release. Accounts ofChemical Research, 40(9), 846–853.

Urbán, P., Valle-Delgado, J. J., Moles, E., Marques, J.,Díez, C., and Fernàndez-Busquets, X. (2012). Nanotools forthe delivery of antimicrobial peptides. Current DrugTargets, 13(9), 1158–1172.

Vallet-Regí, M., Ramila, A., del Real, R. P., andPerez-Pariente, J. (2001). A new property of MCM-41: Drugdelivery system. Chemistry of Materials, 13, 308–311.

Veith, S. R., Hughes, E., and Pratsinis, S. E. (2004).Restricted diffusion and release of aroma molecules fromsol-gel-made porous silica particles. Journal of ControlledRelease, 99(2), 315–327.

Vinu, A., Hossain, K. Z., and Ariga, K. (2005). Recentadvances in functionalization of mesoporous silica. Journalof Nanoscience and Nanotechnology, 5(3), 347–371.

Wang, Y., Bamdad, F., Song, Y., and Chen, L. (2012).Hydrogel particles and other novel proteinbased methods forfood ingredient and nutraceutical delivery systems.Encapsulation Technologies and Delivery Systems for FoodIngredients and Nutraceuticals, 412–450.

Yanagisawa, T., Shimizu, T., Kuroda, K., and Kato, C.(1990). The preparation of alkyltrimethylammonium-kanemitecomplexes and their conversion to microporous materials.Bulletin of the Chemical Society of Japan, 63(4), 988–992.

Zhang, G., Yang, M., Cai, D., Zheng, K., Zhang, X., Wu, L.,and Wu, Z. (2014). Composite of functional mesoporoussilica and DNA: An enzyme-responsive controlled releasedrug carrier system. ACS Applied Materials and Interfaces,6(11), 8042–8047.

Zhao, D., Feng, J. L., Huo, Q. S., Melosh, N., Fredrickson,G. H., Chmelka, B. F., and Stucky, G. D. (1998a). Triblockcopolymer syntheses of mesoporous silica with periodic 50to 300 angstrom pores. Science, 279, 548–552.

Zhao, D., Huo, Q., Feng, J., Chmelka, B. F., and Stucky, G.D. (1998b). Nonionic triblock and star diblock copolymerand oligomeric surfactant syntheses of highly ordered,hydrothermally stable, mesoporous silica structures.Journal of the American Chemical Society, 120(24),6024–6036.

Zhao, X. S. (2006). Novel porous materials for emergingapplications. Journal of Materials Chemistry, 16, 623–625.

Zhao, Z. Y., Liu, J., Hahn, M., Qiao, S., Middelberg, A.P., and He, L. (2013). Encapsulation of lipase inmesoporous silica yolk–shell spheres with enhanced enzymestability. RSC Advances, 3(44), 22008–22013.

Zheng, Q., Lin, T., Wu, H., Guo, L., Ye, P., Hao, Y. et al.(2014). Mussel-inspired polydopamine coated mesoporoussilica nanoparticles as pH-sensitive nanocarriers forcontrolled release. International Journal ofPharmaceutics, 463(1), 22–26.

Zhou, C., and Garcia-Bennett, A. E. (2010). Release offolic acid in mesoporous NFM-1 silica. Journal ofNanoscience and Nanotechnology, 10(11), 7398–7401.

Zhu, Y., Meng, W., and Hanagata, N. (2011).Cytosine-phosphodiester-guanine oligodeoxynucleotide (CpG

ODN)-capped hollow mesoporous silica particles forenzyme-triggered drug delivery. Dalton Transactions,40(39), 10203–10208.

Zhuge, Q., and Klopfenstein, C. F. (1986). Factorsaffecting storage stability of vitamin A, riboflavin, andniacin in a broiler diet premix. Poultry Science, 65(5),987–994.

Zuidam, N. J., and Heinrich, E. (2010). Encapsulation ofaroma. In Encapsulation Technologies for Active FoodIngredients and Food Processing, edited by N. J. Zuidamand V. Nedovic, 127–160. New York: Springer.