modern pharmaceutics - taylor & francis ebooks

286
DRUGS AND THE PHARMACEUTICAL SCIENCES VOLUME 188 edited by Alexander T. Florence Juergen Siepmann Modern Pharmaceutics Volume 1 Basic Principles and Systems FIFTH EDITION

Upload: khangminh22

Post on 11-May-2023

2 views

Category:

Documents


0 download

TRANSCRIPT

PANTONE 202 C

about the book…

With over 100 illustrations, Volume 1 addresses the core disciplines of pharmaceutics (absorption, PK, excipients, tablet dosage forms, and packaging), and explores the challenges and paradigms of pharmaceutics.

Key topics in Volume 1 include:• principles of drug absorption, chemical kinetics, and drug stability• pharmacokinetics• the effect of route of administration and distribution on drug action• in vivo imaging of dose forms: gamma scintigraphy, PET imaging NMR, MRI, etc.• powder technology• excipient design and characterization• preformulation• optimization techniques in pharmaceutical formulation and processing• disperse and surfactant systems• the solid state, tablet dosage forms, coating processes, and hard and soft shell capsules• parenteral products

about the editors...

ALEXANDER T. FLORENCE is Emeritus Professor, The Centre for Drug Delivery Research, The School of Pharmacy, University of London, UK. From 1989 until 2006, he was Dean of The School of Pharmacy, University of London, London, UK. Dr. Florence received his Ph.D. from the University of Glasgow, Glasgow, UK. He is Fellow of the Royal Society of Edinburgh, the Royal Society of Chemistry, and the Royal Pharmaceutical Society of Great Britain. Dr. Florence has authored or co-authored several textbooks and is Editor-in-Chief of the International Journal of Pharmaceutics.

JUERGEN SIEPMANN is Professor of Pharmaceutical Technology, Université Lille Nord de France, Lille, France. He received his Ph.D. from the Freie Universitaet Berlin, Berlin, Germany, in 1999. Since 2006, Dr. Siepmann has been Head of Controlled Drug Delivery Systems: Mechanisms and Optimization, a research group. He is also Reviews Editor of the International Journal of Pharmaceutics and is on the editorial boards of the Journal of Controlled Release, the European Journal of Pharmaceutics and Biopharmaceutics, the European Journal of Pharmaceutical Sciences, and Drug Development and Industrial Pharmacy, among others.

Printed in the United States of America

Pharmaceutical Science and Technology DRUGS AND THE PHARMACEUTICAL SCIENCES VOLUME 188188

H6564

Modern PharmaceuticsVolume 1, Basic Principles and Systems

Florence •

Siepmannedited by

Alexander T. Florence Juergen Siepmann

FiFTh EdiTion

Modern PharmaceuticsVolume 1

Basic Principles and Systems

F i F T h E d i T i o n

Modern Pharmaceutics

DRUGS AND THE PHARMACEUTICAL SCIENCESA Series of Textbooks and Monographs

Executive Editor

James SwarbrickPharmaceuTech, Inc.

Pinehurst, North Carolina

Advisory Board

Larry L. AugsburgerUniversity of Maryland

Baltimore, Maryland

Jennifer B. DressmanUniversity of Frankfurt Instituteof Pharmaceutical Technology

Frankfurt, Germany

Anthony J. HickeyUniversity of North Carolina

School of PharmacyChapel Hill, North Carolina

Ajaz HussainSandoz

Princeton, New Jersey

Joseph W. PolliGlaxoSmithKline

Research Triangle ParkNorth Carolina

Stephen G. SchulmanUniversity of FloridaGainesville, Florida

Yuichi SugiyamaUniversity of Tokyo, Tokyo, Japan

Geoffrey T. TuckerUniversity of Sheffield

Royal Hallamshire HospitalSheffield, United Kingdom

Harry G. BrittainCenter for Pharmaceutical Physics Milford,New Jersey

Robert GurnyUniversite de GeneveGeneve, Switzerland

Jeffrey A. HughesUniversity of Florida Collegeof PharmacyGainesville, Florida

Vincent H. L. LeeUS FDA Center for DrugEvaluation and ResearchLos Angeles, California

Kinam ParkPurdue UniversityWest Lafayette, Indiana

Jerome P. SkellyAlexandria, Virginia

Elizabeth M. ToppUniversity of KansasLawrence, Kansas

Peter YorkUniversity of BradfordSchool of PharmacyBradford, United Kingdom

1. Pharmacokinetics, Milo Gibaldi and Donald Perrier2. Good Manufacturing Practices for Pharmaceuticals: A Plan for Total Quality

Control, Sidney H. Willig, Murray M. Tuckerman, and William S. Hitchings IV3. Microencapsulation, edited by J. R. Nixon4. Drug Metabolism: Chemical and Biochemical Aspects, Bernard Testa and

Peter Jenner5. New Drugs: Discovery and Development, edited by Alan A. Rubin6. Sustained and Controlled Release Drug Delivery Systems, edited by Joseph

R. Robinson7. Modern Pharmaceutics, edited by Gilbert S. Banker and Christopher

T. Rhodes8. Prescription Drugs in Short Supply: Case Histories, Michael A. Schwartz9. Activated Charcoal: Antidotal and Other Medical Uses, David O. Cooney

10. Concepts in Drug Metabolism (in two parts), edited by Peter Jenner andBernard Testa

11. Pharmaceutical Analysis: Modern Methods (in two parts), edited by JamesW. Munson

12. Techniques of Solubilization of Drugs, edited by Samuel H. Yalkowsky13. Orphan Drugs, edited by Fred E. Karch14. Novel Drug Delivery Systems: Fundamentals, Developmental Concepts,

Biomedical Assessments, Yie W. Chien15. Pharmacokinetics: Second Edition, Revised and Expanded, Milo Gibaldi and

Donald Perrier16. Good Manufacturing Practices for Pharmaceuticals: A Plan for Total Quality

Control, Second Edition, Revised and Expanded, Sidney H. Willig, MurrayM. Tuckerman, and William S. Hitchings IV

17. Formulation of Veterinary Dosage Forms, edited by Jack Blodinger18. Dermatological Formulations: Percutaneous Absorption, Brian W. Barry19. The Clinical Research Process in the Pharmaceutical Industry, edited by

Gary M. Matoren20. Microencapsulation and Related Drug Processes, Patrick B. Deasy21. Drugs and Nutrients: The Interactive Effects, edited by Daphne A. Roe and

T. Colin Campbell22. Biotechnology of Industrial Antibiotics, Erick J. Vandamme23. Pharmaceutical Process Validation, edited by Bernard T. Loftus and Robert

A. Nash24. Anticancer and Interferon Agents: Synthesis and Properties, edited by

Raphael M. Ottenbrite and George B. Butler25. Pharmaceutical Statistics: Practical and Clinical Applications, Sanford Bolton26. Drug Dynamics for Analytical, Clinical, and Biological Chemists, Benjamin

J. Gudzinowicz, Burrows T. Younkin, Jr., and Michael J. Gudzinowicz27. Modern Analysis of Antibiotics, edited by Adjoran Aszalos28. Solubility and Related Properties, Kenneth C. James29. Controlled Drug Delivery: Fundamentals and Applications, Second Edition,

Revised and Expanded, edited by Joseph R. Robinson and Vincent H. Lee30. New Drug Approval Process: Clinical and Regulatory Management, edited

by Richard A. Guarino31. Transdermal Controlled Systemic Medications, edited by Yie W. Chien

32. Drug Delivery Devices: Fundamentals and Applications, edited byPraveen Tyle

33. Pharmacokinetics: Regulatory . Industrial . Academic Perspectives,edited by Peter G. Welling and Francis L. S. Tse

34. Clinical Drug Trials and Tribulations, edited by Allen E. Cato35. Transdermal Drug Delivery: Developmental Issues and Research Initiatives,

edited by Jonathan Hadgraft and Richard H. Guy36. Aqueous Polymeric Coatings for Pharmaceutical Dosage Forms, edited

by James W. McGinity37. Pharmaceutical Pelletization Technology, edited by Isaac Ghebre-Sellassie38. Good Laboratory Practice Regulations, edited by Allen F. Hirsch39. Nasal Systemic Drug Delivery, Yie W. Chien, Kenneth S. E. Su, and

Shyi-Feu Chang40. Modern Pharmaceutics: Second Edition, Revised and Expanded, edited by

Gilbert S. Banker and Christopher T. Rhodes41. Specialized Drug Delivery Systems: Manufacturing and Production

Technology, edited by Praveen Tyle42. Topical Drug Delivery Formulations, edited by David W. Osborne and Anton

H. Amann43. Drug Stability: Principles and Practices, Jens T. Carstensen44. Pharmaceutical Statistics: Practical and Clinical Applications,

Second Edition, Revised and Expanded, Sanford Bolton45. Biodegradable Polymers as Drug Delivery Systems, edited by Mark Chasin

and Robert Langer46. Preclinical Drug Disposition: A Laboratory Handbook, Francis L. S. Tse and

James J. Jaffe47. HPLC in the Pharmaceutical Industry, edited by Godwin W. Fong and

Stanley K. Lam48. Pharmaceutical Bioequivalence, edited by Peter G. Welling, Francis

L. S. Tse, and Shrikant V. Dinghe49. Pharmaceutical Dissolution Testing, Umesh V. Banakar50. Novel Drug Delivery Systems: Second Edition, Revised and Expanded,

Yie W. Chien51. Managing the Clinical Drug Development Process, David M. Cocchetto and

Ronald V. Nardi52. Good Manufacturing Practices for Pharmaceuticals: A Plan for Total Quality

Control, Third Edition, edited by Sidney H. Willig and James R. Stoker53. Prodrugs: Topical and Ocular Drug Delivery, edited by Kenneth B. Sloan54. Pharmaceutical Inhalation Aerosol Technology, edited by Anthony J. Hickey55. Radiopharmaceuticals: Chemistry and Pharmacology, edited by Adrian

D. Nunn56. New Drug Approval Process: Second Edition, Revised and Expanded,

edited by Richard A. Guarino57. Pharmaceutical Process Validation: Second Edition, Revised and

Expanded, edited by Ira R. Berry and Robert A. Nash58. Ophthalmic Drug Delivery Systems, edited by Ashim K. Mitra59. Pharmaceutical Skin Penetration Enhancement, edited by Kenneth

A. Walters and Jonathan Hadgraft60. Colonic Drug Absorption and Metabolism, edited by Peter R. Bieck

61. Pharmaceutical Particulate Carriers: Therapeutic Applications, edited byAlain Rolland

62. Drug Permeation Enhancement: Theory and Applications, edited by DeanS. Hsieh

63. Glycopeptide Antibiotics, edited by Ramakrishnan Nagarajan64. Achieving Sterility in Medical and Pharmaceutical Products, Nigel A. Halls65. Multiparticulate Oral Drug Delivery, edited by Isaac Ghebre-Sellassie66. Colloidal Drug Delivery Systems, edited by Jorg Kreuter67. Pharmacokinetics: Regulatory . Industrial . Academic Perspectives,

Second Edition, edited by Peter G. Welling and Francis L. S. Tse68. Drug Stability: Principles and Practices, Second Edition, Revised and

Expanded, Jens T. Carstensen69. Good Laboratory Practice Regulations: Second Edition, Revised and

Expanded, edited by Sandy Weinberg70. Physical Characterization of Pharmaceutical Solids, edited by

Harry G. Brittain71. Pharmaceutical Powder Compaction Technology, edited by Goran

Alderborn and Christer Nystrom72. Modern Pharmaceutics: Third Edition, Revised and Expanded, edited by

Gilbert S. Banker and Christopher T. Rhodes73. Microencapsulation: Methods and Industrial Applications, edited by

Simon Benita74. Oral Mucosal Drug Delivery, edited by Michael J. Rathbone75. Clinical Research in Pharmaceutical Development, edited by Barry Bleidt

and Michael Montagne76. The Drug Development Process: Increasing Efficiency and Cost Effective-

ness, edited by Peter G. Welling, Louis Lasagna, and Umesh V. Banakar77. Microparticulate Systems for the Delivery of Proteins and Vaccines, edited

by Smadar Cohen and Howard Bernstein78. Good Manufacturing Practices for Pharmaceuticals: A Plan for Total Quality

Control, Fourth Edition, Revised and Expanded, Sidney H. Willig and JamesR. Stoker

79. Aqueous Polymeric Coatings for Pharmaceutical Dosage Forms: SecondEdition, Revised and Expanded, edited by James W. McGinity

80. Pharmaceutical Statistics: Practical and Clinical Applications, Third Edition,Sanford Bolton

81. Handbook of Pharmaceutical Granulation Technology, edited byDilip M. Parikh

82. Biotechnology of Antibiotics: Second Edition, Revised and Expanded, editedby William R. Strohl

83. Mechanisms of Transdermal Drug Delivery, edited by Russell O. Potts andRichard H. Guy

84. Pharmaceutical Enzymes, edited by Albert Lauwers and Simon Scharpe85. Development of Biopharmaceutical Parenteral Dosage Forms, edited

by John A. Bontempo86. Pharmaceutical Project Management, edited by Tony Kennedy87. Drug Products for Clinical Trials: An International Guide to Formulation .

Production . Quality Control, edited by Donald C. Monkhouse andChristopher T. Rhodes

88. Development and Formulation of Veterinary Dosage Forms: Second Edition,Revised and Expanded, edited by Gregory E. Hardee and J. DesmondBaggot

89. Receptor-Based Drug Design, edited by Paul Leff90. Automation and Validation of Information in Pharmaceutical Processing,

edited by Joseph F. deSpautz91. Dermal Absorption and Toxicity Assessment, edited by Michael S. Roberts

and Kenneth A. Walters92. Pharmaceutical Experimental Design, Gareth A. Lewis, Didier Mathieu, and

Roger Phan-Tan-Luu93. Preparing for FDA Pre-Approval Inspections, edited by Martin D. Hynes III94. Pharmaceutical Excipients: Characterization by IR, Raman, and NMR

Spectroscopy, David E. Bugay and W. Paul Findlay95. Polymorphism in Pharmaceutical Solids, edited by Harry G. Brittain96. Freeze-Drying/Lyophilization of Pharmaceutical and Biological Products,

edited by Louis Rey and Joan C. May97. Percutaneous Absorption: Drugs–Cosmetics–Mechanisms–Methodology,

Third Edition, Revised and Expanded, edited by Robert L. Bronaugh andHoward I. Maibach

98. Bioadhesive Drug Delivery Systems: Fundamentals, Novel Approaches, andDevelopment, edited by Edith Mathiowitz, Donald E. Chickering III, andClaus-Michael Lehr

99. Protein Formulation and Delivery, edited by Eugene J. McNally100. New Drug Approval Process: Third Edition, The Global Challenge, edited by

Richard A. Guarino101. Peptide and Protein Drug Analysis, edited by Ronald E. Reid102. Transport Processes in Pharmaceutical Systems, edited by Gordon

L. Amidon, Ping I. Lee, and Elizabeth M. Topp103. Excipient Toxicity and Safety, edited by Myra L. Weiner and Lois

A. Kotkoskie104. The Clinical Audit in Pharmaceutical Development, edited by Michael

R. Hamrell105. Pharmaceutical Emulsions and Suspensions, edited by Francoise Nielloud

and Gilberte Marti-Mestres106. Oral Drug Absorption: Prediction and Assessment, edited by Jennifer

B. Dressman and Hans Lennernas107. Drug Stability: Principles and Practices, Third Edition, Revised and

Expanded, edited by Jens T. Carstensen and C. T. Rhodes108. Containment in the Pharmaceutical Industry, edited by James P. Wood109. Good Manufacturing Practices for Pharmaceuticals: A Plan for Total Quality

Control from Manufacturer to Consumer, Fifth Edition, Revised andExpanded, Sidney H. Willig

110. Advanced Pharmaceutical Solids, Jens T. Carstensen111. Endotoxins: Pyrogens, LAL Testing, and Depyrogenation, Second Edition,

Revised and Expanded, Kevin L. Williams112. Pharmaceutical Process Engineering, Anthony J. Hickey and David

Ganderton113. Pharmacogenomics, edited by Werner Kalow, Urs A. Meyer and Rachel

F. Tyndale

114. Handbook of Drug Screening, edited by Ramakrishna Seethala andPrabhavathi B. Fernandes

115. Drug Targeting Technology: Physical . Chemical . Biological Methods,edited by Hans Schreier

116. Drug–Drug Interactions, edited by A. David Rodrigues117. Handbook of Pharmaceutical Analysis, edited by Lena Ohannesian and

Anthony J. Streeter118. Pharmaceutical Process Scale-Up, edited by Michael Levin119. Dermatological and Transdermal Formulations, edited by Kenneth

A. Walters120. Clinical Drug Trials and Tribulations: Second Edition, Revised and

Expanded, edited by Allen Cato, Lynda Sutton, and Allen Cato III121. Modern Pharmaceutics: Fourth Edition, Revised and Expanded, edited by

Gilbert S. Banker and Christopher T. Rhodes122. Surfactants and Polymers in Drug Delivery, Martin Malmsten123. Transdermal Drug Delivery: Second Edition, Revised and Expanded,

edited by Richard H. Guy and Jonathan Hadgraft124. Good Laboratory Practice Regulations: Second Edition, Revised and

Expanded, edited by Sandy Weinberg125. Parenteral Quality Control: Sterility, Pyrogen, Particulate, and Package

Integrity Testing: Third Edition, Revised and Expanded, Michael J. Akers,Daniel S. Larrimore, and Dana Morton Guazzo

126. Modified-Release Drug Delivery Technology, edited by Michael J. Rathbone,Jonathan Hadgraft, and Michael S. Roberts

127. Simulation for Designing Clinical Trials: A Pharmacokinetic-Pharmacody-namic Modeling Perspective, edited by Hui C. Kimko and Stephen B. Duffull

128. Affinity Capillary Electrophoresis in Pharmaceutics and Biopharmaceutics,edited by Reinhard H. H. Neubert and Hans-Hermann Ruttinger

129. Pharmaceutical Process Validation: An International Third Edition, Revisedand Expanded, edited by Robert A. Nash and Alfred H. Wachter

130. Ophthalmic Drug Delivery Systems: Second Edition, Revised andExpanded, edited by Ashim K. Mitra

131. Pharmaceutical Gene Delivery Systems, edited by Alain Rolland and SeanM. Sullivan

132. Biomarkers in Clinical Drug Development, edited by John C. Bloom andRobert A. Dean

133. Pharmaceutical Extrusion Technology, edited by Isaac Ghebre-Sellassieand Charles Martin

134. Pharmaceutical Inhalation Aerosol Technology: Second Edition, Revisedand Expanded, edited by Anthony J. Hickey

135. Pharmaceutical Statistics: Practical and Clinical Applications, Fourth Edition,Sanford Bolton and Charles Bon

136. Compliance Handbook for Pharmaceuticals, Medical Devices, and Biologics,edited by Carmen Medina

137. Freeze-Drying/Lyophilization of Pharmaceutical and Biological Products:Second Edition, Revised and Expanded, edited by Louis Rey and JoanC. May

138. Supercritical Fluid Technology for Drug Product Development, edited byPeter York, Uday B. Kompella, and Boris Y. Shekunov

139. New Drug Approval Process: Fourth Edition, Accelerating Global Registra-tions, edited by Richard A. Guarino

140. Microbial Contamination Control in Parenteral Manufacturing, edited byKevin L. Williams

141. New Drug Development: Regulatory Paradigms for Clinical Pharmacologyand Biopharmaceutics, edited by Chandrahas G. Sahajwalla

142. Microbial Contamination Control in the Pharmaceutical Industry, edited byLuis Jimenez

143. Generic Drug Product Development: Solid Oral Dosage Forms, edited byLeon Shargel and Isadore Kanfer

144. Introduction to the Pharmaceutical Regulatory Process, edited by IraR. Berry

145. Drug Delivery to the Oral Cavity: Molecules to Market, edited by TapashK. Ghosh and William R. Pfister

146. Good Design Practices for GMP Pharmaceutical Facilities, edited by AndrewSignore and Terry Jacobs

147. Drug Products for Clinical Trials, Second Edition, edited by DonaldMonkhouse, Charles Carney, and Jim Clark

148. Polymeric Drug Delivery Systems, edited by Glen S. Kwon149. Injectable Dispersed Systems: Formulation, Processing, and Performance,

edited by Diane J. Burgess150. Laboratory Auditing for Quality and Regulatory Compliance, Donald Singer,

Raluca-Ioana Stefan, and Jacobus van Staden151. Active Pharmaceutical Ingredients: Development, Manufacturing, and

Regulation, edited by Stanley Nusim152. Preclinical Drug Development, edited by Mark C. Rogge and David R. Taft153. Pharmaceutical Stress Testing: Predicting Drug Degradation, edited by

Steven W. Baertschi154. Handbook of Pharmaceutical Granulation Technology: Second Edition,

edited by Dilip M. Parikh155. Percutaneous Absorption: Drugs–Cosmetics–Mechanisms–Methodology,

Fourth Edition, edited by Robert L. Bronaugh and Howard I. Maibach156. Pharmacogenomics: Second Edition, edited by Werner Kalow, Urs A. Meyer

and Rachel F. Tyndale157. Pharmaceutical Process Scale-Up, Second Edition, edited by Michael Levin158. Microencapsulation: Methods and Industrial Applications, Second Edition,

edited by Simon Benita159. Nanoparticle Technology for Drug Delivery, edited by Ram B. Gupta and

Uday B. Kompella160. Spectroscopy of Pharmaceutical Solids, edited by Harry G. Brittain161. Dose Optimization in Drug Development, edited by Rajesh Krishna162. Herbal Supplements-Drug Interactions: Scientific and Regulatory Perspec-

tives, edited by Y. W. Francis Lam, Shiew-Mei Huang, and Stephen D. Hall163. Pharmaceutical Photostability and Stabilization Technology, edited by

Joseph T. Piechocki and Karl Thoma164. Environmental Monitoring for Cleanrooms and Controlled Environments,

edited by Anne Marie Dixon165. Pharmaceutical Product Development: In Vitro-In Vivo Correlation, edited by

Dakshina Murthy Chilukuri, Gangadhar Sunkara, and David Young

166. Nanoparticulate Drug Delivery Systems, edited by Deepak Thassu, MichelDeleers, and Yashwant Pathak

167. Endotoxins: Pyrogens, LAL Testing and Depyrogenation, Third Edition,edited by Kevin L. Williams

168. Good Laboratory Practice Regulations, Fourth Edition, edited by AnneSandy Weinberg

169. Good Manufacturing Practices for Pharmaceuticals, Sixth Edition, edited byJoseph D. Nally

170. Oral-Lipid Based Formulations: Enhancing the Bioavailability of PoorlyWater-soluble Drugs, edited by David J. Hauss

171. Handbook of Bioequivalence Testing, edited by Sarfaraz K. Niazi172. Advanced Drug Formulation Design to Optimize Therapeutic Outcomes,

edited by Robert O. Williams III, David R. Taft, and Jason T. McConville173. Clean-in-Place for Biopharmaceutical Processes, edited by Dale

A. Seiberling174. Filtration and Purification in the Biopharmaceutical Industry, Second Edition,

edited by Maik W. Jornitz and Theodore H. Meltzer175. Protein Formulation and Delivery, Second Edition, edited by Eugene

J. McNally and Jayne E. Hastedt176. Aqueous Polymeric Coatings for Pharmaceutical Dosage Forms, Third

Edition, edited by James McGinity and Linda A. Felton177. Dermal Absorption and Toxicity Assessment, Second Edition, edited by

Michael S. Roberts and Kenneth A. Walters178. Preformulation Solid Dosage Form Development, edited by Moji C. Adeyeye

and Harry G. Brittain179. Drug-Drug Interactions, Second Edition, edited by A. David Rodrigues180. Generic Drug Product Development: Bioequivalence Issues, edited by

Isadore Kanfer and Leon Shargel181. Pharmaceutical Pre-Approval Inspections: A Guide to Regulatory Success,

Second Edition, edited by Martin D. Hynes III182. Pharmaceutical Project Management, Second Edition, edited by

Anthony Kennedy183. Modified Release Drug Delivery Technology, Second Edition, Volume 1,

edited by Michael J. Rathbone, Jonathan Hadgraft, Michael S. Roberts,and Majella E. Lane

184. Modified-Release Drug Delivery Technology, Second Edition, Volume 2,edited by Michael J. Rathbone, Jonathan Hadgraft, Michael S. Roberts, andMajella E. Lane

185. The Pharmaceutical Regulatory Process, Second Edition, edited byIra R. Berry and Robert P. Martin

186. Handbook of Drug Metabolism, Second Edition, edited by Paul G. Pearsonand Larry C. Wienkers

187. Preclinical Drug Development, Second Edition, edited by Mark Rogge andDavid R. Taft

188. Modern Pharmaceutics, Fifth Edition, Volume 1: Basic Principles andSystems, edited by Alexander T. Florence and Juergen Siepmann

189. Modern Pharmaceutics, Fifth Edition, Volume 2: Applications and Advances,edited by Alexander T. Florence and Juergen Siepmann

edited by

Alexander T. FlorenceThe School of Pharmacy

University of London London, UK

Juergen SiepmannCollege of Pharmacy

Université Lille Nord de FranceLille, France

Modern PharmaceuticsVolume 1

Basic Principles and Systems

F i F t h E d i t i o n

CRC PressTaylor & Francis Group6000 Broken Sound Parkway NW, Suite 300Boca Raton, FL 33487-2742

© 2010 by Taylor & Francis Group, LLCCRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government worksVersion Date: 20150115

International Standard Book Number-13: 978-1-4200-6571-8 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. While all reasonable efforts have been made to publish reliable data and information, neither the author[s] nor the publisher can accept any legal respon-sibility or liability for any errors or omissions that may be made. The publishers wish to make clear that any views or opinions expressed in this book by individual editors, authors or contributors are personal to them and do not neces-sarily reflect the views/opinions of the publishers. The information or guidance contained in this book is intended for use by medical, scientific or health-care professionals and is provided strictly as a supplement to the medical or other professional’s own judgement, their knowledge of the patient’s medical history, relevant manufacturer’s instructions and the appropriate best practice guidelines. Because of the rapid advances in medical science, any information or advice on dosages, procedures or diagnoses should be independently verified. The reader is strongly urged to consult the relevant national drug formulary and the drug companies’ printed instructions, and their websites, before administering any of the drugs recommended in this book. This book does not indicate whether a particular treatment is appropriate or suit-able for a particular individual. Ultimately it is the sole responsibility of the medical professional to make his or her own professional judgements, so as to advise and treat patients appropriately. The authors and publishers have also attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permis-sion to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or uti-lized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopy-ing, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site athttp://www.taylorandfrancis.com

and the CRC Press Web site athttp://www.crcpress.com

Preface

Modern Pharmaceutics edited by Gilbert Banker and Christopher Rhodes has become a

classic in the field. It is well known and has been well received on an international basis,

necessitating the publication of this fifth edition. The present editors took on the difficult

task of following in the footsteps of the founding editors and their associates with some

trepidation. It has been several years since the last edition, and on realizing that Dr. Banker

and Dr. Rhodes wanted to pass on the editorship, we accepted the mantle.

Given the passage of time and the growth and change in the field, the book has been

divided into two volumes: Basic Principles and Systems and Applications and Advances.

There have been so many exciting developments which impinge on pharmaceutics that it

was time to reconsider the content of the book.

Basic Principles and Systems is principally a textbook and advanced reference source

of pharmaceutics, which focus on the core of the subject that is key to pharmacy. We

define pharmaceutics as encompassing the design, formulation, manufacture, assessment

and determination of the quality of pharmaceutical products, and also the quality of effect

in patients as the guiding principles. We have therefore continued only with chapters that

fall within these criteria.

We have added chapters on in vivo imaging of dosage forms, surfactant systems,

and the solid state. In each of these fields there have been significant advances. In vivo

imaging is a powerful adjunct to biopharmaceutical studies, providing evidence of the

spatial distribution of dose forms, which is vital in site-specific therapies. Surfactant

systems, aspects of nanotechnology before this became a vogue, are now used with more

sophistication than in the past and provide a wide variety of means of administration of

drugs. Techniques for investigating the solid state have become more abundant and shed

more light on crystal forms, key to the optimal design of delivery systems and choice of

drug salt or form.

This volume opens with an essay on new challenges and paradigms in pharmaceutics

and follows with updated chapters on drug absorption, pharmacokinetics, bioavailability,

and route of administration, the starting points for the design of systems. Chemical kinetics

and drug stability, excipient design and characterization as well as preformulation along

with a chapter on optimization techniques further treat these fundamentals of pharmaceu-

tics. Chapters on disperse systems, tablets, hard and soft capsules, and parenteral products

complete Basic Principles and Systems.

Many of these chapters are written by their original authors. We are grateful for

their enterprise, enthusiasm, and time and also thank those authors who wished to stand

down. They have allowed the new authors to draw heavily on their original material,

xiii

which has eased the process and has allowed us to retain the essence of the earlier

volumes.

We thank Sandra Beberman of Informa Healthcare USA for her patience with new

editors and her encouragement, and all the staff at Informa Healthcare USA who have

nursed these two volumes through to press. We also thank of course all who have devoted

time in preparing material for this new edition of Modern Pharmaceutics.

We trust that Basic Principles and Systems and its companion Applications and

Advances will satisfy the needs of a wide range of colleagues who have an interest or

indeed passion for pharmaceutics. If there are lacunae, perhaps this will lead readers to

research these areas.

Alexander T. Florence

Juergen Siepmann

xiv Preface

Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. xiiiContributors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

1. Pharmaceutics: New Challenges, New Paradigms . . . . . . . . . . . . . . . . . . 1Alexander T. Florence and Juergen Siepmann

2. Principles of Drug Absorption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23Michael Mayersohn

3. Pharmacokinetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81David W. A. Bourne

4. Factors Influencing Oral Drug Absorption and Drug Availability . . . . 117Juergen Siepmann, Florence Siepmann, and Alexander T. Florence

5. Effect of Route of Administration and Distribution on Drug Action . . . 155Maureen D. Donovan

6. In Vivo Imaging of Dosage Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . 181Zheng-Rong Lu

7. Chemical Kinetics and Drug Stability . . . . . . . . . . . . . . . . . . . . . . . . . 203David Attwood and Rolland I. Poust

8. The Solid State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253Alastair J. Florence

9. Excipient Design and Characterization . . . . . . . . . . . . . . . . . . . . . . . . 311Graham Buckton

10. Preformulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327Gavin W. Halbert

xv

11. Disperse Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357Wandee Rungseevijitprapa, Florence Siepmann, Juergen Siepmann,

and Ornlaksana Paeratakul

12. Surfactants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423David Attwood

13. Tablet Dosage Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481Murat Turkoglu and Adel Sakr

14. Hard- and Soft-Shell Capsules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499Larry L. Augsburger

15. Parenteral Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565James C. Boylan and Steven L. Nail

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 611

xvi Contents

Contributors

David Attwood School of Pharmacy and Pharmaceutical Sciences, University of

Manchester, Manchester, U.K.

Larry L. Augsburger University of Maryland, School of Pharmacy, Department of

Pharmaceutical Sciences, Baltimore, Maryland, U.S.A.

David W. A. Bourne College of Pharmacy, University of Oklahoma, Oklahoma City,

Oklahoma, U.S.A.

James C. Boylan Pharmaceutical Consultant, Gurnee, Illinois, U.S.A.

Graham Buckton School of Pharmacy, University of London, London, and

Pharmaterials Ltd., Reading, U.K.

Maureen D. Donovan Division of Pharmaceutics, University of Iowa, Iowa City, Iowa,

U.S.A.

Alastair J. Florence Strathclyde Institute of Pharmacy and Biomedical Sciences,

University of Strathclyde, Glasgow, U.K.

Alexander T. Florence Centre for Drug Delivery Research, The School of Pharmacy,

University of London, London, U.K.

Gavin W. Halbert Cancer Research UK Formulation Unit, Strathclyde Institute of

Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, U.K.

Zheng-Rong Lu Department of Pharmaceutics and Pharmaceutical Chemistry, College

of Pharmacy, University of Utah, Salt Lake City, Utah, U.S.A.

Michael Mayersohn College of Pharmacy, Department of Pharmacy Practice and

Science, University of Arizona, Tucson, Arizona, U.S.A.

Steven L. Nail School of Pharmacy, Purdue University, West Lafayette, Indiana, U.S.A.

xvii

Ornlaksana Paeratakul Faculty of Pharmacy, Srinakharinwirot University, Nakhon

Nayok, Thailand

Rolland I. Poust College of Pharmacy, University of Iowa, Iowa City, Iowa, U.S.A.

Wandee Rungseevijitprapa Faculty of Pharmaceutical Sciences, Ubon Ratchathani

University, Ubon Ratchathani, Thailand

Adel Sakr College of Pharmacy, University of Cincinnati, Cincinnati, Ohio, U.S.A.

Juergen Siepmann Department of Pharmaceutical Technology, College of Pharmacy,

Universite Lille Nord de France, Lille, France

Florence Siepmann Department of Pharmaceutical Technology, College of Pharmacy,

Universite Lille Nord de France, Lille, France

Murat Turkoglu Department of Pharmaceutical Technology, Marmara University,

Istanbul, Turkey

xviii Contributors

1Pharmaceutics: New Challenges,New Paradigms

Alexander T. FlorenceCentre for Drug Delivery Research, The School of Pharmacy,University of London, London, U.K.

Juergen SiepmannDepartment of Pharmaceutical Technology, College of Pharmacy,Universite Lille Nord de France, Lille, France

INTRODUCTION

Background

The essence of pharmaceutics, as many of the chapters in the two volumes of this book

illustrate, is the amalgamation of physical science (physical pharmacy) with aspects of

biological science. It is a distinct discipline quite different from biophysics or chemical

biology because at its center is not only the dosage form with its active and inactive

ingredients but also the behavior of the ensemble in the environment in which these

medicines are used, generally in human subjects. Pharmaceutics has existed as a discipline

within pharmacy and the pharmaceutical sciences for a long time. It is difficult to discern

the origins of the term, although one can deduce from the evolution of textbooks of

pharmaceutics something about its development. From the early days of the 20th century to

the mid-1950s, it was concerned primarily with the science and practice of the manufacture

of medicines (dosage forms) on small and large scales and the preparation of galenicals. It

was viewed sometimes as a discipline without much regard to the fate of the dosage form in

vivo. However, this is not really the case. For example, the 1924 edition of Martindale and

Wescott’s The Extra Pharmacopeia (1) discusses enteric coating of tablets to minimize the

effects of drugs on the intestinal mucosa in the following words:

Various substances have been proposed for the coating of pills, tablets and capsules

to render them insoluble in the stomach but soluble in the intestines, i.e. on reaching

the duodenum. Drugs, for example, which irritate the mucous membrane and the

administration of which is liable to induce vomiting, and substances intended to act

solely on the intestines and the anthelmintic drugs, have been so given. Keratin, as

usually employed, seldom brings about the desired effect.

1

Here there is clear concern for the usefulness of formulations and the therapeutic

consequences of their composition. The use of keratin-coated pills is reported in a Lancet

paper in 1893 (2), but the process is accredited to a German, Dr Unna, who first marketed

such products (3). There were concerns about the quality of such systems, particularly

product ageing, and it is interesting that as early as 1938, an X-ray study was carried out

on the disintegration in vivo of keratin-coated systems (4). The first commercial

sustained-release preparations emerged in the late 1940s with the SpansuleTM, which

contained wax-coated beads with different release properties in a soluble capsule, thus

controlling release of the drug in the GI tract.

The term biopharmaceutics was an invention of the 1960s. The nature of the dosage

form was from then on inextricably linked with its performance in patients. Micro-

encapsulation of drugs, encouraged by the National Cash Register Company (NCR) patents

on carbonless copy paper at the time (5), was adapted to the development of controlled- or

sustained-release products, and this has more recently evolved into nanotechnological

approaches. Nanotechnology began in the pharmaceutical domain, much before the current

vogue for all things “nano,” with Peter Speiser and his coworkers in the 1970s in Zurich

developing “nanoparts” and nanocapsules (6). Pharmaceutical nanotechnology, therefore, is

not as new as some of its proponents would have us to believe. Table 1 is a brief summary

of just some of the key events in pharmaceutical technology.

Table 1 Key Development of Controlled-Release Systemsa

Date System Remark

1867 Collodion coating Delayed-release coating for pills

1884 Keratin coating Enteric-coated pills prepared with keratin (Unna)

1887 Salol coating As an enteric coating material (Ceppi)

1929 Coacervation Bungenberg de Jong and Kruyt

1936 Stearic acid coating Stearic acid and waxes and mixtures for release control

1945 CAP Cellulose acetate phthalate as enteric coating material

1945 SpansuleTM Wax-coated and uncoated drug beads in a capsule (SKF)

1950 LontabTM Lontab tablets (Ciba)

1953 Microencapsulation NCR patent for carbonless copy paper

1959 DuplexTM Film-coated tablet between the core and external layer

1959 DuretterTM Plastic matrix dosage forms (Durules)

1962 Liposomes Bangham’s discovery

1973 Nanoparticles Nanoencapsulation (Speiser et al., ETH Zurich)

1974 OcusertTM Delivery to conjunctival sac (Alza)

1975 Silicone implants Silicone implants for slow release (Folkman)

1975 OrosTM Oral osmotic pump (Alza)

1979 Transdermal patch Scopolamine patch approved by the FDA

1981 ZoladexTM Poly(lactide) implants for polypeptide delivery (ICI)

1982 Dendrimers Synthesized by Tomalia

1988 Stealth liposomes Gabizon and Papahadjopolous; Allen et al., 1989

1989 Lupron DepotTM TAP launches leuprorelin PLGA microsphere SR product

1990 Liposome First liposome product to gain approval (Ireland)

1994 Stealth liposome LTI seeks approval of doxorubicin stealth liposome (Caelyx)

2003 Drug-eluting stents First FDA approval (CypherTM sirolimus)

2006 Dendrimer product First dendrimer pharmaceutical (VivaGelTM Star Pharma)

aDates are approximate.

Abbreviations: CAP, Cellulose acetate phthalate; SKF, SmithKline French; NCR, National Cash register

Company; ICI, Imperial Chemical Industries; TAP, Takeda Abbot Pharmaceutical Company; SR, Sustained

release; LTI, Liposome Technology Incorporated.

2 Florence and Siepmann

Means for the production and the design of refined controlled-release systems was

advanced by the development of biodegradable polymers, the three archetypal polymers

being poly(lactic acid–glycolic acid) (PLGA), poly(lactic acid) (PLA), and poly

(glycolic acid) (PGA). Now there are many other polymers and copolymers that act as

carriers for drugs. Lipid-based delivery systems, most notably liposomes, discovered by

Bangham in the 1960s, led to the marketing, some 20 to 25 years later, of liposome-

based doxorubicin and amphotericin products. The list of liposomal products is now

impressive, but the gestation time was long as more was learned about the behavior of

dosage forms in the body and about their stability, their interaction with proteins, uptake

by the reticuloendothelial system, and extravasation, not to mention diffusion and

uptake into diseased sites. Dendrimers, spherical or starburst polymers first synthesized

by Tomalia and coworkers (7) in the early 1980s, are also now finding their niche along

with a variety of other nanoconstructs, but the period from the first concept to the clinic

is still proving tortuous. Many polymer micro- and nanoparticles have random

polymeric internal and surface structures. So, in theory, the ability to synthesize

dendrimers with their precise architectures and controlled arrangement of surface

groups allows the practice of true molecular pharmaceutics, with precisely positioned

ligands and other agents.

In a relatively short period of time, pharmaceutics has moved from the macroscopic

through the microscopic to the nanoscopic domain and from the more empiric to the more

quantitative. It has long been intertwined with colloid science typically in relation to

the formulation of micellar-solubilized products and the stabilization of suspensions

and emulsions; the application of colloid science to nanosystems is more vital than ever,

as discussed in chapter 12, volume 2.

In many experimental systems, for example, with dendrimers (2.5 to 10 nm in

diameter) and carbon nanotubes as vehicles for delivery, the drug has dimensions in the

same range as these putative carriers. This is an inevitable consequence of the fact that

not only have such dosage forms become smaller but also the average size of

therapeutic molecules has grown with the use of more biologicals. New or reinvented

approaches to the interactions between a carrier and a drug need to be applied. A deal

of effort has been addressed to the topic of carrier-mediated drug targeting, perhaps at

the expense of the physical, pharmaceutical, and technological aspects of the task, but

there is a growing realization that the neglect of the fundamental physical aspects of

pharmaceutics is a mistake. Particulate delivery systems once administered are placed

in new thermodynamic situations, which we must model and predict and thus design

products that are colloidally stable yet labile enough to deliver their loads and be

excreted.

NEW PARADIGMS

According to one dictionary, a paradigm is “a philosophical and theoretical framework of

a scientific school of discipline within which theories, laws and generalizations and the

experiments performed in support of them are formulated,” but a simpler definition of “a

generally accepted perspective of a particular discipline at a given time” is apposite too.

Pharmaceutics is espousing new paradigms. The concept of the carrier system,

traditionally tablets, capsules, suppositories, or the like with the drug internalized, has

changed as the actives such as DNA and other macromolecules may not be internalized

but may be intertwined with the complexing molecules, as hinted above, to form the

delivery vector, usually leading to condensation. Active molecules may be adsorbed to the

Pharmaceutics: New Challenges, New Paradigms 3

surface of nanoparticles. Products such as drug-releasing coated stents present new

challenges, not least in quality control.

A More Predictive Science?

Reflecting on past decades of research in pharmaceutics, drug delivery, and drug

targeting, one can detect a certain lack of an overall ability to predict the ultimate

behavior of systems, not only but especially at the early formulation stage, and with

behavior in vivo. Is pharmaceutics still too empirical, a shadow that has held the subject

back for many years? There has been success in drug solubility prediction, as the work of

Peterson (8) and others (9) has demonstrated, but in a related field, that of the micellar

solubilization of drugs by surfactants, in spite of decades of research, it is not an easy task

to predict the solubilization potential of a given surfactant system for a given drug

molecule. In the same way, more recent research in gene delivery employing cationic

complexing polymers, lipids or dendrimers to condense the DNA, has led to transfection

of cells in culture with varying degrees of success, but there is no consensus yet as to the

optimum size, shape, charge, or other characteristics of the gene construct to achieve

maximal cell penetration, nor has it been possible to predict a priori the effectiveness of a

given construct on a particular cell line.

Pharmaceutics has come a long way since its focus mainly on physical systems, but

there must be a fresh look at the type of research problems that are tackled if we are to

achieve a more predictive science. Not only this, but it seems a long time since new

equations entered pharmaceutics’ basic pantheon. It is several decades since Takeru

Higuchi developed the equations for the diffusion of drugs in, and release from, complex

systems (10). There is a need to explore new areas of pharmaceutics, to explain

phenomena that otherwise will not be treated theoretically. Issues of adhesion, including

mucoadhesion, film coating, tack, and cracking in films, are but some of the areas that

require a greater theoretical approach after considerable amounts of phenomenological

research has been published.

The study of the behavior of dosage forms in vivo, not least of nanosystems, is

desperately short of a comprehensive theoretical base, which will relate properties, both

physical and biological, not only to the size of particulate systems but also to their surface

characteristics. On the other hand, while pharmaceutics must continue to reinvent itself,

all those involved in medicines development and drug delivery and targeting must be

acquainted and absorb the canon of pharmaceutics that already exists. This centers around

the quality, pharmacy, and standards of products, modes of production and sterilization

and characterization, their reproducibility, their quality (both intrinsic and quality related

to activity), as well as studies of the potential of products themselves to cause harm. All

this is a unified holistic approach. It is little use concentrating on the fabrication of

physical devices if these are not able to be manufactured, or are not stable and not safe.

This must be balanced by the imperative to carry out research that explores new materials

and ideas whether or not we have all the requisite information that might be required

ultimately for their conversion to dosage forms.

In drug targeting, much effort goes into the design of nanoparticles (although here

again the approach is often necessarily empirical when there should be a more

comprehensive understanding of, say, drug- or protein-polymer interactions), but little

attention is paid, other than in a descriptive sense, to the issues surrounding the flow and

movement of nanoparticles toward their distant targets and destinations. The nature of the

flow of nanoparticles in vivo has been largely neglected, yet it is a branch of

pharmaceutical engineering science. Flow, interactions between particles, and interactions

4 Florence and Siepmann

of particles with blood components, erythrocytes, and proteins must be addressed in a

unified manner before there can be any major advance in the predictability or, indeed, the

reality of targeting, especially with nanoparticles decorated with ligands intended to

interact with epithelial receptors. The flow of asymmetric carbon nanotubes in blood can

be predicted to an extent by extant equations linking viscosity to axial ratio, but

experimental proof is required.

This introductory chapter explores some areas of pharmaceutics and also the

academic and educational aspects of the discipline. If we are to attract the best

scientists into the field, the subject must be presented at undergraduate levels in an

exciting and relevant manner. It must show the promise of controlling drug and

therapeutic agents and the fact that that there is still much to do. Above all, it must

demonstrate connections to avoid insularity and isolation as a discipline while

remembering its heartland.

Connections

Connections between research in pharmaceutics and education in pharmacy are vital, but

so too are the connections not only between the different types of research but also

between different disciplines that can underpin pharmaceutics. Perhaps pharmaceutics

could benefit from more research for its own sake, with less directed research aimed at the

production of marketable dosage forms. Research on phenomena that are interesting in

themselves, research into potential situations (what if?), and research into real systems

and situations to answer the question “How does this work?” or “What causes this system

to behave as it does?” are all legitimate. Some of these connections are illustrated in

Figure 1, some being vital in the educational process.

Pharmaceutics as such is a distinct subject professed within schools of pharmacy

worldwide. With the increasing trend toward a more clinical orientation of pharmacy

graduates, as already has been achieved in the United States, there may be diminished

attention paid to the teaching of pharmaceutics. As in research, there must be a greater

effort to present the subject not only in its physicochemical envelope but to demonstrate

the importance of the subject matter ultimately in the clinic. As examples, consider the

Figure 1 The connections between research of all types in pharmaceutics from the real to the

imagined and the link to education. Education must inspire a questioning attitude in students and

stimulate them about a subject, pharmaceutics, that continues to adapt and to evolve.

Pharmaceutics: New Challenges, New Paradigms 5

connections in Figure 2 between the physical phenomena of rheology, diffusion,

aggregation, surface tension, adhesion, and percolation, some of the staples of physical

pharmacy, to the behavior of systems in vivo.

These topics might be thought of as biopharmaceutics, but they are more than this.

They are about the relevance of physicochemical phenomena in all aspects of therapy:

rheology relating to blood flow and joint lubrication, crystallization as relevant to

crystalluria and drug precipitation from formulations, surface tension and lung surfactant

expansion and solubilization of drugs, colloidal interactions and interactions between

nanoparticles and surfaces in vivo, and so on. This is what we might call clinical

pharmaceutics. Clinical pharmaceutics also deals with the adverse effects of dose forms,

induced by their excipients and by colors, flavors, tonicifiers, or impurities (11). It also

concerns the beneficial influence of dose forms and modes of delivery on clinical

outcomes.

Pharmaceutics faces two challenges in schools of pharmacy, one from the clinical

impetus that exists and one from the need to maintain the basic and fundamental science

in the subject, one which is distinctively pharmaceutics. The latter is not for its own sake,

but because the combination of physical, chemical, and biological knowledge that the

subject encompasses is vital for improved therapy and the development of safe and novel

systems. It could be argued that while there has been progress in the subject in controlled-

release technologies with direct patient benefit, pharmaceutical nanotechnology, and

aspects of drug targeting, the study of basic phenomena perhaps deserves reinforcement.

In particular, we require the application of physical pharmacy concepts to delivery and

targeting issues. One example would be the interaction between a nanoparticle and a cell

surface as characterized by Sun and Wirtz (12) in Figure 3A. This has clear analogies to,

say, indentation testing of pharmaceutical materials shown in Figure 3B, two widely

separated topics. Such connections or analogies are intriguing as well as useful.

Figure 2 Examples of the connections between phenomena known in physical pharmacy and

biological events using the examples of rheology, diffusion, aggregation, surface tension, adhesion,

and percolation, and their biological importance in particulate systems as an example.

6 Florence and Siepmann

NEEDS

There are still urgent needs in the field of pharmaceutical nanotechnology, which are

posited below (16), but these might also be suitably modified for many delivery

systems.

1. The relevance to the whole animal of in vitro tests of activity, selectivity,

uptake, and toxicity of nanoparticulate carrier systems.

In vitro systems are generally static, whereas most interactions between

particles and ligands on cell surfaces occur under dynamic conditions. Flow of

blood in which nanosystems move generally decreases the interaction between

Figure 3 Analogies I. (A) Comparison between a diagram from Sun and Wirtz (12) on the

interaction of a viral particle with a plasma membrane and (B) an illustration demonstrating an

indentation measurement on a solid. (A) R = radius of the particle and h = the depth of “indentation”

of the viral particle. Various receptor and ligand molecules are denoted in addition to ligand-

receptor complexes. Sun and Wirtz invoke Young’s modulus and other physical terms to describe

the interaction. Hiestand and Smith (13) cite Tabor’s (14, 15) equation for indentation hardness P,

obtained using a pendulum indenter (which actually might be a relevant model for particle-receptor

interactions during flow):

P ¼ 4mgrhr

�a4

� �hi

hr� 3

8

� �

where m is the mass of the indenter, g is the gravitational constant, r is the radius of the spherical

indenter, a is the chordal radius of the dent produced on impact, and hi is the initial height of the

indenter, whereas hr is the rebound height of the indenter.

Pharmaceutics: New Challenges, New Paradigms 7

carrier and target, through shear forces at surfaces. Laminar and nonlaminar

flow in vessels and other tubules is determined by the variable velocity and

velocity gradients in blood vessels (17). Dilution effects and the propensity of

nanoparticles to interact with proteins in the blood affect the translation from

cell culture to living animal.

2. Scaling factors in animal models and the extrapolation of results to human

subjects.

The relevance to the human subject of animal studies, which form the

greatest number of sources of data to date, is obscure. Does a 100-nm particle

behave in the same way in a mouse and in a human? What is the importance of

the distance traveled between the point of entry and the point of interaction

with target? How does the physiology of various species influence interpre-

tation of data? Kararli (18) reviewed aspects of the physiological differences

between a variety of experimental animals and human subjects in relation to

drug absorption. A similar exercise is necessary to determine the influence of

species differences on nanocarrier behavior and fate.

3. The causes of the differential uptake and transport of particles in different cell

lines in vitro and tissues in vivo.

Studies of transfection of a variety of cell lines with a particular DNA-

complexing agent have frequently shown very marked differences in

effectiveness. For example, in the case of dendriplexes (dendrimer-DNA

complexes), Bayele et al. (19) have shown 1000-fold differences in

transfection. These variations have been confirmed by many researchers. Is

this due to cell size (i.e., the distance to be traveled), membrane differences,

cell culture media, differences in cell division rate, or the nature of the nucleus

and cytoplasm of each cell type? Is there a physical cause, rather than a

fundamental biological problem? Diffusion in the cytoplasm is, in part, a

purely physical phenomenon; the process is akin to diffusion in a complex gel,

strongly dependent on the radius of the particle and the “pore size” of the gel

as well as the volume fraction of the gelator. Both obstruction effects and

adsorption can occur, so that diffusion is slow, and above critical particle

radius ceases altogether. With biological therapeutics, their size often controls

their release from delivery systems and certainly their escape into and

diffusion in tissue.

4. The influence of the nature of the polymer or other construction material in the

manufacture of nanosystems on their biological and colloidal behavior.

It is one thing to formulate a protein in a polymeric carrier and another to

be able to predict the miscibility of that protein with the polymer and its

potential distribution within the matrix of the polymer. Does phase separation

occur as the mixing of two macromolecules is not a simple process

thermodynamically? Phase separation can lead to rapid release of active.

There has been significant concentration on the effect of the size of

nanoparticles on physical and biological behavior but perhaps less on the

nature of the polymer in as far as this affects the capacity of the system to

encapsulate therapeutic agents or the potential to influence particle flocculation

and the vital interactions at close approach of the nanoparticles and cell surface

receptors. The Hamaker constants (see chap. 11) are fundamental for assessing

the attractive forces between surfaces, and for different polymeric materials can

be quite different (20,21), as shown in Table 2.

8 Florence and Siepmann

5. Analysis of the colloidal behavior of nanoparticles and especially the influence

of surface ligands on this behavior.

As suggested above, the addition of specific ligands to the surface of

nanoparticles, whether by covalent attachment or by adsorption, does not always

lead to improved targeting in animals. Thus, the manner in which the ligands

affect the physical stability and interactions of nanosystems is a worthy goal to

elucidate the optimal conformation and configuration of adsorbed ligands.

6. Nanoparticle navigation in complex biological networks.

A better understanding of the movement of nanoparticles in the complex

environment in which they are deposited in tissues, in tumors, and in blood,

lymph, and the extracellular matrix is essential for prediction of behavior. The

influence of particle size, shape, and flexibility on such movement is key (22).

Does shape matter? If flow matters, then asymmetric particle flow is clearly

different from the flow of spherical particles. Hence, there is a need for better

comprehension of such behavior, particularly with the advent of carbon

nanotubes whose rheological and diffusional properties will differ from those

of spherical systems.

7. Analysis of published data to move pharmaceutical nanotechnology toward

greater predictability of nanoparticle behavior.

Targeting activity is essential in the design of many delivery systems,

vaccines, and gene delivery vectors, hence collating the already voluminous

material that has been published and finding common threads to improve

predictive powers are important. One of the difficulties here is the variation in

size measurement techniques and their interpretation, as has been emphasized

in two recent publications (23,24), one going so far as to suggest that 90% of

published measurements are faulty. Accurate size measurements are essential.

If size is key to access to targets or interactions with receptors, then the width

of the particle size distribution must be known. Figure 4 illustrates this in a

general way. If the optimal size range is as shown, then particles in region A

will no doubt have access but will have different flow characteristics, particles

in B will be in the desired range, while those in C will not access the target. It

may be that particles in category D will, in fact, exhibit toxicity. It is perhaps

Table 2 Hamaker Constants (in vacuo) for Some Polymers

Polymer A (�1020 J)Polyvinyl chloride 10.8, 7.5

Polyethylene 10.0

Polystyrene 9.8, 6.6, 6.4, 7.8

PVAc 8.9

PVA 8.8

Polyethylene oxide 7.5

PMMA 6.3

PDMS 6.3

PTFE 3.8

van der Waals attraction between two particles at a distance S

(i) for two spheres of equal radius r is �Ar/12S, and(ii) for two spheres of unequal radii r1 and r2 is �Ar1r2/6S(r1+r2).Source: Adapted from Refs. 20 and 21.

Pharmaceutics: New Challenges, New Paradigms 9

timely to explore a “gold standard” for particle sizing so that all laboratories

routinely use and cite the values they obtain with their equipment using a

standard material, for example, a gold sol. After all, this is a common practice

in surface science, where the surface tension of water is routinely cited as a

marker of accuracy and precision.

8. Pharmaceutical aspects of nanotoxicology or nanosafety.

The study of nanotoxicology has been referred to by the Oberdosters in a

review (25), which will repay reading as a discipline emerging from studies of

ultrafine particles. Nanoparticles, unlike the majority of microparticles, can

penetrate the body in a variety of ways and can be absorbed and translocated to

organs such as the liver and spleen. It is clear that we must have more specific

information on the safety of nanosystems, the influence of the nature of their

surfaces and the material of which they are composed, and the influence of

porosity, size, and shape.

9. Pharmacokinetics of drugs and other agents encapsulated in nanosystems and

more studies on the kinetics of distribution of carriers in vivo.

This is a fairly self-evident need. It is important that we distinguish

between the pharmacokinetics of drug that is released from the carrier and the

biokinetics of the carriers themselves (i.e., carrier kinetics). It is wrong

etymologically to discuss the pharmacokinetics of vectors.

10. The physical chemistry of peptide, protein, or macromolecule—polymer

miscibility in relation to the incorporation of these molecules in polymer

nanoparticles, microparticles, and implants, their stability, and release.

Given sometimes overwhelming biological interests, the pharmaceutical

and physicochemical issues in formulation must not be underestimated. One

lack seems to be a systematic study of the interactions between peptides,

Figure 4 A diagrammatic particle size distribution with a hypothetical optimum-size band for

biological activity, extravasation, transport, and receptor interactions. Zones A to D are discussed in

the text.

10 Florence and Siepmann

proteins, and DNA and the variety of polymers used in the construction of

nanosystems. The basic thermodynamics of mixing under the conditions of

preparation will yield valuable data. Gander et al. (26) have approached this

subject in relation to the microencapsulation of proteins by PLGA spheres by

spray drying and sought correlations between Hildebrand constants, partial

Hansen solubility parameters, and other thermodynamic measures. They were

able to conclude that encapsulation efficiency is increased and burst release

reduced if polymer-drug interactions are dominant and polymer-solvent and

drug-solvent interactions are reduced. The same authors also studied the

thermodynamics of interactions in the preparation of microcapsules (27). More

studies of this kind are important especially when polymer mixtures are used

and polymer-polymer interactions turn out to be complex. Figure 5 illustrates a

study of protein-polysaccharide interactions (28), which points out regions of

compatibility and incompatibility in the phase diagram.

The above subject areas are possibly an idiosyncratic and certainly an incomplete

list of topics in nanotechnology. They arise from the need to counteract the exaggerated

claims for nanosystems in drug delivery and targeting by addressing the core factors

which prevent quantitative delivery of therapeutic agents to complex targets such as

tumors and sites of inflammation.

Some phenomena are extremely difficult, if not impossible, at present to investigate

in vivo; hence, there needs to be a theoretical approach to many of the phenomena we

invoke to explain delivery and targeting with nanoparticles. The stochastic nature of many

interactions must be incorporated into predictions. While we are studying the biological

barriers to delivery and targeting, we should devise new systems, which are better able to

Figure 5 Phase diagrams for biopolymer 1–biopolymer 2 solvent systems from Doublier et al.

(28). Not shown is the Flory-Huggins lattice model for predicting experimental tie lines, whose

equations exhibit enthalpic and entropic terms. The diagram on the right illustrates the most

common form of thermodynamic incompatibility or “segregative phase separation” where solvent–

biopolymer 1 interactions are favored over biopolymer 1–biopolymer 2 interactions and solvent-

solvent interactions, hence demixing. In the associative phases separation, interactions between the

two biopolymers are favored (e.g., because of interactions between a positively and a negatively

charged molecule).

Pharmaceutics: New Challenges, New Paradigms 11

take their load quantitatively to their targets yet release them in a predictable manner

when and only when they reach their site of action. A tall order.

Nanotechnology offers the opportunity not only to enhance delivery and targeting

but also to produce new material and devices: in the formation of fine membranes,

meshes, lubricant material for fine valves, and so on. There is also the recognition of

the potential of the toxicity of materials such as titanium dioxide, used not as a carrier

but as an excipient in tablets. Titanium dioxide is absorbed from the GI tract in the

form of rutile, some 50 nm in diameter (29), and particles of 2 to 5 nm after inhalation

(30). The ever present possibility of aggregation and its influence on interpretation of

nanoparticle toxicity has been discussed (31).

Fundamental Topics

The late Nobel laureate in physics Pierre-Gilles de Gennes, for much of his research

career, worked in the field of soft matter, which has so much significance in

pharmaceutical systems. In his 1994 Dirac Memorial Lecture (32) given in Cambridge,

he ranged widely over topics such as the dynamics of partial and complete wetting,

principles of adhesion and tack, and polymer/polymer welding. “Compared to the giants

of quantum physics,” de Gennes wrote modestly, “we soft-matter theorists look like the

dwarfs of German folk tales. These dwarfs were often miners or craft-workers: we, also,

are strongly motivated by industrial purposes. We see fundamental problems emerging

from practical questions.” It is this last sentence that is especially relevant to

pharmaceutics, where the issues of compaction, flow, film formation, wetting, and

adhesion and tack can be of industrial relevance but are incompletely understood. Yet

there are pressing issues raised by the necessity to formulate and deliver drugs that are

macromolecules or labile and which possess the “wrong” physical and chemical

characteristics as drug molecules. The objective de Gennes proposes is that we need to

obtain “simple impressionistic visions of complex phenomena, ignoring many details,

actually in many cases operating only at the level of scaling laws.”

Pharmaceutical formulations and systems are frequently, and possibly usually,

extremely complex. We use multicomponent systems, polymers of varied molecular

weight, surfactants, products of polymerization processes, which are impure, particles of a

wide distribution of sizes and shapes, and processes that are themselves often complex

and ill defined at a molecular level. Then we administer these systems to a complex

biological environment. We are a long way from a pharmaceutical theory of everything.

To return to an earlier theme, we need the theoretical bases on which to become less

empirical. This present book contains a chapter by Frenning and Alderborn (chap. 11,

vol. 2) on aspects of pharmaceutical physics, written to illustrate the approaches that can

be made to complex fields in pharmacy. Some of the topics once of great interest in

pharmaceutics laboratories, say in the domain of powder technology, are still pursued

elsewhere, for example, in physics. As an example, a paper on the wet granular pile

stability recently tackled problems of spherical and nonspherical particle mixing and

agglomeration (33).

Other Topics

Aqueous Interaction with Solids: Wetting and Dewetting

Water repellency (34) is relevant to pharmaceutical systems. With porous dosage forms,

there is generally a desire to avoid water repellency to allow ingress of water. A

12 Florence and Siepmann

possibility of reversible repellency might be of advantage in controlling release of drugs

by first inhibiting uptake of water and then allowing it. Indeed, the wettability of textured

materials can be tuned rapidly with an electric field, for example (35), leading to the

possibility of pulsed release from dose forms as the systems are tuned and detuned.

Dewetting is also related to issues of water repellency and is important in some biological

situations. In xerophthalmia (dry eye), the dewetting of the cornea through the breakup of

the tear film leads to dry spots. Studies on dewetting of polymer films on mica or viscous

fluids or surfactant films or solutions can lead to understanding of many physical and

biological processes. Photographs of thin surfactant film breakup obtained many years

ago (36,37) in the late Karol Mysels’ laboratory (Fig. 6) bear a remarkable similarity to

recent work by Dubra et al. (38) on tear film breakup.

Flow of Complex Liquids

In Balaz’s paper on the flow of complex liquids (such as binary fluids) through

heterogeneous channels (39), it is argued that the dynamic behavior of complex fluids in

confined geometries is vital if we are to understand a range of topics from the processing

of polymeric materials to the flow of blood in confined spaces. Not least, the work has

provided basic information and the optimal configurations for the production of emulsions

having well-controlled structures. The molecular dynamics of sorbed fluids in

mesoporous materials (40) are relevant to the understanding of hysteresis in porous

systems, important in some pulsatile hydrogel delivery systems, which display

considerable hysteresis, which may only be in part due to the mechanics of the polymer

chains.

The chapter by Anthony Hickey (chap. 5, vol. 2) on inhalational delivery of drugs

exemplifies the theory that has been derived to understand the processes of lung

deposition so far. Nanoparticulate interaction with the lung surfactant layer has been

discussed and a three-dimensional cellular model devised to study these processes (41).

Figure 6 Analogies II. (Left) A film of sodium dodecyl sulfate in air a few microseconds after a

spark bursts the film and causes rapid contraction of the surfactant layers with thickening in the so-

called aureole region around the hole. (Right) An image of tear film rupture on a solid surface.

Source: Left figure from A. T. Florence and K. J. Mysels, 1967 (unpublished photograph); right

figure from the laboratory of A. Dubra (38), Imperial College London.

Pharmaceutics: New Challenges, New Paradigms 13

Boundary Lubrication, Splashes, and Turbulence

Boundary lubrication under water discussed by Briscoe et al. (42) is relevant to particles

with surfactant layers. They state,

Boundary lubrication, in which the rubbing surfaces are coated with molecular

monolayers, has been studied extensively for over half a century. Such monolayers

generally consist of amphiphilic surfactants anchored by their polar headgroups; sliding

occurs at the interface between the layers, greatly reducing friction and especially wear

of the underlying substrates. This process, widespread in engineering applications, is

also predicted to occur in biological lubrication via phospholipid films, though few

systematic studies on friction between surfactant layers in aqueous environments have

been carried out. Here we show that the frictional stress between two sliding surfaces

bearing surfactant monolayers may decrease, when immersed in water, to as little as

one per cent or less of its value in air (or oil). We attribute this to the shift of the slip

plane from between the surfactant layers, to the surfactant/substrate interface. The low

friction would then be due to the fluid hydration layers surrounding the polar head

groups attached to the substrate. These results may have implications for future

technological and biomedical applications.

Investigation of splashes (43,44) might seem abstruse pharmaceutically, but such

work would be of relevance to the nature of micro- and nanoparticle interaction with

alveolar fluids from the airways: hydrophilic spheres have been shown to enter liquid

surfaces without commotion, while hydrophobic particles cause a splash. Problems of

turbulence (45), aspects of mixing (46), and the nature of complex liquids, inter alia, are

studies on apparently nonpharmaceutical systems which nevertheless have or may have

relevance to a theoretically based approach to pharmaceutical design and manufacture and

thus a deeper understanding of product performance.

The Pharmaceutics of Cell Therapy

Pharmaceutics has progressed as drugs have developed first from natural product extracts,

through synthetic and generally small molecules to peptides, proteins, and oligonucleo-

tides and DNA itself, into the beginning era of cell-based therapies. Cell therapy, whether

with stem cells, dendritic cells, or pancreatic cells, involves a host of pharmaceutical

issues: of dose, of quality, of consistency, and of accurate delivery to specific sites.

Several means of delivery cells have been explored, including direct intramuscular

injection (e.g., into cardiac muscle) (47) and intravenous administration. It has been

reported that stem cells when injected directly into the blood are able to locate myocardial

infarctions by the process of cell homing (48). Cell-collagen composites have been

employed (by implantation) for the repair of tendon injuries (49), biodegradable alginate

beads for delivery of bone cells and antibiotics (50), and PEGylated fibrin patches for

mesenchymal stem cell delivery (51). Clearly, the route of administration is key to

determining the distribution of injected dendritic cells (52): intravenously administered

cells accumulate in the spleen, whereas intramuscularly injected cells accumulate in the

T-cell regions of lymph nodes, results confirmed by Morse et al. (53), who found

intravenously administered dendritic cells localized first in the lungs and then distributed

to liver, spleen, and bone marrow. Data on the biodistribution of nanoparticles are

relevant to an understanding of some of the issues in cell-based therapeutics, while

efficient delivery matrices are also key.

14 Florence and Siepmann

Guidelines of human somatic cell therapy developed by the FDA in the United

States and by the EU’s Committee for Medicinal Products for Human Use (CHMP) both

address the triad of safety, quality, and efficacy that have been applied routinely to

conventional therapeutic agents (54).

MATHEMATICAL MODELING

To be a more predictive science, pharmaceutics needs to embrace mathematical modeling

of systems, however complex they may be. Mathematical modeling is one area that holds

much promise for estimating the behavior of dose forms, such as in the release and

diffusion of drugs in brain tissue (55). A thorough theoretical analysis can provide major

benefits, including the following:

1. It can help to understand how the dose forms work, for example, why the drug

is released at a particular rate from a controlled delivery system (56–58). The

underlying mass transport mechanisms can be elucidated, and most

importantly, the dominant physicochemical processes can be identified (59).

Often a significant number of phenomena are involved, such as the wetting of

a device’s surface, water penetration into the dose form, drug dissolution,

swelling of polymeric excipients, glassy to rubbery phase transitions, drug and

excipient diffusion out of the dose form, polymer dissolution and/or

degradation, and drug-polymer interactions, to mention just a few. Chapter 11

in volume 2 gives a detailed description of a number of these phenomena. If

several of these processes occur in sequence and significantly differ in velocity,

the much faster ones can be neglected. In the case where certain processes in the

sequence are much slower than all the others, then these are release rate limiting.

It is valuable to know which phenomena are dominant in a particular

system, because this knowledge simplifies device optimization and trouble-

shooting during product development, scale-up, and production. It has to be

pointed out that the type of dose form, type and amount of drug and excipients,

and even the type of preparation technique can significantly alter the relative

importance of the involved physicochemical phenomena. Chapter 1 in volume 2

on sustained- and controlled-release drug delivery systems provides an

overview on the most frequently used control mechanisms in advanced drug

delivery systems, including matrix tablets for oral administration and

biodegradable microparticles for parenteral use. Furthermore, a theoretical

analysis based on comprehensive experimental in vivo results can give

valuable insight into the phenomena that are governing the fate of the drug

once it released into the human body. Obviously, this knowledge—the

thorough understanding of the processes occurring within the dose form as

well as within the living organism—provides the basis for an efficient

improvement of the safety of the respective drug treatment, especially in the

case of highly potent drugs with narrow therapeutic windows.

2. Mathematical modeling can significantly facilitate the development of new

products and the optimization of existing ones. An appropriate mathematical

theory allows for a quantitative prediction of the effects of different

formulation and processing parameters on the resulting properties of the

dose form, for example, the release rate of an incorporated drug. Figure 7

shows an example for such a simulation: the effects of the initial radius of

propranolol HCl–loaded, hydroxypropyl methylcellulose (HPMC)-based

Pharmaceutics: New Challenges, New Paradigms 15

matrix tablets on the resulting drug release kinetics in phosphate buffer pH 7.4

are shown (curves) (60). The initial tablet height was constant (2.6 mm),

whereas the initial tablet radius was varied from 1.0 to 6.5 mm (corresponding

to the curves at the top to the bottom). Clearly, the resulting relative release

rate significantly decreases when increasing the initial tablet radius, which

can at least partially be attributed to the decreasing “surface area:volume

ratio” of the system (and thus decreased relative surface area available for

diffusion). The symbols in Figure 7 represent the independently determined

experimental drug release kinetics from these matrix tablets. The good

agreement between theory and experiment serves as an indication for the

validity of this model for this type of drug delivery system. But also, the

effects of other formulation and processing parameters on the resulting

system properties can be theoretically predicted, including the initial drug and

polymer content, type and amount of plasticizer, as well as size and shape of

the dose form (61,62).

In silico simulations can, thus, be used to effectively replace or minimize

the series of cost- and time-intensive “trial-and-error” experiments during

product development. This is particularly useful in the case of controlled drug

delivery systems with long-term release kinetics, for example, implants that

are intended to provide appropriate drug levels during several months or years.

Two types of mathematical theories can be distinguished: empirical models and

mechanistic realistic models. Empirical models are purely descriptive and do not allow

for a better understanding of the underlying physical, chemical, and/or biological

phenomena. Furthermore, they cannot be used to quantitatively predict the effects of

formulation and processing parameters on the resulting system properties. In contrast,

Figure 7 Theoretical prediction (curves) of the effects of the initial radius of hydroxypropyl

methylcellulose–based matrix tablets containing 5% propranolol HCl on the resulting drug release

kinetics in phosphate buffer pH 7.4. The symbols represent independent experimental results,

confirming the theoretical calculations. The initial tablet height is 2.6 mm, the initial tablet radius is

varied from 1.0 to 2.5 to 6.5 mm (corresponding to the upper curve—open circles; middle curve—

filled diamonds; and lower curve—open squares). Source: From Ref. 60.

16 Florence and Siepmann

mechanistic theories are based on real phenomena, such as diffusion, dissolution,

swelling, and/or dissolution/erosion. They allow for the determination of realistic

parameters characterizing the respective dose form, for example, the diffusion coefficient

of the drug within a matrix former or the degradation rate constant of a polymeric

excipient. On the basis of these parameters, further insight into the underlying mass

transport phenomena can be gained. For instance, the relative importance of the involved

processes can be determined.

Because of the large variety of drugs, excipients, and dose forms that are used, there is

no universal mathematical theory valid for all types of systems. In each particular case, it must

be determined which processes are involved and—if possible—which of them are dominant.

This type of analysis must be based on comprehensive experimental results, otherwise, no

reliable conclusions can be drawn. It has to be pointed out that obtaining good agreement

between a fitted theory and a set of experimental results is not a proof for the validity of a

mathematical theory. Fitting a model to experimental results implies that one or more model

parameters are adjusted to obtain the least-deviations “theory-experiment.” Especially if a

significant number of parameters are simultaneously fitted to the same set of experimental

data, caution has to be paid when drawing conclusions. To evaluate the validity of a

mathematical model for a particular type of drug-loaded dose form, the theory should be used

to predict the effects of different formulation and/or processing parameters on the resulting

system properties and these theoretical predictions should be compared with independent

experimental results. Also, care should be taken when applying a mathematical theory to a

specific dose form so that no major assumptions on which the model is based are violated. As

an example, the famous Higuchi equation (10) is unfortunately often misused and applied to

drug delivery systems for which it is not valid.

Yet, there is a significant lack of mechanistic realistic mathematical theories, which

appropriately describe both the physicochemical phenomena occurring within the dose form

and the subsequent fate of the drug within the human body (55). This can at least partially be

explained by the complexity of the resulting set of mathematical equations considering all the

involved physical, chemical, and biological processes (63). Also, a large variety of

phenomena can be of importance in vivo for the fate of the drug, including diffusion and

convection within the extra- and intracellular space, reversible and irreversible binding to

extracellular matrix, drug metabolism, passive and active uptake into living cells (e.g., by

“simple” diffusion and/or by receptor-mediated internalization), release from endolysosomes

into the cytosol of the cells, uptake into the cell nuclei, and uptake/elimination/distribution

from/into the blood stream and/or lymphatic system. Figure 8 shows as an example some of

the processes that can be decisive for the drug upon direct administration into brain tissue.

Importantly, drug transport in vivo can be highly anisotropic (direction dependent), because

the human organism is not one homogeneous mass. Major advances in this research area

allowing for a better understanding of the underlying drug transport mechanisms have been

achieved by the working groups of Nicholson (64) and of Haller and Saltzman (65,66).

However, there is a significant need for comprehensive and mechanistic mathematical

theories relating formulation and processing parameters of dose forms to the resulting drug

concentrations at the site of action and the pharmacodynamic effects of the treatment.

An often underestimated aspect when characterizing dose forms in vitro is the

importance of the type of environment the systems are exposed to. This includes, for

instance, the physical state of the medium (liquid or gel), degree of agitation, pH and

ionic strength of the medium, the maintenance or absence of sink conditions, the

presence/absence of enzymes and/or macrophages, etc. For example, the drug release

patterns from PLGA parenteral controlled drug delivery systems can strongly depend

on the pH of the surrounding environment, because ester hydrolysis is catalyzed by

Pharmaceutics: New Challenges, New Paradigms 17

protons (67). Also, the osmotic pressure of the release medium can be of crucial

importance for the drug release patterns from oral coated dose forms, in which crack

formation is mandatory to allow for drug release. Appropriate mathematical modeling

can be of great help in this perspective if the theory adequately takes into account the

effects of the environmental conditions on the systems’ properties. This allows for an

appropriate correlation of the in vitro and in vivo results and thus for a significantly

facilitated product development and improved safety of the drug treatment.

CONCLUSIONS

There can be no conclusions, only new challenges. This chapter, while it has not covered

the whole gamut of possible topics or even all those described in this book, has attempted

to show the connections between topics in a range of disciplines. It has always been the

strength of pharmaceutics that perhaps it could not be defined, but we believe in its

integrity and its ability to evolve and to have an important holistic view of medicines.

This edition of Modern Pharmaceutics, following on from four editions edited by Gilbert

Figure 8 Schematic presentation of some of the processes that can be involved in drug transport

within human brain tissue, including diffusion and convection through the extracellular spaces,

permeation through capillaries, systemic elimination, internalization, and metabolism. The black

circles represent drug molecules in the interstitial space. Source: From Ref. 63.

18 Florence and Siepmann

Banker and Christopher Rhodes, reflects the continual change and refinement in the

subject and points the way to, and we hope encourages, further research, both applied and

basic for the ultimate benefit of the patient.

REFERENCES

1. Martindale WH, Wescott WW. The Extra Pharmacopoeia. Vol 1, 18th ed. London: H. K. Lewis

& Company, 1924:682–683.

2. Ritchie J. Brief notes of several cases of acute diarrhoea treated with keratin-coated carbolic

acid pills. Lancet 1893; 142:1305–1306.

3. Dumez AG. A contribution to the history of the development of enteric capsules. J Am Pharm

Assoc 1921; 10:372–376. Cited by: Jones BE. The history of the medicinal capsule. In:

Podczeck F, Jones BE, eds. Pharmaceutical Capsules. 2nd ed. London: Pharmaceutical Press,

2004.

4. Gorley JT, Lee CO. A study of enteric coatings. J Am Pharm Assoc 1938; 27:379–384.

5. National Cash Register Company Patent 1953.

6. Kreuter J. Nanoparticles—a historical perspective. Int J Pharm 2007; 331:1–10.

7. Svenson S, Tomalia DA. Dendrimers in biomedical applications: reflections on the field. Adv

Drug Deliv Rev 2005; 57:2106–2129.

8. Peterson DL, Yalkowsky SH. Comparison of two methods for predicting aqueous solubility.

J Chem Inf Comput Sci 2002; 41:1531–1534.

9. Wassvik CM, Holmen AG, Bergstrom CA, et al. Contribution of solid-state properties to the

aqueous solubility of drugs. Eur J Pharm Sci 2006; 29:294–305.

10. Higuchi T. Rate of release of medicaments from ointment bases containing drugs in

suspensions. J Pharm Sci 1961; 50:874–875.

11. Florence AT, Salole EG, eds. Formulation Factors in Adverse Reactions. London: Wright,

1990.

12. Sun SX, Wirtz D. Mechanics of enveloped virus entry into host cells. Biophys J 2006; 90:

L10–L12.

13. Hiestand HEN, Smith DP. Indices of tabletting performance. Powder Technol 1984; 38:145–

159.

14. Tabor D. A simple theory of static and dynamic hardness. Proc R Soc Lond 1948; A192:247–274.

15. Tabor D. The Hardness of Metals. London: Oxford University Press, 1951.

16. Florence AT. Pharmaceutical Nanotechnology: more than size. Ten topics for research. Int J

Pharm 2007; 339:1–2.

17. Florence AT. Nanoparticle flow: implications for drug delivery. In: Torchilin VP, ed.

Nanoparticles as Drug Carriers. London: Imperial College Press, 2006:9–27.

18. Kararli TT. Comparison of the gastro-intestinal anatomy, physiology and biochemistry of

humans and commonly used laboratory animals. Biopharm Drug Dispos 1995; 16:351–380.

19. Bayele H, Sakthivel T, O’Donell T, et al. Versatile peptide dendrimers for nucleic acid delivery.

J Pharm Sci 2005; 94:446–457.

20. Parsegian VA. Van der Waals Forces. Cambridge: Cambridge University Press, 2006.

21. Morrison ID, Ross S. Colloidal Disperse Systems. New York: Wiley-Interscience, 2002:

358–359.

22. Geng Y, Dalheimer P, Cai S, et al. Shape effects of filaments versus spherical particles in flow

and drug delivery. Nat Nanotechnol 2007; 2:249–255.

23. Gaumet M, Vargas A, Gurny R, et al. Nanoparticles for drug delivery@ the need for precision

in reporting particle size parameters. Eur J Pharm Biopharm 2008; 69:1–9.

24. Keck CM, Muller RH. Size analysis of submicron particles by laser diffractometry—90% of the

published measurements are false. Int J Pharm 2008; 355:150–163.

25. Oberdoster G, Oberdoster E, Oberdoster J. Nanotoxicology: an emerging discipline evolving

from studies of ultrafine particles. Environ Health Perspect 2005; 113:823–839.

Pharmaceutics: New Challenges, New Paradigms 19

26. Gander B, Johansen P, Ho N-T, et al. Thermodynamic approach to protein microencapsulation

into poly(D,L-lactide) by spray drying. Int J Pharm 1996; 129:51–61.

27. Gander B, Merkle HP, Nguyen VP, et al. A new thermodynamic model to predict protein

encapsulation efficiency in poly(lactide) microspheres. J Phys Chem 1995; 99:16144–16148.

28. Doublier J-L, Garnier C, Renard D, et al. Protein-polysaccharide intercations. Curr Opin

Colloid Interface Sci 2000; 5:202–214.

29. Florence AT, Jani PU, McCarthy D. Toothpaste and Crohn’s disease. Lancet 1990;

336:1580–1581.

30. Grassian VH, O’Shaughnessy PT, Adamcakova-Dodd A, et al. Inhalation exposure study of

titanium dioxide nanoparticles with a primary particle size of 2–5 nm. Environ Health Perspect

2007; 115:397–402.

31. Baveye P, Laba M. Aggregation and toxicology of titanium dioxide nanoparticles. Environ

Health Perspect 2008; 116:A152.

32. de Gennes PG. Soft Interfaces: The 1994 Dirac Memorial Lecture. Cambridge: Cambridge

University Press, 1997.

33. Scheel M, Seemann R, Brinkmann M, et al. Morphological clues to wet granular pile stability.

Nat Mater 2008; 7:189–193.

34. Callies M, Quere D. On water repellency. Soft Matter 2005; 1:55–61.

35. Krupenkin TN, Taylor JA, Schneider TM, et al. From rolling ball to complete wetting: the

dynamic tuning of liquids on nanostructured surfaces. Langmuir 2004; 20:3824–3827.

36. Florence AT, Mysels KJ. Bursting of soap films VI. The effect of surfactant purity. J Phys

Chem 1974; 78:234–235.

37. Florence AT, Frens G. Aureole profile in bursting soap films. Surface tension and surface

relaxation in rapidly compressed monolayers. J Phys Chem 1972; 76:3024–3029.

38. Dubra A, Paterson C, Dainty C. Double lateral shearing interferometer for the quantitative

measurement of tear film topography. Appl Opt 2005; 44:1101–1119.

39. Balazs AC, Verberg R, Pooley CM, et al. Modelling the flow of complex liquids through

heterogeneous channels. Soft Matter 2005; 1:44–54.

40. Valiullin R, Naumov S, Galvosas P, et al. Exploration of molecular dynamics during transient

sorption of fluids in mesoporous materials. Nature 2006; 443:965–968.

41. Rothen-Rutishauser BM, Kiama SG, Gehr P. A three dimensional cellular model of the human

respiratory tract to study the interaction with particles. Am J Respir Cell Mol Biol 2005;

32:281–289.

42. Briscoe WH, Titmuss S, Tiberg F, et al. Boundary lubrication under water. Nature 2006;

444:191–194.

43. Eggers J. Coupling the large and the small. Nat Phys 2007; 3:145–146.

44. Duez C, Ybert C, Clanet C, et al. Making a splash with water repellancy. Nat Phys 2007;

3:180–183.

45. Grosiman A, Steinberg V. Elastic turbulence in a polymer solution flow. Nature 2000;

405:53–55.

46. Shinbrot T. Drat such custard. Nature 2005; 438:922–923.

47. Wold LE, Dai W, Sesti C, et al. Stem cell therapy for the heart. Congest Heart Fail 2004;

10:293–301.

48. Askari AT, Unzek S, Popovic ZB, et al. Effect of stromal-cell-derived factor 1 on stem cell

homing and tissue regeneration in ischaemic cardiomyopathy. Lancet 2003; 362:697–703.

49. Awad HA, Boivin GP, Dressler MR, et al. Repair of patellar tendon injuries using a cell-

collagen composite. J Orthop Res 2003; 21:420–431.

50. Ueng SW, Lee MS, Lin SS, et al. Development of a biodegradable alginate carrier system for

antibiotics and bone cells. J Orthop Res 2007; 25:62–72.

51. Zhang G, Wang X, Wang Z, et al. A PEGylated fibrin patch for mesenchymal stem cell

delivery. Tissue Eng 2006; 12:9–19.

52. Eggert AAO, Schreurs MW, Boerman OC, et al. Biodistribution and vaccine efficiency of murine

dendritic cells are dependent on the route of administration. Cancer Res 1999; 59:3340–3345.

20 Florence and Siepmann

53. Morse MA, Coleman RE, Akabani G, et al. Migration of human dendritic cells after injection in

patients with metastatic malignancies. Cancer Res 1999; 59:56–58.

54. Tsang L. Legal and ethical status of stem cells as medicinal products. Adv Drug Deliv Rev

2005; 57:1970–1980.

55. Siepmann J, Siepmann F, Florence AT. Local controlled delivery to the brain: mathematical

modelling of the underlying mass transport mechanisms. Int J Pharm 2006; 314:101–119.

56. Siepmann J, Peppas NA. Modeling of drug release from delivery systems based on

hydroxypropyl methylcellulose (HPMC). Adv Drug Deliv Rev 2001; 48:139–157.

57. Narasimhan B. Mathematical models describing polymer dissolution: consequences for drug

delivery. Adv Drug Deliv Rev 2001; 48:195–210.

58. Raman C, Berkland C, Kim K, et al. Modeling small-molecule release from PLG microspheres:

effects of polymer degradation and nonuniform drug distribution. J Control Release 2005;

103:149–158.

59. Siepmann J, Goepferich A. Mathematical modeling of bioerodible, polymeric drug delivery

systems. Adv Drug Deliv Rev 2001; 48:229–247.

60. Siepmann J, Kranz H, Peppas NA, et al. Calculation of the required size and shape of

hydroxypropyl methylcellulose matrices to achieve desired drug release profiles. Int J Pharm

2000; 201:151–164.

61. Siepmann F, Le Brun V, Siepmann J. Drugs acting as plasticizers in polymeric systems: a

quantitative treatment. J Control Release 2006; 115:298–306.

62. Fan LT, Singh SK, eds. Controlled Release. A Quantitative Treatment. Berlin: Springer-Verlag,

1989.

63. Fung LK, Shin M, Tyler B, et al. Chemotherapeutic drugs released from polymers: distribution

of 1,3-bis(2-chloroethyl)-1-nitrosourea in the rat brain. Pharm Res 1996; 13:671–682.

64. Nicholson C. Diffusion and related transport mechanisms in brain tissue. Rep Prog Phys 2001;

64:815–884.

65. Haller MF, Saltzman WM. Localized delivery of proteins in the brain: can transport be

customized? Pharm Res 1998; 15:377–385.

66. Haller MF, Saltzman WM. Nerve growth factor delivery systems. J Control Release 1998;

53:1–6.

67. Lu L, Garcia CA, Mikos AG. In vitro degradation of thin poly(DL-lactic-co-glycolic acid)

films. J Biomed Mater Res 1999; 46:236–244.

Pharmaceutics: New Challenges, New Paradigms 21

References

1 Chapter 1- Pharmaceutics: NewChallenges, New Paradigms

1. Martindale WH, Wescott WW. The Extra Pharmacopoeia. Vol1, 18th ed. London: H. K. Lewis & Company, 1924:682–683.

2. Ritchie J. Brief notes of several cases of acutediarrhoea treated with keratin-coated carbolic acid pills.Lancet 1893; 142:1305–1306.

3. Dumez AG. A contribution to the history of thedevelopment of enteric capsules. J Am Pharm Assoc 1921;10:372–376. Cited by: Jones BE. The history of themedicinal capsule. In: Podczeck F, Jones BE, eds.Pharmaceutical Capsules. 2nd ed. London: PharmaceuticalPress, 2004.

4. Gorley JT, Lee CO. A study of enteric coatings. J AmPharm Assoc 1938; 27:379–384.

5. National Cash Register Company Patent 1953.

6. Kreuter J. Nanoparticles—a historical perspective. Int JPharm 2007; 331:1–10.

7. Svenson S, Tomalia DA. Dendrimers in biomedicalapplications: reflections on the field. Adv Drug Deliv Rev2005; 57:2106–2129.

8. Peterson DL, Yalkowsky SH. Comparison of two methods forpredicting aqueous solubility. J Chem Inf Comput Sci 2002;41:1531–1534.

9. Wassvik CM, Holmen AG, Bergstrom CA, et al. Contributionof solid-state properties to the aqueous solubility ofdrugs. Eur J Pharm Sci 2006; 29:294–305.

10. Higuchi T. Rate of release of medicaments from ointmentbases containing drugs in suspensions. J Pharm Sci 1961;50:874–875.

11. Florence AT, Salole EG, eds. Formulation Factors inAdverse Reactions. London: Wright, 1990.

12. Sun SX, Wirtz D. Mechanics of enveloped virus entryinto host cells. Biophys J 2006; 90: L10–L12.

13. Hiestand HEN, Smith DP. Indices of tabletting

performance. Powder Technol 1984; 38:145– 159.

14. Tabor D. A simple theory of static and dynamichardness. Proc R Soc Lond 1948; A192:247–274.

15. Tabor D. The Hardness of Metals. London: OxfordUniversity Press, 1951.

16. Florence AT. Pharmaceutical Nanotechnology: more thansize. Ten topics for research. Int J Pharm 2007; 339:1–2.

17. Florence AT. Nanoparticle flow: implications for drugdelivery. In: Torchilin VP, ed. Nanoparticles as DrugCarriers. London: Imperial College Press, 2006:9–27.

18. Kararli TT. Comparison of the gastro-intestinalanatomy, physiology and biochemistry of humans and commonlyused laboratory animals. Biopharm Drug Dispos 1995;16:351–380.

19. Bayele H, Sakthivel T, O’Donell T, et al. Versatilepeptide dendrimers for nucleic acid delivery. J Pharm Sci2005; 94:446–457.

20. Parsegian VA. Van der Waals Forces. Cambridge:Cambridge University Press, 2006.

21. Morrison ID, Ross S. Colloidal Disperse Systems. NewYork: Wiley-Interscience, 2002: 358–359.

22. Geng Y, Dalheimer P, Cai S, et al. Shape effects offilaments versus spherical particles in flow and drugdelivery. Nat Nanotechnol 2007; 2:249–255.

23. Gaumet M, Vargas A, Gurny R, et al. Nanoparticles fordrug delivery@ the need for precision in reporting particlesize parameters. Eur J Pharm Biopharm 2008; 69:1–9.

24. Keck CM, Muller RH. Size analysis of submicronparticles by laser diffractometry—90% of the publishedmeasurements are false. Int J Pharm 2008; 355:150–163.

25. Oberdo¨ster G, Oberdo¨ster E, Oberdo¨ster J.Nanotoxicology: an emerging discipline evolving fromstudies of ultrafine particles. Environ Health Perspect2005; 113:823–839. 26. Gander B, Johansen P, Ho N-T, et al.Thermodynamic approach to protein microencapsulation intopoly(D,L-lactide) by spray drying. Int J Pharm 1996;129:51–61. 27. Gander B, Merkle HP, Nguyen VP, et al. A newthermodynamic model to predict protein encapsulation

efficiency in poly(lactide) microspheres. J Phys Chem 1995;99:16144–16148. 28. Doublier J-L, Garnier C, Renard D, etal. Protein-polysaccharide intercations. Curr Opin ColloidInterface Sci 2000; 5:202–214. 29. Florence AT, Jani PU,McCarthy D. Toothpaste and Crohn’s disease. Lancet 1990;336:1580–1581. 30. Grassian VH, O’Shaughnessy PT,Adamcakova-Dodd A, et al. Inhalation exposure study oftitanium dioxide nanoparticles with a primary particle sizeof 2–5 nm. Environ Health Perspect 2007; 115:397–402. 31.Baveye P, Laba M. Aggregation and toxicology of titaniumdioxide nanoparticles. Environ Health Perspect 2008;116:A152. 32. de Gennes PG. Soft Interfaces: The 1994 DiracMemorial Lecture. Cambridge: Cambridge University Press,1997. 33. Scheel M, Seemann R, Brinkmann M, et al.Morphological clues to wet granular pile stability. NatMater 2008; 7:189–193. 34. Callies M, Que´re´ D. On waterrepellency. Soft Matter 2005; 1:55–61. 35. Krupenkin TN,Taylor JA, Schneider TM, et al. From rolling ball tocomplete wetting: the dynamic tuning of liquids onnanostructured surfaces. Langmuir 2004; 20:3824–3827. 36.Florence AT, Mysels KJ. Bursting of soap films VI. Theeffect of surfactant purity. J Phys Chem 1974; 78:234–235.37. Florence AT, Frens G. Aureole profile in bursting soapfilms. Surface tension and surface relaxation in rapidlycompressed monolayers. J Phys Chem 1972; 76:3024–3029. 38.Dubra A, Paterson C, Dainty C. Double lateral shearinginterferometer for the quantitative measurement of tearfilm topography. Appl Opt 2005; 44:1101–1119. 39. BalazsAC, Verberg R, Pooley CM, et al. Modelling the flow ofcomplex liquids through heterogeneous channels. Soft Matter2005; 1:44–54. 40. Valiullin R, Naumov S, Galvosas P, etal. Exploration of molecular dynamics during transientsorption of fluids in mesoporous materials. Nature 2006;443:965–968. 41. Rothen-Rutishauser BM, Kiama SG, Gehr P. Athree dimensional cellular model of the human respiratorytract to study the interaction with particles. Am J RespirCell Mol Biol 2005; 32:281–289. 42. Briscoe WH, Titmuss S,Tiberg F, et al. Boundary lubrication under water. Nature2006; 444:191–194. 43. Eggers J. Coupling the large and thesmall. Nat Phys 2007; 3:145–146. 44. Duez C, Ybert C,Clanet C, et al. Making a splash with water repellancy. NatPhys 2007; 3:180–183. 45. Grosiman A, Steinberg V. Elasticturbulence in a polymer solution flow. Nature 2000;405:53–55. 46. Shinbrot T. Drat such custard. Nature 2005;438:922–923. 47. Wold LE, Dai W, Sesti C, et al. Stem celltherapy for the heart. Congest Heart Fail 2004; 10:293–301.48. Askari AT, Unzek S, Popovic ZB, et al. Effect ofstromal-cell-derived factor 1 on stem cell homing andtissue regeneration in ischaemic cardiomyopathy. Lancet2003; 362:697–703. 49. Awad HA, Boivin GP, Dressler MR, et

al. Repair of patellar tendon injuries using a cellcollagencomposite. J Orthop Res 2003; 21:420–431. 50. Ueng SW, LeeMS, Lin SS, et al. Development of a biodegradable alginatecarrier system for antibiotics and bone cells. J Orthop Res2007; 25:62–72. 51. Zhang G, Wang X, Wang Z, et al. APEGylated fibrin patch for mesenchymal stem cell delivery.Tissue Eng 2006; 12:9–19. 52. Eggert AAO, Schreurs MW,Boerman OC, et al. Biodistribution and vaccine efficiencyof murine dendritic cells are dependent on the route ofadministration. Cancer Res 1999; 59:3340–3345.

53. Morse MA, Coleman RE, Akabani G, et al. Migration ofhuman dendritic cells after injection in patients withmetastatic malignancies. Cancer Res 1999; 59:56–58.

54. Tsang L. Legal and ethical status of stem cells asmedicinal products. Adv Drug Deliv Rev 2005; 57:1970–1980.

55. Siepmann J, Siepmann F, Florence AT. Local controlleddelivery to the brain: mathematical modelling of theunderlying mass transport mechanisms. Int J Pharm 2006;314:101–119.

56. Siepmann J, Peppas NA. Modeling of drug release fromdelivery systems based on hydroxypropyl methylcellulose(HPMC). Adv Drug Deliv Rev 2001; 48:139–157.

57. Narasimhan B. Mathematical models describing polymerdissolution: consequences for drug delivery. Adv Drug DelivRev 2001; 48:195–210.

58. Raman C, Berkland C, Kim K, et al. Modelingsmall-molecule release from PLG microspheres: effects ofpolymer degradation and nonuniform drug distribution. JControl Release 2005; 103:149–158.

59. Siepmann J, Goepferich A. Mathematical modeling ofbioerodible, polymeric drug delivery systems. Adv DrugDeliv Rev 2001; 48:229–247.

60. Siepmann J, Kranz H, Peppas NA, et al. Calculation ofthe required size and shape of hydroxypropylmethylcellulose matrices to achieve desired drug releaseprofiles. Int J Pharm 2000; 201:151–164.

61. Siepmann F, Le Brun V, Siepmann J. Drugs acting asplasticizers in polymeric systems: a quantitativetreatment. J Control Release 2006; 115:298–306.

62. Fan LT, Singh SK, eds. Controlled Release. A

Quantitative Treatment. Berlin: Springer-Verlag, 1989.

63. Fung LK, Shin M, Tyler B, et al. Chemotherapeutic drugsreleased from polymers: distribution of1,3-bis(2-chloroethyl)-1-nitrosourea in the rat brain.Pharm Res 1996; 13:671–682.

64. Nicholson C. Diffusion and related transport mechanismsin brain tissue. Rep Prog Phys 2001; 64:815–884.

65. Haller MF, Saltzman WM. Localized delivery of proteinsin the brain: can transport be customized? Pharm Res 1998;15:377–385.

66. Haller MF, Saltzman WM. Nerve growth factor deliverysystems. J Control Release 1998; 53:1–6.

67. Lu L, Garcia CA, Mikos AG. In vitro degradation of thinpoly(DL-lactic-co-glycolic acid) films. J Biomed Mater Res1999; 46:236–244.

2 Chapter 2- Principles of Drug Absorption

11. Danielli JF, Davson H. A contribution to the theory ofpermeability of thin films. J Cell Comp Physiol 1935;5:495–508.

12. Davson H, Danieli JF. The Permeability of NaturalMembranes. 2nd ed. New York: Cambridge University Press,1952.

13. Junqueira LC, Carneiro J, Kelley RO. Basic Histology.6th ed. East Norwalk, CT: Appleton and Lange, 1989:32.

14. Hober R, Hober J. Experiments on the absorption oforganic solutes in the small intestine of rats. J Cell CompPhysiol 1937; 10:401–422.

15. Schanker LS. Absorption of drugs from the rat colon. JPharmacol Exp Ther 1959; 126:283– 290.

16. Wright EM, Diamond JM. Patterns of non-electrolytepermeability. Proc R Soc Lond B Biol Sci 1969; 172:203–225.

17. Wright EM, Diamond JM. Patterns of non-electrolytepermeability. Proc R Soc Lond B Biol Sci 1969; 172:227–271.

18. Diamond JM, Wright EM. Molecular forces governingnonelectrolyte permeation through cell membranes. Proc RSoc Lond B Biol Sci 1969; 172:273–316.

19. vande Waterbeemd H, Lennernas H, Artursson P, eds. DrugBioavailability—Estimation of Solubility, Permeability,Absorption and Bioavailability, Weinheim, Germany:Wiley-VCH, 2003.

20. Lipinski CA, Lombardo F, Dominy BW, et al. Experimentaland computational approaches to estimate solubility andpermeability in drug discovery and development settings.Adv Drug Deliv Rev 1997; 23:3–25.

21. Faulkner JM. Nicotine posioning by absorption throughthe skin. J Am Med Assoc 1933; 100:1664–1665.

22. Travell J. The influence of the hydrogen ionconcentration on the absorption of alkaloids from thestomach. J Pharmacol Exp Ther 1940; 69:21–33.

23. Jacobs MH. Some aspects of cell permeability to weakelectrolytes. Cold Spring Harbor Symp Quant Biol 1940;8:30–399.

24. Shore PA, Brodie BB, Hogben CAM. The gastric secretionof drugs: a pH partition hypothesis. J Pharmacol Exp Ther1957; 119:361–369.

25. Schanker LS, Shore PA, Brodie BB, et al. Absorption ofdrugs from the stomach. I. The rat. J Pharmacol Exp Ther1957; 120:528–539.

26. Hogben CAM, Schanker LA, Tocco DJ, et al. Absorption ofdrugs from the stomach. II. The human. J Pharmacol Exp Ther1957; 120:540–545.

27. Schanker LS, Tocco DJ, Brodie BB, et al. Absorption ofdrugs from the rat small intestine. J Pharmacol Exp Ther1958; 123:81–87.

28. Hogben CAM, Tocco DJ, Brodie BB, et al. On themechanism of intestinal absorption of drugs. J PharmacolExp Ther 1959; 125:275–282.

29. Doluisio JT, Billups NF, Dittert LW, et al. Drugabsorption. I. An in situ rat gut technique yieldingrealistic absorption rates. J Pharm Sci 1969; 58:1196–1200.

30. Benet LZ. Biopharmaceutics as a basis fro the design ofdrug products. In: Ariens EJ, ed., Drug Design. Vol 4. NewYork: Academic Press, 1973:26–28.

31. Riggs DS. The Mathematical Approach to PhysiologicalProblems. Baltimore: Williams & Wilkins, 1963:181–185.

32. Flynn GL, Yalkowsky SK, Roseman TJ. Mass transportphenomena and models: theoretical concepts. J Pharm Sci1974; 63:479–510.

33. Mayersohn M. Drug absorption. J Clin Pharmacol 1987;27:634–638.

34. He Y-L, Murby S, Warhurst G, et al. Species differencesin size discrimination in the paracellular pathwayreflected by oral bioavailability of poly (ethylene glycol)and D-peptides. J Pharm Sci 1998; 87:626–633.

35. Johnson PH, Frank D, Costantino HR. Discovery of tightjunction modulators: significance fro drug development anddelivery. Drug Discov Today 2008; 13:261–267.

36. Evered DF, Randall HG. The absorption of amino acidderivatives of nitrogen mustard from rat intestine in

vitro. Biochem Pharmacol 1962; 11:371–376. 37. Levy G,Jusko WJ. Factors affecting the absorption of riboflavin inman. J Pharm Sci 1966; 55: 285–289. 38. Mayersohn M.Ascorbic acid absorption in man-pharmacokineticimplications. Eur J Pharmacol 1972; 19:140–142. 39.Gillespie NG, Mena I, Cotzias GC, et al. Diets affectingtreatment of Parkinsonism with levodopa. J Am Diet Assoc1973; 62:525–528. 40. Wade DN, Mearrick PT, Morris JL.Active transport of L-dopa in the intestine. Nature 1973;242: 463–465. 41. van Woert MH. Phenylalanine and tyrosinemetabolism in Parkinson’s disease treated with levodopa.Clin Pharmacol Ther 1971; 12:368–375. 42. Lennernas H,Nilsson D, Aquilonius S-M, et al. The effect of L-leucineon the absorption of levodopa, studied by regional jejunalperfusion in man. Br J Clin Pharmacol 1993; 35: 343–250.43. Zimmerman J. Methotrexate transport in the humanintestine. Biochem Pharmacol 1992; 43: 2377–2383. 44.Westphal J-F, Trouvin J-H, Deslandes A, et al. Nifedipineenhances amoxicillin absorption kinetics andbioavailability in human. J Pharmacol Exp Ther 1990;255:312–317. 45. Duverne C, Bouten A, Deslandes A, et al.Modification of cifixime bioavailability by nifedipine inhumans: involvement of the dipeptide carrier system.Antimirob Agents Chemother 1992; 36:2462–2467. 46. StewartBH, Kugler AR, Thompson PR, et al. A saturable transportmechanism in the intestinal absorption of gabapentin is theunderlying cause of the lack of proportionality betweenincreasing dose and drug levels in plasma. Pharm Res 1993;10:276–281. 47. Gottesman II, Pastan I. Biochemistry ofmultidrug resistance mediated by the multidrug transporter.Annu Rev Biochem 1993; 62:385–427. 48. Tanigawara Y. Roleof p-glycoprotein in drug disposition. Ther Drug Monit2000; 22: 137–140. 49. Asperen JV, Tellingen OV, BeijnenJH. The pharmacological role of p-glycoprotein in theintestinal epithelium. Pharmacol Res 1998; 37:429–435. 50.Zhang Y, Benet LZ. The gut as a barrier to drugabsorption-combined role of cytochrome P450 3A andP-glycoprotein. Clin Pharmacokin 2001; 40:159–168. 51.Mizuno N, Niwa T, Yotsumoto Y, et al. Impact of drugtransporter studies on drug discovery and development.Pharmacol Rev 2003; 55:425–461. 52. Aszalos A. Drug-druginteractions affected by the transporter proteinP-glycoprotein (ABCB1, MDR1). I. Preclinical aspects. DrugDiscov Today 2007; 12:833–837. 53. Aszalos A. Drug-druginteractions affected by the transporter proteinP-glycoprotein (ABCB1, MDR1). II.Clinical aspects. DrugDiscov Today 2007; 12:838–843. 54. Szakacs G, Varadi A,Ozvegy-Laczka C, et al. The role of ABC transporters indrug absorption, distribution, metabolism, excretion andtoxicity (ADME-Tox). Drug Discov Today 2008; 13:379–393.

55. Wacher J, Salphati L, Benet LZ. Active secretion andenterocyte drug metabolism barriers to drug absorption. AdvDrug Deliv Rev 1996; 20:99–112. 56. Sparreboom A, vanAsperen J, Mayer U, et al. Limited oral bioavailability oftaxol and active epithelial secretion of paclitaxel (Taxol)caused by p-glycoprotein in the intestine. Proc Natl AcadSci U S A 1997; 94:2031–2035. 57. Westphal K, WeinbrennerA, Giessmann T, et al. Oral bioavailability of digoxin isenhanced by talinolol: evidence for involvement ofintestinal p-glycoprotein. Clin Pharmacol Ther 2000; 68:6–12. 58. Dressman JB, Amidon GL, Reppas C, et al.Dissolution testing as a prognostic tool for oral drugabsorption: immediate release dosage forms. Pharm Res 1998;15:11–22. 59. Bates TR, Young JM, Wu CM, et al.pH-dependent dissolution rate of nitrofurantoin fromcommercial suspensions, tablets and capsules. J Pharm Sci1974; 63:643–645. 60. Levy G, Sahli BA. Comparison of thegastrointestinal absorption of aluminum acetylsalicylateand acetylsalicylic acid in man. J Pharm Sci 1962;51:58–62.

61. Levy G, Procknal JA. Unusual dissolution behavior dueto film formation. J Pharm Sci 1962; 51:294.

62. Blezek CE, Lach JL, Guillory JK. Some dissolutionaspects of ferrous sulfate tablets. Am J Hosp Pharm 1970;27:533–539.

63. Crounse RG. Human Pharmacology of griseofulvin. Theeffect of fat intake on gastrointestinal absorption. JInvest Dermatol 1961; 37:529–533.

64. Kraml M, Dubuc J, Beall D. Gastrointestinal absorptionof griseofulvin. I. Effect of particle size, addition ofsurfactants and corn oil on the level of griseofulvin inthe serum of rats. Can J Biochem Physiol 1962;40:1449–1451.

65. Moes AJ. Gastroretentive dosage forms. Crit Rev TherDrug Carrier Syst 1993; 10:143–195.

66. Minami H, McCallum RW. The physiology andpathophysiology of gastric emptying in humans.Gastroenterol 1984; 86:1592–1610.

67. Renwick AG, Ahsan CH, Challenor VF, et al. Theinfluence of posture on the pharmacokinetics of orallyadministered nifedipine. Br J Clin Pharmacol 1992;34:332–336.

68. Hopkins A. The pattern of gastric emptying: a new viewof old results J Physiol 1966; 182: 144–149.

69. Elashoff JD, Reedy TJ, Meyer JH. Analysis of gastricemptying data. Gastroenterol 1982; 83: 1306–1312.

70. Blythe RH, Grass GM, MacDonnell DR. The formulation andevaluation of enteric coated aspirin tablets. Am J Pharm1959; 131:206–216.

71. Alpsten M, Bogentoft C, Ekenved G, et al. Gastricemptying and absorption of acetylsalicylic acidadministered as enteric-coated micro-granules. Eur J ClinPharmacol 1982; 22:57–61.

72. Welling P. Effects of food on drug absorption. Annu RevNutr 1996; 16:383–415.

73. Fleisher D, Li C, Zhou Y, et al. Drug, meal andformulation interactions influencing drug absorption afteroral administration. Clin Pharmacokinet 1999; 36:233–254.

74. Charman WN, Porter CJH, Mithani S, et al.Physicochemical and physiological mechanisms for theeffects of food on drug absorption: the role of lipids andpH. J Pharm Sci 1997; 86:269–282.

75. Jones HM, Parrott N, Ohlenbusch G, et al. Predictingpharmacokinetic food effects using biorelevant solubilitymedia and physiologically based modeling. ClinPharmacokinet 2006; 45: 1213–1226.

76. Gu C-H, Li H, Levons J, et al. Predicting effect offood on extent of drug absorption based on physicochemicalproperties. Pharm Res 2007; 24:1118–1130.

77. Hendeles L, Weinberger M, Milavetz G, et al.Food-induced ‘dose-dumping’ from a once-aday theophyllineproduct as a cause of theophylline toxicity. Chest 1985;87:758–765.

78. Gai MN, Isla A, Andonaegui MT, et al. Evaluation of theeffect of 3 different diets on the bioavailability of 2sustained release theophylline matrix tablets. Int J ClinPharmacol Ther 1997; 35:565–571.

79. Wu C-Y, Benet LZ. Predicting drug disposition viaapplication of BCS: transport/absorption/ eliminationinterplay and development of a biopharmaceutical drugdisposition classification system. Pharm Res 2005;

22:11–23.

80. Custodio JM, Wu C-Y, Benet LZ. Predicting drugdisposition, absorption/elimination/ transporter interplayand the role of food on drug absorption. Adv Drug Deliv Rev2008; 60: 717–733.

81. Singh BN. A quantitative approach to probe thedependence and correlation of food-effect with aqueoussolubility, dose/solubility ratio, and partitioncoefficient (log D) for orally active drugs administered asimmediate-release formulations. Drug Dev Res 2005;65:55–75.

82. Bates TR, Sequeira JA, Tembo AV. Effect of food onnitrofurantoin absorption. Clin Pharmacol Ther 1974;16:63–68.

83. Rosenberg HA, Bates TR. The influence of food onnitrofurantoin bioavailability. Clin Pharmacol Ther 1976;20:227–232.

84. Yung S, Mayersohn M, Robinson JB. Ascorbic acidabsorption in man: influence of divided dose and food. LifeSci 1981; 28:2505–2511.

85. Meuhlberger CW. The physiological action of alcohol. JAm Med Assoc 1958; 167: 1842–1845. 86. Horowitz M, MaddoxA, Bochner M, et al. Relationships between gastric emptyingof solid and caloric liquid meals and alcohol absorption.Am J Physiol 1989; 257:G291–G298. 87. Jones AW, Jonsson KA,Kechagias S. Effect of high-fat, high-protein, andhigh-carbohydrate meals on the pharmacokinetics of a smalldose of ethanol. Br J Clin Pharmacol 1997; 44: 521–526. 88.Fermaglich J, O’Doherty S. Effect of gastric motility onlevodopa. Dis Nerv Syst 1972; 33:624–625. 89. Heading RC,Nimmo J, Prescott LF, et al. The dependence of paracetamolabsorption on the rate of gastric emptying. Br J Pharmacol1973; 47:415–421. 90. Prescott LF, Nimmo WS, Heading RC.Drug absorption interactions. In: Grahame-Smith DG, ed.Drug Interactions. Baltimore: Macmillan, 1977:45. 91.Channer KS, Virjee J. Effect of posture and drink volume onthe swallowing of capsules. Br Med J 1982; 285:1702. 92.Hey H, Jorgenson F, Sorensen K, et al. Oesophageal transitof six commonly used tablets and capsules. Br Med J 1982;285:171–179. 93. Channer KS, Roberts CJC. Effect of delayedesophageal transit on acetaminophen absorption. ClinPharmacol Ther 1985; 37:72–76. 94. Davis SS, Hardy JG, FaraJW. Transit of pharmaceutical dosage forms through thesmall intestine. Gut 1986; 27:886–892. 95. Madsen JL.

Effects of gender, age, and body mass index ongastrointestinal transit times. Dig Dis Sci 1992;37:1548–1553. 96. Price JMC, Davis SS, Wilding IR. Theeffect of fibre on gastrointestinal transit times invegetarians and omnivores. Int J Pharm 1991; 76:123–141.97. Pirk F. Changes in the motility of the small intestinein digestive disorders. Gut 1967; 8: 486–490. 98. GuytonAC. Basic Human Physiology: Normal Functions and Mechanismsof Disease. Philadelphia: W B Saunders, 1971:428. 99. ParryE, Shields R, Turnbull AC. Transit time in the smallintestine in pregnancy. J Obstet Gynaecol 1970; 77:900–901.100. Metcalf AM, Phillips SF, Zinsmeister AR, et al.Simplified assessment of segmental colonic transit.Gastroenterology 1987; 92:40–47. 101. Watts PJ, Barrow L,Steed KP, et al. The transit rate of different sized modeldosage forms through the human colon and the effects of alactulose-induced catharsis. Int J Pharm 1992; 87: 215–221.102. Akin DA, Davis SS, Sparrow RA, et al. Colonic transitof different sized tablets in healthy subjects. J ControlRelease 1993; 23:147–156. 103. Price JMC, Davis SS, SparrowRA, et al. The effect of meal composition on thegastrocolonic response: implications for drug delivery tothe colon. Pharm Res 1993; 10:722–726. 104. McDougall CJ,Wong R, Scudera P, et al. Colonic mucosal pH in humans. DigDis Sci 1993; 38: 542–545. 105. Friend DR. Colon-specificdrug delivery. Adv Drug Deliv Rev 1991; 7:149–199. 106.Wilding I. Site-specific drug delivery in thegastrointestinal tract. Crit Rev Ther Drug Carrier Syst2000; 17:557–620. 107. Antonin KH, Saano V, Bleck P, et al.Colonic absorption of human calcitonin in man. Clin Sci1992; 83:627–631. 108. Williams MF, Dukes GF, Heizer W, etal. Influence of gastrointestinal site of drug delivery onthe absorption characteristics of ranitidine. Pharm Res1992; 9:1190–1194. 109. Chan KKH, Buch A, Glazer RD, et al.Site-differential gastrointestinal absorption of benazeprilhydrochloride in health volunteers. Pharm Res 1994;11:432–437. 110. d’Agay-Abensour L, Fjellestad-Paulsen A,Hoglund P, et al. Absolute bioavailability of an aqueoussolution of 1-deamino-8-D-arginine vasopressin fromdifferent regions of the gastrointestinal tract in man. EurJ Clin Pharmacol 1993; 44:473–476. 111. Warner PE, BrouwerKLR, Hussey EK, et al. Sumatriptan absorption fromdifferent regions of the human gastrointestinal tract.Pharm Res 1995; 12:138–143.

112. De Boer AG, Moolenaar F, de Leede LGJ, et al. Rectaldrug administration: clinical pharmacokineticconsiderations. Clin Pharmacokinet 1982; 7:285–311.

113. Winne D. Formal kinetics of water and solute

absorption with regard to intestinal blood flow. J TheorBiol 1970; 2:1–18.

114. Winne D, Remischovsky J. Intestinal blood flow andabsorption of nondissociable substances. J Pharm Pharmacol1970; 22:640–641.

115. Crouthamel WG, Diamond L, Dittert LW, et al. Drugabsorption. VII. Influence of mesenteric blood flow onintestinal drug absorption in dogs. J Pharm Sci 1975;64:664–671.

116. Rowland M, Riegelman S, Harris PA, et al. Absorptionkinetics of aspirin in man following oral administration ofan aqueous solution. J Pharm Sci 1972; 61:379–385.

117. Kruger-Thiemer E. Pharmacokinetics anddose-concentration relationships. In: Ariens EJ, ed.Physico-Chemical Aspects of Drug Action. Elmsford, NY:Pergamon Press, 1968:63–113.

118. Oliver GC, Tazman R, Frederickson R. Influence ofcongestive heart failure on digoxin level. In: Storstein O,ed. Symposium on Digitalis. Oslo: Gyldendal Norsk Forlag,1973:336–347.

119. Benowitz NL. Effects of cardiac disease onpharmacokinetics: pathophysiologic considerations. In:Benet LZ, Massoud N, Gainbertoglio JG, eds.Pharmacokinetics Basis for Drug Treatment. New York: RavenPress, 1984:89–103.

120. Price KE, Zolli Z Jr., Atkinson JC, et al. Antibioticinhibitors. I. The effect of certain milk constituents.Antibiot Chemother 1957; 7:672–688.

121. Price KE, Zolli Z Jr., Atkinson JC, et al. Antibioticinhibitors. II. Studies on the inhibitory action ofselected divalent cations for oxytetracyctine. AntibiotChemother 1957; 7:689–701.

122. Scheiner J, Altemeier WA. Experimental study offactors inhibiting absorption and effective therapeuticlevels of declomycin. Surg Gynecol Obstet 1962; 114:9–14.

123. Neuvonen PJ, Turakka H. Inhibitory effect of variousiron salts on the absorption of tetracycline in man. Eur JClin Pharmacol 1974; 7:357–360.

124. Riegelman S, Crowell WJ. The kinetics of rectal

absorption. II. The absorption of anions. J Am Pharm Assoc(Scientific Edition) 1958; 47:123–127.

125. Riegelman S, Crowell WJ. The kinetics of rectalabsorption. III. The absorption of undissociated molecules.J Am Pharm Assoc (Scientific Edition) 1958; 47:127–133.

126. Kakemi K, Arita T, Muranishi S. Absorption andexcretion of drugs. XXVII. Effect of nonionicsurface-active agents on rectal absorption of sulfonamides.Chem Pharm Bull (Tokyo) 1965; 13:976–985.

127. Sorby DL. Effect of adsorbents on drug absorption. I.Modification of promazine absorption by activatedattapulgite and activated charcoal. J Pharm Sci 1965;54:677–683.

128. Wagner JG. Design and data analysis ofbiopharmaceutical studies in man. Can J Pharm Sci 1966;1:55–68.

129. Abruzzo CW, Macasieb T, Weinfeld R, et al. Changes inthe oral absorption characteristics in man of dipotassiumclorasepate at normal and elevated gastric pH. JPharmacokinet Biopharm 1977; 5:377–390.

130. Galetin A, Hinton LK, Burt H, et al. Maximalinhibition of intestinal first-pass metabolism as apragmatic indicator of intestinal contribution to thedrug-drug interactions for CYP3A4 cleared drugs. Curr DrugMetab 2007; 8:685–693.

131. Rivera-Calimlim L, Dujovne CA, Morgan JP, et al.Absorption and metabolism of L-dopa by the human stomach.Eur J Clin Invest 1971; 1:313–320.

132. Fleckenstein L, Mundy GR, Horovitz RA, et al. Sodiumsalicylamide: relative bioavailability and sujectiveeffects. Clin Pharmacol Ther 1976; 19:451–458.

133. Levy G, Matsuzawa T. Pharmacokinetics of salicylamidein man. J Pharmacol Ther 1967; 156: 285–293.

134. Frezza M, Di Padova C, Pozzato G, et al. High bloodalcohol levels in women: the rold of decreased gastricalcohol dehydrogenase and first-pass metabolism. N Engl JMed 1990; 322: 95–99.

135. Seitz HK, Egerer G, Simanowski UA, et al. Humangastric alcohol dehydrogenase activity: effect of age, sex

and alcoholism. Gut 1993; 34:1433–1437. 136. Bailey DG,Spence JD, Munoz C, et al. Interaction of citrus juiceswith felodipine and nifedipine. Lancet 1991; 337:268–269.137. Hall SD, Thummel KE, Watkins PB, et al. Molecular andphysical mechanisms of first-pass extraction. Drug MetabDispos 1999; 27:161–166. 138. Bailey DG, Arnold JMO, SpenceJD. Inhibitors in the diet: grapefruit juice-druginteractions. In: Levy RH, Thummel KE, Trager WE, et al.,eds Metabolic Drug Interactions: New York: LippincottWilliams & Wilkins, 2000:661–667. 139. Schmeidlin-Ren P,Edwards DJ, Fitzsimmons ME, et al. Mechanisms of enhancedoral availability of CYP3A4 substrates by grapefruitconstituents: decreased enterocyte CYP3A4 concentration andmechanism-based inactivation by furanocoumarins. Drug MetabDispos 1997; 25:1228–1233. 140. Dresser GK, Bailey DG,Carruthers SG. Grapefruit juice-felodipine interaction inthe elderly. Clin Pharmacol Ther 2000; 68:28–34. 141. DurrD, Stieger B, Kullak-Ublick GA, et al. St. John’s wortinduces intestinal p-glycoprotein/ MDR1 and intestinal andhepatic CYP3A45. Clin Pharmacol Ther 2000; 68:598–604. 142.Smith RL. The role of the gut flora in the conversion ofinactive compounds to active metabolites. In: Aldridge WN,ed. A Symposium on Mechanisms of Toxicity. New York:Macmillan, 1971:228–244. 143. Kramer PA, Chapron DJ, BensonJ, et al. Tetracycline absorption in elderly patients withachlorhydria. Clin Pharmacol Ther 1978; 23:467–472. 144.Ochs HR, Greenblatt DJ, Dengler HJ. Absorption of oraltetracycline in patients with BillrothII gastrectomy. JPharmacokinet Biopharm 1978; 6:295–303. 145. Levy G,MacGillivray MH, Procknal JA. Riboflavin absorption inchildren with thyroid disorders. Pediatrics 1972;50:896–900. 146. Prescott LF. Gastrointestinal absorptionof drugs. Med Clin N Am 1974; 58:907–916. 147. Jusko WJ,Conti DR, Molson A, et al. Digoxin absorption from tabletsand elixir: the effect of radiation-induced malabsorption.JAMA 1974; 230:1554–1555. 148. Sokol GH, Greenblatt DJ,Lloyd BL, et al. Effect of abdominal radiation therapy ondrug absorption in humans. J Clin Pharmacol 1978; 18:388–396. 149. Heizer WD, Smith TW, Goldfinger SE.Absorption of digoxin in patients with malabsorptionsyndromes. N Engl J Med 1971; 285:257–259. 150. Davis AE,Pirola RC. Absorption of phenoxymethyl penicillin inpatients with steatorrhea. Austrelas Ann Med 1968;17:63–65. 151. Nelson JD, Shelton S, Kusmiesz HT, et al.Absorption of ampicillin and nalidixic acid in infants andchildren with acute shigellosis. Clin Pharmacol Ther 1972;13:879–886. 152. Severijnen R, Bayat N, Bakker H, et al.Enteral drug absorption in patients with short small bowel.Clin Pharmcokinet 2004; 43:951–962. 153. Kampmann JP, KleinH, Lumholtz B, et al. Ampicillin and propylthiouracil

pharmacokinetics in intestinal bypass patients followed upto a year after operation. Clin Pharmacokinet 1984; 9:168–176. 154. Jusko WJ, Khanna N, Levy G, et al. Riboflavinabsorption and excretion in the neonate. Pediatrics 1970;45:945–949. 155. Mayersohn M. Special pharmacokineticconsiderations in the elderly. In: Evans WE, Schentag JJ,Jusko WJ, eds. Applied Pharmacokinetics: Principles ofTherapeutic Drug Monitoring. 3rd ed. Vancouver, WA: AppliedTherapeutics, 1992:9.1–9.43. 156. Mayersohn M.Pharmacokinetics in the elderly. Environ Health Perspect1994; 102(suppl 11): 119–124. 157. Mayersohn M. The “xylosetest” to assess gastrointestinal absorption in the elderly:a pharmacokinetic evaluation of the literature. J Gerontol1982; 37:300–305. 158. Johnson SL, Mayersohn M, Conrad KA.Gastrointestinal absorption as a function of age: xyloseabsorption in healthy adult subjects. Clin Pharmacol Ther1985; 38:331–335. 159. Russell TL, Berardi RR, Barnett JL,et al. pH-related changes in the absorption of dipyridamolein the elderly. Pharm Res 1994; 11:136–143.

4 Chapter 4- Factors Influencing OralDrug Absorption and Drug Availability

1. Bachrach WH. Physiology and pathologic physiology of thestomach. Ciba Clin Symp 1959; 11: 1–28.

2. Davenport HW. Gastric digestion and emptying:absorption. In: Davenport HW, ed. Physiology of theDigestive Tract. 3rd ed. Chicago: Year Book MedicalPublishers, 1971:163–171.

3. Benet LZ, Hoener B. Pathological limitations in theapplication of rate control systems. In: Prescott L, ed.Proceedings of the 2nd International Conference on DrugAbsorption: Rate Control in Drug Therapy. Edinburgh:Churchill-Livingstone, 1983:155–165.

4. McConnell EL, Fadda HM, Basit AW. Gut instincts:explorations in intestinal physiology and drug delivery.Int J Pharm 2008; 364:213–226.

5. Tuleu C, Basit AW, Waddington WA, et al. Colonicdelivery of 4-aminosalicylic acid usingamylose-ethylcellulose-coated hydroxypropylmethylcellulosecapsules. Aliment Pharmacol Ther 2002; 16:1771–1779.

6. Welling PG. Effect of food on drug absorption. Annu RevNutr 1996; 16:383–415.

7. Zhou XJ, Lloyd DM, Chao GC, et al. Absence of foodeffect on the pharmacokinetics of telbivudine followingoral administration in healthy subjects. J Clin Pharmacol2006; 46:275–281.

8. Paulson, SK, Vaughn MB, Jessen SM, et al.Pharmacokinetics of celecoxib after oral administration indogs and humans: effect of food and site of absorption. JPharmacol Exp Ther 2001; 297:638–645.

9. Welling PG, Huang H, Hewitt PF, et al. Bioavailabilityof erythromycin stearate: influence of food and fluidvolume. J Pharm Sci 1978; 67:764–766.

10. Bates TR, Sequeira JA, Tembo AV. Effect of food onnitrofurantoin absorption. Clin Pharmacol Ther 1974;16:63–68.

11. Schmidt LE, Dalhoff K. Food-drug interactions. Drugs2002; 62:1481–1502.

12. Osman MA, Ptael RB, Schuna A, et al. Reduction in oralpenicillamine absorption by food, antacid, and ferroussulfate. Clin Pharmacol Ther 1983; 33:465–470.

13. Schuna A, Osman MA, Patel RB, et al. Influence of foodon the bioavailability of penicillamine. J Rheumatol 1983;10:95–97. 14. El-Kommos ME, Saleh GA, El-Gizawi SM, et al.Spectrofluorometric determination of certain quinoloneantibacterials using metal chelation. Talanta 2003;60:1033–1050. 15. Fara JW. Physiological limitations:gastric emptying and transit of dosage forms. In: L.Prescott, ed. Proceedings of the 2nd InternationalConference on drug Absorption, Rate Control in DrugTherapy, Edinburgh, 1983:144–150. 16. Dooley CP, Di LorenzoC, Valenzuela JE. Variability of migrating motor complex inhumans. Dig Dis Sci 1992; 37:723–728. 17. Manninen V,Apajalahti A, Melin J, et al. Altered absorption of digoxinin patients given propantheline and metoclopramide. Lancet1973; 1:398–400. 18. Regardh CG, Lundborg P, Persson BA.The effect of antacid, metoclopramide and propantheline onthe bioavailability of metoprolol and atenolol. BiopharmDrug Dispos 1981; 2:79–87. 19. Antonioli JA, Schelling JL,Steininger E, et al. Effect of gastrectomy and of ananticholinergic drug on the gastrointestinal absorption ofa sulfonamide in man. Int J Clin Pharmacol 1971; 5:212–215. 20. Sousa T, Paterson R, Moore V, et al. Thegastrointestinal microbiota as a site for thebiotransformation of drugs. Int J Pharm 2008; 362:1–25. 21.Noyes AA, Whitney WR. Ueber die Aufloesungsgeschwindigkeitvon festen Stoffen in ihren eigenen Loesungen. Z PhysikalChem 1897; 23:689–692. 22. Nernst W, Brunner E. Theorie derReaktionsgeschwindigkeit in heterogenen Systemen.Zeitschrift fuer Physikalische Chemie 1904; 47:52–110. 23.Fick A. Ueber Diffusion. Annalen der Physik 1855; 94:59–86.24. Prescott LF, Steel RF, Ferrier WR. The effects ofparticle size on the absorption of phenacetin in man. Acorrelation between plasma concentration of phenacetin andeffects on the central nervous system. Pharmacol Ther 1970;11:496–504. 25. Jinno JI, Kamada N, Miyake M, et al. Effectof particle size reduction on dissolution and oralabsorption of a poorly water soluble drug, cilostazol inbeagle dogs. J Control Release 2006; 111: 56–64. 26. VogtM, Kunath K, Dressman JB. Dissolution enhancement offenofibrate by micronization, cogrinding and spray drying:comparison with commercial preparations. Eur J PharmBiopharm 2008; 68:283–288. 27. Serajuddin ATM. Saltformation to improve drug solubility. Adv Drug Deliv Rev2007; 59: 603–616. 28. Hussar DA. New drugs of 1995. J AmPharm Assoc 1996; 36:158–188. 29. Hussar DA. New drugs of1996. J Am Pharm Assoc 1997; 37:192–234. 30. Hussar DA. New

drugs of 1997. J Am Pharm Assoc 1998; 38:155–198. 31.Hussar DA. New drugs of 1998. J Am Pharm Assoc 1999;39:151–206. 32. Hussar DA. New drugs of 1999. J Am PharmAssoc 2000; 40:181–231. 33. Hussar DA. New drugs of 2000. JAm Pharm Assoc 2001; 41:229–272. 34. Hussar DA. New drugsof 2001. J Am Pharm Assoc 2002; 42:227–266. 35. Hussar DA.New drugs of 2002. J Am Pharm Assoc 2003; 43:207–248. 36.Hussar DA. New drugs of 2003. J Am Pharm Assoc 2004;44:168–210. 37. Hussar DA. New drugs of 2004. J Am PharmAssoc 2005; 45:185–217. 38. New drugs and biologic productapproval, 2005. AJHP News. February 15, 2006. Available at:www.ashp.org. 39. New drugs and biologic product approval,2006. AJHP News. February 15, 2007. Available at:www.ashp.org. 40. Stahl PH. Preparation of water-solublecompounds through salt formation. In: Wermuth CG, ed. ThePractice of Medicinal Chemistry. 2nd ed. Amsterdam:Elsevier, 2003:601–615. 41. Nelson E. Influence ofdissolution rate and surface on tetracycline absorption. JAm Pharm Assoc 1959; 48:96–103. 42. Nelson E, Knoechel EL,Hamlin WE, et al. Influence of the absorption rate oftolbutamide on the rate of decline of blood sugar levels innormal humans. J Pharm Sci 1962; 51:509–514.

43. Lee CC, Froman RO, Anderson RC, et al. Gastric andintestinal absorption of potassium penicillin V and thefree acid. Antibiot Chemother 1958; 8:354–360.

44. Levy G, Sanai BA. Comparison of the gastrointestinalabsorption of aluminum acetylsalicylic and acetylsalicylicacid in man. J Pharm Sci 1962; 51:58–62.

45. O’Reilly RA, Nelson E, Levy G. Physicochemical andphysiologic factors affecting the absorption of warfarin inman. J Pharm Sci 1966; 55:435–437.

46. Higuchi WI, Hamlin WE. Release of drug from aself-coating surface: benzphetamine pamoate pellet. J PharmSci 1963; 52:575–579.

47. Nelson E. Comparative dissolution rates of weak acidsand their sodium salts. J Am Pharm Assoc 1958; 47:297–299.

48. Levy G, Leonards JR, Procknal JA. Development of invitro dissolution tests which correlate quantitatively withdissolution rate-limited drug absorption in man. J PharmSci 1966; 54: 1719–1722.

49. Bates TR, Young JM, Wu CM, et al. pH-dependentdissolution rate of nitrofurantoin from commercialsuspensions, tablets and capsules. J Pharm Sci 1974;

63:643–645.

50. Javaid KA, Cadwallader DE. Dissolution of aspirin fromtablets containing various buffering agents. J Pharm Sci1972; 61:1370–1373.

51. Poole JW, Owen G, Silverio J, et al. Physicochemicalfactors influencing the absorption of the anhydrous andtrihydrate forms of ampicillin. Curr Ther Res 1968;10:292–303.

52. Hableblian J, McCone W. Pharmaceutical application ofpolymorphism. J Pharm Sci 1969; 58: 911–929.

53. Aguiar AJ, Krc J, Kinkel AW, et al. Effect ofpolymorphism on the absorption of chloramphenicolpalmitate. J Pharm Sci 1967; 56:847–853.

54. Sorby DL. Effect of adsorbents on drug absorption. I.Modification of promazine absorption by activatedattapulgite and activated charcoal. J Pharm Sci 1965;54:677–683.

55. Ghazal HS, Dyas AM, Ford JL, et al. In vitro evaluationof the dissolution behaviour of itraconazole inbio-relevant media. Int J Pharm 2009; 366(1–2):117–123.

56. Kwan KC, Alien DJ. Determination of the degree ofcrystallinity in solid-solid equilibria. J Pharm Sci 1969;58:1190–1193.

57. Hiestand EN, Higuchi WI, Ho NFH. Theories of dispersiontechniques. In: Lachman L, Lieberman HA, Kanig JL, eds.Theory and Practice of Industrial Pharmacy. 2nd ed.Philadelphia: Lea & Febiger, 1976:159.

58. Goldberg AH, Gibaldi M, Kanig JL. Increasingdissolution rates and gastrointestinal absorption of drugsvia solid solutions and eutectic mixtures. III.Experimental evaluation of griseofulvinsuccinic acid solidsolution. J Pharm Sci 1966; 55:487–492.

59. Goldberg A. Methods of increasing dissolution rates.In: Leeson IJ, Carstensen JT, eds. Dissolution Technology.Washington, DC: Academy of Pharmaceutical Sciences,American Pharmaceutical Association, 1974:147–162.

60. Benet LZ. Theories of dissolution: Multiparticulatesystems. In: Leeson IJ, Carstensen JT, eds. DissolutionTechnology. Washington, DC: Academy of Pharmaceutical

Sciences, American Pharmaceutical Association, 1974:29–57.

61. Lipinski CA, Lombardo F, Dominy BW, et al. Experimentaland computational approaches to estimate solubility andpermeability in drug discovery and development settings.Adv Drug Deliv Rev 1997; 23:3–25.

62. Wacher VJ, Salphati L, Benet LZ. Active secretion andenterocytic drug metabolism barriers to drug absorption.Adv Drug Deliv Rev 1996; 20:99–122.

63. Evans WE, Relling MV. Pharmacogenomics: translatingfunctional genomics into rational therapeutics. Science1999; 286:487–491.

64. Johne A, Brockmoller J, Bauer S, et al. Pharmacokineticinteraction of digoxin with an herbal extract from St.John’s wort (Hypericum perforatum). Clin Pharmacol Ther1999; 66:338–345.

65. Piscitelli SC, Burstein AH, Chaitt D, et al. Indinavirconcentrations and St. John’s wort. Lancet 2000;355:547–548. 66. Benet LZ, Greither A, Meister W.Gastrointestinal absorption of drugs in patients withcardiac failure. In: Benet LZ, ed. The Effect of DiseaseStates on Drug Pharmacokinetics. Washington: Academy ofPharmaceutical Association, 1976:33–50. 67. Ther L, WinneD. Drug absorption. Annu Rev Pharmacol 1971; 11:57–70. 68.Winne D, Ochsenfahrt H. Die formale Kinetic der Resorptionunter Berucksichtigung der Darmdurchblutung. J Theor Biol1967; 14:293–315. 69. Winne D. The influence of villouscountercurrent exchange on intestinal absorption. J TheorBiol 1976; 53:145–176. 70. Winne D, Remischovsky J.Intestinal blood flow and absorption of nondissociablesubstances. J Pharm Pharmacol 1970; 22:640–641. 71.Crouthamel WG, Diamond L, Dittert LW, et al. Drugabsorption. VII. Influence of mesenteric blood flow onintestinal drug absorption in dogs. J Pharm Sci 1975;64:661–671. 72. Haas A, Lullman H, Peters T. Absorptionrates of some cardiac glycosides and portal blood flow. EurJ Pharmacol 1972; 19:366–370. 73. Wacher VJ, Silverman JA,Zhang Y, et al. Role of P-glycoprotein and cytochrome P4503A in limiting oral absorption of peptides andpeptidomimetics. J Pharm Sci 1998; 11:1322–1330. 74. DooMH, Li H, Jang HI, et al. Effect of nonylphenol ethoxylates(NPEs) on barrier functions of epithelial cell membranes:opening of tight junctions and competitive inhibition ofP-gp-mediated efflux. Int J Pharm 2005; 302:145–153. 75.Takano M, Yumoto R, Murakami T. Expression and function ofefflux drug transporters in the intestine. Pharmacol Ther

2006; 109:137–161.

5 Chapter 5- Effect of Route ofAdministration and Distribution on DrugAction

3. Mapleson WW. An electric analogue for uptake andexchange of inert gases and other agents.

J Appl Physiol 1963; 18:197–204.

4. Bischoff KB, Dedrick RL. Thiopental pharmacokinetics. JPharm Sci 1968; 57:1347–1357.

5. Sen S, Nunes Chini E, Brown MJ. Complications afterunintentional intra-arterial of drugs:

risks, outcomes and management strategies. Mayo Clin Proc2005; 80:783–795.

6. Doluisio JT, LaPiana JC, Dittert LW. Pharmacokinetics ofampicillin trihydrate, sodium

ampicillin, and sodium dicloxacillin followingintramuscular injection. J Pharm Sci 1971;

60:715–719.

7. Cohen LS, Rosenthal JE, Horner DW Jr., et al. Plasmalevels of lidocaine after intramuscular

administration. Am J Cardiol 1972; 29:520–523.

8. Zener JC, Kerber RE, Spivack AP, et al. Blood lidocainelevels and kinetics following high

dose intramuscular administration. Circulation 1973;47:984–988.

9. Feldman S. Biopharmaceutic factors influencing drugavailability. In: Turco S, King RE, eds.

Sterile Dosage Forms Their Preparation and ClinicalApplication. 3rd ed. Philadelphia: Lea &

Febiger, 1987:110–113.

10. Almadrones L. Evidence-based research forintraperitoneal chemotherapy in epithelial ovarian

cancer. Clin J Oncol Nurs 2007; 11:211–216.

11. Ivanov LV, Lyapunov NA, Orlova IN, et al. Study ofbioavailability of hydrocortisone acetate

in rectal administration of the foamy preparation torabbits. Pharm Chem J 1993; 27:846–849.

12. Vromans H, Moolenaar F, Meijer DKF. Rectal absorptionof metronidazol from polyethylene

glycol suppositories. Pharm Weekbl Sci 1984; 6:18–20.

13. Donovan MD, Flynn GL, Amidon GL. Absorption ofpolyethylene glycols 600 through 2000:

the molecular weight dependence of gastrointestinal andnasal absorption. Pharm Res 2000;

7:863–868.

14. McMartin C, Hutchinson LE, Hyde R, et al. Analysis ofstructural requirements for the

absorption of drugs and macromolecules from the nasalcavity. J Pharm Sci 1987; 76:535–540.

15. Illum L. Is nose-to-brain transport of drugs in man areality? J Pharm Pharmacol 2004; 56:3–17.

16. Dahlin M, Bergman U, Jansson B, et al. Transfer ofdopamine in the olfactory pathway

following nasal administration in mice. Pharm Res 2000;17:737–742.

17. Chow HS, Chen Z, Matsuura GT. Direct transport ofcocaine from the nasal cavity to the brain

following intranasal cocaine administration in rats. JPharm Sci 1999; 88:754–758.

18. Ross TM, Martinez PM, Renner JC, et al. Intranasaladministration of interferon beta bypasses

the blood-brain barrier to target the central nervoussystem and cervical lymph nodes: a non

invasive treatment strategy for multiple sclerosis. JNeuroimmunol 2004; 151:66–77.

19. Thorne RG, Pronk GJ, Padmanabhan V, et al. Delivery of

insulin-like growth factor-1 to the rat

brain and spinal cord along olfactory and trigeminalpathways following intranasal adminis

tration. Neuroscience 2004; 12:481–496.

20. Graff CL, Pollack GM. Functional evidence forp-glycoprotein at the nose-brain barrier. Pharm

Res 2005; 22:86–93.

21. DeZiegler D, Bulletti C, De Monstier B, et al. Thefirst uterine pass effect. Ann N Y Acad Sci

1997; 828:291–299.

22. Hosoya K, Lee VHL, Kim KJ. Roles of the conjunctiva inocular drug delivery: a review of

conjuctival transport mechanisms and their regulation. EurJ Pharm Biopharm 2005; 60:

227–240.

23. Gorgos D. Lidocaine-induced deaths raise questionsabout medspa management. Dermatology

Nursing, October (2005). Available at:http://findarticles.com/p/articles/mi_hb6366/is_/

ai_n29215018?tag=artBody;col1. Accessed December 22, 2008.

24. Flynn GL, Stewart B. Percutaneous drug penetration:choosing candidates for transdermal

development. Drug Dev Res 1988; 13:169–185.

25. Benedetti MS, Whomsley R, Baltes EL. Differences inabsorption, distribution, metabolism,

and excretion of xenobiotics between the paediatric andadult populations. Expert Opin Drug

Metab Toxicol 2005; 1:447–471.

26. ElDesoky ES. Pharmacokinetic-pharmacodynamic crisis inthe elderly. Am J Ther 2007; 14:

488–498. on Drug

6 Chapter 6- In Vivo Imaging of DosageForms

1. Kelloff GJ, Krohn KA, Larson SM, et al. The progress andpromise of molecular imaging

probes in oncologic drug development. Clin Cancer Res 2005;11(22):7967–7985.

2. Workman P, Aboagye EO, Chung YL, et al. Minimallyinvasive pharmacokinetic and

pharmacodynamic technologies in hypothesis-testing clinicaltrials of innovative therapies.

J Natl Cancer Inst 2006; 98:580–598.

3. Gross S, Piwnica-Worms D. Molecular imaging strategiesfor drug discovery and development.

Curr Opin Chem Biol 2006; 10(4):334–342.

4. Stephen RM, Gillies RJ. Promise and progress forfunctional and molecular imaging of response

to targeted therapies. Pharm Res 2007; 24(6):1172–1185.

5. Hoskins P, Thrush A, Martin K, et al. DiagnosticUltrasound: Physics and Equipment. London:

Greenwich Medical Media Ltd., 2003.

6. Evans DH, McDicken WN. Doppler Ultrasound: Physics,Instrumental, and Clinical

Applications. 2nd ed. New York: John Wiley & Sons, 2000.

Figure 7 In vivo proton (A and B) and P-31 (C and D)magnetic resonance spectra of a HT29

xenograft in a mouse before (A and C) and after (B and D)the treatment with MN58b. The NMR

peaks are assigned to tCho, Cr, PME, Pi, PDEs, PCr, anda-NTP, b-NTP, and c-NTP. Abbreviations:

NMR, nuclear magnetic resonance; tCho, total choline; Cr,creatine; PME, phosphomonoesters; Pi,

inorganic phosphate; PDE, phosphodiester; PCr,

phosphocreatine; NTP, nucleoside triphosphate (85). 7.Schutt EG, Klein DH, Mattrey RM, et al. Injectablemicrobubbles as contrast agents for diagnostic ultrasoundimaging: the key role of perfluorochemicals. Angew Chem IntEd Engl 2003; 42(28):3218–3235. 8. Klibanov AL.Ligand-carrying gas-filled microbubbles: ultrasoundcontrast agents for targeted molecular imaging. BioconjugChem 2005; 16(1):9–17. 9. Liang ZP, Lauterbur PC.Principles of Magnetic Resonance Imaging: A SignalProcessing Perspective. New York: IEEE Inc., 2000. 10.Vlaardingerbroek MT, den Boer JA. Magnetic ResonanceImaging: Theory and Practice. 3rd ed. New York: Springer,2002. 11. Merbach AE, Toth E. The Chemistry of ContrastAgents in Medical Magnetic Resonance Imaging. New York:John Wiley & Sons, 2001. 12. Caravan P, Ellison JJ, McMurryTJ, et al. Gadolinium(III) chelates as MRI contrast agents:structure, dynamics, and applications. Chem Rev 1999;99(9):2293–2352. 13. Weissleder R, Ntziachristos V.Shedding light onto live molecular targets. Nat Med 2003;9(1): 123–128. 14. Wang G, Cong W, Shen H, et al. Overviewof bioluminescence tomography—a new molecular imagingmodality. Front Biosci 2008; 13(1):1281–1293. 15. ChapmanS, Oparka KJ, Roberts AG. New tools for in vivofluorescence tagging. Curr Opin Plant Biol 2005;8(6):565–573. 16. Seeram E. Computed Tomography: PhysicsPrinciples, Clinical Applications, and Quality Control. 2nded. Philadelphia: W.B. Saunders Company, 2008. 17. KalenderWA. Computed Tomography: Fundamentals, System Technology,Image Quality, Applications. Munich: Wiley-VCH, 2006. 18.Henwood S. Clinical CT: Techniques and Practice. London:Greenwich Medical Media Ltd., 1999. 19. Dawson P, CosgroveDO, Grainger RG. Textbook of Contrast Media. Oxford: IsisMedical Media Ltd., 1999. 20. Saha GB. Physics andRadiobiology of Nuclear Medicine. 3rd ed. New York:Springer, 2006. 21. Wernick MN, Aarsvold JN. EmissionTomography: The Fundamentals of PET and SPECT. San Diego:Elsevier Academic Press, 2004. 22. Saha GB. Fundamentals ofNuclear Pharmacy. 5th ed. New York: Springer, 2004. 23.Phelps ME. PET: Molecular Imaging and its BiologicalApplications. New York: Springer, 2004. 24. Welch MJ,Redvanly CS. Handbook of Radiopharmaceuticals. New York:John Wiley & Sons, 2003. 25. von Schulthess GK. MolecularAnatomic Imaging? PET-CT and SPECT-CT Integrated ModalityImaging. Philadelphia: Lippincott Williams & Wilkins, 2006.26. Oehr P, Biersack HJ, Coleman RE. PET and PET-CT inOncology. New York: Springer, 2004. 27. Osman S,Rowlinson-Busza G, Luthra SK, et al. Comparativebiodistribution and metabolism of carbon-11-labeledN-[2-(dimethylamino)ethyl]acridine-4-carboxamide andDNA-intercalating analogues. Cancer Res 2001;

61(7):2935–2944. 28. Spencer TJ, Biederman J, Ciccone PE,et al. PET study examining pharmacokinetics, detection andlikeability, and dopamine transporter receptor occupancy ofshortand long-acting oral methylphenidate. Am J Psychiatry2006; 163(3):387–395. 29. Murthy R, Erlandsson K, Kumar D,et al. Biodistribution and radiation dosimetry of11Charmine in baboons. Nucl Med Commun 2007; 28(9):748–754.30. Lu JQ, Ichise M, Liow JS, et al. Biodistribution andradiation dosimetry of the serotonin transporter ligand11C-DASB determined from human whole-body PET. J Nucl Med2004; 45(9): 1555–1559. 31. Scheinin NM, Tolvanen TK,Wilson IA, et al. Biodistribution and radiation dosimetryof the amyloid imaging agent 11C-PIB in humans. J Nucl Med2007; 48(1):128–133. 32. Tipre DN, Fujita M, Chin FT, etal. Whole-body biodistribution and radiation dosimetryestimates for the PET dopamine transporter probe 18F-FECNTin non-human primates. Nucl Med Commun 2004; 25(7):737–742.

33. Saleem A, Aboagye EO, Matthews JC, et al. Plasmapharmacokinetic evaluation of cytotoxic

agents radiolabelled with positron emitting radioisotopes.Cancer Chemother Pharmacol 2008;

61(5):865–873.

34. Sprague DR, Chin FT, Liow JS, et al. Humanbiodistribution and radiation dosimetry of the

tachykinin NK1 antagonist radioligand [18F]SPA-RQ:comparison of thin-slice, bisected, and

2-dimensional planar image analysis. J Nucl Med 2007;48(1):100–107.

35. Nye JA, Schuster DM, Yu W, et al. Biodistribution andradiation dosimetry of the synthetic

nonmetabolized amino acid analogue anti-18F-FACBC inhumans. J Nucl Med 2007; 48(6):

1017–1020.

36. Aboagye EO, Saleem A, Cunningham VJ, et al. Extractionof 5-fluorouracil by tumor and liver:

a noninvasive positron emission tomography study ofpatients with gastrointestinal cancer.

Cancer Res 2001; 61(13):4937–4941.

37. Ibekwe VC, Fadda HM, Parsons GE, et al. A comparativein vitro assessment of the drug

release performance of pH-responsive polymers forileo-colonic delivery. Int J Pharm 2006; 308

(1–2):52–60.

38. Newman SP, Pitcairn GR, Hirst PH, et al. Scintigraphiccomparison of budesonide deposition

from two dry powder inhalers. Eur Respir J 2000;16(1):178–183.

39. Steingoetter A, Weishaupt D, Kunz P, et al. Magneticresonance imaging for the in vivo

evaluation of gastric-retentive tablets. Pharm Res 2003;20(12):2001–2007.

40. Namur J, Chapot R, Pelage JP, et al. MR imagingdetection of superparamagnetic iron oxide

loaded tris-acryl embolization microspheres. J Vasc IntervRadiol 2007; 18(10):1287–1295.

41. Kopecek J, Kopeckova´ P, Minko T, et al. HPMAcopolymer-anticancer drug conjugates:

design, activity, and mechanism of action. Eur J PharmBiopharm 2000; 50(1):61–81.

42. Lammers T, Ku¨hnlein R, Kissel M, et al. Effect ofphysicochemical modification on the

biodistribution and tumor accumulation of HPMA copolymers.J Control Release 2005; 110(1):

103–118.

43. Mitra A, Nan A, Ghandehari H, et al.Technetium-99m-Labeled N-(2-hydroxypropyl)

methacrylamide copolymers: synthesis, characterization, andin vivo biodistribution. Pharm

Res 2004; 21(7):1153–1159.

44. Vasey PA, Kaye SB, Morrison R, et al. Phase I clinical

and pharmacokinetic study of PK1 [N

(2-hydroxypropyl)methacrylamide copolymer doxorubicin]:first member of a new class of

chemotherapeutic agents-drug-polymer conjugates. ClinCancer Res 1999; 5(1):83–94.

45. Kobayashi H, Brechbiel MW. Dendrimer-basedmacromolecular MRI contrast agents:

characteristics and application. Mol Imaging 2003;2(1):1–10.

46. Ye F, Ke T, Lu ZR, et al. Noninvasive visualization ofin vivo drug delivery of poly(L-glutamic

acid) using contrast-enhanced MRI. Mol Pharm 2006;3(5):507–515.

47. Wang Y, Ye F, Lu ZR, et al. Noninvasive visualizationof pharmacokinetics, biodistribution and

tumor targeting of poly[N-(2-hydroxypropyl)methacrylamide]in mice using contrast enhanced

MRI. Pharm Res 2007; 24(6):1208–1216.

48. Lu ZR, Ye F, Vaidya A. Polymer platforms for drugdelivery and biomedical imaging. J Control

Release 2007; 122(3):269–277.

49. Zheng J, Liu J, Dunne M, et al. In vivo performance ofa liposomal vascular contrast agent for

CT and MR-based image guidance applications. Pharm Res2007; 24(6):1193–1201.

50. Oku N, Tokudome Y, Asai T, et al. Evaluation of drugtargeting strategies and liposomal

trafficking. Curr Pharm Des 2000; 6(16):1669–1691.

51. Bao A, Goins B, Klipper R, et al. Direct 99mTc labelingof pegylated liposomal doxorubicin

(Doxil) for pharmacokinetic and non-invasive imagingstudies. J Pharmacol Exp Ther 2004;

308(2):419–425.

52. Harrington KJ, Mohammadtaghi S, Uster PS, et al.Effective targeting of solid tumors in

patients with locally advanced cancers by radiolabeledpegylated liposomes. Clin Cancer Res

2001; 7(2):243–254.

53. Lanza GM, Wickline SA. Targeted ultrasonic contrastagents for molecular imaging and

therapy. Prog Cardiovasc Dis 2001; 44(1):13–31. 54.Klibanov AL. Microbubble contrast agents: targetedultrasound imaging and ultrasound-assisted drug-deliveryapplications. Invest Radiol 2006; 41(3):354–362. 55.Rapoport N, Gao Z, Kennedy A. Multifunctional nanoparticlesfor combining ultrasonic tumor imaging and targetedchemotherapy. J Natl Cancer Inst 2007; 99(14):1095–1106.56. Leclercq F, Cohen-Ohana M, Mignet N, et al. Design,synthesis, and evaluation of gadolinium cationic lipids astools for biodistribution studies of gene deliverycomplexes. Bioconjug Chem 2003; 14(1):112–119. 57. MedarovaZ, Pham W, Farrar C, et al. In vivo imaging of siRNAdelivery and silencing in tumors. Nat Med 2007;13(3):372–377. 58. Iyer M, Berenji M, Templeton NS, et al.Noninvasive imaging of cationic lipid-mediated delivery ofoptical and PET reporter genes in living mice. Mol Ther2002; 6(4):555–562. 59. Reske SN, Blumstein NM, Neumaier B,et al. Imaging prostate cancer with 11C-choline PET/ CT. JNucl Med 2006; 47(8):1249–1254. 60. Truong MT, Marom EM,Erasmus JJ. Preoperative evaluation of patients withmalignant pleural mesothelioma: role of integrated CT-PETimaging. J Thorac Imaging 2006; 21(2):146–153. 61. WachterS, Tomek S, Kurtaran A, et al. 11 C-acetate positronemission tomography imaging and image fusion with computedtomography and magnetic resonance imaging in patients withrecurrent prostate cancer. J Clin Oncol 2006;24(16):2513–2519. 62. Kelloff GJ, Hoffman JM, Johnson B, etal. Progress and promise of FDG-PET imaging for cancerpatient management and oncologic drug development. ClinCancer Res 2005; 11(8): 2785–2808. 63. Juweid ME, ChesonBD. Positron-emission tomography and assessment of cancertherapy. N Engl J Med 2006; 354(5):496–507. 64. Lapointe D,Brasseur N, Cadorette J, et al. High-resolution PET imagingfor in vivo monitoring of tumor response after photodynamictherapy in mice. J Nucl Med 1999; 40(5):876–882. 65. Lin C,Itti E, Haioun C, et al. Early 18F-FDG PET for predictionof prognosis in patients with diffuse large B-cell

lymphoma: SUV-based assessment versus visual analysis. JNucl Med 2007; 48(10):1626–1632. 66. de Geus-Oei LF, vander Heijden HF, Visser EP, et al. Chemotherapy responseevaluation with 18F-FDG PET in patients with non-small celllung cancer. J Nucl Med 2007; 48(10):1592–1598. 67. DoseSchwarz J, Bader M, Jenicke L, et al. Early prediction ofresponse to chemotherapy in metastatic breast cancer usingsequential 18F-FDG PET. J Nucl Med 2005; 46(7):1144–1150.68. Antoch G, Kanja J, Bauer S, et al. Comparison of PET,CT, and dual-modality PET/CT imaging for monitoring ofimatinib (STI571) therapy in patients with gastrointestinalstromal tumors. J Nucl Med 2004; 45(3):357–365. 69.Sugiyama M, Sakahara H, Sato K, et al. Evaluation of3’-deoxy-3’-18F-fluorothymidine for monitoring tumorresponse to radiotherapy and photodynamic therapy in mice.J Nucl Med 2004; 45(10):1754–1758. 70. Waldherr C,Mellinghoff IK, Tran C, et al. Monitoring antiproliferativeresponses to kinase inhibitor therapy in mice with3’-deoxy-3’-18F-fluorothymidine PET. J Nucl Med 2005;46(1): 114–120. 71. Chen W, Delaloye S, Silverman DH, etal. Predicting treatment response of malignant gliomas tobevacizumab and irinotecan by imaging proliferation with[18F] fluorothymidine positron emission tomography: a pilotstudy. J Clin Oncol 2007; 25(30):4714–4721. 72. Chen DL,Schuster DP. Imaging pulmonary inflammation with positronemission tomography: a biomarker for drug development. MolPharm 2006; 3(5):488–495. 73. Choyke PL, Dwyer AJ, KnoppMV. Functional tumor imaging with dynamic contrast-enhancedmagnetic resonance imaging. J Magn Reson Imaging 2003;17(5):509–520. 74. Leach MO, Brindle KM, Evelhoch JL, etal. The assessment of antiangiogenic and antivasculartherapies in early-stage clinical trials using magneticresonance imaging: issues and recommendations. Br J Cancer2005; 92(9):1599–1610. 75. Jordan BF, Runquist M, RaghunandN, et al. The thioredoxin-1 inhibitor 1-methylpropyl2-imidazolyl disulfide (PX-12) decreases vascularpermeability in tumor xenografts monitored

by dynamic contrast enhanced magnetic resonance imaging.Clin Cancer Res 2005; 11(2 pt 1):

529–536.

76. Thoeny HC, De Keyzer F, Vandecaveye V, et al. Effect ofvascular targeting agent in rat tumor

model: dynamic contrast-enhanced versus diffusion-weightedMR imaging. Radiology 2005;

237(2):492–499.

77. Daldrup H, Shames DM, Wendland M, et al. Correlation ofdynamic contrast-enhanced MR

imaging with histologic tumor grade: comparison ofmacromolecular and small-molecular

contrast media. AJR Am J Roentgenol 1998; 171(4):941–949.

78. Marzola P, Degrassi A, Calderan L, et al. In vivoassessment of antiangiogenic activity of

SU6668 in an experimental colon carcinoma model. ClinCancer Res 2004; 10(2):739–750.

79. Preda A, Novikov V, Mo¨glich M, et al. MRI monitoringof Avastin antiangiogenesis therapy

using B22956/1, a new blood pool contrast agent, in anexperimental model of human cancer.

J Magn Reson Imaging 2004; 20(5):865–873.

80. Cheng HL, Wallis C, Shou Z, et al. Quantifyingangiogenesis in VEGF-enhanced tissue

engineered bladder constructs by dynamic contrast-enhancedMRI using contrast agents of

different molecular weights. J Magn Reson Imaging 2007;25(1):137–145.

81. Mohs AM, Lu ZR. Gadolinium(III)-based blood-poolcontrast agents for magnetic resonance

imaging: status and clinical potential. Expert Opin DrugDeliv 2007; 4(2):149–164.

82. Chung YL, Troy H, Banerji U, et al. Magnetic resonancespectroscopic pharmacodynamic

markers of the heat shock protein 90 inhibitor17-allylamino,17-demethoxygeldanamycin

(17AAG) in human colon cancer models. J Natl Cancer Inst2003; 95(21):1624–1633.

83. Glunde K, Ackerstaff E, Mori N, et al. Cholinephospholipid metabolism in cancer:

consequences for molecular pharmaceutical interventions.Mol Pharm 2006; 3(5):496–506.

84. Morse DL, Raghunand N, Sadarangani P, et al. Responseof choline metabolites to docetaxel

therapy is quantified in vivo by localized (31)P MRS ofhuman breast cancer xenografts and in

vitro by high-resolution (31)P NMR spectroscopy of cellextracts. Magn Reson Med 2007; 58(2):

270–280.

85. Al-Saffar NM, Troy H, Ramı´rez de Molina A, et al.Noninvasive magnetic resonance

spectroscopic pharmacodynamic markers of the choline kinaseinhibitor MN58b in human

carcinoma models. Cancer Res 2006; 66:427–434.

86. De Stefano N, Filippi M, Miller D, et al. Guidelinesfor using proton MR spectroscopy in

multicenter clinical MS studies. Neurology 2007;69(20):1942–1952.

7 Chapter 7- Chemical Kinetics and DrugStability

23. Schulz J, Bauer K-H. Acta Pharm Technol 1986; 32:78–81.

24. Hamburger R, Azaz E, Donbrow M. Pharm Acta Helv 1975;50:10–17.

25. McGinity JW, Hill JA, La Via AL. J Pharm Sci 1975;64:356–357.

26. McGinity JW, Patel TR, Naqvi AH, et al. Drug Dev Commun1976; 2:505–519.

27. Gu L, Chiang H-S, Johnson DM. Int J Pharm 1988;41:105–113.

28. Johnson DM, Taylor WF. J Pharm Sci 1984; 73:1414–1417.

29. Smith GB, DiMichele L, Colwell LF, et al. Tetrahedron1993; 49:4447–4462.

30. Lamy-Freund MT, Ferreira VFN, Faljoni-Ala´rio A, et al.J Pharm Sci 1993; 82:162–166.

31. Halbaut L, Barbe´ C, Aroztegui M, et al. Int J Pharm1997; 147:31–40.

32. Underberg WJM. J Pharm Sci 1978; 67:1133–1138.

33. Oyler AR, Naldi RE, Facchine KL, et al. Tetrahedron1991; 47:6549–6560.

34. Tønnesen HH. Photodecomposition of drugs. In: SwarbrickJ, ed. Encyclopedia of Pharmaceutical Technology. 3rd ed.New York: Informa Healthcare, 2006:2859–2865.

35. Greenhill JV, McLelland MA. Prog Med Chem 1990;27:51–121.

36. Tønnesen HH. Int J Pharm 2001; 225:1–14.

37. Frank MJ, Johnson JB, Rubin SH. J Pharm Sci 1976;65:44–48.

38. Mahony C, et al. J Pharm Sci 1984; 73:838–839.

39. Lyall D. Pharm J 1988; 240:5.

40. Matsuda Y, Inouye H, Nakanishi R. J Pharm Sci 1978;

67:196–201.

41. Jamali F, Mehvar R, Pasutto FM. J Pharm Sci 1989;78:695–715.

42. Nunes MA, Brochmann-Hanssen E. J Pharm Sci 1974;63:716–721.

43. Richter WF, Chong YH, Stella VJ. J Pharm Sci 1990;79:185–186.

44. Severin G. Chirality 1992; 4:222–226.

45. Bundgaard H. Acta Pharm Suec 1976; 13:9–26.

46. Riff LJ, Jackson GG. Arch Intern Med 1972; 130:887–891.

47. Meites L. CRC Crit Rev Anal Chem 1979; 8:1–53.

48. Guidelines for Submitting Documentation for theStability of Human Drugs and Biologics. Rockville, MD:Center for Drugs and Biologics, Food and DrugAdministration; February 1987.

49. Carstensen JT. J Pharm Sci 1974; 63:1–14.

50. Carstensen JT. Drug Stability. Principles andPractices. 2nd ed. New York: Marcel Dekker, Inc., 1995.

51. Kornblum SS, Sciarrone BJ. J Pharm Sci 1964; 53:935–941.

52. Carstensen JT, Musa MN. J Pharm Sci 1972; 61:1112–1118.

53. Wang D-P, Yeh M-K. J Pharm Sci 1993; 82:95–98.

54. Pikal MJ, Lukes AL, Lang JE. J Pharm Sci 1977;66:1312–1316.

55. Woolfe AJ, Worthington HEC. Drug Dev Commun 1974; 1:185.

56. Savello DR, Shangraw RF. Am J Hosp Pharm 1971;28:754–759.

57. Fan T-Y, Tannenbaum SR. J Agric Food Chem 1973;21:967–969.

58. Shija R, Sunderland VB, McDonald C. Int J Pharm 1992;80:203–211.

59. Pincock RE. Acc Chem Res 1969; 2:97–103.

60. Murase N, Echlin P, Franks F. Cryobiology 1991;28:364–375.

61. Fung H-L, King S-YP. Pharm Tech Conference ’83Proceedings, Aster Publishing, Springfield, Oregon, 1983.

62. Carney CF. J Pharm Sci 1987; 76:393–397.

63. Powell MF. J Pharm Sci 1986; 75:901–903.

64. Cox BG, Kresge AJ, Sørensen PE. Acta Chem Scand 1988;A42:202–213.

65. Kresge AJ. Chem Soc Rev 1973; 2:475–503.

66. Ravin LJ, Simpson CA, Zappala AF, et al. J Pharm Sci1964; 53:1064–1066.

67. Garrett ER. J Am Chem Soc 1957; 79:3401–3408.

68. Wells JI. Pharmaceutical Preformulation. West Sussex,UK: Ellis Horwood, 1988.

69. Schwartz MA. J Pharm Sci 1964; 53:1433.

70. Andersin R, Tammilehto S. Int J Pharm 1995; 123:229–235.

71. Torniainen K, Tammilehto S, Ulvi V. Int J Pharm 1996;132:53–61. 72. Gu L, Strickley RG. Int J Pharm 1990;60:99–107. 73. Garrett ER. J Org Chem 1961; 26:3660–3663.74. Thoma K, Struve M. Pharm Ind 1985; 47:1078–1081. 75.Amis FS. Solvent Effects on Reaction Rates and Mechanisms.New York: Academic Press, 1966. 76. Connors KA. ChemicalKinetics: The Study of Reaction Rates in Solution. NewYork: VCH Publishers, 1990:411. 77. Carstensen JT. J PharmSci 1970; 59:1140–1143. 78. Broxton TJ. Aust J Chem 1982;35:1357–1363. 79. Attwood D, Florence AT. SurfactantSystems, Their Chemistry, Pharmacy and Biology. London:Chapman and Hall, 1983. 80. Ong JTH, Kostenbauder HB. JPharm Sci 1975; 64:1378–1380. 81. Higuchi T, Lachman L. JAm Pharm Assoc (Sci Ed) 1955; 44:521–526. 82. Connors KA.Binding Constants: The Measurement of Molecular ComplexStability. New York: John Wiley & Sons, 1987. 83. Bekers O,Uijtendaal EV, Beijnen JH, et al. Drug Dev Ind Pharm 1991;17:1503–1549. 84. Anderson NH, Johnson D, McLelland MA, etal. J Pharm Biomed Anal 1991; 9:443–449. 85. Allen AE, DasGupta V. J Pharm Sci 1974; 63:107–109. 86. Das Gupta V. JPharm Sci 1978; 67:299–303. 87. Busse MJ. Pharm J 1978;220:25. 88. Ullmann E, Thoma K, Zelfel G. Pharm Acta Helv

1963; 38:577–586. 89. Tingstad J, Dudzinski J. J Pharm Sci1973; 62:1856–1860. 90. Maudling HV, Zoglio MA, Pigois FE,et al. J Pharm Sci 1969; 58:1359–1362. 91. Boggiano BG,Drew R, Hancock RD. Aust J Pharm 1970; 51:S14–S16. 92.Kornblum SS, Zoglio MA. J Pharm Sci 1967; 56:1569–1575. 93.Zoglio MA, Maudling HV, Haller RM, et al. J Pharm Sci 1968;57:1877–1880. 94. Jun HW, Whitworth CW, Luzzi LA. J PharmSci 1972; 61:1160–1162. 95. Whitworth CW, Luzzi LA,Thompson BB, et al. J Pharm Sci 1973; 62:1372–1374. 96.Ekman R, Liponkoski L, Kahela P. Acta Pharm Suec 1982;19:241–246. 97. Smidsroed O, Haug A, Larsen B. Acta ChemScand 1963; 17:1473–1474. 98. Buxton PC, Jahnke R, Keady S.Eur J Pharm Biopharm 1994; 40:172–175. 99. Genton D,Kesselring UW. J Pharm Sci 1977; 66:676–680. 100. HorhotaST, Burgio J, Lonski L, et al. J Pharm Sci 1976;65:1746–1749. 101. Chemburkar PB, Smyth RD, Buehler JD, etal. J Pharm Sci 1976; 65:529–533. 102. Kovalcik TR,Guillory JK. J Parenter Sci Technol 1988; 42:29–37. 103.Carstensen JT. Drug Dev Ind Pharm 1988; 14:1927–1969. 104.Ahlneck C, Zografi G. Int J Pharm 1990; 62:87–95. 105. ChenT. Drug Dev Ind Pharm 1992; 18:1311–1354. 106. Hageman MJ.Drug Dev Ind Pharm 1988; 14:2047–2070 107. Manning M, PatelK, Borchardt RT. Pharm Res 1989; 6:903–918. 108. ClelandJL, Powell MF, Shire SJ. Crit Rev Ther Drug Carrier Syst1993; 10:307–377. 109. Robinson AB, Rudd CJ. Deamidation ofglutaminyl and asparaginyl residues in peptides andproteins. In: Horecker BL, Stadtman ER, eds. Current Topicsin Cellular Regulation. Vol 8. New York: Academic Press,1974:247–295. 110. Geiger T, Clarke S. J Biol Chem 1987;262:785–794. 111. Capasso S, Mazzarella L, Zagari A. PeptRes 1991; 4:234–238. 112. Mears GE, Feeney RE. ChemicalModification of Proteins. San Francisco: Holden-Day Inc.,1971:35. 113. McKerrow JH, Robinson AB. Anal Biochem 1971;42:565–568. 114. Brennan TV, Clarke S. Protein Sci 1993;2:331–338. 115. Flatmark T. Acta Chem Scand 1966;20:1487–1496. 116. Tyler-Cross R, Schirch V. J Biol Chem1991; 266:22549–22556. 117. Timasheff SN, Arakawa T. In:Creighton TE, ed. Protein Structure: A Practical Approach.Oxford: IRL Press, 1989:331–345.

118. Patel K, Borchardt RT. Pharm Res 1990; 7:703–711.

119. Code of Federal Regulations, Title 21, Food and Drugs,Part 211, Current good manufacturing practice for finishedpharmaceuticals, Subpart G, §211.137 Expiration dating.

120. Code of Federal Regulations, Title 21, Food and Drugs,Part 211, Current good manufacturing practice for finishedpharmaceuticals, Subpart I, §211.166 Stability testing.

121. Code of Federal Regulations, Title 21, Food and Drugs,Part 211, Current good manufacturing practice for finishedpharmaceuticals, Subpart I, §211.170 Reserve samples.

122. Code of Federal Regulations, Title 21, Food and Drugs,Part 211, Current good manufacturing practice for finishedpharmaceuticals, Subpart J, §211.194 Laboratory records.

123. Code of Federal Regulations, Title 21, Food and Drugs,Part 314, Applications for FDA approval to market a newdrug or antibiotic drug, Subpart B, §314.50 Content andformat of an application.

124. Code of Federal Regulations, Title 21, Food and Drugs,Part 314, Applications for FDA approval to market a newdrug or antibiotic drug, Subpart B, §314.70 Supplements andother changes to an approved application.

125. Code of Federal Regulations, Title 21, Food and Drugs,Part 314, Applications for FDA approval to market a newdrug or antibiotic drug, Subpart B, §314.81 Otherpostmarketing reports.

126. ICH Expert Working Group. Q1A (R2) Stability Testingof New Drug Substances and Products. InternationalConference on Harmonisation of Technical Requirements forthe Registration of Pharmaceuticals for Human Use, 2003.

127. ICH Expert Working Group. Q1B Photostability Testingof New Drug Substances and Products. InternationalConference on Harmonisation of Technical Requirements forthe Registration of Pharmaceuticals for Human Use, 1996.

128. ICH Expert Working Group. Q1C Stability Testing forNew Dosage Forms. International Conference on Harmonisationof Technical Requirements for the Registration ofPharmaceuticals for Human Use, 1996.

129. ICH Expert Working Group. Q1D Bracketing and MatrixingDesigns for Stability Testing of New Drug Substances andProducts. International Conference on Harmonisation ofTechnical Requirements for the Registration ofPharmaceuticals for Human Use, 2003.

130. ICH Expert Working Group. Q1E Evaluation of StabilityData. International Conference on Harmonisation ofTechnical Requirements for the Registration ofPharmaceuticals for Human Use, 2004.

131. ICH Expert Working Group. Q5C Stability Testing of

Biotechnological/Biological New Drug Substances andProducts. International Conference on Harmonisation ofTechnical Requirements for the Registration ofPharmaceuticals for Human Use, 1995.

132. Carstensen JT, Rhodes CT. Drug Stability, Principlesand Practices. 3rd ed. New York: Marcel Dekker, Inc., 2000.

133. Guideline for Submitting Samples and Analytical Datafor Methods Validation. Rockville, MD: Center for Drugs andBiologics, Food and Drug Administration; February 1987.

134. ICH Expert Working Group. Q2B validation of analyticalprocedures: methodology. International Conference onHarmonisation of Technical Requirements for theRegistration of Pharmaceuticals for Human Use, 1996.

135. Debesis E, Boehlert JP, Givand TE, et al., SubmittingHPLC methods to the compendia and regulatory agencies.Pharm Tech 1982; 6(9):120–137.

136. United States Pharmacopeia 30, <1225> Validation ofCompendial Methods, 2007:680–683.

137. Stability Lab Information Manager, Metrics, Inc.,Greenville, NC.

138. Stability System, ScienTek Software, Inc., Tustin, CA.

139. Tetzlaff RF. GMP documentation requirements forautomated systems: Part 3, FDA inspection of computerizedlaboratory systems. Pharm Tech 1992; 16(5):70–83.

8 Chapter 8- The Solid State

4. Price SL, Adv Drug Deliv Rev 2004; 56:301–319.

5. Giron D, Mutz M, Garnier S. J Therm Anal Calorim 2004;77:709–747.

6. Miller SPF, Raw AS, Yu LX. In: Hilfiker R, ed.Polymorphism in the Parmaceutical Industry. Weinheim,Germany: Wiley-VCH, 2006:385–402; [Chichester, U.K.: JohnWiley (distributor)].

7. Bernstein J. In: Hilfiker R, ed. Polymorphism in thePharmaceutical industry. Weinheim, Germany: Wiley-VCH,2006:365–382; [Chichester, U.K.: John Wiley (distributor)].

8. Bernstein J. Polymorphism in Molecular Crystals. NewYork, Oxford: Oxford University Press, 2002:297–307.

9. Bernstein J. Polymorphism in Molecular Crystals. NewYork: Oxford University Press, 2002:240–256.

10. Brittain HG, ed. Polymorphism in Pharmaceutical Solids.New York: M. Dekker, 1999.

11. Hilfiker R, Blatter F, von Raumer M. In: Hilfiker R,ed. Polymorphism in the Pharmaceutical Industry. Weinheim,Germany: Wiley-VCH, 2006:1–20.

12. Kirk JH, Dann SE, Blatchford CG. Int J Pharm 2007;334:103–114.

13. Burger A, Henck JO, Hetz S, et al. J Pharm Sci 2000;89:457–468.

14. Li XW, Zhi F, Hu YQ. Int J Pharm 2007; 328:177–182.

15. Wikstrom H, Carroll WJ, Taylor LS. Pharm Res 2008;25:923–935.

16. Salameh AK, Taylor LS. J Pharm Sci 2006; 95:446–461.

17. David Grant JW. In: Brittain HG, ed. Polymorphism inPharmaceutical Solids. New York: M. Dekker, 1999:1–33.

18. Glusker JP, Trueblood KN. Crystal Structure Analysis: APrimer. New York, Oxford: Oxford University Press, 1985.

19. Hammond C. The Basics of Crystallography andDiffraction. Oxford: Oxford University Press, 2001.

20. Allen FH. Acta Crystallogr Sect B Struct Sci 2002;58:380–388.

21. Henry NFM, Kasper JS, Lonsdale KD, et al. In: HenryNFM, Lonsdale K, eds. International Tables for X-RayCrystallography. Vol 1. Symmetry Groups. 1952: xi. 558.

22. Nichols G, Frampton CS. J Pharm Sci 1998; 87:684–693.

23. Vrcelj RM, Clark NIB, Kennedy AR, et al. J Pharm Sci2003; 92:2069–2073.

24. Fabbiani FPA, Allan DR, Dawson A, et al. Chem Commun2003; 3004–3005.

25. Fabbiani FPA, Allan DR, David WIF, et al. Cryst EngComm 2004; 6:504–511.

26. McGregor PA, Allan DR, Parsons S, et al. J Pharm Sci2002; 91:1308–1311.

27. Ferenczy GG, Parkanyi L, Angyan JG, et al. J Mol Struct(Theochem) 2000; 503:73–79.

28. Hilfiker R, ed. Polymorphism in the PharmaceuticalIndustry. Weinheim, Germany: WileyVCH, 2006; [ChichesterU.K.: John Wiley (distributor)].

29. Shefter E, Higuchi T. J Pharm Sci 1963; 52:781–791.

30. Rodriguez-Hornedo N, Murphy D. J Pharm Sci 1999;88:651–660.

31. Gu CH, Young V, Grant DJW. J Pharm Sci 2001;90:1878–1890.

32. Florence AJ, Johnston A. Spectrosc Eur 2005; 16:24–27.

33. Burger A, Ramberger R. Mikrochim Acta 1979; 2:259–271.

34. Vega D, Fernandez D, Echeverria G. Acta CrystallogrSect C Cryst Struct Commun 2000; 56:1009–1010.

35. Roy S, Aitipamula S, Nangia A. Cryst Growth Des 2005;5:2268–2276.

36. Roy S, Bhatt PM, Nangia A, et al. Cryst Growth Des2007; 7:476–480.

37. Sivalakshmidevi A, Vyas K, Rao SM, et al. ActaCrystallogr Sect E Struct Reports Online 2002;58:O1072–O1074.

38. Strzhemechny MA, Baumer VN, Avdeenko AA, et al. ActaCrystallogr Sect B Struct Sci 2007; 63:296–302.

39. Chen XM, Morris KR, Griesser UJ, et al. J Am Chem Soc2002; 124:15012–15019.

40. Urakami K, Shono Y, Higashi A, et al. Chem Pharm Bull2002; 50:263–267.

41. Cox PJ, Manson PL. Acta Crystallogr Sect E StructReports Online 2003; 59:O986–O988.

42. Kitaoka H, Wada C, Moroi R, et al. Chem Pharm Bull1995; 43:649–653.

43. Shankland N, David WIF, Shankland K, et al. Chem Commun2001; 2204–2205.

44. Bauer J, Spanton S, Henry R, et al. Pharm Res 2001;18:859–866. 45. Chemburkar SR, Bauer J, Deming K, et al.Org Process Res Dev 2000; 4:413–417. 46. Thayer AM. ChemEng News 2007; 85:28–29. 47. Bernstein J. Cryst Growth Des2005; 5:1661–1662. 48. Desiraju GR. Cryst Eng Comm 2003;5:466–467. 49. Nangia A. Cryst Growth Des 2006; 6:2–4. 50.Seddon KR. Cryst Growth Des 2004; 4:1087–1087. 51.Vandersluis P, Kroon J. J Cryst Growth 1989; 97:645–656.52. Gorbitz CH, Hersleth HP. Acta Crystallogr Sect B StructSci 2000; 56:526–534. 53. Nangia A, Desiraju GR. ChemCommun 1999; 605–606. 54. Kitaigorodskii AI. OrganicChemical Crystallography, New York: Consultants Bureau,1961. 55. Khankari RK, Grant DJW. Thermochim Acta 1995;248:61–79. 56. Morris KR, Griesser UJ, Eckhardt CJ, et al.Adv Drug Deliv Rev 2001; 48:91–114. 57. Tian F, Sandler N,Aaltonen J, et al. J Pharm Sci 2007; 96:584–594. 58. CabezaAJC, Day GM, Motherwell WDS, et al. J Am Chem Soc 2006;128:14466–14467. 59. Johnston A, Johnston BF, Kennedy AR,et al. Cryst Eng Comm 2008; 10:23–25. 60. Bingham AL,Hughes DS, Hursthouse MB, et al. Chem Commun 2001; 603–604.61. Suleiman MS, Najib NM. Int J Pharm 1989; 50:103–109.62. International Conference on Harmonisation of TechnicalRequirements for Registration of Pharmaceuticals for HumanUse (ICH) ICH Harmonized Tripartite Guideline Q3CImpurities: Residual Solvents, 1997. 63. Harris RK, Ghi PY,Puschmann H, et al. Org Process Res Dev 2005; 9:902–910.64. Fleischman SG, Kuduva SS, McMahon JA, et al. CrystGrowth Des 2003; 3:909–919. 65. Johnston A, Florence AJ,

Kennedy AR. Acta Crystallogr Sect E Struct Rep Online 2005;61: O1777–O1779. 66. Liu CL, Chang TC, Wu SM, et al. J ChinChem Soc 2006; 53:851–856. 67. Infantes L, Fabian L,Motherwell WDS. Cryst Eng Comm 2007; 9:65–71. 68. BurleyJC, van de Streek J, Stephens PW. Acta Crystallogr Sect EStruct Rep Online 2006; 62: O797–O799. 69. Turel I, BukovecP, Quiros M. Int J Pharm 1997; 152:59–65. 70. Kennedy AR,Okoth MO, Sheen DB, et al. Acta Crystallogr Sect C CrystStruct Commun 2003; 59:O650–O652. 71. Gylbert L. ActaCrystallogr Sect B Struct Sci 1973; B 29:1630–1635. 72.Sime RL, Forehand R, Sime RJ. Acta Crystallogr Sect BStruct Sci 1975; 31:2326–2330. 73. Cuffini SL, Faudone S,Ferro M, et al. Acta Crystallogr Sect C Cryst Struct Commun2008; 64:O119–O122. 74. Bechtloff B, Nordhoff S, Ulrich J.Cryst Res Technol 2001; 36:1315–1328. 75. Dideberg O,Dupont L. Acta Crystallogr Sect B Struct Crystallogr CrystChem 1972; B 28:3014–3022. 76. Agafonov V, Legendre B,Rodier N. Acta Crystallogr Sect C Cryst Struct Commun 1989;45:1661–1663. 77. Nicolai B, Espeau P, Ceolin R, et al. JTherm Anal Calorim 2007; 90:337–339. 78. Almarsson O,Zaworotko MJ. Chem Commun 2004; 1889–1896. 79. Zaworotko M.J Pharm Pharmacol 2006; 58:A91–A91. 80. Zaworotko M, PeddyV. Acta Crystallogr Sect A 2005; 61:c12–c13. 81. Braga D,Grepioni F. Making Crystals by Design: Methods, Techniquesand Applications. Weinheim, Germany: Wiley-VCH, 2007. 82.Desiraju GR. Crystal Design: Structure and Function.Chichester, U.K.: Wiley, 2003. 83. Trask AV, MotherwellWDS, Jones W. Cryst Growth Des 2005; 5:1013–1021. 84. TraskAV, Motherwell WDS, Jones W. Int J Pharm 2006; 320:114–123.85. Wermuth CG, Stahl PH. Handbook of Pharmaceutical Salts:Properties, Selection, and Use. In: Stahl PH, Wermuth CG,eds. Weinheim, Germany; Chichester, U.K.: Wiley-VCH,2002:1–8. 86. Balbach S, Korn C. Int J Pharm 2004;275:1–12. 87. Banerjee R, Bhatt PM, Ravindra NV, et al.Cryst Growth Des 2005; 5:2299–2309.

88. Pfannkuch F, Rettig H, Stahl PH. In: Stahl PH, WermuthCG, eds. Handbook of Pharmaceutical Salts: Properties,Selection, and Use. Weinheim, Germany; Chichester, U.K.:Wiley-VCH, 2002:117–134.

89. Kumar L, Amin A, Bansal AK. Drug Discov Today 2007;12:1046–1053.

90. Bastin RJ, Bowker MJ, Slater BJ. Org Process Res Dev2000; 4:427–435.

91. Morissette SL, Almarsson O, Peterson ML, et al. AdvDrug Deliv Rev 2004; 56:275–300.

92. Storey R, Docherty R, Higginson PD, et al. CrystallogrRev 2004; 37:243–252.

93. Kojima T, Onoue S, Murase N, et al. Pharm Res 2006;23:806–812.

94. Berge SM, Bighley LD, Monkhouse DC. In: Swarbrick J,Boylan JC, eds. Encyclopedia of Pharmaceutical Technology.New York: Marcel Dekker, 1996:453–499.

95. Maddox J. Nature 1988; 335:201–201.

96. Price SL. Phys Chem Chem Phys 2008; 10:1996–2009.

97. Lommerse JPM, Motherwell WDS, Ammon HL, et al. ActaCrystallogr Sect B Struct Sci 2000; 56:697–714.

98. Motherwell WDS, Ammon HL, Dunitz JD, et al. ActaCrystallogr Sect B Struct Sci 2002; 58:647–661.

99. Cabeza AJC, Pidcock E, Day GM, et al. Cryst Eng Comm2007; 9:556–560.

100. Hulme AT, Price SL. J Chem Theory and Comput 2007;3:1597–1608.

101. Lancaster RW, Karamertzanis PG, Hulme AT, et al. ChemCommun 2006; 4921–4923.

102. Cross WI, Blagden N, Davey RJ, et al. Cryst Growth Des2003; 3:151–158.

103. Florence AJ, Leech CK, Shankland N, et al. Cryst EngComm 2006; 8:746–747.

104. Johnston A, Florence AJ, Shankland N, et al. CrystGrowth Des 2007; 7:705–712.

105. Mullin JW. Crystallization. Oxford, Boston:Butterworth-Heinemann, 2001.

106. Florence AJ, Johnston A, Price SL, et al. J Pharm Sci2006; 95:1918–1930.

107. Lang MD, Grzesiak AL, Matzger AJ. J Am Chem Soc 2002;124:14834–14835.

108. Price CP, Grzesiak AL, Matzger AJ. J Am Chem Soc 2005;127:5512–5517.

109. Yu L. Cryst Eng Comm 2007; 9:847–851.

110. Ostwald WZ. Z Phys Chem 1897; 22:289–330.

111. Florence AJ, Shankland N, Johnston A. In: Sarker SD,Latif Z, Gray AI, eds. Natural Products Isolation. Totowa,NJ: Humana Press, 2006:275–296.

112. Yu ZQ, Chew JW, Chow PS, et al. Chem Eng Res Des 2007;85:893–905.

113. McDonald C, Muzumdar PP. J Clin Pharm Ther 1998;23:235–239.

114. McDonald C, Faridah. J Parenter Sci Technol 1991;45:147–151.

115. Yarlagadda SG, Perazella MA. Expert Opin Drug Saf2008; 7:147–158.

116. Groen H, Roberts KJ. J Phys Chem B 2001;105:10723–10730.

117. Liang KP, White G, Wilkinson D, et al. Ind Eng ChemRes 2004; 43:1227–1234.

118. Lu J, Wang XJ, Yang X, et al. J Pharm Sci 2007;96:2457–2468.

119. Nagy ZK, Chew JW, Fujiwara M, et al. J Process Control2008; 18:399–407.

120. Parmar MM, Khan O, Seton L, et al. Cryst Growth Des2007; 7:1635–1642.

121. Field JS, Ledwaba LP, Munro OQ, et al. Cryst Eng Comm2008; 10:740–747.

122. Toro R, de Delgado GD, Bahsas A, et al. Z Kristallogr2007; 563–568.

123. Weatherhead-Kloster RA, Selby HD, Miller WB, et al. JOrg Chem 2005; 70:8693–8702.

124. Watkin DJ. J Appl Crystallogr 1972; 5:250.

125. Ceolin R, Toscani S, Gardette MF, et al. J Pharm Sci1997; 86:1062–1065.

126. Sarma B, Roy S, Nangia A. Chem Commun 2006; 4918–4920.

127. Bleay J, Hooper RM, Narang RS, et al. J Cryst Growth1978; 43:589–596.

128. Henisch HK. Crystal Growth in Gels. London: DoverPublications; New York: Constable and Co., 1996.

129. Ramachandran E, Natarajan S. Cryst Res Technol 2006;41:411–415.

130. Lang MD, Kampf JW, Matzger AJ. J Pharm Sci 2002;91:1186–1190.

131. Yokota M, Mochizuki M, Saito K, et al. Chem Eng Commun1999; 174:243–256.

132. Alleso M, Van Den Berg F, Cornett C, et al. J PharmSci 2008; 97:2145–2159.

133. Hosokawa K, Goto J, Hirayama N. Chem Pharm Bull 2005;53:1296–1299.

134. Reichardt C. Org Process Res Dev 2007; 11:105–113.135. Xu D, Redman-Furey N. Int J Pharm 2007; 339:175–188.136. Mirmehrabi M, Rohani S. J Pharm Sci 2005;94:1560–1576. 137. Gavezzotti A. Chem Eur J 1999;5:567–576. 138. Florence AJ, Johnston A, Fernandes P, etal. J Appl Crystallogr 2006; 39:922–924. 139. Trask AV,Shan N, Motherwell WDS, et al. Chem Commun 2005; 880–882.140. Chierotti MR, Gobetto R, Pellegrino L, et al. CrystGrowth Des 2008; 8:1454–1457. 141. Zhang GGZ, Henry RF,Borchardt TB, et al. J Pharm Sci 2007; 96:990–995. 142.Friscic T, Fabian L, Burley JC, et al. Chem Commun 2006;5009–5011. 143. Trask AV, Jones W. Org Solid State React2005; 254:41–70. 144. Wenger M, Bernstein J. Cryst GrowthDes 2008; 8:1595–1598. 145. Basavoju S, Bostrom D, VelagaSP. Pharm Res 2008; 25:530–541. 146. Berry DJ, Seaton CC,Clegg W, et al. Cryst Growth Des 2008; 8:1697–1712. 147.Fabbiani FPA, Pulham CR. Chem Soc Rev 2006; 35:932–942.148. Fabbiani FPA, Allan DR, Parsons S, et al. Cryst EngComm 2005; 7:179–186. 149. Gong YC, Collman BM, Mehrens SM,et al. J Pharm Sci 2008; 97:2130–2144. 150. Winn D, DohertyMF. AIChE J 2000; 46:1348–1367. 151. Threlfall TL. Analyst1995; 120:2435–2460. 152. Yu L, Reutzel SM, Stephenson GA.Pharm Sci Technol Today 1998; 1:118–127. 153. Bragg WH,Bragg WL. X Rays and Crystal Structure. London: Bell & SonsLtd, 1915. 154. Glusker JP, Lewis M, Rossi M. CrystalStructure Analysis for Chemists and Biologists. New York,Cambridge: VCH, 1994. 155. Ladd MFC, Palmer RA. StructureDetermination By X-Ray Crystallography, New York, London:

Kluwer Academic/Plenum Publishers, 2003. 156. George H.Stout and Lyle H. Jensen, X-Ray Structure Determination: APractical Guide. New York: Wiley, 1989. 157. Young RA. TheRietveld Method. Oxford: Oxford University Press, 1993.158. David WIF. Structure Determination from PowderDiffraction Data. Oxford: Oxford University Press, 2002.159. Klug HP, Alexander LE. X-Ray Diffraction Proceduresfor Polycrystalline and Amorphous Materials. 2nd ed. NewYork, London: Wiley-Interscience [S.l.], 1974. 160.Sheldrick GM. Acta Crystallogr 1984; A 40(suppl S):C440.161. Sheldrick GM. Acta Crystallogr Sect A 2008;64:112–122. 162. Spek AL. J Appl Crystallogr 2003; 36:7–13.163. Macrae CF, Edgington PR, McCabe P, et al. J ApplCrystallogr 2006; 39:453–457. 164. Clegg W, Teat SJ. ActaCrystallogr Sect C Cryst Struct Commun 2000; 56:1343–1345.165. Frampton CS, Knight KS, Shankland N, et al. J MolStruct 2000; 520:29–32. 166. David WIF, Shankland K,McCusker LB, et al. eds. Structure Determination fromPowder Diffraction Data. Oxford: Oxford University Press,2002. 167. Florence AJ, Baumgartner B, Weston C, et al. JPharm Sci 2003; 92:1930–1938. 168. Barr G, Dong W, GilmoreCJ. J Appl Crystallogr 2004; 37:658–664. 169. Albers D,Galgoci M, King D, et al. Org Process Res Dev 2007;11:846–860. 170. Nishimoto Y, Kaneki Y, Kishi A. Anal Sci2004; 20:1079–1082. 171. Loue¨r D. In: David WIF, ed.Structure Determination from Powder Diffraction Data.Oxford, New York: Oxford University Press, 2002:xvii, 337.172. Dollase WA. J Appl Crystallogr 1986; 19:267–272. 173.Jarvinen M. J Appl Crystallogr 1993; 26:525–531. 174.Chikhalia V, Forbes RT, Storey RA, et al. Eur J Pharm Sci2006; 27:19–26. 175. Heng JYY, Thielmann F, Williams DR.Pharm Res 2006; 23:1918–1927. 176. Lee AY, Myerson AS. MRSBull 2006; 31:881–886. 177. Dilworth SE, Buckton G,Gaisford S, et al. Int J Pharm 2004; 284:83–94. 178.Lappalainen M, Pitkanen I, Harjunen P. Int J Pharm 2006;307:150–155. 179. Lehto VP, Tenho M, Vaha-Heikkila K, etal. Powder Technol 2006; 167:85–93. 180. Strachan CJ, RadesT, Gordon KC, et al. J Pharm Pharmacol 2007; 59:179–192.181. Vemuri NM, Chrzan Z, Cavatur R. J Therm Anal Calorim2004; 78:55–62.

182. Young PM, Chiou H, Tee T, et al. Drug Dev Ind Pharm2007; 33:91–97.

183. Zeitler JA, Taday PF, Newnham DA, et al. J PharmPharmacol 2007; 59:209–223.

184. Faber J, Fawcett T. Acta Crystallogr Sect B Struct Sci2002; 58:325–332.

185. Barr G, Gilmore CJ, Paisley J. J Appl Crystallogr2004; 37:665–668.

186. Pawley GS. J Appl Crystallogr 1981; 14:357–361.

187. Johnston A, Florence AJ, Kennedy AR. Acta CrystallogrSect E Struct Rep Online 2006; 62: O2288–O2290.

188. Dupont L, Dideberg O. Acta Crystallogr Sect B StructCrystallogr Cryst Chem 1972; B 28:2340–2347.

189. Bruno IJ, Cole JC, Edgington PR, et al. ActaCrystallogr Sect B Struct Sci 2002; 58:389–397.

190. Leech CK, Florence AJ, Shankland K, et al. ActaCrystallogr Sect E Struct Rep Online 2007; 63:O675–O677.

191. Karami S, Li Y, Hughes DS, et al. Acta CrystallogrSect B Struct Sci 2006; 62:689–691.

192. Stephenson GA. J Pharm Sci 2006; 95:821–827.

193. Rietveld HM. J Appl Crystallogr 1969; 2:65–71.

194. Harris KDM, Cheung EY. Org Process Res Dev 2003;7:970–976.

195. Fernandes P, Florence AJ, Shankland K, et al. ActaCrystallogr Sect E Struct Rep Online 2007; 63:O202–O204.

196. Hulme AT, Fernandes P, Florence A, et al. ActaCrystallogr Sect E Struct Rep Online 2006; 62:O3752–O3754.

197. Pagola S, Stephens PW, Bohle DS, et al. Nature 2000;404:307–310.

198. Deem MW, Newsam JM. Nature 1989; 342:260–262.

199. Reinaudi L, Leiva EPM, Carbonio RE. J Chem Soc DaltonTrans 2000; 4258–4262.

200. Edgar M, Carter VJ, Grewal P, et al. Chem Mater 2002;14:3432–3439.

201. Ivashevskaja SN, Aleshina LA, Andreev VP, et al. ActaCrystallogr Sect C Cryst Struct Commun 2002; 58:m300–m301.

202. Dinnebier RE, Wagner M, Peters F, et al. Z Anorg AllgChem 2000; 626:1400–1405.

203. Espallargas GM, Hippler M, Florence AJ, et al. J AmChem Soc 2007; 129:15606–15614.

204. Fernandes P, Shankland K, Florence AJ, et al. J PharmSci 2007; 96:1192–1202.

205. Florence A, Johnston A, Fernandes P, et al. ActaCrystallogr Sect E Struct Rep Online 2005; 61:O2798–O2800.

206. Fernandes P, Florence AJ, Shankland K, et al. ActaCrystallogr Sect E Struct Rep Online 2006; 62:O2216–O2218.

207. Florence AJ, Johnston A, Shankland K. Acta CrystallogrSect E Struct Rep Online 2005; 61: O2974–O2977.

208. Chernyshev VV, Stephens PW, Yatsenko AV, et al. JPharm Sci 2004; 93:3090–3095.

209. Stephenson GA. J Pharm Sci 2000; 89:958–966.

210. Lewis GR, Steele G, McBride L, et al. Cryst Growth Des2005; 5:427–438.

211. Nishibori E, Ogura T, Aoyagi S, et al. J ApplCrystallogr 2008; 41:292–301.

212. Remenar JF, Peterson ML, Stephens PW, et al. Mol Pharm2007; 4:386–400.

213. Pagola S, Tracanna MI, Amani SM, et al. Nat ProdCommun 2008; 3:759–764.

214. Nunes C, Suryanarayanan R, Botez CE, et al. J PharmSci 2004; 93:2800–2809.

215. Platteau C, Lefebvre J, Affouard F, et al. ActaCrystallogr Sect B Struct Sci 2004; 60:453–460.

216. van Mechelen JB, Peschar R, Schenk H. Acta CrystallogrSect B Struct Sci 2008; 64:240–248.

217. Shankland K, David WIF. In: David WIF, Shankland K,McCusker LB, et al. eds. Structure Determination fromPowder Diffraction Data. Oxford: Oxford University Press,2002:252–285.

218. Bruno IJ, Cole JC, Kessler M, et al. J Chem Inf ComputSci 2004; 44:2133–2144.

219. Middleton DA, Peng X, Saunders D, et al. Chem Commun

2002; 1976–1977.

220. Shankland K, David WIF, Sivia DS. J Materials Chem1997; 7:569–572.

221. National Institute of Standards & Technology, StandardReference Material 1 640c: Silicon Powder Line Position andLine Shape Standard for Powder Diffraction, The certifiedlattice parameter for a temperature of 22.58C is 0.54311946nm 0.00000092 nm.

222. Boultif A, Louer D. J Appl Crystallogr 1991;24:987–993.

223. Boultif A, Louer D. J Appl Crystallogr 2004;37:724–731. 224. Visser J. J Appl Crystallogr 1969;2:89–95. 225. Werner PE, Eriksson L, Westdahl M. J ApplCrystallogr 1985; 18:367–370. 226. Altomare A, GiacovazzoC, Guagliardi A, et al. J Appl Crystallogr 2000;33:1180–1186. 227. Coelho AA. J Appl Crystallogr 2003;36:86–95. 228. Le Bail A. Powder Diffr 2004; 19:249–254.229. Neumann MA. J Appl Crystallogr 2003; 36:356–365. 230.David WIF, Shankland K, van de Streek J, et al. J ApplCrystallogr 2006; 39:910–915. 231. Putz H, Schon JC, JansenM. J Appl Crystallogr 1999; 32:864–870. 232. Le Bail A. InEpdic 7. Eur Powder Diff 2001; (pts 1 and 2):65–70. 233.Favre-Nicolin V, Cerny R. J Appl Crystallogr 2002;35:734–743. 234. Engel GE, Wilke S, Konig O, et al. J ApplCrystallogr 1999; 32:1169–1179. 235. Stephens PW, Huq A.Trans Am Crystallogr Assoc 2002; 27:127–144. 236. CoelhoAA. J Appl Crystallogr 2000; 33:899–908. 237. Larson AC,Von Dreele RB. General Structure Analysis System (GSAS).Report LAUR 86-748. New Mexico, USA, Los Alamos NationalLaboratory, 2004. 238. Barr G, Dong W, Gilmore CJ, et al. JAppl Crystallogr 2005; 38:833–841. 239. Gelbrich T,Hursthouse MB. Cryst Eng Comm 2005; 7:324–336. 240.McKinnon JJ, Mitchell AS, Spackman MA. Chem Eur J 1998;4:2136–2141. 241. de Wolff PM. J Appl Crystallogr 1968;1:108–113. 242. Smith GS, Snyder RL. J Appl Crystallogr1979; 12:60–65. 243. Markvardsen AJ, David WIF, Johnson JC,et al. Acta Crystallogr Sect A 2001; 57:47–54. 244. Le BailA, Duroy H, Fourquet JL. Mater Res Bull 1988; 23:447–452.245. David WIF, Sivia DS. In: David WIF, Shankland K,McCusker LB, et al. eds. Structure Determination fromPowder Diffraction Data. Oxford: Oxford University Press,2002:136–161. 246. Florence AJ, Shankland N, Shankland K,et al. J Appl Crystallogr 2005; 38:249–259. 247.Zachariasen WH, Ellinger FH. Acta Crystallogr 1963;16:777–783. 248. Shankland K, David WIF, Csoka T. ZKristallogr 1997; 212:550–552. 249. Madsen IC, Hill RJ. J

Appl Crystallogr 1994; 27:385–392. 250. van Mechelen JB,Peschar R, Schenk H. Acta Crystallogr Sect B Struct Sci2006; 62:1131–1138. 251. Karamertzanis PG, AnandamanoharanPR, Fernandes P, et al. J Phys Chem B 2007; 111:5326–5336.252. Florence AJ, Shankland K, Gelbrich T, et al. Cryst EngComm 2008; 10:26–28.

9 Chapter 9- Excipient Design andCharacterization

10. York P. Crystal engineering and particle design for thepowder compaction process. Drug Dev Ind Pharm 1992;18:677–721.

11. Allen JD. Improving DC with SMCC. Manuf Chemist 1996;67:19–23.

12. Belda PM, Mielck JB. The tabletting behaviour ofcellactose compared with mixtures of celluloses andlactose. Eur J Pharm Biopharm 1996; 42:325–330.

13. Sherwood B, Becker JW. A new class of highfunctionality excipients: silicified microcrystallinecellulose. Pharm Technol 1998; 22:78–88.

14. Schmidt PC, Rubensdorfer CJW. Evaluation of Ludipressas a “multipurpose excipient” for direct compression. Part1. Powder characteristics and tabletting properties. DrugDev Ind Pharm 1994; 29:2899–2925.

15. Newell HE, Buckton G, Butler DA, et al. The use ofinverse phase gas chromatography to measure the surfaceenergy of crystalline, amorphous, and recently milledlactose. Pharm Res 2001; 18:662–666.

16. Hogan SE, Buckton G. Water sorption/desorption—near IRand calorimetric study of crystalline and amorphousraffinose. Int J Pharm 2001; 227:57–69.

17. Newell HE, Buckton G, Butler DA, et al. The use ofinverse phase gas chromatography to study the change ofsurface energy of amorphous lactose as a function ofrelative humidity and the processes of collapse andcrystallisation. Int J Pharm 2001; 217:45–56.

10 Chapter 10- Preformulation

1. Bauer J, Spanton S, Henry R, et al. Ritonavir: anextraordinary example of conformational polymorphism. PharmRes 2001; 18(6):859–866.

2. Wells JI. Pharmaceutical Preformulation—ThePhysicochemical Properties of Drug Substances. In:Rubinstein MH, ed. Pharmaceutical Technology. Chichester:Ellis Horwood Ltd, 1988:225.

3. Carstensen JT. Pharmaceutical Preformulation. BocaRaton: CRC Press, 1998:305.

4. Crommelin DJA, Sindelar RD. PharmaceuticalBiotechnology. 2nd ed. London: Taylor Francis, 2002:423.

5. McNally EJ, Hastedt JE. Protein Formulation andDelivery. In: Swarbrick J, Series ed. Drugs and thePharmaceutical Sciences, Vol 175, 2nd ed. New York: MarcelDekker, 2008:351.

6. Guarino RA. New Drug Approval Process—The GlobalChallenge. In: Swarbrick J, Series ed. Drugs and thePharmaceutical Sciences, Vol 100, 3rd ed. New York: MarcelDekker, 2000:471.

7. Nusim S. Active Pharmaceutical Ingredients—Development,Manufacture and Regulation. In: Swarbrick J, Series ed.Drugs and the Pharmaceutical Sciences. Vol 151. New York:Marcel Dekker, 2005.

8. Hirsch CA, Messenger RJ, Brannon JL. Fenoprofen—drugform selection and pre-formulation stability studies. JPharma Sci 1978; 67(2):231–236.

9. Manly CJ, Louise-May S, Hammer JD. The impact ofinformatics and computational chemistry on synthesis andscreening. Drug Discov Today 2001; 6(21):1101–1110.

10. Tetko IV. Computing chemistry on the web. Drug DiscovToday 2005; 10(22):1497–1500. 11. Pehourcq F, Jarry C,Bannwarth B. Potential of immobilized artificial membranechromatography for lipophilicity determination ofarylpropionic acid nonsteroidal anti-inflammatory drugs. JPharm Biomed Anal 2003; 33(2):137–144. 12. Hou T, Wang J.Structure—ADME relationship: still a long way to go? ExpertOpin Drug Metab Toxicol 2008; 4(6):759–770. 13. Bevan CD,Lloyd RS. A high-throughput screening method for thedetermination of aqueous drug solubility using laser

nephelometry in microtiter plates. Anal Chem 2000;72(8):1781–1787. 14. Wong KS, Kenseth J, Strasburg R.Validation and long-term assessment of an approach for thehigh throughput determination of lipophilicity (log P-OW)values using multiplexed, absorbance-based capillaryelectrophoresis. J Pharm Sci 2004; 93(4):916–931. 15.Llinas A, Box KJ, Burley JC, et al. A new method for thereproducible generation of polymorphs: two forms ofsulindac with very different solubilities. J ApplCrystallogr 2007; 40:379–381. 16. Dehring KA, Workman HL,Miller KD, et al. Automated robotic liquidhandling/laser-based nephelometry system for highthroughput measurement of kinetic aqueous solubility. JPharm Biomed Anal 2004; 36(3):447–456. 17. Rao RN, NagarajuV. An overview of the recent trends in development of HPLCmethods for determination of impurities in drugs. J PharmBiomed Anal 2003; 33(3):335–377. 18. Qiu FH, Norwood DL.Identification of pharmaceutical impurities. J LiqChromatogr Relat Technol 2007; 30(5–8):877–935. 19. SnyderLR, Kirkland JJ, Glajch JL. Practical HPLC MethodDevelopment. 2nd ed. New York: John Wiley and Sons, 1997.20. Anon. International Conference on Harmonisation, 2008[cited May 2008]. Available at: http:// ich.org. 21. DenyerSP, Baird RM. Guide to microbiological control inpharmaceuticals. In: Rubinstein MH, ed. Ellis HorwoodSeries in Pharmaceutical Technology. New York: EllisHorwood, 1990. 22. Aguiar AJ, Krc J Jr., Kinkel AW, et al.Effect of polymorphism on absorption of chloramphenicolfrom chloramphenicol palmitate. J Pharm Sci 1967;56(7):847–853. 23. Huang LF, Tong WQ. Impact of solid stateproperties on developability assessment of drug candidates.Adv Drug Deliv Rev 2004; 56(3):321–334. 24. Carstensen JT.Advanced Pharmaceutical Solids. In: Swarbrick J, Series ed.Drugs and the Pharmaceutical Sciences. Vol 110. New York:Marcel Dekker, 2001:518. 25. Byrn S, Pfieffer R, Ganey M,et al. Pharmaceutical solids—a strategic approach toregulatory considerations. Pharm Res 1995; 12(7):945–954.26. Serajuddin ATM. Salt formation to improve drugsolubility. Adv Drug Deliv Rev 2007; 59 (7):603–616. 27.Paulekuhn GS, Dressman JB, Saal C. Trends in activepharmaceutical ingredient salt selection based on analysisof the Orange Book Database. J Med Chem 2007;50(26):6665–6672. 28. Brittain HG. PhysicalCharacterisation of Pharmaceutical Solids. In: Swarbrick J,Series ed. Drugs and the Pharmaceutical Sciences. Vol 70,1st ed. New York: Marcel Dekker, 1995:424. 29. Singhal D,Curatolo W. Drug polymorphism and dosage form design: apractical perspective. Adv Drug Deliv Rev 2004;56(3):335–347. 30. Devilliers MM, Vanderwatt JG, Lotter AP.Kinetic study of the solid-state photolytic degradation of

2 polymorphic forms of furosemide. Int J Pharm 1992;88(1–3):275–283. 31. Zhang GGZ, Law D, Schmitt EA, et al.Phase transformation considerations during processdevelopment and manufacture of solid oral dosage forms. AdvDrug Deliv Rev 2004; 56 (3):371–390. 32. Yu L. Amorphouspharmaceutical solids: preparation, characterization andstabilization. Adv Drug Deliv Rev 2001; 48(1):27–42. 33.Rabel SR, Jona JA, Maurin MB. Applications of modulateddifferential scanning calorimetry in preformulationstudies. J Pharm Biomed Anal 1999; 21(2):339–345. 34. CraigDQM, Reading M. Thermal Analysis of Pharmaceuticals. 1sted. Boca Raton: CRC Press, 2007:416.

35. Tumer YTA, Roberts CJ, Davies MC. Scanning probemicroscopy in the field of drug delivery. Advanced DrugDelivery Reviews 2007; 59:1453–1473.

36. Morissette SL, Soukasene S, Levinson D, et al.Elucidation of crystal form diversity of the HIV proteaseinhibitor ritonavir by high-throughput crystallization.Proc Natl Acad Sci U S A 2003; 100(5):2180–2184.

37. Price SL. The computational prediction ofpharmaceutical crystal structures and polymorphism. AdvDrug Deliv Rev 2004; 56(3):301–319.

38. Beyer T, Day GM, Price SL. The prediction, morphology,and mechanical properties of the polymorphs of paracetamol.J Am Chem Soc 2001; 123(21):5086–5094.

39. Hickey AJ, Concessio NM. Descriptors of irregularparticle morphology and powder properties. Adv Drug DelivRev 1997; 26(1):29–40.

40. Liu R. Introduction. In: Liu R, ed. Water-InsolubleDrug Formulation. CRC Press: Boca Raton, 2008:1–4.

41. Chen Y, Qi X, Liu R. Prediction of solubility. In: LiuR, ed. Water-Insoluble Drug Formulation. CRC Press: BocaRaton, 2008:23–59.

42. Sangster J. Octanol-water partition coefficients:fundamentals and physical chemistry. In: Fogg P, ed. Seriesin Solution Chemistry. Vol 2. Chichester: John Wiley andSons, 1997:170.

43. Lipinski CA, Lombardo F, Dominy BW, et al. Experimentaland computational approaches to estimate solubility andpermeability in drug discovery and development settings.Adv Drug Deliv Rev 1997; 23(1–3):p. 3–25.

44. Wilson CG, Washignton N. Physiological Pharmaceutics:Biological Barriers to Drug Absorption. 2nd ed. Chichester:Ellis Horwood, 2001.

45. Artursson P, Palm K, Luthman K. Caco-2 monolayers inexperimental and theoretical predictions of drug transport.Adv Drug Deliv Rev 2001; 46(1–3):27–43.

46. Shah P, Jogani V, Bagchi T, et al. Role of Caco-2 cellmonolayers in prediction of intestinal drug absorption.Biotechnol Prog 2006; 22(1):186–198.

11 Chapter 11- Disperse Systems

1. Nairn JG. Disperse systems. In: Swarbrick J, Boylan JC,eds. Encyclopedia of Pharmaceutical Technology. Vol 4. NewYork: Marcel Dekker, 1992:107–120.

2. Patel RB, Patel UR, Roggle MC, et al. Bioavailability ofhydrochlorothiazide from tablets and suspensions. J PharmSci 1984; 73:359–365.

3. Stout PJ, Howard SA, Mauger JW. Dissolution ofpharmaceutical suspensions. In: Swarbrick J, Boylan JC,eds. Encyclopedia of Pharmaceutical Technology. Vol 4. NewYork: Marcel Dekker, 1992:169–192.

4. Donovan MD, Flanagan DR. Bioavailability of dispersedosage form. In: Lieberman HA, Rieger MM, Banker GS, eds.Pharmaceutical Dosage Forms: Disperse Systems. Vol 1, 2nded. New York: Marcel Dekker, 1996:315–376.

5. Mauger JW, Howard SA, Amin K. Dissolution profiles forfinely divided drug suspensions. J Pharm Sci 1983;72:190–193. 6. Hirano K, Yamada H. Studies on theabsorption of practically water-insoluble drugs followinginjection VI: subcutaneous absorption from aqueoussuspensions in rats. J Pharm Sci 1982; 71:500–505. 7. NashRA. Pharmaceutical suspensions. In: Lieberman HA, RiegerMM, Banker GS, eds. Pharmaceutical Dosage Forms: DisperseSystems. Vol 1. New York: Marcel Dekker, 1988:151–198. 8.Patel NK, Kennon L, Levinson RS. Pharmaceuticalsuspensions. In: Lachman L, Lieberman HA, Kanig JL, eds.The Theory and Practice of Industrial Pharmacy. 3rd ed.Philadelphia: Lea & Febiger, 1986:479–501. 9. Swarbrick J.Coarse dispersions. In: Gennaro AR, ed. Remington: TheScience and Practice of Pharmacy. 19th ed. Pennsylvania:Mack Publishing Co., 1995:278–291. 10. Falkiewicz MJ.Theory of suspensions. In: Lieberman HA, Rieger MM, BankerGS, eds. Pharmaceutical Dosage Forms: Disperse Systems. Vol1. New York: Marcel Dekker, 1988: 13–48. 11. Burgess DJ.Colloids and colloid drug delivery systems. In: SwarbrickJ, Boylan JC, eds. Encyclopedia of PharmaceuticalTechnology. Vol 3. New York: Marcel Dekker, 1990: 31–64.12. Martin A, Bustamante P, eds. Physical Pharmacy. 4th ed.Philadelphia: Lippincott Williams & Wilkins, 1993:82–84,98, 393–422, 423–452, 477–511. 13. Alonso MJ.Nanoparticulate drug carrier technology. In: Cohen S,Bernstein H, eds. Microparticulate Systems for the Deliveryof Proteins and Vaccines. New York: Marcel Dekker,1996:203–242. 14. Bodmeier R, Maincent P. Polymericdispersions as drug carriers. In: Lieberman HA, Rieger MM,

Banker GS, eds. Pharmaceutical Dosage Forms: DisperseSystems. Vol 3, 2nd ed. New York: Marcel Dekker,1998:87–128. 15. Jaeghere F, Doelker E, Gurny R.Nanoparticles. In: Mathiowitz E, ed. Encyclopedia ofControlled Drug Delivery. Vol 2. New York: John Wiley &Sons, 1999:641–664. 16. Torchilin VP, ed. Nanoparticulatesas Drug Carriers. London: Imperial College Press, 2006. 17.Mu¨ller RH, Bo¨hm BHL. Nanosuspensions. In:Mu¨ller RH,Benita S, Bo¨hm BHL, eds. Emulsions and Nanosuspensions forthe Formulation of Poorly Soluble Drugs. Stuttgart:Medpharm Scientific Publishers, 1998:149–174. 18. McGinityJW, Felton L, eds. Aqueous Polymeric Coatings forPharmaceutical Dosage Forms. 3rd ed. New York: InformaHealthcare, 2008. 19. Wang J, Ghebre-Sellassie I. Aqueouspolymer dispersions as film formers. In: Lieberman HA,Rieger MM, Banker GS, eds. Pharmaceutical Dosage Forms:Disperse Systems. Vol 3, 2nd ed. New York: Marcel Dekker,1998:129–161. 20. Idson B. Pharmaceutical emulsions. In:Lieberman HA, Rieger MM, Banker GS, eds. PharmaceuticalDosage Forms: Disperse Systems. Vol 1. New York: MarcelDekker, 1988:199–244. 21. Eccleston GM. Emulsions. In:Swarbrick J, Boylan JC, eds. Encyclopedia of PharmaceuticalTechnology. Vol 5. New York: Marcel Dekker, 1992:137–188.22. Mulley BA. Medicinal emulsions. In: Lissant KJ, ed.Emulsions and Emulsion Technology, Part I: SurfactantScience Series. Vol 6. New York: Marcel Dekker,1974:291–350. 23. Rieger MM. Emulsions. In: Lachman L,Lieberman HA, Kanig JL, eds. The Theory and Practice ofIndustrial Pharmacy. 3rd ed. Philadelphia: Lea & Febiger,1986:502–532. 24. Block LH. Pharmaceutical emulsions andmicroemulsions. In: Lieberman HA, Rieger MM, Banker GS,eds. Pharmaceutical Dosage Forms: Disperse Systems. Vol 2.New York: Marcel Dekker, 1996:47–110. 25. Garti N. Doubleemulsions-scope, limitations and new achievements. ColloidsSurf A: Physicochem Eng Asp 1997; 123–124:233–246. 26.Klang SH, Parnas M, Benita S. Emulsions as drug carriers –possibilities, limitations and future perspectives. In:Mu¨ller RH, Benita S, Bo¨hm BHL, eds. Emulsions andNanosuspensions for the Formulation of Poorly SolubleDrugs. Stuttgart: Medpharm Scientific Publishers,1998:31–78.

27. Lundberg B. Preparation of drug-carrier emulsionsstabilized with phosphatidylcholinesurfactant mixtures. JPharm Sci 1994; 83:72–75.

28. Bluhm DP, Summers RS, Lowes MMJ, et al. Lipid emulsioncontent and vitamin A stability in TPN admixtures. Int JPharm 1991; 68:277–280.

29. Boyett JB, Davis CW. Injectable emulsions andsuspensions. In: Lieberman HA, Rieger MM, Banker GS, eds.Pharmaceutical Dosage Forms: Disperse Systems. Vol 2. NewYork: Marcel Dekker, 1989:379–416.

30. Breen PJ, Wasan DT, Kim Y-H, et al. Emulsions andemulsion stability. In:Sjo¨blom J, ed. Emulsions andEmulsion Stability, Surfactant Science Series. Vol 61. NewYork: Marcel Dekker, 1996:237–286.

31. Parnham MJ. Safety and tolerability of intravenouslyadministered phospholipids and emulsions. In: Mu¨ller RH,Benita S, Bo¨hm BHL, eds. Emulsions and Nanosuspensions forthe Formulation of Poorly Soluble Drugs. Stuttgart:Medpharm Scientific Publishers, 1998: 131–140.

32. Rosoff M. Specialized pharmaceutical emulsions. In:Lieberman HA, Rieger MM, Banker GS, eds. PharmaceuticalDosage Forms: Disperse Systems. Vol 3, 2nd ed. New York:Marcel Dekker, 1998:1–42.

33. Westesen K, Wehler T. Physicochemical characterizationof a model intravenous oil-in-water emulsion. J Pharm Sci1992; 81:777–786.

34. Leuner C, Dressman J. Improving drug solubility fororal delivery using solid dispersions. Eur J Pharm Biopharm2000; 50:47–60.

35. Urbanetz NA. Stabilization of solid dispersions ofnimodipine and polyethylene glycol 2000. Eur J Pharm Sci2006; 28:67–76.

36. Li P, Zhao L. Developing early formulations: practiceand perspective. Int J Pharm 2007; 341:1–19.

37. Sciarra JJ. Aerosols. In: Gennaro AR, ed. Remington:The Science and Practice of Pharmacy. 19th ed.Pennsylvania: Mack Publishing Co., 1995:1676–1692.

38. Clarke MJ, Tobyn MJ, Staniforth TN. Physicochemicalfactors governing the performance of nedocromil sodium as adry powder aerosol. J Pharm Sci 2000; 89:1160–1169.

39. Bando H, McGinity JW. Relationship between drugdissolution and leaching of plasticizer for pellets coatedwith an aqueous Eudragit 1 S100:L100 dispersion. Int JPharm 2006; 323:11–17.

40. Siepmann F, Hoffmann A, Leclercq B, et al. How to

adjust desired drug release patterns fromethylcellulose-coated dosage forms. J Control Release 2007;119:182–189.

41. Siepmann F, Muschert S, Leclercq B, et al. How toimprove the storage stability of aqueous polymeric filmcoatings. J Control Release 2008; 126:26–33.

42. Siepmann F, Siepmann J, Walther M, et al. Polymerblends for controlled release coatings. J Control Release2008; 125:1–15.

43. Allen T. Particle size measurement. In: Williams JC,ed. The Powder Technology Series. London: Chapman and Hall,1975.

44. Vanderhoff JW, El-Aasser MS. Theory of colloids. In:Lieberman HA, Rieger MM, Banker GS, eds. PharmaceuticalDosage Forms: Disperse Systems. Vol 1, 2nd ed. New York:Marcel Dekker, 1996:91–152.

45. Heywood H. Symposium on particle size analysis. InstChem Eng Suppl 1947; 25:14–24.

46. Goodarznia I, Sutherland DN. Floc simulation: effectsof particle size and shape. Chem Eng Sci 1975; 30:407–412.

47. Heyd A, Dhabhar D. Particle shape effect on caking ofcoarse granulated antacid suspensions. Drug Cosmet Ind1979; 125:42–45.

48. Bisrat M, Nystro¨m C. Physicochemical aspects of drugrelease. VIII. The relation between particle size andsurface specific dissolution rate in agitated suspensions.Int J Pharm 1988; 47:223–231.

49. Jinno J, Kamada N, Miyake M, et al. Effect of particlesize reduction on dissolution and oral absorption of apoorly water-soluble drug, cilostazol, in beagle dogs. JControl Release 2006; 111:56–64. 50. McNamara DP, VieiraML, Crison JR. Dissolution of pharmaceuticals in simple andcomplex systems. In: Amidon GL, Lee PI, Topp EM, eds.Transport Processes in Pharmaceutical Systems. New York:Marcel Dekker, 2000:109–146. 51. Hiemenz PC. Principles ofColloid and Surface Chemistry. 2nd ed. New York: MarcelDekker, 1986. 52. Handa T, Maitani Y, Miyazima K, et al.Interfacial phenomena. In: Swarbrick J, Boylan JC, eds.Encyclopedia of Pharmaceutical Technology. Vol 8. New York:Marcel Dekker, 1993:131–174. 53. Zografi G. Interfacialphenomena. In: Gennaro AR, ed. Remington: The Science and

Practice of Pharmacy. 19th ed. Pennsylvania: MackPublishing Co., 1995:241–251. 54. Verwey EJW, OverbeekJTHG. Theory of the Stability of Lyophobic Colloids.Amsterdam: Elsevier, 1948. 55. Derjaguin B, Landau L.Theory of the stability of strongly charged lyophobic solsand adhesion of strongly charged particles in solution ofelectrolytes Acta Phys Chim USSR 1941; 14:633–662. 56.Derjaguin B, Landau L. The theory of stability of highlycharged lyophobic sols and coalescence of highly chargedparticles in electrolyte solutions, J Exp Theor PhysicsUSSR 1941; 11:802–821. 57. Matthews BA, Rhodes CT. Use ofthe Derjaguin, Landau, Verwey and Overbeek theory tointerpret pharmaceutical suspension stability. J Pharm Sci1970; 59:521–525. 58. Kayes JB. Pharmaceutical suspensions:Relation between zeta potential, sedimentation volume andsuspension stability. J Pharm Pharmacol 1977; 29:199–204.59. Delgado A, Gallardo V, Parrera A, et al. A study of theelectrokinetic and stability properties of nitrofurantoinsuspensions. II: Flocculation and redispersion propertiesas compared with theoretical interaction energy curves. JPharm Sci 1990; 79:709–718. 60. Tadros TF. Polymericsurfactants: Stabilization of emulsions and dispersions.In: Desmond Goddard E, Gruber JV, eds. Principles ofPolymer Science and Technology in Cosmetics and PersonalCare. New York: Marcel Dekker, 1999:73–112. 61. FlorenceAT, Attwood D. Physicochemical Principles of Pharmacy. 4thed. London: Pharmaceutical Press, 2006. 62. Meyer RJ, CohenL. Rheology of natural and synthetic hydrophilic polymersolutions and related to suspending ability. J Soc CosmetChem 1959; 10:1–11. 63. Sherman P. The flow properties ofemulsions. J Pharm Pharmacol 1964; 16:1–25. 64. CarstensenJT. Theory of Pharmaceutical Systems, HeterogeneousSystems. Vol 2. New York: Academic Press, 1973:1–89. 65.Deem DE. Rheology of dispersed systems. In: Lieberman HA,Rieger MM, Banker GS, eds. Pharmaceutical Dosage Forms:Disperse Systems. Vol 1. New York: Marcel Dekker,1988:367–514. 66. Ramadan MA, Tawashi R. Effect of surfacegeometry and morphic features on the flow characteristicsof microsphere suspensions. J Pharm Sci 1990; 79:929–933.67. Miner PE. Emulsion rheology: creams and lotions. In:Laba D, ed. Rheological Properties of Cosmetics andToiletries. New York: Marcel Dekker, 1993:313–370. 68.Vaughan CD. Predicting stability in rheologically modifiedsystems. In: Laba D, ed. Rheological Properties ofCosmetics and Toiletries. New York: Marcel Dekker,1993:371–401. 69. Nae´ HN. Introduction to rheology. In:Laba D, ed. Rheological Properties of Cosmetics andToiletries. New York: Marcel Dekker, 1993:9–33. 70. RiegerMM. Surfactants. In: Lieberman HA, Rieger MM, Banker GS,eds. Pharmaceutical Dosage Forms: Disperse Systems. Vol 1,

2nd ed. New York: Marcel Dekker, 1996:211–286. 71. GriffinWC. Classification of surface-active agents by “HLB”. J SocCosmet Chem 1949; 1:311–326. 72. Griffin WC. Emulsions. In:Kirk RE, Othmer DF, eds. Encyclopedia of ChemicalTechnology. Vol 5. New York: Interscience, 1950:692–718.73. Atlas Booklet. A Guide to Formulation of IndustrialEmulsions with Atlas Surfactants. Wilmington: Atlas PowderCo., 1953.

74. Clarke MT. Rheological additives. In: Laba D, ed.Rheological Properties of Cosmetics and Toiletries. NewYork: Marcel Dekker, 1993:55–152.

75. Zatz JL, Berry JJ, Alderman DA. Viscosity-impartingagents in disperse systems. In: Lieberman HA, Rieger MM,Banker GS, eds. Pharmaceutical Dosage Forms: DisperseSystems. Vol 2. New York: Marcel Dekker, 1989:171–204.

76. Ranucci JA, Silverstein IB. Polymeric pharmaceuticalexcipients. In: Lieberman HA, Rieger MM, Banker GS, eds.Pharmaceutical Dosage Forms: Disperse Systems. Vol 3, 2nded. New York: Marcel Dekker, 1998:243–289.

77. Anger CB, Rupp D, Lo P, et al. Preservation ofdispersed systems. In: Lieberman HA, Rieger MM, Banker GS,eds. Pharmaceutical Dosage Forms: Disperse Systems. Vol 1,2nd ed. New York: Marcel Dekker, 1996:377–435.

78. Haag TE, Loncrini DF. Esters of para-hydroxybenzoicacid. In: Kabara JJ, ed. Cosmetic and Drug Preservation.New York: Marcel Dekker, 1984:63–77.

79. Hugo WB. Phenols as preservatives for pharmaceuticaland cosmetic products. In: Kabara JJ, ed. Cosmetic and DrugPreservation. New York: Marcel Dekker, 1984:109–113.

80. McCarthy TJ. Formulated factors affecting the activityof preservatives. In: Kabara JJ, ed. Cosmetic and DrugPreservation. New York: Marcel Dekker, 1984:359–388.

81. Alexander KS, Azizi J, Dollimore D, et al.Interpretation of the hindered settling of calciumcarbonate suspensions in terms of permeability. J Pharm Sci1990; 79:401–406.

82. Jones RDC, Matthews BA, Rhodes CT. Physical stabilityof sulfaguanidine suspensions. J Pharm Sci 1970;59:518–520.

83. Zatz JL, Schnitzer L, Sarpotdar P. Flocculation of

sulfamerazine suspensions by a cationic polymer. J PharmSci 1979; 68:1491–1494.

84. Jeffrey GC, Ottewill RH. Reversible aggregation. PartI: Reversible flocculation monitored by turbiditymeasurements. Colloid Polym Sci 1988; 266:173–179.

85. Higuchi T. Some physical chemical aspects of suspensionformulation. J Am Pharm Assoc Sci Ed 1958; 47:657–660.

86. Frederick KJ. Performance and problems ofpharmaceutical suspensions. J Pharm Sci 1961; 50:531–535.

87. Matthews BA. The use of the Coulter counter in emulsionand suspension studies. Can J Pharm Sci 1971; 6:29–34.

88. Carless JE. Dissolution and crystal growth in aqueoussuspension of cortisone acetate. J Pharm Pharmacol 1968;10:630–639.

89. Young SA, Buckton G. Particle growth in aqueoussuspensions: the influence of surface energy and polarity.Int J Pharm 1990; 60:235–241.

90. Shah NB, Sheth BB. Effect of polymers on dissolutionfrom drug suspensions. J Pharm Sci 1976; 65:1618–1623.

91. Ofner III CM, Schnaare RL, Schwartz JB. Reconstitutablesuspensions. In: Lieberman HA, Rieger MM, Banker GS, eds.Pharmaceutical Dosage Forms: Disperse Systems. Vol 2. NewYork: Marcel Dekker, 1989:317–334.

92. Bodmeier R, Paeratakul O. Suspensions and dispersibledosage forms of multiparticulates. In: Ghebre-Sellassie I,ed. Multiparticulate Oral Drug Delivery. New York: MarcelDekker, 1994:143–157.

93. Kawashima Y, Iwamoto T, Niwa T, et al. Preparation andcharacterization of a new controlled release ibuprofensuspension for improving suspendability. Int J Pharm 1991;75:25–36.

94. Sjo¨qvist R, Graffner C, Ekman I, et al. In vivovalidation of the release rate and palatability ofremoxipride-modified release suspension. Pharm Res 1993;10:1020–1026.

95. Raghunathan Y. Pennwalt Corporation. U.S. patent4,221,778, 1980.

96. Raghunathan Y, Amsel L, Hinsvark O, et al.Sustained-release drug delivery system I: coatedion-exchange resin system for phenylpropanolamine and otherdrugs. J Pharm Sci 1981; 70:379–384.

97. Tingstad JE. Physical stability testing ofpharmaceuticals. J Pharm Sci 1964; 53:955–962.

98. Tadros TF, Vincent B. Emulsion stability. In: Becher P,ed. Encyclopedia of Emulsion Technology. Vol 1. New York:Dekker, 1983:129–285. 99. Mikula J, Munoz VA.Characterization of emulsions and suspensions in thepetroleum industry using cryo-SEM and CLSM. Colloids SurfA: Physicochem Eng Asp 2000; 174:23–36. 100. Ju Z, Duan Y,Ju Z. Plant oil emulsion modifies internal atmosphere,delays fruit ripening and inhibits internal browning inChinese pears. Postharvest Biol Technol 2000; 20:243–250.101. Sela Y, Magdassi S, Garti N. Release of markers fromthe inner water phase of W/O/W emulsions stabilized bysilicone based polymeric surfactants. J Control Release1995; 33:1–12. 102. Rousseau D. Fat crystals and emulsionstability-a review. Food Res Intern 2000; 33:3–14. 103.Heinzelmann K, Franke K. Using freezing and dryingtechniques of emulsions for the microencapsulation of fishoil to improve oxidation stability. Colloids Surf BBiointerfaces 1999; 12:223–229. 104. Paquin P.Technological properties of high pressure homogenizers: theeffect of fat globules, milk proteins and polysaccharides.Int Dairy J 1999; 9:329–335. 105. Joscelyne SM, TraegardhG. Food emulsions using membrane emulsification: conditionsfor producing small droplets. J Food Eng 1999; 39:59–64.106. Goff HD. Colloidal aspects of ice cream-A review. IntDairy J 1997; 7:363–373. 107. McClements DJ. Advances inthe application of ultrasound in food analysis andprocessing. Trends Food Sci Technol 1995; 6:293–299. 108.Peressini D, Sensidoni A, de Cindio B. Rheologicalcharacterization of traditional and light mayonnaises. JFood Eng 1998; 35:409–417. 109. Adolph M. Lipid emulsionsin parenteral nutrition. Ann Nutr Metab 1999; 43:1–13. 110.Ding S. Recent developments in ophthalmic drug delivery.Pharm Sci Technol Today 1998; 1:328–335. 111. Gogos CA,Kalfarentzos F. Total parenteral nutrition and immunesystem activity: a review. Nutrition 1995; 11:339–344. 112.Okochi H, Nakano M. Preparation and evaluation of W/O/Wtype emulsions containing vancomycin. Adv Drug Deliv Rev2000; 45:5–26. 113. Nielloud F, Marti-Mestres G, Laget JP,et al. Emulsion formulations: study of the influence ofparameters with experimental designs. Drug Dev Ind Pharm1996; 22:159–166. 114. Suitthimeathegorn O, Turton JA,Mizuuchi H, et al. Intramuscular absorption and

biodistribution of dexamethasone from non-aqueous emulsionsin the rat. Int J Pharm 2007; 331:204–210. 115.Suitthimeathegorn O, Jaitely V, Florence AT. Novelanhydrous emulsions: Formulation as controlled releasevehicles. Int J Pharm 2005; 298:367–371. 116. Gallarate M,Carlotti ME, Trotta M, et al. On the stability of ascorbicacid in emulsified systems for topical and cosmetic use.Int J Pharm 1999; 188:233–241. 117. Gallegos C, Franco JM.Rheology of food, cosmetics and pharmaceuticals. Curr OpinColloid Interface Sci 1999; 4:288–293. 118. Miller D,Wiener EM, Turowski A, et al. O/W emulsions for cosmeticsproducts stabilized by alkyl phosphates rheology andstorage tests. Colloids Surf A: Physicochem Eng Aspects1999; 152:155–160. 119. Clark R. Cosmetic emulsions. In:Hibbott HW, ed. Handbook of Cosmetic Science. New York:Pergamon Press, 1963:175–204. 120. Barry BW. DermatologicalFormulations. New York: Marcel Dekker, 1983:296–350. 121.Becher P. Testing of emulsion properties. In: EmulsionsTheory and Practice. 2nd ed. New York: Reinhold Publ. Co.,1957:381–429. 122. Couvreur P, Blanco-Prieto MJ, PuisieuxF, et al. Multiple emulsion technology for the design ofmicrospheres containing peptides and olegopeptides. AdvDrug Deliv Rev 1997; 28:85–96. 123. Garti N, Aserin A.Double emulsions stabilized by macromolecular surfactants.Adv Colloid Interfaces Sci 1996; 65:37–69. 124. Herrmann J,Bodmeier R. Biodegradable somatostatin acetate containingmicrospheres prepared by various aqueous and non-aqueoussolvent evaporation method. Eur J Pharm Biopharm 1998;45:75–82. 125. O’Donnell PB, McGinity JW. Preparation ofmicrospheres by the solvent evaporation technique. Adv DrugDeliv Rev 1997; 28:25–42.

126. Hombreiro-Pe´rez M, Siepmann J, Zinutti C, et al.Non-degradable microparticles containing a hydrophilicand/or a lipophilic drug: preparation, characterization anddrug release modeling. J Control Release 2003; 88:413–428.

127. Hoar TP, Schulman JH. Transparent water-in-oildispersions: the oleophatic hydro-micelle. Nature 1943;152:102–103.

128. Schulman JH, Stoeckenius W, Prince LM. Mechanism offormation and structure of micro emulsions by electronmicroscopy. J Phys Chem 1959; 63:1677–1680.

129. Danielsson I, Lindman B. The definition of amicroemulsion. Colloids Surf 1981; 3:391–392.

130. Lawrence MJ, Rees GD. Microemulsion-based media asnovel drug delivery systems. Adv Drug Deliv Rev 2000;

45:89–121.

131. Sjo¨blom J, Lindberg R, Friberg SE.Microemulsions-phase equilibria characterization,structures, applications and chemical reactions. AdvColloid Interface Sci 1996; 65:125–287.

132. Bhargava HN, Narurkar A, Lieb LM. Using microemulsionsfor drug delivery. Pharm Tech 1987; 11:46–54.

133. Wennerstro¨m H, So¨derman O, Olsson U, et al.Macroemulsions versus microemulsions. Colloids Surf A:Physicochem Eng Asp 1997; (123–124):13–26.

134. Ritschel WA. Microemulsions for improved peptideabsorption from the gastrointestinal tract. Methods FindExp Clin Pharmacol 1991; 13:205–220.

135. Haße A, Keipert S. Development and characterization ofmicroemulsions for ocular application. Eur J Pharm Biopharm1997; 43:179–183.

136. Charro MB, Vilas GI, Me´ndez JB, et al. Delivery of ahydrophilic solute through the skin from novelmicroemulsion systems. Eur J Pharm Biopharm 1997; 43:37–42.

137. Sintov AC, Brandys-Sitton R. Facilitated skinpenetration of lidocaine: combination of a shorttermiontophoresis and microemulsion formulation. Int J Pharm2006; 316:58–67.

138. Graf A, Ablinger E, Peters S, et al. Microemulsionscontaining lecithin and sugar-based surfactants:nanoparticle templates for delivery of proteins andpeptides. Int J Pharm 2008; 350:351–360.

139. Nornoo AO, Osborne DW, Chow DSL. Cremophor-freeintravenous microemulsions for paclitaxel. I: Formulation,cytotoxicity and hemolysis. Int J Pharm 2008; 349:108–116.

140. Vemuri S, Rhodes CT. Preparation and characterizationof liposomes as therapeutic delivery systems: a review.Pharm Acta Helv 1995; 70:95–111.

141. Bochot A, Couvreur P, Fattal E. Intravitrealadministration of antisense oligonucleotides: potential ofliposomal delivery. Prog Retin Eye Res 2000; 19:131–147.

142. Nastruzzi C, Cortesi R, Esposito E, et al. Liposomesas carriers for DNA PNA hybrids. J Control Release 2000;

68:237–249.

143. Welz C, Neuhuber W, Schreier H, et al. Nuclear genetargeting using negatively charged liposomes. Int J Pharm2000; 196:251–252.

144. Mader C, Ku¨pcu¨ S, Sleytr UB, et al. S-layer-coatedliposomes as a versatile system for entrapping and bindingtarget molecules. Biochim Biophys Acta Biomembr 2000;1463:142–150.

145. Zaru M, Mourtas S, Klepetsanis P, et al. Liposomes fordrug delivery to the lungs by nebulization. Eur J PharmBiopharm 2007; 67:655–666.

146. Al-Jamal WT, Kostarelos K. Construction of nanoscalemulticompartment liposomes for combinatory drug delivery.Int J Pharm 2007; 331:182–185.

147. Foged C, Nielsen HM, Frokjaer S. Liposomes forphospholipase A2 triggered siRNA release: preparation andin vitro test. Int J Pharm 2007; 331:160–166.

148. Bodmeier R. Multiphase system. Int patent applicationWO 98/55100, 1998.

149. Im-Emsap W, Brazeau GA, Simpkins JW, et al. Sustaineddrug delivery of 17-b estradiol from injectablebiodegradable in situ forming microparticles (ISM) system.AAPS PharmSci Supplement 2(4), AAPS Annual MeetingAbstracts, 2000.

150. Im-Emsap W, Bodmeier R. In vitro drug release from insitu forming microparticles (ISM)Systems with disperseddrug. AAPS PharmSci Supplement 2(4), AAPS Annual MeetingAbstracts, 2000.

151. Kranz H, Brazeau GA, Napaporn J, et al. Myotoxicitystudies of injectable biodegradable insitu forming drugdelivery systems. Int J Pharm 2001; 212:11–18. 152.Rungseevijitprapa W, Brazeau GA, Simkins JW, et al.Myotoxicity studies of O/W-in situ forming microparticlesystems. Eur J Pharm Biopharm 2008; 69:126–133. 153. LuanX, Bodmeier R. Influence of the poly(lactide-co-glycolide)type on the leuprolide release from in situ formingmicroparticle systems. J Control Release 2006; 110:266–272.154. Luan X, Bodmeier R. In situ forming microparticlesystem for controlled delivery of leuprolide acetate:influence of the formulation and processing parameters. EurJ Pharm Biopharm 2006; 27:143–149. 155. Kranz H, Bodmeier

R. A novel in situ forming drug delivery system forcontrolled parenteral drug delivery. Int J Pharm 2007;332:107–114. 156. Friberg SE, Quencer LS, Hilton ML. Theoryof emulsions. In: Lieberman HA, Rieger MM, Banker GS, eds.Pharmaceutical Dosage Forms: Disperse Systems. Vol 1, 2nded. New York: Marcel Dekker, 1996:53–90. 157. Shinoda K,Kunieda H. Phase properties of emulsions: PIT and HLB. In:Becher P, ed. Encyclopedia of Emulsion Technology. Vol 1.New York: Marcel Dekker, 1983:337–368. 158. Freitas S,Merkle HP, Gander B. Microencapsulation by solventextraction/evaporation: reviewing the state of the art ofmicrosphere preparation process technology. J ControlRelease 2005; 102:313–332. 159. Garti N, Aserin A.Pharmaceutical Emulsions, Double emulsions andmicroemulsions. In: Benita S, ed.Microencapsulation-Methods an Industrial Applications. NewYork: Marcel Dekker, 1996:411–534. 160. Florence AT,Whitehill D. The formulation and stability of multipleemulsions. Int J Pharm 1982; 11:277–308. 161. Florence AT,Whitehill D. Some features of breakdown inwater-in-oil-in-water multiple emulsions. J ColloidInterface Sci 1982; 79:243–256. 162. Ivanov IB, Danov KD,Kralchevsky PA. Flocculation and coalescence of micron-sizeemulsion droplets. Colloids Surf A: Physicochem Eng Asp1999; 152:161–168. 163. Robins MM. Emulsions-creamingphenomena. Curr Opin Colloid Interface Sci 2000; 5:265–272. 164. Bury M, Gerhards J, Erni W. Monitoringsedimentation processes by conductivity measurements. Int JPharm 1991; 76:207–217. 165. Bury M, Gerhards J, Erni W, etal. Application of a new method based on conductivitymeasurements to determine the creaming stability of O/Wemulsions. Int J Pharm 1995; 124:183–194. 166. Al-Malah KI,Azzam MOJ, Omari RM. Emulsifying properties of BSA indifferent vegetable oil emulsions using conductivitytechnique. Food Hydrocolloids 2000; 14:485–490. 167. BabickF, Hinze F, Ripperger S. Dependence of ultrasonicattenuation on the material properties. Colloids Surf A:Physicochem Eng Asp 2000; 172:33–46. 168. Black DL, McQuayMQ, Bonin MP. Laser-based techniques for particle-sizemeasurement: a review of sizing methods and theirindustrial applications. Prog Energy Combust Sci 1996;22:267–306. 169. de Boer AH, Gjaltema D, Hagedoorn P, etal. Characterization of inhalation aerosols: a criticalevaluation of cascade impactor analysis and laserdiffraction technique. Int J Pharm 2002; 249:219–231. 170.Dikinson E, Stainsby G. Colloids in Food. New York: AppliedSci Publ, 1982. 171. Chang RK, Hsiao C, Robinson JR. Areview of aqueous coating techniques and preliminary dataon release from a theophylline product. Pharm Technol 1987;11:56–68. 172. Moore KL. Physicochemical properties of

Opadry 1 , Coateric 1 , and Surelease 1 . In Mcginity JW,ed. Aqueous Polymeric Coatings for Pharmaceutical DosageForms. New York: Dekker, 1989:303–315. 173. Gurny R, PeppasNA, Harrington DD, et al. Development of biodegradable andinjectable latices for controlled release of potent drugs.Drug Dev Ind Pharm 1981; 7:1–25. 174. Krause HJ, Schwarz A,Rohdewald P. Polylactic acid nanoparticles, a colloidaldrug delivery system for lipophilic drugs. Int J Pharm1985; 27:145–155.

175. Koosha F, Mu¨ller RH, Davis SS, et al. The surfacechemical structure of poly (b-hydroxybutyrate)microparticles produced by solvent evaporation process. JControl Release 1989; 9:149–157.

176. Bodmeier R, Chen H. Indomethacin polymericnanosuspensions prepared by microfluidization. J ControlRelease 1990; 12:223–233.

177. Yang J, Park SB, Yoon HG, et al. Preparation ofpoly-caprolactone nanoparticles containing magnetite formagnetic drug carrier. Int J Pharm 2006; 324:185–190.

178. Scholes PD, Coombes AGA, Illum L, et al. Thepreparation of sub-200 nm poly (lactideco-glycolide)microspheres for site-specific drug delivery. J ControlRelease 1993; 25: 145–153.

179. Batzri S, Korn ED. Single bilayer liposomes preparedwithout sonication. Biochim Biophys Acta 1973; 443:629–634.

180. Niwa T, Takeuchi H, Hino T, et al. Preparations ofbiodegradable nanospheres of watersoluble and insolubledrugs with d,l-lactide/glycolide copolymer by a novelspontaneous emulsification solvent diffusion method, andthe drug release behavior. J Control Release 1993;25:89–98.

181. Fessi H, Puisieux F, Devissaguet JP. Proce´de´ depre´paration de systE´mes colloidaux dispersibles d’unesubstance, sous forme de nanocapsules. European patent 274961, 1987.

182. Ammoury N, Fessi H, Devissaguet JP, et al. Effect oncerebral blood flow of orally administeredindomethacin-loaded poly (isobutylcyanoacrylate) andpoly(d,l-lactide) nanocapsules. J Pharm Pharmacol 1990;42:558–561.

183. Ammoury N, Fessi H, Devissaguet JP, et al. Jejunal

absorption, pharmacological activity, and pharmacokineticevaluation of indomethacin-loaded poly(d,l-lactide) andpoly(isobutylcyanoacrylate) nanocapsules in rats. Pharm Res1991; 8:101–105.

184. Ammoury N, Fessi H, Devissaguet JP, et al. In vitrorelease kinetic pattern of indomethacin from poly(d,l-lactide) nanocapsules. J Pharm Sci 1990; 79:763–767.

185. Bindschaedler C, Gurny R, Doelker E. Process forpreparing a powder of water-insoluble polymer which can beredispersed in a liquid phase, the resulting powder andutilization thereof. Swiss patent 1497/88, 1988.

186. Ibrahim H, Bindschaedler C, Doelker E, et al. Conceptand development of ophthalmic pseudo-latices triggered bypH. Int J Pharm 1991; 77:211–219.

187. Ibrahim H, Bindschaedler C, Doelker E, et al. Aqueousnanodispersions prepared by a saltingout process. Int JPharm 1992; 87:239–246.

188. Allemann E, Gurny R, Doelker E. Preparation of aqueouspolymeric nanodispersions by a reversible salting-outprocess, influence of process parameters on particle size.Int J Pharm 1992; 87:247–253.

189. Allemann E, Leroux JC, Gurny R, et al. In vitroextended-release properties of drug loaded poly (dl-lacticacid) nanoparticles produced by a salting-out procedure.Pharm Res 1993; 10:1732–1737.

190. Allemann E, Doelker E, Gurny R. Drug loaded poly(lactic acid) nanoparticles produced by a reversiblesalting-out process: purification of an injectable dosageform. Eur J Pharm Biopharm 1992; 39:13–18.

191. Ekman B, Sjo¨holm I. Incorporation of macromoleculesin microparticles: Preparation and characteristics.Biochemistry 1976; 15:5115–5120.

192. Yapel AF Jr. Albumin microspheres: heat and chemicalstabilization. In: Widder KJ, Green R, eds. Methods inEnzymology. Part A: Drug and Enzyme Targeting. Orlando:Academic Press, 1985:3–18.

193. Longo WE, Goldberg EP. Hydrophilic albuminmicrospheres. In: Widder KJ, Green R, eds. Methods inEnzymology. Part A: Drug and Enzyme Targeting. Orlando:Academic Press, 1985:18–26.

194. Tomlinson E, Burger JJ. Incorporation of water-solubledrugs in albumin microspheres. In: Widder KJ, Green R, eds.Methods in Enzymology. Part A: Drug and Enzyme Targeting.Orlando: Academic Press, 1985:27–43. 195. Yoshioka T,Hashida M, Muranishi S, et al. Specific delivery ofmitomycin C to the liver, spleen, and lung: nanoandmicrospherical carriers of gelatin. Int J Pharm 1981;8:131–141. 196. Hassan EE, Parish RC, Gallo JM. Optimizedformulation of magnetic microspheres containing theanticancer agent, oxantrazole. Pharm Res 1992; 9:390–397.197. Marty JJ, Oppenheim RC, Speiser P. Nanoparticles-a newcolloidal drug delivery system. Pharm Acta Helv 1978;53:17–22. 198. El-Samaligy M, Rohdewald P. Triamcinolonediacetate nanoparticles, a sustained release drug deliverysystem suitable for parenteral administration. Pharm ActaHelv 1982; 57:201. 199. El-Samaligy M, Rohdewald P.Reconstituted collagen nanoparticles, a novel drug carrierdelivery system. J Pharm Pharmacol 1983; 35:537–539. 200.Oppenheim RC. Solid colloidal drug delivery systems:nanoparticles. Int J Pharm 1981; 8:217–234. 201.Rajanorivony M, Vauthier C, Couarraze G, et al. Developmentof a new drug carrier made from alginate. J Pharm Sci 1993;82:912–917. 202. Perkins WR, Ahmad I, Li X, et al. Noveltherapeutic nano-particles (lipocores): trapping poorlywater soluble compounds. Int J Pharm 2000; 200:27–39. 203.Driscoll DF, Bacon MN, Bistrian BR. Physicochemicalstability of two types of intravenous lipid emulsion astotal nutrient admixtures. JPEN J Parenter Enteral Nutr2000; 24:15–22. 204. Yoo HS, Oh JE, Lee KH, et al.Biodegradable nanoparticles containing doxorubicin-PLGAconjugate for sustained release. Pharm Res 1999;16:1114–1118. 205. Mu¨ller RH, Ma¨der K, Gohla S. Solidlipid nanoparticles (SLN) for controlled drug delivery— Areview of the state of the art. Eur J Pharm Biopharm 2000;50:161–177. 206. Harnisch S, Mu¨ller RH. Adsorptionkinetics of plasma proteins on oil-in-water emulsions forparenteral nutrition. Eur J Pharm Biopharm 2000; 49:41–46.207. Constantinides PP, Lambert KJ, Tustian AK, et al.Formulation development and antitumor activity of afilter-sterilizable emulsion of paclitaxel. Pharm Res 2000;17:175–182. 208. Floyd AG. Top ten considerations in thedevelopment of parenteral emulsions. Pharm Sci TechnolToday 1999; 2:134–143. 209. Koster VS, Kuks PFM, Langer R,et al. Particle size in parenteral fat emulsions, what arethe true limitations? Int J Pharm 1996; 134:235–238. 210.Chansiri G, Lyons RT, Patel MV, et al. Effect of surfacecharge on the stability of oil/water emulsions during steamsterilization. J Pharm Sci 1999; 88:454–458. 211.Labhasetwar V, Song C, Humphrey W, et al. Arterial uptake

of biodegradable nanoparticles: effect of surfacemodifications. J Pharm Sci 1998; 87:1229–1234. 212. JumaaM, Mu¨ller BW. The effect of oil components andhomogenization conditions on the physicochemical propertiesand stability of parenteral fat emulsions. Int J Pharm1998; 163:81–89. 213. Kawano Y, Noma T. Inhibition bylecithin-bound iodine (LBI) of inducible allergen-specificT lymphocytes’ responses in allergic diseases. Int JImmunopharmacol 1996; 18:241–249. 214. Na GC, Stevens HJ,Yuan BO, et al. Physical stability of ethyl diatrizoatenanocrystalline suspension in steam sterilization. PharmRes 1999; 16:569–574. 215. Westesen K, Siekmann B.Investigation of the gel formation ofphospholipid-stabilized solid lipid nanoparticles. Int JPharm 1997; 151:35–45. 216. Mewis J. Flow behaviour ofconcentrated suspensions: predictions and measurements. IntJ Miner Process 1996; 44–45:17–27. 217. Spiegel AJ,Noseworthy MM. Use of nonaqueous solvents in parenteralproducts. J Pharm Sci 1963; 52:917–927. 218. Mu¨ller RH,Peters K. Nanosuspensions for the formulation of poorlysoluble drugs I. Preparation by a size-reduction technique.Int J Pharm 1998; 160:229–237. 219. Peters K, Leitzke S,Diederichs JE, et al. Preparation of a clofaziminenanosuspension for intravenous use and evaluation of itstherapeutic efficacy in murine Mycobacterium aviuminfection. J Antimicrob Chemother 2000; 45:77–83. 220.Schmidt PC. Secondary electron microscopy in pharmaceuticaltechnology. In: Swarbrick J, Boylan JC, eds. Encyclopediaof Pharmaceutical Technology. Vol 19. New York: MarcelDekker, 2000:311–356.

221. Hooton JC, German CS, Davies MC, et al. A comparisonof morphology and surface energy characteristics ofsulfathiazole polymorphs based upon single particlestudies. Eur J Pharm Sci 2006; 28:315–324.

222. Attama AA, Schicke BC, Paepenmueller T, et al. Solidlipid nanodispersions containing mixed lipid core and apolar heterolipid: characterization. Eur J Pharm Biopharm2007; 67:48–57.

223. Mullin JW. Sieving of pharmaceuticals. In: SwarbrickJ, Boylan JC, eds. Encyclopedia of PharmaceuticalTechnology. Vol 14. New York: Marcel Dekker, 1996:63–86.

224. Keck CM, Mu¨ller RH. Size analysis of submicronparticles by laser diffractometry—90% of the publishedmeasurements are false. Int J Pharm 2008; 355:150–163.

225. Racey TJ, Rochon P, Awang DVC, et al. Aggregation of

commercial heparin samples in storage. J Pharm Sci 1987;76:314–318.

226. Racey TJ, Rochon P, Mori F, et al. Examination of apossible role of dermatan sulfate in the aggregation ofcommercial heparin samples. J Pharm Sci 1989; 78:214–218.

227. Kayes JB. Pharmaceutical suspensions:microelectrophoretic properties. J Pharm Pharmacol 1977;29:163–168.

228. Gallardo V, Zurita L, Ontiveros A, et al. Interfacialproperties of barium sulfate suspensions. Implications intheir stability. J Pharm Sci 2000; 89:1134–1142.

229. Thode K, Mu¨ller RH, Kresse M. Two-time window andmultiangle photon correlation spectroscopy size and zetapotential analysis—highly sensitive rapid assay fordispersion stability. J Pharm Sci 2000; 89:1317–1324.

230. Crommelin DJA. Influence of lipid composition andionic strength on the physical stability of liposomes. JPharm Sci 1984; 73:1559–1563.

231. Takenaka H, Kawashima Y, Lin SY. Electrophoreticproperties of sulfamethoxazole microcapsules andgelatin-acacia coacervates. J Pharm Sci 1981; 70:302–305.

232. Killeen MJ. Spray drying and spray congealing ofpharmaceuticals. In: Swarbrick J, Boylan JC, eds.Encyclopedia of Pharmaceutical Technology. Vol 14. NewYork: Marcel Dekker, 1996:207–222.

233. Block LH. Scale-up of disperse systems: theoreticaland practical aspects. In: Lieberman HA, Rieger MM, BankerGS, eds. Pharmaceutical Dosage Forms: Disperse Systems. Vol3, 2nd ed. New York: Marcel Dekker, 1998:363–394.

234. Nash RA. Validation of disperse systems. In: LiebermanHA, Rieger MM, Banker GS, eds. Pharmaceutical Dosage Forms:Disperse Systems. Vol 3, 2nd ed. New York: Marcel Dekker,1998:473–512.

12 Chapter 12- Surfactants

17. Ganguly P, Paranjape DV, Sastry M, et al. Langmuir1993; 9:487.

18. Laxhuber LA, Mo¨hwald H. Langmuir 1987; 3:837.

19. Zasadzinski JA, Viswanathan R, Madsen L, et al. Science1994; 263:1726.

20. Dhanabalan A, Prasanth Kumar N, Major S, et al. ThinSolid Films 1998; 327/329:787.

21. Schwartz DK, Viswanathan R, Zasadzinski JA. Phys RevLett 1993; 70:1267.

22. Dynarowicz-Łatka P, Dhanabalan A, Oliveira ON, Jr. JPhys Chem B 1999; 103:5992.

23. Peltonen L, Hirvonen J, Yliruusi J. J Colloid InterfaceSci 2001; 239:134.

24. von Tscharner V, McConnell HM. Biophys J 1981; 36:409.

25. Lo¨sche M, Mo¨hwald H. Rev Sci Instr 1984; 5:1968.

26. He´non S, Meunier J. J Rev Sci Instr 1991; 62:936.

27. Ho¨nig D, Mo¨bius D. J Phys Chem 1991; 95:4590.

28. Kru¨ger P, Schalke M, Wang Z, et al. Biophys J 1999;77:903.

29. Flanders BN, Vickery SA, Dunn RC. J Microsc 2001;202:379.

30. Peng JB, Barnes GT, Gentle IR. Adv Colloid InterfaceSci 2001; 91:163.

31. Peachey NM, Eckhardt CJ. Micron 1994; 25:271.

32. Balashev K, Jensen TR, Kjaer K, et al. Biochimie 2001;83:387.

33. Vollhardt D. Morphology of monolayers at air-waterinterfaces. In: Somasundaran P, ed. Encyclopedia of Surfaceand Colloid Science; Vol 5, 2nd ed. New York: Taylor andFrancis, 2006:4104–4118.

34. Hidalgo AA, Caetano W, Tabak M, et al. Biophys Chem

2004; 109:85.

35. Reiss HE, Swift HS. J Colloid Interface Sci 1978;64:111.

36. Ghaicha L, Leblanc RM, Villamagna F, et al. Langmuir1995; 11:585.

37. Li ZX, Lu JR, Fragneto G, et al. Colloids Surf A 1998;135:277.

38. Schlossman DM, Mitrinovic DM, Zhang Z, et al.Synchrotron Radiat News 1999; 12:53.

39. Aratono M, Takanori T. Liquid-liquid interfacial films.In: Somasundaran P, ed. Encyclopedia of Surface and ColloidScience; Vol 5, 2nd ed. New York: Taylor and Francis,2006:3436.

40. Lowy DA. Fatty acids at liquid-liquid interface. In:Somasundaran P, ed. Encyclopedia of Surface and ColloidScience; Vol 4, 2nd ed. New York: Taylor and Francis,2006:2544–2556.

41. Zhao J, Brown W. Langmuir 1995; 11:2944; Zhao J, BrownW, Langmuir 1996; 12:1141.

42. Lin SY, Dong C, Hsu TJ, et al. Colloids Surf A 2002;196:189.

43. Romero-Cano MS, Martı´n-Rodrı´guez A, Chauveteau G, etal. J Colloid Interface Sci 1998; 198:266.

44. Kuno H, Abe R. Kolloid Z 1961; 177:40; Abe R, Kuno H.Kolloid Z 1962; 181:70.

45. Corkill JM, Goodman JF, Tate JR. Trans Farad Soc 1966;62:979.

46. Winnik MA, Bystryak MS, Odrobina E. Langmuir 2000;16:6118.

47. Kronberg B, Ka¨ll L, Stenius P. J Dispersion SciTechnol 1981; 2:215.

48. Kronberg B, Stenius P, Igeborn G. J Colloid InterfaceSci 1984; 102:418.

49. Steinby K, Silveston R, Kronberg B. J Colloid InterfaceSci 1993; 155:70.

50. Romero-Cano MS, Martı´n-Rodrı´guez A, de las Nieves FJ.J Colloid Interface Sci 2000; 227:323.

51. Connor P, Ottewill RH. J Colloid Interface Sci 1971;37:642.

52. Fuerstenau DW. J Phys Chem 1956; 60:981; SomasundaranP, Healy TW, Fuerstenau DW. J Phys Chem 1964; 68:3562;Somasundaran P, Fuerstenau DW. J Phys Chem 1966; 70:90.

53. Cosgrove T, Obey TM, Vincent B. J Colloid Interface Sci1986; 111:409.

54. Cosgrove T, Crowley TL, Ryan K, et al. Colloids Surf A1990; 51:255.

55. Bolze J, Ho¨rner KD, Ballauff M. Colloid Polym Sci1996; 274:1099.

56. Geffroy C, Cohen Stuart MA, Wong K, et al. Langmuir2000; 16:6422.

57. Gilchrist VA, Lu JR, Keddie JL, et al. Langmuir 2000;16:740.

58. Gilchrist VA, Lu JR, Staples E, et al. Langmuir 1999;15:250.

59. Howse JR, Steitz R, Pannek M, et al. Phys Chem ChemPhys 2001; 3:4044.

60. Colombie´ D, Landfester K, Sudol ED, et al. J ColloidInterface Sci 1998; 202:554.

61. Martı´n-Rodriguez A, Jo´dar-Reyes AB. Adsorption ofsurfactants at polymer surfaces. In: Somasundaran P, ed.Encyclopedia of Surface and Colloid Science; Vol 1, 2nd ed.New York: Taylor and Francis, 2006:746–767. 62. RouchotasC, Cassidy OE, Rowley G. Int J Pharm 2000; 195:1. 63.Nogami H, Nagai T, Wada S. Chem Pharm Bull 1970; 18:342.64. Nogami H, Nagai T, Uchida H. Chem Pharm Bull 1969;17:176. 65. Nogami H, Nagai T, Nambu N. Chem Pharm Bull1970; 18:1643. 66. Nogami H, Sakurai S, Nagai T. Chem PharmBull 1975; 23:1404. 67. El-Masry S, Khalil SAH. J PharmPharmacol 1974; 26:243. 68. Khalil SAH, Iwuagwa M. J PharmSci 1978; 67:287. 69. Abe I, Kamaya H, Ueda I. J Pharm Sci1990; 79:354. 70. Richards NE, Meakin BJ. J Pharm Pharmacol1974; 26:166. 71. El-Masry S, Khalil SAH. J Pharm Pharmacol1974; 26:243–248. 72. Saski W. J Pharm Sci 1963; 52:264.

73. Bauer G, Ullman E. Arch Pharm 1973; 306:86. 74.Mukerjee P. Adv Colloid Interface Sci 1967; 78:2480. 75.Zana R. Brief review on the chemical relaxation studies ofmicellar equilibria. In: Wyn-Jones E, ed. Chemical andBiological Applications of Relaxation Spectrometry.Dordrecht, Holland: D. Reidel Publishing Company, 1975:133–138. 76. Gettins WJ, Wyn-Jones E, eds. Techniques andApplications of Fast Reactions in Solutions. Dordrecht,Holland: D. Reidel Publishing Company, 1979. 77. AnianssonEAG, Wall SN. J Phys Chem 1974; 78:1024; Aniansson EAG,Wall SN. J Phys Chem 1975; 79:857; Aniansson EAG, Wall SN,Almgren M, et al. J Phys Chem 1976; 80:905. 78. Zana R.Micellar systems: dynamics. In: Somasundaran P, ed.Encyclopedia of Surface and Colloid Science; Vol 5, 2nd ed.New York: Taylor and Francis, 2006:3703. 79. Maeda H.Thermodynamic analysis of micellar systems. In:Somasundaran P, ed. Encyclopedia of Surface and ColloidScience; Vol 8, 2nd ed. New York: Taylor and Francis,2006:6221–6234. 80. Burchfield TE, Woolley EM. J Phys Chem1984; 88:2149; Woolley EM, Burchfield TE. J Phys Chem 1984;88:2155; Woolley EM, Burchfield TE. J Phys Chem 1985;89:714; Woolley EM, Burchfield TE. Fluid Phase Equilib1985; 20:225. 81. Mukerjee P, Ghosh AK. J Am Chem Soc 1970;92:6403; Ghosh AK, Mukerjee P. J Am Chem Soc 1970;92:6408–6413. 82. Attwood D. Colloidal properties of drugs.In: Aggregation Processes in Solution. Amsterdam: ElsevierScientific Publishing Co., 1983: 211–240. 83. Attwood D.Adv Colloid Interface Sci 1995; 55:271. 84. Attwood D.Micellar drugs. In: Somasundaran P, ed. Encyclopedia ofSurface and Colloid Science. Vol 5, 2nd ed. New York:Taylor and Francis, 2006:3675–3689. 85. Mukerjee P. J PharmSci 1974; 63:972. 86. Mukerjee P. In: van Olphen H, MyselsKJ, eds. Physical Chemistry: Enriching Topics from Colloidand Surface Science. La Jolla, California: Theorex,1975:135–154. 87. Attwood D. J Pharm Pharmac 1972; 24:751;Attwood D, Udeala OK. J Pharm Pharmac 1975; 27:395; AttwoodD. J Pharm Pharmac 1976; 28:407. 88. Attwood D, Agarwal SP,Waigh RD. J Chem Soc Farad 1980; 1(76):2187. 89. Attwood D.J Phys Chem 1976 80:1984. 90. Attwood D, Doughty D,Mosquera V, et al. J Colloid Interface Sci 1991 41:316;Attwood D, Blundell R, Mosquera V. J Colloid Interface Sci1993; 157:50. 91. Attwood D, Waigh R, Blundell R, et al.Magn Reson Chem 1994; 32:468. 92. Attwood D. J Chem SocFarad Trans 1983; 1, 79:2669. 93. Schott H. J Pharm Sci1973; 62:162. 94. Allen C, Maysinger D, Eisenberg A. CollSurf B 1999; 16:3. 95. Chaibundit C, Ricardo NMPS, Booth C,et al. Langmuir 2002; 18:4277. 96. Zhou Z, Chaibundit C,D’Emanuele A, et al. Int J Pharm 2008 354:82. 97.Chaibundit C, Sumanatrakool P, Chinchew S, et al. J ColloidInterface Sci 2005; 283:544. 98. Crothers M, Zhou Z,

Ricardo NMPS, et al. Int J Pharm 2005; 293:91. 99.Henriksson U, Odberg L, Erikson JC, et al. J Phys Chem1977; 81:76. 100. Reiss-Husson F, Luzzati V. J Phys Chem1964; 69.

101. Hayashi S, Ikeda S. J Phys Chem 1980; 84:744.

102. Ismail AA, Gouda MW, Motawi MM. J Pharm Sci 1970;59:220.

103. Collett JH, Koo L. J Pharm Sci 1975; 64:1253.

104. Tomida H, Yotsuyanagi T, Ikeda K. Chem Pharm Bull1978; 26:2824.

105. Tomida H, Yotsuyanagi T, Ikeda K. Chem Pharm Bull1978; 26:2832.

106. Wiedmann TS, Kamel L. J Pharm Sci 2002; 91:1743.

107. Aliabadi HM, Lavasanifar A. Expert Opin Drug Deliv2006; 3:139.

108. Salib NN, Ismail AA, Geneidi AS. Pharm Ind 1974;36:108.

109. Arnarson T, Elworthy PH. J Pharm Pharmacol 1980;32:381.

110. Barry BW, El Eini DID. J Pharm Pharmacol 1976; 28:210.

111. Saettone MF, Giannaccini B, Delmonte G, et al. Int JPharm 1988; 43:67.

112. Savic R, Eisenberg A, Maysinger D. J Drug Target 2006;14:343.

113. Gaucher G, Dufresne MH, Sant VP, et al. J ControlRelease 2005; 109:169.

114. Kabanov AV, Batrakova EV, Alakhov VY. J ControlRelease 2002; 982:189.

115. Kabanov AV, Alakhov VY. Crit Rev Ther Drug CarrierSyst 2002; 19:1.

116. Torchilin VP. J Control Release 2001; 73:137.

117. Kwon GS, Kataoka K. Adv Drug Delivery Rev 1995; 16:295.

118. Liggins RT, Burt HM. Adv Drug Delivery Rev 2002;54:191.

119. Kataoka K, Kwon GS, Yokohama M, et al. J ControlRelease 1993; 24:119.

120. Adams ML, Lavasanifar A, Kwon GS. J Pharm Sci 2003;92:1343.

121. Chiappetta DA, Sosnik A. Eur J Pharm Biopharm 200766:303.

122. Attwood D, Zhou Z, Booth C. Expert Opin Drug Deliv2007; 4:533.

123. Attwood D, Booth C. Solubilization of poorly solublearomatic drugs by micellar solutions of amphiphilic blockcopoly(oxyalkylene)s. In:Tadros Th F, ed. Colloid Stabilityand Application in Pharmacy. Colloid and Interface ScienceSeries. Vol 3, Weinheim: Wiley-VCH, 2007, pp. 61–68.

124. Molpeceres J, Guzman M, Bustamante P, et al. Int JPharm 1996; 130:75.

125. Nagarajan R, Barry M, Ruckenstein E. Langmuir 1986;2:210.

126. Reketas CJ, Mais SM, Crothers M, et al. Phys Chem ChemPhys 2001; 3:4769.

127. Yang Z, Crothers M, Attwood D, et al. J ColloidInterface Sci 2003; 263:312.

128. Crothers M, Zhou Z, Ricardo NMPS, et al. Int J Pharm2005; 293:91.

129. Kim JH, Emoto K, Ijima M, et al. Adv Technol 1999;10:647.

130. Zhang X, Jackson JK, Burt HM. Int J Pharm 1996;132:195.

131. Mitchell DJ, Tiddy GJT, Waring L, et al. J Chem SocFaraday Trans I 1983; 79:975.

132. Laughlin RG The Aqueous Phase Behavior of Surfactants.London: Academic Press, 1994.

133. Tiddy GJT. Phys Rev 1980; 57:1.

134. Chernik GC. Curr Opin Colloid Interface Sci 2000;4:381.

135. Khan A. Curr Opin Colloid Interface Sci 1996; 1:614.

136. Norling T, Lading P, Engstro¨m S, et al. J ClinPeriodontol 1992; 19:687.

137. Gustafsson J, Ljusberg-Wahren H, Almgren M, et al.Langmuir 1997; 13:6964.

138. Larsson K. Proc Int Symp Control Rel Bioact Mat 1997;24:198.

139. Bodde HE, de Vringer T, Junginger HE. Prog ColloidPolym Sci 1986; 72:37.

140. New RRC, ed. Liposomes: A Practical Approach. Oxford:Oxford University Press, 1990.

141. Gregoriadis G. N Engl J Med 1976; 295:704.

142. Crommelin DJA, Schreier H. Liposomes. In: Kreuter J,ed. Colloidal Drug Delivery Systems. New York: MarcelDekker, 1994:73–190.

143. Bouwstra JA, Hofland HEJ. Niosomes. In: Kreuter J, ed.Colloidal Drug Delivery Systems. New York: Marcel Dekker,1994:191–217.

144. Uchegbu IF, Florence AT. Adv Colloid Interface Sci1995; 58:1.

145. Uchegbu IF, Vyas SP. Int J Pharm 1998; 172:33.

146. Schmolka IR, Bacon LR. J Am Oil Chem Soc 1967; 44:559.

147. Chu B, Zhou ZK. Physical chemistry of polyoxyalkyleneblock copolymer surfactants. In: Nace VM, ed. NonionicSurfactants, Poly(oxyalkylene) Block Copolymers, SurfactantScience Series. Vol 60. New York: Marcel Dekker,1996:67–143. 148. Alexandridis P, Holzwarth JF, Hatton TA.Macromolecules 1994; 27:2414. 149. Mortensen K. Small-anglescattering studies of block copolymer micelles, micellarmesophases and networks. In: Alexandridis P, Lindman B,eds. Amphiphilic Block Copolymers. Amsterdam: Elsevier,2000:191–220. 150. Hamley IW, Mai SM, Ryan AJ, et al. PhysChem Chem Phys 2001; 3:2972. 151. Jones DS, Brown AF,Woolfson D. J Appl Polym Sci 2003; 87:1016. 152. MortensenK, Brown W, Jørgensen E. Macromolecules 1994; 27:5654. 153.

Taboada P, Velasquez G, Barbosa S, et al. Langmuir 2005;21:5263. 154. Castelletto V, Hamley IW, Yuan XY, et al.Soft Matter 2005; 1:138. 155. Yang Z, Crothers M, RicardoNMPS, et al. Langmuir 2003; 19:943. 156. Kelarakis A,Havredaki V, Booth C. Macromol Chem Phys 2003; 204:15. 157.Crothers M, Attwood D, Collett JH, et al. Langmuir 2002;18:8685. 158. Bae SJ, Suh JM, Sohn YS, et al.Macromolecules 2005; 38:5260. 159. Hwang MJ, Suh JM, BaeYH, et al. Biomacromolecules 2005; 5:885. 160. Jeong B,Choi YK, Bae YH, et al. J Control Release 1999; 62:109.161. Jeong B, Bae YH, Kim SW. Macromolecules 1999; 32:7064.162. Zentner GM, Rathi R, Shih C, et al. J Control Release2001; 72:203. 163. Lee DS, Shim MS, Kim SW, et al. MacromolRapid Commun 2001; 22:587. 164. Huynh DP, Shim WS, Kim JHet al. Polymer 2006; 47:7918. 165. Harrison WJ, AboulgasemGJ, Elathrem FAI, et al. Langmuir 2005; 21:6170. 166.Ricardo NMPS, Pinho MEN, Yang Z, et al. Int J Pharm 2005;300:22. 167. Pinho MEN, Costa FMLL, Filho FBS, et al. Int JPharm 2007; 328:95. 168. Hamley IW, Castelletto V, RicardoNMPS, et al. Polym Int 2007; 56:88. 169. Shah JC, SadhaleY, Chilukuri DM. Adv Drug Delivery Rev 2001; 47:229. 170.Anderson DM, Wennerstro¨m H. J Phys Chem 1990; 94:8683.171. Drummond CJ, Fong C. Curr Opin Colloid Interface Sci2000; 4:449. 172. Spicer PT. Cubosomes: bicontinuous cubicliquid crystalline nanostructured particles. In: SchwarzJA, Contescu C, Putyera K, eds. Encyclopedia of Nanoscienceand Nanotechnology.. New York: Marcel Dekker, 2003:881–892.173. Spicer PT. Curr Opin Colloid Interface Sci 2005; :274.174. Engstro¨m S. Lipid Technol 1990; 2:42. 175. GustafssonJ, Ljusberg-Wahren H, Almgren M, et al. Langmuir 1997;13:6964. 176. Barauskas J, Johnsson M, Tiberg F. Nano Lett2005; 5:1615. 177. Garg G, Saraf S, Saraf S. Biol PharmBull 2007; 30:350. 178. Zhao X-Y, Zhang J, Zheng L-Q, etal. J Dispersion Sci Technol 2004; 25:795. 179. Esposito E,Cortesi R, Drechsler M, et al. Pharm Res 2005; 22:2163.

13 Chapter 13- Tablet Dosage Forms

15. Avicel PH. Microcrystalline Cellulose, FMC Corp.,Philadelphia, PA. Available at: www.

fmcbiopolymer.com.

16. Emcocel, Microcrystalline Cellulose, Mendell,Patterson, New York.

17. Kollidon Polyvinylpyrrolidone for the PharmaceuticalIndustry. 6th ed. Germany: BASF, 2001.

18. Turkoglu M, Nirun E, Yeniyurt M. A modified laboratorysize rotary fluidized-bed for

pharmaceutical solid materials processing. Pharm Eng 1999;19:70–77.

19. Bolhuis GK, Holzer AW. Lubricant sensitivity. In:Alderborn G, Nystro¨m C, eds. Pharma

ceutical Powder Compaction Technology. New York: MarcelDekker, 1996:517–560.

20. Sinka IC, Cunningham JC, Zavaliangos A. The effect ofwall friction in the compaction of

pharmaceutical tablets with curved faces: a validationstudy of the Drucker-Prager cap model.

Powder Technol 2003; 133:33–43.

21. Turkoglu M, Sahin I, San T. Evaluation of hexagonalboron nitride as a new tablet lubricant.

Pharm Dev Technol 2005; 10:381–388.

22. Turkoglu M, He M, Sakr A. Evaluation of rotaryfluidized-bed as a wet granulation equipment.

Eur J Pharm Biopharm 1995; 41:388–394.

23. Turkoglu M, Aydin I, Murray M, et al. Modeling ofroller compaction process using neural

networks and genetic algorithms. Eur J Pharm Biopharm 1999;48:239–245.

24. Chilsonator Brochure. The Fitzpatrick Company Europe,

Belgium. Available at: www.

fitzpatrick.be.

25. Krumme M, Schwabe L, Fromming KH. Development ofcomputerised procedures for the

characterisation of the tableting properties with eccentricmachines. Die Pharmazie 1996; 51:315–323.

26. Fette Brochure, Wilhelm Fette GMBH, Germany, No:8083(488 1 S). Available at: www.fette.

com/.

27. Tablet Compression Tooling, I Holland Ltd., Nottingham,England. Available at: www.

iholland.co.uk/.

28. Cihan G, Eke K, Gokyildiz MD, et al. Design andImproving the Quality of Materials Used in

Pharmaceutical Tablet Manufacturing Dies and Punches[graduation thesis]. Istanbul, Turkey:

Faculty of Chemical-Metallurgical Engineering, IstanbulTechnical University, 2004.

29. Neville AM. Properties of Concrete. London: PitmanPublishing, 1981:549–552.

30. Olsson H, Nystrom C. Assessing tablet bond types fromstructural features that affect tablet

tensile strength. Pharm Res 2001; 18:203–210.

31. The United States Pharmacopeia (USP). 30th Rev. UnitedStates Pharmacopeial Convention,

Inc., Rockville, MD, 2007.

32. European Pharmacopoeia (EP). 5th ed. Directorate forthe Quality of Medicines of the Council

of Europe, Cedex, France, 2004.

33. Heckel RW. Density pressure relationship in powdercompaction. Trans Metall Soc AIME

1961; 221:671–675.

34. Heckel RW. An analysis of powder compaction phenomena.Trans Metall Soc AIME 1961;

221:1001–1008.

35. Eriksson M, Alderborn G. The effect of particlefragmentation and deformation on the

interparticulate bond deformation process during powdercompaction. Pharm Res 1995;

12:1031–1039.

36. Hiestand EN. Principles tenets and notions of tabletbonding and measurements of strength. Eur

J Pharm Biopharm 1997; 44:229–242.

37. Paronen P, Ilkka J. Porosity-pressure functions. In:Alderborn G, Nystro¨m C, eds. Pharma

ceutical Powder Compaction Technology. New York: MarcelDekker, 1996:55–75.

14 Chapter 14- Hard- and Soft-ShellCapsules

21. Hey H, Jorgensen F, Hasselbach H, et al. Oesophagealtransit of six commonly used tablets and capsules. Br Med J1982; 285(11):1717–1719.

22. Channer KS, Virjee J. Effect of posture and drinkvolume on the swallowing of capsules. Br Med J 1982;285(11):1702.

23. Evans T, Roberts GM. Where do all the tablets go?Lancet 1976; 2(Oct.-Dec.):1237–1239.

24. Fell JT. Esophageal transit of tablets and capsules. AmJ Hosp Pharm 1983; 40:946–948.

25. Ponchel G, Degobert G. Capsules dures d’hydroxypropylme´thylcellulose: une alternative a` la ge´latine, e´tudecomparative de leur adhe´sivite´. STP Pharma Practiques1999; 9:12–17.

26. Honkanen O, Laaksonen P, Marvola J, et al.Bioavailability and in vitro oesophageal sticking tendencyof hydroxypropyl methylcellulose capsule formulations andcorresponding gelatine capsule formulations. Eur J PharmSci 2002; 15:479–488.

27. Martyn GW Jr. Production history of hard gelatincapsules from molding through filling. Presented atSymposium on Modern Capsule Manufacturing, Society ofManufacturing Engineers, Philadelphia, Pennsylvania,January 31, 1978.

28. Jones BE. The manufacture of hard gelatin capsules.Chem Eng (London) 1982; 380:174–177.

29. Lappas LC. The manufacture of hard gelatincapsules.Presented to Research and Development Section, TheAmerican Drug Manufacturers Association, Atlantic City, NewJersey, October 8, 1954.

30. Jones BE. Hard gelatin capsules and the pharmaceuticalformulator. Pharm Technol 1985; 9(9):106–108, 110, 112.

31. Buckalew LW, Coffield KE. An investigation of drugexpectancy as a function of capsule color and size andpreparation form. J Clin Psychopharmacol 1982; 2:245–248.

32. General worldwide specifications for Capsugel hard

gelatin capsules. Revised November 29, 1999. BulletinBAS-203-E. Capsugel, Div. Pfizer, Inc., Greenwood, SouthCarolina, 1999.

33. Coni-Snap 1 —the hard gelatin capsule with theadvantages that matter. Bulletin BAS-112-E, USA. Capsugel,Div. Pfizer, Inc., Greenwood, South Carolina, 1982.

34. Shah R, Augsburger LL. Oxygen permeation in banded andnon-banded hard gelatin capsules (abstr). Pharm Res 1989;6:S–55.

35. Wittwer F. New developments in hermetic sealing of hardgelatin capsules. Pharm Manuf 1985; 2(6):24–29.

36. Scott D, Shah R, Augsburger LL. A comparativeevaluation of the mechanical strength of sealed andunsealed hard gelatin capsules. Int J Pharm 1992; 84:49–58.

37. Murthy KS, Ghebre-Sellassie I. Current perspectives onthe dissolution stability of solid oral dosage forms. JPharm Sci 1993; 82:113–126.

38. Ito K, Kaga S-I, Takeya Y. Studies on hard gelatincapsules I. Water vapor transfer between capsules andpowders. Chem Pharm Bull 1969; 17:1134–1137.

39. Strickland WA Jr, Moss M. Water vapor sorption anddiffusion through hard gelatin capsules. J Pharm Sci 1962;51:1002–1005.

40. Anon. Incompatibilities in prescriptions IV. The use ofinert powders in capsules to prevent liquefaction due todeliquescence. J Am Pharm Assoc Sci Ed 1940; 29:136.

41. Bell JH, Stevenson NA, Taylor JE. A moisture transfereffect in hard gelatin capsules of sodium cromoglycate. JPharm Pharmacol 1973; 25(suppl):96P–103P.

42. Kontny MJ, Mulski CA. Gelatin capsule brittleness as afunction of relative humidity at room temperature. Int JPharm 1989; 54:79–85.

43. Zografi G, Grandolfi GP, Kontny MJ, et al. Predictionof moisture transfer in mixtures of solids: transfer viathe vapor phase. Int J Pharm 1988; 42:77–88.

44. Schwier JR, Cooke GG, Hartauer KJ, et al. Rayon: asource of furfural—a reactive aldehyde capable ofinsolubilizing gelatin capsules. Pharm Technol 1993;

17(5):78–79.

45. Digenis GA, Gold TB, Shah VP, et al. Cross-linking ofgelatin capsules and its relevance to their in vivo-invitro performance. J Pharm Sci 1994; 83(7):915–921.

46. Murthy KS, Enders NA, Fawzi MB. Dissolution stabilityof hard-shell products. Part I: the effect of exaggeratedstorage conditions. Pharm Technol 1989; 13(3):72–86.

47. Murthy KS, Reisch RG Jr., Fawzi MB. Dissolutionstability of hard-shell capsule products. Part II: theeffect of dissolution test conditions on in vitro drugrelease. Pharm Technol 1989; 13(6):53–58. 48. Mohamad H,Renoux R, Aiache S, et al. Etude de la stabilitebiopharmaceutique des medicaments application a des gelulesde chlorohydrate de tetracycline I. Etude in vitro. STPPharma 1986; 2(17):531–535. 49. Marks EM, Tourtellotte D,Andus A. The phenomenon of gelatin insolubility. FoodTechnol 1968; 22:1433–1436. 50. Dahl T, Sue ILT, Yum A. Theeffect of pancreatin on the dissolution performance ofgelatincoated tablets exposed to high-humidity conditions.Pharm Res 1991; 8:412–414. 51. Mohamad H, Aiche J-M, RenouxR, et al. Etude de la stabilite biopharmaceutique desmedicaments application a des gelules de chlorohydrate detetracycline. IV. Etude complimentaire in vivo. STP Pharma1986; 3(5):407–411. 52. Aikman M, Augsburger L, Berry I, etal. Collaborative development of two-tiered dissolutiontesting for gelatin capsules and gelatin-coated tabletsusing enzyme-containing media. Pharmacop Forum 1998;24(5):7045–7050. 53. Jones BE. Quali-V 1 Hard Capsules—ANew Tool for the Formulator. The Drug Delivery CompaniesReport. Autumn/Winter 2003, pp. 56–59. Available at:

73. Stoyle LE Jr. Evaluation of the zanasi automaticcapsule machine. Proceedings of the Industrial PharmacySection, A.Ph.A. Presented at the 113th Annual Meeting,Dallas, Texas, April, 1966.

74. Macofar Mod. MT 13-l and 13-2 Brochure, Macofar s.a.s.,Bologna, Italy.

75. Irwin GM, Dodson GJ, Ravin LJ. Encapsulation ofclomacron phosphate I. Effect of flowability of powderblends, lot-to-lot variability, and concentration of activeingredient on weight variation of capsules filled on anautomatic capsule filling machine. J Pharm Sci 1970; 59:547–550.

76. Chowhan ZT, Chow YP. Powder flow studies I. Powder

consolidation ratio and its relationship to capsule-fillingweight variation. Int J Pharm 1980; 4:317–326.

77. Miyake Y, Shimoda A, Jasu T, et al. Packing propertiesof pharmaceutical powders into hard gelatin capsules.Yakuzaigaku 1974; 34:32–37.

78. Jolliffe IG, Newton JM, Walters JK. Theoreticalconsiderations of the filling of pharmaceutical hardgelatine capsules. Powder Technol 1980; 27:189–195.

79. Jolliffe IG, Newton JM. Practical implications oftheoretical consideration of capsule filling by the dosatornozzle system. J Pharm Pharmacol 1982; 34:293–298.

80. Chopra R, Podczeck F, Newton JM, et al. The influenceof pellet shape and film coating on the filling of pelletsinto hard shell capsules. Eur J Pharm Biopharm 2002;53:327–333.

81. Schwartz JB. The instrumented tablet press: uses inresearch and production. Pharm Technol 1981; 5(9):102–132.

82. Marshall K. Instrumentation of tablet and capsulefilling machines. Pharm Technol 1983; 7(3): 68–82.

83. Augsburger LL. Instrumented capsule filling machines:development and application. Pharm Technol 1982;6(9):111–112, 114, 117–119.

84. Cole GC, May G. Instrumentation of a hard shellencapsulation machine. J Pharm Pharmacol 1972;24(suppl):122P.

85. Cole GC, May G. The instrumentation of a zanasi LZ/64capsule filling machine. J Pharm Pharmacol 1975;27:353–358.

86. Small LE, Augsburger LL. Aspects of the lubricationrequirements for an automatic capsulefilling machine. DrugDev Ind Pharm 1978; 4:345–372.

87. Mehta AM, Augsburger LL. Simultaneous measurement offorce and displacement in an automatic capsule fillingmachine. Int J Pharm 1980; 4:347–351.

88. Mehta AM, Augsburger LL. Quantitative evaluation offorce displacement curves in an automatic capsule fillingmachine. Presented to the IPT Section, A.Ph.A. Academy ofPharmaceutical Sciences, 128th Annual A.Ph.A. Meeting, St.

Louis, Missouri, March-April, 1981.

89. Greenberg R. Effects of AZ-60 filling machine dosatorsettings upon slug hardness and dissolution of capsules.Proceedings of the 88th National Meeting. Am Inst ChemEngrs, Session 11, Philadelphia, Pennsylvasnia, June 8-12,1980 (Fiche 29).

90. Botzolakis JE. Studies on the Mechanism of DisintegrantAction in Encapsulated Dosage Forms [PhD dissertation].Baltimore, MD: University of Maryland, 1985.

91. Mony C, Sambeat C, Cousin G. Interet des measures depression dans la formulation et le remplissage des gelules.Newsheet, 1977. Capsugel A.G., Basel, Switzerland.

92. Rowley DJ, Hendry R, Ward MD, et al. Theinstrumentation of an automatic capsule filling machine forformulation design studies. Presented at 3rd InternationalConference on Powder Technology, Paris, 1983.

93. Shah KB, Augsburger LL, Marshall K. An investigation ofsome factors influencing plug formation and fill weight ina dosing disk-type automatic capsule-filling machine. JPharm Sci 1986; 75:291–296.

94. Shah KB, Augsburger LL, Marshall K. Multiple tampingeffects on drug dissolution from capsules filled on adosing-disk type automatic capsule filling machine. J PharmSci 1987; 76: 639–645.

95. Cropp JW, Augsburger LL, Marshall K. Simultaneousmonitoring of tamping force and piston displacement (F-D)on an Hofliger-Karg capsule filling machine. Int J Pharm1991; 71:127–136. 96. Podczeck F. The development of aninstrumented tamp-filling capsule machine: I.instrumentation of a Bosch GKF 400S machine. Eur J PharmSci 2000; 10:267–274. 97. Podczeck F. The development of aninstrumented tamp-filling capsule machine: II.Investigations of plug development and tamping pressure atdifferent filling stations. Eur J Pharm Sci 2001;12:515–521. 98. Mehta AM, Augsburger LL. A preliminarystudy of the effect of slug hardness on drug dissolutionfrom hard gelatin capsules filled on an automatic capsulefilling machine. Int J Pharm 1981; 7:327–334. 99. Heda PK,Muller FX, Augsburger LL. Capsule filling machinesimulation I: low force compression physics relevant toplug formation. Pharm Dev Technol 1999; 4(2):209–219. 100.Celik M, Marshall K. Use of a compaction simulator systemin tablet research. Drug Dev Ind Pharm 1989; 15:758–800.

101. Stewart AG, Grant DJW, Newton JM. The release of amodel low-dose drug (riboflavine) from hard gelatin capsuleformulations. J Pharm Pharmacol 1979; 31:1–6. 102. Veski P,Marvola M. Design and use of equipment for simulation ofplug formation in hard gelatin capsule filling machines.Acta Pharm Fennica 1991; 100:19–25. 103. Jolliffe IG,Newton JM, Cooper D. The design and use of an instrumentedMG2 capsule filling machine simulator. J Pharm Pharmacol1982; 34:230–235. 104. Jolliffe IG, Newton JM. Aninvestigation of the relationship between particle size andcompression during capsule filling with an instrumented MG2simulator. J Pharm Pharmacol 1982; 34:415–419. 105.Jolliffe IG, Newton JM. The effect of dosator nozzle walltexture on capsule filling with the MG2 simulator. J PharmPharmacol 1983; 35:7–11. 106. Tan SB, Newton JM. Powderflowability as an indication of capsule fillingperformance. Int J Pharm 1990; 61:145–155. 107. Tan SB,Newton JM. Influence of capsule dosator wall texture andpowder properties on the angle of wall friction andpowder-wall adhesion. Int J Pharm 1990; 64:227–234. 108.Tan SB, Newton JM. Capsule filling performance of powderswith dosator nozzles of different wall texture. Int J Pharm1990; 66:207–211. 109. Tan SB, Newton JM. Minimumcompression stress requirements for arching and powderretention within a dosator nozzle during capsule filling.Int J Pharm 1990; 63:275–280. 110. Tan SB, Newton JM.Influence of compression setting ratio on capsule fillweight and weight variability. Int J Pharm 1990;66:273–282. 111. Tan SB, Newton JM. Observed and expectedpowder plug densities obtained by a capsule dosator nozzlesystem. Int J Pharm 1990; 66:283–288. 112. Britten JR,Barnett MI. Development and validation of a capsule fillingmachine simulator. Int J Pharm 1991; 71: R5–R8. 113.Britten JR, Barnett MI, Armstrong NA. Construction of anintermittent-motion capsule filling machine simulator.Pharm Res 1995; 12:196–200. 114. Britten JR, Barnett MI,Armstrong NA. Studies on powder plug formation using asimulated capsule filling machine. J Pharm Pharmacol 1996;48:249–254. 115. Tattawasart A, Armstrong NA. The formationof lactose plugs for hard shell capsule fills. Pharm DevTechnol 1997; 2:335–343. 116. Ludwig A, Van Ooteghem M.Disintegration of hard gelatin capsules. Part 2:disintegration mechanism of hard gelatin capsulesinvestigated with a stereoscopic microscope. Pharm Ind1980; 42:405–406. 117. Ludwig A, Van Ooteghem M.Disintegration of hard gelatin capsules. Part 5: theinfluence of the composition of the test solution ondisintegration of hard gelatin capsules. Pharm Ind 1981;43: 188–190. 118. Podczeck F, Jones BE. The in vitrodissolution of theophylline from different types of hard

shell capsules. Drug Dev Ind Pharm 2002; 28:1163–1169. 119.Missaghi S, Fassihi R. Evaluation and comparison ofphysicomechanical characteristics of gelatin andhypromellose capsules. Drug Dev Ind Pharm 2006;32(7):829–838.

120. El-Malah Y, Nazzai S, Bottom CB. Hard gelatin andhypromellose (HPMC) capsules: estimation of rupture time byreal-time dissolution spectroscopy. Drug Dev Ind Pharm2007; 33(1):27–34.

121. Tuleu C, Khela MK, Evans DF, et al. A scintigraphicinvestigation of the disintegration behavior of capsules infasting subjects: a comparison of hypromellose capsulescontaining carageenin as a gelling agent and standardgelatin capsules. Eur J Pharm Sci 2007; 30(3–4): 251–255.

122. Amidon GL, Lennernas H, Shah VP, et al. A theoreticalbasis for a biopharmaceutic drug classification: thecorrelation of in vitro drug product dissolution and invivo bioavailability. Pharm Res 1995; 12:413–420.

123. Hussain AS. Classifying your drug: the BCS guidance.In: Amidon GL, Robinson JR, Williams RL, eds. ScientificFoundations for Regulating Drug Products. Arlington, VA:AAPS Press, 1997:197–204.

124. Rekhi GS, Eddington ND, Fossler MJ, et al. Evaluationof in vitro release rate and in vivo absorptioncharacteristics of four metoprolol tartrate immediaterelease tablet formulations. Pharm Dev Technol 1997;2(1):11–24.

125. Piscitelli DA, Bigora S, Propst C, et al. The impactof formulation and process changes on in vitro dissolutionand bioequivalence of piroxicam capsules. Pharm Dev Technol1998; 3(4): 443–452.

126. Eddington ND, Ashraf M, Augsburger LL, et al.Identification of formulation and manufacturing variablesthat influence in vitro dissolution and in vivobioavailability of propranolol hydrochloride tablets. PharmDev Technol 1998; 3(4):535–547.

127. Polli JE. Analysis of in vitro–in vivo data. In:Amidon GL, Robinson JR, Williams RL, eds. ScientificFoundations for Regulating Drug Products. Arlington, VA:AAPS Press, 1997:335–351.

128. Waiver of in vivo bioavailability and bioequivalence

studies for immediate release solid oral dosage forms basedon a biopharmaceutics classification system. Center forDrug Evaluation and Research, Food and Drug Administration,Issued 8/2000, Posted 8/31/2000. http://www.fda.gov/cder/guidance/index.htm.

129. Immediate release solid oral dosage forms; Scale-upand post approval changes: chemistry, manufacturing, andcontrols; In vitro dissolution testing; In vivobioequivalence documentation, November, 1995. Center forDrug Evaluation and Research, Food and Drug Administration.Available at: http://www.fda.gov/cder/guidance/index.htm.

130. Fincher JH, Adams JG, Beal MH. Effect of particle sizeon gastrointestinal absorption of sulfisoxazole in dogs. JPharm Sci 1963; 54:704–708.

131. Bastami SM, Groves MJ. Some factors influencing the invitro release of phenytoin from formulations. Int J Pharm1978; 1:151–164.

132. Newton JM, Rowley G. On the release of drug from hardgelatin capsules. J Pharm Pharmacol 1970; 22:163S–168S.

133. Patel R, Podczeck F. Investigation of the effect oftype and source of microcrystalline cellulose on capsulefilling. Int J Pharm 1996; 128:123–127.

134. Guo M, Muller FX, Augsburger LL. Evaluation of theplug formation process of silicified microcrystallinecellulose. Int J Pharm 2002; 233(1-2):99–109.

135. Bolhuis GK, Armstrong NA. Excipients for directcompression—an update. Pharm Dev Technol 2006;11(1):111–124.

136. Newton JM, Rowley G, Tornblom JFV. The effect ofadditives on the release of drug from hard gelatincapsules. J Pharm Pharmacol 1971; 23:452–453.

137. Withey RJ, Mainville CA. A critical analysis of acapsule dissolution test. J Pharm Sci 1969; 58: 1120–1126.

138. Tyrer JH, Eadie MJ, Sutherland JM, et al. Outbreak ofanticonvulsant intoxication in an Australian city. Br Med J1970; 4:271–273.

139. York P. Studies of the effect of powder moisturecontent on drug release from hard gelatin capsules. DrugDev Ind Pharm 1980; 6:605–627.

140. Koparkar AD, Augsburger LL, Shangraw RF. Intrinsicdissolution rates of tablet filler-binders and theirinfluence on the dissolution of drugs from tabletformulation. Pharm Res 1990; 7: 80–86. 141. Augsburger LL,Shangraw RF. Effect of glidants in tableting. J Pharm Sci1966; 55:418–423. 142. York P. Application of powderfailure testing equipment in assessing effect of glidantson flowability of cohesive pharmaceutical powders. J PharmSci 1975; 64:1216–1221. 143. Sadek HM, Olsen JL, Smith HL,et al. A systematic approach to glidant selection. PharmTechnol 1982; 6(2):43–62. 144. Shangraw RF, Demarest DA Jr.A survey of current industrial practices in the formulationand manufacture of tablets and capsules. Pharm Technol1993; 17:32–44. 145. Jones B. Two-piece gelatin capsules:excipients for powder products, European practice. PharmTech Eur 1995; 7(10):25–34. 146. Newton JM, Rowley G,Tornblom JFV. Further studies on the effect of additives onthe release of drug from hard gelatin capsules. J PharmPharmacol 1971; 23:156S–160S. 147. Samyn JC, Jung WY. Invitro dissolution from several experimental capsules. JPharm Sci 1970; 59:169–175. 148. Murthy KS, Samyn JC.Effect of shear mixing on in vitro drug release of capsuleformulations containing lubricants. J Pharm Sci 1977;66:1215–1219. 149. Miller TA, York P. Pharmaceutical tabletlubrication. Int J Pharm 1988; 41:1–19. 150. Shah AC,Mlodozeniec AR. Mechanism of surface lubrication: influenceof duration of lubricant-excipient mixing on processingcharacteristics of powders and properties of compressedtablets. J Pharm Sci 1977; 66:1377–1381. 151. Bolhuis MR,Lerk CF. Film forming of tablet lubricants during themixing process of solids. Acta Pharm Technol 1977;23:13–20. 152. Desai DS, Rubitski BA, Varia SA, et al.Physical interactions of magnesium stearate withstarch-derived disintegrants and their effects on capsuleand tablet dissolution. Int J Pharm 1993; 91:217–226. 153.Ullah I, Wiley GJ, Agharkar SN. Analysis and simulation ofcapsule dissolution problem encountered during productscale-up. Drug Dev Ind Pharm 1992; 18:895–910. 154. HedaPK, Muteba K, Augsburger LL. Comparison of the formulationrequirements of dosator and dosing disc automatic capsulefilling machines. AAPS PharmSci 2002; 4(3):article 17.Available at: http://www.aapsj.org/view.asp?art=ps040317.155. Augsburger LL. Practical considerations in scaling uphard shell capsule formulations. In: Levin M, ed.,Pharmaceutical Process Scale-Up. 2nd ed. New York: MarcelDekker Inc, 2005:409–433. 156. Nakagwu H. Effects ofparticle size of rifampicin and addition of magnesiumstearate in release of rifampicin from hard gelatincapsules. Yakugaku Zasshi 1980; 100:1111–1117. 157. Shah

PT, Moore WE. Dissolution behavior of commercial tabletsextemporaneously converted to capsules. J Pharm Sci 1970;59:1034–1036. 158. Goodhart FW, McCoy RH, Ninger FC. New invitro disintegration and dissolution test method fortablets and capsules. J Pharm Sci 1973; 62:304–310. 159.Shangraw RF, Mitrevej A, Shah M. A new era of tabletdisintegrants. Pharm Technol 1980; 4(10): 49–57. 160.Shangraw RF, Wallace JW, Bowers FM. Morphology andfunctionality of tablet excipients for direct compression:Part II. Pharm Technol 1981; 5(10):44–60. 161. BotzolakisJE, Small LE, Augsburger LL. Effect of disintegrants ondrug dissolution from capsules filled on a dosator-typeautomatic capsule-filling machine. Int J Pharm 1982;12:341–349. 162. Botzolakis JE, Augsburger LL. The role ofdisintegrants in hard-gelatin capsules. J Pharm Pharmacol1984; 37:77–84. 163. Ong JTH, Chowhan ZT, Samuels GJ.Drug-excipient interactions resulting from powder mixingVI. Role of various surfactants. Int J Pharm 1993;96:231–242. 164. Wang LH, Chowhan ZT. Drug-excipientinteractions resulting from powder mixing V. Role of sodiumlauryl sulfate. Int J Pharm 1990; 60:61–78. 165. CorriganOI, Healy AM. Surfactants in pharmaceutical products andsystems. In: Swarbrick J, Boylan JC, eds., Encyclopedia ofPharmaceutical Technology. Vol 14. New York: Marcel Dekker,1996:295–331.

166. Lerk CF, Lagas M, Fell JT, P Nauta. Effect ofhydrophilization of hydrophobic drugs on release rate fromcapsules. J Pharm Sci 1978; 67:935–939.

167. Lerk CF, Lagas M, Lie-A-Huen L, et al. In vitro and invivo availability of hydrophilized phenytoin from capsules.J Pharm Sci 1979; 68:634–637.

168. Lagas M, de Wit HJC, Woldring MG, et al. Technetiumlabelled disintegration of capsules in the human stomach.Pharm Acta Helv 1980; 55:114–119.

169. Hogan J, Shue P-I, Podczeck F, et al. Investigationsinto the relationship between drug properties, filling, andthe release of drugs from hard gelatin capsules usingmultivariate statistical analysis. Pharm Res 1996;13:944–949.

170. Hussain AS, Yu X, Johnson RD. Application of neuralcomputing to pharmaceutical product development. Pharm Res1991; 8:1248–1252.

171. Lai S, Podczeck F, Newton JM, et al. An expert systemto aid the development of capsule formulations. Pharm Tech

Eur 1996; 8(Oct.):60–65.

172. Bateman SD, Verlin J, Russo M, et al. The developmentof a capsule formulation knowledgebased system. PharmTechnol 1996; 20(3):174–184.

173. Peng Y, Augsburger LL. Expert systems and other AIapplications. In: Augsburger LL, Hoag SW, eds.Pharmaceutical Dosage Forms: Tablets. 3rd ed. Vol 2, NewYork: Taylor and Francis, 2008:137–172.

174. Polli JE, Crison JR, Amidon GL. Novel approach to theanalysis of in vitro–in vivo relationships. J Pharm Sci1996; 85:753–760.

175. Hicks TA, Patel B, Augsburger LL, et al. The effect ofrelative magnitudes of absorption and eliminationhalf-lives on the decision of Cmax-based bioequivalence(abstr). American Association of Pharmaceutical Scientists.Presented at the 8th Annual meeting, Orlando, FL, November1993.

176. Kuppuswamy R, Shah R, Anderson SR, et al. Practicallimitations of tableting indices. Pharm Dev Technol 2001;6(4):505–520.

177. Ghaffari A, Addollahi H, Khoshayand MR, et al.Performance comparison of neural network trainingalgorithms in modeling of bimodal drug delivery. Int JPharm 2006; 327(1-2):126–138.

178. Guo M, Kalra G, Wilson W, et al. A prototypeintelligent hybrid system for hard gelatin capsuleformulation development. Pharm Technol 2002; 26(9): 44–60.

179. Kalra G, Peng Y, Guo M, et al. A hybrid intelligentsystem for formulation of BCS Class II drugs in hardgelatin capsules. Proceedings, International Conference onNeural Information Processing, Singapore, November 2002,Vol 4, pp. 1987–1991, November 18–22, 2002.

180. Wilson W, Peng Y, Augsburger LL. Generalization of aprototype intelligent hybrid system for hard gelatincapsule formulation development. AAPS PharmSciTech 2005;6(3):E449– E457. Available at:http://www.aapspharmscitech.org/view.asp?art=pt060356.

181. Wilson WI, Peng Y, Augsburger LL. Comparison ofstatistical analysis and Bayesian networks in theevaluation of dissolution performance of BCS Class II model

drugs. J Pharm Sci 2005; 94:2764–2776.

182. Francois D, Jones BE. Making the hard capsule with thesoft center. Manuf Chem Aerosol News 1979; 50(3):37, 38,41.

183. Walker SE, Ganley JA, Bedford K, et al. The filling ofmolten and thixotropic formulations into hard gelatincapsules. J Pharm Pharmacol 1980; 32:389–393.

184. Berry IR. Improving bioavailability with soft gelatincapsules. Drug Cosmet Ind 1983; 133(3): 32, 33, 102,105–108.

185. Seager H. Soft gelatin capsules: a solution to manytableting problems. Pharm Technol 1985; 9(9):84, 86, 88,90, 92, 94, 96, 98, 100, 102, 104.

186. Cole ET. Liquid-filled hard-gelatin capsules. PharmTechnol 1989; 13(9):124–140.

187. Richardson M, Stegemann S. Capsule filling. Tablets &Capsules 2007; 5(1):12–18.

188. Nink F. Liquid-filled capsules. Tablets & Capsules2007; 5(6):44–49.

189. Cole ET, Cade D, Benameur H. Challenges andopportunities in the encapsulation of liquid and semi-solidformulations for oral administration. Adv Drug Deliv Rev2008; 60(6):747–756.

190. Garcia TP, Prescott JK. Blending and blend uniformity.In: Augsburger LL, Hoag SW, eds. Pharmaceutical DosageForms: Tablets. 3rd ed. Vol 1,. New York: Taylor andFrancis, 2008:111–174. 191. Hom FS, Miskel JJ. Oral dosageform design and its influence on dissolution rates for aseries of drugs. J Pharm Sci 1970; 59:827–830. 192. Hom FS,Miskel JJ. Enhanced drug dissolution rates for a series ofdrugs as a function of dosage form design. Lex Sci 1971;8(1):18–26. 193. Fuccella LJ, Bolcioni G, Tamassia V, etal. Human pharmacokinetics and bioavailability of temazepamadministered in soft gelatin capsules. Eur J Clin Pharmacol1977; 12:383–386. 194. Johnson BF, Bye C, Jones G, et al. Acompletely absorbed oral preparation of digoxin. ClinPharmacol Ther 1976; 19:746–757. 195. Hauss DJ. Lipid-basedsystems for oral drug delivery: bioavailability of poorlywater soluble drugs. Am Pharm Rev 2002; 5(4):88–93. 196.Cannon JB, Long MA. Emulsions, microemulsions, andlipid-based drug delivery systems for drug Solubilization

and delivery – part II: oral applications. In: Liu R, ed.Water-Insoluble Drug Formulation. 2nd ed. Boca Raton,Florida: CRC Press, 2008:227–254. 197. Gao P, Charton M,Morozowich W. Speeding development of poorly soluble/poorlypermeable drugs by SEDDS/S-SEDDS formulations and prodrugs(Part II). Pharm Rev 2006; 9(4):16, 18, 19–23. 198. Shen H,Zhong M. Preparation and evaluation ofself-microemulsifying drug delivery systems (SMEDDS)containing atorvasten. J Pharm Pharmacol 2006;58(9):1183–1191. 199. Smith A, Lampard JF, Carruthers KM,et al. The filling of molten ibuprofen into hard gelatincapsules. Int J Pharm 1990; 59:115–119. 200. Doelker C,Doelker E, Buri P, et al. The incorporation and in vitrorelease profiles of liquid, deliquescent or unstable drugswith fusible excipients in hard gelatin capsules. Drug DevInd Pharm 1986; 12(10):1553–1565. 201. Bowtle WJ, BarkerNJ, Wodhams J. A new approach to vancomycin formulationusing filling technology for semisolid matrix capsules.Pharm Technol 1988; 12(6):86–97. 202. Hom FS, Veresh SA,Ebert WR. Soft gelatin capsules II. Oxygen permeabilitystudy of capsule shells. J Pharm Sci 1975; 64:851–857. 203.Muller G. Methods and machines for making gelatin capsules.Manuf Chem 1961; 32:63–66. 204. Berry IR. One-piece, softgelatin capsules for pharmaceutical products. Pharm Eng1985; 5(5): 15–19. 205. Ebert WR. Soft elastic gelatincapsules: a unique dosage form. Pharm Technol 1977; 1(10):44–50. 206. Bauer KH, Dortunc B. Non-aqueous emulsions asvehicles for capsule filling. Drug Dev Ind Pharm 1984;10:699–712. 207. Moreton RC, Armstrong NA. The effect offilm composition on the diffusion of ethanal through softgelatin films. Int J Pharm 1998; 161(1):123–131. 208. GoldTB, Buice RG Jr, Lodder RA, et al. Detection offormaldehyde-induced crosslinking in soft eleastic gelatincapsules using near-infrared spectrophotometry. Pharm DevTechnol 1998; 3(2):209–214. 209. Armstrong NA, James KC,Pugh WKL. Drug migration into soft gelatin capsule shellsand its effect on the in-vitro availability. J PharmPharmacol 1984; 36:361–365. 210. Vemuri S. Measurement ofsoft elastic gelatin capsule firmness with a universaltesting machine. Drug Dev Ind Pharm 1984; 10:409–424. 211.The hard capsule with the soft center. Elanco Products Co.,Div. Eli Lilly and Co., Indianapolis, Indiana. 212.Stegemann S. Hard Gelatin Capsules Today and Tomorrow. 2nded. Capsugel Library, BAS 192 E, 2002:19. 213. Stein D,Bindra DS. Stabilization of hard gelatin capsule shellsfilled with polyethylene glycol matrices. Pharm Dev Technol2007; 12(1):71–77. 214. Barak NS. Etodolac-liquid-filleddispersion into hard gelatin capsules: an approach toimprove dissolution and stability of etodolac formulation.Drug Dev Ind Pharm 2006; 32:865–876.

15 Chapter 15- Parenteral Products

26. Gatlin LA, DeLuca PP. Kinetics of a phase transition ina frozen solution. J Parenter Drug

Assoc 1980; 34:398–408.

27. Searles JA, Carpenter JF, Randolph TW. Primary dryingrate heterogeneity during pharma

ceutical lyophilization. Am Pharm Rev 2000; 3:6–24.

28. Oguchi T. Freezing of drug/additive binary systems II.Relationship between decarboxylation

behavior and molecular states of p-aminosalicylic acid.Chem Pharm Bull 1989; 37:3088–3091.

29. Crowe J, Crowe L, Carpenter J. Are freezing anddehydration similar stress vectors? A

comparison of modes of interaction of biomolecules withstabilizing solutes. Cryobiology 1990;

27:219–231.

30. Pikal MJ, Shah S, Senior D, et al. Physical chemistryof freeze drying: measurement of

sublimation rates of frozen aqueous solutions by amicrobalance technique. J Pharm Sci 1983;

72:635–650.

31. Pikal MJ, Roy ML, Shah S. Mass and heat transfer invial freeze-drying of pharmaceuticals: role

of the vial. J Pharm Sci 1984; 73:1224–1237.

32. Nail SL. The effect of chamber pressure on heattransfer in the freeze drying of parenteral

solutions. J Parenter Drug Assoc 1980; 34:358–368.

33. Pikal MJ, Shah S, Roy ML, et al. The secondary dryingstage of freeze drying: drying kinetics

as a function of shelf temperature and chamber pressure.Int J Pharm 1990; 60:203–217.

34. Ahern TJ, Manning MJ. Stability of ProteinPharmaceuticals. Part A: Chemical and Physical

Pathways of Protein Degradation. New York: Plenum Press,1992.

35. Chien YW. Novel Drug Delivery Systems: Fundamentals,Developmental Concepts, Bio

medical Assessments. New York: Marcel Dekker, 1982:219–292.

36. Akers MJ, Anderson NR. Sterilization Validation. In:Nash RA, Wachter AH, eds.

Pharmaceutical Process Validation. 3rd ed. New York: MarcelDekker, 2003:83–158.

37. Leuthner EJ. In: Swarbrick J, Boylan J, eds. Autoclavesand Autoclaving, Encyclopedia of

Pharmaceutical Technology. Vol 1. New York: Marcel Dekker,1988:393–414.

38. Groves FM, Groves MJ. In: Swarbrick J, Boylan J, eds.Dry Heat Sterilization and

Depyrogenation, Encyclopedia of Pharmaceutical Technology.Vol 4. New York: Marcel

Dekker, 1991:447–484.

39. Reich RR, Burgess DJ. In: Swarbrick J, Boylan J, eds.Ethylene Oxide Sterilization,

Encyclopedia of Pharmaceutical Technology. Vol 5. New York:Marcel Dekker, 1992:315–336.

40. Meltzer TH. In: Swarbrick J, Boylan J, eds. Filters andFiltration, Encyclopedia of

Pharmaceutical Technology. Vol 6. New York: Marcel Dekker,1992:51–91.

41. Turco SJ. Therapy Hazards Assoc. Parenter Bull ParenterDrug Assoc 1974; 28:197–204.

42. Duma RJ, Akers MJ, Turco SJ. Parenteral DrugAdministration: Routes, Precautions, Problems,

Complications, and Drug Delivery Systems. In: Avis KE,

Lieberman HA, Lachman L, eds.

Pharmaceutical Dosage Forms: Parenteral Medications. 2nded, Vol 1. New York: Marcel

Dekker, 1992:17–58.

43. Hempel HE. Large scale manufacture of parenterals. BullParenter Drug Assoc 1976; 30:88–95.

44. Blackmer RA. Sterile operations facility. J ParenterSci Technol 1984; 38:183–189.

45. Akers MJ. In: Robinson JR, ed. Parenteral QualityControl: Sterility Pyrogen, Particulate, and

Package Integrity Testing. Vol 1. New York: Marcel Dekker,1985:207–209.

1 Chapter 1- Time-Controlled DrugDelivery Systems

1. Tanquary AC, Lacey RE, eds. Controlled Release ofBiologically Active Agents. New York: Plenum Press, 1974.

2. Baker R., ed. Controlled Release of Biologically ActiveAgents. New York: John Wiley, 1987.

3. Langer RS, Wise DL, eds. Medical Applications ofControlled Release, Vol 1: Classes of Systems. Boca Raton:CRC Press, 1984.

4. Grieg NH. Optimizing drug delivery to brain tumors.Cancer Treat Rev 1987; 14:1–28.

5. Abott NJ, Romero IA. Transporting therapeutics acrossthe blood-brain barrier. Mol Med Today 1996; 2:106–113.

6. Langer R. Polymeric delivery systems for controlled drugrelease. Chem Eng Commun 1980; 6: 1–48.

7. Langer R, Peppas NA. Chemical and physical structure ofpolymers as carriers for controlled release of bioactiveagents: a review. Rev Macromol Chem Phys 1983; C23:61–126.

8. Rosen HB, Kohn J, Leong K, et al. Bioerodible polymersfor controlled release systems. In: Hsieh D, ed. ControlledRelease Systems: Fabrication Technology, Vol 2. Boca Raton:CRC Press, 1988:83–110.

9. Guse C, Koennings S, Kreye F, et al. Drug release fromlipid-based implants: elucidation of the underlying masstransport mechanisms. Int J Pharm 2006; 314:137–144.

10. Kreye F, Siepmann F, Siepmann J. Lipid implants as drugdelivery systems. Expert Opin Drug Deliv 2008; 5:291–307.

11. Herrmann S, Winter G, Mohl S, et al. Mechanismscontrolling protein release from lipidic implants: effectsof PEG addition. J Control Release 2007; 118:161–168.

12. Noyes AA, Whitney WR. Ueber dieAufloesungsgeschwindigkeit von festen Stoffen in ihreneigenen Loesungen. Z Physikal Chem 1897; 23:689–692.

13. Fan LT, Singh SK, eds. Controlled release. AQuantitative Treatment. Berlin: Springer-Verlag, 1989. 14.Siepmann J, Peppas NA. Modeling of drug release fromdelivery systems based on hydroxypropyl methylcellulose

(HPMC). Adv Drug Deliv Rev 2001; 48:139–157. 15. SiepmannJ, Goepferich A. Mathematical modeling of bioerodible,polymeric drug delivery systems. Adv Drug Deliv Rev 2001;48:229–247. 16. Peppas NA. Mathematical modeling ofdiffusion processes in drug delivery polymeric systems. In:Smolen VF, Ball L, eds. Controlled Drug Bioavailability,Vol 1. New York: John Wiley, 1984:203–237. 17. Vergnaud JM,ed. Liquid Transport Processes in Polymeric Materials.Englewood Cliffs: Prentice-Hall, 1991:26–29. 18. VergnaudJM, ed. Controlled Drug Release of Oral Dosage Forms.Chichester: Ellis Horwood, 1993. 19. Siepmann J, SiepmannF. Mathematical modeling of drug delivery. Int J Pharm2008; 364:328–343. 20. Siepmann J, Siepmann F, Florence AT.Local controlled drug delivery to the brain: mathematicalmodeling of the underlying mass transport mechanisms. Int JPharm 2006; 314:101–119. 21. Fick A. Ueber Diffusion. AnnPhys 1855; 94:59–86. 22. Crank J, ed. The Mathematics ofDiffusion. Oxford: Clarendon Press, 1975. 23. Cussler EL,ed. Diffusion: Mass Transfer in Fluid Systems. New York:Cambridge University Press, 1984. 24. Higuchi T. Physicalchemical analysis of percutaneous absorption process fromcreams and ointments. J Soc Cosmet Chem 1961; 11:85–97. 25.Higuchi T. Rate of release of medicaments from ointmentbases containing drugs in suspensions. J Pharm Sci 1961;50:874–875. 26. Higuchi T. Mechanisms of sustained actionmediation. Theoretical analysis of rate of release of soliddrugs dispersed in solid matrices. J Pharm Sci 1963;52:1145–1149. 27. Colombo P. Swelling-controlled release inhydrogel matrices for oral route. Adv Drug Deliv Rev 1993;11:37–57. 28. Doelker E. Water-swollen cellulosederivatives in pharmacy. In: Peppas NA, ed. Hydrogels inMedicine and Pharmacy, Vol 2. Boca Raton: CRC Press,1986:115–160. 29. Siepmann J, Kranz H, Bodmeier R, et al.HPMC-matrices for controlled drug delivery: a new modelcombining diffusion, swelling and dissolution mechanismsand predicting the release kinetics. Pharm Res 1999;16:1748–1756. 30. Siepmann J, Peppas NA. Hydrophilicmatrices for controlled drug delivery: an improvedmathematical model to predict the resulting drug releasekinetics (the “sequential layer” model). Pharm Res 2000;17:1290–1298. 31. Colombo P, Bettini R, Peppas NA.Observation of swelling process and diffusion frontposition during swelling in hydroxypropyl methyl cellulose(HPMC) matrices containing a soluble drug. J ControlRelease 1999; 61:83–91. 32. Colombo P, Bettini R, Santi P,et al. Swellable matrices for controlled drug delivery:gel-layer behaviour, mechanisms and optimal performance.Pharm Sci Technol Today 2000; 3:198–204. 33. Narasimhan B,Peppas NA. Disentanglement and reptation during dissolutionof rubbery polymers. J Poly Sci Poly Phys 1996; 34:947–961.

34. Narasimhan B, Peppas NA. On the importance of chainreptation in models of dissolution of glassy polymers.Macromolecules 1996; 29:3283–3291. 35. Wright JC, StevensonCL. Pumps/osmotic. In: Mathiowitz E, ed. Encyclopedia ofControlled Drug Delivery, Vol 2. New York: John Wiley,1999. 36. Perkins L, Peer C, Fleming V. Pumps/osmotic—alzetsystem. In: Mathiowitz E, ed. Encyclopedia of ControlledDrug Delivery, Vol 2. New York: John Wiley, 1999. 37.Bittner B, Thelly T, Isel H, et al. The impact ofco-solvents and the composition of experimentalformulations on the pump rate of the ALZET osmotic pump.Int J Pharm 2000; 205:195–198. 38. Goepferich A. Polymerdegradation and erosion: mechanisms and applications. Eur JPharm Biopharm 1996; 42:1–11. 39. Goepferich A, Langer R.Modeling of polymer erosion. Macromolecules 1993;26:4105–4112. 40. Goepferich A. Mechanisms of polymerdegradation and erosion. Biomaterials 1996; 17:103–114.

41. Goepferich A. Polymer bulk erosion. Macromolecules1997; 30:2598–2604.

42. von Burkersroda F, Schedl L, Goepferich A. Whydegradable polymers undergo surface erosion or bulkerosion. Biomaterials 2002; 23:4221–4231.

43. Lee PI. Diffusional release of a solute from apolymeric matrix—approximate analytical solutions. J MembrSci 1980; 7:255–275.

44. Goepferich A, Langer R. Modeling monomer release frombioerodible polymers. J Control Release 1995; 33:55–69.

45. Goepferich A, Langer R. Modeling of polymer erosion inthree dimensions—rotationally symmetric devices. AIChE J1995; 41:2292–2299.

46. Goepferich A. Bioerodible implants with programmabledrug release. J Control Release 1997; 44:271–281.

47. Goepferich A. Erosion of composite polymer matrices.Biomaterials 1997; 18:397–403.

48. Siepmann J, Faisant N, Benoit JP. A new mathematicalmodel quantifying drug release from bioerodiblemicroparticles using Monte Carlo simulations. Pharm Res2002; 19:1887–1895.

49. Faisant N, Siepmann J, Richard J, et al. Mathematicalmodeling of drug release from bioerodible microparticles:effect of gamma-irradiation. Eur J Pharm Biopharm 2003;

56:271–279.

50. Siepmann J, Elkharraz K, Siepmann F, et al. Howautocatalysis accelerates drug release from PLGA-basedmicroparticles: a quantitative treatment. Biomacromolecules2005; 6:2312–2319.

51. Klose D, Siepmann F, Elkharraz K, et al. How porosityand size affect the drug release mechanisms from PLGA-basedmicroparticles. Int J Pharm 2006; 314:198–206.

52. Shenderova A, Burke TG, Schwendeman SP. The acidicmicroclimate in poly(lactide-coglycolide) microspheresstabilizes camptothecins. Pharm Res 1999; 16:241–248.

53. Brunner A, Maeder K, Goepferich A. pH and osmoticpressure inside biodegradable microspheres during erosion.Pharm Res 1999; 16:847–853.

54. Li L, Schwendeman SP. Mapping neutral microclimate pHin PLGA microspheres. J Control Release 2005; 101:163–173.

55. Lu L, Garcia CA, Mikos AG. In vitro degradation of thinpoly(DL-lactic-co-glycolic acid) films. J Biomed Mater Res1999; 46:236–244.

56. Brem H, Mahaley MS, Vick NA, et al. Interstitialchemotherapy with drug polymer implants for the treatmentof recurrent gliomas. J Neurosurg 1991; 74:441–446.

57. Grossman SA, Reinhard C, Colvin OM, et al. Theintracerebral distribution of BCNU delivered by surgicallyimplanted biodegradable polymers. J Neurosurg 1992;76:640–647.

58. Brem H, Piantadosi S, Burger PC, et al.Placebo-controlled trial of safety and efficacy ofintraoperative controlled delivery by biodegradablepolymers of chemotherapy for recurrent gliomas. ThePolymer-brain Tumor Treatment Group. Lancet 1995;345:1008–1012.

59. Brem H, Ewend MG, Piantadosi S, et al. The safety ofinterstitial chemotherapy with BCNUloaded polymer followedby radiation therapy in the treatment of newly diagnosedmalignant gliomas: phase I trial. J Neurooncol 1995;26:111–123.

60. Moses MA, Brem H, Langer R. Advancing the field of drugdelivery taking aim at cancer. Cancer Cell 2003; 4:337–341.

61. Green SB, Byar DP, Walker MD, et al. Comparisons ofcarmustine; procarbazine; and highdose methylprednisoloneas additions to surgery and radiotherapy for the treatmentof malignant glioma. Cancer Treat Rep 1983; 67:121–132.

62. Westphal M, Hilt DC, Bortey E, et al. A phase 3 trialof local chemotherapy with biodegradable carmustine (BCNU)wafers (Glidel wafers) in patients with primary malignantglioma. NeuroOncology (serial online) 2003, 5, Doc. 02-023.Available at: http://neuro-oncology.mc.duke. edu.

63. Westphal M, Ram Z, Riddle V, et al. Gliadel wafer ininitial surgery for malignant glioma: longterm follow-up ofa multicenter controlled trial. Acta Neurochir (Wien) 2006;148:269–275.

64. Menei P, Montero-Menei C, Venier MC, et al. Drugdelivery into the brain using poly(lactideco-glycolide)microspheres. Expert Opin Drug Deliv 2005; 2:363–376.

65. Tatard VM, Venier-Julienne MC, Benoit JP, et al. Invivo evaluation of pharmacologically active microcarriersreleasing NGF and conveying PC12 cells. Cell Transplant2004; 13: 573–583. 66. Tatard VM, Venier-Julienne MC,Saulnier P, et al. Pharmacologically active microcarriers:a tool for cell therapy. Biomaterials 2005; 26:3727–3737.67. Tatard VM, Menei P, Benoit JP, et al. Combiningpolymeric devices and stem cells for the treatment ofneurological disorders: a promising therapeutic approach.Curr Drug Targets 2005; 6: 81–96. 68. Tatard VM, Sindji L,Branton JG, et al. Pharmacologically active microcarriersreleasing glial cell line—derived neurotrophic factor:survival and differentiation of embryonic dopaminergicneurons after grafting in hemiparkinsonian rats.Biomaterials 2007; 28:1978–1988. 69. Santini JT, Cima MJ,Langer R. A controlled-release microchip. Nature 1999;397:335–338. 70. Wang PP, Frazier J, Brem H. Local drugdelivery to the brain. Adv Drug Deliv Rev 2002; 54:987–1013. 71. Li Y, Shawgo RS, Tyler B, et al. In vivorelease from a drug delivery MEMS device. J Control Release2004; 100:211–219.

2 Chapter 2- Bioequivalence

3. Levy G. Comparison of dissolution and absorption ratesof different commercial aspirin tablets. J Pharm Sci 1961;50:388–392.

4. Levy G. Effect of particle size on dissolution andgastrointestinal absorption rates of pharmaceuticals. Am JPharm Sci Support Public Health 1963; 135:78–92.

5. Middleton E, Davies J, Morrison A. Relationship betweenrate of dissolution, disintegration time, and physiologicalavailability of riboflavin in sugar-coated tablets. J PharmSci 1964; 53:1378–1380.

6. Tyrer JH, Eadie MJ, Sutherland JM, et al. Outbreak ofanticonvulsant intoxication in an Australian city. Br Med J1970; 4:271–273.

7. Bochner F, Hooper WD, Tyrer JH, et al. Factors involvedin an outbreak of phenytoin intoxication. J Neurol Sci1972; 16:481–487.

8. Lindenbaum J, Mellow MH, Blackstone MO, et al. Variationin biologic availability of digoxin from four preparations.N Engl J Med 1971; 285:1344–1347.

9. Fraser EJ, Leach RH, Poston JW. Bioavailability ofdigoxin. Lancet 1972; 2:541.

10. Federal Register 34: 2673 (1969).

11. Federal Register 35: 6574 (1970).

12. Federal Register 42: 1642 (1977).

13. Federal Register 54: 28873 (1989).

14. Strom BL. Generic drug substitution revisited. N Engl JMed 1987; 316:1456–1462.

15. Nightingale SL, Morisson JC. Generic drugs and theprescribing physician. JAMA 1987; 258:1200–1204.

16. Lacey LF, Keene ON, Duquesnoy C, et al. Evaluation ofdifferent indirect measures of rate of drug absorption incomparative pharmacokinetic studies. J Pharm Sci 1994;83:212–215.

17. Endrenyi L, Fritsch S, Yan W. Cmax/AUC is a clearer

measure than Cmax for absorption rates in investigations ofbioequivalence. Int J Clin Pharmacol Ther Toxicol 1991;29:394–399.

18. Chen ML. An alternative approach for assessment of rateof absorption in bioequivalence studies. Pharm Res 1992;9:1380–1385.

19. Macheras P, Symillides M, Reppas C. The cut-off timepoint of the partial area method for assessment of rate ofabsorption in bioequivalence studies. Pharm Res 1994;11:831–834.

20. Macheras P, Symillides M, Reppas C. An improvedintercept method for the assessment of absorption rate inbioequivalence studies. Pharm Res 1996; 13:1753–1756.

21. Chen ML, Lesko L, Williams RL. Measures of exposureversus measures of rate and extent of absorption. ClinPharmacokinet 2001; 40:565–572.

22. U.S. Department of Health and Human Services, Food andDrug Administration (FDA), Center for Drug Evaluation andResearch (CDER). Guidance for Industry: Bioavailability andbioequivalence studies for orally administered drugproducts—General considerations, March 2003.

23. U.S. Department of Health and Human Services, Food andDrug Administration (FDA), Center for Drug Evaluation andResearch (CDER). Guidance for Industry: StatisticalApproaches to Establishing Bioequivalence, January 2001.

24. European Agency for the Evaluation of MedicinalProducts (EMEA), Committee for Proprietary MedicinalProducts (CPMP). Note for guidance on the investigation ofbioavailability and bioequivalence. Doc. Ref.CPMP/EWR/QWP/1401/98, July 2001.

25. Schuirmann DJ. A comparison of the two one-sided testsprocedure and the power approach for assessing theequivalence of average bioavailability. J PharmacokinetBiopharm 1987; 15:657–680.

26. Blume HH, Midha KK. Bio-International 92, Conference onbioavailability, bioequivalence, and pharmacokineticstudies. J Pharm Sci 1993; 82:1186–1189.

27. Blume HH, McGilveray IJ, Midha KK. Bio-International’94 Conference on Bioavailability, Bioequivalence andPharmacokinetic Studies and Pre-Conference Satellite on ‘In

Vivo/In Vitro Correlation.’ Munich, Germany, June 14–17,1994. Eur J Drug Metab Pharmacokinet 1995; 20:3–13.

28. Midha KK, Shah VP, Singh GJ, et al. Conference report:Bio-International 2005. J Pharm Sci 2007; 96:747–754. 29.US Department of Health and Human Services, Food and DrugAdministration, Center for Drug Evaluation and Research(CDER). Guidance for Industry: waiver of in vivobioavailability and bioequivalence studies forimmediate-release solid oral dosage forms based on abiopharmaceutics classification system. Available at:http://www.fda.gov/cder/ guidance/3618fnl.pdf. AccessedSeptember 21, 2007. 30. Blume H, Midha K. Report ofconsensus meeting: Bio-International ’92, Conference onBioavailability, Bioequivalence and Pharmacokineticsstudies, Bad Homburg, Germany, May 20–22, 1992. Eur J PharmSci 1993; 1:165–171. 31. Blume H, McGilveray I, Midha K.Report of consensus meeting: Bio-international ’94,Conference on Bioavailability, Bioequivalence andPharmacokinetics studies, Munich, Germany, June 14–17,1994. Eur J Pharm Sci 1995; 3:113–124. 32. Shah V, YacobiA, Barr W, et al. Evaluation of orally administered highlyvariable drugs and drug formulations. Pharm Res 1996;13:1590–1594. 33. European Medicines Evaluation Agency,Committee for Medicinal Products for Human use (CHMP),Efficacy working party, therapeutic subgroup onpharmacokinetics (EWP-PK). Questions & Answers on thebioavailability and bioequivalence guideline. Doc. Ref.EMEA/ CHMP/EWP/40326/2006, July 2006. 34. Davit B. Highlyvariable drugs – bioequivalence issues: FDA proposal underconsideration. Meeting of FDA Committee for PharmaceuticalScience, October 6, 2006. Available at:

47. Anderson S, Hauck WW. Consideration of individualbioequivalence. J Pharmacokinet Biopharm 1990; 18:259–273.

48. Schall R, Luus H. On population and individualbioequivalence. Stat Med 1993; 12:1109–1124.

49. Patnaik R, Lesko L, Chen ML, et al. Individualbioequivalence: new concepts in the statistical assessmentof bioequivalence metrics. Clin Pharmacokinet 1997; 33:1–6.

50. Midha K, Rawson M, Hubbard J. Individual and averagebioequivalence of highly variable drugs and drug products.J Pharm Sci 1997; 86:1193–1197.

51. Endrenyi L, Amidon G, Midha K, et al. Individualbioequivalence: attractive in principle, difficult inpractice. Pharm Res 1998; 15:1321–1325.

52. Midha K, Rawson M, Hubbard J. Prescribability andswitchability of highly variable drugs. J Control Release1999; 62:33–40.

53. Tothfalusi L, Endrenyi L, Midha K. Scaling or widerbioequivalence limits for highly variable drugs and for thespecial case of C max . Int J Clin Pharmacol Ther 2003;41:217–225.

54. Haidar S. Bioequivalence of Highly Variable Drugs:Regulatory Perspectives. Meeting of FDA Committee forPharmaceutical Science, April 13–14, 2004. Available at:http://www.fda.gov/ohrms/dockets/ac/04/slides/4034S2_07_Haidar.ppt.Accessed November 2007.

55. Hauck L, Parekh A, Lesko L, et al. Limits of 80%-125%for AUC and 70%-143% for C max . What is the impact on thebioequivalence studies? Int J Clin Pharmacol Ther 2001; 39:350–355.

56. Anderson S, Hauck W. The transitivity of bioequivalencetesting. Potential for drift. Int J Clin Pharmacol Ther1996; 34:369–374.

57. Karalis V, Macheras P, Symillides M. Geometric MeanRatio–dependent scaled bioequivalence limits withleveling-off properties. Eur J Pharm Sci 2005; 26:54–61.

58. Boddy A, Snikeris F, Kringle R, et al. An approach forwidening the bioequivalence acceptance limits in the caseof highly variable drugs. Pharm Res 1995; 12:1865–1868.

59. Schall R. A unified view of individual, population, andaverage bioequivalence. In: Blume H, Midha K, eds.Bio-international 2: Bioavailability, Bioequivalence andPharmacokinetic Studies. Stuttgart: Medpharm ScientificPublishers, 1995:91–106.

60. Tothfalusi L, Endrenyi L, Midha K, et al. Evaluation ofthe bioequivalence of highly-variable drugs and drugproducts. Pharm Res 2001; 18:728–733.

61. Hyslop T, Hsuan F, Holder DJ. A small sample confidenceinterval approach to assess individual bioequivalence. StatMed 2000; 19:2885–2897.

62. Tothfalusi L, Endrenyi L. Limits for the scaled averagebioequivalence of highly variable drugs and drug products.

Pharm Res 2003; 20:382–389.

63. Kytariolos J, Karalis V, Macheras P, et al. Novelscaled bioequivalence limits with levelingoff propertiesbased on variability considerations. Pharm Res 2006;23:2657–2664.

64. Haidar SH. Evaluation of a scaling approach for highlyvariable drugs. Meeting of FDA Committee for PharmaceuticalScience, October 6, 2006. Available at: http://www.fda.gov/ohrms/dockets/ac/06/slides/2006-4241s2_4_files/frame.htm.Accessed November 2007.

65. Endrenyi L, Tothfalusi L. Determination ofbioequivalence for highly-variable drugs. AAPS AnnualMeeting, Current Issues and Advances in the Determinationof Bioequivalence, San Diego, November 13, 2007.

66. European Medicines Evaluation Agency, Committee forMedicinal Products for Human Use (CHMP). Concept paper foran addendum to the note for guidance on the investigationof bioavailability and bioequivalence: Evaluation ofbioequivalence of highly variable drugs and drug products.Doc. Ref. EMEA/CHMP/EWP/147231/2006, April 2006.

67. European Medicines Evaluation Agency, Committee forMedicinal Products for Human Use (CHMP). Recommendation onthe need for revision of (CHMP) “Note for guidance on theinvestigation of bioavailability and bioequivalence”. Doc.Ref. EMEA/CHMP/EWP/200943/ 2007, May 2007.

68. Eradiri O, Sista S, Lai JC, et al. Singleandmultiple-dose bioequivalence of two once-daily tramadolformulations using stereospecific analysis of tramadol andits demethylated (M1 and M5) metabolites. Curr Med Res Opin2007; 23:1593–1604. 69. Nirogi RV, Kandikere VN, Shukla M,et al. Simultaneous quantification of atorvastatin andactive metabolites in human plasma by liquidchromatography-tandem mass spectrometry using rosuvastatinas internal standard. Biomed Chromatogr 2006; 20:924–936.70. Timmer CJ, Verheul HA, Doorstam DP. Pharmacokinetics oftibolone in early and late postmenopausal women. Br J ClinPharmacol 2002; 54:101–106. 71. Zimmermann T, Wehling M,Schulz HU. Evaluation of the relative bioavailability andthe pharmacokinetics of chloral hydrate and itsmetabolites. Arzneimittel Forschung Drug Res 1998; 48:5–12.72. Mascher HJ, Kikuta C, Millendorfer A, et al.Pharmacokinetics and bioequivalence of the main metabolitesof selegiline: desmethylselegiline, methamphetamine andamphetamine after oral administration of selegiline. Int J

Clin Pharmacol Ther 1997; 35:9–13. 73. Sun JX, Piraino AJ,Morgan JM, et al. Comparative pharmacokinetics andbioavailability of nitroglycerin and its metabolites fromtransdermnitro, nitrodisc, and nitro-dur II systems using astable-isotope technique. J Clin Pharmacol 1995;35:390–397. 74. Heinonen E, Anttila M, Lammintausta A.Pharmacokinetic aspects of l-deprenyl (selegiline) and itsmetabolites. Clin Pharmacol Ther 1994; 56:742–749. 75.Keller-Stanislawski B, Marschner JP, Rietbrock N.Pharmacokinetics of low-dose isosorbide dinitrate andmetabolites after buccal or oral administration.Arzneimittelforschung 1992; 42:17–20. 76. Kwon HR, Green P,Curry SH. Pharmacokinetics of nitroglycerin and itsmetabolites after administration of sustained-releasetablets. Biopharm Drug Dispos 1992; 13:141–152. 77. ChenML, Jackson AJ. The role of metabolites in bioequivalencyassessment. I. Linear pharmacokinetics without first-passeffect. Pharm Res 1991; 8:25–32. 78. Chen ML, Jackson AJ.The role of metabolites in bioequivalency assessment. II:Drugs with linear pharmacokinetics and first-pass effect.Pharm Res 1995; 12:700–708. 79. Tucker G, Rostami A,Jackson P. Metabolite measurement in bioequivalencestudies: theoretical considerations. In: Midha KK, BlumeHH, eds. Bio-International: Bioavailability, Bioequivalenceand Pharmacokinetics. Stuttgart: Medpharm ScientificPublishers, 1993: 163–170. 80. Rosenbaum SE, Lam J.Bioequivalence parameters of parent drug and its first-passmetabolite: comparative sensitivity to sources ofpharmacokinetic variability. Drug Dev Ind Pharm 1997;23:337–344. 81. Rosenbaum SE. Effect of variability inhepatic clearance on the bioequivalence parameters of adrug and its metabolite: simulations using apharmacostatistical model. Pharm Acta Helv 1998;73:135–144. 82. Jackson AJ. The role of metabolites inbioequivalency assessment. III: Highly variable drugs withlinear kinetics and first-pass effect. Pharm Res 2000;17:1432–1436. 83. Midha KK, Rawson MJ, Hubbard JW. The roleof metabolites in bioequivalence. Pharm Res 2004;21:1331–1344. 84. Amidon GL, Lennernaes H, Shah VP, et al.A theoretical basis for a biopharmaceutic drugclassification: the correlation of in vitro drug productdissolution and in vivo bioavailability. Pharm Res 1995;12(3):413–420. 85. European Medicines Evaluation Agency,Committee for Medicinal Products for Human use (CHMP),Concept paper on BCS-based biowaiver. Doc. Ref.EMEA/CHMP/EWP/213035/ 2007, London May 24, 2007. 86.Bonlokke L, Hovgaard L, Kristensen HG, et al. Directestimation of the in vivo dissolution of spironolactone, intwo particle size ranges, using the single-pass perfusiontechnique (Loc-I-Gut) in humans. Eur J Pharm Sci 2001;

12(3):239–250. 87. Weitschies W, Wedemeyer RS, Kosch O, etal. Impact of the intragastric location of extended releasetablets on food interactions. J Control Release 2005;108(2–3):375–385. 88. Galia E, Nicolaides E, Ho¨rter D, etal. Evaluation of various dissolution media for predictingin vivo performance of class I and II drugs. Pharm Res1998; 15(5):698–705.

89. Persson EM, Gustafsson AS, Carlsson AS, et al. Theeffects of food on the dissolution of poorly soluble drugsin human and in model small intestinal fluids. Pharm Res2005; 22(12): 2141–2151.

90. Kalantzi L, Persson E, Polentarutti B, et al. Canineintestinal contents vs. simulated media for the assessmentof solubility of two weak bases in the human smallintestinal contents. Pharm Res 2006; 23(6):1373–1381.

91. Clarysse S, Psachoulias D, Brouwers J, et al.Postprandial Changes in solubilizing capacity of humanintestinal fluids for BCS Class II Drugs. Pharm Res 2009,in press.

92. Pedersen BL, Mullertz A, Brondsted H, et al. Acomparison of the solubility of danazol in human andsimulated gastrointestinal fluids. Pharm Res 2000;17(7):891–894.

93. Dressman JB, Vertzoni M, Goumas K, et al. Estimatingdrug solubility in the gastrointestinal tract. Adv DrugDeliv Rev 2007; 59(7):591–602.

94. Winiwarter S, Bonham NM, Ax F, et al. Correlation ofhuman jejunal permeability (in vivo) of drugs withexperimentally and theoretically derived parameters. Amultivariate data analysis approach. J Med Chem 1998;41(25):4939–4949.

95. Benet L, Amidon GL, Barends D, et al. The use of BDDCSin classifying the permeability of marketed drugs. PharmRes 2008; 25(3):483–488 [Epub January 31, 2008].

96. Takagi T, Ramachandran C, Bermejo M, et al. Aprovisional biopharmaceutical classification of the top 200oral drug products in the United States, Great Britain,Spain, and Japan. Mol Pharm 2006; 3(6):631–643.

97. Kasim NA, Whitehouse M, Ramachandran C, et al.Molecular properties of WHO essential drugs and provisionalbiopharmaceutical classification. Mol Pharm 2004;

1(1):85–96.

98. Lindenberg M, Kopp S, Dressman JB. Classification oforally administered drugs on the World Health Organizationmodel list of essential medicines according to thebiopharmaceutics classification system. Eur J PharmBiopharm 2004; 58:265–278.

99. Lennernas H, Abrahamsson B. The use of biopharmaceuticclassification of drugs in drug discovery and development:current status and future extension. J Pharm Pharmacol2005; 57(3):273–285 (review).

100. Baldoni J. Roles of BCS in Drug Development. AAPSWorkshop on BE, BCS and Beyond, May 21–23, 2007, NorthBethesda, MD, USA.

101. Yazdanian M, Briggs K, Jankovsky C, et al. The “highsolubility” definition of the current FDA Guidance onBiopharmaceutical Classification System may be too strictfor acidic drugs. Pharm Res 2004; 21(2):293–299.

102. Rinaki E, Dokoumetzidis A, Valsami G, et al.Identification of biowaivers among class II drugs:theoretical justification and practical examples. Pharm Res2004; 21(9):1567–1572.

103. World Health Organization, Proposal to waive in vivobioequivalence requirements for the WHO model list ofessential medicines immediate release, solid oral dosageforms, Working document QAS/04.109/Rev.1. Available at:www.who.org. Accessed November 13, 2007.

104. Kortejarvi H, Urtti A, Yliperttula M. Pharmacokineticsimulation of biowaiver criteria: the effects of gastricemptying, dissolution, absorption and elimination rates.Eur J Pharm Sci 2007; 30(2):155–166.

105. Blume HH, Schug BS. The biopharmaceuticsclassification system (BCS): class III drugs– bettercandidates for BA/BE waiver? Eur J Pharm Sci 1999;9(2):117–121 (review).

106. Yu LX, Amidon GL, Polli JE, et al. Biopharmaceuticsclassification system: the scientific basis for biowaiverextensions. Pharm Res 2002; 19(7):921–925.

107. Chen CL, Yu LX, Lee HL, et al. Biowaiver extensionpotential to BCS class III high solubility–low permeabilitydrugs: bridging evidence for metformin immediate-release

table. Eur J Pharm Sci 2004; 22(4):297–304.

108. Vogelpoel H, Welink J, Amidon GL, et al. Biowaivermonographs for immediate release solid oral dosage formsbased on biopharmaceutics classification system (BCS)literature data: verapamil hydrochloride, propranololhydrochloride, and atenolol. J Pharm Sci 2004; 93(8):1945–1956.

109. Jantratid E, Prakongpan S, Dressman JB, et al.Biowaiver monographs for immediate release solid oraldosage forms: cimetidine. J Pharm Sci 2006; 95(5):974–984.110. Korteja¨rvi H, Yliperttula M, Dressman JB, et al.Biowaiver monographs for immediate release solid oraldosage forms: ranitidine hydrochloride. J Pharm Sci 2005;94(8):1617–1625. 111. Koch KM, Parr AF, Tomlinson JJ, etal. Effect of sodium acid pyrophosphate on ranitidinebioavailability and gastrointestinal transit time. PharmRes 1993; 10(7):1027–1030. 112. Adkin DA, Davis SS, SparrowRA, et al. The effect of mannitol on the oralbioavailability of cimetidine. J Pharm Sci 1995;84(12):1405–1409. 113. Custodio JM, Wu C-Y, Benet LZ.Predicting drug disposition, absorption/elimination/transporter interplay and the role of food on drugabsorption. Adv Drug Del Reviews 2008; 60:717–733.

3 Chapter 3- Cutaneous and TransdermalDelivery—Processes and Systems ofDelivery

27. Marty JP, Guy RH, Maibach HI. Percutaneous penetrationas a method of delivery to muscle

and other tissues. In: Bronaugh RL, Maibach HI, eds.Percutaneous Absorption. 2nd ed. New

York: Marcel Dekker, 1989:511–529.

28. Behl CR, Bellantone NH, Flynn GL. Influence of age onpercutaneous absorption of drug

substances. In: Bronaugh RL, Maibach HI, eds. PercutaneousAbsorption. New York: Marcel

Dekker, 1985:183–212.

29. Fisher LB. In vitro studies on the permeability ofhuman skin. In: Bronaugh RL, Maibach HI,

eds. Percutaneous Absorption. New York: Marcel Dekker,1985:213–222.

30. Weingand DA, Haygood C, Gaylor JR, et al. Racialvariations in the cutaneous barrier. In: Drill

VA, Lazar P, eds. Current Concepts in Cutaneous Toxicity.New York: Academic Press,

1980:221–235.

31. Weigand DA, Haygood C, Gaylor JR. Cell layers anddensity of Negro and Caucasian stratum

corneum. J Invest Dermatol 1974; 62(6):563–568.

32. Durrheim H, Flynn GL, Higuchi WI, et al. Permeation ofhairless mouse skin I: experimental

methods and comparison with human epidermal permeation byalkanols. J Pharm Sci 1980;

69:781–786.

33. Flynn GL, Linn EE, Kurihara-Bergstrom T, et al.Parameters of skin condition and function. In:

Kydonieus AF, Berner B, eds. Transdermal Delivery of Drugs.Vol 2. Boca Raton, FL: CRC

Press, 1987:3–17.

34. Mathias CGT. Clinical and experimental aspects ofcutaneous irritation. In: Marzulli FN, Maibach

HI, eds. Dermatotoxicology. 3rd ed. New York: HemispherePublishing, 1987:173–189.

35. Roberts MS, Anderson RA, Swarbrick J, et al. Thepercutaneous absorption of phenolic

compounds: the mechanism of diffusion across the stratumcorneum. J Pharm Pharmacol 1978;

30(8):486–490.

36. Baden HP, Goldsmith LA, Bonar L. Conformational changesin the fibrous protein of

epidermis. J Invest Dermatol 1973; 60(4):215–218.

37. Keipert JA. The absorption of topical corticosteroids,with particular reference to percutaneous

absorption in infancy and childhood. Med J Aust 1971;1(19):1021–1025.

38. Flynn GL. Mechanisms of percutaneous absorption fromphysicochemical evidence. In:

Bronaugh RL, Maibach HI, eds. Percutaneous Absorption:Mechanisms–Methodology–Drug

Delivery. 2nd ed. New York: Marcel Dekker, 1989:27–51.

39. Flynn GL, Yalkowsky SH, Roseman TJ. Mass transportphenomena and models: theoretical

concepts. J Pharm Sci 1974; 63(4):479–510.

40. Scheuplein RJ, Bronaugh RL. Percutaneous absorption.In: Goldsmilh LA, ed. Biochemistry

and Physiology of the Skin. Vol 2. New York: OxfordUniversity Press, 1983:1255–1295.

41. Toll R, Jacobi U, Richter H, et al. Penetration profile

of microspheres in follicular targeting of

terminal follicles. J Invest Dermatol 2004; 123(1):168–176.

42. Valiveti S, Lu GW. Diffusion properties of modelcompounds in artificial sebum. Int J Pharm

2007; 345(1/2):88–94.

43. Valiveti S, Wesley J, Lu GW. Investigation of drugpartition property in artificial sebum. Int J

Pharm 2008; 346(1/2):10–16.

44. Higuchi T, Davis SS. Thermodynamic analysis ofstructure–activity relationships of drugs.

Prediction of optimal structure. J Pharm Sci 1970;59(10):1376–1383.

45. Davis SS, Higuchi T, Rytting JH. Determination ofthermodynamics of functional groups in

solutions of drug molecules. Adv Pharm Sci 1974; 4:73–261.

46. Pozzo DA, Pastori N. Percutaneous absorption ofparabens from cosmetic formulations. Int J

Cosmet Sci 1996; 18:57–66.

47. Scheuplein RJ, Blank IH, Brauner GJ, et al.Percutaneous absorption of steroids. J Invest

Dermatol 1969; 52(1):63–70.

48. Flynn GL. Physicochemical determinants of skinabsorption. In: Gerrity TR, Henry CJ, eds.

Principles of Route-to-Route Extrapolation for RiskAssessment. New York: Elsevier, 1990:93–128.

49. Potts RO, Guy RH. Predicting skin permeability. PharmRes 1992; 9(5):663–669.

50. Erdi NZ, Cruz MM, Battista OA. Rheologicalcharacteristics of polymeric microcrystal-gels.

J Colloid Interface Sci 1968; 28(1):36–47. 51. Thau P, FoxC. A new procedure for the preparation ofpolyethylene–mineral oil gels. J Soc Cosmet Chem 1965;

16(6):359–363. 52. Foster S, Wurster DE, Higuchi T, et al.A pharmaceutical study of Jelene ointment base. J Am PharmAssoc 1951; 40(3):123–125. 53. Barry BW. Control ofoil-in-water emulsion consistency using mixed emulsifiers.J Pharm Pharmacol 1969; 21(8):533–540. 54. Arnott S, FulmerA, Scott WE, et al. Agarose double helix and its functionin agarose gel structure. J Mol Biol 1974; 90(2):269–284.55. Physician’s Desk Reference. 28th ed. Oradell, NJ:Medical Economics, 1974:1460. 56. Flynn GL, Roseman TJ.Membrane diffusion. II. Influence of physical adsorption onmolecular flux through heterogeneous dimethylpolysiloxanebarriers. J Pharm Sci 1971; 60(12):1788–1796. 57. Flynn GL.Structural approach to partitioning: estimation of steroidpartition coefficients based upon molecular constitution. JPharm Sci 1971; 60(3):345–353. 58. Hagen TA.Physicochemical Study of Hydrocortisone and Hydrocortisonen-Alkyl-21 Esters (thesis). University of Michigan, 1979.59. Smith WM. An Inquiry into the Mechanism of PercutaneousAbsorption of Hydrocortisone and Its n-Alkyl Esters(thesis). University of Michigan, 1982. 60. Schlagel CA.Penetration and action of glucocorticoids. Adv Biol Skin1972; 12:339–356. 61. Mckenzie AW, Atkinson RM. Topicalactivities of betamethasone esters in man. Arch Dermatol1964; 89:741–746. 62. Saracen G, Elena Spaccamela M.Influence of the C-atom chain on the solubility of ahomologous series in water. Ann Chim (Rome, Italy) 1958;48:1357–1370. 63. Yalkowsky SH, Flynn GL, Slunick TG.Importance of chain length on physicochemical andcrystalline properties of organic homologs. J Pharm Sci1972; 61(6):852–857. 64. Flynn GL, Yalkowsky SH.Correlation and prediction of mass transport acrossmembranes. I. Influence of alkyl chain length onflux-determining properties of barrier and diffusant. JPharm Sci 1972; 61(6):838–852. 65. Wurster DE. Some factorsrelated to the formulation of preparations for percutaneousabsorption. Am Perfum Cosmet 1965; 80(1):21–29. 66. HiguchiT. Physical chemical analysis of percutaneous absorptionprocess from creams and ointments. J Soc Cosmet Chem 1960;11:85–97. 67. Burdick KH, Poulsen B, Place VA.Extemporaneous formulation of corticosteroids for topicalusage. JAMA 1970; 211(3):462–466. 68. Schaefer H,Redelmeier TE. Skin Barrier—Principles of PercutaneousAbsorption. Basel, Switzerland: Karger, 1996:213–223. 69.McKenzie AW, Stoughton RB. Method for comparingpercutaneous absorption of steroids. Arch Dermatol 1962;86:608–610. 70. Vickers CFH. Stratum corneum reservoir fordrugs. Adv Biol Skin 1972; 12:177–189. 71. Stoughton RB.Dimethylsulfoxide (DMSO) induction of a steroid reservoirin human skin. Arch Dermatol 1965; 91(6):657–660. 72.Scheuplein RJ, Ross L. Effects of surfactants and solvents

on the permeability of epidermis. J Soc Cosmet Chem 1970;21(13):853–873. 73. Elfbaum SG, Laden K. Effect of dimethylsulfoxide on percutaneous absorption. Mechanistic study.II. J Soc Cosmet Chem 1968; 9(3):163–172. 74. Goodman M,Barry BW. Action of penetration enhancers as assessed bydifferential scanning calorimetry. In: Bronaugh RL, MaibachHI, eds. Percutaneous Absorption. 2nd ed. New York: MarcelDekker, 1989:567–593. 75. Abraham W, Downing DT. Factorsaffecting the formation, morphology and permeability ofstratum corneum lipid bilayers in vitro. In: Scott RC, GuyRH, Hadgraft J, eds. Prediction of PercutaneousPenetration. London: IBC Technical Services, 1990:110–122.76. Anderson BD, Higuchi WI, Raykar PV. Heterogeneityeffects on permeability–partition coefficient relationshipsin human stratum corneum. Pharm Res 1988; 5(9):566–573.

77. Higuchi WI, Shannon WM, Fox JL, et al. Topical deliveryof antiviral agents: in vivo/in vitro

correlations. In: Anderson JM, Kim SW, eds. Recent Advancesin Drug Delivery Systems. New

York: Plenum Press, 1984:1–7.

78. Hou SYE, Flynn GL. Azone enhanced permeation of skin.Mediation of penetration of benzoic

acid as a function of pH. Pharm Res 1986; 3(suppl):52S.

79. Flynn GL, Weiner ND. Topical and transdermaldelivery—provinces of realism. In: Gurny R,

ed. Dermal and Transdermal Drug Delivery. Stuttgart: APV,1993:33–65.

80. Coldman MF, Poulsen BJ, Higuchi T. Enhancement ofprecutaneous absorption by the use of

volatile–nonvolatile systems as vehicles. J Pharm Sci 1969;58(9):1098–1102.

81. Poulsen BJ, Young E, Coquilla V, et al. Effect oftopical vehicle composition on the in vitro

release of fluocinolone acetonide and its acetate ester. JPharm Sci 1968; 57(6):928–933.

82. Shah VP, Ludden TM, Dighe SV, et al. Bioavailabilityand bioequivalence of transdermal drug

delivery systems. Regulatory considerations. In: Shah VP,Maibach HI, eds. Topical Drug

Bioavailability, Bioequivalence, and Penetration. New York:Plenum Press, 1993:415–424.

83. Kallings LO, Ringertz O, Silverstolpe L.Microbiological contamination of medical preparations.

Acta Pharm Suec 1966; 3(3):219–228.

84. Fisher AA, Pascher F, Kanof NB. Allergic contactdermatitis due to ingredients of vehicles. A

“vehicle tray” for patch testing. Arch Dermatol 1971;104(3):286–290.

85. Mazer N, Fisher D, Fischer J, et al. Transfer oftransdermal applied testosterone to clothing: a

comparison of a testosterone patch versus a testosteronegel. J Sex Med 2005; 2(2):227–234.

86. Wester RC, Hui X, Maibach HI. In vivo human transfer oftopical bioactive drug between

individuals: estradiol. J Invest Dermatol 2006;126(10):2190–2193.

4 Chapter 4- Design and Evaluation ofOphthalmic Pharmaceutical Products

43. Kaila T, Huupponen R, Salminen L. J Ocul Pharmacol1986; 2:365.

44. Zimmerman TJ, Kooner KS, Kandarakis AS, et al. ArchOphthalmol 1984; 102:551.

45. Linden C, Alm A. Acta Ophthalmol 1990; 68:633.

46. Lee Y-H, Kompella UB, Lee VHL. Exp Eye Res 1993; 57:341.

47. Hitoshe S, Bungaard H, Lee VHL. Invest Ophthalmol VisSci 1989; 30(suppl):25.

48. Ashton P, Podder SK, Lee VHL. Pharm Res 1991; 8:1166.

49. Havener WH. Ocular Pharmacology. 2nd ed. St. Louis, MO:Mosby CV, 1970.

50. Smith B. Handbook of Ocular Pharmacology. Acton, MA:Publication Sciences Group, 1974.

51. Ellis P, Smith DL. Ocular Therapeutics andPharmacology. 3rd ed. St. Louis, MO: Mosby CV, 1969.

52. Grayston JT, Wang SP, Woolridge RL, et al. JAMA 1962;172:602.

53. Bartlett JD, Jaanus SD. Clinical Ocular Pharmacology.Boston, MA: Butterworth-Heinemann, 1995:275.

54. Byers JL, Holland MG, Allen JH. Am J Ophthalmol 1960;49:267.

55. Gingrich WD. JAMA 1962; 179:602.

56. Mishima S, Maurice DM. Invest Ophthalmol 1962; 1:794.

57. Maurice DM. Invest Ophthalmol 1967; 6:464.

58. Kimura SJ. Am J Ophthalmol 1951; 34:446.

59. Wessing A. Fluorescein Angiography of the Retina(trans. by von Noorden GK). St. Louis, MO: Mosby CV, 1969.

60. Koller K. Arch Ophthalmol 1884; 13:404.

61. Council on Drugs, New drugs and developments in

therapeutics, JAMA 1963; 183:178.

62. Lemp MA, Dohlman CH, Holly FJ. Ann Ophthalmol 1970;2:258

63. Lemp MA. Szymanski ES. Arch Ophthalmol 1975; 93:134.

64. Lemp MA. Scientific Exhibit. Dallas: American Academyof Ophthalmology and Otolaryngology, September 1975.

65. The United States Pharmacopeia 31 (USP)/The NationalFormulary 26. Section h71i Sterility Tests. Rockville, MD:U.S. Pharmacopeial Convention, 2008.

66. British Pharmacopoeia 2000. Department of Health.London: The Stationery Office, 2000.

67. The United States Pharmacopeia 31 (USP)/The NationalFormulary 26. h1211i Sterilization and Sterility Assuranceof Compendial Aritcles. Rockville, MD: U.S. Pharmacopeia,2008.

68. The Japanese Pharmacopoeia. English Version JP XIV, 5 –15, 87, 1304–1305, April 2001.

69. The European Pharmacopoeia. 6th ed., 2008; 6.2, 07Dosage Forms.

70. Marzulli FN, Simon ME. Am J Optom 1971; 48:61.

71. Hackett RB, McDonald TO. Eye Irritation. In: MarzulliFN, Maibach HL, eds. Dermatoxicology. 5th ed. WashingtonD.C.: Hemisphere Publishing, 1996:299–305, 557–566.

72. Basu PK, Toxicol J. Cutan Ocul Toxicol 1984; 2:205–227.

73. Seifried HE. J Toxicol Cutan Ocul Toxicol 1986;5:89–114.

74. Friedenwald JS, Hughes WF Jr., Hermann H. ArchOphthalmol 1944; 31:379.

75. Carpenter C, Symth H. Am J Ophthalmol 1946; 29:1363.

76. Hazelton LW. Proc Sci Sect Toilet Goods Assoc 1973;17:490.

77. Carter LM, Duncan G, Rennie GK. Exp Eye Res 1952; 17:5.

78. Kay JH, Calandra JC. J Soc Cosmet Chem 1962; 13:281.

79. Russell KL, Hoch SG. Pro Sci Sect Toilet Goods Assoc1962; 37:27.

80. Gaunt I, Harper KH. J Soc Cosmet Shem 1964; 15:290.

81. Battista SP, McSweeney ES. J Soc Cosmet Chem 1965;16:119.

82. Becklet JH. Am Perum Cosmet 1965; 80:51.

83. Bonfield CT, Scala RA. Proc Sci Sect Toilet Goods Assoc1965; 43:34.

84. Buehler EV, Newmann EA. Toxicol Appl Pharmacol 1964;6:701.

85. Dohlman CH, Invest Ophthalmol 1971; 10:376.

86. Hogan MJ, Zimmerman LE. Ophthalmic Pathology: An Atlasand Textbook. 2nd ed. Philadelphia: W.B. Saunders, 1962.

87. Phister RR. Invest Ophthalmol 1973; 12:654.

88. Maurice DM. In: Davson H, ed. The Eye. Vol 1. New York:Academic Press, 1969:489–600. Products 89. Prince JH,Diesen CD, Eglitis I, et al. Anatomy and Histology of theEye and Orbit in Domestic Animals. Springfield, IL: CharlesC Thomas, 1960. 90. Davson H. In: Davson H, ed. The Eye.Vol 1. New York: Academic Press, 1969:217–218. 91. Fine BS,Yanoff M. Ocular Histology: A Text and Atlas. New York:Harper & Row, 1972. 92. Green WR, Sullivan JB, Hehir RM, etal. A Systemic Comparison of Chemically Induced Eye Injuryin the Albino Rabbit and Rhesus Monkey. New York: Soap andDetergent Association, 1978:405–415. 93. Committee for theRevision of NAS Publication 1138, National ResearchCouncil, Principles and Procedures for Evaluating theToxicity of Household Substances. Washington, D.C.:National Academy of Sciences, 1977:41–56. 94. InteragencyRegulatory Liaison Group, Testing Standards and GuidelinesWork Group, Recommended Guidelines for Acute Eye IrritationTesting, 1981. 95. Ophthalmic optics—Contact lenses andcontact lens care products—Determination ofbiocompatibility by ocular study with rabbit eyes. ISO9394:1998(E), 1998. 96. Draize JH. Food Drug Cosmet Law J1955; 10:722. 97. Draize JH, Kelley EA. Proc Sci SectToilet Goods Assoc 1959; 17:1. 98. Draize JH. J PharmacolExp Ther 1944; 82:377. 99. Food Drug Cosmet Law Rep.233:8311; 440:8313; 476:8310. 100. Bruner LH, Parker RD,Bruce RD. Fund Appl Toxicol 1992; 19:330–335. 101. York M,

Steiling W. J Appl Toxicol 1998; 18:233. 102. NussenblattRB, Bron A, Chambers W. et al. J Toxicol Cut Ocul Toxicol1998; 17:103. 103. Balls M, Botham PA, Bruner LH, et al.Toxic in Vitro 1995; 9:871. 104. ICCVAM Test MethodEvaluation Report: In Vitro Ocular Toxicity Test Methodsfor Identifying Severe Irritants and Corrosives. NationalInstitute of Environmental Health Sciences. NationalInstitutes of Health Publication 07–4517, 2007. 105.Guidance on Nonclinical Safety Studies for the Conduct ofHuman Clinical trials for Pharmaceuticals. FDA Docket No97D-0147. Fed Regist 1997; 62(227):62922. 106. Timing ofNon-Clinical Safety Studies for the Conduct of HumanClinical trials for Pharmaceuticals. Fourth InternationalConference on Harmonization. Brussels; InternationalConference on Harmonization, 1997. 107. Hackett RB. LensEye Toxic Res 1990; 7:181. 108. Hayes AW. Principles andMethods of Toxicology. 3rd ed. New York: Raven Press, 1994.109. Guidance for Industry: Premarket Notification (510(k))Guidance Document for Contact Lens Care Products.Rockville, MD: Center for Devices and Radiologic Health,FDA, 1997 110. Biological evaluation of medical devices –Part 5: Tests for cytotoxicity: in vitro methods. ISO10993–5:1992(E). International Standards Organization,1992. 111. Shell JW, Baker RW. Ann Ophthalmol 1975; 7:1637.112. Grant WM. Toxicology of the Eye. Springfield, IL:Charles C Thomas, 1974:259. 113. Edelhauser HF, Van HornDL, Scholtz RW, et al. Am J Ophthalmol 1976; 81:473. 114.Herrell SE, Heilman D. Am J Med Sci 1943; 206:221. 115.Baldwin HA, McDonald TO, Beasley CH. J Soc Cosmet Chem1973; 25:181. 116. Shopsis C, Borenfreund E, Walberg J, etal. In: Goldberg AM, ed. Alternative Methods in Toxicology.Vol 2. New York: Mary Ann Liebert, 1984:103–114. 117.Borenfreund E, Borrero O. Cell Biol Toxicol 1984; 1:55–65.118. Shopsis C, Sathe S. Toxicology 1984; 29:195–206. 119.Neville R, Dennis P, Sens D, et al. Curr Eye Res 1986;5:367. 120. Stern ME, Edelhauser HF, Hiddemen JW. Methodsof Evaluation of Corneal Epithelial and EndothelialToxicity of Soft Contact Lens Preservatives. Presented atContact Lens International Congress; Las Vegas, Nevada;March 1985. 121. Edelhauser HF, Antione ME, Pederson HJ, etal. J Toxicol Cutan Ocul Toxicol 1983; 2(1):7. 122. KrebsSJ, Stern ME, Hiddemen JW, et al. CLAO J 1984; 10(1):35.123. Stark DM, Shopsis C, Borenfreund E, et al. AlternativeMethods of Toxicology. Vol 1. Product Safety Evaluation.New York: Mary Ann Liebert, 1983:127–204.

124. Frazier JM. Dermatotoxicology. 4th ed. In: MarzulliFN, Maibach HL, eds. Washington, DC: Hemisphere Publishing,1991:817.

125. Burstein NL. Invest Ophthalmol Vis Sci 1984;25:1453–1457.

126. Maurice D, Singh T. A permeability test for acutecorneal toxicity. Toxicol Lett 1986; 31: 125–130.

127. Burstein NL. Invest Ophthalmol Vis Sci 1980; 7:308–313.

128. Pfister RR, Burstein N. Invest Ophthalmol Vis Sci1976; 15:246–249.

129. Tonjum AM. Acta Ophthalmol 1975; 53:358–366.

130. Ichijima H, Petroll WM, Jester JV, et al. Cornea 1992;11:221–225.

131. Imperia PS, Lazarus HM, Botti RE Jr., et al. J ToxicolCutan Ocul Toxicol 1986; 5:309–317.

132. Collins HB, Grabsch BE. Am J Optom Physiol Opt 1982;59:215–222.

133. Ubels J. J Toxicol Cutan Ocul Toxicol 1982; 1:133–145.

134. Tripathi BJ, Tripathi RC. Lens Eye Toxicol Res 1987;6:395–403.

135. Federal Register. 1953; 18:351.

136. Furrer P, Mayer JM. Eur J Pharm Biopharm 2002;53:263–280.

137. Yee RW. Curr Opin Ophthalmol 2007; 18:134–139.

138. Lewis RA. J Glaucoma 2007; 16:98–103.

139. Diestelhorst M, Grunthal S, Suverkrup R. Graefes ArchClin Exp Ophthalmol 1999; 237:394.

140. Levrat F, Pisella PJ, Baudouin C. J Fr Ophtalmol 1999;22:186.

141. Becquet F, Goldschild M, Moldovan MS, et al. Curr EyeRes 1998; 17:419.

142. Weiner ML, Kotkoskie LA. eds. Excipient Toxicity andSafety. New York: Marcel Dekker, 2000.

143. Green K, Chapman JM. J Toxicol Cutan Ocul Toxicol1986; 5:133.

144. Green K, Chapman J, Cheeks L, et al. Conc Toxicol1987; 4:126.

145. Thode C, Kilp H. Fortschr Ophthalmol 1982; 79:125.

146. Gassett AR, Ishii Y, Kaufman HE, et al. Am JOphthalmol 1975; 78:98.

147. Sasaki H, Nagano T, Yamamura K, et al. J PharmPharmacol 1995; 47:703.

148. Sasaki H, Tei C, Yamamura K, et al. J Pharm Pharmacol1994; 46:871–875.

149. Richards RME. Aust J Pharm Sci 1967; 55:S86, S96.

150. Mullen W, Shephard W, Labovitz J. Surv Ophthalmol1973; 17:469.

151. J Am Coll Toxicol 1989; 8:589–625.

152. Baudouin C, Pisella PJ, Fillacier K, et al. Ophthalmol1999; 106:556.

153. De-Saint-Jean M, Brignole F, Bringuier AF, et al.Invest Ophthalmol Vis Sci 1999; 40:619.

154. Debbasch C, De-Saint-Jean M, Pisella PJ, et al. JToxicol Cutaneous Ocul Toxicol 2000; 19:79.

155. Miller MJ. In:Ascenzi JM, ed. Handbook ofDisinfectants and Antiseptics. New York: Marcel Dekker,1996:83–110.

156. Binder PS, Rasmussen D, Gordon M. Arch Ophthalmol1981; 99:87.

157. Tosti A, Tosti G. Contact Dermatitis 1988; 18:268–273.

158. Shaw E. Contact Intraocul Lens Med J 1980; 6:273.

159. Molinari J, Nash R, Badham D. Int Contact Lens Clin1982; 9:323.

160. Gual EL. J Invest Dermatol 1958; 31:91.

161. Ellis FA, Robinson HM. Arch Fermatol Syphilol 1941;46:425.

162. Reisman RE. Allergy J 1969; 43:245.

163. Mackeen D. Contact Lens J 1978; 7:14.

164. Meyer RC, Cohn LB. J Pharm Sci 1978; 67:1636.

165. Baily WR. Contact Lens Soc Am J 1972; 6:33.

166. Grant WM, Toxicology of the Eye. 4th Ed. Springfield,IL: Charles C Thomas, 1993:365.

167. Salonen EM, Vaheri A, Tervo T, et al. J Toxicol CutanOcul Toxicol 1991; 10:157–166.

168. Doughty MJ. Optom Vis Sci 1994; 71:562.

169. Tripathi BJ, Tripathi RC, Susmitha PK. Lens EyeToxicol Res 1992; 9:361–375.

170. Rudnick DE, Edelhauser HF, Hendrix CL, et al. ARVO,1997.

171. Chang JH, Ren H, Petroll WM, et al. Curr Eye Res 1999;19:171. Products 172. Chowhan MA, Helton DO, Harris RG, etal. To Alcon Laboratories, Inc. U.S. patent 5,037,647. 173.Burstein NL. Invest Ophthalmol 1975; 53:358. 174. TonjumAM. Acta Ophthalmol Vis Sci 1980; 19:308. 175. Dormans JA,Van Logten JJ. Toxicol Appl Pharmacol 1982; 62:251. 176.Gassett AR, Ishii Y. Can J Ophthalmol 1975; 10:98. 177.Green K, Livingston V, Bowman K, et al. Arch Ophthalmol1980; 19:1273. 178. Begley CG, Waggoner PJ, Hafner GS, etal. Opt Vis Sci 1991; 68:189–197. 179. Green K, Johnson RE,Chapman JM, et al. Lens Eye Toxicol Res 1989; 6:37–41. 180.Bron AJ, Daubas P, Siou-Mermet R, et al. Eye 1998; 12:839.181. Noecker R. Effects of common ophthalmic preservativeson ocular health. Adv Ther 2001; 18:205–215. 182. NoeckerRJ. Corneal and conjunctival changes caused by commonlyused glaucoma medications. Cornea 2004; 23:490–496. 183.Rozen S. IOVS 1998; 39:2486–B2343. 184. Katz LJ. J Glaucoma2002; 11:119–126. 185. Kahook MY. Comparison of corneal andconjunctival changes after dosing of travoprost preservedwith sofZia, latanoprost with 0.02% benzalkonium chloride,and preservative-free artificial tears. Cornea 2008;27:339–343. 186. Kahook MY. Expert Rev Ophthalmol 2007;2:363–368. 187. Gross RL. J Glaucoma 2008; 17:217–22. 188.Neuwelt EA, ed. Implications of the Blood-Brain Barrier andIts Manipulation. Vol 1. Basic Science Aspects. New York:Plenum Medical Book Company, 1989. 189. Segal MB, ed.Barriers and Fluids of the Eye and Brain. Cleveland, OH:CRC Press, 1992. 190. Kaufman HE, Barron BA, McDonald MB,

et al., eds. The Cornea. New York: Churchill Livingstone,1988. 191. Mitra AK, ed., Ocular Drug Delivery Systems. NewYork: Marcel Dekker, 1993. 192. Fine BS, Yanoff M. OcularHistology. New York: Harper and Row, 1979. 193. RobinsonJR, ed., Ophthalmic Drug Delivery Systems, Academy ofPharmaceutical Sciences. Washington, D.C.: AmericanPharmaceutical Association, 1980. 194. Conroy CW, Maren TH.J Ocul Pharm Ther 1999; 15:179. 195. Conroy CW, Maren TH. JOcul Pharm Ther 1998; 14:565. 196. Olsen TW, Edelhauser HF,Lim JI, et al. Invest Ophthalmol Vis Sci 1995; 36:1893.197. Olsen TW, Aaberg SY, Geroski DH, et al. Am JOphthalmol 1998; 125:237. 198. Geroski DH, Edelhauser HF.Invest Ophthalmol Vis Sci, 2000; 41:961. 199. Rudnick DE,Noonan JS, Geroski DH, et al. Invest Ophthal Vis Sci 1999;40:3054. 200. Weiss DI, Schaffer RD. Arch Ophthalmol 1962;68:727. 201. Fraunfelder FT, Meyer SM. Drug-Induced OcularSide Effects and Drug Interactions. Philadelphia: Les &Febiger, 1989:442–487. 202. Polak BCP. Drugs used in oculartreatment. In: Dukes MNG, ed. Meyler’s Side Effects ofDrugs. New York: Elsevier, 1988:988–998. 203. Patton TF.In: Robison JR, ed. Ophthalmic Drug Delivery Systems.Washington, D.C.: Academy of Pharmaceutical Sciences,American Pharmaceutical Association, 1980:23–54. 204.Rozier A, Mazuel C, Grove J, et al. Int J Pharm 1989;57:163. 205. Zimmerman TJ, Sharir M, Nardin GF et al. Am JOphthalmol 1992; 114:1. 206. Stevens LE, Missel PJ, LangJC. Anal Chem 1992; 64:715. 207. Perry RH, Chilton CH.Chemical Engineer’s Handbook. 5th ed. New York:McGraw-Hill, 1973:Sec. 4. 208. Smith JM. ChemicalEngineering Kinetics. 3rd ed. New York: McGraw-Hill, 1981.209. Hill CG. An Introduction to Chemical EngineeringKinetics and Reactor Design. New York: John Wiley & Sons,1977. 210. Narawane N. Oxidative and Hormonal Control ofHorseradish Peroxidase Transytosis Across the PigmentedRabbit Conjunctiva [master’s thesis]. University ofSouthern California, 1993. 211. Veng-Pedersen P, GillespieWR. J Pharm Sci 1988; 77:39.

212. Gillespie WR, Veng-Pedersen P, Antal EJ, et al. JPharm Sci 1988; 77:48.

213. Maurice DM, Riley MV. The cornea. In: Graymore CN, ed.Biochemistry of the Eye. New York: Academic Press, 1970.

214. Berman ER. Biochemistry of the Eye. New York: PlenumPress, 1991.

215. Edwards A, Prausnitz MR. AICHE J 1998; 44:214.

216. Edwards A, Prausnitz MR. Pharm Res 2001; 18:1497–1508.

217. Alberts B, Bray D, Lewis J, et al. Molecular Biologyof the Cell. New York: Garland Publishing, Inc., 1983.

218. Stryer L. Biochemistry. New York: WH. Freeman andCompany, 1981.

219. Lodish H, Baltimore D, Berk A, et al., Molecular CellBiology. New York: W. H. Freeman and Company, 1995.

220. Mullins JD, Hecht G. Ophthalmic preparations. In:Genaro AR, ed. Remington’s Pharmaceutical Sciences. Vol 18.Easton, PA: Mack Publishing, 1990:1581–1595.

221. Moses RA. Adler’s Physiology of the Eye. 5th ed. St.Louis, MO: Mosby CV, 1970:49.

222. Durward A. The skin and the sensory organs. In:Romanes GJ, ed. Cunningham’s Testbook of Anatomy. London:Oxford University Press, 1964:796.

223. Candia OA. Invest Ophthalmol Vis Sci 1992; 33:2575.

224. Huang AJ, Tseng SC, Kenyon KR. Invest Ophthalmol VisSci 1989; 30:684.

225. Flynn GL, Yalkowsky SH, Roseman TJ. J Pharm Sci 1974;63:479.

226. Cooper ER, Kasting G. J Control Release 1987; 6:23.

227. Hecht G, Roehrs RE, Cooper ER, et al. Design andevaluation of ophthalmic pharmaceutical products. In:Banker GS, Rhodes CT, eds. Modern Pharmaceutics. 2nd ed.New York: Marcel Dekker, 1990.

228. Cooper ER. Optimization of Transport and BiologicalResponse with Epithelial Barriers in Biological andSynthetic Membranes. New York: Alan Liss R, 1989:249–260.

229. Baker RW, Lonsdale HK. Controlled release: mechanismsand rates. In: TanquaryAC, RE Lacy, eds. Controlled Releaseof Biologically Active Agents. New York: Plenum Press,1974:15–71.

230. Hayakawa E, Chien D-S, Ingagaki K, et al. Pharm Res1992; 9:769.

231. Edelhauser HF, Hoffert JR, Fromm PO. Invest Ophthalmol1965; 4:290.

232. Wang W, Sasaki H, Chien DS, Lee VH. Curr Eye Res 1991;10:57.

233. Liaw J, Robinson JR. Ocular penetration enchancers.In: Mitra AK, ed. Ophthalmic Drug Delivery Systems. NewYork: Marcel Dekker, 1993:369–381.

234. Rojanaskul Y, Liaw J, Robinson JR. Int J Pharm 1990;66:133.

235. Hosoya K-I, Horibe Y, Kim K-J, et al. J Pharm ExpTherap 1998; 285:223.

236. Hosoya KI, Horibe Y, Kim K-J, et al. Invest OphthamolVis Sci 1998; 39:372.

237. Saha P, Yang JJ, Lee VHL. Invest Ophthamol Vis Sci1998; 39:1221.

238. Basu SK, Haworth IS, Bolger MB, et al. InvestOphthamol Vis Sci 1998; 39:2365.

239. Ueda H, Horibe Y, Kim K-J, et al. Invest Ophthamol VisSci 2000; 41:870.

240. Smith TJ, Pearson PA, Blandford DL, et al. ArchOphthalmol 1992; 110:255.

241. Sanborn GE, Anand R, Torti RE. Arch Ophthalmol 1992;110:188–195.

242. Driot JY, Novack GD, Rittenhouse KD, et al. J OculPharmacol Ther 2004; 20:269–275.

243. Dugel PU, Cantrill HL, Eliott D, et al. InvestOphthalmol Vis Sci 2007; 48:ARVO E-Abstract 1413.

244. Bush RA, Weng Tao BL, Raz D, et al. Invest OphthalmolVis Sci 2004; 45:2420–2430.

245. Kuppermann BD, Blumenkranz MS, Haller JA, et al.Invest Ophthalmol Vis Sci 2003; 44:EAbstract 4289.

246. Sebag J. The Vitreous. In: Hart WM Jr., ed. Adler’sPhysiology of the Eye: Clinical Applications. St. Louis:Mosby Year Book, 1992:305–308.

247. Missel PJ. Pharm Res 2002; 19:1636–1647.

248. Stay MS, Xu J, Randolph TW, et al. Pharm Res 2003;20:96–102.

249. Gaudreault J, Fei D, Rusit J, et al. Invest OphthalmolVis Sci 2005; 46:726.

250. Araie M, Maurice DM. Exp Eye Res 1991; 52:27–39.

251. Graham RO, Peyman GA. Arch Ophthalmol 1974; 92:149.Products 252. Friedrich S, Cheng Y–L, Saville B. Curr EyeRes 1997; 16:663. 253. Wingard LB, Zuravleff JJ, Doft BH,et al. Invest Ophthalmol Vis Sci 1989; 30:2184–9. 254.Friedrich S, Saville B, Cheng Y-L. J Ocul Pharmacol Ther1997; 13:445. 255. Ben-Nun J, Joyce DA, Cooper RL, et al.Invest Ophthalmol Vis Sci 1989; 30:1055. 256. Barza M,Lynch E, Baum JL. Arch Ophthalmol 1993; 111:121. 257.Mannermaa E, Vellonen K-S, Urtti A. Adv Drug Deliv Rev2006; 58:1136. 258. Mochizuki M. Jpn Ophthalmol J 1980;24:363. 259. Yoshida A, Ishiko S, Kojima M. Graefe’s ArchClin Exp Ophthalmol 1992; 230:78. 260. Barza M, Kane A,Baum J. Invest Ophthalmol Vis Sci 1983; 24:1602. 261.Ohtori A, Tojo K. Biol Pharm Bull 1994; 17:283. 262. TojoKJ, Ohtori A. Math Biosci 1994; 123:59. 263. Pinsky PM,Maurice DM, Datye DV. Invest Ophthalmol Vis Sci 1996;37(Suppl):S700. 264. Friedrich S, Cheng YL, Saville B. AnnBiomed Eng 1997; 25:303. 265. Friedrich S. Thesis,University of Toronto, Department of Chemical Engineeringand Applied Chemistry, 1996. 266. Missel PJ. Annals BiomedEng 2000; 28:1311–1321. 267. Missel PJ. Annals Biomed Eng2002; 30:1128–1139. 268. Park J, Bungay PM, Lutz RJ, et al.J Control Release 2005; 105:279–295. 269. Kim H, RobinsonMR, Lizak MJ, et al. Invest Ophthalmol Vis Sci 2004;45:2722–2731. 270. Gudauskas G, Kumi C, Dedhar C, et al.Can J Ophthalmol 1985; 20:110. 271. Rootman J, Ostry A.Gudauskas G. Can J Ophthalmol 1984; 19:187. 272. Conrad JM,Robinson JR. J Pharm Sci 1980; 69:875. 273. Maurice DM,Polgar J. Exp Eye Res 1977; 25:577. 274. Freeman WR, GreenRL, Smith RE. Am J Ophthalmol 1987; 103:281. 275. HyndiukRA, Reagan MG. Arch Ophthalmol 1968; 80:499. 276. WeijtenO, van der Sluijs FA, Schoemaker RC, et al. Am J Ophthalmol1997; 123:358. 277. Hughes PM, Olejnik O, Chang-Lin J-E, etal. Adv Drug Deliv Rev 2005; 57:2010. 278. Ueno N, RefojoMF, Liu LHS. Invest Ophthalmol Vis Sci 1982; 23:199. 279.Liu QF, Dharia N, Mayers M, et al. Invest Ophthalmol VisSci 1995; 36:S1018. 280. Elliot PJ, Bartus RT, Mackic JB,et al. Pharm Res 1997; 14:80. 281. Wilson TW, Chan HSL,Moselhy GM, et al. Arch Ophthalmol 1996; 114:1390. 282.Maurice DM. Surv Ophthalmol 2002; 47(suppl 1):S41. 283.Hollo G, Whitson JT, Faulkner R, et al. Invest OphthalmolVis Sci 2006; 47:235. 284. Chien D-S, Richman J, Zolezio H,

et al. Pharm Res 1992; 9:S336. 285. Schuman JS, PuliafitoCA, Fujimoto JG. Optical Coherence Tomography of OcularDiseases. 2nd ed. NJ: Slack, Inc, 2004. 286. Schmitt JM.IEEE J Select Topics Quantum Electron 1999; 5:1205–1215.287. Rollins AM, Izatt JA. Opt Lett 1999; 24:1484–1486.288. Izatt JA, Hee MR, Swanson EA, et al. Arch Ophthalmol1994; 112:1584–1589. 289. Hee MR, Izatt JA, Swanson EA, etal. Arch Ophthalmol 1995; 113:325–332. 290. Biersdorf WR.Doc Ophthalmol 2004; 73:313–325. 291. Palmowski AM, SutterEE, Bearse MA Jr., et al. Invest Ophthalmol Vis Sci 1997;38: 2586–2596. 292. Eperjesi F, Beatty S. Nutrition and theEye. New York: Elsevier, 2006. 293. Seddon JM, Ajani UA,Sperduto RD, et al. For the Eye Disease Case-Control StudyGroup. JAMA 1994; 272:1413–1420. 294. Cho E, Hung S,Willett WC, et al. Am J Clin Nutr 2001; 73:209–218. 295.Mares-Perlman JA, Fisher A, Klein R, et al. Am J Epidemiol2001; 153:424–432. 296. Age-related disease study researchgroup. J Nutr 2002; 132:697–702. 297. Age-related diseasestudy research group. Arch Ophthalmol 2001; 119:1417–1436.298. Age-related disease study research group. ArchOphthalmol 2003; 121:1621–1624. 299. Age-related diseasestudy research group. Arch Ophthalmol 2007; 125:671–679.300. Age-related disease study research group. ArchOphthalmol 2007; 125:1225–1232.

301. Zareparsi S, Branham KEH, Li M, et al. Abecasis andSwaroop A. Am J Hum Genet 2005; 77:149–153.

302. Klein RJ, Zeiss C, Chew EY, et al. Science 2005;308:385–389.

303. Johnson EJ, Schaefer EJ. Am J Clin Nutr 2006;93(suppl):1494S–1498S.

304. Snodderly DM. Am J Clin Nutr 1995;62(suppl):1448s–1461s.

305. Krinsky NI, Landrum JT, Bone RA. Annu Rev Nutr 2003;23:171–201.

306. Sprarrow JR, Parish CA, Hashimoto M, et al. InvestOphthalmol Vis Sci 1999; 40:2988–2995.

307. Shaban H, Richter C. Biol Chem 2002; 383:537–545.

308. Neuringer M, Sandstrom MM, Johnson EJ, et al. InvestOphthalmol Vis Sci 2004; 45: 3234–3243.

309. Leung IYF, Sandstrom MM, Zucker CL, et al. InvestOphthalmol Vis Sci 2004; 45: 3244–3256.

310. Richer S, Stiles W, Statkute L, et al. Optometry 2004;75:216–230.

311. Falsini B, Piccardi M, Iarossi G, et al. Ophthalmology2003; 110:51–61.

312. Bhosale P, Larson AJ, Frederick JM, et al. J Biol Chem2004; 279:49446–49454.

313. National Eye Institute, Age-related eye disease study2 (AREDS2). Available at: http//clinicaltrials.gov/ct/show/NCT00345176.

314. Miles EA, Calder PC. Proc Nutr Soc 1998; 57:277–292.

315. Bazan NG. Invest Ophthalmol Vis Sci 2007; 48:4866–4881.

316. Doucet JP, Squinto SP, Bazan NG. Mol Neurobiol 1990;4:27–55.

317. Yang H, Yang X, Lang JC, et al. J Cell Biochem 2006;98:1560–1569.

318. Kottke MK, Rudnic EM. Tablet dosage forms. In: BankerGS, Rhodes CT, eds. Modern Pharmaceutics. 4th ed. New York:Marcel Dekker, 2002:287–333.

319. Brotherman DP, Bayraktaroglu TO, Garofalo RJ. J AmPharm Assoc 2004; 44:587–593.

320. 21 Code of Federal Regulations, Part 111.

321. Augsberger LL. Hard and soft shell capsules. In:Banker GS, Rhodes CT, eds. Modern Pharmaceutics. 4th ed.New York: Marcel Dekker, 2002:335–380.

322. Code of Federal Regulations, 21, § 210–211.

323. Clean Room and Work Station Requirements, ControlledEnvironment, Sec. 1–5 Federal Standard 209, Office ofTechnical Services, U. S. Department of Commerce,Washington, D.C., December 16, 1963.

324. Austin PR, Timmerman SW. Design and Operation of CleanRooms. Detroit, MI: Business News Publishers, 1965.

325. Austin PR. Clean Rooms of the World. Ann Arbor, MI:Ann Arbor Science Publishers, 1967.

326. Goddard KR. Air filtration of microbial particles,Publication 953, U. S. Public Health Service, Washington,D.C., 1967.

327. Goddard KR. Bull Parenter Drug Assoc 1969; 23:699.

328. The Rules Governing Medicinal Products in the EuropeanUnion, Vol 4. “Good Manufacturing Practices –MedicinalProducts for Human and Vetrinary Use”, Annex 1 “Manufactureof Sterile Medicinal Products”, Commission Directive91/356/EEC of 13 June 1991.

329. Alcon Laboratories, Inc. U.S. patent 6,071,904. June6, 2000.

330. Jones D. Environmental microbial challenges to anaseptic blow-fill-seal processa practical study. PDA JPharm Sci Technol 1995; 49(5):226–234.

331. Sharp JR. Manufacture of sterile pharmaceuticalproducts using ‘blow-fill-seal’ technology. Pharm J 1987;239:106.

332. Sharp JR. Validation of a new form-fill-sealinstallation. Manuf Chem 1988:22–27, 55.

333. Leo F. Blow/Fill/Seal Aseptic Packaging Technology inAseptic Pharmaceutical Technology for the 1990s. PrairieView, IL: Interpharm Press, 1989:195–218.

334. Sharp JR. Aseptic validation of a form/fill/sealinstallation: principles and practice. J Parenter SciTechnol. 1990; 44(5):289–292.

335. Bradely A, Probert SP, Sinclaire CS, et al. Airbornemicrobial challenges of blow/fill/seal equipment: a casestudy” J Prenter Sci Technol 45(4):187–192.

336. The United States Pharmacopeia 31 (USP)/The NationalFormulary 26. Rockville, MD: United States Pharmacopeia,2008:3523–3525. Products 337. Federal Register, 41, 106,June 1, 1976. 338. Grimes TL, Fonner DE, Griffin JC, et al.Bull Parenter Drug Assoc 1975; 29:64. 339. E-3A AcceptedPractices for Permanently Installed Sanitary ProductPipeline and Cleaning Systems, Serial E-60500, U. S. PublicHealth Service, Washington, D.C. 340. Zu Y, Luo Y, AhmedSU. J PAT 2007; 10:7. 341. Claycamp HG. J PAT 2006; 2:8.342. Joshi Y, LoBrutto R, Serajuddin ATM. J PAT 2006; 4:6.343. Christensen MT, Cohen S, Rinehart J, et al. Curr EyeRes 2004; 28:55–62. 344. Cadwallader DE. Am J Hosp Pharm

1967; 24:33. 345. Kronfeld FG, McDonald JE. J Am PharmAssoc (Sci Ed) 1951; 42:333. 346. Riegelman S, Vaughn DG. JAm Pharm Assoc (Pract Pharm Ed) 1958; 19:474. 347. BlaughSM, Canada AT. Am J Hosp Pharm 1965; 22:662. 348. Linn ML,Jones LT. Am J Ophthalmol 1968; 65:76. 349. Adler CA,Maurice DM, Patterson ME. Exp Eye Res 1971; 11:34. 350.Castroviejo R. Arch Ophthalmol 1965; 74:143. 351. Hanna C,Fraunfelder FT, Cable M, et al. Am J Ophthalmol 1973;76:193. 352. Fraunfelder FT, Hanna C, Cable M, et al. Am JOphthalmol 1973; 76:475. 353. Mouly R. Ann Chir Plast 1972;17:61. 354. Newton DW, Becker CH, Torosian G. J Pharm Sci1973; 62:1538. 355. Schoenwald RL, Ward RL, DeSantis LM,Roehrs RE. JPharm Sci 1978; 67:1280. 356. March WF, StewartRM, Mandell AI, Bruce L. Arch Ophthalmol 1982; 100:1270.357. Liebowitz HM, Chang RK, Mandell AI. Ophthalmology1984; 91:1199. 358. Bowman FW, Knoll EW, White M, MislivicP. J Pharm Sci 1972; 61:532. 359. Schwartz TW. Am PerumCosmet 1971; 86:39. 360. Zaffaroni A. Proc. 31stInternational Congress on Pharmaceutical Science,Washington, D.C., 1971. 361. Lerman S, Reininger B. Can JOphthalmol 1971; 6:14. 362. Maichuk YF. Invest Ophthalmol1975; 14:87. 363. Loucas SP, Haddad HM. J Pharm Sci 1972;61:985. 364. Hiller J, Baker RW. To Alza Corporation. U.S.patent 3,811,444, 1974. 365. Michaels A. To AlzaCorporation. U. S. patent 3,867,519. 1975. 366. Keller N,Longwell AM, Biros SA. Arch Ophthalmol 1976; 94:644. 367.Edelhauser HF. Arch Ophthalmol 1975; 93:649. 368. McCareyBE, Edelhauser HF, Van Horn DL. Invest Ophthalmol 1973;12:410. 369. Merrill DL, Fleming TC, Girard LJ. Am JOphthalmol 1960; 49:895. 370. Girard LJ. ProceedingsInternational Congress on Ophthalmology; Brussels;September 1958. 371. Jaffee NS. Bull Parenter Drug Assoc1970; 24:218. 372. Baily NJ. Contact Lens Spectrum 1987;2(7):6–31. 373. Randeri KJ, Quintana RP, Chowhan MA. Lenscare products. In: Swarbrick J, Boylan JC, eds.Encyclopedia of Pharmaceutical Technology. Vol 8. New York:Marcel Dekker, 1993: 361–402. 374. Tan J, Keay L, SweeneyD. Contact Lens Spectrum 2000:42–44. 375. Kastl PR, RefojoMJ, Dabezies OH Jr., Review of polymerization for thecontact lens fitter. In: Dabezies OH Jr., ed. ContactLenses: The CLAO Guide to Basic Science and ClinicalPractice. 2nd ed., Vol 1. Boston: Little, Brown & Co.,1989:6.21–6.24. 376. Polse KA, Mandell RB. Arch Ophthalmol1970; 84:505–508. 377. Binder PS. Ophthalmology 1978;86:1093. 378. Fatt I, Hill RM. Am J Optom Arch Am AcadOptom 1970; 47:50. 379. Fatt I. Contacto 1978; 23(1):6.380. Food and Drug Administration, Guidance Document forClass III Contact Lenses, United States Food and DrugAdministration; Silver Springs, MD; 1989. 381. VanHaeringen NJ. Clinical biochemistry of tear, Surv.

Opthalmol 1981; 26(2):84–96. 382. Castillo EJ, Koenintg JL,Anderson JM. Biomaterials 1986; 7:89–96. 383. Ruben M. Br JOphthalmol 1975; 59:141.

384. Hart DE. Int Contact Lens Clin 1984; 11:358–360.

385. Begley CG, Waggoner PJ. J Am Optom Assoc 1991;62:208–214.

386. Tripathi RC, Tripathi BJ, Millard CB. CLAO J. 1988;14:23–32.

387. Miller MJ, Wilson LA, Ahrean DG. J Clin Microbiol1988; 16:513–517.

388. Chowhan M, Bilbault T, Quintana RP, et al.Contactologia 1993; 15:190–195.

389. Jacob R. Int Contact Lens Clin 1988; 15:317–325.

390. Holsky D. J Am Optom Assoc 1993; 55:205–211.

391. Hom MM, Pickford M. Int Eyecare 1986; 2:325–326.

392. Davis RL. Int Contact Lens Clin 1983; 10:277–284.

393. Chowhan MA, Quintana RP, Hong BS, et al. To AlconLaboratories, Inc. U.S. patent 5,948,738.

394. Begley CG, Paraguia S, Sporm C. An analysis of contactlens enzyme cleaner. J Am Optom Assoc 1990; 61:190–193.

395. Tarrantino N, Courtney RC, Lesswell LA. et al. IntContact Lens Clin 1988; 15:25–32.

396. Houlsby RD, Ghajar M, Chavez G. J Am Optom Assoc 1988;59:184–188.

397. Anger CB, Ambrus K, Stocker J, et al. Spectrum 1990;9:46–51.

398. Chowhan M, Bilbault, T, Quintana RP. To AlconLaboratories, Inc. U.S. patent 5,370,744.

399. Chowhan M, Keith D, Chen H, Stone R. Poster at AnnualMeeting. Las Vegas: CLAO, 1998.

400. Food and Drug Administration, Draft Testing Guidelinesfor Class III Soft (Hydrophilic) Contact Lens Solutions, U.S. Food and Drug Administration; Silver Springs, MD; 1985.

401. Brennan NA, Efron N. Optom Vis Sci 1989; 66:834–838.

402. Efron N, Goldwig TR, Brennan NA. CLAO J 1991;17:114–119.

403. Chowhan M, Stone R, Rosenthal RA, et al. AlconLaboratories, Inc, Technical Reports, XXXX.

404. Gorscak JJ, Ayres BA, Bhagat N, et al. Cornea 2007;26:10. Products

5 Chapter 5- Delivery of Drugs by thePulmonary Route

11. Hickey AJ, Martonen TB. Behavior of hygroscopicpharmaceutical aerosols and the influence of hydrophobicadditives. Pharm Res 1993; 10:1–7.

12. Weibel ER. Morphometry of the Human Lung. Berlin:Springer Verlag, 1963.

13. Horsfield K, Woldenberg MJ. Branching ratio and growthof tree-like structures. Respir Physiol 1986; 63:97–107.

14. Findeisen W. U¨ber das Absetzen kleiner, in der Luftsuspendierten Teilchen in der menschlichen Lunge bei derAtmung. Arch Ges Physiol 1935; 236:367.

15. Martonen TB, Katz I, Fults K, et al. Use ofanalytically defined estimates of aerosol respirablefraction to predict lung deposition patterns. Pharm Res1992; 9:1634–1639.

16. Hatch TF, Gross P. Physical Factors in RespiratoryDeposition of Aerosols. Pulmonary Deposition and Retentionof Inhaled Aerosols. New York: Academic Press, 1964:27–43.

17. Chaffee VW. Surgery of laboratory animals. In: MelbyEC, Altman NH, eds. Handbook of Laboratory Animal Science.Cleveland: CRC Press, Inc., 1974:233–273.

18. Phalen RF, Oldham MJ. Tracheobronchial airway structureas revealed by casting techniques. Am Rev Respir Dis 1983;128:S1–S4.

19. Landahl HD. On the removal of air-borne droplets by thehuman respiratory tract. I. The Lung. Bull Math Biophys1950; 12:43.

20. ICRP P. Human respiratory tract model for radiologicalprotection. Ann ICRP 1994; 24:1–3.

21. McCusker K, Hiller FC, Wilson JD, et al. Aerodynamicsizing of tobacco smoke particulate from commercialcigarettes. Arch Environ Health 1983; 38:215–218.

22. Effros RM, Mason GR. Measurements of pulmonaryepithelial permeability in vivo. Am Rev Respir Dis 1983;125:S59–S65.

23. Byron PR. Prediction of drug residence times in regions

of the human respiratory tract following aerosolinhalation. J Pharm Sci 1986; 75:433–438.

24. Gonda I. Drugs administered directly into therespiratory tract: modeling of the duration of effectivedrug levels. J Pharm Sci 1988; 77:340–348.

25. Hochhaus G, Suarez S, Gonzalez-Rothi RJ, et al.Pulmonary Targeting of Inhaled Glucocorticoids: How Is itInfluenced by Formulation. Respiratory Drug Delivery VI. .Hilton Head, SC: Interpharm Press, Inc., 1998:45–52.

26. Hickey AJ. Lung deposition and clearance ofpharmaceutical aerosols: what can be learned frominhalation toxicology and industrial hygiene? Aerosol SciTechnol 1993; 18:290–304.

27. Hickey AJ, Mansour HM. Formulation challenges ofpowders for the delivery of small molecular weightmolecules as aerosols. In: Rathbone MJ, Hadgraft J, RobertsMS, et al. (eds.), Modified-Release Drug DeliveryTechnology, Vol 2, Drugs and the Pharmaceutical SciencesSeries, 2nd ed. New York: Informa Healthcare, 2008:573–602.

28. Dunbar C, Hickey AJ, Holzner P. Dispersion andcharacterization of pharmaceutical dry powder aerosols.KONA Powder Part 1998; 16:7–45.

29. Chow AHL, Tong HHY, Chattopadhyay P, et al. Particleengineering for pulmonary drug delivery. Pharm Res 2007;24:411–437.

30. Mosen K, Backstrom K, Thalberg K, et al. Particleformation and capture during spray-drying of inhalableparticles. Pharm Dev Technol 2004; 9:409–417.

31. Vidgre´n MT, Vidgren PA, Paronen TP. Comparison ofphysical and inhalation properties of spray-dried andmechanically micronized disodium cromoglycate. Int J Pharm1987; 35:139–144.

32. Van Oort MM, Sacchetti M. Spray-drying andsupercritical fluid particle generation techniques. In:Hickey AJ, ed. Inhalation Aerosols: Physical and BiologicalBasis for Therapy. 2nd ed. New York: Informa Healthcare,2007:307–346.

33. Tong HHY, Chow AHL. Control of physical forms of drugparticles for pulmonary delivery by spray drying and

supercritical fluid processing. KONA Powder Part 2006;24:27–40.

34. Tom JW, Debendetti PG. Particle formation withsupercritical fluids—a review. J Aerosol Sci 1991;22:555–584.

35. York P, Kompella UB, Shekunov BY. Supercritical FluidTechnology for Drug Product Development. 1st ed. New York:CRC Press, 2004.

36. Rehman M, Shekunov BY, York P, et al. Optimisation ofpowders for pulmonary delivery using supercritical fluidtechnology. Eur J Pharm Sci 2004; 22:1–17. 37. Shekunov BY.Production of powders for respiratory drug delivery. In:York P, Kompella UB, Shekunov BY, eds. Supercritical FluidTechnology for Drug Product Development. New York: MarcelDekkar, 2004:247–282. 38. Shekunov BY, Chattopadhyay P,Seitzinger J, et al. Nanoparticles of poorly water-solubledrugs prepared by supercritical fluid extraction ofemulsions. Pharm Res 2006; 23:196–204. 39. Shekunov BY,Feeley JC, Chow AHL, et al. Physical properties ofsupercritically-processed and micronised powders forrespiratory drug delivery. KONA Powder Part 2002;20:178–187. 40. Shekunov BY, Feeley JC, Chow AHL, et al.Aerosolisation behaviour of micronised and supercriticallyprocessed powders. J Aerosol Sci 2003; 34:553–568. 41.Schiavone H, Palakodaty S, Clark A, et al. Evaluation ofSCF-engineered particle-based lactose blends in passive drypowder inhalers. Int J Pharm 2004; 281:55–66. 42. VelagaSP, Bergh S, Carlfors J. Stability and aerodynamicbehaviour of glucocorticoid particles prepared by asupercritical fluids process. Eur J Pharm Sci 2004;21:501–509. 43. Lobo JM, Schiavone H, Palakodaty S, et al.SCF-engineered powders for delivery of budesonide frompassive DPI devices. J Pharm Sci 2005; 94:2276–2288. 44.Dalby RN. Halohydrocarbons, pharmaceutical usesIn:Swarbrick J, Boylan JC, eds. Encyclopedia of PharmaceuticalTechnology. New York: Marcel Dekker, Inc., 1993:161–180.45. Atkins P. Physical Chemistry. 5th ed. New York: W.H.Freeman and Company, 1994. 46. Sinko PJ. Martin’s PhysicalPharmacy and Pharmaceutical Sciences. 5th ed. Philadelphia:Lippincott Williams & Wilkins, 2006. 47. Clark AR. MeteredAtomisation for Respiratory Drug Delivery [PhD thesis].Loughborough University of Technology, U.K., 1991. 48.Dunbar CA, Watkins AP, Miller JF. An experimentalinvestigation of the spray issued from a pMDI using laserdiagnostic techniques. J Aerosol Med 1997; 10:351–368. 49.Dunbar CA, Watkins AP, Miller JF. A theoreticalinvestigation of the spray issued from a pMDI. Atomization

Sprays 1997; 7:417–436. 50. Sirand C, Varlet JP, Hickey AJ.Aerosol-filling equipment for the preparation ofpressurized pack pharmaceutical formulations. In: HickeyAJ, ed. Pharmaceutical Inhalation Aerosol Technology. NewYork: Marcel Dekker, Inc, 2004:311–343. 51. U.S. Food andDrug Administration. Use of ozone-depleting substances;removal of essentialuse designation. U.S. Food and DrugAdministration, 2005. 52. Hickey AJ, Concessio NM, Van OortMM, et al. Factors influencing the dispersion of drypowders as aerosols. Pharm Technol 1994; 18:58–64, 82. 53.Hickey AJ, Mansour HM, Telko MJ, et al. Physicalcharacterization of component particles included in drypowder inhalers. I. Strategy review and staticcharacteristics. J Pharm Sci 2007; 96:1282–1301. 54. HickeyAJ, Mansour HM, Telko MJ, et al. Physical characterizationof component particles included in dry powder inhalers. II.Dynamic characteristics. J Pharm Sci 2007; 96:1302–1319.55. Louey MD, Van Oort M, Hickey AJ. Standardizedentrainment tubes for the evaluation of pharmaceutical drypowder dispersion. J Aerosol Sci 2006; 37:1520–1531. 56.Clark AR, Hollingworth AM. The relationship between powderinhaler resistance and peak inspiratory conditions inhealthy volunteers—implications for in vitro testing. JAerosol Med 1993; 6:99–110. 57. Wetterlin K. Turbuhaler: anew powder inhaler for administration of drugs to theairways. Pharm Res 1988; 5:506–508. 58. Rubin LD. Intal(Cromolyn Sodium) A Monograph. 1st ed. Bedford, MA: FisonsCorporation, 1973. 59. Marple VA. Simulation of respirablepenetration characteristics by inertial impaction. JAerosol Sci 1978; 9:125–134. 60. Vaughan NP. The Andersenimpactor: calibration, wall losses and numericalsimulation. J Aerosol Sci 1989; 20:67–90. 61. Berglund RN,Liu BYH. Generation of monodisperse aerosol standards.Environ Sci Technol 1973; 7:147–152.

62. Byron PR, Hickey AJ. Spinning-disk generation anddrying of monodisperse solid aerosols with outputconcentrations sufficient for single-breath inhalationstudies. J Pharm Sci 1987; 76:60–64.

63. Vervaet C, Byron PR. Polystyrene microsphere spraystandards based on CFC-free inhaler technology. J AerosolMed 2000; 13:105–115.

64. Aerosols, Nasal Sprays, Metered-Dose Inhalers, and DryPowder Inhalers Monograph. USP 29-NF 24 The United StatesPharmacopoeia and The National Formulary: The OfficialCompendia of Standards. Rockville, MD: The United StatesPharmacopeial Convention, Inc, 2006:2617–2636.

65. Kamiya A, Sakagami M, Hindle M, et al. Aerodynamicsizing of metered dose inhalers: an evaluation of theAndersen and next generation pharmaceutical impactors andtheir USP methods. J Pharm Sci 2004; 93:1828–1837.

66. Marple VA, Olson BA, Santhanakrishnan K, et al. Nextgeneration pharmaceutical impactor: a new impactor forpharmaceutical inhaler testing. Part III. Extension ofarchival calibration to 15 L/min. J Aerosol Med 2004;17:335–343.

67. Leung K, Louca E, Gray M, et al. Use of the nextgeneration pharmaceutical impactor for particle sizedistribution measurements of live viral aerosol vaccines. JAerosol Med 2005; 18:414–426.

68. Myrdal PB, Mogalian E, Mitchell J, et al. Applicationof heated inlet extensions to the TSI 3306/3321 system:comparison with the Andersen cascade impactor and nextgeneration impactor. J Aerosol Med 2006; 19:543–554.

69. Berg E, Svensson JO, Asking L. Determination ofnebulizer droplet size distribution: a method based onimpactor refrigeration. J Aerosol Med 2007; 20:97–104.

70. Mitchell JP, Nagel MW, Wiersema KJ, et al. Aerodynamicparticle size analysis of aerosols from pressurizedmetered-dose inhalers: comparison of Andersen 8-stagecascade impactor, next generation pharmaceutical impactor,and model 3321 aerodynamic particle sizer aerosolspectrometer. AAPS PharmSciTech 2003; 4:E54.

71. Guo C, Gillespie SR, Kauffman J, et al. Comparison ofdelivery characteristics from a combination metered-doseinhaler using the Andersen cascade impactor and the nextgeneration pharmaceutical impactor. J Pharm Sci 2007;97(8):3321–3334.

72. Mathias NR, Yamashita F, Lee VHL. Respiratoryepithelial cell culture models for evaluation of ion anddrug transport. Adv Drug Deliv Rev 1996; 22:215–249.

73. Mobley C, Hochhaus G. Methods used to assess pulmonarydeposition and absorption of drugs. Drug Discov Today 2001;6:367–375.

74. Steimer A, Haltner E, Lehr CM. Cell culture models ofthe respiratory tract relevant to pulmonary drug delivery.J Aerosol Med 2005; 18:137–182.

75. Sakagami M. In vivo, in vitro and ex vivo models toassess pulmonary absorption and disposition of inhaledtherapeutics for systemic delivery. Adv Drug Deliv Rev2006; 58:1030–1060.

76. Foster KA, Oster CG, Mayer MM, et al. Characterizationof the A549 cell line as a type II pulmonary epithelialcell model for drug metabolism. Exp Cell Res 1998;243:359–366.

77. Bruck A, Abu-Dahab R, Borchard G, et al.Lectin-functionalized liposomes for pulmonary drugdelivery: interaction with human alveolar epithelial cells.J Drug Target 2001; 9:241.

78. Ehrhardt C, Fiegel J, Fuchs S, et al. Drug absorptionby the respiratory mucosa: cell culture models andparticulate drug carriers. J Aerosol Med 2002; 15:131–139.

79. Hermanns MI, Unger RE, Kehe K, et al. Lung epithelialcell lines in coculture with human microvascularendothelial cells: development of an alveolo-capillarybarrier in vitro. Lab Invest 2004; 84:736–752.

80. Foster KA, Avery ML, Yazdanian M, et al.Characterization of the Calu-3 cell line as a tool toscreen pulmonary drug delivery. Int J Pharm 2000; 208:1–11.

81. Florea BI, van der Sandt ICJ, Schrier SM, et al.Evidence of p-glycoprotein mediated apical to basolateraltransport of flunisolide in human broncho-trachealepithelial cells (Calu-3). Br J Pharm 2001; 134:1555–1563.

82. Borchard G, Cassara ML, Roemele PE, et al. Transportand local metabolism of budesonide and fluticasonepropionate in a human bronchial epithelial cell line(Calu-3). J Pharm Sci 2002; 91:1561–1567. 83. Florea BI,Cassara ML, Junginger HE, et al. Drug transport andmetabolism characteristics of the human airway epithelialcell line Calu-3. J Control Release 2003; 87:131–138. 84.Forbes B, Ehrhardt C. Human respiratory epithelial cellculture for drug delivery applications. Eur J PharmBiopharm 2005; 60:193–205. 85. Grainger CI, Greenwell LL,Lockley DJ, et al. Culture of Calu-3 Cells at the air-waterinterface provides a representative model of the airwayepithelial barrier. Pharm Res 2006; 23:1482–1490. 86.Ehrhardt C, Kneuer C, Bies C, et al. Salbutamol is activelyabsorbed across human bronchial epithelial cell layers.Pulm Pharmacol Ther 2005; 18:165–170. 87. Ehrhardt C,Kneuer C, Laue M, et al. 16HBE14o-human bronchial

epithelial cell layers express P-glycoprotein, lungresistance-related protein, and caveolin-1. Pharm Res 2003;20:545–551. 88. Manford F, Tronde A, Jeppsson AB, et al.Drug permeability in 16HBE14o-airway cell layers correlateswith absorption from the isolated perfused rat lung. Eur JPharm Sci 2005; 26:414–420. 89. Robinson PC, Voelker DR,Mason RJ. Isolation and culture of human alveolar type-IIepithelial cells. Characterization of their phospholipidsecretion. Am Rev Respir Dis 1984; 130:1156–1160. 90.Elbert KJ, Shafer UF, Shafers HJ, et al. Monolayers ofhuman alveolar epithelial cells in primary culture forpulmonary absorption and transport studies. Pharm Res 1999;16:601–608. 91. Fuchs S, Hollins AJ, Laue M, et al.Differentiation of human alveolar epithelial cells inprimary culture: morphological characterization andsynthesis of caveolin-1 and surfactant protein-C. CellTissue Res 2003; 311:31–45. 92. Bur M, Huwer H, Lehr CM, etal. Assessment of transport rates of proteins and peptidesacross primary human alveolar epithelial cell monolayers.Eur J Pharm Sci 2006; 28:196–203. 93. Lin HC, Li H, Cho HJ,et al. Air-liquid interface (ALI) culture of humanbronchial epithelial cell monolayers as an in vitro modelfor airway drug transport studies. J Pharm Sci 2007;96:341–350. 94. Rothen-Rutishauser BM, Kiama SG, Gehr P. Athree-dimensional cellular model of the human respiratorytract to study the interaction with particles. Am J RespirCell Mol Biol 2005; 32:281–289. 95. U.S. Department ofHealth and Human Services, Food and Drug Administration,Center for Drug Evaluation and Research. Guidance forIndustry: Nasal Spray and Inhalation Solution, Suspension,and Spray Drug Products-Chemistry, Manufacturing, andControls Documentation. Washington, D.C.: U.S. FDA, CDR,2002:45. 96. U.S. Food and Drug Administration. DraftGuidance for Industry–Metered Dose Inhaler (MDI) and DryPowder Inhaler (DPI) Drug Products Chemistry,Manufacturing, and Controls Documentation. Washington,D.C.: FDA, 1998. 97. European Pharmacopeia. Preparationsfor Inhalation. European Pharmacopeia, 2001. 98. Evans R.Determination of drug particle size and morphology usingoptical microscopy. Pharm Technol 1993; 17:146–152. 99.Milosovich SM. Particle-size determination via cascadeimpaction. Pharm Technol 1992; 16:82–86. 100. Atkins PJ.Aerodynamic particle-size testing–impinger methods. PharmTechnol 1992; 16:26–32. 101. Jager PD, DeStefano GA,McNamara DP. Particle-size measurement using right-anglelight scattering. Pharm Technol 1993; 17:102–120. 102.Ranucci JA, Chen F-C. Phase Doppler anemometry: a techniquefor determining aerosol plume-particle size and velocity.Pharm Technol 1993; 17:62–74. 103. Ranucci J. Dynamicplume-particle size analysis using laser diffraction. Pharm

Technol 1992; 16:109–114. 104. Niven RW. Aerodynamicparticle size testing using a time-of-flight aerosol beamspectrometer. Pharm Technol 1993; 72–78. 105. Gorman WG,Carroll FA. Aerosol particle-size determination using laserholography. Pharm Technol 1993; 17:34–37.

106. Hickey AJ, Evans RM. Aerosol generation frompropellant-driven metered dose inhalers. In: Hickey AJ, ed.Inhalation Aerosols: Physical and Biological Basis forTherapy. New York: Marcel Dekker, Inc., 1996:417–439.

107. Dunbar CA, Hickey AJ. Selected parameters affectingcharacterization of nebulized aqueous solutions by inertialimpaction and comparison with phase-Doppler analysis. Eur JPharm Biopharm 1999; 48:171–177.

108. Leong BKJ, ed. Inhalation Toxicology and Technology.Ann Arbor: Ann Arbor Science, 1981.

109. Concessio NM, Oort MMV, Knowles M, et al.Pharmaceutical dry powder aerosols: correlation of powderproperties with dose delivery and implications forpharmacodynamic effect. Pharm Res 1999; 16:828–834.

110. Newman S, Wilding IR, Hirst P. Human lung depositiondata: the bridge between in vitro and clinical evaluationsfor inhaled drug products? Int J Pharm 2000; 208:49–60.

111. Meyer T, Brand P, Ehlich H, et al. Deposition ofForadil P in human lungs: comparison of in vitro and invivo data. J Aerosol Med Deposition Clear Eff Lung 2004;17:43–49.

112. Bondesson E, Asking L, Borgstrom L, et al. In vitroand in vivo aspects of quantifying intrapulmonarydeposition of a dry powder radioaerosol. Int J Pharm 2002;232:149–156.

113. Sebti T, Pilcer G, Van Gansbeke B, et al.Pharmacoscintigraphic evaluation of lipid dry powderbudesonide formulations for inhalation. Eur J PharmBiopharm 2006; 64:26–32.

114. Eberl S, Chan HK, Daviskas E. SPECT imaging forradioaerosol deposition and clearance studies. J AerosolMed Deposition Clear Eff Lung 2006; 19:8–20.

115. Dolovich M. Lung dose, distribution, and clinicalresponse to therapeutic aerosols. Aerosol Sci Technol 1993;18:230–240.

116. Vidgren M, Arppe J, Vidgren P, et al. Pulmonarydeposition and clinical response of 99mTclabelledsalbutamol particles in healthy volunteers after inhalationfrom a metered-dose inhaler and from a novel multiple-dosepowder inhaler. Pharm Res 1994; 11:1320–1324.

117. Vidgren M, Waldrep JC, Arppe J, et al. Study of99mTechnetium-labeled beclomethasone dipropionatedilauroylphosphatidylcholine liposome aerosol in normalvolunteers. Int J Pharm 1995; 115:209–216.

118. Vidgren MT, Karkkainen A, Paronen P, et al.Respiratory tract deposition of 99mTc-labelled drugparticles administered via a dry powder inhaler. Int JPharm 1987; 39:101–105.

119. Vidgren M, Arppe J, Vidgren P, et al. Pulmonarydeposition of 99mTc-labelled salbutamol particles inhealthy volunteers after inhalation from a metered-doseinhaler and from a novel multiple-dose powder inhaler. STPPharm Sci 1994; 4:29–32.

120. Pitcairn GR, Hooper G, Luria X, et al. A scintigraphicstudy to evaluate the deposition patterns of a novelanti-asthma drug inhaled from the Cyclohaler dry powderinhaler. Adv Drug Deliv Rev 1997; 26:59–67.

121. Pitcairn GR, Lim J, Hollingworth A, et al.Scintigraphic assessment of drug delivery from theultrahaler dry powder inhaler. J Aerosol Med 1997;10:295–306.

122. Newman SP, Pitcairn GR, Hirst PH, et al. Scintigraphiccomparison of budesonide deposition from two dry powderinhalers. Eur Respir J 2000; 16:178–183.

123. Newman SP, Pitcairn GR, Hirst PH, et al. Radionuclideimaging technologies and their use in evaluating asthmadrug deposition in the lungs. Adv Drug Deliv Rev 2003;55:851–867.

124. Kaliner MA, Barnes PJ, Persson CGA. Asthma, ItsPathology and Treatment. New York: Marcel Dekker, 1991.

125. Adjei A, Garren J. Pulmonary delivery of peptidedrugs: effect of particle size on bioavailability ofleuprolide acetate in healthy male volunteers. Pharm Res1990; 7:565–569.

126. Patton JS, Bukar J, Nagarajan S. Inhaled insulin. AdvDrug Deliv Rev 1999; 35:235–247.

127. White S, Bennett DB, Cheu S, et al. EXUBERA:pharmaceutical development of a novel product for pulmonarydelivery of insulin. Diabetes Technol Ther 2005; 7:896–906.

128. NDA 21-868/Exubera US Package Insert. New York, NY:Pfizer Labs, 2006:1–24.

129. Byron PR, Patton JS. Drug delivery via the respiratorytract. J Aerosol Med 1994; 7:49–75.

130. Patton JS, Byron PR. Inhaling medicines: deliveringdrugs to the body through the lungs. Nat Rev Drug Discov2007; 6:67–74.

6 Chapter 6- Pediatric and GeriatricPharmaceutics and Formulation

21. Cooney GF, Habucky K, Hoppu K. Cyclosporinpharmacokinetics in paediatric transplant recipients. ClinPharmacokinet 1997; 32:481–495.

22. Murry DJ, Riva L, Poplack D. Impact of nutrition onpharmacokinetics of anti-neoplastic agents. Int J Cancer1998; 78(S11):48–51.

23. Gilman JT, Duchowny MS, Resnick TJ, et al.Carbamazepine malabsorption: a case report. Pediatrics1988; 82:518–519.

24. Friss-Hansen B. Body water compartments in children:changes during growth and related changes in bodycomposition. Pediatrics 1961; 28:169–181.

25. Heimler R, Doumas BT, Jendrzejczak BM, et al.Relationship between nutrition, weight change, and fluidcompartments in preterm infants during the first week oflife. J Pediatr 1993; 122(1):110–114.

26. Notarianni LJ. Plasma protein binding of drugs inpregnancy and in neonates. Clin Pharmacokinet 1990;18:20–36.

27. Milsap RL, Jusko WJ. Pharmacokinetics in the infant.Environ Health Perspect 1994; 102 (suppl 11):107–110.

28. Gauntlett IS, Fisher DM, Hertzka RE, et al.Pharmacokinetics of fentanyl in neonatal humans and lambs:effects of age. Anesthesiology 1988; 69:683–687.

29. Leeder JS, Kearns GL. Pharmacogenetics in pediatrics.Implications for practice. Pediatr Clin North Am 1997;44:55–77.

30. Aranda JV, MacLeod SM, Renton KW, et al. Hepaticmicrosomal drug oxidation and electron transport in newborninfants. J Pediatr 1974; 85:534–542.

31. Rosen JP, Danish M, Ragni MC, et al. Theophyllinepharmacokinetics in the young infant. Pediatrics 1979;64:248–251.

32. Carrier O, Pons G, Rey E, et al. Maturation of caffeinemetabolic pathways in infancy. Clin Pharmacol Ther 1988;44:145–151.

33. Miller RP, Roberts RJ, Fischer LJ. Acetaminophenelimination kinetics in neonates, children, and adults.Clin Pharmacol Ther 1976; 19:284–294.

34. Glazer JP, Danish MA, Plotkin SA, et al. Disposition ofchloramphenicol in low birth weight infants. Pediatrics1980; 66:573–578.

35. Thompson JA, Bloedow DC, Leffert FH. Pharmacokineticsof intravenous chlorpheniramine in children. J Pharm Sci1981; 70:1284–1286.

36. Fisher DG, Schwartz PH, Davis AL. Pharmacokinetics ofexogenous epinephrine in critically ill children. Crit CareMed 1993; 21:111–117.

37. Matsuda I, Higashi A, Inotsume N. Physiologic andmetabolic aspects of anticonvulsants. Pediatr Clin North Am1989; 36:1099–1111.

38. Guignard JP, Torrado A, Da CO, et al. Glomerularfiltration rate in the first three weeks of life. J Pediatr1975; 87:268–272.

39. Schwartz GJ, Feld LG, Langford DJ. A simple estimate ofglomerular filtration rate in fullterm infants during thefirst year of life. J Pediatr 1984; 104:849–854.

40. McCance RA. Renal function in early life. Physiol Rev1948; 28:331–348.

41. Stephenson T. How children’s responses to drugs differfrom adults. Br J Clin Pharmacol 2005; 59:670–673.

42. American Academy of Pediatrics: committee on drugs.“Inactive” ingredients in pharmaceutical products: update(Subject Review). Pediatrics 1997; 99:268–278.

43. Ernest TB, Elder DP, Martini LG, et al. Developingpaediatric medicines: identifying the needs and recognizingthe challenges. J Pharm Pharmacol 2007; 59:1043–1055.

44. Golightly LK, Smolinske SS, Bennett ML, et al.Pharmaceutical excipients. Adverse effects associated withinactive ingredients in drug products (Part I). Med ToxicolAdverse Drug Exp 1988; 3:128–165.

45. Golightly LK, Smolinske SS, Bennett ML, et al.Pharmaceutical excipients. Adverse effects associated with

‘inactive’ ingredients in drug products (Part II). MedToxicol Adverse Drug Exp 1988; 3:209–240.

46. Pawar S, Kumar A. Issues in the formulation of drugsfor oral use in children: role of excipients. PaediatrDrugs 2002; 4:371–379. Formulation 47. Committee on Drugs.“Inactive” ingredients in pharmaceutical products: update(subject review). Pediatrics 1997; 99:268–278. 48. MenonPA, Thach BT, Smith CH, et al. Benzyl alcohol toxicity in aneonatal intensive care unit. Incidence, symptomatology,and mortality. Am J Perinatol 1984; 1:288–292. 49.Committee on Fetus and Newborn, Committee on Drugs. Benzylalcohol: toxic agent in neonatal units. Pediatrics 1983;72:356–358. 50. Arulanantham K, Genel M. Central nervoussystem toxicity associated with ingestion of propyleneglycol. J Pediatr 1978; 93:515–516. 51. Anonymous. YellowNo 5. (tartrazine) labeling on drugs to be required. FDADrug Bull 1979; 9(3):18. 52. Pohl R, Balon R, Berchou R, etal. Allergy to tartrazine in antidepressants. Am JPsychiatry 1987; 144:237–238. 53. Weber RW, Hoffman M,Raine DA Jr., et al. Incidence of bronchoconstriction dueto aspirin, azo dyes, non-azo dyes, and preservatives in apopulation of perennial asthmatics. J Allergy Clin Immunol1979; 64:32–37. 54. Buswell RS, Lefkowitz MS. Oralbronchodilators containing tartrazine. JAMA 1976; 235:1111.55. McCann D, Barrett A, Cooper A, et al. Food additivesand hyperactive behaviour in 3-year-old and 8/9-year-oldchildren in the community: a randomised, double-blinded,placebo-controlled trial. Lancet 2007; 370:1560–1567. 56.Hill EM, Flaitz CM, Frost GR. Sweetener content of commonpediatric oral liquid medications. Am J Hosp Pharm 1988;45:135–142. 57. Strickley RG, Iwata Q, Wu S, et al.Pediatric drugs—a review of commercially available oralformulations. J Pharm Sci 2008; 97:1731–1774. 58. Shaw L,Glenwright HD. The role of medications in dental cariesformation: need for sugarfree medication for children.Pediatrician 1989; 16:153–155. 59. Feigal RJ, Jensen ME,Mensing CA. Dental caries potential of liquid medications.Pediatrics 1981; 68(3):416–419. 60. Lokken P, Birkeland JM,Sannes E. pH changes in dental plaque caused by sweetened,ironcontaining liquid medicine. Scand J Dent Res 1975;83(5):279–283. 61. Mitchell H. Sweeteners and Sugaralternatives in food technology. London: BlackwellPublishing, 2007. 62. Lutomski DM, Gora ML, Wright SM, etal. Sorbitol content of selected oral liquids. AnnPharmacother 1993; 27:269–274. 63. Arnold DL, Moodie CA,Grice HC, et al. Long-term toxicity ofortho-touenesulfonamide and sodium saccharin in the rat.Toxicol Appl Pharmacol 1980; 52:113–152. 64. Koysooko R,Levy G. Effect of ethanol on intestinal absorption of

theophylline. J Pharm Sci 1974; 63:829–834. 65. Panelrecommends limits on alcohol content of nonprescriptionproducts. FDA Over-TheCounter Drugs Advisory Committee. AmJ Hosp Pharm 1993; 50:400. 66. Rappaport PL. Extemporaneousdosage preparations for pediatrics. Can J Hosp Pharm 1983;36: 66–70, 74. 67. Standing JF, Khaki ZF, Wong IC. Poorformulation information in published pediatric drug trials.Pediatrics 2005; 116:e559–e562. 68. Nunn T, Williams J.Formulation of medicines for children. Br J Clin Pharmacol2005; 59:674–676. 69. Krause J, Breiktreutz J. Improvingdrug delivery in paediatric medicines. Pharm Med 2008; 22:41–50. 70. Griessmann K, Breitkreutz J, Schubert-ZsilaveczM, et al. Dosing accuracy of measuring devices providedwith antibiotic oral suspensions. Paediatr Perinat DrugTher 2007; 10:61–70. 71. Brown D, Ford JL, Nunn AJ, et al.An assessment of dose-uniformity of samples delivered frompaediatric oral droppers. J Clin Pharm Ther 2004;29:521–529. 72. Standing JF, Tuleu C. Paediatricformulations—getting to the heart of the problem. Int JPharm 2005; 300:56–66.

73. Blumer JL. Fundamental basis for rational therapeuticsin acute otitis media. Pediatr Infect Dis J 1999;18:1130–1140.

74. Teng J, Song CK, Williams RL, et al. Lack of medicationdose uniformity in commonly split tablets. J Am Pharm Assoc2002; 42:195–199.

75. Tuleu C, Grange´ J, Seurin S. The need of paediatricformulation: administration of nifedipine in children, aproof of concept. J Drug Del Sci Tech 2005; 15:319–324.

76. Abdel-Rahman SM, Blowey DL, Kauffmann RE, et al.Comparative bioavailability of loracarbef chewable tabletvs. oral suspension in children. Pediatr Infect Dis J 1998;17: 1171–1173.

77. Cornaggia C, Gianetti S, Battino D, et al. Comparativepharmacokinetic study of chewable and conventionalcarbamazepine in children. Epilepsia 1993; 34:158–160.

78. Cloyd JC, Kriel RL, Jones-Saete CM, et al. Comparisonof sprinkle versus syrup formulations of valproate forbioavailability, tolerance, and preference. J Pediatr 1992;120:634–638.

79. Nowak MM, Brundhofer B, Gibaldi M. Rectal absorptionfrom aspirin suppositories in children and adults.Pediatrics 1974; 54:23–26.

80. Ghadially R, Shear N. Topical therapy and percutaneousabsorption. In: Yaffe SJ, Aranda JV, eds. PediatricPharmacology: Therapeutic Principles in Practice. 2nd ed.Philadelphia: WB Saunders, 1992:72–77.

81. Loebstein R, Koren G. Clinical pharmacology andtherapeutic drug monitoring in neonates and children.Pediatr Rev 1998; 19:423–428.

82. Paisley JW, Smith AL, Smith DH. Gentamicin in newborninfants. Comparison of intramuscular and intravenousadministration. Am J Dis Child 1973; 126:473–477.

83. Shann F, Linnemann V, Mackenzie A, et al. Absorption ofchloramphenicol sodium succinate after intramuscularadministration in children. N Engl J Med 1985; 313:410–414.

84. Bradley JS, Compogiannis LS, Murray WE, et al.Pharmacokinetics and safety of intramuscular injection ofconcentrated certriaxone in children. Clin Pharm 1992;11:961–964.

85. Suarez EC, Grippi JR. Comparative bioavailability andsafety of two intramuscular ceftriaxone formulations. AnnPharmacother 1996; 30:1223–1226.

86. Seay RE. Comment: bioavailability and safety of twoceftriaxone formulations exposure to lidocaine questioned.Ann Pharmacother 1997; 31:501–502.

87. McIvor A, Paluzzi M, Meguid MM. Intramuscular injectionabscess—past lessons relearned. N Engl J Med 1991;324:1897–1898.

88. Hard R. Pharmacists work on pediatric dosage problems.Hospitals 1992; 66:46–48.

89. Koren G, Barzilay Z, Greenwald M. Tenfold errors inadministration of drug doses: a neglected latrogenicdisease in pediatrics. Pediatrics 1986; 77:848–849.

90. Goldman RD. Intranasal drug delivery for children withacute illness. Curr Drug Ther 2006; 1: 127–130.

91. Johnston C. Endotracheal drug delivery. Pediatr EmergCare 1992; 8:94–97.

92. Hickey AJ. Factors influencing aerosol desposition ininertial impactors and their effect on particle size

characterization. Pharm Technol 1990; 14:118–130.

93. Abrolat ML, Nguyen LP, Saca LF. Hold it! Correct use ofinhalers in children with asthma. West J Med 2001;175:303–304.

94. Saggers BA, Lawson D. Some observations on thepenetration of antibiotics through mucus in vitro. J ClinPathol 1966; 19:313–317.

95. Saggers BA, Lawson D. In vivo penetration ofantibiotics into sputum in cystic fibrosis. Arch Dis Child1968; 43:404–409.

96. Gibaldi M. Understanding and treating some geneticdiseases. Ann Pharmacother 1992; 26: 1589–1594.

97. Jew LL, Hart LL. Inhaled aminoglycosides in cysticfibrosis. DICP 1990; 24:711–712.

98. Ross B, Ramsey L, Shepherd J. Delivery of aerosoltherapy in the management of pulmonary disorders. HospPharm Rep 2000; 14:3.

126. Sheely TW. The gastrointestinal system and theelderly. In: Gambert SR, ed. Contemporary GeriatricMedicine. 2nd ed. New York: Plenum Publishing, 1986.

127. Geokas MC, Haverback BJ. The aging gastrointestinaltract. Am J Surg 1969; 117:881–892.

128. Holt PR. Gastrointestinal drugs in the elderly. Am JGastroenterol 1986; 81:403–411.

129. Anuras S, Loening-Baucke V. Gastrointestinal motilityin the elderly. J Am Geriatr Soc 1984; 32: 386–390.

130. Moore JG, Tweedy C, Christian PE, et al. Effect of ageon gastric emptying of liquid–solid meals in man. Dig DisSci 1983; 28:340–344.

131. Evans MA, Triggs EJ, Cheung M, et al. Gastric emptyingrate in the elderly: implications for drug therapy. J AmGeriatr Soc 1981; 29:201–205.

132. Evans MA, Broe GA, Triggs EJ, et al. Gastric emptyingrate and the systemic availability of levodopa in theelderly parkinsonian patient. Neurology 1981; 31:1288–1294.

133. Mojaverian P, Vlasses PH, Kellner PE, et al. Effects

of gender, posture, and age on gastric residence time of anindigestible solid: pharmaceutical considerations. PharmRes 1988; 5: 639–644.

134. Gryback P, Hermansson G, Lyrenas E, et al. Nationwidestandardisation and evaluation of scintigraphic gastricemptying: reference values and comparisons betweensubgroups in a multicentre trial. Eur J Nucl Med 2000;27:647–555.

135. Baum BJ, Bodner L. Aging and oral motor function:evidence for altered performance among older persons. JDent Res 1983; 62:2–6.

136. Ben-Aryeh H, Miron D, Berdicevsky I, et al. Xerostomiain the elderly: prevalence, diagnosis, complications andtreatment. Gerodontology 1985; 4:77–82.

137. Collins JG. Prevalence of selected chronic conditions:United States, 1990–1992. Vital National Health 1997;10(194):1–89.

138. Exton-Smith AN, Weksler ME. Practical GeriatricMedicine. New York: Churchill Livingstone, 1985.

139. Ferguson BD. The Aging Mouth (Frontiers of OralPhysiology). 2nd ed. New York: S. Karger 1988.

140. Kamen S, Kamen LB. Contemporary Geriatric Medicine.In: Gambert SR,ed. New York: Plenum Publishing, 1986.

141. National Center for Health Statistics (NCHS). Health,United States, 1999, with Health and Aging Chartbook.Hyattsville, MD: DHSS eds. (US department of Health andHuman Services), 1999. Available at:http://www.cdc.gov/nchs/data/hus/hus99ncb.pdf.

142. Christophers E, Kligman AM. Percutaneous adsorption inaged skin. In: Montagna W, ed. Advances in Biology of theSkin. New York: Permagon Press, 1964:163–175.

143. Behl CG, Bellantone NH, Flynn GL. Influence of age onpercutaneous absorption of drug substance. In: KyodonieusAF, Berner B, eds. Transdermal Delivery of Drugs. BocaRaton, FL: CRC Press, 1998:109–132.

144. Kligman AM. Perspectives and problems in cutaneousgerontology. J Invest Dermatol 1979; 73: 39–46.

145. Daly CH, Odland GF. Age-related changes in the

mechanical properties of human skin. J Invest Dermatol1979; 73:83–87.

146. Adams PF, Benson V. Current estimates from theNational Health Interview Survey. Vital Health Stat 1990;10(181):1–212.

147. Branch LG, Katz S, Kniepmann K, et al. A prospectivestudy of functional status among community elders. Am JPublic Health 1984; 74:266–268.

148. Cornoni-Huntley J, Brock DB, Ostfeld AM, et al.Established Populations for Epidemiologic Studies for theElderly. Washington, DC: U.S. Government Printing Office,1986.

149. Katz S, Downs TD, Cash HR, et al. Progress indevelopment of the index of ADL. Gerontologist 1970;10:20–30.

150. National Center for Health Statistics. Health, UnitedStates, 2000, Adolescent Health Chartbook. Hyattsville, MD:DHSS eds., 2000. Available at:http://www.cdc.gov/nchs/data/ hus/hus00.pdf.

151. Cerella J. Age-related decline in extrafoveal letterperception. J Gerontol 1985; 40:727–736. Formulation 152.Kosnik W, Winslow L, Kline D, et al. Visual changes indaily life throughout adulthood. J Gerontol 1988; 43:63–70.153. Maloney CC. Identifying and treating the client withsensory loss. Phys Occup Ther Geriatr 1987; 5:31. 154.Clarke A, Spollett G. Dose accuracy and injection forcedynamics of a novel disposable insulin pen. Expert OpinDrug Deliv 2007; 4:165–174. 155. Kircher V. ErgonomischeProbleme individuell lo¨sen. Pharm Ztg 2005; 150:4570–4577.156. Kircher V. Wie sich ergonomische und audiologischeProbleme lo¨sen lassen. Pharm Ztg 2007; 152: 2404–2413.157. Heeneman H, Brown DH. Senescent changes in and aboutthe oral cavity and pharynx. J Otolaryngol 1986;15:214–216. 158. Lamy PP. Over-the-counter medication: thedrug interactions we overlook. J Am Geriatr Soc 1982; 30(11suppl):S69–S75. 159. Lamy PP. Appropriate and inappropriatedrug use. In: Penta FB, ed. Pharmacy Practice for theGeriatric Patient. Alexandria, VA: American Association ofColleges of Pharmacy, 1985:13.1–13.27. 160. Fuselier CC.General principles of drug prescribing. In: Penta FB, ed.Pharmacy Practice for the Geriatric Patient. Alexandria,VA: American Association of Colleges of Pharmacy,1985:8.1–8.28. 161. Channer KS, Virjee JP. The effect offormulation on oesophageal transit. J Pharm Pharmacol 1985;

37:126–129. 162. Hey H, Jorgensen F, Sorensen K, et al.Oesophageal transit of six commonly used tablets andcapsules. Br Med J (Clin Res Ed) 1982; 285:1717–1719. 163.Kottke MK, Stetsko G, Rosenbaum SR, et al. Problemsencountered by the elderly in the use of conventionaldosage forms. J Geriatr Drug Ther 1990; 5:77–91. 164.Marvola M, Rajaniemi M, Marttila E, et al. Effect of dosageform and formulation factors on the adherence of drugs tothe esophagus. J Pharm Sci 1983; 72:1034–1036. 165. SemlaT, Breizer J, Higbee M. Geriatric Dosage Handbook.Washington, DC: American Pharmaceutical Association, 2000.166. Hollenbeck RG, Lamy PP. Dosage form considerations inclinical trials involving elderly patients. In: Cutler NR,Narang PK, eds. Drug Studies in the Elderly. MethodologicalConcerns. New York: Plenum Publishing, 1986:335–353. 167.Wallace RB. Drug utilization in the rural elderly:Perspectives from a population study. In: Moore SR, TealRW, eds. Geriatric Drug Use-Clinical and SocialPerspectives. New York: Permagon Press, 1985:78–85. 168.Finchman JB. Over-the-counter drug use and misuse by theambulatory elderly: a review of the literature. J GeriatrDrug Ther 1986; 1:3. 169. Hallworth RB, Goldberg LA.Geriatric patients’ understanding of labelling ofmedicines. Br J Pharm Pract 1984; 6:6–14. 170. Lamy PP. Thefuture is not what it used to be. Mol Pharm 1987; 63:10.171. Richardson JL. Perspectives on compliance with drugregimens among the elderly. J Compliance Health Care 1986;1:33. 172. Simonson W. Compliance to drug therapy.Medications and the Elderly. A Guide to Promoting ProperUse. Baltimore: Aspen Publishers, 1984:70–79. 173. SumnerBD. Compliance with drug therapy. Handbook of GeriatricDrug Therapy for Health Care Professionals. Philadelphia:Lea & Febiger, 1983:43–52. 174. Wade B, Bowling A.Appropriate use of drugs by elderly people. J Adv Nurs1986; 11:47–55. 175. Williamson JR, Smith RG, Burley LE.Primary Care of the Elderly. A Practical Approach. London:IOP Publishing, 1987. 176. Wong BS, Norman DC. Evaluationof a novel medication aid, the calendar blister-pak, andits effect on drug compliance in a geriatric outpatientclinic. J Am Geriatr Soc 1987; 35:21–26. 177. Keram S,Williams ME. Quantifying the ease or difficulty olderpersons experience in opening medication containers. J AmGeriatr Soc 1988; 36:198–201. 178. Davidson JR.Presentation and packaging of drugs for the elderly. J HospPharm 1973; 31:180.

179. United States Pharmacopeial Convention. FourthSupplement of the United States Pharmacopeia NationalFormulary. Rockville, MD, 1988.

180. Banker GS, Anderson NR. Tablets. In: Lachman L,Lieberman HA, Kanig JL, eds. The Theory and Practice ofIndustrial Pharmacy. 3rd ed. Philadelphia, PA: Lea &Febiger, 1986.

181. Tsumara J, inventor; Process for the preparation ofwater-soluble tablets. US patent 3,692, 896. 1972.

182. Crivellaro G, Oldani F, inventors; Soluble tablet. USpatent 3,819,824 1974.

183. Daunora LG, inventor; Water soluble tablet. US patent4,347,235 1982.

184. Martini T. Tablet dispersion as alternative tomixtures. NZ Pharm 1987; 7:34.

185. Norris E, Guttadauria M. Piroxicam: new dosage forms.Eur J Rheumatol Inflamm 1987; 8: 94–104.

186. Heinemann H, Rothe W. Preparation of porous tablets.US patent 3,885,026 1975.

187. Corveleyn S, Remon JP. Stability of freeze-driedtablets at different relative humidities. Drug Dev IndPharm 1999; 25:1005–1013.

188. Seager H. Drug-delivery products and the Zydisfast-dissolving dosage form. J Pharm Pharmacol 1998;50:375–382.

189. Hanawa T, Watanabe A, Tsuchiya T, et al. New oraldosage form for elderly patients: preparation andcharacterization of silk fibroin gel. Chem Pharm Bull(Tokyo) 1995; 43:284–288.

190. Hanawa T, Maeda R, Muramatsu E, et al. New oral dosageform for elderly patients. III. Stability oftrichlormethiazide in silk fibroin gel and various sugarsolutions. Drug Dev Ind Pharm 2000; 26:1091–1097.

191. Watanabe A, Hanawa T, Sugihara M, et al. Releaseprofiles of phenytoin from new oral dosage form for theelderly. Chem Pharm Bull (Tokyo) 1994; 42:1642–1645.

192. Tovey GD. The development of the Tiltab tablets. PharmJ 1987; 239:363.

193. Murphy C. Aging and chemosensory perception. FrontOral Physiol 1987; 6:135.

194. Spitzer ME. Taste acuity in institutionalized andnoninstitutionalized elderly men. J Gerontol 1988;43:71–74.

195. Cooper BA. A model for implementing color contrast inthe environment of the elderly. Am J Occup Ther 1985;39:253–258.

196. Zuccollo G, Liddell H. The elderly and the medicationlabel: doing it better. Age Ageing 1985; 14: 371–376.

197. Sumner BD. General considerations. Handbook ofGeriatric Drug Therapy for Health Care Professionals.Philadelphia: Lea & Febiger, 1983:1–9. Formulation

7 Chapter 7- Biotechnology-BasedPharmaceuticals

1. Tauzin B. 418 Biotechnology Medicines in Testing Promiseto Bolster the Arsenal Against Diseases. Medicines inDevelopment, Biotechnology, 2006.

2. Walsh G. Biopharmaceutical benchmarks 2006. Nat Biotech2006; 24(7):769–776.

3. Patton JS, Byron PR. Inhaling medicines: deliveringdrugs to the body through the lungs. Nat Rev Drug Disco2007; 6:67–74.

4. Morishita M, Peppas NA. Is the oral route possible forpeptide and protein drug delivery? Drug Discov Today 2006;11(19–20):905–910.

5. Costantino HR, Illum L, Brandt G, et al. Intranasaldelivery: physiochemical and therapeutic aspects. Int JPharm 2007; 337:1–24.

6. Mahato RI, Narang AS, Thoma L, et al. Emerging trends inoral delivery of peptide and protein drugs. Crit Rev TherDrug Carrier Syst 2003; 20(2–3):153–214.

7. Frokjaer S, Hovgaard L. Pharmaceutical FormulationDevelopment of Pepides and Proteins. London: Taylor &Francis, 2000.

8. Shekunov BY, Cattopadhyay P, Tong HHY, et al. Particlesize analysis in pharmaceutics: principles, methods andapplications. Pharm Res 2007; 24(2):203–227.

9. Sarmento B, Ferreira DC, Jorgensen L, et al. Probinginsulin’s secondary structure after entrapment intoalginate/chitosan nanoparticles. Eur J Pharm Biopharm 2007;65:10–17.

10. Prego C, Fabre M, Torres D, et al. Efficacy andmechanism of action of chitosan nanocapsules for oralpeptide delivery. Pharm Res 2006; 23(3):549–556.

11. Albrecht K, Bernkop-Schnu¨rch A. Thiomers: forms,functions and applications to nanomedicine. Nanomedicine2007; 2(1):41–50.

12. Malkov D, Angelo R, Wang H, et al. Oral delivery ofinsulin with the eligen(R) technology: mechanistic studies.Curr Drug Deliv 2005; 2:191–197.

13. Qi R, Pingel M. Gastrointestinal absorption enhancementof insulin by administration of enteric microspheres andSNAC to rats. J Microencapsul 2004; 21(1):37–45.

14. El-Sayed MEH, Hoffmann AS, Stayton PS. Rational designof composition and activity correlations for pH-responsiveand glutathione-reactive polymer therapeutics. J ControlRelease 2005; 104:417–427.

15. Stayton PS, El-Sayed MEH, Murthy N, et al. Smartdelivery systems for biomolecular therapeutics. OrthodCraniofacial Res 2005; 8:219–225.

16. Deshayes S, Morris M, Heitz F, et al. Delivery ofproteins and nucleic acids using a noncovalentpeptide-based strategy. Adv Drug Deliv Rev 2008;60(4–5):537–547.

17. Deanda F, Smith KM, Liu J, et al. GSSI, a general modelfor solute-solvent interactions. 1. Description of themodel. Mol Pharm 2004; 1(1):23–39.

18. Wang W. Instability, stabilization, and formulation ofliquid protein pharmaceuticals. Int J Pharm 1999;185(2):129–188.

19. Pauling L, Corey RB, Branson HR. The structure ofproteins: two hydrogen-bonded helical configurations of thepolypeptide chain. Proc Natl Acad Sci U S A 1951;37:205–211.

20. Schultz GE, Schirmer RH. Principles of ProteinStructure. New York: Springer-Verlag, 1979.

21. Pauling L, Corey RB. The structure of syntheticpolypeptides. Proc Natl Acad Sci U S A 1951; 37:241–250.

22. Stickle DF, Presta LG, Dill KA, et al. Hydrogen bondingin globular proteins. J Mol Biol 1992; 226:1143–1159.

23. Linderstrøm-Lang KU, Schellman JA. Protein structureand enzyme activity. In: Boyer PD, Lardy H, Myrba¨ck K,eds. The Enzymes. New York: Academic Press Inc.,1959:443–510.

24. Chothia C. Principles that determine the structure ofproteins. Ann Rev Biochem 1984; 53:537–572. 25. Brange J.Physical stability of proteins. In: Frokjaer S, Hovgaard L,eds. Pharmaceutical Formulation Development of Peptides and

Proteins. London: Taylor & Francis, 2000:89–112. 26.Andrade JD. Principles of protein adsorption. In: AndradeJD, ed. Surface and Interfacial Aspects of BiomedicalPolymers. New York: Plenum Press, 1985:1–80. 27. Brange J,Andersen L, Laursen ED, et al. Toward understanding insulinfibrillation. J Pharm Sci 1997; 86(5):517–525. 28. BrangeJ, Langkjaer L. Insulin structure and stability. In: WangYJ, Pearlman R, eds. Stability and Characterisation ofProtein and Peptide Drugs—Case Histories. New York: PlenumPress, 1993:315–350. 29. Parkins DA, Lashmar UT. Theformulation of biopharmaceutical products. Pharm SciTechnol Today 2000; 3(4):129–137. 30. Cleland JL, PowellMF, Shire SJ. The development of stable proteinformulations: a close look at protein aggregation,deamidation, and oxidation. Crit Rev Ther Drug Carrier Syst1993; 10(4):307–377. 31. Almeida AJ, Souto E. Solid lipidnanoparticles as a drug delivery system for peptides andproteins. Adv Drug Deliv Rev 2007; 59(6):478–490. 32.Reubsaet JL, Beijnen JH, Bult A, et al. Analyticaltechniques used to study the degradation of proteins andpeptides: physical instability. J Pharm Biomed Anal 1998;17(6–7):979–984. 33. Kauzmann W. Some factors in theinterpretation of protein denaturation. Adv Protein Chem1959; 14:1–63. 34. Dickinson E. Proteins in solution and atinterfaces. In: Goddard ED, Ananthapadmanabhan KP, eds.Interactions of Surfactants with Polymers and Proteins.Boca Ranton: CRC Press, 1993:295–317. 35. Dickinson E,Matsumura Y. Proteins at liquid interfaces: role of themolten globule state. Colloids Surf B Biointerf 1994;3(1–2):1–17. 36. Shortle D. The denatured state (the otherhalf of the folding equation) and its role in proteinstability. FASEB J 1996; 10:27–34. 37. Jaenicke R. Proteinstability and molecular adaptation to extreme conditions.Eur J Biochem 1991; 202(3):715–728. 38. Tanford C. Proteindenaturation. Adv Protein Chem 1968; 23:121–282. 39. BamNB, Cleland JL, Randolph TW. Molten globule intermediate ofrecombinant human growth hormone: stabilization withsurfactants. Biotechnol Prog 1996; 12(6):801–809. 40.Manning M, Patel K, Borchardt RT. Stability of proteinpharmaceuticals. Pharm Res 1989; 6(11):903–918. 41. DobsonCM. Unfolded proteins, compact states and molten globules.Curr Opin Struct Biol 1992; 2:6–12. 42. Lefebvre J, RelkinP. Denaturation of globular proteins in relation to theirfunctional properties. In: Magdassi S, ed. Surface Activityof Proteins—Chemical and Physiochemical Modifications. NewYork: Marcel Dekker Inc., 1996:181–236. 43. Haynes CA,Norde W. Structures and stabilities of adsorbed proteins. JColloid Interface Sci 1995; 169(2):313–328. 44. Wang W.Protein aggregation and its inhibition in biopharmaceutics.Int J Pharm 2005; 289:1–30. 45. Sadana A. Interfacial

protein adsorption and inactivation. Bioseparation 1993;3(5):297–320. 46. Fagain CO. Understanding and increasingprotein stability. Biochim Biophys Acta 1995; 1252(1):1–14.47. Chi EY, Krishnan S, Randolph TW, et al. Physicalstability of proteins in aqueous solution: mechanism anddriving forces in nonnative protein aggregation. PharmRes2003; 20(9):1325–1336. 48. Fink AL. Protein aggregation:folding aggregates, inclusion bodies and amyloid. Fold Des1998; 3(1):R9–R23. 49. Katakam M, Bell LN, Banga AK. Effectof surfactants on the physical stability of recombinanthuman growth hormone. J Pharm Sci 1995; 84(6):713–716. 50.Dong A, Prestrelski SJ, Allison SD, et al. Infraredspectroscopic studies of lyophilizationandtemperature-induced protein aggregation. J Pharm Sci 1995;84(4):415–424.

51. Treuheit MJ, Kosky AA, Brems DN. Inverse relationshipof protein concentration and aggregation. Pharm Res 2002;19(4):511–516.

52. Vestergaard B, Groenning M, Roessle M, et al. A helicalstructural nucleus is the primary elongating unit ofinsulin amyloid fibrils. PloS Biol 2007; 5(5):1089–1097.

53. Nielsen L, Khurana R, Coats A, et al. Effect ofenvironmental factors on the kinetics of insulin fibrilformation: elucidation of the molecular mechanism.Biochemistry 2001; 40(20):6036–6046.

54. Andrade JD, Hlady V, Wei AP, et al. Proteins atinterfaces: principles, multivariate aspects, proteinresistant surfaces, and direct imaging and manipulation ofadsorbed proteins. Clin Mater 1992; 11(1–4):67–84.

55. Cheesman DF, Davies JT. Physiochemical and biologicalaspects of proteins at interfaces. Adv Protein Chem 1954;9:439–501.

56. Green RJ, Hopkinson I, Jones RAL. Unfolding andintermolecular association in globular proteins adsorbed atinterfaces. Langmuir 1999; 15:5102–5110.

57. MacRitchie F. Proteins at interfaces. Adv Protein Chem1978; 32:283–326.

58. Norde W. The behaviour of proteins at interfaces, withspecial attention to the role of the structure stability ofthe protein molecule. Clin Mater 1992; 11(1–4):85–91.

59. Pugnaloni LA, Dickinson E, Ettelaie R, et al.

Competitive adsorption of proteins and lowmolecular-weightsurfactants: computer simulation and microscopic imaging.Adv Colloid Interface Sci 2004; 107(1):27–49.

60. Mollmann SH, Bukrinsky JT, Frokjaer S, et al.Adsorption of human insulin and Asp B28 insulin on aPTFE-like surface. J Colloid Interface Sci 2005; 286:28–35.

61. Norde W, Giacomelli CE. BSA structural changes duringhomomolecular exchange between the adsorbed and thedissolved states. J Biotechnol 2000; 79(3):259–268.

62. Goolcharran C, Khossravi M, Borchardt RT. Chemicalpathways of peptide and protein degradation. In: FrokjaerS, Hovgaard L, eds. Pharmaceutical Formulation Developmentof Peptides and Proteins. London: Taylor & Francis,2000:70–88.

63. Kerwin BA, Remmele RL. Protect from light:photodegradation and protein biologics. J Pharm Sci 2007;96(6):1468–1479.

64. Violand BN, Siegel NR. Protein and peptide chemical andphysical stability. In: Reid RE, ed. Peptide and ProteinDrug Analysis. New York: Marcel Dekker, 2000:257–284.

65. Krishnamurthy R, Manning MC. The stability factor:importance in formulation development. Curr Pharm Biotech2002; 3:361–371.

66. Council of Europe. European Pharmacopoeia. 5th ed.Strasbourg: Council of Europe, 2005.

67. Akers MJ, DeFelippis MR. Peptides and proteins asparenteral solutions. In: Frokjaer S, Hovgaard L, eds.Pharmaceutical Formulation Development of Peptides andProteins. London: Taylor & Francis, 2000:145–177.

68. Hermeling S, Jiskoot W, Crommelin DJA, et al. Reactionto the paper: interaction of polysorbate witherythropoietin: a case study in protein-surfactantinteractions. Pharm Res 2006; 23(3):641–642.

69. Schellekens H, Casadevall N. Immunogenisity ofrecombinant human proteins: causes and consequences. JNeurol 2004; 251(suppl 2):II/4–II/9.

70. Timasheff SN. Protein hydration, thermodynamic binding,and preferential hydration. Biochemistry 2002;41(46):13473–13482.

71. Huus K, Havelund S, Olsen HB, et al. Ligand binding andthermostability of different allosteric states of theinsulin zinc-hexamer. Biochemistry 2006; 45(12):4014–4024.

72. Govardhan C, Khalaf N, Jung CW, et al. Novellong-acting crystal formulation of human growth hormone.Pharm Res 2005; 22(9):1461–1470.

73. Arakawa T, Prestrelski SJ, Kenney WC, et al. Factorsaffecting short-term and long-term stabilities of proteins.Adv Drug Deliv Rev 2001; 46(1–3):307–326.

74. Tang X, Pikal MJ. Design of freeze-drying processes forpharmaceuticals: practical advice. Pharm Res 2004;21(2):191–200.

75. Wang W. Lyophylization and development of solid proteinpharmaceuticals. Int J Pharm 2000; 203:1–60. 76. Kett V,McMahon D, Ward K. Freeze-drying of proteinpharmaceuticals—the application of thermal analysis. CryoLetters 2004; 25(6):389–404. 77. Chang L, Shepard D, Sun J,et al. Mechanism of protein stabilization by sugars duringfreezedrying and storage: native structure preservation,specific interaction, and/or immobilization in a glassymatrix? J Pharm Sci 2005; 94(7):1427–1444. 78. CarpenterJF, Pikal MJ, Chang BS, et al. Rational design of stablelyophilized protein formulations: some practical advice.Pharm Res 1997; 14(8):969–975. 79. Chobert J-M, Gaudin J-C,Dalgalarrondo M, et al. Impact of Maillard type glycationon properties of beta-lactoglobulin. Biotechnol Adv 2006;24:629–632. 80. Schwegman JJ, Hardwick LM, Akers MJ.Practical formulation and process development offreeze-dried products. Pharm Dev Technol 2005; 10:151–173.81. Shoyele SA, Cawthorne S. Particle engineeringtechniques for inhaled biopharmaceuticals. Adv Drug DelivRev 2006; 58:1009–1029. 82. Maa Y-F, Prestrelski SJ.Biopharmaceutical powders: particle formation andformulation considerations. Curr Pharm Biotechnol 2000;1:283–302. 83. Degim IT, Celebi N. Controlled delivery ofpeptides and proteins. Curr Pharm Design 2007; 13:99–117.84. Weers JG, Tarara TE, Clark AR. Design of fine particlesfor pulmonary drug delivery. Expert Opin Drug Deliv 2007;4(3):297–313. 85. Shoyele SA, Slowey A. Prospects offormulating proteins/peptides as aerosols for pulmonal drugdelivery. Int J Pharm 2006; 314:1–8. 86. Summary of ProductCharacteristics for Pulmozyme. Available at:http://www.produktresume.

99. Summary of Product Characteristics for Grazax.

Available at: http://www.produktresume.dk/

100. Badkar AV, Banga AK. Electrically enhanced transdermaldelivery of a macromolecule. J Pharm Pharmacol 2002;54:907–912.

101. Badkar AV, Smith AM, Eppstein JA, et al. Transdermaldelivery of interfaron alpha-2B using microporation andiontophoresis in hairless rats. Pharm Res 2001;24(7):1389–1395.

102. Levin G, Gershonowitz A, Sacks H, et al. Transdermaldelivery of human growth hormone through RF-microchannels.Pharm Res 2005; 22(4):550–555.

103. Schuetz YB, Naik A, Guy RH, et al. Emerging strategiesfor the transdermal delivery of peptide and protein drugs.Expert Opin Drug Deliv 2005; 2(3):533–548.

104. Summary of Product Characteristics for Zoladex.Available at: http://www.produktresume.dk/

105. Summary of Product Characteristics for Lupron Depot.Available at: http://www.accessdata.

106. Summary of Product Characteristics for DecapeptylDepot. Available at: http://www.

107. Summary of Product Characteristics for Pamorelin.Available at: http://www.produktresume.dk/

108. Summary of Product Characteristics for SandostatinLAR. Available at: http://www.

109. Summary of Product Characteristics for Nutropin Depot.Available at: http://www.accessdata.fda.

110. Kang F, Jiang G, Hinderliter A, et al. Lysozymestability in primary emulsion for PLGA microspherepreparation: effect of recovery methods and stabilizingexcipients. Pharm Res 2002; 19(5):629–633.

111. Tracy MA. Development and scale-up of a microsphereprotein delivery system. Biotechnol Prog 2005; 14:108–115.

112. Hahn SK, Kim SJ, Kim MJ, et al. Characterization andin vivo study of sustained-release formulation of humangrowth hormone using sodium hyaluronate. Pharm Res 2004;21(8): 1374–1381.

113. Kim SJ, Hahn SK, Kim MJ, et al. Development of a novelsustained release formulation of recombinant human growthhormone using sodium hyaluronate microparticles. J ControlRelease 2005; 104:323–335.

114. Tracy MA. Development and scale-up of a microshereprotein delivery system. Biotechnol Prog 1998; 14:108–115.

115. Kwon YM, Baudys M, Knutson K, et al. In situ study ofinsulin aggregation induced by waterorganic solventinterface. Pharm Res 2001; 18(12):1754–1759.

116. Kim HK, Park TG. Microencapsulation of human growthhormone within biodegradable polyester microspheres:protein aggregation stability and incomplete releasemechanism. Biotechnol Bioeng 1999; 65(6):659–667.

117. Cleland JL, Mac A, Boyd B, et al. The stability ofrecombinant human growth hormone in poly(lactic-co-glycolicacid) (PLGA) microspheres. Pharm Res 1997; 14:4–5.

118. Chan Y-P, Meyrueix R, Kravtzoff R, et al. Review onMedusa (R); a polymer-based sustained release technologyfor protein and peptide drugs. Expert Opin Drug Deliv 2007;4(4):441–451.

119. Flamel Technologies: technologies and products.Available at: http://www.flamel-technologies.fr/techAndProd/index.shtml. Accessed December 2007. 120.Kim K, Fisher JP. Nanoparticle technology in bone tissueengineering. J Drug Target 2007; 15(4):241–252. 121.Mehnert W, Ma¨der K. Solid lipid nanoparticles production,characterization and applications. Adv Drug Deliv Rev 2001;47(2–3):165–196. 122. Ye Q, Asherman J, Stevenson M, et al.DepoFoam(TM) technology: a vehicle for controlled deliveryof protein and peptide drugs. J Control Release 2000;64(1–3):155–166. 123. Howell SB. Clinical application of anovel sustained-release injectable drug delivery system:Depofoam TM technology. Cancer J 2001; 7(3):219–227. 124.Pelton JT, McLean LR. Spectroscopic methods for analysis ofprotein secondary structure. Anal Biochem 2000;277(2):167–176. 125. Veronese FM, Pasut G. PEGylation,successful approach to drug delivery. Drug Discov Today2005; 10(21):1451–1458. 126. Veronese FM, Morpurgo M.Bioconjugation in pharmaceutical chemistry. Farmaco 1999;54:497–516. 127. Sola´ RJ, Griebenow K. Chemicalglycosylation: new insights on the interralation betweenprotein structural mobility, thermodynamic stability, andcatalysis. FEBS Let 2006; 580: 1685–1690. 128. Sola´ RJ.Rodrı´guez-Martı´nez JA, Griebenow K. Modulation of protein

biophysical properties by chemical glycosylation:biochemical insights and biomedical implicationsw. Cell MolLife Sci 2007; 64:2133–2152. 129. Soran H, Younis N.Insulin detemir: a new basal insulin analogue. DiabetesObes Metab 2006; 8:26–30. 130. Knudsen LB, Nielsen PF,Huufeldt PO, et al. Potent derivatives of glucagon-likepeptide-1 with pharmacokinetic properties suitable for oncedaily administration. J Med Chem 2000; 43:1664–1669. 131.Novo Nordisk A/S pipeline Vagifem 1 . Available at:http://www.novonordisk.com/investors/rd_pipeline/rd_pipeline.asp?showid=4. Accessed December2007. 132. Jars MU, Hvass A, Waaben D. Insulin aspart (Aspb28 Human insulin) derivatives formed in pharmaceuticalsolutions. Pharm Res 2002; 19(5):621–628. 133. Setter SM,Corbett CF, Campbell RK, et al. Insulin aspart: a newrapid-acting insulin analog. Ann Pharmacother 2000;34:1423–1431. 134. Scientific Discussion. Available at:http://www.emea.europa.eu/humandocs/PDFs/EPAR/Novorapid/272799en6.pdf. Accessed December 2007. 135. HeiseT, Nosek L, Spitzer H, et al. Insulin glulisine: a fasteronset of action compared with insulin lispro. Diabetes ObesMetab 2007; 9:746–753. 136. Scientific Discussion.Available at:http://www.emea.europa.eu/humandocs/PDFs/EPAR/Humalog/060195en6.pdf. Accessed December 2007. 137.Scientific Discussion. Available at:http://www.emea.europa.eu/humandocs/PDFs/EPAR/apidra/121804en6.pdf. Accessed December 2007. 138. Wang F,Carabino JM, Vergara CM. Insulin glargine: a systematicreview of a long-acting insulin analogue. Clin Ther 2003;25(6):1541–1577. 139. Scientific Discussion. Available at:http://www.emea.europa.eu/humandocs/PDFs/EPAR/Lantus/061500en6.pdf. Accessed December 2007. 140. CampbellRK, White JR, Levien T, et al. Insulin glargine. Clin Ther2001; 23(12):1938–1957. 141. Summary of ProductCharacteristics for PROLEUKIN 1 (aldesleukin). Availableat: http://www.pharma.us.novartis.com/product/pi/pdf/proleukin.pdf.Accessed December 2007. 142. Katre NV. The conjugation ofproteins with polyethylene glycol and otherpolymers—altering properties of proteins to enhance theirtherapeutic potential. Adv Drug Deliv Rev 1993; 10: 91–114.143. Summary of Product Characteristics for Adagen 1 .Available at: http://www.accessdata.fda.

145. Jones MC, Patel M. Insulin detemir: a long-actinginsulin product. Am J Health Syst Pharm 2006; 63:2466–2472.

146. Sola´ RJ, Al-Azzam W, Griebenow K. Engineering ofprotein thermodynamic, kinetic, and colloidal stability:

chemical glycosylation with monofunctional activatedglycans. Biotechnol Bioeng 2006; 94(6):1072–1079.

147. Herron JN, Jiskoot W, Crommelin DJA. Physical Methodsto Characterize Pharmaceutical Proteins. New York: PlenumPress, 1995.

148. Freire E. Differential scanning calorimetry. In:Shirley BA, ed. Protein Stability and Folding— Theory andPractice. Totowa, NJ: Humana Press, 1995:191–218.

149. Jiskoot W, Crommelin DJA. Methods for StructuralAnalysis of Protein Pharmaceuticals. Arlington, VA:American Association of Pharmaceutical Scientists, 2005.

150. Baudys M, Kim SW. Peptide and proteincharacterization. In: Frokjaer S, Hovgaard L, eds.Pharmaceutical Formulation Development of Peptides andProteins. London: Taylor & Francis, 2000:41–69.

151. Jackson M, Mantsch HH. The use and misuse of FTIRspectroscopy in the determination of protein structure.Crit Rev Biochem Mol Biol 1995; 30(2):95–120.

152. Cooper EA, Knutson K. Fourier transform infraredspectroscopy investigations of protein structure. In:Herron JN, Jiskoot W, Crommelin DJA, eds. Physical Methodsto Characterize Pharmaceutical Proteins. New York: PlenumPress, 1995:101–143.

153. Haris PI, Severcan F. FTIR spectroscopiccharacterization of protein structure in aqueous andnon-aqueous media. J Mol Catal 1999; 7(1–4):207–221.

154. Burnett GR, Rigby NM, Clare Mills EN, et al.Characterization of the emulsification properties of 2Salbumins from sunflower seed. J Colloid Interface Sci 2002;247(1):177–185.

155. Burstein EA, Vedenkina NS, Ivkova MN. Fluorescence andthe location of tryptophan residues in protein molecules.Photochem Photobiol 1973; 18(4):263–279.

156. Vivian JT, Callis PR. Mechanisms of tryptophanfluorescence shifts in proteins. Biophys J 2001;80(5):2093–2109.

157. Eftink MR. Fluorescence techniques for studyingprotein-structure. Methods Biochem Anal 1991; 35:127–205.

158. Anderson GJ. Circular dichoism and Fourier transforminfra-red analysis of polypeptide conformation. In: ReidRE, ed. Peptide and Protein Drug Analysis. New York: MarcelDekker, 2000:753–774.

159. Lakowicz JR. Principles of Fluorescence Spectroscopy.2nd ed. New York: Kluwer Academic/ Plenum Publishers, 1999.

160. Freire E. Statistical thermodynamic analysis of theheat capacity function associated with proteinfolding-unfolding transitions. Comments Mol Cell Biophys1989; 6(2):123–140.

161. Robertson AD, Murphy KP. Protein structure and theenergetics of protein stability. Chem Rev 1997;97:1251–1267.

162. Ma C-Y, Harwalkar VR. Thermal analysis of foodproteins. Adv Food Nutr Res 1991; 35:317–366.

163. Bam NB, Cleland JL, Yang J, et al. Tween protectsrecombinant human growth hormone against agitation-induceddamage via hydrophobic interactions. J Pharm Sci 1998;87(12): 1554–1559.

164. Kasimova MR, Milstein SJ, Freire E. The conformationalequilibrium of human growth hormone. J Mol Biol 1998;277(2):409–418.

165. Moriyama Y, Kawasaka Y, Takeda K. Protective effect ofsmall amounts of sodium dodecyl sulfate on the helicalstructure of bovine serum albumin in thermal denaturation.J Colloid Interface Sci 2003; 257(1):41–46.

166. Potera C. Antisense—down, but not out. Nat Biotech2007; 25(5):497–499.

167. Summary of Product Characteristics for Vitravene 1 .Available at: http://www.accessdata.fda.gov/

168. Summary of Product Characteristics for Macugen 1 .Available at: http://www.accessdata.fda.

8 Chapter 8- Veterinary PharmaceuticalDosage Forms

8. Carter DH, Luttinger M, Gardner DC. Controlled releaseparenteral systems for veterinary

applications. J Control Release 1988; 8:15–22.

9. Koestler RC, Janes G, Miller JA. Pesticide delivery. In:Kydonieus A, ed. Treatise on

Controlled Drug Delivery. New York: Marcel Dekker,1992:491–543.

10. Arnold RG. Controlled release new animal drugs. JControl Release 1988; 8:85–90.

11. Cardinal JR, Witchey-Lakshmanan LC. Drug delivery inveterinary medicine. In: Kydonieus A,

ed. Treatise on Controlled Drug Delivery. New York: MarcelDekker, 1992:465–489.

12. Baggot JD. Special issue on veterinary drug delivery. JControl Release 1988; 8:3–91.

13. Rathbone MJ, Gurny R, eds. Controlled ReleaseVeterinary Drug Delivery: Biological and

Pharmaceutical Considerations. The Netherlands: ElsevierScience BV, 2000.

14. Rathbone MJ (Theme Editor). Veterinary drug delivery.Part I. Special theme issue. Adv Drug

Deliv Rev 1997; 28(3):91pp.

15. Rathbone MJ, Cady SM (Theme Editors). Veterinary drugdelivery. Part II. Special theme issue.

Adv Drug Deliv Rev 1998; 38(2):83pp.

16. Rathbone MJ, Witchey-Lakshmaman L (Theme Editors).Veterinary drug delivery. Part III.

Special theme Issue. Adv Drug Deliv Rev 2000; 43(1):92pp.

17. Rathbone MJ, Witchey-Lakshmaman L (Theme Editors).Veterinary drug delivery. Part IV.

Special theme issue. Adv Drug Deliv Rev 2001; 50(3):147pp.

18. Rathbone MJ (Theme Editor). Veterinary drug delivery.Part V. Special theme issue. Adv Drug

Deliv Rev 2002; 54(6):97pp.

19. Rathbone MJ, Bowersock T, (Guest Editors). Veterinarydrug delivery (special issue). J Control

Release 2002; 85(1–3):284pp.

20. Rathbone MJ, Macmillan KL, Inskeep K, et al. Fertilityregulation in cattle. J Control Rel 1997;

54:117–148.

21. Rathbone MJ, Macmillan KL, Jo¨chle W, et al. Controlledrelease products for the control of the estrous

cycle in cattle sheep goats deer pigs and horses. Crit RevTher Drug Carrier Syst 1998; 15:285–380.

22. Rathbone MJ, Martinez MN. Linking human and veterinaryhealth: trends directions and

initiatives. AAPS PharmSci 2002; 4 (article 32). Availableat: http://www.aapsj.org/view.asp?

art=ps040432

23. Rathbone MJ, Martinez MN. Modified release drugdelivery in veterinary medicine. Drug

Discov Today 2002; 7:823–829.

24. Rotehn-Weinhold A, Dahn M, Gurny R. Formulation andtechnology aspects of controlled drug

delivery in animals. Pharm Sci Technol Today 2000;3:222–231.

25. Matschke C, Isele U, van Hoogevest P, et al. Sustainedrelease injectables formed in situ and

their potential use for veterinary products. J ControlRelease 2002; 85:1–15.

26. Jalava K, Hensel A, Szostak M, et al. Bacterial ghostsas vaccine candidates for veterinary

applications. J Control Release 2002; 85:17–25.

27. Cady SM, Steber WD. Controlled delivery ofsomatotropins. In: Sanders LM, Hendren P, eds.

Protein Delivery: Physical Systems. New York: Plenum Press,1997:289–317.

28. Ferguson TH. Peptide and protein delivery for animalhealth applications. In: Park K, ed.

Controlled Drug Delivery. Washington, DC, U.S.A.: AmericanChemical Society, 1997:289–308.

29. Robinson JR, Rathbone MJ. Mucosal drug delivery—rectaluterine and vaginal. In: Mathiowitz

E, ed. Encyclopedia of Controlled Drug Delivery. New York:John Wiley and Sons, 1999.

30. Rathbone MJ, Witchey-Lakshmanan L, Ciftci KK.Veterinary applications of controlled release

drug delivery. In: Mathiowitz E, ed. Encyclopedia ofControlled Drug Delivery. New York:

John Wiley and Sons, 1999:1007–1037.

31. Sutton S. Companion animal physiology and dosage fromperformance. Adv Drug Deliv Rev

2004; 56:1383–1398.

32. Kararli TT. Comparison of the gastrointestinal anatomyphysiology and biochemistry of

humans and commonly used laboratory animals. Biopharm DrugDispos 1995; 16:351–380.

33. Dressman JB. Comparison of canine and humangastrointestinal physiology. Pharm Res 1986;

3:123–131.

34. Dressman JB, Yamada K. Animal model for oral drugabsorption. In: Welling, PG, Tse FLS,

Dighe S, eds. Pharmaceutical Bioequivalence. New York:Marcel Dekker, 1991:235–266. 35. Hernot DC, Dumon HJ,

Biourge VC, et al. Evaluation of association between bodysize and large intestinal transit time in healthy dogs. AmJ Vet Res 2006; 67:342–347. 36. Weber MP, Stambouli F,Martin LJ, et al. Influence of age and body size ongastrointestinal transit time of radiopaque markers inhealthy dogs. Am J Vet Res 2002; 63:677–682. 37. Weber MP,Martin LJ, Biourge VC, et al. Influence of age and bodysize on orocecal transit time as assessed by use of thesulfasalazine method in healthy dogs. Am J Vet Res 2003;64:1105–1109. 38. Hernot DC, Biourge VC, Martin LJ, et al.Relationship between total transit time and faecal qualityin adult dogs differing in body size. J Anim Physiol AnimNutr (Berl) 2005; 89:189–193. 39. Weber MP, Martin LJ,Dumon HJ, et al. Influence of age and body size onintestinal permeability and absorption in healthy dogs. AmJ Vet Res 2002; 63:1323–1328. 40. Chiou WL, Jeong HY, ChungSM, et al. Evaluation of using dog as an animal model tostudy the fraction of oral dose absorbed of 43 drugs inhumans. Pharm Res 2000; 17:135–140. 41. Thrombre AG. Oraldelivery of medications to companion animals: palatabilityconsiderations. Adv Drug Deliv Rev 2004; 56:1399–1413. 42.Compendium of Veterinary Products. 10th ed. Port Huron,Michigan: AJ Bayley (publisher), North AmericanCompendiums, 2007: 501–554. 43. FDA-Center for VeterinaryMedicine Guidance Documents. General principles forevaluating the safety of compounds used in food-producinganimals Document No. 3. Version July 2006. 44. VICHGuidance Documents. Studies to evaluate the safety ofresidues of veterinary drugs in human food: generalapproach to testing. Document GL 33. Version October 2002.45. Concordet D, Toutain PL. The withdrawal time estimationof veterinary drugs revisited. J Vet Pharmacol Ther 1997;20:380–386. 46. Reeves PT. Residues of veterinary drugs atinjection sites. J Vet Pharmacol Ther 2007; 30:1–17. 47.Robinson JA. Assessing environmental impacts of veterinaryproducts: lessons from VICH. Drug Inf J 2007; 41:169–185.48. VICH 2000 Environmental Impact Assessment (EIAs) forVeterinary Medicinal Products (VMPs)—Phase I. Topic GL6(Ecotoxicity Phase I). CVMP/VICH/592/98-Final. Availableat: http://wwwemeaeuropaeu/pdfs/vet/vich/059298enpdf. 49.VICH 2004 Environmental Impact Assessment for VeterinaryMedicinal Products—Phase II. GL 38 (Ecotoxicity Phase II).CVMP/VICH/790/03-Final. Available at: http://www.emeaeuropaeu/pdfs/vet/vich/079003enpdf. 50. FDA Center forVeterinary Medicine Guidance Documents. Guidance forIndustry: Evaluating the Safety of Antimicrobial New AnimalDrugs with Regard to Their Microbiological Effects onBacteria of Human Health Concern. Document No. 152. VersionOctober 2003. 51. Medlicott NJ, Waldron NA, Foster TP.Sustained release veterinary parenteral products. Adv Drug

Deliv Rev 2004; 56:1345–1365. 52. Aguiar AJ, Armstrong WA,Desai SJ. Development of oxytetracycline long-actinginjectable. J Control Release 1987; 6:375–385. 53. Cook,DW. Administration devices and techniques. In: Hardee GE,Baggott JD, eds. Development and Formulation of DosageForms. 2nd ed. New York: Marcel Dekker, 1998:305–356. 54.Leatherman MW, Stultz TD, Foster TP. Using flow rates topredict syringeability acceptance of veterinary parenteralformulations. Poster presentation at AAPS Annual Meeting,San Diego, CA, 1994. 55. Brown SA. Administration of aninjectable antibiotic in the ear of an animal. U.S. patent6 074 657. 2000.

9 Chapter 9- Target-Oriented DrugDelivery Systems

1. Ehrlich P. Collected Studies on Immunity. London and NewYork: John Wiley & Sons, 1906.

2. Tomlinson E. Impact of the new biologics on the medicaland pharmaceutical sciences. J Pharm Pharmacol 1992;44(suppl 1):147–159.

3. Tomlinson E. Microsphere delivery systems for drugtargeting and controlled release. Int J Pharm Tech Prod Mfr1983; 4:49–57.

4. Widder KJ, Senyei AE, Ranney DF. Magnetically responsivemicrospheres and other carriers for the biophysicaltargeting of antitumor agents. Adv Pharmacol Chemother1979; 16: 213–271.

5. Tomlinson E. (Patho)physiology and the temporal andspatial aspects of drug delivery. In: Tomlinson E, DavisSS, eds. Site-Specific Drug Delivery. Cell Biology,Medical, and Pharmaceutical Aspects. Chichester, U.K.: JohnWiley & Sons, 1986: 1.

6. Bareford LM, Swaan PW. Endocytic mechanisms for targeteddrug delivery. Adv Drug Deliv Rev 2007; 59:748–758.

7. Patel HM. Serum opsonins and liposomes: theirinteraction and opsonophagocytosis. Crit Rev Ther DrugCarrier Syst 1992; 9:39–90.

8. Absolom DR. Opsonins and dysopsonins: an overview.Methods Enzymol 1986; 132:281–318.

9. Ahsan F, Rivas IP, Khan MA, et al. Targeting tomacrophages: role of physicochemical properties ofparticulate carriers-liposomes and microspheres on thephagocytosis by macrophages. J Control Release 2002;79:29–40.

10. Jeon SI, Lee JH, Andrade JD. Protein–surfaceinteractions in the presence of polyethylene oxide. II.Effect of protein size. J Colloid Interface Sci 1991;142:159–166.

11. Jeon SI, Lee JH, Andrade JD, et al. Protein–surfaceinteractions in the presence of polyethylene oxide. I.Simplified theory. J Colloid Interface Sci 1991;142:149–158.

12. Vanoss CJ, Gillman CF, Bronson PM, et al. Opsonicproperties of human-serum alpha-1 acid glycoprotein.Immunol Commun 1974; 3:329–335.

13. Davis SS, Douglas SJ, Illum L, et al. Targeting ofcolloidal carriers and the role of surface properties. In:Gregoriadis G, Senior J, Poste G, eds. Targeting of Drugswith Synthetic Systems. New York: Plenum Press, 1986:123.

14. Illum L, Davis SS, Jones PDE. Surface coatedmicrospheres to minimize capture by the reticuloendothelialsystem. Polym Preprints 1986; 27:25–26.

15. Illum L, Davis SS. Targeting of colloidal particles tothe bone-marrow. Life Sci 1987; 40:1553–1560. 16. Saito K,Ando J, Yoshida M, et al. Tissue distribution ofsialoglycopeptide bearing liposomes in rats. Chem PharmBull 1988; 36:4187–4191. 17. Moghimi SM, Porter CJ, MuirIS, et al. Non-phagocytic uptake of intravenously injectedmicrospheres in rat spleen—influence of particle size andhydrophilic coating. Biochem Biophys Res Commun 1991;177:861–866. 18. Hsu MJ, Juliano RL. Interaction ofliposomes with the reticuloendothelial system. 2.nonspecific and receptor-mediated uptake of liposomes bymouse peritoneal macrophages. Biochim Biophys Acta 1982;720:411–419. 19. Hopkins CR. Site-specific drugdelivery-cellular opportunities and challenges. In:Tomlinson E, Davis SS, eds. Site-Specific Drug Delivery,Cell Biology, Medical and Pharmaceutical Aspects.Chichester, U.K.: John Wiley & Sons, 1886:27. 20. Duncan R,Cable HC, Rypacek F, et al. Targeting of solublecrosslinked N-(2-hydroxypropyl) methacrylamide copolymersin vivo—a potential drug delivery system. Biochem Soc Trans1984; 12:1064–1065. 21. Duncan R, Cable HC, Rejmanove P, etal. Tyrosinamide residues enhance pinocytic capture ofN-(2-hydroxypropyl)methacrylamide copolymers. BiochimBiophys Acta 1984; 799:1–8. 22. Kooistra T, Duursma A,Bouma JMW, et al. Effect of size and charge on endocytosisof lysozyme derivatives by sinusoidal rat liver cells invivo. Biochim Biophys Acta 1980; 631:439–450. 23. Mitra A,Nan A, Ghandehari H, et al. Technetium-99m-labeledN-(2-hydroxypropyl) methacrylamide copolymers: synthesis,characterization, and in vivo biodistribution. Pharm Res2004; 21:1153–1159. 24. Vyas SP, Sihorkar V. Endogenouscarriers and ligands in non-immunogenic site-specific drugdelivery. Adv Drug Deliv Rev 2000; 43:101–164. 25. Vyas SP,Singh A, Shirokar V. Ligand-receptor-mediated drugdelivery: an emerging paradigm in cellular drug targeting.Crit Rev Ther Drug Carrier Syst 2001; 18:1–76. 26. Dunehoo

AL, Anderson M, Majumdar S, et al. Cell adhesion moleculesfor targeted drug delivery. J Pharm Sci 2006; 95:1856–1872.27. Harris AS. Biopharmaceutical aspects of the intranasaladministration of peptides. In: Davis SS, Ilium L,Tomlinson E, eds. Delivery Systems for Peptides. New York:Plenum Press, 1986:191. 28. Ilium L, Farraj NF, CritichleyH, et al. Nasal administration of gentamicin using novelmicrosphere delivery system. Int J Pharm 1988; 46:261–265.29. Hermans WAJJ, Deurloo MJM, Romeyn SG, et al. Nasalabsorption enhancement of 17bestradiol bydimethyl-b-cyclodextrin in rabbits and rats. Pharm Res1990; 7:500–503. 30. Fisher AN, Farraj NF, O’Hagan DT, etal. Effect of L-cu-lysophosphatidylcholine on the nasalabsorption of human growth hormone in three animal species.Int J Pharm 1991; 74:147–156. 31. Giannasca PJ, Boden JA,Monath TP. Targeted delivery of antigen to hamster nasallymphoid tissue with M-cell-directed lectins. Infect Immun1997; 65:4288–4298. 32. Kumar P, Timoney JF, Sheoran AS. Mcells and associated lymphoid tissue of the equinenasopharyngeal tonsil [comment]. Equine Vet J 2001;33:224–230. 33. Pusztai A. Transport of proteins throughthe membranes of the adult gastrointestinal tract—apotential for drug delivery. Adv Drug Deliv Rev 1989;3:215–228. 34. Matsuno K, Schaffner T, Gerbel HA, et al.Uptake by enterocytes and subsequent translocation tointernal organs, EG, the thymus, of percoll microspheresadministered per OS to suckling mice. J ReticuloendothelialSoc 1983; 33:263–273. 35. Damge C, Aprahamian M, Balboin G,et al. Polyalkylcyanoacrylate nanocapsules increase theintestinal absorption of a lipophilic drug. Int J Pharm1987; 36:121–125. 36. Harush-Frenkel O, Rozentur E, BenitaS, et al. Surface charge of nanoparticles determines theirendocytic and transcytotic pathway in polarized MDCK cells.Biomacromolecules 2008; 9:435–443. 37. Tomlinson E. Theoryand practice of site-specific drug delivery. Adv Drug DelivRev 1987; 1:87–198. 38. Ermak TH, Giannasca PJ.Microparticles targeting to M-cells. Adv Drug Deliv Rev1998; 34:261–283.

39. des Rieux A, Fievez V, Garinot M, et al. Nanoparticlesas potential oral delivery systems of proteins andvaccines: a mechanistic approach. J Control Release 2006;116:1–27.

40. Ritschel WA. Microemulsions for improved peptideabsorption from the gastrointestinal tract. Methods FindExp Clin Pharmacol 1991; 13:205–220.

41. Bies C, Lehr CM, Woodley JF. Lectin-mediated drugtargeting: history and applications. Adv Drug Deliv Rev

2004; 56:425– 435.

42. Dressman JB, Bas P, Ritschel WA, et al.Gastrointestinal parameters that influence oralmedications. J Pharm Sci 1993; 82:857– 872.

43. Ritschel WA. Targeting in the gastrointestinal tract:new approaches. Methods Find Exp Clin Pharmacol 1991;13:313–356.

44. O’Hagan DT. Microparticles and polymers for the mucosaldelivery of vaccines. Adv Drug Deliv Rev 1998; 34:305–320.

45. Lee VHL, Yamamoto A. Penetration and enzymatic barriersto peptide and protein absorption. Adv Drug Deliv Rev 1990;4:171–207.

46. Muranishi S. Absorption enhancers. Crit Rev Ther DrugCarrier Syst 1990; 7:1–33.

47. Davis SS. Delivery systems for biopharmaceuticals. JPharm Pharmacol 1992; 44(suppl 1): 186–190.

48. Smart JD. Lectin-mediated drug delivery in the oralcavity. Adv Drug Deliv Rev 2004; 56:481–489.

49. Merkle HP, Anders R, Sandow J, et al. Drug delivery ofpeptides: the buccal route. In: Davis SS, Ilium L,Tomlinson E, eds. Delivery Systems for Peptide Drugs. NewYork: Plenum Press, 1986:159.

50. Ritschel WA, Ritschel GB, Ritschel BEC, et al. Rectaldelivery system for insulin. Methods Find Exp ClinPharmacol 1988; 10:645–656.

51. Muranishi SS, Takada K, Yoshikawa H, et al. Enhancedabsorption and lymphatic transport of macromolecules viathe rectal route. In: Davis SS, Ilium L, Tomlinson E, eds.Delivery Systems for Peptide Drugs. New York: Plenum Press,1986:177.

52. Bulletti C, deZiegler D, Flamigni C, et al. Targeteddrug delivery in gynecology: the first uterine pass effect.Hum Reprod 1997; 12:1073–1079.

53. Petrak K, Goddard P. Transport of macromolecules acrossthe capillary walls. Adv Drug Deliv Rev 1989; 3:191–214.

54. Williams PL, Warwick R, eds. Gray’s Anatomy. Oxford,U.K.: Churchill Livingston, 1980.

55. Davis SS, Ilium L. Colloidal delivery systemsopportunity and challenges. In: Davis SS, Tomlinson E, eds.Site-Specific Drug Delivery: Cell Biology, Medical andPharmaceutical Aspects. Chichester, U.K.: John Wiley &Sons, 1986:93.

56. Joyner WJ, Kern DF. Microvascular permeability tomacromolecules and its dynamic modulations. Adv Drug DelivRev 1990; 4:319–342.

57. Takakura Y, Mahato RI, Hashida M. Extravasation ofmacromolecules. Adv Drug Deliv Rev 1998; 34:93–108.

58. Seymour LW. Passive tumor targeting of solublemacromolecules and drug conjugates. Crit Rev Ther DrugCarrier Syst 1992; 9:135–187.

59. Kern DF, Bell DR, Blumenstock FA. The effect of chargeon albumin permeability and uptake in the lung. MicrovascRes 1983; 25:241.

60. Lanken PN, Hansen-Flaschen JH, Sampson PM, et al.Passage of uncharged dextrans from blood to lung lymph inawake sheep. J Appl Physiol 1985; 59:580–591.

61. Pietra GG, Fishman AP, Lanken PN, et al. Permeabilityof pulmonary endothelium to neutral and chargedmacromolecules. Ann N Y Acad Sci 1982; 401:241–247.

62. Arturson G, Granath K. Dextrans as test molecules instudies of functional ultrastructure of biologicalmembranes—molecular weight distribution analysis by gelchromatography. Clin Chim Acta 1972; 37:309–322.

63. Taylor AE, Granger DN. Exchange of macromoleculesacross the microcirculation. In: Handbook of Physiology.Vol 6. Ohio, U.S.A.: Oxford Press, 1984:467–520.

64. Wike-Hooley JL, Haveman J, Reinhold HS. The relevanceof tumour pH to the treatment of malignant disease.Radiother Oncol 1984; 2:343–366. 65. Ghitescu L, Fixman A,Simionescu M, et al. Specific binding sites for albuminrestricted to plasmalemmal vesicles of continuous capillaryendothelium: receptor-mediated transcytosis. J Cell Biol1986; 102:1304–1311. 66. Vasile E, Simionescu M, SimionescuN. Visualization of the binding, endocytosis, andtranscytosis of low-density lipoprotein in the arterialendothelium in situ. J Cell Biol 1983; 96:1677–1689. 67.Drobnik J, Rypacek F. Soluble synthetic polymers in

biological systems. Adv Polym Sci 1984; 57:1–50. 68. HallJG. The lymphatic system in drug targeting: an overview.In: Gregoriadis G, Poste G, eds. Targeting ofDrugs—Anatomical and Physiological Considerations. NewYork: Plenum Press, 1985:15. 69. Moghimi SM, Bonnemain B.Subcutaneous and intravenous delivery of diagnostic agentsto the lymphatic system: applications in lymphoscintigraphyand indirect lymphography. Adv Drug Deliv Rev 1999;37:295–312. 70. Moghimi SM, Hawley AE, Christy NM, et al.Surface engineered nanospheres with enhanced drainage intolymphatics and uptake by macrophages of the regional lymphnodes. FEBS Lett 1994; 244:25–30. 71. Moghimi SM,Rajabi-Siahboomi AR. Advanced colloid-based systems forefficient delivery of drugs and diagnostic agents to thelymphatic tissues. Prog Biophys Mol Biol 1996; 65:221–249.72. Oussoren C, Zuidema J, Crommelin DJA, et al. Lymphaticuptake and biodistribution of liposomes after subcutaneousinjection. II. Influence of liposomal size, lipidcomposition and lipid dose. Biochim Biophys Acta 1997;1328:261–272. 73. Phillips WT, Klipper R, Goins B. Novelmethod of greatly enhanced delivery of liposomes to lymphnodes. J Pharmacol Exp Ther 2000; 295:309–312. 74. MoghimiSM. The effect of methoxy-PEG chain length and moleculararchitecture on lymph node targeting of immuno-PEGliposome. Biomaterials 2006; 37:136–144. 75. Noguchi Y, WuJ, Duncan R, et al. Early phase of tumor accumulation ofmacromolecules: a great difference in clearance ratebetween tumor and normal tissues. Jpn J Cancer Res 1998;89:307–314. 76. Maeda H. The enhanced permeability andretention (EPR) effect in tumor vasculature: the key roleof tumor-selective macromolecular drug targeting. AdvEnzyme Regul 2001; 41:189–207. 77. Maeda H, Matsumura Y.Tumoritropic and lymphotropic principles of macromoleculardrugs. Crit Rev Ther Drug Carrier Syst 1989; 6:193–210. 78.Maeda H, Matsumura Y, Oda T, et al. Cancer selectivemacromolecular therapeutics: tailoring of antitumor proteindrugs. In: Feeney RE, Whitaker JR, eds. Protein Tailoringfor Food and Medical Uses. New York: Marcel Dekker,1986:353–382. 79. Matsumura Y, Maeda H. A new concept formacromolecular therapeutics in cancer chemotherapy:mechanism of tumoritropic accumulation of proteins and theantitumor agent SMANCSs. Cancer Res 1986; 46:6387–6392. 80.Maeda H. SMANCS and polymer–conjugated macromoleculardrugs: advantages in cancer chemotherapy. Adv Drug DelivRev 1991; 6:181–202. 81. van Vlerken LE, Duan Z, SeidenMV,et al. Modulation of Intracellular ceramide using polymericnanoparticles to overcome multidrug resistance in cancer.Cancer Res 2007; 67: 4843–4850. 82. Boddy A, Aarons L.Pharmacokinetic and pharmacodynamic aspects ofsite-specific drug delivery. Adv Drug Deliv Rev 1989;

3:155–163. 83. Boddy A, Aarons L, Petrak K. Efficiency ofdrug targeting—steady state considerations using a3-compartment model. Pharm Res 1989; 6:367–372. 84. Levy G.Targeted drug delivery—some pharmacokinetic considerations.Pharm Res 1987; 4:3–4. 85. Gupta PK, Hung CT. Quantitativeevaluation of targeted drug delivery systems. Int J Pharm1989; 56:217–226. 86. Proost JH.Pharmacokinetic/pharmacodynamic modeling in drug targeting.In: Molema G, Meijer DKF, eds. Drug-TargetingOrgan-Specific Strategies. Weinheim, Germany: WileyVCHVerlag GmbH, 2001:333–370.

87. Notari RE. Prodrugs kinetics: theory and practice. In:Bundgaard H, Hansen AB, Koford H, eds. Optimization of DrugDelivery. Copenhagen, Denmark: Munksgaard, 1982:117.

88. Stella VJ, Himmelstein KJ. Prodrugs and site-specificdrug delivery. J Med Chem 1980; 23:1275–1282.

89. Stella VJ, Himmelstein KJ. Critique of prodrugs andsite-specific drug delivery. In: Bundgaard H, Hansen AB,Kofod H, eds. Optimization of Drug Delivery. Copenhagen,Denmark: Munksgaard, 1982:134.

90. Han HK, Amidon GL. Targeted prodrug design to optimizedrug delivery. AAPS PharmSci 2000; 2:1–11.

91. Gardner CR, Alexander J. Prodrug approaches to drugtargeting: past accomplishments and future potential. In:Buri P, Gumma A, eds. Drug Targeting. Amsterdam, TheNetherlands: Elsevier Science Publishers, 1985:145.

92. Stella VJ. Prodrugs: an overview and definition. In:Higuchi T, Stella V, eds. Prodrugs in Novel Drug DeliverySystems. Washington, DC: American Chemical Society, 1975:1.

93. Roche EB, ed. Design of Biopharmaceutical PropertiesThrough Prodrugs and Analogs. Washington, DC: AmericanPharmaceutical Association, 1977.

94. Cotzias GC, VanWoert MH, Schiffer LM. Aromatic aminoacids and modifications of parkinsonism. N Engl J Med 1967;276:374–379.

95. Hussain A, Truelove JE. Prodrug approaches toenhancement of physicochemical properties of drugs IV:novel epinephrine prodrug. J Pharm Sci 1976; 65:1510–1512.

96. Wilk S, Mizoguchi H, Orlowski M. Gamma-glutamyl dopa: akidney-specific dopamine precursor. J Pharmacol Exp Ther

1978; 206:227–232.

97. Friend DR, Chang GW. Drug glycosides: potentialprodrugs for colon-specific drug delivery. J Med Chem 1985;28:51–57.

98. Stella VJ, Mikkelson TJ, Pipkin JD. Prodrugs: thecontrol of drug delivery via bioreversible chemicalmodification. In: Juliano RL, ed. Drug Delivery Systems:Characteristics and Biomedical Applications. New York:Oxford University Press, 1980:112.

99. Baurain R, Masquelier M, Deprezedcampeneere D, et al.Amino acid and dipeptide derivatives of daunorubicin. 2.cellular pharmacology and anti-tumor activity on L1210leukemic-cells in vitro and in vivo. J Med Chem 1980;23:1171–1174.

100. Masquelier M, Baurain R, Trouet A. Amino acid anddipeptide derivatives of daunorubicin. 1. Synthesis,physicochemical properties, and lysosomal digestion. J MedChem 1980; 23: 1166–1170.

101. Chakravarty RK, Carl PL, Weber MJ, et al. Plasminactivated prodrugs for cancer chemotherapy. 1. Synthesisand biological activity of peptidylacivicin andpeptidylphenylenediamine mustard. J Med Chem 1983;26:638–644.

102. Bodor N, Simpkins JW. Redox delivery system forbrain-specific, sustained-release of dopamine. Science1983; 221:65–67.

103. Shek E, Higuchi T, Bodor N. Improved delivery throughbiological membranes. 3. delivery ofN-methylpyridinium-2-carbaldoime chloride through theblood-brain barrier in its dihydropyridine prodrug form. JMed Chem 1976; 19:113–117.

104. Bodor N. Targeting of drugs to the brain. MethodsEnzymol 1985; 112:381–396.

105. Bodor N, Farag HH. Improved delivery throughbiological membranes. 13. Brain specific delivery ofdopamine with a dihydropyridinne-reversible-pyridinium salttype redox delivery system. J Med Chem 1983; 26:528–534.

106. Chu CK, Bhadti VS, Doshi KJ, et al. Brain targeting ofanti-HIV nucleosides—synthesis and in vitro and in vivostudies of dihydropyridine derivatives of

3’-azido-2’,3’-dideoxyuridine and3’azido-3’-deoxythymidine. J Med Chem 1990; 33:2188–2192.

107. Palomin E. Delivery of drugs through dihydropyridinecarriers. Drugs Future 1990; 15:361–368.

108. Brewster ME, Anderson W, Bodor N. Brain, blood, andcerebrospinal-fluid distribution of a zidovudine chemicaldelivery system in rabbits. J Pharm Sci 1991; 80:843–846.

109. Khandare J, Minko T. Polymer-drug conjugates: progressin polymeric prodrugs. Prog Polym Sci 2006; 31:359–397.110. Kratz F, Warnecke A, Schmid B, et al. Prodrugs ofanthracyclines in cancer chemotherapy. Curr Med Chem 2006;13:477–523. 111. Illum L, Davis SS. Passive and activetargeting using colloidal carrier systems. In: Buri P,Gumma A, eds. Drug Targeting. Amsterdam, The Netherlands:Elsevier Science Publishers, 1985:65. 112. Dufes C,Schatzlein AG, Tetley L, et al. Niosomes and polymericchitosan based vesicles bearing transferrin and glucoseligands for drug targeting. Pharm Res 2000; 17:1250–1258.113. Kakudo T, Chaki S, Futaki S, et al.Transferrin-modified liposomes equipped with a pHsensitivefusogenic peptide: an artificial viral-like deliverysystem. Biochemistry 2004; 43: 5618–5628. 114. Li H, Sun H,Zhong MQ. The role of the transferrin–transferrin-receptorsystem in drug delivery and targeting. Trends Pharmacol Sci2002; 23:206–209. 115. Lu Y, Low PS. Folate-mediateddelivery of macromolecular anticancer therapeutic agents.Adv Drug Deliv Rev 2002; 54:675–693. 116. Chiles C, HedlundLW, Kubek RJ, et al. Distribution of 15-MU and 137-MUdiameter microspheres in the dog lung in the axial plane.Invest Radiol 1986; 21:618–621. 117. Kim CK, Lee MK, HanJH, et al. Pharmacokinetics and tissue distribution ofmethotrexate after intravenous injection of differentlycharged liposome-entrapped methotrexate to rats. Int JPharm 1994; 108:21–29. 118. Ahmad I, Allen TM.Antibody-mediated specific binding and cytotoxicity ofliposomeentrapped doxorubicin to lung cancer cells invitro. Cancer Res 1992; 52:4817–4820. 119. Hurwitz E, AdlerA, Shouval D, et al. Immunotargeting of daunomycin tolocalized andmetastatic human colon adenocarcinoma inathymic mice. Cancer Immunol Immunother 1992; 35:186–192.120. Affleck K, Embleton MJ. Monoclonal antibody targetingof methotrexate(MTX) against MTX-resistance tumor celllines. Br J Cancer 1992; 65:838–844. 121. Seymour LW,Al-Shamkhani A, Flanagan PA, et al. Synthetic polymersconjugated to monoclonal antibodies—vehicle for tumortargeted drug delivery. Sel Cancer Ther 1991; 7:59–73. 122.Gregoriadis G, Neerunjun ED. Homing of liposomes to target

cells. Biochem Biophys Res Commun 1975; 65:537–544. 123.Juliano RI, Stamp D. Lectin-mediated attachment ofglycoprotein-bearing liposomes to cells. Nature 1976;261:235–238. 124. Gregoriadis G, Meehan A, Mah MM.Interaction of antibody-bearing small unilamellar liposomeswith target free antigen in vitro and in vivo—someinfluencing factors. Biochem J 1981; 200:203–210. 125.Weissman G, Bloomgarden D, Kaplan R, et al. A generalmethod for introduction of enzymes by means ofimmunoglobulin-coated liposomes, into lysozomes ofdeficient cells. Proc Natl Acad Sci U S A 1975; 72:88–92.126. Kaplan MR, Calef B, Bercovivi T, et al. The selectivedetection of cell-surface determination by means ofantibodies and acetylated avidine attached to highlyfluorescent polymer microspheres. Biochim Biophys Acta1983; 728:112–120. 127. Moghimi SM, Hunter AC, Murray JC.Long-circulating and target-specific nanoparticles: theoryand practice. Pharmacol Rev 2001; 53:283–318. 128. StolnikS, Illum L, Davis SS. Long circulating microparticulatedrug carriers. Adv Drug Deliv Rev 1995; 16:195–214. 129.Widder KJ, Senyei AE. Magnetic microsphere: a vehicle forselective targeting of organs. In: Methods of DrugDelivery. New York: Pergamon Press, 1986:39. 130. Sezaki H,Hashida M, Muranishi S. Gelatin microspheres as carriersfor antineoplastic agents. In: Bundgaard H, Hansen AB,Kofod H, eds. Optimization of Drug Delivery. Copenhagen,Denmark: Munksgaard, 1982:316. 131. Yatvin MB, Kreutz W,Horowitz BA, et al. pH-Sensitive liposomes: possibleclinical implications. Science 1980; 210:1253–1255. 132.Kato T. Encapsulated drugs in targeted cancer therapy. In:Bruck SD, ed. Controlled Drug Delivery. Boca Raton: CRCPress, 1983:189.

133. Kreuter J, Liehl E. Long-term studies ofmicroencapsulated and adsorbed influenza vaccinenanoparticles. J Pharm Sci 1981; 70:367–371.

134. Couvreur P. Polyalkylcyanoacrylates as colloidal drugcarriers. Crit Rev Ther Drug Carrier Syst 1988; 5:1–20.

135. Praveen S, Sahoo SK. Polymeric nanoparticles forcancer therapy. J Drug Target 2008; 16:108–123.

136. Torchilin VP. Targeted pharmaceutical nanocarriers forcancer therapy and imaging. AAPS J 2007; 9:E128–E147.

137. Tong R, Cheng J. Anticancer polymeric nanomedicines.Polym Rev 2007; 47:345–381.

138. Couvreur P, Vanthier C. Nanotechnology; intelligent

design to treat complex disease. Pharm Res 2006;23:1417–1450.

139. Sunderland CI, Steiert M, Talmadge JE, et al. Targetednanoparticles for detecting and treating cancer. Drug DevRes 2006; 67:70–93.

140. Simon C. Magnetic drug targeting. New paths for thelocal concentration of drugs for head and neck cancer. HNO2005; 53:600–601.

141. Chappell JC, Price RJ. Targeted therapeuticapplications of acoustically active microspheres in themicrocirculation. Microcirculation 2006; 13:57–70.

142. Liu J, Wong HL, Moselhy J, et al. Targeting colloidalparticulates to thoracic lymph nodes. Lung Cancer 2006;51:377–386.

143. Brioschi A, Zenga F, Zara GP, et al. Solid lipidnanoparticles: could they help to improve the efficacy ofpharmacologic treatments for brain tumors? Neurol Res 2007;29:324–330.

144. Langer R. Biodegradable long-circulating polymericnanospheres. Science 1994; 263:1600–1603.

145. Emerich DF, Thanos CG. Targeted nanoparticle-baseddrug delivery and diagnosis. J Drug Target 2007;15:163–183.

146. Duncan R. Designing polymer conjugates aslysosomotropic nanomedicines. Biochem Soc Trans 2007;35:56–60.

147. Yang SC, Lu LF, Cai Y, et al. Body distribution inmice of intravenously injected campothecin solid lipidnanoparticles. J Control Release 1999; 59:299–307.

148. Maia CS, Mehnert W, Schafer-Korting M. Solid lipidnanoparticles as drug carriers for topical glucocorticoids.Int J Pharm 2000; 196:165–167.

149. Peracchia MT, Fattal E, Desmaele D, et al. StealthPEGylated polycyanoacrylate nanoparticle for intravenousadministration. J Control Release 1999; 60:121–128.

150. Gregoriadis G, ed. Liposome Technology. Boca Raton:CRC Press, 1984.

151. Gregoriadis G, ed. Liposome Technology. Boca Raton:CRC Press, 1993.

152. New PRC, ed. Liposome-A Practical Approach. Oxford,U.K.: IRL Press, 1990.

153. Yagi K, ed. Medical Applications of Liposomes. Tokyo,Japan, and Basel, Switzerland: Japan Scientific Press and SKarger, 1986.

154. Schmidt KH, ed. Liposomes as Drug Carriers. Stuttgart,Germany: Georg Thieme Verlag, 1986.

155. Gregoriadis G, Allison AC, eds. Liposome in BiologicalSystems. Chichester, U.K.: John Wiley & Sons, 1980.

156. Maruyama K, Mori A, Kennel SJ, et al. Drug delivery byorgan-specific immunoliposomes. ACS Symp Ser 1991;469:275–284.

157. Roerdnik FH, Daemen T, Bakker-Woudenberg IAJM, et al.Therapeutic utility of liposomes. In: Johnson P, Jones JGL,eds. Drug Delivery Systems and Fundamental and Techniques.Chichester, U.K.: Ellis Horwood, 1987:67.

158. Roerdink F, Regts J, Daemen T, et al. Liposomes asdrug carriers to liver macrophages. In: Targeting of Drugswith Synthetic Systems. New York: Plenum Press, 1985:193.

159. Gregoriadis G, Senior J, Wolff B, et al. Fate ofliposomes in vivo: control leading to targeting. In:Gregoriadis G, Poste G, Senior J, Trouet A, eds.Receptor-Mediated Targeting of Drugs. New York: PlenumPress, 1984:243.

160. Lopez-Berestein G, Juliano RL, Mehta K, et al.Liposomes in antimicrobial therapy. In: Gregoriadis G,Senior J, Poste G, eds. Targeting of Drugs with SyntheticSystems. New York: Plenum Press, 1985:193. 161. SugarmanSM, Peres-Solar R. Liposomes in the treatment ofmalignancy—a clinical perspective. Crit Rev Oncol Hematol1992; 12:231–242. 162. Gregoriadis G, Florence AT.Liposomes and cancer therapy. Cancer Cells 1991; 3:144–146.163. Gregoriadis G. Overview of liposomes. J AntimicrobChemother 1991; 8:39– 48. 164. Liliemark J. Liposomes fordrug targeting in cancer chemotherapy. Eur J Surg Suppl1991; 561:49–52. 165. Lopez-Berstein G. Liposomes ascarriers of antimicrobial agents. Antimicrob AgentsChemother 1987; 31:675–678. 166. Sozaka FC Jr. The futureof liposomal drug delivery. Biotechnol Appl Biochem 1990;

12: 496–500. 167. Torchilin VP. Liposomes as targetabledrug carriers. Crit Rev Ther Drug Carrier Syst 1985;2:65–115. 168. Drummond DC, Meyer O, Hong K, et al.Optimizing liposomes for delivery of chemotherapeuticagents to solid tumors. Pharmacol Rev 1999; 51:691–743.169. Hope MJ, Bally MB, Webb G, et al. Production of largeunilamellar vesicles by a rapid extrusion procedure.Characterization of size distribution, trapped volume andability to maintain a membrane potential. Biochim BiophysActa 1985; 812:55–65. 170. Gabizon A, Dagan A, Goren D, etal. Liposomes as in vivo carriers of adriamycin: reducedcardiac uptake and preserved antitumor activity in mice.Cancer Res 1982; 42:4734–4739. 171. Mayer LD, Bally MB,Hope MJ, et al. Uptake of antineoplastic agents into largeunilamellar vesicles in response to a membrane potential.Biochim Biophys Acta 1985; 816:294–302. 172. Kirby C,Gregoriadis G. Dehydration-rehydration vesicles: a simplemethod for high-yield drug entrapment in liposomes.Biotechnol 1984; 2:979–984. 173. Alpar O. Liposomes in drugdelivery: 21 years of research. Pharm J 1991; 246:172–173.174. Weissig V, Lasch J, Gregoriadis G. A method forpreparation of liposomes with encapsulated peptide antigensand surface-linked sugar residues. Pharmazie 1991;46:56–57. 175. Senior J, Gregoriadis G.Dehydration-rehydration vesicle methodology facilitates anovel approach to antibody-binding to liposomes. BiochimBiophys Acta 1989; 1002:58–62. 176. Andersen TL, Jensen SS,Jorgensen K. Advanced strategies in liposomal cancertherapy: problems and prospects of active and tumorspecific drug release. Prog Lipid Res 2005; 44:68–97. 177.Poste G, Kirsh R, Koestler T, eds. Liposome Technology.Targeted Drug Delivery and Biological Interactions. BocaRaton: CRC Press, 1984. 178. Belchetz PE, Braidman IP,Crawly JCW, et al. Treatment of Gaucher’s disease withliposomeentrapped glucocerebroside: beta-glucosidase.Lancet 1977; 2:116–117. 179. Tyrrel DA, Ryman BE, KeetonBR, et al. The use of liposomes in treating type-2glycogenosis. Br Med J 1976; 2:88. 180. New RRC, Chance ML,Thomas SC, et al. Antileishmanial activity of antimonialsentrapped in liposomes. Nature 1978; 272:55–56. 181. AlvingCR, Steck EA, Chapman JWL, et al. Therapy of leishmaniasis:superior efficacies of liposome-encapsulated drugs. ProcNatl Acad Sci U S A 1978; 75:2959–2963. 182. Black CDV,Watson GJ, Ward RJ. The use of pentostam liposomes in thechemotherapy of experimental leishmaniasis. Trans R SocTrop Med Hyg 1977; 71:550–552. 183. Bakker-Woudenberg IAJM,Lokerse AF, Roerdnik FH, et al. Free versusliposome-entrapped ampicillin in treatment of infection dueto listeria monocytogenes in normal and athymic (nude)mice. J Infect Dis 1985; 151:917–924. 184. Fidler IJ. The

generation of tumoricidal activity in macrophages for thetreatment of established metastases. In: Nicolson GL, MilasL, eds. Cancer Invasion and Metastasis: Biologic andTherapeutic Aspects. New York: Raven Press, 1984:421. 185.Sone S, Matsura S, Ogawara M, et al. Potentiating effect ofmuramyl dipeptide and its lipophilic analog encapsulated inliposomes on tumor cell killing by human monocytes. JImmunol 1984; 132:2105–2110. 186. Fidler IJ, Sone S, FoglerWE, et al. Efficacy of liposomes containing a lipophilicmuramyl dipeptide derivative for activating the tumoricidalproperties of alveolar macrophages in vivo. J Biol ResponseMod 1982; 1:43.

187. Fidler IJ, Raz A, Fogler WE, et al. The role of plasmamembrane receptors and the kinetics of macrophageactivation by lymphokines encapsulated in liposomes. CancerRes 1981; 41:495–504.

188. Saiki L, Sone S, Fogler WE, et al. Synergism betweenhuman recombinant gamma-interferon and muramyl dipeptideencapsulated in liposomes for activation of antitumorproperties in human blood monocytes. Cancer Res 1985;45:6188–6193.

189. Saiki L, Fidler IJ. Synergistic activation byrecombinant mouse interferon-gamma and muramyl dipeptide oftumoricidal properties in mouse macrophages. J Immunol1985; 135:684–688.

190. Sone S, Tandon P, Utsugi T, et al. Synergism ofrecombinant human interferon gamma withliposome-encapsulated muramyl tripeptide in activation ofthe tumoricidal properties of human monocytes. Int J Cancer1986; 38:495–500.

191. Fidler IJ, Schroit AJ. Synergism between lymphokinesand muramyl dipeptide encapsulated in liposomes: in situactivation of macrophages and therapy of spontaneous cancermetastases. J Immunol 1984; 133:515–518.

192. Mayhew E, Rustum Y. Effect of liposome entrappedchemotherapeutic-agents on mouse primary and metastatictumors. Biol Cell 1983; 47:81–85.

193. New RRC, Chance ML, Heath S. Antileishmanial activityof amphotericin and other antifungal agents entrapped inliposomes. J Antimicrob Chemother 1981; 8:371–381.

194. Rosenberg OA, Berkreneva VY, Loshakova LV, et al. Anenhanced trapping of tumor cells of liposomes prepared from

autologous phospholipids. Vopr Onkol 1983; 29:56–60.

195. Burkhanov SA, Kosykh VA, Repin VS, et al. Interactionof liposomes of different phospholipid and gangliosidecomposition with rat hepatocytes. Int J Pharm 1988;46:31–34.

196. Abu-Dahab R, Schafer UF, Lehr CM.Lectin-functionalized liposomes for pulmonary drugdelivery: effect of nebulization on stability andbioadhesion. Eur J Pharm Sci 2001; 14:37– 41.

197. Bruck A, Abu-Dahab R, Borchard G, et al.Lectin-functionalized liposomes for pulmonary drugdelivery: interaction with human alveolar epithelial cells.J Drug Target 2001; 9:241–251.

198. Yatvin MB, Cree TC, Tegmo-Larsson IM. Theoretical andpractical considerations in preparing liposomes for thepurpose of releasing drug in response to changes intemperature and pH. In: Gregoriaids G, ed. LiposomeTechnology. Boca Raton: CRC Press, 1984:157.

199. Weinstein JN, Magin RL, Cysyk RL, et al. Treatment ofsolidL1210 murine tumors with local hyperthermia andtemperature sensitive liposomes containing methotrexate.Cancer Res 1980; 40:1388–1395.

200. Tacker JR, Anderson RU. Delivery of anti-tumor drug tobladder-cancer by use of phasetransition liposomes andhyperthermia. J Urol 1982; 127:1211–1214.

201. Yatvin MB, Muhensipen H, Porschen W, et al. Selectivedelivery of liposome-associatedcisdichlorodiamineplatinum(II) by heat and its influence ontumor drug uptake and growth. Cancer Res 1981;41:1602–1607.

202. Roux E, Passirani C, Scheffold S, et al. Serum stableand long-circulating, PEGylated, pHsensitive liposomes. JControl Release 2004; 94:447– 451.

203. Nicolau C, Pape AL, Soriano P, et al. In vivoexpression of rat insulin after intravenous administrationof the liposome-entrapped gene for rat insulin I. Proc NatlAcad Sci U S A 1983; 80:1068–1072.

204. Szebeni J, Wahl SM, Betageri GV, et al. Inhibition ofHIV-1 in monocyte macrophage cultures by2’,3’-dideoxycytidine-5’triphosphate, free and in

liposomes. AIDS Res Hum Retroviruses 1990; 6:691–702.

205. Phillips NC, Skamene F, Tsouka C. Liposomalencapsulation of 3’-azido-3’-deoxythymidine (AZT) resultsin decreased bone-marrow toxicity and enhanced activityagainst murine aids aids-induced immunosuppression. JAcquir Immune Defic Syndr Retrovirol 1991; 4:959–966.

206. Babincova M, Altanerova V, Lampert M, et al.Site-specific in vivo targeting of magnetoliposomes usingexternally applied Magnetic Field. Z Naturforsch 2000;55:278–281.

207. Pinto-Alphandary H, Andremont A, Couvreur P. Targeteddelivery of antibiotics using liposomes and nanoparticles:research and applications. Int J Antimicrob Agents 2000;13:155–168.

208. Velpandian T, Gupta SK, Gupta YK, et al. Ocular drugtargeting by liposomes and their corneal interactions. JMicroencapsul 1999; 16:243–250. 209. Rogers JA, AndersonKE. The potential of liposomes in oral drug delivery. CritRev Ther Drug Carrier Syst 1998; 15:421–480. 210. Sun WT,Zhang N, Li AG, et al. Preparation and evaluation ofN3-O-toluyl-fluorouracilloaded liposomes. Int J Pharm 2008;353:243–250. 211. Sun WT, Zou WW, Huang GH, et al.Pharmacokinetics and targeting property of TFu-loadedliposomes with different sizes after intravenous and oraladministration. J Drug Target 2008; 16:357–365. 212. ZouWW, Sun WT, Zhang N, et al. Enhanced oral bioavailabilityand absorption mechanism study ofN3-O-toluyl-fluorouracil-loaded liposomes. J BiomedNanotechnol 2008; 4:90–98. 213. Taira MC, Chiaramoni NS,Pecuch KM, et al. Stability of liposomal formulations inphysiological conditions for oral drug delivery. Drug DelivTechnol 2004; 11:123–128. 214. Baillie AJ, Florence AT,Muirhead LH, et al. Preparation and properties ofniosomes-non ionic surfactant vesicles. J Pharm Pharmacol1985; 37:863–868. 215. Israelachvili JN, Marcelja S, HornRG. Physical principles of membrane organization. Q RevBiophys 1980; 13:121–200. 216. Hunter CA, Dolan TF, CoombsGH, et al. Vesicular systems (niosomes and liposomes) fordelivery of sodium stibogluconate in experimental murinevisceral leishmaniasis. J Pharm Pharmacol 1988; 40:161–165.217. Kiwada H, Nimura H, Fujisaki Y, et al. Application ofsynthetic alkyl glycoside vesicles as drug carriers. I.Preparation and physical properties. Chem Pharm Bull 1985;33:753–759. 218. Echegoyen LE, Hernandez JC, Kaifer AE, etal. Aggregation of steroidal lariat liposomes (niosomes)formed from neutral crown ether compounds. J Chem Soc Chem

Commun 1988; 836–837. 219. Baillie AJ. Niosomes: a putativedrug carrier system. In: Gregoriadis G, Poste G, eds.Targeting of Drugs Anatomical and PhysiologicalConsiderations. New York: Plenum Press, 1988:143. 220.Azmin MN, Florence AT, Handjani-Vila RM, et al. The effectof non-ionic surfactant vesicle (niosome) entrapment on theabsorption and distribution of methotrexate in mice. JPharm Pharmacol 1985; 37:237–242. 221. Azmin MN, FlorenceAT, Handjani-Vila RM, et al. The effect of niosomes andpolysorbate 80 on the metabolism and excretion ofmethotrexate in the mouse. J Microencapsul 1986; 3: 95–100.222. Namdeo A, Jain NK. Niosomal delivery of5-fluorouracil. J Microencapsul 1999; 16:731–740. 223.Rogerson A. (PhD). A physicochemical and biologicalevaluation of non-ionic surfactant vesicles. Glasgow:University of Strathclyde; 1986. 224. Baillie AJ, CoombsGH, Dolan TF, et al. Non-ionic surfactant vesicles,niosomes, as a delivery system for the anti-leishmanialdrug, sodium stibogluconate. J Pharm Pharmacol 1986;38:502–505. 225. Bijsterbosch MK, Berkel TJCV. Native andmodified lipoproteins as drug delivery systems. Adv DrugDeliv Rev 1990; 5:231–251. 226. de Smidt PC, van Berkel TJ.LDL-mediated drug targeting. Crit Rev Ther Drug CarrierSyst 1990; 7:99–120. 227. Damle NS, Seevers RH, SchwendnerSW, et al. Potential tumoror organ-imaging agents XXIV:chylomicron remnants as carriers for hepatographic agents.J Pharm Sci 1983; 72:898–901. 228. Samadi-Baboli M, FavreG, Blancy E, et al. Preparation of low-densitylipoprotein-9methotxyyellipticin complex and its cyto-toxiceffect against L121and P388 leukemic cells in vitro. Eur JCancer Clin Oncol 1989; 25:233. 229. Lestavel-Delattre S,Martin-Nizard F, Clavey V, et al. Low-density lipoproteinfor delivery of an acrylophenone antineoplastic moleculeinto malignant cells. Cancer Res 1992; 52:3629–3635. 230.Kempen HJM, Hoes C, Boom JHV, et al. A water-solublecholesteryl containing trisgalactoside: synthesis,properties. J Med Chem 1984; 27:1306–1312. 231. Scoazec JY,Feldman G. Both endothelial cells and macrophages of thehepatic sinusoid express the CD4 molecule—possibleimplications for HIV infection. Hepatology 1989; 10:627.

232. Joel DD, Laissue JD, LeFevre ME. Distribution and fateof ingested carbon particles in mice. J ReticuloendothelialSoc 1978; 72:440–451.

233. Takahashi T. Emulsion and activated carbon inchemotherapy. Crit Rev Ther Drug Carrier Syst 1985;2:245–247.

234. Huang YN, Hagiwara A, Wang W, et al. Local injection

of M-CH combined with i.p. hyperthermic hypo-osmolarinfusion is an effective therapy in advanced gastriccancer. Anticancer Drugs 2002; 13:431–435.

235. Ito K, Kiriyama K, Watanabe T, et al. A newlydeveloped drug delivery system using fine particles ofactivated charcoal for targeting chemotherapy. ASAIO Trans1990; 36:M199–M202.

236. Ortner M, Taha AAM, Schreiber S, et al. Endoscopicinjection of mitomycin adsorbed on carbon particles foradvanced esophageal cancer: a pilot study. Endoscopy 2004;36:421– 425.

237. Nakase Y, Hagiwara A, Kin S, et al. Intratumoraladministration of methotrexate bound to activated carbonparticles: antitumor effectiveness against human coloncarcinoma xenografts and acute toxicity in mice. JPharmacol Exp Ther 2004; 311:382–387.

238. Roth JC, Curiel DT, Pereboeva L. Cell vehicletargeting strategies. Gene Ther 2008; 15:716–729.

239. Dean MF, Muir H, Benson PF, et al. Increased breakdownof glycosaminoglycans and appearance of corrective enzymeafter skin transplants in Hunter syndrome. Nature 1975;257:609– 614.

240. Matas AJ, Sutherland DER, Steffes MW, et al.Hepatocellular transplantation for metabolicdeficiencies—decrease of plasma bilirubin in gunn rats.Science 1976; 192:892–894.

241. Baum R. Combinatorial approaches provide fresh leadsfor medicinal chemistry. Chem Eng News 1994; 72:20–26.

242. Younoszai R, Sorenson RL, Lindal AW.Homotransplantation of isolated pancreatic islets. Diabetes1970; 19(suppl 1):406–408.

243. Prieto J, Fernandez-Ruiz V, Kawa MP, et al. Cells asvehicles for therapeutic genes to treat liver diseases.Gene Ther 2008; 15:765–771.

244. Munguia A, Ota T, Miest T, et al. Cell carriers todeliver oncolytic viruses to sites of myeloma tumor growth.Gene Ther 2008; 15:797–806.

245. Sprandel U. Temperature-induced shape transformationof carrier erythrocytes. Res Exp Med 1990; 190:267–275.

246. Ihler GM, Tsang HC. Erythrocyte carriers. Crit RevTher Drug Carrier Syst 1984; 1:155–187.

247. Magnani M, Rossi L, D’ascenzo M, et al. Erythrocyteengineering for drug delivery and targeting. BiotechnolAppl Biochem 1998; 28:1–6.

248. Hamidi M, Tajerzadeh H. Carrier Erythrocytes: anoverview. Drug Deliv 2003; 10:9–20.

249. Magnani M, Rossi L, Fraternale A, et al.Erythrocyte-mediated delivery of drugs, peptides andmodified oligonucleotides. Gene Ther 2002; 9:749–751.

250. Magnani M, ed. Erythrocyte engineering for drugdelivery and targeting. Texas and New York: LandesBioscience and Kulwer Academic/Plenum Publishers, 2003.

251. Millan CG, Marinero MLS, Castaneda AZ, et al. Drug,enzyme and peptide delivery using erythrocytes as carriers.J Control Release 2004; 95:27–49.

252. Jaitely V, Kanaujia P, Venkatesan N, et al. Resealederythrocytes: drug carrier potentials and biomedicalapplications. Indian Drugs 1995; 33:589–594.

253. Hamidi M, Zarrin A, Foroozesh M, et al. Applicationsof carrier erythrocytes in delivery of biopharmaceuticals.J Control Release 2007; 118:145–160.

254. Benatti U, Zocchi E, Tonetti M, et al. Enhancedantitumor activity of adriamycin by encapsulation in mouseerythrocytes targeted to liver and lungs. Pharmacol Res1989; 21(suppl 2):27–32.

255. Leu HJ, Wenner A, Spycher MA. Erythrocyte diapedesisin venous stasis syndrome. (Electron microscopicexaminations). VASA 1981; 10:17–23.

256. Price RJ, Skyba DM, Kaul S, et al. Delivery ofcolloidal particles and red blood cells to tissue throughmicrovessel ruptures created by targeted microbubbledestruction with ultrasound. Circulation 1998;98:1264–1267.

257. Sprandel U, Lanz DJ, von Horsten W. Magneticallyresponsive erythrocyte ghosts. Methods Enzymol 1987;149:301–312. 258. Bax BE, Bain MD, Fairbank LD, et al. Invitro and in vivo studies with human carrier erythrocytes

loaded with polyethylene glycol-conjugated and nativeadenosine deaminase. Br J Haematol 2000; 109:549–554. 259.Rossi L, Franchetti P, Pierige F, et al. Inhibition ofHIV-1 replication in macrophages by a heterodinucleotide oflamivudine and tenofovir. J Antimicrob Chemother 2007;59:666– 675. 260. Fraternale A, Casabianca A, Rossi L, etal. Inhibition of murine AIDS by combination of AZT andDDCTP-loaded erythrocytes. In: Sprandel U, Way JL, eds.Erythrocytes as Drug Carriers in Medicine. New York: PlenumPress, 1997:73–80. 261. Deloach JR, Peters S, Pinkard O, etal. Effect of glutaraldehyde treatment on enzyme-loadederythrocytes. Biochim Biophys Acta 1977; 496:507–515. 262.Jordan JA, Alvarez FJ, Lotero LA, et al. In vitrophagocytosis of carrier mouse red blood cells is increasedby band 3 cross-linking or diamide treatment. BiotechnolAppl Biochem 2001; 34(pt 3):143–149. 263. Eichler HC, GasicS, Daum B, et al. In vitro drug release from human carriererythrocytes. Adv Biosci (Ser) 1987; 67:11–15. 264. KitaoT, Hattori K. Erythrocyte entrapment of daunomycin byamphotericin B without hemolysis. Cancer Res 1980;40:1351–1353. 265. Billah MM, Finean JB, Coleman R, et al.Preparation of erythrocyte ghosts by a glycolinducedosmotic lysis under isoionic conditions. Biochim BiophysActa 1976; 433:54–62. 266. Lin PS, Wallach DFH, MikkelsenRB, et al. Action of halothane on human erythrocytes,mechanism of cell lysis and production of sealed ghosts.Biochim Biophys Acta 1975; 401: 73–82. 267. Gordon L,Milner AJ. Blood platelets as multifunctional cells. In:Gordon JL, ed. Platelets in Biology and Pathology.Amsterdam, The Netherlands: Elsevier/North-HollandBiomedical Press, 1976:3. 268. Weiss JM. Plateletphysiology and abnormalities of platelet function (PartII). N Engl J Med 1975; 293:531. 269. Ahn YS, Byrnes JJ,Harrington WJ, et al. Treatment of idiopathicthrombocytopenia with vinblastine-loaded platelets. N EnglJ Med 1978; 298:1001–1007. 270. Ahn YS, Harrington WJ,Byrnes JJ, et al. Treatment of autoimmune hemolytic anemiawith vinca-loaded platelets. JAMA 1983; 249:2189–2194. 271.Penney NS, Ahn YS, McKinney EC. Sinus histiocytosis withmassive lymphadenopathy. A case with unusual skininvolvement and a therapeutic response tovinblastine-loaded platelets. Cancer 1982; 49:1994–1998.272. Woo SY, Klappenbach RS, McCullars GM, et al. Familialerythrophagocytic lymphohistiocytosis: treatment withvinblastine-loaded platelets. Cancer 1986:2566–2570. 273.Segal AW, Thakur ML, Arnot RN, et al. Indium-111-labelledleucocytes for localization of abscesses. Lancet 1976;2:1056–1058. 274. Gainey MA, McDougall IR. Diagnosis ofacute inflammatory conditions in children and adolescentsusing In 111 oxine white blood cells. Clin Nucl Med 1984;

9:71–74. 275. Sixou S, Teissie J. In vivo targeting ofinflamed areas of eletroloaded neutrophils. Biochem BiophysRes Commun 1992; 186:860–862. 276. Sezaki H, Hashida M.Macromolecule-drug conjugate in targeted cancerchemotherapy. Crit Rev Ther Drug Carrier Syst 1984; 1:1–38.277. Staros JV, Wright RW, Swingle DM. Enhancement byN-hydroxysulfosuccinimide of watersolublecarbodiimide-mediated coupling reactions. Anal Biochem1986:220–222. 278. Kopecek J, Duncan R.Poly(N-(2-hydroxypropyl)methacrylamide) macromolecules asdrug carrier systems. In: Illum L, Davis SS, eds. Polymersin Controlled Drug Delivery. Bristol, U.K.: Wright,1987:152. 279. Lloyd JB. Soluble polymers as targetabledrug carriers. In: Johnson P, Llyod JG, eds. Drug DeliverySystems Fundamental and Techniques. Chichester, U.K., andWeinheim, Germany: Ellis Horwood and VCHVerlagsgesellschaft, 1987:95. 280. Krishenbaum K,Zuckermann RN, Dill KA. Designing polymers that mimicbiomolecules. Curr Opin Struct Biol 1999; 9:530–535.

281. Blakey DC. Drug targeting with monoclonal antibodies.A review. Acta Oncol 1992; 31:91–97.

282. Hellstrom KE, Hellstrom I, Goodman GE. Antibodies fordrug delivery. In: Robinson JR, Lee VH, eds. ControlledDrug Delivery: Fundamental and Applications. New York:Marcel Dekker, 1987:623.

283. Sikora K. Monoclonal antibodies and drug targeting incancer. In: Gregoriadis G, Poste G, eds. Targeting of DrugsAnatomical and Physiological Considerations. New York:Plenum Press, 1987:69.

284. Muzykantov VR, Christofidou-Solomidou M, BalyasnikovaI, et al. Streptavidin facilitates internalization andpulmonary targeting of an anti-endothelial cell antibody(plateletendothelial cell adhesion molecule 1): a strategyfor vascular immunotargeting of drugs. Proc Natl Acad Sci US A 1999; 96:2379–2384.

285. Arano Y, Fujioka Y, Akizawa H, et al. Chemical designof radiolabeled antibody fragments for low renalradioactivity levels. Cancer Res 1999; 59:128–134.

286. Tai A, Blair AH, Ghosh T. Tumor inhibition bychlorambucil covalently linked to antitumor globulin. Eur JCancer Clin Oncol 1979; 15:1357–1363.

287. Ghose T, Tai J, Guclu A, et al. Inhibition of a mousehepatoma by the alkylating agent trenimon linked to

immunoglobulins. Cancer Immunol Immunother 1982;13:185–189.

288. Pimm MV, Robins RA, Embleton MJ, et al. A bispecificmonoclonal antibody against methotrexate and a human tumorassociated antigen augments cytotoxicity ofmethotrexatecarrier conjugate. Br J Cancer 1990;61:508–513.

289. Ghosh MK, Kildsig DO, Mitra AK. Preparation andcharacterization of methotrexateimmunoglobulin conjugates.Drug Des Deliv 1989; 4:13–25.

290. Ding L, Samuel J, MacLean GD, et al. Effectivedrug-antibody targeting using a novel monoclonal antibodyagainst the proliferative compartment of mammalian squamouscarcinomas. Cancer Immunol Immunother 1990; 32:105–109.

291. Hudecz F, Ross H, Price MR, et al. Immunoconjugatedesign: a predictive approach for coupling of daunomycin tomonoclonal antibodies. Bioconjug Chem 1990; 1:197–204.

292. Frankel AE, Powell BL, Lilly MB. Diphtheria toxinconjugate therapy of cancer. In: Giaccone G, Schilsky R,Sondel P, eds. Cancer Chemotherapy and Biological ResponseModifiers. Amsterdam, The Netherlands: Elsevier Science BV,2002:301–314.

293. Raso V, Ritz J, Basala M, et al. Monoclonalantibody-ricin A chain conjugate selectively cytotoxic forcells bearing the common acute lymphoblastic leukemiaantigen. Cancer Res 1982; 42:457– 464.

294. Page M, Thibeault D, Noel C, et al. Coupling apreactivated daunorubicin derivative to antibody—a newapproach. Anticancer Res 1990; 10:353–358.

295. Garnett MC. Targeted drug conjugates: principles andprogress. Adv Drug Deliv Rev 2001; 53:171–216.

296. Ghose T, Blair AH. The design of cytotoxicagent-antibody conjugates. Crit Rev Ther Drug Carrier Syst1987; 3:263–359.

297. Rowland GF, Simmonds RG, Corvalan JRF, et al.Monoclonal antibodies for targeted therapy with vindesine.In: Peters H, ed. Protides of the biological fluids. ProcColloq 1983; 30:375.

298. Ojima I, Geng X, Wu X, et al. Tumor-specific novel

taxoid-monoclonal antibody conjugates. J Med Chem 2002;45:5620–5623.

299. Griffiths GL, Mattes MJ, Stein R, et al. Cure of SCIDmice bearing human B-lymphoma xenografts by an anti-CD74antibody-anthracycline drug conjugate. Clin Cancer Res2003; 9:6567–65671.

300. Samokhin GP, Smirnov MD, Muzykantove VR, et al. Redblood cells targeting to collagen coated surfaces. FEBSLett 1983; 154:257–261.

301. Urdal DL, Hakomori S. Tumor-associatedganglion-trisylceramide—target for antibodydependent,avidin-mediated drug killing of tumor cells. J Biol Chem1980; 255:509–516.

302. Lukyanov AN, Elbayoumi TA, Chanilam AR, et al.Tumor-targeted liposomes: doxorubicinloadedlong-circulating liposomes modified with anti-cancerantibody. J Control Release 2004; 100:135–144. 303. EichlerHG, Gasic S, Bauer K, et al. In vivo clearance ofantibody-sensitized human drug carrier erythrocytes. ClinPharmacol Ther 1986; 40:300–303. 304. Glukhova MA,Domogatsky SP, Kabakov AE, et al. Red blood cell targetingto smooth muscle cells. FEBS Lett 1986; 198:155–158. 305.Cao Y, Lam L. Bispecific antibody conjugates intherapeutics. Adv Drug Deliv Rev 2003; 55:171–195. 306.Peipp M, Valerius T. Bispecific antibodies targeting cancercells. Biochem Soc Trans 2002; 30:507–511. 307. Trouet A,Campeneere DD, Burain R, et al. Desoxyribonucleic acid ascarrier of antitumor drugs. In: Gregoriadis G, ed. DrugCarriers in Biology and Medicine. London, U.K.: AcademicPress, 1979:87. 308. Trouet A. Carriers for bioactivematerials. In: Kostelnik RJ, ed. Polymeric DeliverySystems. New York: Gordon & Breach, 1978:157. 309. Paul C,Lliemark J, Tidefelt U, et al. Pharmacokinetics ofdaunorubicin and doxorubicin in plasma and leukemic-cellfrom patients with acute nonlymphoblastic leukemia. DrugMonit 1989; 11:140–148. 310. Trouet A, Jadin JM, Hoof FV.Lysosomotropic chemotherapy in protozoal diseases. In:Biochemistry of Parasites and Host-Parasites Relationships.Amsterdam, The Netherlands: North-Holland, 1976:519. 311.Franssen EJ, Amsterdam RG, Visser J, et al. Low molecularweight proteins as carriers for renal drug targeting:naproxen–lysozyme. Pharm Res 1991; 8:1223–1230. 312. MaackT, Johnson V, Kau ST, et al. Renal filtration, transportand metabolism of low molecular weight proteins: a review.Kidney Int 1979; 16:251–270. 313. Kok RJ, Grijpstra F,Walthuis RB, et al. Specific delivery of captopril to the

kidney with the prodrug captopril-lysozyme. J Pharmacol ExpTher 1999; 288:281–285. 314. Qian ZM, Tang PL. Mechanismsof iron uptake by mammalian cells. Biochim Biophys Acta1995; 1269:205–214. 315. Laske DW, Youle RJ, Oldfield EH.Tumor regression with regional distribution of the targetedtoxin Tf-CRM107 in patients with malignant brain tumors.Nat Med 1997; 3:1362–1368. 316. Hagihara N, Walbridge S,Olson AW, et al. Vascular protection by chloroquine duringbrain tumor therapy with Tf-CRM107. Cancer Res 2000;60:230–254. 317. Meijer DKF, Sluijs PVD. Covalent andnoncovalent protein binding of drugs: implications forhepatic clearance, storage, and cell-specific drugdelivery. Pharm Res 1989; 6:105–118. 318. Molema G, JansenRW, Pauwels R, et al. Targeting of antiviral drugs toT4-lymphocytes antiHIV activity of neoglycoprotein-AZTMPconjugates in vitro. Biochem Pharmacol 1990; 40:2603–2610.319. Roche AC, Midoux P, Pimpancau V, et al. Endocytosismediated by monocyte and macrophage membranelectins—application to antiviral drug targeting. Res Virol1990; 141:243–249. 320. Chu BCF, Whiteley JM. Highmolecular weight derivatives of methotrexate aschemotherapeutic agents. Mol Pharmacol 1977; 13:80–88. 321.Han JH, Oh YK, Kim DS, et al. Enhanced hepatocyte uptakeand liver targeting of methotrexate using galactosylatedalbumin as a carrier. Int J Pharm 1999; 188:39–47. 322. ChuBCF, Whiteley JM. Control of solid tumor metastases with ahigh molecular weight derivative of methotrexate. J NatlCancer Inst 1979; 62:79–82. 323. Whiteley JM, Nimec Z,Galivan J. Treatment of reuber H35 hepatoma cells withcarrier bound methotrexate. Mol Pharmacol 1981; 19:505–508.324. Beijaars L, Molema G, Weert B, et al. Albumin modifiedwith mannose 6-phosphate: a potential carrier for selectivedelivery of antifibrotic drugs to rat and human hepaticstellate cells. Hepatology 1999; 29:1486–1493. 325. FiumeL, Busi C, Mattioli A. Targeting of antiviral drugs bycoupling with protein carriers. FEBS Lett 1983; 153:6–10.326. Swart PJ, Beijaars L, Kuipers ME, et al. Homing ofnegatively charged albumins to the lymphatic system—generalimplications for drug targeting to peripheral tissues andviral reservoirs. Biochem Pharmacol 1999; 58:1425–1435.

327. Varga JM, Asato N. Hormones as drug carriers. In:Targeted Drugs. New York: John Wiley & Sons, 1983:73.

328. Nechusthan A, Yarkoni S, Marianvsky I, et al.Adenocarcinoma cells are taregted by the new GnRH-PE66chimeric toxin through specific gonadotropin-releasehormone binding sites. J Biol Chem 1997; 272:11597–11603.

329. Schlick J, Dulieu P, Desvoyes B, et al. Cytotoxicity

activity of a recombinant GnRH-PAP fusion toxin on humantumor cell lines. FEBS Lett 2004; 472:21–246.

330. Ross AD, Angaran DM. Colloids vs crystalloids—acontinuing controversy. Drug Intell Clin Pharm 1984;18:202–212.

331. Moleteni L. Dextran as drug carriers. In: GregoriadisG, ed. Drug Carriers in Biology and Medicine. New York:Academic Press, 1979:25.

332. Schacht E. Polysaccharide macromolecules as drugcarriers. In: Illum L, Davis SS, eds. Polymer in ControlledDrug Delivery. Bristol, U.K.: IOP Publishing, Wright,1987:131.

333. Genta I, Perugini P, Pavanetto F, et al.Microparticulate drug delivery systems. EXS 1999;87:305–313.

334. Matsumoto S, Arase Y, Takakura Y, et al. Plasmadisposition and in vivo and in vitro antitumor activitiesof mitomycin C-dextran conjugate in relation to the mode ofaction. Chem Pharm Bull 1985; 33:2941–2947.

335. Schaschke N, Assfatglvlachleidt I, Machleidt W, et al.b-Cyclodextrin/epoxysuccinyl peptide conjugates: a new drugtargeting system for tumor cells. Bioorg Med Chem Lett2000; 10: 677–680.

336. Friend DR, Pangburn S. Rationale for targeted drugdelivery. Med Res Rev 1987; 7:53–106.

337. Shen WC, Ryser HJP. Poly(L-lysine) and poly(D-lysine)conjugates of methotrexate— different inhibitory effect ofdrug resistant cells. Mol Pharmacol 1979; 16:614–622.

338. Chu BCF, Howell SB. Differential toxicity ofcarrier-bound methotrexate toward human lymphocytes, marrowand tumor cells. Biochem Pharmacol 1981; 30:2545–2552.

339. Zunino F, Savi G, Giuliani F, et al. Comparison ofantitumor effects of daunorubicin covalently linked topoly-L-amino acid carriers. Eur J Cancer Clin Oncol 1984;20:421– 425.

340. Hurwitz E, Wilchek M, Pitha J. Soluble macromoleculesas carriers for daunorubicin. J Appl Biochem 1980; 2:25–35.

341. Campbell P, Glover G, Gunn JM. Inhibition of

intracellular protein degradation by pepstatinyl,poly(L-lysine), and pepstatinyl-poly(L-lysine). ArchBiochem Biophys 1980; 203:676–680.

342. Kopecek J. The potential of water-soluble polymericcarriers in targeted and site-specific drug delivery. JControl Release 1990; 11:279–290.

343. Vasey PA, Kaye SB, Morrison R, et al. Phase I clinicaland pharmacokinetic study of PK1(N2-hydroxypropyl)methacrylamide copolymer doxorubicin:first member of a new class of chemotherapeutic agent-drugpolymer conjugate. Clin Cancer Res 1999; 5:83–94.

344. Caiolfa VR, Zamai M, Fiorino A, et al. Polymer boundcamptothecin: initial biodistribution and antitumoractivity studies. J Control Release 2000; 65:105–119.

345. Merum Terwogt JM, Ten Bokkel Huinink WW, Shellens JH,et al. Phase I clinical and pharmacokinetic study of PNU166945, a novel polymer-conjugated prodrug of paclitaxel.Anticancer Drugs 2001; 12:315–323.

346. Gianasi E, Wasil M, Evagorou EG, et al. HPMA copolymerplatinates as novel antitumor agents: in vitro properties,pharmacokinetics, and antitumor activity. Eur J Cancer1999; 3:994–1002.

347. Seymour LW, O’Hare K, Duncan R, et al. 1st order and2nd order drug targeting and hepatic melanoma. Br J Cancer1991; 63:833.

348. Kopecek J, Rihova B, Krinick NL. Targetablephotoactivatable polymeric drugs. J Control Release 1991;16:137–144.

349. Maeda H. SMANCS and polymer-conjugated macromoleculardrugs: advantages in cancer chemotherapy. Adv Drug DelivRev 2001; 46:169–185.

350. Maeda H, Matsumura Y. New tactics and basic mechanismsof targeting chemotherapy in solid tumors. In: Kimura K,ed. Cancer Chemotherapy: Challenge for the Future. Tokyo,Japan: Excerpta Medical, 1989:42. 351. Matsumra Y, KimuraM, Yamamoto T, et al. Involvement of the kinin-generatingcascade in enhanced vascular permeability in tumor tissue.Jpn J Cancer Res 1988; 79:1327–1334. 352. Konno T, Maeda H.Targeting chemotherapy of hepatocellular carcinoma:arterial administration of SMANCS/Lipiodol. In: Okada K,Ishak KG, eds. Neoplasm in the Liver. New York:

Springer-Verlag, 1987:343. 353. Konno T, Maeda H. Targetinganticancer chemotherapy for primary and secondary livercancer using arterially administered oily anticanceragents. In: Kimura K, ed. Cancer Chemotherapy: Challengesfor the Future. Tokyo, Japan: Medica, 1987:287. 354. GreishK, Fang J, Inutsuka T, et al. Macromolecular therapeutics:advantages and prospects with special emphasis on solidtumour targeting. Clin Pharmacokinet 2003; 43:1089–1105.355. Yamamoto H, Miki T, Oda T, et al. Reduced bone marrowtoxicity of neocarzinostatin by conjugation with divinylether–maleic acid copolymer. Eur J Cancer 1990; 26:253–260.356. Przybylski, Fell E, Ringsdorf H, et al.Pharmacologically active polymers. 17. Synthesis andcharacterization of polymeric derivatives of anti-tumoragent methotrexate. Makromol Chem Macromol Chem Phys 1978;179:1719–1733. 357. Breslow DS, Edwards EI, Newburg NR.Divinyl ether-maleic anhydride (Pyran) copolymer used todemonstrate the effect of molecular weight on biologicalactivity. Nature 1973; 246:160–162. 358. Oh DM, Han HK,Amidon GL. Drug transport and targeting. Intestinaltransport. Pharm Biotechnol 1999; 12:59–88. 359. Jia W, LiH, Zhao L, et al. Gut microbiodata: a potential newterritory for drug targeting. Nature Rev 2008; 7:123–129.360. Lenaerts V, Gurny R, eds. Bioadhesive Drug DeliverySystems. Boca Raton: CRC Press, 1990. 361. Klokkers-BethkeK, Fischer W. Development of a multiple unit drug deliverysystem for positioned release in the gastrointestinaltract. J Control Release 1991; 15:105–112. 362. Alia J,Arora S, Ahuja A, et al. Formulation and development ofhydrodynamically balanced system for metformin: in vitroand in vivo evaluation. Eur J Pharm Biopharm 2007;67:196–291. 363. Rajanikanth PS, Mishra B. Floating in situgelling system for stomach site-specific delivery ofclarithromycin to eradicate H-pylori. J Control Release2008; 125:33– 41. 364. Coppi G, Lannuccelli V, Cameroni R.Polysaccharide in-coating process for freely swellablehydrogels. Pharm Dev Technol 1998; 3:347–353. 365. PatelAU, Shah T, Amin A. Therapeutic opportunities incolon-specific drug-delivery systems. Crit Rev Ther DrugCarrier Syst 2007; 24:147–202. 366. Patel GN, Patel GC,Patel RB, et al. Colon-specific delivery. Oralcolon-specific drug delivery: an overview. Drug DelivTechnol 2006; 6:62–72. 367. Press AG, Hauptmann IA,Hauptmann L, et al. Gastrointestinal pH profiles inpatients with inflammatory bowel disease. Aliment PharmacolTher Drug Monit 1988; 12:673–678. 368. Fallingborg J.Intraluminal pH of the human gastrointestinal tract. DanMed Bull 1999; 46:183–196. 369. Nugent SG, Kumar D, RamptonDS, et al. Intestinal luminal pH in inflammatory boweldisease: possible determinants and implications for therapy

with aminosalicylates and other drugs. Gut 2001;48:571–577. 370. Fallingborg J, Christensen LA, JacobsonBA, et al. Very low intraluminal pH in patients with activeulcerative colitis. Dig Dis Sci 1993; 38:1989–1993. 371.Raimundo AH, Evans DF, Rogers J, et al. Gastrointestinal pHprofiles in ulcerative colitis. Gastroenterology 1992;104:A681. 372. Sinha VR, Kumria R. Microbially triggereddrug delivery to the colon. Eur J Pharm Sci 2003; 18:3–18.373. Saffran M, Kumar GS, Savariar C, et al. A new approachto the oral administration of insulin and other peptidedrugs. Science 1986; 233:1081–1084. 374. Kakoulides EP,Smart JD, Tsibouklis J. Azocrosslinked poly(acrylic acid)for colonic delivery and adhesion specificity: in vitrodegradation and preliminary ex vivo bioadhesion studies. JControl Release 1998; 54:95–109.

375. Kakoulides EP, Smart JD, Tsibouklis J. Azocross-linkedpoly(acrylic acid) for colonic delivery and adhesionspecificity: synthesis and characterization. J ControlRelease 1998; 52:291–300.

376. Roldo M, Barbu E, Brown JF, et al. Orallyadministered, colon-specific mucoadhesive azopolymerparticles for the treatment of inflammatory bowel disease:an in vivo study. J Biomed Mater Res 2006; 79A:706–715.

377. Roldo M, Barbu E, Brown JF, et al. Azo compounds incolon-specific drug delivery. Expert Opin Drug Deliv 2007;4:547–560.

378. van den Mooter G, Offringa G, Kalala W, et al.Synthesis and evaluation of new linear azopolymers forcolonic targeting. STP Pharma Sci 1995; 5:36–40.

379. van den Mooter G, Samyn C, Kignet R. In vivoevaluation of a colon-specific drug delivery system: anabsorption study of theophylline from capsules coated withazopolymers. Pharm Res 1995; 12:244–247.

380. Samyn C, Kalala W, van den Mooter G, et al. Synthesisand in vitro biodegradation of poly (ester-ester) azopolymers designed for colon targeting. Int J Pharm 1995;121:211–216.

381. Sinha VR, Kumaria R. Polysaccharides in colon-specificdrug delivery. Int J Pharm 2001; 224:19–38.

382. Bronsted BH, Kopecek J. Hydrogels for site-specificdrug delivery to the colon: in vitro and in vivodegradation. Pharm Res 1992; 9:1540–1545.

383. Shanta K, Ravichandran P, Rao K. Azo polymerichydrogels for colon targeted drug delivery. Biomaterials1995; 16:1313–1318.

384. Liu ZL, Hu H, Zhuo RX. Konjacglucomannan-graft-acrylic acid hydrogels containing azocrosslinker for colon-specific delivery. J Pharm Sci 2004;42:4370–4378.

385. Yin Y, Yang YJ, Xu H. Hydrophobically modifiedhydrogels containing azoaromatic crosslinks: swellingproperties, degradation in vivo and application in drugdelivery. Eur Polym J 2002; 38:2305–2311.

386. Sinha VR, Bhinge JR, Kumria R, et al. Development ofpulsatile systems for targeted drug delivery of celecoxibfor prophylaxis of colorectal cancer. Drug Deliv 2006;13:221–225.

387. Stevens HNE, Wilson CG, Welling PG, et al. Evaluationof pulsincap (TM) to provide regional delivery ofdofetilide to the human GI tract. Int J Pharm 2002;236:27–34.

388. Mastiholimath VS, Dandagi PM, Jain SS, et al. Time andpH dependent colon specific, pulsatile delivery oftheophylline for nocturnal asthma. Int J Pharm 2007;328:49–56.

389. Minko T. Drug targeting to the colon with lectins andneoglycoconjugates. Adv Drug Deliv Rev 2004; 56:491–509.

390. Woodley JF. Lectins for gastrointestinal targeting—15years on. J Drug Target 2000; 7:325–333.

391. Bridges JF, Woodley JF, Duncan R, et al. SolubleN-(2-hydroxypropyl) methacrylamide copolymers as apotential oral, controlled-release, drug delivery system.I. Bioadhesion to the rat intestine in vitro. Int J Pharm1988; 44:213–223.

392. Ito R, Machida Y, Sannan T, et al. Magnetic granules—anovel system for specific drug delivery to esophagealmucosal in oral administration. Int J Pharm 1990;61:109–117.

393. O’Hagan DT. The intestinal uptake of particles and theimplications for drug and antigen delivery. J Anat 1996;189:477–482.

394. Wachsmann D, Klein JP, Scholler M, et al. Local andsystemic immune response to orally administered liposomesoluble s-mutans cell wall antigens. Immunology 1985;54:189–193.

395. O’Hagan DT, Palin K, Davis SS, et al. Microparticlesas potentially orally active immunological adjuvants.Vaccine 1989; 7:421–424.

396. O’Hagan DT, Palin KJ, Davis SS.Poly(butyl-2-cyanoacrylate) particles as adjuvants for oralimmunization. Vaccine 1989; 7:213–216.

397. O’Hagan DT, Rahman D, McGee JP, et al. Biodegradablemicroparticles as controlled release antigen deliverysystems. Immunology 1989; 73:239–242.

398. Challacombe SJ, Rahman D, Jeffery H, et al. Enhancedsecretory IgA and systemic IgC antibody responses afteroral immunization with biodegradable microparticlescontaining antigen. Immunology 1992; 76:164–168. 399.O’Hagen DT, Rahman D, Jeffery H, et al. Controlled-releasemicroparticles for oral immunization. Int J Pharm 1994;108:133–139. 400. Florence AT. Issues in oral nanoparticledrug carrier uptake and targeting. J Drug Target 2004;12:65–70. 401. Wigness BD, Dorman FD, Rhode TD, et al. Thespring-driven implantable pump. A low-cost alternative.ASAIO J 1992; 38:M454–M457. 402. Buchwald H, Rhode TD.Implantable pumps. Recent progress and anticipated futureadvances. ASAIO J 1992; 38:772–778. 403. Salem JL, MicossiP, Dumm FL, et al. Clinical trial of programmableimplantable insulin pump for type-I diabetes. Diabetes Care1992; 15:877–885. 404. Salem JL, Charles MA. Devices forinsulin administration. Diabetes Care 1990; 13:955–979.405. Blackshear PJ, Rhode TD. Implantable infusion pumpsfor drug delivery in man: theoretical and practicalconsiderations. Horiz Biochem Biophys 1989; 9:293–309. 406.Blackshear PJ. Implantable pumps for insulin delivery:current clinical status. In: Johnson P, Lloyd-Jones JG,eds. Drug Delivery Systems, Fundamentals and Techniques.Chichester, U.K.: Ellis Horwood, 1987:139. 407. Gallo JM,Sanzgiri Y, Howerth EW, et al. Serum, cerebrospinal fluid,and brain concentrations of a new zidovudine formulationfollowing chronic administration via an implantable pump indogs. J Pharm Sci 1992; 81:11. 408. Boorjian SA, MilowskyMI, Kaplan J, et al. Phase 1/2 clinical trial of interferona2b and weekly liposome-encapsulated all-trans retinoicacid in patients with advanced renal cell carcinoma. JImmunother 2007; 30:655–662. 409. Molema G, Meijer DKF.

Targeting of drugs to various blood cell types using(neo)glycoproteins, antibodies and other protein carriers.Adv Drug Deliv Rev 1994; 14:25–50.

10 Chapter 10- New Imaging Methods forDosage Form Characterization

1. Gumbleton M, Stephens DJ. Coming out of the dark: theevolving role of fluorescence imaging in drug deliveryresearch. Adv Drug Deliv Rev 2005; 57(1):5–15.

2. Pygall SR, Whetstone J, Timmins P, et al. Pharmaceuticalapplications of confocal laser scanning microscopy: thephysical characterisation of pharmaceutical systems. AdvDrug Deliv Rev 2007; 59(14):1434–1452.

Figure 6 X-ray microcomputed tomography. An axialcross-section through a freeze-dried 15

minute swollen high-amylose starch pellet, in whichvariations in X-ray attenuation provide

evidence of an outer surface membrane. The pellet size is3.0 (height) 3.3 (width). The membrane

thickness is 300 mm on the right and left edges (at midheight) and 450 mm at the top and bottom

sides of the pellet. The smooth layer ranges from 130 mm onthe right and left edges to 200 mm on

the top and bottom sides. Source: From Ref. 159. 3. MinskyM. Memoir in inventing the confocal scanning microscope.Scanning 1988; 10:128–138. 4. White NS, Errington RJ.Fluorescence techniques for drug delivery research: theoryand practice. Adv Drug Deliv Rev 2005; 57(1):17–42. 5.Cutts LS, Hibberd S, Adler J, et al. Characterising drugrelease processes within controlled release dosage formsusing the confocal laser scanning microscope. J ControlRelease 1996; 42(2):115–124. 6. Guo HX, Heinamaki J,Yliruusi J. Amylopectin as a subcoating material improvesthe acidic resistance of enteric-coated pellets containinga freely soluble drug. Int J Pharm 2002; 235(1–2): 79–86.7. Adler J, Jayan A, Melia CD. A method for quantifyingdifferential expansion within hydrating hydrophilicmatrixes by tracking embedded fluorescent microspheres. JPharm Sci 1999; 88(3): 371–377. 8. Bajwa GS, Hoebler K,Sammon C, et al. Microstructural imaging of early gel layerformation in HPMC matrices. J Pharm Sci 2006;95(10):2145–2157. 9. Determan AS, Trewyn BG, Lin VSY, etal. Encapsulation, stabilization, and release of BSAFITCfrom polyanhydride microspheres. J Control Release 2004;100(1):97–109. 10. Volodkin DV, Petrov AI, Prevot M, et al.Matrix polyelectrolyte microcapsules: new system for

macromolecule encapsulation. Langmuir 2004;20(8):3398–3406. 11. Lamprecht A, Scha¨fer UF, Lehr CM.Visualization and quantification of polymer distribution inmicrocapsules by confocal laser scanning microscopy (CLSM).Int J Pharm 2000; 196(2): 223–226. 12. Berkland C, KipperMJ, Narasimhan B, et al. Microsphere size, precipitationkinetics and drug distribution control drug release frombiodegradable polyanhydride microspheres. J Control Release2004; 94(1):129–141. 13. Shenderova A, Burke TG,Schwendeman SP. The acidic microclimate inpoly(lactide-coglycolide) microspheres stabilizescamptothecins. Pharm Res 1999; 16(2):241–248. 14. Fu K,Pack DW, Klibanov AM, et al. Visual evidence of acidicenvironment within degrading poly(lactic-co-glycolic acid)(PLGA) microspheres. Pharm Res 2000; 17(1):100–106. 15. LiL, Schwendeman SP. Mapping neutral microclimate pH in PLGAmicrospheres. J Control Release 2005; 101(1–3):163–173. 16.Cope SJ, Hibberd S, Whetstone J, et al. Measurement andmapping of pH in hydrating pharmaceutical pellets usingconfocal laser scanning microscopy. Pharm Res 2002; 19(10):1554–1563. 17. Bugay DE. Characterization of thesolid-state: spectroscopic techniques. Adv Drug Deliv Rev2001; 48(1):43–65. 18. Wartewig S, Neubert RHH.Pharmaceutical applications of Mid-IR and Ramanspectroscopy. Adv Drug Deliv Rev 2005; 57(8):1144–1170. 19.Coutts-Lendon CA, Wright NA, Mieso EV, et al. The use ofFT-IR imaging as an analytical tool for thecharacterization of drug delivery systems. J ControlRelease 2003; 93(3):223–248. 20. Kazarian SG, Chan KLA.“Chemical Photography” of drug release. Macromolecules2003; 36(26):9866–9872. 21. Bobiak JP, Koenig JL. Regionsof interest in FTIR imaging applications: diffusion ofnicotine into ethylene-co-vinyl acetate films. J ControlRelease 2005; 106(3):329–338. 22. Rafferty DW, Koenig JL.FTIR imaging for the characterization of controlled-releasedrug delivery applications. J Control Release 2002;83(1):29–39. 23. Gaudreau S, Neault JF, Tajmir-Riahi HA.Interaction of AZT with human serum albumin studied bycapillary electrophoresis, FTIR and CD spectroscopicmethods. J Biomol Struct Dyn 2002; 19(6):1007–1014. 24.Neault JF, Benkirane A, Malonga H, et al. Interaction ofcisplatin drug with Na,K-ATPase: drug binding mode andprotein secondary structure. J Inorg Biochem 2001;86(2–3):603–609. 25. Alberti I, Kalia YN, Naik A, et al. Invivo assessment of enhanced topical delivery of terbinafineto human stratum corneum. J Control Release 2001;71(3):319–327. 26. Hanh BD, Neubert RHH, Wartewig S, et al.Penetration of compounds through human stratum corneum asstudied by Fourier transform infrared photoacousticspectroscopy. J Control Release 2001; 70(3):393–398.

27. Chan KLA, Hammond SV, Kazarian SG. Applications ofattenuated total reflection infrared spectroscopic imagingto pharmaceutical formulations. Anal Chem 2003;75(9):2140–2146.

28. van der Weerd J, Kazarian SG. Combined approach of FTIRimaging and conventional dissolution tests applied to drugrelease. J Control Release 2004; 98(2):295–305.

29. Van der Weerd J, Kazarian SG. Release of poorly solubledrugs from HPMC tablets studied by FTIR imaging andflow-through dissolution tests. J Pharm Sci 2005;94(9):2096–2109.

30. Elkhider N, Chan KLA, Kazarian SG. Effect of moistureand pressure on tablet compaction studied with FTIRspectroscopic imaging. J Pharm Sci 2007; 96(2):351–360.

31. Chan KLA, Kazarian SG. High-throughput study ofpoly(ethylene glycol)/ibuprofen formulations undercontrolled environment using FTIR imaging. J Comb Chem2006; 8(1): 26–31.

32. Reich G. Near-infrared spectroscopy and imaging: basicprinciples and pharmaceutical applications. Adv Drug DelivRev 2005; 57(8):1109–1143.

33. Blanco M, Alcala M. Content uniformity and tablethardness testing of intact pharmaceutical tablets by nearinfrared spectroscopy: a contribution to process analyticaltechnologies. Anal Chim Acta 2006; 557(1–2):353–359.

34. Cogdill RP, Anderson CA, Drennen JK. Using NIRspectroscopy as an integrated PAT tool. Spectroscopy 2004;19(12):104–109.

35. Guo J-H, Skinner GW, Harcum WW, et al. Application ofnear-infrared spectroscopy in the pharmaceutical soliddosage form. Drug Dev Ind Pharm 1999; 25(12):1267–1270.

36. Clarke F. Extracting process-related information frompharmaceutical dosage forms using near infrared microscopy.Vib Spectrosc 2004; 34(1):25–35.

37. Keresztury G. Raman spectroscopy: theory. In: ChalmersJM, Griffiths PR, eds. Handbook of VibrationalSpectroscopy: Theory and Instrumentation. London: JohnWiley & Sons, 2002: 71–87.

38. Strachan CJ, Rades T, Gordon KC, et al. Ramanspectroscopy for quantitative analysis of pharmaceuticalsolids. J Pharm Pharmacol 2007; 59(2):179–192.

39. Vergote GJ, Vervaet C, Remon JP, et al. Near-infraredFT-Raman spectroscopy as a rapid analytical tool for thedetermination of diltiazem hydrochloride in tablets. Eur JPharm Sci 2002; 16(1–2):63–67.

40. McCreery RL. Raman Spectroscopy for Chemical Analysis.New York: Wiley-Interscience, 2000.

41. Vankeirsbilck T, Vercauteren A, Baeyens W, et al.Applications of Raman spectroscopy in pharmaceuticalanalysis. Trends Anal Chem 2002; 21(12):869–877.

42. De Beer TRM, Vergote GJ, Baeyens WRG, et al.Development and validation of a direct, nondestructivequantitative method for medroxyprogesterone acetate in apharmaceutical suspension using FT-Raman spectroscopy. EurJ Pharm Sci 2004; 23(4–5):355–362.

43. Orkoula MG, Kontoyannis CG, Markopoulou CK, et al.Quantitative analysis of liquid formulations using FT-Ramanspectroscopy and HPLC: the case of diphenhydraminehydrochloride in Benadryl 1 . J Pharm Biomed Anal 2006;41(4):1406–1411.

44. Tian F, Zeitler JA, Strachan CJ, et al. Characterizingthe conversion kinetics of carbamazepine polymorphs to thedihydrate in aqueous suspension using Raman spectroscopy. JPharm Biomed Anal 2006; 40(2):271–280.

45. Turrell G, Corset J. Raman Microscopy: Developments andApplications. London: Elsevier, 1996.

46. Sasic S. Raman mapping of low-content APIpharmaceutical formulations. I. Mapping of alprazolam inAlprazolam/Xanax tablets. Pharm Res 2007; 24(1):58–65.

47. Sasic S, Clark DA, Mitchell JC, et al. Raman linemapping as a fast method for analyzing pharmaceutical beadformulations. Analyst 2005; 130(11):1530–1536.

48. Zhang L, Henson MJ, Sekulic SS. Multivariate dataanalysis for Raman imaging of a model pharmaceuticaltablet. Anal Chim Acta 2005; 545(2):262–278.

49. Henson MJ, Zhang L. Drug characterization in low dosagepharmaceutical tablets using Raman microscopic mapping.

Appl Spectrosc 2006; 60(11):1247–1255. 50. Heinemann M,Meinberg H, Buchs J, et al. Method for quantitativedetermination of spatial polymer distribution in alginatebeads using Raman spectroscopy. Appl Spectrosc 2005; 59(3):280–285. 51. Zeitler JA, Taday PF, Newnham DA, et al.Terahertz pulsed spectroscopy and imaging in thepharmaceutical setting a review. J Pharm Pharmacol 2007;59(2):209–223. 52. Wallace VP, Taday PF, Fitzgerald AJ, etal. Terahertz pulsed imaging and spectroscopy forbiomedical and pharmaceutical applications. Faraday Discuss2004; 126:255–263. 53. Pickwell E, Wallace VP. Biomedicalapplications of terahertz technology. J Phys D Appl Phys2006; 39(17):R301–R310. 54. Fitzgerald AJ, Cole BE, TadayPF. Nondestructive analysis of tablet coating thicknessesusign terahertz pulsed imaging. J Pharm Sci 2005;94(1):177–183. 55. Ho L, Muller R, Romer M, et al. Analysisof sustained-release tablet film coats using terahertzpulsed imaging. J Control Release 2007; 119(3):253–261. 56.Wu H, Heilweil EJ, Hussain AS, et al. Process analyticaltechnology (PAT): effects of instrumental and compositionalvariables on terahertz spectral data quality tocharacterize pharmaceutical materials and tablets. Int JPharm 2007; 343(1–2):148–158. 57. Callaghan PT. Principlesof Nuclear Magnetic Resonance Microscopy. Oxford: OxfordUniversity Press, 1991. 58. Weil JA, Bolton JR. ElectronParamagnetic Resonance: Elementary Theory and PracticalApplications. 2nd ed. New Jersey: John Wiley & Sons, 2007.59. Melia CD, Rajabi-Siahboomi AR, Bowtell RW. Magneticresonance imaging of controlled release pharmaceuticaldosage forms. Pharm Sci Technol Today 1998; 1(1):32–39. 60.Richardson JC, Bowtell RW, Mader K, et al. Pharmaceuticalapplications of magnetic resonance imaging (MRI). Adv DrugDeliv Rev 2005; 57(8):1191–1209. 61. Lurie DJ, Mader K.Monitoring drug delivery processes by EPR and relatedtechniques principles and applications. Adv Drug Deliv Rev2005; 57(8):1171–1190. 62. Bowtell R, Sharp JC, Peters A,et al. NMR microscopy of hydrating hydrophilic matrixpharmaceutical tablets. Magn Reson Imaging 1994;12(2):361–364. 63. Nebgen G, Gross D, Lehmann V, et al. 1 HNMR microscopy of tablets. J Pharm Sci 1995; 84(3):283–291. 64. Rajabi-Siahboomi AR, Bowtell RW, Mansfield P,et al. Structure and behavior in hydrophilic matrixsustained-release dosage forms. 2: NMR-imaging studies ofdimensional changes in the gel layer and core of HPMCtablets undergoing hydration. J Control Release 1994;31(2): 121–128. 65. Rajabi-Siahboomi AR, Bowtell RW,Mansfield P, et al. Structure and behavior in hydrophilicmatrix sustained release dosage forms. 4: Studies of watermobility and diffusion coefficients in the gel layer ofHPMC tablets using NMR imaging. Pharm Res 1996;

13(3):376–380. 66. Fyfe CA, Blazek AI. Investigation ofhydrogel formation from hydroxypropylmethylcellulose (HPMC)by NMR spectroscopy and NMR imaging techniques.Macromolecules 1997; 30(20): 6230–6237. 67. Baumgartner S,Lahajnar G, Sepe A, et al. Quantitative evaluation ofpolymer concentration profile during swelling ofhydrophilic matrix tablets using 1 H NMR and MRI methods.Eur J Pharm Biopharm 2005; 59(2):299–306. 68. Tritt-Goc J,Kowalczuk J. Spatially resolved solvent interaction withglassy HPMC polymers studied by magnetic resonancemicroscopy. Solid State Nucl Magn Reson 2005;28(2–4):250–257. 69. Tritt-Goc J, Pislewski N. Magneticresonance imaging study of the swelling kinetics ofhydroxypropylmethylcellulose (HPMC) in water. J ControlRelease 2002; 80(1–3):79–86. 70. Kowalczuk J, Tritt-Goc J,Pislewski N. The swelling properties of hydroxypropylmethyl cellulose loaded with tetracycline hydrochloride:magnetic resonance imaging study. Solid State Nucl MagnReson 2004; 25(1–3):35–41. 71. Fyfe CA, Blazek-Welsh AI.Quantitative NMR imaging study of the mechanism of drugrelease from swelling hydroxypropylmethylcellulose tablets.J Control Release 2000; 68(3): 313–333.

72. Dinarvand R, Wood B, Demanuele A. Measurement of thediffusion of 2,2,2-trifluoroacetamide withinthermoresponsive hydrogels using NMR imaging. Pharm Res1995; 12(9): 1376–1379.

73. Shapiro M, Jarema MA, Gravina S. Magnetic resonanceimaging of an oral gastrointestinaltherapeutic-system(GITS) tablet. J Control Release 1996; 38(2–3):123–127.

74. Fahie BJ, Nangia A, Chopra SK, et al. Use of NMRimaging in the optimization of a compression-coatedregulated release system. J Control Release 1998;51(2–3):179–184.

75. Sutch JCD, Ross AC, Kockenberger W, et al.Investigating the coating-dependent release mechanism of apulsatile capsule using NMR microscopy. J Control Release2003; 92(3): 341–347.

76. Djemai A, Gladden LF, Booth J, et al. MRI investigationof hydration and heterogeneous degradation of aliphaticpolyesters derived from lactic and glycolic acids: acontrolled drug delivery device. Magn Reson Imaging 2001;19(3–4):521–523.

77. Milroy GE, Cameron RE, Mantle MD, et al. Thedistribution of water in degrading polyglycolide. Part II:

magnetic resonance imaging and drug release. J Mater SciMater Med 2003; 14(5):465–473.

78. Karakosta E, McDonald PJ. An MRI analysis of thedissolution of a soluble drug incorporated within aninsoluble polymer tablet. Appl Magn Reson 2007;32(1–2):75–91.

79. Baille WE, Malveau C, Therien-Aubin H, et al. NMRimaging studies of high amylose starch tablets. Abstr PapAm Chem Soc 2004; 228:U239.

80. Malveau C, Baille WE, Zhu XX, et al. NMR imaging ofhigh-amylose starch tablets. 2: effect of tablet size.Biomacromolecules 2002; 3(6):1249–1254.

81. Prior-Cabanillas A, Barrales-Rienda JM, Frutos G, etal. Swelling behaviour of hydrogels from methacrylic acidand poly(ethylene glycol) side chains by magnetic resonanceimaging. Polym Int 2007; 56(4):506–511.

82. Marshall P, Snaar JEM, Ng YL, et al. Localised mappingof water movement and hydration inside a developingbioadhesive bond. J Control Release 2004; 95(3):435–446.

83. Dahlberg C, Fureby A, Schuleit M, et al. Polymermobilization and drug release during tablet swelling. A H-1NMR and NMR microimaging study. J Control Release 2007;122(2):199–205.

84. Mikac U, Demsar A, Demsar F, et al. A study of tabletdissolution by magnetic resonance electric current densityimaging. J Magn Reson 2007; 185(1):103–109.

85. Strubing S, Metz H, Ma¨der K. Characterization ofpolyvinyl acetate based floating matrix tablets. J ControlRelease 2008; 126(2):149–155.

86. Djemai A, Sinka IC. NMR imaging of densitydistributions in tablets. Int J Pharm 2006; 319(1–2):55–62.

87. Tritt-Goc J, Kowalczuk J. In situ, real timeobservation of the disintegration of paracetamol tablets inaqueous solution by magnetic resonance imaging. Eur J PharmSci 2002; 15(4): 341–346.

88. Kwiecinski S, Weychert M, Jasinski A, et al. Tabletdisintegration monitored by magnetic resonance Imaging.Appl Magn Reson 2002; 22(1):23–29.

89. Tomer G, Newton JM, Kinchesh P. Magnetic resonanceimaging (MRI) as a method to investigate movement of waterduring the extrusion of pastes. Pharm Res 1999;16(5):666–671.

90. Sommier N, Porion P, Evesque P, et al. Magneticresonance imaging investigation of the mixing-segregationprocess in a pharmaceutical blender. Int J Pharm 2001;222(2):243–258.

91. Strubing S, Metz H, Ma¨der K. Mechanistic analysis ofdrug release from tablets with membrane controlled drugdelivery. Eur J Pharm Biopharm 2007; 66(1):113–119.

92. Fyfe CA, Grondey H, Blazek-Welsh AI, et al. NMR imaginginvestigations of drug delivery devices using aflow-through USP dissolution apparatus. J Control Release2000; 68(1):73–83.

93. Abrahmsen-Alami S, Korner A, Nilsson I, et al. Newrelease cell for NMR microimaging of tablets: swelling anderosion of poly(ethylene oxide). Int J Pharm 2007;342(1–2):105–114.

94. Montanari L, Cilurzo F, Valvo L, et al. Gammairradiation effects on stability ofpoly(lactideco-glycolide) microspheres containingclonazepam. J Control Release 2001; 75(3):317–330.

95. Bittner B, Mader K, Kroll C, et al.Tetracycline-HCl-loaded poly(DL-lactide-co-glycolide)microspheres prepared by a spray drying technique:influence of gamma-irradiation on radical formation andpolymer degradation. J Control Release 1999; 59(1):23–32.96. Maggi L, Segale L, Machiste EO, et al. Chemical andphysical stability of hydroxypropyl methylcellulosematrices containing diltiazem hydrochloride after gammairradiation. J Pharm Sci 2003; 92(1):131–141. 97. Ma¨der K,Cremmilleux Y, Domb AJ, et al. In vitro in vivo comparisonof drug release and polymer erosion from biodegradableP(FAD-SA) polyanhydrides a noninvasive approach by thecombined use of electron paramagnetic resonancespectroscopy and nuclear magnetic resonance imaging. PharmRes 1997; 14(6):820–826. 98. Katzhendler I, Ma¨der K,Friedman M. Correlation between drug release kinetics fromproteineous matrix and matrix structure: EPR and NMR study.J Pharm Sci 2000; 89(3): 365–381. 99. Katzhendler I, Ma¨derK, Azoury R, et al. Investigating the structure andproperties of hydrated hydroxypropyl methylcellulose andegg albumin matrices containing carbamazepine: EPR and NMR

study. Pharm Res 2000; 17(10):1299–1308. 100. Capancioni S,Schwach-Abdellaoui K, Kloeti W, et al. In vitro monitoringof poly(ortho ester) degradation by electron paramagneticresonance imaging. Macromolecules 2003; 36(16): 6135–6141.101. Siepe S, Herrmann W, Borchert HH, et al.Microenvironmental pH and microviscosity insidepH-controlled matrix tablets: an EPR imaging study. JControl Release 2006; 112(1):72–78. 102. Kroll C, HerrmannW, Stosser R, et al. Influence of drug treatment on themicroacidity in rat and human skin an in vitro electronspin resonance imaging study. Pharm Res 2001; 18(4):525–530. 103. Blank A, Freed JH, Kumar NP, et al. Electronspin resonance microscopy applied to the study ofcontrolled drug release. J Control Release 2006;111(1–2):174–184. 104. Pohl DW, Fischer UC, Durig UT.Scanning near-field optical microscopy (SNOM). J Microsc(Oxf) 1988; 152:853–861. 105. Price DM, Reading M, HammicheA, et al. Micro-thermal analysis: scanning thermalmicroscopy and localised thermal analysis. Int J Pharm1999; 192(1):85–96. 106. Sanders GHW, Roberts CJ, Danesh A,et al. Discrimination of polymorphic forms of a drugproduct by localized thermal analysis. J Microsc (Oxf)2000; 198:77–81. 107. Ward S, Perkins M, Zhang JX, et al.Identifying and mapping surface amorphous domains. PharmRes 2005; 22(7):1195–1202. 108. Craig DQM, Kett VL, AndrewsCS, et al. Pharmaceutical applications of micro-thermalanalysis. J Pharm Sci 2002; 91(5):1201–1213. 109. Allen S,Davies MC, Roberts CJ, et al. Atomic force microscopy inanalytical biotechnology. Trends Biotechnol 1997;15(3):101–105. 110. Cappella B, Dietler G. Force-distancecurves by atomic force microscopy. Surf Sci Rep 1999;34(1–3):1–152. 111. Danesh A, Chen XY, Davies MC, et al.The discrimination of drug polymorphic forms from singlecrystals using atomic force microscopy. Pharm Res 2000;17(7):887–890. 112. Price R, Young PM. Visualization of thecrystallization of lactose from the amorphous state. JPharm Sci 2004; 93(1):155–164. 113. Danesh A, Connell SD,Davies MC, et al. An in situ dissolution study of aspirincrystal planes (100) and (001) by atomic force microscopy.Pharm Res 2001; 18(3):299–303. 114. Hillner PE, Manne S,Gratz AJ, et al. AFM images of dissolution and growth on acalcite crystal. Ultramicroscopy 1992; 42:1387–1393. 115.Binning G, Quate CF, Gerber C. Atomic force microscope.Phys Rev Lett 1986; 56(9): 930–933. 116. Davies M, BrindleyA, Chen XY, et al. Characterization of drug particlesurface energetics and Young’s modulus by atomic forcemicroscopy and inverse gas chromatography. Pharm Res 2005;22(7):1158–1166. 117. Perkins M, Ebbens SJ, Hayes S, et al.Elastic modulus measurements from individual lactoseparticles using atomic force microscopy. Int J Pharm 2007;

332(1–2):168–175. 118. Berard V, Lesniewska E, Andres C, etal. Affinity scale between a carrier and a drug in DPIstudied by atomic force microscopy. Int J Pharm 2002;247(1–2):127–137.

119. Bunker MJ, Roberts CJ, Davies MC. Towards screening ofinhalation formulations: measuring interactions with atomicforce microscopy. Expert Opin Drug Deliv 2005;2(4):613–624.

120. Hooton JC, German CS, Allen S, et al. Characterizationof particle-interactions by atomic force microscopy: effectof contact area. Pharm Res 2003; 20(3):508–514.

121. Hooton JC, German CS, Allen S, et al. An atomic forcemicroscopy study of the effect of nanoscale contactgeometry and surface chemistry on the adhesion ofpharmaceutical particles. Pharm Res 2004; 21(6):953–961.

122. Young PM, Price R, Tobyn MJ, et al. The influence ofrelative humidity on the cohesion properties of micronizeddrugs used in inhalation therapy. J Pharm Sci 2004;93(3):753–761.

123. Jones R, Pollock HM, Geldart D, et al. Inter-particleforces in cohesive powders studied by AFM: effects ofrelative humidity, particle size and wall adhesion. PowderTechnol 2003; 132(2–3): 196–210.

124. Jones R, Pollock HM, Cleaver JAS, et al. Adhesionforces between glass and silicon surfaces in air studied byAFM: effects of relative humidity, particle size,roughness, and surface treatment. Langmuir 2002;18(21):8045–8055.

125. Relini A, Sottini S, Zuccotti S, et al. Measurement ofthe surface free energy of streptavidin crystals by atomicforce microscopy. Langmuir 2003; 19(7):2908–2912.

126. Zhang JX, Ebbens S, Chen XY, et al. Determination ofthe surface free energy of crystalline and amorphouslactose by atomic force microscopy adhesion measurement.Pharm Res 2006; 23(2):401–407.

127. Hooton JC, German CS, Davies MC, et al. Comparison ofmorphology and surface energy characteristics ofsulfathiazole polymorphs based upon single particlestudies. Eur J Pharm Sci 2006; 28(4):315–324.

128. Traini D, Rogueda P, Young P, et al. Surface energy

and interparticle forces correlations in model pMDIformulations. Pharm Res 2005; 22(5):816–825.

129. Begat P, Morton DAV, Staniforth JN, et al. Thecohesive-adhesive balances in dry powder inhalerformulations II: influence on fine particle deliverycharacteristics. Pharm Res 2004; 21(10):1826–1833.

130. Begat P, Morton DAV, Staniforth JN, et al. Thecohesive-adhesive balances in dry powder inhalerformulations I: direct quantification by atomic forcemicroscopy. Pharm Res 2004; 21(9):1591–1597.

131. Bunker MJ, Davies MC, Chen XY, et al. Single particlefriction on blister packaging materials used in dry powderinhalers. Eur J Pharm Sci 2006; 29(5):405–413.

132. Bunker MJ, Roberts CJ, Davies MC, et al. A nanoscalestudy of particle friction in a pharmaceutical system. IntJ Pharm 2006; 325(1–2):163–171.

133. Ma WJ, Ruys AJ, Mason RS, et al. DLC coatings: Effectsof physical and chemical properties on biological response.Biomaterials 2007; 28(9):1620–1628.

134. Shakesheff KM, Evora C, Soriano I, et al. Theadsorption of poly(vinyl alcohol) to biodegradablemicroparticles studied by x-ray photoelectron spectroscopy(XPS). J Colloid Interface Sci 1997; 185(2):538–547.

135. Evora C, Soriano I, Rogers RA, et al. Relating thephagocytosis of microparticles by alveolar macrophages tosurface chemistry: the effect of1,2-dipalmitoylphosphatidylcholine. J Control Release 1998;51(2–3):143–152.

136. Dong YC, Feng SS. Methoxy poly(ethyleneglycol)-poly(lactide) (MPEG-PLA) nanoparticles forcontrolled delivery of anticancer drugs. Biomaterials 2004;25(14):2843–2849.

137. Cook AD, Hrkach JS, Gao NN, et al. Characterizationand development of RGD-peptidemodified poly(lacticacid-co-lysine) as an interactive, resorbable biomaterial.J Biomed Mater Res 1997; 35(4):513–523.

138. New XPS/ESCA 2006. YKI News 2006:6.

139. Belu AM, Davies MC, Newton JM, et al. TOF-SIMScharacterization and imaging of controlled-release drug

delivery systems. Anal Chem 2000; 72(22):5625–5638.

140. Lee JW, Gardella JA. Simultaneous time-of-flightsecondary ion MS quantitative analysis of drug surfaceconcentration and polymer degradation kinetics inbiodegradable poly(L-lactic acid) blends. Anal Chem 2003;75(13):2950–2958. 141. Davies MC, Shakesheff KM, Shard AG,et al. Surface analysis of biodegradable polymer blends ofpoly(sebacic anhydride) and poly(DL-lactic acid).Macromolecules 1996; 29(6): 2205–2212. 142. Luk SY, PatelN, Davies MC. Chemical imaging of pharmaceuticals bytime-of-flight secondary ion mass spectrometry. SpectroscEur 2003; 15(1):14–18. 143. Feng SS, Huang GF. Effects ofemulsifiers on the controlled release of paclitaxel (Taxol(R)) from nanospheres of biodegradable polymers. J ControlRelease 2001; 71(1):53–69. 144. Leadley SR, Shakesheff KM,Davies MC, et al. The use of SIMS, XPS and in situ AFM toprobe the acid catalysed hydrolysis of poly(orthoesters).Biomaterials 1998; 19(15):1353–1360. 145. Ton-That C, ShardAG, Teare DOH, et al. XPS and AFM surface studies ofsolvent-cast PS/ PMMA blends. Polymer 2001;42(3):1121–1129. 146. Sinka IC, Burch SF, Tweed JH, et al.Measurement of density variations in tablets using X-raycomputed tomography. Int J Pharm 2004; 271(1–2):215–224.147. Farber L, Tardos G, Michaels JN. Use of X-raytomography to study the porosity and morphology ofgranules. Powder Technol 2003; 132(1):57–63. 148. BouwmanAM, Henstra MJ, Westerman D, et al. The effect of theamount of binder liquid on the granulation mechanisms andstructure of microcrystalline cellulose granules preparedby high shear granulation. Int J Pharm 2005;290(1–2):129–136. 149. Hancock BC, Mullarney MP. X-raymicrotomography of solid dosage forms. Pharm Technol 2005;29(44):92–100. 150. Morgan CL. Principles of computedtomography: combined translational-rotational scanningsystems, Basic Principles of Computed Tomography.Baltimore, MD: University Park Press, 1983:19–68. 151.Hounsfield GN. Computerized transverse axial scanning(tomography). 1: description of system. Br J Radiol 1973;46(552):1016–1022. 152. Cormack AM. Representation of afunction by its line integrals, with some radiologicalapplications. J Appl Phys 1963; 34(9):2722–2727. 153.Cormack AM. Representation of a function by its lineintegrals, with some radiological applications II. J ApplPhys 1964; 35(10):2908–2913. 154. Feldkamp LA, Davis LC,Kress JW. Practical cone-beam algorithm. J Opt Soc Am A OptImage Sci Vis 1984; 1(6):612–619. 155. Flannery BP, DeckmanHW, Roberge WG, et al. 3-Dimensional X-ray microtomography.Science 1987; 237(4821):1439–1444. 156. Wellington SL,Vinegar HJ. X-ray computerized-tomography. J Pet Technol

1987; 39(8): 885–898. 157. Fu XW, Elliott JA, Bentham AC,et al. Application of X-ray microtomography and imageprocessing to the investigation of a compacted granularsystem. Part Part Syst Char 2006; 23(3–4): 229–236. 158.Busignies V, Leclerc B, Porion P, et al. Quantitativemeasurements of localized density variations in cylindricaltablets using X-ray microtomography. Eur J Pharm Biopharm2006; 64(1):38–50. 159. Chauve G, Raverielle F,Marchessault RH. Comparative imaging of a slow-releasestarch exciplent tablet: evidence of membrane formation.Carbohydr Polym 2007; 70(1):61–67. 160. Inman SJ, BriscoeBJ, Pitt KG. Topographic characterization of cellulosebilayered tablets interfaces. Chem Eng Res Des 2007;85(A7):1005–1012.

11 Chapter 11- Aspects of PharmaceuticalPhysics

1. Duhem PMM. The Aim and Structure of Physical Theory.Princeton: Princeton University Press, 1991. [Translatedfrom the French by Philip P. Wiener.]

2. Mandelbrot BB. The Fractal Geometry of Nature. Rev. ed.San Francisco: W. H. Freeman and Company, 1982.

3. Pfeifer P, Ehrburger-Dolle F, Rieker TP, et al. Nearlyspace-filling fractal networks of carbon nanopores. PhysRev Lett 2002; 88:115502.

4. Cusack NE. The Physics of Structurally DisorderedMatter: An Introduction. Bristol: Adam Hilger, 1987.

5. Stauffer D, Aharony A. Introduction to PercolationTheory. 2nd ed. London: Taylor & Francis, 1992.

6. Sahimi M. Applications of Percolation Theory. London:Taylor & Francis, 1994.

7. Kirkpatrick S. Percolation and conduction. Rev Mod Phys1973; 45:574–588.

8. Havlin S, Ben-Avraham D. Diffusion in disordered media.Adv Physics 1987; 36:695–798.

9. de Gennes PG. La percolation: un concept unificateur. LaRecherche 1976; 7:919–927.

10. Korsmeyer RW, Gurny R, Doelker E, et al. Mechanisms ofsolute release from porous hydrophilic polymers. Int JPharm 1983; 15:25–35.

11. Peppas NA. Analysis of Fickian and non-Fickian drugrelease from polymers. Pharm Acta Helv 1985; 60:110–111.

12. Bonny JD, Leuenberger H. Matrix type controlled releasesystems. I. Effect of percolation on drug dissolutionkinetics. Pharm Acta Helv 1991; 66:160–164.

13. Higuchi T. Rate of release of medicaments from ointmentbases containing drugs in suspension. J Pharm Sci 1961;50:874–875.

14. Bonny JD, Leuenberger H. Determination of fractaldimensions of matrix-type solid dosage forms and theirrelation with drug dissolution kinetics. Eur J Pharm

Biopharm 1993; 39:31–37.

15. Caraballo I, Milla´n M, Rabasco AM. Relationshipbetween drug percolation threshold and particle size inmatrix tablets. Pharm Res 1996; 13:387–390.

16. Milla´n M, Caraballo I, Rabasco AM. The role of thedrug/excipient particle size ratio in the percolation modelfor tablets. Pharm Res 1998; 15:216–220.

17. Brohede U, Valizadeh S, Stromme M, et al. Percolativedrug diffusion from cylindrical matrix systems withunsealed boundaries. J Pharm Sci 2007; 96:3087–3099.

18. Kosmidis K, Argyrakis P, Macheras P. A reappraisal ofdrug release laws using Monte Carlo simulations: theprevalence of the Weibull function. Pharm Res 2003;20:988–995.

19. Leuenberger H, Leu R. Formation of a tablet: a site andbond percolation phenomenon. J Pharm Sci 1992; 81:976–982.

20. Kuentz M, Leuenberger H, Kolb M. Fracture in disorderedmedia and tensile strength of microcrystalline cellulosetablets at low relative densities. Int J Pharm 1999;182:243–255.

21. Kuentz M, Leuenberger H. Modified Young’s modulus ofmicrocrystalline cellulose tablets and the directedcontinuum percolation model. Pharm Dev Technol 1998;3:13–19.

22. Eriksson M, Alderborn G. The effect of particlefragmentation and deformation on the interparticulate bondformation process during powder compaction. Pharm Res 1995;12: 1031–1039.

23. Alderborn G. A novel approach to derive a compressionparameter indicating effective particle deformability.Pharm Dev Technol 2003; 8:367–377.

24. Bale HD, Schmidt PW. Small-angle X-ray-scatteringinvestigation of submicroscopic porosity with fractalproperties. Phys Rev Lett 1984; 53:596–599.

25. Pfeifer P, Avnir D. Chemistry in noninteger dimensionsbetween two and three. I. Fractal theory of heterogeneoussurfaces. J Chem Phys 1983; 79:3558–3565. 26. Friesen WI,Mikula RJ. Fractal dimensions of coal particles. J ColloidInterface Sci 1987; 120: 263–271. 27. Li T, Park K. Fractal

analysis of pharmaceutical particles by atomic forcemicroscopy. Pharm Res 1998; 15:1222–1232. 28. Fini A,Garuti M, Fazio G, et al. Diclofenac salts. I. Fractal andthermal analysis of sodium and potassium diclofenac salts.J Pharm Sci 2001; 90:2049–2057. 29. Schroder M, KleinebuddeP. Structure of disintegrating pellets with regard tofractal geometry. Pharm Res 1995; 12:1694–1700. 30. PfeiferP, Wu YJ, Cole MW, et al. Multilayer adsorption on afractally rough surface. Phys Rev Lett 1989; 62:1997–2000.31. Avnir D, Jaroniec M. An isotherm equation foradsorption on fractal surfaces of heterogeneous porousmaterials. Langmuir 1989; 5:1431–1433. 32. Yin Y.Adsorption isotherm on fractally porous materials. Langmuir1991; 7:216–217. 33. Pfeifer P, Obert M, Cole MW. FractalBET and FHH theories of adsorption: a comparativestudy.Proc R Soc Lond A 1989; 423:169–188. 34. Strømme M,Mihranyan A, Ek R, et al. Fractal dimension of cellulosepowders analyzed by multilayer BET adsorption of water andnitrogen. J Phys Chem B 2003; 107:14378–14382. 35. NilssonM, Mihranyan A, Valizadeh S, et al. Mesopore structure ofmicrocrystalline cellulose tablets characterized bynitrogen adsorption and SEM: the influence on water-inducedionic conduction. J Phys Chem B 2006; 110:15776–15781. 36.Goldstein H, Poole CP, Safko JL. Classical Mechanics. 3rded. Upper Saddle River: Pearson Education, 2002. 37.Malvern LE. Introduction to the Mechanics of a ContinuousMedium. Englewood Cliffs, NJ: Prentice Hall, 1969. 38. SimoJC, Hughes TJR. Computational Inelasticity. New York:Springer, 1998. 39. Hounslow MJ, Ryall RL, Marshall VR. Adiscretized population balance for nucleation, growth, andaggregation. AIChE J 1988; 34:1821–1832. 40. Hughes TJR.The Finite Element Method: Linear Static and Dynamic FiniteElement Analysis. Mineola, NY: Dover Publications, 2000.41. Belytschko T, Liu WK, Moran B. Nonlinear FiniteElements for Continua and Structures. Chichester: Wiley,2000. 42. Hassanizadeh SM, Gray WG. General conservationequations for multiphase systems. 1. Averaging procedure.Adv Water Resour 1979; 2:131–144. 43. Hassanizadeh SM, GrayWG. General conservation equations for multiphase systems.2. Mass, momenta, energy and entropy equations. Adv WaterResour 1979; 2:191–208. 44. Bonet J, Wood RD. NonlinearContinuum Mechanics for Finite Element Analysis. Cambridge:Cambridge University Press, 1997. 45. Cundall PA, StrackODL. A discrete numerical model for granular assemblies.Geotechnique 1979; 29:47–65. 46. Johnson KL. ContactMechanics. Cambridge: Cambridge University Press, 1985. 47.Munjiza A. The Combined Finite-Discrete Element Method.Chichester: Wiley, 2004. 48. Munjiza A, Andrews KRF. NBScontact detection algorithm for bodies of similar size. IntJ Numer Methods Eng 1998; 43:131–149. 49. Williams JR,

Perkins E, Cook B. A contact algorithm for partitioning Narbitrary sized objects. Eng Comput 2004; 21:235–248. 50.Munjiza A, Owen DRJ, Bicanic N. A combined finite-discreteelement method in transient dynamics of fracturing solids.Eng Comput 1995; 12:145–174. 51. Ransing RS, Gethin DT,Khoei AR, et al. Powder compaction modelling via thediscrete and finite element method. Mater Des 2000;21:263–269. 52. Gethin DT, Ransing RS, Lewis RW, et al.Numerical comparison of a deformable discrete element modeland an equivalent continuum analysis for the compaction ofductile porous material. Comput Struct 2001; 79:1287–1294.53. Gethin DT, Lewis RW, Ransing RS. A discrete deformableelement approach for the compaction of powder systems.Model Simul Mater Sci Eng 2003; 11:101–114.

54. Lewis RW, Gethin DT, Yang XSS, et al. A combinedfinite-discrete element method for simulatingpharmaceutical powder tableting. Int J Numer Methods Eng2005; 62:853–869.

55. Gethin DT, Yang X-S, Lewis RW. A two dimensionalcombined discrete and finite element scheme for simulatingthe flow and compaction of systems comprising irregularparticulates. Comput Methods Appl Mech Eng 2006;195:5552–5565.

56. Michrafy A, Ringenbacher D, Tchoreloff P. Modelling thecompaction behaviour of powders: application topharmaceutical powders. Powder Technol 2002; 127:257–266.

57. Wu C-Y, Ruddy OM, BenthamAC, et al. Modelling themechanical behaviour of pharmaceutical powders duringcompaction. Powder Technol 2005; 152:107–117.

58. Frenning G. Analysis of pharmaceutical powdercompaction using multiplicative hyperelastoplastic theory.Powder Technol 2007; 172:103–112.

59. Sinka IC, Cunningham JC, Zavaliangos A. The effect ofwall friction in the compaction of pharmaceutical tabletswith curved faces: a validation study of the Drucker–PragerCap model. Powder Technol 2003; 133:33–43.

60. Cunningham JC, Sinka IC, Zavaliangos A. Analysis oftablet compaction. I. Characterization of mechanicalbehavior of powder and powder/tooling friction. J Pharm Sci2004; 93:2022–2039.

61. Sinka IC, Cunningham JC, Zavaliangos A. Analysis oftablet compaction. II. Finite element analysis of density

distributions in convex tablets. J Pharm Sci 2004;93:2040–2053.

62. Michrafy A, Dodds JA, Kadiri MS. Wall friction in thecompaction of pharmaceutical powders: measurement andeffect on the density distribution. Powder Technol 2004;148:53–55.

63. Kadiri MS, Michrafy A, Dodds JA. Pharmaceutical powderscompaction: experimental and numerical analysis of thedensity distribution. Powder Technol 2005; 157:176–182.

64. Hassanpour A, Ghadiri M. Distinct element analysis andexperimental evaluation of the Heckel analysis of bulkpowder compression. Powder Technol 2004; 141:251–261.

65. Heckel RW. Density-pressure relationships in powdercompaction. Trans Metal Soc AIME 1961; 221:671–675.

66. Langston PA, Tu¨zu¨n U, Heyes DM. Discrete elementsimulation of granular flow in 2D and 3D hoppers:dependence of discharge rate and wall stress on particleinteractions. Chem Eng Sci 1995; 50:967–987.

67. Mikami T, Kamiya H, Horio M. Numerical simulation ofcohesive powder behavior in a fluidized bed. Chem Eng Sci1998; 53:1927–1940.

68. Stewart RL, Bridgwater J, Zhou YC, et al. Simulated andmeasured flow of granules in a bladed mixer—a detailedcomparison. Chem Eng Sci 2001; 56:5457–5471.

69. Kuo HP, Knight PC, Parker DJ, et al. The influence ofDEM simulation parameters on the particle behaviour in aV-mixer. Chem Eng Sci 2002; 57:3621–3638.

70. Cleary PW. Predicting charge motion, power draw,segregation and wear in ball mills using discrete elementmethods. Miner Eng 1998; 11:1061–1080.

71. Rosato AD, Blackmore DL, Zhang N, et al. A perspectiveon vibration-induced size segregation of granularmaterials. Chem Eng Sci 2002; 57:265–275.

72. Siiria S, Yliruusi J. Particle packing simulationsbased on Newtonian mechanics. Powder Technol 2007;174:82–92.

73. Prigogine I. Non-equilibrium Statistical Mechanics. Vol1. New York: Interscience, 1962.

74. Prigogine I. Introduction to Thermodynamics ofIrreversible Processes. 3rd ed. New York: Interscience,1967.

75. Kubo R, Toda M, Hashitsume N. Statistical Physics II:Nonequilibrium Statistical Mechanics. 2nd ed. Berlin:Springer, 1991.

76. Kondepudi D, Prigogine I. Modern Thermodynamics: FromHeat Engines to Dissipative Structures. Chichester: Wiley,1998.

77. Zwanzig R. Nonequilibrium Statistical Mechanics.Oxford: Oxford University Press, 2001.

78. Boltzmann L. Lectures on Gas Theory. New York: DoverPublications, 1995. [Reprinted from Vorlesungen u¨berGastheorie.2nd ed. Leipzig: Barth, 1912.]

79. Onsager L. Reciprocal relations in irreversibleprocesses. I. Phys Rev 1931; 37:405–426.

80. Onsager L. Reciprocal relations in irreversibleprocesses. II. Phys Rev 1931; 38:2265–2279. 81. Einstein A.U¨ber die von der molekularkinetischen Theorie der Wa¨rmegeforderte Bewegung von in ruhenden Flu¨ssigkeitensuspendierten Teilchen. Ann Phys 1905; 17:549–560. 82. vonSmoluchowski M. Zur kinetischen Theorie der BrownschenMolekularbewegung und der Suspensionen. Ann Phys 1906;21:756–780. 83. Kubo R. The fluctuation-dissipationtheorem. Rep Prog Phys 1966; 29:255–284. 84. Nyquist H.Thermal agitation of electric charge in conductors. PhysRev 1928; 32:110–113. 85. Gurtin ME, Sternberg E. On thelinear theory of viscoelasticity. Arch Rat Mech Anal 1962;11:291–356. 86. Kubo R. Statistical-mechanical theory ofirreversible processes. I. General theory and simpleapplications to magnetic and conduction problems. J PhysSoc Jpn 1957; 12:570–586. 87. Green MS. Markoff randomprocesses and the statistical mechanics of time-dependentphenomena. J Chem Phys 1952; 20:1281–1295. 88. Green MS.Markoff random processes and the statistical mechanics oftime-dependent phenomena. II. Irreversible processes influids. J Chem Phys 1954; 22:398–413. 89. Jackson JD.Classical Electrodynamics. 3rd ed. New York: Wiley, 1999.90. Debye P. Polar Molecules. New York: Dover Publications,1945. 91. Barnes HA, Hutton JF, Walters K. An Introductionto Rheology. Amsterdam: Elsevier, 1989. 92. Ferry JD.Viscoelastic Properties of Polymers. 3rd ed. New York:Wiley, 1980. 93. Jonscher AK. Presentation and

interpretation of dielectric data. Thin Solid Films 1978;50: 187–204. 94. Jonscher AK. Dielectric Relaxation inSolids. London: Chelsea Dielectrics Press, 1983. 95.Jonscher AK. The ‘universal’ dielectric response. Nature1977; 267:673–679. 96. Jonscher AK. Universal RelaxationLaw. London: Chelsea Dielectrics Press, 1996. 97. Curie MJ.Recherches sur le pouvoir inducteur spe´cifique et laconductibilite´ des corps cristallise´s. Ann Chim Phys1889; 17:385–434. 98. von Schweidler ER. Studien u¨ber dieAnomalien in Verhalten der Dielektrika. Ann Phys 1907;24:711–770. 99. Niklasson GA. Fractal aspects of thedielectric response of charge carriers in disorderedmaterials. J Appl Phys 1987; 62:R1–R14. 100. Cole KS, ColeRH. Dispersion and absorption in dielectrics. I.Alternating current characteristics. J Chem Phys 1941;9:341–351. 101. Davidson DW, Cole RH. Dielectric relaxationin glycerol, propylene glycol, and n-propanol. J Chem Phys1951; 19:1484–1490. 102. Havriliak S, Negami S. A complexplane analysis of a-dispersions in some polymer systems. JPolym Sci C 1966; 14:99–117. 103. Williams G, Watts DC, DevSB, et al. Further considerations of non symmetricaldielectric relaxation behaviour arising from a simpleempirical decay function. Trans Faraday Soc 1971;67:1323–1335. 104. Jonscher AK. Low-frequency dispersion incarrier-dominated dielectrics. Philos Mag B 1978;38:587–601. 105. Dissado LA, Hill RM. Anomalouslow-frequency dispersion: near direct current conductivityin disordered low-dimensional materials. J Chem Soc FaradayTrans 2, 1984; 80:291–319. 106. Winter HH, Chambon F.Analysis of linear viscoelasticity of a cross-linkingpolymer at the gel point. J Rheol 1986; 30:367–382. 107.Sollich P, Lequeux F, He´braud P, et al. Rheology of softglassy materials. Phys Rev Lett 1997; 78:2020–2023. 108.Craig DQM, Johnson F. Pharmaceutical applications ofdynamic mechanical thermal analysis. Thermochimica Acta1995; 248:97–115. 109. Jones DS. Dynamic mechanicalanalysis of polymeric systems of pharmaceutical andbiomedical significance. Int J Pharm 1999; 179:167–178.110. Edsman K, Carlfors J, Petersson R. Rheologicalevaluation of poloxamer as an in situ gel for ophthalmicuse. Eur J Pharm Sci 1998; 6:105–112. 111. Lafferty SV,Newton JM, Podczeck F. Dynamic mechanical thermal analysisstudies of polymer films prepared from aqueous dispersion.Int J Pharm 2002; 235:107–111.

112. Hancock BC, Dalton CR, Clas S-D. Micro-scalemeasurement of the mechanical properties of compressedpharmaceutical powders. 2: The dynamic moduli ofmicrocrystalline cellulose. Int J Pharm 2001; 228:139–145.

113. Bashaiwoldu AB, Podczeck F, Newton JM. Application ofdynamic mechanical analysis (DMA) to determine themechanical properties of pellets. Int J Pharm 2004;269:329–342.

114. Bashaiwoldu AB, Podczeck F, Newton JM. Application ofDynamic Mechanical Analysis (DMA) to the determination ofthe mechanical properties of coated pellets. Int J Pharm2004; 274:53–63.

115. Craig DQM. Applications of low-frequencydielectric-spectroscopy to the pharmaceutical sciences.Drug Dev Ind Pharm 1992; 18:1207–1223.

116. Craig DQM. Dielectric spectroscopy as a novelanalytical technique within the pharmaceutical sciences.STP Pharma Sci 1995; 5:421–428.

117. Einfeldt J, MeiÞner D, Kwasniewski A. Polymerdynamicsof cellulose and other polysaccharides in solidstate-secondary dielectric relaxation processes. Prog PolymSci 2001; 26:1419–1472.

118. Nilsson M, Frenning G, Grasjo J, et al. Conductivitypercolation in loosely compacted microcrystallinecellulose: an in situ study by dielectric spectroscopyduring densification. J Phys Chem B 2006; 110:20502–20506.

119. Ha¨gerstrom H, Edsman K, Strømme M. Low-frequencydielectric spectroscopy as a tool for studying thecompatibility between pharmaceutical gels and mucoustissue. J Pharm Sci 2003; 92:1869–1881.

120. Brohede U, Bramer T, Edsman K, et al. Electrodynamicinvestigations of ion transport and structural propertiesin drug-containing gels: dielectric spectroscopy andtransient current measurements on catanionic carbopolsystems. J Phys Chem B 2005; 109:15250–15255.

121. Gradinarsky L, Brage H, Lagerholm B, et al. In situmonitoring and control of moisture content inpharmaceutical powder processes using an open-ended coaxialprobe. Meas Sci Technol 2006; 17:1847–1853.

122. Ek R, Hill RM, Newton JM. Low frequency dielectricspectroscopy characterization of microcrystallinecellulose, tablets and paper. J Mater Sci 1997;32:4807–4814.

123. He R, Craig DQM. An investigation into the thermal

behaviour of an amorphous drug using low frequencydielectric spectroscopy and modulated temperaturedifferential scanning calorimetry. J Pharm Pharmacol 2001;53:41–48.

124. Craig DQM. Dielectric Analysis of PharmaceuticalSystems. London: Taylor & Francis, 1995.

125. Barsoukov E, Macdonald JR, eds. ImpedanceSpectroscopy: Theory, Experiment, and Applications. 2nd ed.Hoboken, NJ: Wiley-Interscience, 2005.

12 Chapter 12- Pharmaceutical Aspects ofNanotechnology

1. Thassu D, Deleers M, Pathak Y, eds. Nanoparticulate DrugDelivery Systems. New York: Informa Healthcare, 2007.

2. Torchilin VP, ed. Nanoparticulates as Drug Carriers.London: Imperial College Press, 2006.

3. Ozin GA, Arsenault AC. Nanochemistry:A Chemical Approachto Nanotechnology. Royal Society of Chemistry: Cambridge,2005.

4. Drexler KE. Nanosystems. Molecular Machinery,Manufacturing and Computation. New York: John Wiley & Sons,1992.

5. Nanomedicine. Nanotechnology for Health. EuropeanTechnology Platform: Strategic Agenda for Nanomedicine.November 2006.

6. Roco MC. The US National Nanotechnology Initiative after3 years 2001–2003. J Nanopart Res 2004; 6:1–10.

7. Drexler EK. Engines of Creation: the Coming Era ofNanotechnology. New York: Anchor Books, 1986.

8. Gregoriadis G, ed. Liposome Technology. Volumes I, II,and III, 3rd. ed. New York: Informa Healthcare, 2006.

9. Muchow M, Maincent P, Mu¨ller RH. Lipid nanoparticleswith a solid matrix (SLN(R), NLC (R), LDC(R) for oral drugdelivery. Drug Dev Ind Pharm 2008; 34:1394–1405.

10. Florence AT, Halbert GW. Lipoproteins andmicroemulsions as carriers of therapeutic and chemicalagents. In: Shaw JM, ed. Lipoproteins as Carriers ofPharmacological Agents. London: CRC Press, 1991:141 et seq.

11. Corbin IR, Li H, Chen J, et al. Low-density lipoproteinnanoparticles as magnetic resonance imaging contrastagents. Neoplasia 2006; 8:488–498.

12. Dubertret B, Skourides P, Norris DJ, et al. In vivoimaging of quantum dots encapsulated in phospholipidmicelles. Science 2002; 298:1759–1762.

13. Ruenraroengsak P. PhD thesis, The School of Pharmacy,University of London 2007.

14. Birrenbach G, Speiser P. Polymerised micelles and theiruse as adjuvants. J Pharm Sci 1976; 65:1763–1766.

15. Kreuter J. Nanoparticles and nanocapsules—new dosageforms in the nanometer size range. Pharm Acta Helv 1978;53:33–39.

16. Couvreur P, Tulkens P, Roland M, et al. Nanocapsules: anew type of lysosomotropic carrier. FEBS Lett 1977;84:323–326.

17. Kreuter J. Nanoparticles—a historical perspective. IntJ Pharm 2007; 331:1–10.

18. Hartley GS. Aqueous Solutions of Paraffin-Chain Salts.A Study in Micelle Formation. Paris: Hermann & Cie, 1936.

19. McBain MEL, Hutchinson E. Solubilization and RelatedPhenomena. New York: Academic Press, 1955.

20. Elworthy PH, Florence AT, Macfarlane CB. Solubilizationby Surface Active Agents. London: Chapman and Hall, 1968.

21. Schulman JH, Stoeckenius W, Prince LM. Mechanism offormation and structure of microemulsions by electronmicroscopy. J Phys Chem 1959; 63:1677–1680.

22. Faraday M. The Bakerian Lecture: Experimental relationsof gold (and other metals) to light. Philos Trans R Soc1857; 147:145–181.

23. Paciottis GF, Myer L, Weinreich D, et al. Colloidalgold: a novel nanoparticle vector for tumour directed drugdelivery. Drug Deliv 2004; 11:169–183.

24. Graham T. Liquid diffusion applied to analysis. PhilTrans R Soc (Lond) 1861; 151:183–224.

25. Zhou Y. Recent progress in biomolecule-templatednanomaterials. Curr Nanosci 2006; 2:123–134.

26. Martin JM, Ohmae N. Nanolubricants. New York: Wiley,2008.

27. Teeguarden JG, Hinderliter PM, Orr G, et al.Particokinetics in vitro: dosimetry considerations for invitro nanoparticle toxicity assessments. Toxicol Sci 2007;95:300–312.

28. Ambrosch A, Dierkes J, Mu¨hlen I, et al. LDL size

distribution in relation to insulin sensitivity andlipoprotein patterning in young and healthy subjects.Diabetes Care 1998; 21:2077–2084. 29. Ferrari M. Cancernanotechnology : opportunities and challenges. Nat RevCancer 2005; 5:161–171. 30. McNeil SE. Nanotechnology forthe biologist. J Leukoc Biol 2005; 78:585–594. 31. QuintanaA, Raczka E, Piehler L, et al. Design and function of adendrimer-based therapeutic nanodevice targeted to tumorcells through the folate receptor. Pharm Res 2002; 19:1310–1316. 32. Wang SJ, Brechbiel M, Wiener EC. Characteristicsof a new MRI contrast agent prepared frompolypropyleneimine dendrimers, generation 2. Invest Radiol2003; 38:662–668. 33. Roy I, Ohulchanskyy TY, Pudavar HE,et al. Ceramic-based nanoparticles entrappingwaterinsoluble photosensitizing anticancer drugs: a noveldrug-carrier system for photodynamic therapy. J Am Chem Soc2003; 125:7860–7865. 34. Lanza GM, Winter P, Caruthers S,et al. Novel paramagnetic contrast agents for molecularimaging and targeted drug delivery. Curr Pharm Biotechnol2004; 5:495–507. 35. Bergey EJ, Levy L, Wang XP, et al. DCmagnetic field induced magnetocytolysis of cancer cellstargeted by LH-RH magnetic nanoparticles in vitro. BiomedMicrodevices 2002; 4:293–299. 36. Jirak D, Kriz J, HerynekV, et al. MRI of transplanted pancreatic islets. Magn ResonMed 2004; 52:1228–1233. 37. Russell-Jones GJ, Arthur L,Walker H. Vitamin B12-mediated transport of nanoparticlesacross Caco-2 cells. Int J Pharm 1999; 179:247–255. 38.Dubey PK, Mishra V, Jain S, et al. Liposomes modified withcyclic RGD peptide for tumor targeting. J Drug Target 2004;12:257–264. 39. Reszka RC, Jacobs A, Voges J.Liposome-mediated suicide gene therapy in humans. MethodsEnzymol 2005; 391:200–208. 40. ten Hagen TL. Liposomalcytokines in the treatment of infectious diseases andcancer. Methods Enzymol 2005; 391:125–145. 41. FarokhzadOC, Jon S, Khademhosseini A, et al. Nanoparticle-aptamerbioconjugates: a new approach for targeting prostate cancercells. Cancer Res 2004; 64;7668–7672. 42. Li L, WartchowCA, Danthi SN, et al. A novel antiangiogenesis therapyusing an integrin antagonist or anti-Flk-1 antibody-coated90Y-labeled nanoparticles. Int J Radiat Oncol Biol Phys2004; 58:1215–1227. 43. Voura EB, Jaiswal JK, Mattoussi H,Simon SM. Tracking metastatic tumor cell extravasation withquantum dot nanocrystals and fluorescence emission-scanningmicroscopy. Nat Med 2004; 10:993–998. 44. Loo C, Lowery A,Halas N, et al. Immunotargeted nanoshells for integratedcancer imaging technology. Nano Lett 2005; 5:709–711. 45.Hirsch LR, Stafford RJ, et al. Nanoshell-mediatednear-infrared thermal therapy of tumors under magneticguidance. Proc Natl Acad Sci U S A 2003; 100:13549–13554.46. Lewin M, Carlesso N, Tung CH, et al. Tat

peptide-derivatized magnetic nanoparticles allow in vivotracking and recovery of progenitor cells. Nat Biotechnol2000; 18:410–414. 47. Medintz IL, Mattoussi H, Clapp AR.Potential clinical applications of quantum dots. Int JNanomedicine 2008; 3:151–167. 48. Patolsky F, Zheng G,Leiber CM. Nanowire sensors for medicine and the lifesciences. Nanomedicine 2006; 1:51–65. 49. Bianco A,Kostarelos K, Prato M. Applications of carbon nanotubes indrug delivery. Curr Opinion Chem Biol 2005; 9:674–679. 50.Cevc G, Blume G. Biological activity and characteristics oftriamcinolone acetonide formulated with the self-regulatingdrug carriers, transfersomes. Biochim Biophys Acta 2003;1614;156–164. 51. Manchester M. Targeted therapy usingvirus-based nanoparticles (VNPs). Nanomedicine 2006; 2:294.52. Manchester M, Singh P. Virus based nanoparticles(VNPs): platform technologies for diagnostic imaging. AdvDrug Deliv Rev 2006; 58:1505–1522.

53. Lacerda L, Bianco A, Prato M, et al. Carbon nanotubesas nanomedicines: from toxicology to pharmacology. Adv DrugDeliv Rev 2006; 58:1460–1470.

54. Sanchez A, Alonso MJ. Nanoparticulate carriers forocular drug delivery. In: Torchilin VP, ed. Nanoparticlesas Drug Carriers. Imperial College Press: London2006:649–673.

55. Jung T, Kamm W, Breitenbach A, et al. Biodegradablenanoparticles for oral delivery of peptides: is there arole for polymers to affect mucosal uptake? Eur J PharmBiopharm 2000; 50:147–160.

56. Lu W, Sun Q, Wan J, et al. Cationic albumin-conjugatedpegylated nanoparticles allow gene delivery into braintumors via intravenous administration. Cancer Res 2006;66:11878–11887.

57. Maincent P, Thouvenot P, Amicabile C, et al. Lymphatictargeting of polymeric nanoparticles after intraperitonealadministration in rats. Pharm Res 1992; 9:1534–1539.

58. Guzman LA, Labhasetwar V, et al., Local intraluminalinfusion of biodegradable polymeric nanoparticles.Circulation 1996; 94:1441–1448.

59. Pandey R, Khuller GK. Subcutaneous nanoparticle-basedantitubercular chemotherapy in an experimental model. JAntimicrob Chemother 2004; 54:266–268.

60. Zhou X, et al. The effect of conjugation to gold

particles on the ability of low molecular weight chitosanto transfer DNA vaccine. Biomaterials 2007; 29:111–117.

61. Allemann E, Gurny R, Doelker E, et al. Distribution,kinetics and elimination of radioactivity after intravenousand intramuscular injection of 14C savoxepine loadedpoly(D,L-lactic acid) nanospheres in rats. J ControlRelease 1994; 29:97–104.

62. Sham J.O-H, Zhang Y, Finlay WH, et al. Formulation andcharacterization of spray-dried powders containingnanoparticles for aerosol delivery to the lung. Int J Pharm2004; 269: 457–467.

63. Oyewumi MO, Yokel RA, Jay M, et al. Comparison of celluptake, biodistribution and tumor retention of folatecoated and PEG-coated gadolinium nanoparticles intumor-bearing mice. J Control Release 2004; 95:613–626.

64. Kreuter J. Nanoparticulate carriers for drug deliveryto the brain. In: Torchilin VP, ed. Nanoparticles as DrugCarriers. Imperial College Press: London, 2006:527–547.

65. Phillips W. Nanoparticles for targeting lymphatics. In:Torchilin VP, ed. Nanoparticles as Drug Carriers. ImperialCollege Press: London, 2006:598–608.

66. De TK, Bergey EJ, Chung JS, et al. Polycarboxylic acidnanoparticles for ophthalmic drug delivery: an ex vivoevaluation with human cornea. J Microencapsul 2004;21:841–855.

67. Florence AT. Nanoparticle uptake by the oral route:fulfilling its potential? Drug Discov Technol 2005;2:75–81.

68. Florence AT. Oral particle uptake; irrefutable andsignificant. J Pharm Sci (in press).

69. Baker GL, Gupta A, Clark ML, et al. Inhalation toxicityand lung toxicities of C60 fullerene nanoparticles andmicroparticles. Toxicol Sci 2008; 101:122–131.

70. Pi Z, Zhao X-Y, Yang C, et al. Preparation of ultrafineparticles of azithromycin by sonochemical method.Nanomedicine 2007; 3:86–88.

71. Peltonen L. The effect of cosolvents on the formulationof nanoparticles. AAPS PharmSciTech 2002; 3(4):art 32.

72. Ford J, Woolfe J, Florence AT. Nanospheres ofcyclosporin A; poor oral absorption in dogs. Int J Pharm1999; 183:3–6.

73. Byrappa K, Ohara S, Adschiri T. Nanoparticles synthesisusing supercritical fluid technology – towards biomedicalapplications. Adv Drug Deliv Rev 2007; 60:299–327.

74. Gate2Tech. Available at www.gate2tech.com.

75. Eastoe J, Hollamby MJ, Hudson L. Recent advances innanoparticle synthesis with reversed micelles. Adv ColloidInterface Sci 2006; 128–130:5–15.

76. Arnedo A, Espuelas S, Irache JM. Albumin nanoparticlesas carriers for a phosphodiester oligonuclotide. Int JPharm 2002; 244:59–72.

77. Wu Y, et al. Chitosan nanoparticle formation by ionicinteraction between PEG-Chitosan and tripolyphosphate. IntJ Pharm 2005; 295:235–245.

78. Al-Khouri N, Roblot-Truepel L, Fessi H, et al.Development of a new process for the manufacture ofpolyisobutylcyanoacrylate nanocapsules. Int J Pharm 1986;28:125–132. 79. Florence AT, Haq ME, Johnson JR. Someproperties of films of polyalkylcyanoacrylates formed atoil-water interfaces. J Pharm Pharmacol 1975; 27(Suppl):7P.80. Kipp JE. The role of solid nanoparticle technology inthe parenteral delivery of poorly water soluble drugs. IntJ Pharm 2004; 284:109–122. 81. Choi J-Y, Yoo JY, Kwak H-S,et al. Role of polymeric stabilizers for drug nanocrystaldispersions. Curr Appl Phys 2005; 5:472–474. 82. RabinowBE. Nanosuspensions in drug delivery. Nat Rev Drug Discov2004; 3:785–796. 83. Liversidge GG, Cundy KC. Particle sizereduction for improvement of oral bioavailability ofhydrophobic drugs: absolute oral bioavailability ofnano-crystalline danazol in beagle dogs. Int J Pharm 1995;125:91–97. 84. Sakthivel T, Toth I, Florence AT. Synthesisand physicochemical properties of lipophilic polyamidedendrimers. Pharm Res 1998; 15:776–782. 85. Majoros IJ,Baker JR, eds. Dendrimer-based Nanomedicine. New Jersey:World Scientific Publishing 2008. 86. Fre´chet JMJ, TomaliaDA. Dendrimers and other Dendritic Polymers. New York:Wiley and Sons, 2002. 87. Schalley CA, Vo¨gtle F, eds.Dendrimers V: Functional and Hyperbranched Building Blocks,Photophysical properties, applications in Materials andLife Science. Topics in Current Chemistry. Springer, 2003.88. Gillies ER, Fre´chet JMJ. Dendrimers and dendriticpolymers in drug delivery. Drug Discov Today 2005;

10:35–43. 89. Dufe`s C, Uchegbu IF, Scha¨tzlein A.Dendrimers in gene delivery. Adv Drug Deliv Rev 2005;57:2177–2202. 90. Bielinska AU, Kukouska-Lattalo JF, BakerJR Jr. The interaction of plasmid DNA with polyamidoaminedendrimers: mechanism of complex formation and analysis ofalterations induced in nuclease sensitivity andtranscriptional activity of the complexed DNA. BiochimBiophys Acta 1997; 1353:180–190. 91. Yiyun C, Tongwen X.Dendrimers as potential drug carriers. I. Solubilization ofnon-steroidal anti-inflammatory drugs in the presence ofpolyamidoamine dendrimers. Eur J Med Chem 2005;40:1188–1192 [Epub September 8, 2005]. 92. Marmillon C,Gauffre F, Gulik-Krzywicki T, et al. Organophosphorusdendrimers as new gelators for hydrogels. Angew Chem Int EdEngl 2001; 113:2696–2699. 93. Li X, Curry M, Zhang J, etal. Nanotribological studies of dendrimer mediated metallicthin films. Surf Coating Tech 2004; 177–178, 504–511. 94.Xu F, Thaler SM, Barnard JA. Structural and mechanicalproperties of dendrimer-mediated thin films. J Vac SciTechnol 2005; 23:1234–1237. 95. Shaunak S, Thomas S,Gianasi E, et al. Polyvalent dendrimer glucosamineconjugates prevent scar tissue formation. Nat Biotechnol2004; 22:977–984. 96. Dufe`s C, Keith WN, Bilsland A, etal. Synthetic anticancer gene medicine exploits intrinsicantitumor activity of cationic vector to cure establishedtumors. Cancer Res 2005; 65:8079–8084. 97. Al-Jamal KT,Sakthivel T, Florence AT. Solubilisation and transformationof amphipathic lipid dendron vesicles (dendrisomes) intomixed micelles. Colloids Surf A Physicochem Eng Asp 2005;268:52–59. 98. Al-Jamal KT, Ramaswamy C, Florence AT.Supramolecular structures from dendrons and dendrimers. AdvDrug Deliv Rev 2005; 57:2238–2270. 99. Singh B, FlorenceAT. Hydrophobic dendrimer-derived nanoparticles. Int JPharm 2005; 298:348–353. 100. Ramaswamy C, Florence AT.Self-assembly of some amphipathic dendrons. J Drug DelivSciTech 2005; 15:307–311. 101. Schenning APH,Elissen-Roma´n C, Weener J-W, et al. Amphiphilic dendrimersas building blocks in supramolecular assemblies. J Am ChemSoc 1998; 120:8199–8208. 102. Foldvari M, Bagonluri M.Carbon nanotubes as functional excipients fornanomedicines: I Pharmaceutical properties. Nanomedicine2008; 4:173–182.

103. Bianco A, Kostarelos K, Partidos CD, et al. Biomedicalapplications of functionalised carbon nanotubes. ChemCommun (Camb) 2005; 5:571–577.

104. Foldvari M, Bagonluri M. Carbon nanotubes asfunctional excipients for nanomedicines: II Drug deliveryand biocompatibility issues. Nanomedicine 2008; 4:183–200.

105. Ribiero S, Hussain N, Florence AT. Release of DNA fromdendriplexes encapsulated in PLGA microspheres. Int J Pharm2005; 298:354–360.

106. Frauenrath H. Dendronized polymers—building a newbridge from molecules to nanoscopic objects. Prog Polym Sci2005; 30:325–384. Available at: ETH D-MATL. www.polychemc.mat.ethz.ch/frauenrath/index/.

107. Scott RW, Datye AK, Crooks RM. Bimetallicpalladium-platinum dendrimer encapsulated catalysts. J AmChem Soc 2003; 125:3708–3709.

108. Florence AT. Nanoparticle flow: implications for drugdelivery. In: Torchilin VP, ed. Nanoparticulates as DrugCarriers. London: Imperial College Press, 2006.

109. Radomski A, Jurasz P, Alonso-Escolano D, et al.Nanoparticle-induced platelet aggregation and vascularthrombosis. Br J Pharmacol 2005; 146:882–893.

110. Vigolo B, Pe´nicaud A, Coulon C, et al. Macroscopicfibers and ribbons of oriented carbon nanotubes. Science2000; 290:1331–1334.

111. Oles V. Shear-induced aggregation and breakup ofpolystyrene latex particles. J Colloid Interface Sci 1992;154:351–358.

112. Silebi CA, Dosramos JG. Axial dispersion of submicronparticles in capillary hydrodynamic fractionation. AIChE J1989; 35:1351–1364.

113. Silebi CA, Dosramos JG. Separation of submicrometerparticles by capillary hydrodynamic fractionation (CHDF). JColloid Interface Sci 1989; 130:14–24.

114. Chambers E, Mitrigotri S. Prolonged circulation oflarge polymeric nanoparticles by noncovalent adsorption onerythrocytes. J Control Release 2004; 100:111–119.

115. Ding Y, Wen D. Particle migration in a flow ofnanoparticle suspensions. Powder Technol 2005; 149:84–92.

116. Vacheethanasee K, Marchant RE. Non-specificStaphylococcus epidermidis adhesion: contributions ofbacterial hydrophobicity and charge. In: An YH, FriedmanRJ, eds. Handbook of Bacterial Adhesion: Principles,Methods and Applications. Totowa NJ: Humana Press,

2000:73–90.

117. Darton NJ, Hallmark B, Huan X, et al. The in-flowcapture of superparamagnetic nanoparticles for targetedtherapeutics. Nanomedicine 2008; 4:19–29.

118. Mori A, Klibanov AL, Torchilin VP, et al. Influence ofthe steric barrier of amphipathic poly (ethyleneglycol) andganglioside GM1 on the circulation time of liposomes and onthe target binding of immunoliposomes in vivo. FEBS Lett1991; 284:263–266.

119. Florence AT, Rogers JA. Emulsion stabilization bynon-ionic surfactants: experiment and theory. J PharmPharmacol 1971; 23:153–169, 233–251.

120. Gaumet M, Vargas A, Gurny R, et al. Nanoparticles fordrug delivery: the need for precision in reporting particlesize parameters. Eur J Pharm Biopharm 2008; 69:1–9.

121. Keck C, Mu¨ller R. Size analysis of submicronparticles by laser diffractrometry—90% of the publishedmeasurements are false. Int J Pharm 2008; 355:150–163.

122. Siepmann J, Siepmann F, Florence AT. Local controlleddrug delivery to the brain: mathematical modeling of theunderlying mass transport mechanisms. Int J Pharm 2006;314:101–119.

123. Ruenraroengsak P, Florence AT. The diffusion of latexnanospheres and the effective (microscopic) viscosity ofHPMC gels. Int J Pharm 2005; 298:361–366.

124. Mackie JS, Meares P. The diffusion of electrolytes ina cationic membrane. I Theoretical. Proc R Soc London A1955; 232:498–509.

125. Ruenraroengsak P, Al-Jamal K, Hartell N, et al. Celluptake, cytoplasmic diffusion and nuclear access of a 6.5nmdiameter dendrimer. Int J Pharm 2007; 331:215–219.

126. Small AC, Johnston JH. Novel hybrid materials ofcellulose fibres and nanoparticles. NSTI Nanotech Abstract2008.

127. Naka K, Chujo Y. Effect of anionic dendrimers on thecrystallisation of calcium carbonate in aqueous solution. CR Chimie 2003; 6:1193–1200. 128. Joly-Pottuz L, Vacher B,Ohmae N, et al. Anti-wear and friction reducing mechanismof carbon nano-onions as lubricant additives. Tribol Lett

2008; 30:69–80. 129. Majumder M, Chopra N, Andrews R, etal. Nanoscale hydrodynamics: enhanced flow in carbonnanotubes. Nature 2005; 438:44. 130. Lu Y, Fan H, Stump FA,et al. Aerosol-assisted self-assembly of mesostructuredspherical nanoparticles. Nature 1999; 398:223–226. 131.Borm P, Klaesigg FC, et al. Research strategies for safetyevaluation of nanomaterials. Part V: Role of dissolution inbiological fate and effects of nanoscale particles. ToxicolSci 2006; 90:23–32. 132. Oberdo¨rster G, Oberdo¨rster E,Oberdo¨rster J. Nanotoxicology: an emerging disciplineevolving from studies of ultrafine particles. EnvironHealth Perspect 2005; 113:823–839.

13 Chapter 13- Dosage Forms forPersonalized Medicine: From the Simple tothe Complex

1. Personalised Medicines: Hopes and Realities. A report byThe Royal Society. London: The

Royal Society, 2005.

2. The potential regulatory challenges of personalisedmedicine. Available at: www.mhra.gov.uk.

3. Dying for drugs—at home. Lancet 2008; 372:419.

4. Phillips DP, Baker GEC, Eguchi MM. Increase in fatalmedication errors. Arch Intern Med

2009; 168:1561–1566.

5. Nebeker JR, Hoffman JM, Weir CR, et al. High rates ofadverse drug events in a highly

computerized hospital. Arch Intern Med 2005; 165:1111–1116.

6. Osterberg L, Blaschke T. Adherence to medication. N EnglJ Med 2005; 353:487–497.

7. Claxton AJ, Cramer J, Pierce C. A systematic review ofthe associations between dose regimens

and medication compliance. Clin Ther 2001; 23:1296–1310. 8.Osterberg LG, Rudd P. Medication adherence forantihypertensive therapy. In: Oparil S, Weber MA, eds.Hypertension: A Companion to Brenner and Rector’s TheKidney. 2nd ed. Philadelphia: Elsevier Mosby, 2005. 9.Florence AT, Salole EG, eds. Formulation Factors in AdverseReactions. London: Wright, 1990. 10. Low-Beer S, Yip B,O’Shaughnessy MV, et al. Adherence to triple therapy andviral load response. J Acquir Immune Defic Syndr 2000;23:360–361. 11. Vrijens B, Urquhart J. Patient adherence toprescribed antimicrobial drug dosing regimens. J AntimicrobChemother 2005; 55:616–627. 12. Urquhart J, Vrijens B. Newfindings about patients adherence to prescribed drug dosingregimens: an introduction to pharmionics. Eur J Hosp PharmSci 2005; 11:103–106. 13. Tobin M, Staniforth JN, Morton D,et al. Active and intelligent inhaler device development.Int J Pharm 2004; 277:31–37. 14. Kaplan W, Laing R.Priority Medicines for Europe and the World. Geneva: WHO,2004. 15. Ernest TB, Elder DP, Martini LM, et al.Developing paediatric medicines: identifying the needs and

recognising the challenges. J Pharm Pharmacol 2007;59:1043–1055. 16. Wong I, Sweis D, Cope J, et al.Paediatric medicines. Drug Saf 2003; 26:529–537. 17.Standing JF, Tuleu C. Paediatric formulations: getting tothe heart of the matter. Int J Pharm 2005; 300:56–66. 18.Tuleu C. Paediatric formulations in practice. In: CostelloI, et al., eds. Paediatric Drug Handling. London:Pharmaceutical Press, 2007. 19. Costello I, Long PF, WongEK, et al. Paediatric Drug Handling, ULLA PostgraduateSeries. London: Pharmaceutical Press, 2007 20. Florence AT.Neglected diseases, neglected devices, neglected patients?Int J Pharm 2008; 350:1–2. 21. Miller MR, Robinson KA,Lubomski LH, et al. Medication errors in paediatric care: asystematic review of epidemiology and an evaluation ofevidence supporting reduction strategy recommendations.Qual Saf Health Care 2007; 16:116–126. 22. HamamatsuPhotonics KK, Japan. Micro-droplet technology. Availableat: http://jp.hamamatsu. com/en/rd/publication. 23. KeithS. Advances in psychotropic formulations. ProgNeuropsychopharmacol Biol Psychiatry 2006; 30:996–1008. 24.Jeong SH, Fu Y, Park K. Frosta: a new technology for makingfast-melting tablets. Expert Opin Drug Deliv 2005;2:1107–1116. 25. Seager H. Drug-delivery products and theZydis fast-dissolving dosage form. J Pharm Pharmacol 1998;50:375–382. 26. Sastry SV, Nyshadham JR, Fix JA. Recenttechnological advances in oral drug delivery. A review.Pharm Sci Tech Today 2000; 3:138–145. 27. Poston KL, WatersC. Zydis selegiline in the management of Parkinson’sdisease. Expert Opin Pharmacother 2007; 8:2615–2614. 28.Vondrak B, Barnhart S. Dissolvable films for flexibleproduct format in drug delivery. Pharm Technol Suppl 2008(April) (see: www.pharmtech.com). 29. Ford C. Overcomingchallenges on the path to combination product development.Pharmaceutical International. Available at:http://www.pharmaceutical-int.com. Accessed April 2008. 30.Franz S. The trouble with making combination drugs. Nat RevDrug Discov 2006; 5:881–882. 31. De Brabander C, Vervaet C,Fiermans L, et al. Matrix minitablets based on starch/microcellulose wax mixtures. Int J Pharm 2000; 199:195–203.32. De Brabander C, Vervaet C, Remon JP. Development andevaluation of sustained release minimatrices by hot meltextrusion. J Control Release 2003; 89:235–244. 33. Huang W,Zheng Q, Sun W, et al. Levofloxacin implants withpredetermined microstructure fabricated by threedimensional printing. Int J Pharm 2007; 339:33–38. 34. RoweCW, Katstra WE, Palazzolo RD, et al. Multimechanisms oraldosage forms fabricated by three dimensional printing. JControl Release 2000; 66:11–17.

35. Vollmer U, Galfetti P. RapidFilm: oral thin films (OTF)

as an innovative drug delivery system

and dosage form. Drug Delivery Report Spring/Summer 2006.

36. Reynaerts D, Peirs J, Van Brussel H. An implantabledrug-delivery system based on shape

memory alloy micro-actuation. Sens Actuators 1997;A61:455–462.

37. Bitsch L. Critical Components in Microfluidic Systemsfor Drug Delivery [PhD thesis,

s960370]. Denmark: Technical University of Denmark, June27, 2006.

38. Chen L, Choo J, Yan B. The microfabricatedelectrokinetic pump: a potential promising drug

delivery technique. Expert Opin Drug Deliv 2007; 4:119–129.

39. Thomsen J, Charabi S, Tos M. Preliminary results of anew delivery system for gentamicin to

the inner ear in patients with Meniere’s disease. Eur ArchOtorhinolaryngol 2000; 257:362–365.

40. Chen Z, Kujawa SG, McKenna MJ, et al. Inner eardelivery via a reciprocating perfusion system

in the guinea pig. J Control Release 2007; 110:1–19.

41. Teymoori MM, Abbaspour-Sani E. Design and simulation ofa novel electrostatic peristaltic

micromachined pump for drug delivery applications. SensActuators A 2005; 117:222–229.

42. Santini JT, Cima MJ, Langer R. A controlled-releasemicrochip. Nature 1999; 397:335–338.

43. Wang PP, Frazier J, Brem H. Local drug delivery to thebrain. Adv Drug Deliv Rev 2002;

54:987–1013.

44. Li Y, Shawgo RS, Tyler B, et al. In vivo release from adrug delivery MEMS device. J Control

Release 2004; 100:211–219.

45. Chung AJ, Kim D, Erikson D. Electrokinetic microfluidicdevices for rapid low power delivery

in autonomous microsystems. Lab Chip 2008; 8:330–338.

46. Grayson ACR, Shawgo RS, Li Y, et al. Electronic MEMSfor triggered delivery. Adv Drug

Deliv Rev 2004; 56:173–184.

47. Hilt JZ, Peppas NA. Microfabricated drug deliverydevices. Int J Pharm 2005; 306:15–23.

48. Peppas NA. Intelligent therapeutics: biomimetic systemsand nanotechnology in drug delivery.

Adv Drug Deliv Rev 2004; 56:1529–1531.

49. Li Y, Duc HLH, Tyler B, et al. In vivo delivery of BCNUfrom a MEMS device to a tumor

model. J Control Release 2005; 106:138–145.

50. Levin VA, Hoffman W, Weinkam RJ. Pharmacokinetics ofBCNU in man: a preliminary study

of 20 patients. Cancer Treat Rep 1978; 62:1305–1312.

51. Montgomery JA, James R, McCaleb GS, et al. The modes ofdecomposition of 1,3-bis

(2-chloroethyl)-1-nitrosourea and related compounds. J MedChem 1967; 10:668–674.

52. Tsai N-C, Sue C-Y. Review of MEMS-based drug deliveryand dosing systems. Sens Acuators

A 2007; 134:555–564.

53. Grayson ACR, Cima MJ, Langer R. Molecular release froma polymeric microreservoir device:

influence of chemistry, polymer swelling, and loading ondevice performance. J Biomed Mater

Res A 2004; 69A:502–512.

54. Kim GY, Tyler BM, Tupper MM, et al. Resorbable polymermicrochips releasing BCNU inhibit

tumor growth in the rat 9L flank model. J Control Release2007; 123:172–178.

55. Wood KC, Zacharia NC, Schmidt DJ, et al. Electroactivecontrolled release thin films. Proc

Natl Acad Sci U S A 2008; 105:2280–2285.

56. Wood KC, Chuang HF, Batten RD, et al. Controllinginterlayer diffusion to achieve sustained

multiagent delivery from layer-by-layer thin films. ProcNatl Acad Sci U S A 2006; 103:

10207–10212.

57. Gro¨ning R, Remmerbach S, Jansen AC. Telemedicine:insulin pump controlled by the Global

System for Mobile Communications (GSM). Int J Pharm 2007;339:61–65.