development of thermodynamic databases for geochemical

298
JNC TN840G 9 9 - 0 7 9 JP005525? Development of Thermodynamic Databases for Geochemical Calculations September , 1999 33003064 Tokai Works Japan Nuclear Cycle Development Institute

Upload: khangminh22

Post on 25-Jan-2023

1 views

Category:

Documents


0 download

TRANSCRIPT

JNC TN840G 99-079 JP005525?

Development of Thermodynamic Databases forGeochemical Calculations

September , 1999

3 3 0 0 3 0 6 4Tokai Works

Japan Nuclear Cycle Development Institute

tz£l>a

T31U-1194 ^^ f -BKWfP i l& f t ^ f t t iU - 3 3

Inquiries about copyright and reproduction should be addrev,ed to

Technical Information Section,

Administration Division,

Tokai Works,

Japan Nuclear Cycle Development Ins t i tu te

4-113 Muramatsu, Tahai-mura, Naha-gun, Ibaraki-fcen, 319-11114,

Japan

FT'R*14-H--t ^ ' t ^ ^ P ; ^ i Japan Nuclear Cycle Development Ins t i tu te '

19HH

PLEASE BE AWARE THATALL OF THE MISSING PAGES IN THIS DOCUMENT

WERE ORIGINALLY BLANK

JNCTN8 400 99-079September,1999

Development ofThermodynamic Databases for Geochemical Calculations

Randolph C Arthur", Hiroshi Sasamoto2', Masahiro Shibata21

Mikazu Yui2>, Atsushi Neyama31

Abstract

Two thermodynamic databases for geochemical calculations supporting research and development

on geological disposal concepts for high level radioactive waste are described in this report. One,

SPRONSJNC, is compatible with thermodynamic relations comprising the SUPCRT model and

software, which permits calculation of the standard molal and partial molal thermodynamic

properties of minerals, gases, aqueous species and reactions from 1 to 5000 bars and 0 to lOOO'C.

This database includes standard molal Gibbs free energies and enthalpies of formation, standard

molal entropies and volumes, and Maier-Kelly heat capacity coefficients at the reference pressure

(1 bar) and temperature (25^) for 195 minerals and 16 gases. It also includes standard partial

molal Gibbs free energies and enthalpies of formation, standard partial molal entropies, and

Helgeson, Kirkham and Flowers (HKF) equation-of-state coefficients at the reference pressure

and temperature for 1147 inorganic and organic aqueous ions and complexes. SPRONSJNC

extends similar databases described elsewhere by incorporating new and revised data published in

the peer-reviewed literature since 1991.

The other database, PHREEQEJNC, is compatible with the PHREEQE series of geochemical

modeling codes. It includes equilibrium constants at 2 5 ^ and 1 bar for mineral-dissolution, gas-

solubility, aqueous-association and oxidation-reduction reactions. Reaction enthalpies, or

coefficients in an empirical log K(T) function, are also included in this database, which permits

calculation of equilibrium constants between 0 and 100*0 at 1 bar.

All equilibrium constants, reaction enthalpies, and log K(T) coefficients in PHREEQEJNC are

calculated using SUPCRT and SPRONSJNC, which ensures that these two databases are

mutually consistent. They are also internally consistent insofar as all the data are compatible with

basic thermodynamic definitions and functional relations in the SUPCRT model, and because

primary experimental and field observations that constrain these data are consistently evaluated

JNCTN8400 99-079

within this modeling framework. The accuracy of the data in SPRONS.JNC is evaluated in the

present study and elsewhere by comparison of calculated equilibrium constants with their

experimental counterparts at pressures and temperatures that span much of the subcritical and

supercritical regions of H2O stability. Additional experimental investigation of mineral solubilities

and aqueous reactions, particularly between 0 and lOO'C, are needed to further assess, and refine

if necessary, the reliability of these databases. Field studies on phase equilibria in near-surface

geological environments may be useful for this purpose because associated reaction times are

greater than can be accommodated experimentally. The effects on mineral-solution equilibria of

metastability and solid solution, and differences in the crystallinity and state of order/disorder in

minerals, must be determined, however, before reliable thermodynamic properties can be retrieved

from field investigations.

1) Monitor Scientific, L.L.C*., Denver, Colorado, US A*(formerly QuantiSci Inc)

2) Japan Nuclear Cycle Development Institute, Tokai Works, Japan

3) Computer Software Development Corp., Tokyo, Japan

JNC TN8400 99-0791 9 9 9 ^ 9 / !

tzOf

Randolph C Arthur",

fciiH

7 7- ^ ^ - ^ [ i , SUPCRT

CLtfct), SUPCRT V: 1-5000 bars, S £ : o-ioocc)

16 , 2513, lbar

Maier-KeUy ^ ^ i

i tz SPRONS.JNC

lbar

SFRONSJNC

SPRONS.JNC ii, 195

, 25*0,

.> h n t f - i s i tf Helgeson-Kkkham-Howers (HKF)

SPRONS.JNC fi, 1991

, PHREEQE.JNC T* > 19 , i

fPHREEQEj t f f i V ' S i t ^fT- S ^ 7 3 ^ r - 9 ^ - 7,Xh 5 0 PHREEQE.JNC (i,

bar ^ ^ # T ^ < 7 ? ¥ » ^ ® : * S i i L T V ^ 0 $ ^ PHREEQE.JNC T*(i, 0 ~ 10013, l b a r ^

(bgK)

PHREEQE.JNC iZ$

%>&$ttni£X\±, SUPCRT V 7 h - 7 x 7 * 3 i ^ SPRONS.JNC

PHREEQRJNC t SPRONS.JNC t±, Wl—<W&

SUPCRT

JNCTN8400 99-079

SPRONSJNC iz-

^"^li, #tc 0

1) Monitor Scientific, L.L.C*., Denver, Colorado USA *(formerly QuantiSci Inc)

2)

JNCTN8 400 99-079

TABLE OF CONTENTSPage

1 Introduction 1

2 Objectives 4

3 Status of Thermodynamic Databases 73.1 Database Requirements 7

3.1.1 Internal consistency 73.1.2 Experimental basis 83.1.3 Documentation 93.1.4 Verification of accuracy 9

3.2 Internally Consistent Databases for Minerals, Gases and AqueousSpecies 103.2.1 SUPCRT 10

3.3 Internally Consistent Databases for Minerals 113.3.1 Berman (1988) 113.3.2 Holland and Powell (1990) 123.3.3 Gottschalk (1997) . 12

3.4 Other Internally Consistent Databases, and Data Compilations 133.5 Comparison of Reliable Thermodynamic Data for Minerals 133.6 Reliable Databases for Geochemical Calculations 18

3.6.1 Recommended databases 183.6.2 Databases not recommended 183.6.3 Development strategy 19

4 Thermodynamic Framework 204.1 Standard-State and Other Conventions 204.2 Thermodynamic Relations 23

4.2.1 Minerals and gases 234.2.1.1 Primary thermodynamic data for minerals and gases . 26

4.2.2 Aqueous species: Summary of the revised HKF model 264.2.2.1 Solvation contribution to the partial molal volume . . . 274.2.2.2 Non-solvation contribution to the partial molal volume 294.2.2.3 Heat capacities of aqueous solutes 294.2.2.4 Apparent standard partial molal thermodynamic

properties of aqueous ions and neutral species 314.2.2.5 Primary thermodynamic data for aqueous species . . . . 32

4.2.3 Reactions among minerals, gases and aqueous species 324.3 Retrieval of Thermodynamic Properties from Experimental Data . . . . 33

4.3.1 Reaction data .* 334.3.1.1 Phase-equilibrium experiments 344.3.1.2 Solubility experiments 36

4.3.2 Mineral and gas data 394.3.2.1 Standard molal heat capacities 394.3.2.2 Standard molal volumes 40

4.3.3 Electrolyte data 404.3.3.1 Partial molal volumes and heat capacities of aqueous

electrolytes 414.3.3.2 Equation-of-state parameters for aqueous ions 42

4.3.4 Statistical/Mathematical Analyses 454.3.4.1 Properties 45

JNCTN8400 99-079

4.3.4.2 Reactions 474.3.4.3 Simultaneous evaluation of multiple reactions 50

4.4 Estimation of Thermodynamic Properties and Equation-of-StateParameters 524.4.1 Minerals 524.4.2 Aqueous solutes 55

Description of Thermodynamic Databases 705.1 Overview 705.2 SPRONSJNC 73

5.2.1 Description 735.2.2 Sources of unrevised data 745.2.3 Sources of new and revised data 765.2.4 Data for minerals not considered by Helgeson et al. (1978) . . . 805.2.5 Conventional and non-conventional aqueous species 825.2.6 Consistency between JNC's core thermodynamic database and

SPRONS.JNC 845.3 PHREEQE.JNC 87

5.3.1 Description 875.3.2 Redox reactions 895.3.3 Comparison of thermodynamic data in PHREEQE.JNC and

the H3 TDB 905.3.4 Excluded reactions 98

Evaluation of Database Reliability 1006.1 Gas Solubilities and Acid Dissociation Constants 1016.2 System SiO2-H2O 102

6.2.1 Quartz 1026.2.2 Amorphous silica 1046.2.3 Chalcedony 1046.2.4 Moganite 1056.2.5 Aqueous speciation 105

6.3 System AI0O3-H2O 1066.3.1 Gibbsite 1066.3.2 Boehmite 1076.3.3 Diaspore 1086.3.4 Corundum 1096.3.5 Aqueous speciation 109

6.4 System SiO2-Al->O3-H2O 1106.4.1 Kaolinite 1106.4.2 Kaolinite, boehmite, diaspore, andalusite, pyrophyllite 112

6.5 System N a ^ - ^ O - S i C v A ^ C V ^ O 1136.5.1 K-feldspar, muscovite, quartz -. 1156.5.2 Muscovite, andalusite, quartz 1166.5.3 Muscovite, kaolinite 1166.5.4 Muscovite, quartz, pyrophyllite 1166.5.5 Albite, paragonite, kaolinite, pyrophyllite, andalusite, quartz 1166.5.6 Albite 1176.5.7 Analcime 117

6.6 System MgO-SiO2-H2O 1186.6.1 Aqueous speciation 119

6.7 System CaO-SiO2-Al2O3-H2O 1196.7.1 Aqueous speciation 120

6.8 System CaO-MgO-FeO-BaO-SrO-H2O-CO2 1206.8.1 Aragonite and calcite 121

JNCTN8400 99-079

6.8.2 Strontianite 1216.8.3 Witherke 1216.8.4 Siderite 1226.8.5 Aqueous speciation 122

6.9 System CaO-BaO-SrO-SO3-H2O 1236.9.1 Anhydrite 1236.9.2 Barite 1236.9.3 Celestite 124

6.10 System FeO-S(rb)-H2O-HCl 1246.10.1 Pyrite 1246.10.2 Pyrrhotite 1256.10.3 Magnetite 1256.10.4 Aqueous speciation 126

6.11 Stability Relations Among Smectites, and the Solubility of Hike . . . 1266.11.1 Smectites 1276.11.2 Hike 128

6.12 Aqueous Dissociation Reactions 1306.13 Comments on Database Management 133

6.13.1 Internal consistency 1336.13.2 Experimental basis 1336.13.3 Documentation 1356.13.4 Verification of accuracy 135

7 Acknowledgements 136

8 References 137

Appendix A: Listing of the SPRONS.JNC Database

Appendix B: Listing of the PHREEQE.JNC Database

Appendix C: Calculated and Experimental Equilibrium Constants of Mineral andGas Solubility Reactions as Functions of Pressure and Temperature

Appendix D: Calculated and Experimental Equilibrium Constants of AqueousReactions as Functions of Pressure and Temperature

Appendix E: Calculation Examples

JNCTN8400 99-079

1 Introduction

The Japanese repository concept for permanent disposal of high-level nuclearwastes is based on an integrated system of natural and engineered barriers toradionuclide migration. A crystalline or sedimentary host rock (into which thewastes will be emplaced at depths of 1000 m, or 500 m, respectively) willfunction as the natural barrier. Engineered barriers will include a bentonitebuffer, steel canister and vitrified-glass waste form. The natural and engineeredbarriers will act in concert, such that the wastes are isolated from the geospherefor long periods of time (e.g., 1000 years), and subsequent releases ofradionuclides to the biosphere are below levels that would pose an unacceptablerisk to the public's health.

The Japan Nuclear Cycle Development Institute (JNC) is carrying out anapplied R&D program to evaluate the feasibility of this concept-'. Theprogram is broad in scope, and includes field studies of various geologicalenvironments (Tono, Kamaishi and Mobara sites), laboratory investigations ofchemical and transport phenomena (ENTRY and QUALITY facilities), andmodeling-based assessments of repository performance (PNC, 1992). Anumber of these studies deal specifically with geochemical and chemicalengineering issues, including:

• the stability of engineered barriers in the disposal environment over timescales of thousands to millions of years,

• the solubility, aqueous-speciation and sorption behavior of radioelementsand non-radioactive elements, and

• general and site-specific geochemical processes controlling groundwaterevolution.

These issues can be resolved with the aid of thermodynamic models, which areroutinely used by JNC and others to interpret the results of experimental andfield studies (Sasamoto et al., 1999a, b, c; Iwatsuki and Yoshida, 1999; Oda etal., 1996; Sasaki etal., 1995), to predict the long-term chemical evolution ofnatural and engineered-barrier systems (Oda etal., 1999; Yui etal., 1999; PNC,1992, Yui et al., 1992b), and to evaluate associated impacts on repositoryperformance (Azuma etal., 1999; PNC, 1992; Yui etal., 1992a).

Thermodynamic models require basic thermodynamic data over an appropriaterange of temperatures and pressures. It is essential that the basic data are reliable,because, as stated by Silva et al. (1995), .".. the quality of the models cannot bebetter than the quality of the data they are based on\ Although the validity of

i- JNC was established in 1998, and is responsible for many of the repository R&D functionsformerly assigned to the Power Reactor and Nuclear Fuel Development Corporation (PNC).

1 -

JNCTN8400 99-079

this statement is beyond dispute, it is useful to clarify what the terms "reliable"and "quality" mean in the context of thermodynamic databases. Here weadopt a pragmatic definition of both terms that is consistent with conceptsunderlying recent advances in the development and management of thermody-namic databases (Helgeson etal., 1978; Berman, 1988, Holland and Powell,1990; Engi, 1992; Grenthe etal, 1992; Silva etal, 1995; Gottschalk, 1997).Thus, a database is considered reliable (or to be of high quality) if the followingconditions are met, or are approximated as closely as possible:

• internal consistency - internal consistency is established among all the data,and is maintained as the database is updated and revised (the concept ofinternal consistency is discussed further in Section 3),

• experimental basis - selected values of thermodynamic parameters are basedon evaluations of all available types of relevant experimental (and field)studies, not just on subsets of preferred experimental technique, or overarbitrary ranges of temperature and pressure,

• documentation - all procedures in the evaluations are documented such thatselected data are traceable to original experimental sources, and that thesesources are scientifically defensible and reproducible, and

• verification of accuracy - the accuracy of data retrieved from the evaluationsis verified by comparison of calculated thermodynamic quantities withtheir experimental counterparts.

Unfortunately, most published compilations of thermodynamic data are notinternally consistent, have not been evaluated on the basis of all (or even most)available types of experimental and field studies, and are poorly documentedwith respect to data sources and reasons for data selection or rejection (Engi,1992; Nordstrom and Munoz, 1985; - important exceptions are summarized inSection 3, however). For this reason, P N C commissioned a two-year projectbeginning in 1996 to develop a thermodynamic database that adheres as closelyas possible to the conditions stated above. The project was limited in scope todata for minerals, gases and aqueous species characteristic of geologic systems,and some engineered barriers (e.g., bentonite "clays" and corrosion products ofthe steel canister). The project was also intended to complement, and to beconsistent with, similar efforts carried out by PNC to obtain reliable thermody-namic data for actinide and fission-product elements (Yui et aL 1992a).

The results of the project are summarized in this report, where two newdatabases, SPRONS.JNC and PHREEQEJNC, are described, and where thebasic philosophy and associated procedures used to generate them aredocumented. The report is organized as follows. General comments addressingthe objectives of this study in relation to JNC's overall R&D program aresummarized in Section 2. A survey of existing, reliable thermodynamicdatabases appropriate for geologic systems is summarized in Section 3. The

o

JNCTN8400 99-079

results of the survey are used to define a general modeling-based strategy fordatabase development and management. The model, SUPCRT2 (Johnson etai, 1991; Johnson etal., 1992) is consistent with SPRONSJNC, and is brieflydescribed in Section 4. The SPRONS.JNC and PHREEQEJNC databases aredescribed in Section 5, and listings of these databases are provided inAppendices A and B, respectively. The accuracy of these databases is assessed inSection 6 by comparison of experimental and calculated equilibrium constantsfor selected heterogeneous reactions (mineral and gas solubilities, Appendix C)and aqueous-speciation reactions (Appendix D).

SUPCRT is an abbreviation of "supercritical"; SPRONS stands for Sequential-access(ASCII) file of PROperties of Natural Substances

- 3 -

JNCTN8400 99-079

Objectives

As noted by Johnson et al. (1991), thermodynamic databases are nevercompleted, only abandoned. There is always a need to uncover and correct anyerrors in the data (not all of which are merely typographical), and to update andrevise the database as the results of new experimental and field studies becomeavailable. The present study is therefore considered to be an initial effort toimplement a general strategy for managing thermodynamic data within acomplex and evolving R&D program. SPRONSJNC and PHREEQE.JNC arethe first products of this strategy, but it is reasonable to expect that thesedatabases, and others, will be refined and improved by JNC in the future.

With this in mind, the objective of the study is to develop a thermodynamicdatabase that is both reliable and relevant for conditions considered in theJapanese repository concept. The range of temperatures (T), pressures (P) andfluid- and solid-phase compositions embraced by this concept are bounded by:

• temperatures between 0 and 100°C, but also higher temperatures that maybe considered in alternative scenarios of repository evolution (e.g., the so-called volcanism scenario),

• a total (fluid) pressure between 1 bar and hydrostatic pressures at the depthof the repository (= 50 to 100 bars), and

• minerals, gases and aqueous species characteristic of geologic environmentsand engineered barriers (essentially all components of the barriers that arenot radioactive).

As noted in the introduction, however, the study is also based on the premisethat a reliable thermodynamic database must be compatible with all relevanttypes of experimental studies (e.g., calorimetry, phase equilibrium, solubility,electrochemical, etc.) over as broad a range of temperatures and pressures aspossible. For this reason, the first two conditions noted above are expanded inscope to consideration of P-T-p (where prefers to density) regions of stability offluid phases of H2O that include both subcritical and supercritical domains.This includes high-temperature (« 200 - 1000°C) and high-pressure ( = 1 - 5 0kb) conditions considered in hydrothermal and phase-equilibrium experiments.

Two databases are developed in this study to best accommodate this objective.One is adopted as a primary database. It is a type S database in the sense definedby Engi (1992), and therefore includes standard molal and partial molalproperties of minerals, gases and aqueous species at the reference temperatureand pressure, and empirical coefficients enabling calculation of correspondingthermodynamic properties at other temperatures and pressures. These data areobtained from a number of literature sources (Section 5), where procedures toretrieve the data from the results of experimental or field studies (see Section

- 4 -

JNCTN8400 99-079

4.3), or by various estimation techniques (see Section 4.4), are documented. Theaccuracy of these data is assessed in the present study by comparing calculatedequilibrium constants with corresponding values determined experimentally, orby inferences drawn from observations of mineral stability relations in naturalsystems (Section 6). These comparisons are often at conditions of temperatureand pressure that lie considerably outside the range of conditions nominallyconsidered in the Japanese repository concept. Thus the primary database, andSUPCRT, are used to

• assess the accuracy of basic thermodynamic data over a broad range ofexperimental temperatures and pressures, and

• calculate thermodynamic properties of relevant reactions at temperaturesand pressures considered in the repository concept.

These dual uses of the primary database address the requirements of reliabilityand relevance, respectively, which underlie the main objective of this project.

SPRONS.JNC is the primary database developed in this study. For mineralsand gases, it includes standard molal Gibbs free energies and enthalpies offormation, and standard molal entropies and volumes, at a reference pressure of1 bar and reference temperature of 25°C. Empirical coefficients enablingcalculation of standard molal heat capacities and associated thermodynamicquantities at other temperatures and pressures are also documented. Foraqueous species, standard partial molal Gibbs free energies and enthalpies offormation, and standard partial molal entropies at the reference temperature andpressure are reported, as are equation-of-state parameters for calculation ofstandard partial molal volumes and heat capacities, and associated standardpartial molal properties as functions of temperature and pressure. Thethermodynamic properties of reactions, including equilibrium constants andreaction enthalpies, are calculated using SUPCRT and SPRONS.JNC over arange of temperatures and pressures that encompass the subcritical andsupercritical regions of H/jO stability (Section 4).

The other database is considered an applications database, or type K databaseaccording to Engi's classification (Engi, 1992). Thermodynamic data are in theform of equilibrium constants {K) for hydrolysis and aqueous-associationreactions, and the temperature dependence of the equilibrium constant iscalculated using either the van't Hoff equation (requiring the reaction enthalpyat the reference temperature and pressure; e.g., Langmuir, 1997) or an empiricalequation representing log K(T). The application database directly supportsgeochemical models that are used in safety assessments based on JNC'sreference scenario. Repository temperatures in this scenario are determined onlyby the geothermal gradient and a relatively short-lived thermal excursion due toradiogenic heating. A temperature range of 0 to 100°C fully brackets expectedrepository temperatures in this scenario. The corresponding pressures of interest

- 5 -

JNCTN8400 99-079

will, as noted earlier, be in the range of 1 bar to that determined by thehydrostatic pressure at the depth of the repository (50 - 100 bars). Because suchlow pressures have negligible effects on most heterogeneous and homogeneousreactions, however, a pressure of 1 bar is considered adequate for theseconditions.

PHREEQE.JNC is the applications database developed in this project. Itsupports the PHREEQE series of geochemical modeling codes (Parkhurst et at.,1980), and therefore consists of equilibrium constants and reaction enthalpies atthe reference pressure and temperature, or empirical coefficients that can beused in a polynomial equation to calculate equilibrium constants between 0 and100°Cat 1 bar.

All thermodynamic data in PHREEQE.JNC are calculated using SUPCRT andSPRONSJNC. Consistency between the primary and applications databases istherefore ensured. This level of consistency among these type S and type Kdatabases can be extended to other modeling software, which is advantageousbecause several geochemical modeling codes, including EQ3/6 (Wolery, 1992),the Geochemist's Workbench (GWB; Bethke, 1996) and several of thePHREEQE series of codes (PHREEQE, PHREEQE-60 and PHREEQQ, willbe used by JNC in specialized research areas. Consistency amongthermodynamic data in the primary database and other databases used by JNC(i.e., data for minerals, gases and aqueous species of radioelements) are assessedby comparison of data that are common among the databases to determine ifthey are compatible (i.e., values are identical within stated uncertainty limits).Results are discussed in Section 5.2.6.

- 6 -

JNCTN8400 99-079

3 Status of Thermodynamic Databases

Four databases have been developed over the past twenty years that fulfill tovarying degrees the conditions noted in the introduction that we have adoptedas standards for a reliable database. Some remarks on these conditions aresummarized below. This is followed by a brief description of the four databases.Supplementary comments on other thermodynamic databases are also includedfor completeness. We then outline the general strategy used to developSPRONSJNC and PHREEQE.JNC.

3.1 Database Requirements

3.1.1 Internal consistency

Internal consistency ensures that there are no sources of ambiguity in thedatabase. Such ambiguities are revealed when mathematical manipulation of thedata in various ways results in two (or more) different values for a giventhermodynamic property. The two values are mutually incompatible, andtherefore internally inconsistent with respect to the data used to calculate them.If, on the other hand, a database is internally consistent, and all suchdiscrepancies are therefore resolved, then data that are in conflict withexperimental observations can be attributed unequivocally to errors in the data,or to errors in the experimental results. Internal consistency is thus a conditionalrequirement, which must be met before the accuracy of a database can beunambiguously assessed.

Engi (1992) suggests that the internal consistency of a database is best evaluatedin terms of a level of increasingly stringent conditions:

• all the data are compatible with basic thermodynamic definitions, and basicfunctional relations used to retrieve thermodynamic data from experimen-tal results,

• a single set of reference values (e.g., reference temperature and pressure)and constants (e.g., gas constant, atomic weights, etc.) is adhered to,

• the interdependence of the data is minimized by simultaneous evaluationof experimental results for multiple reactions,

• parameter values are constrained by all relevant experimental (and field)data, except those that are rejected (or uncertainties "relaxed") on the basisof experimental procedures employed.

Thermodynamic databases are then classified as:

• formally consistent if only the first two conditions are satisfied,

- 7 -

JNCTN8400 99-079

• partially consistent if the third condition is also satisfied, and

• fully consistent if all four conditions are satisfied.

According to this definition, the databases described in Sections 3.2 and 3.3 areat least partially consistent because parameter values are determined bysimultaneous evaluations of experimental data for many reactions (see Section4.3.4.3). The databases are not fully consistent in the strictest sense, however,because statistical techniques to identify discordant experimental data, andreasons for ultimately rejecting such data, are inadequately documented. Theneed for brevity in scientific journals, where all these databases are described,accounts for this general lack of full and complete documentation.

The definition of internal consistency given above is useful because it includesthe concept of "levels-of-attainment". A fully consistent database is thus anideal standard, which may be extremely difficult to achieve in practice, and tomaintain as the database is inevitably updated and revised. It is important toemphasize here that the level of internal consistency does not necessarilycorrelate in any meaningful way with the accuracy of the data (Section 3.5).Thus, thermodynamic data in an uncritical data compilation may still beaccurate.

3.1.2 Experimental basis

We adopt the premise of Berman (1988) that "... it is only possible to evaluate thevalidity of thermodynamic properties by comparison with all available data, becausesubsets of preferred experimental data are never sufficiently precise to define fully allthermodynamic properties". This view is based in part on the work of Helgesonet al. (1978), who realized that enthalpies of formation had not generally beendetermined calorimetrically with the accuracy needed to reproduce the results ofhigh temperature and high pressure phase-equilibrium experiments [see alsoBerman and Brown (1985)]. Internally consistent databases developed since1978 (Sections 3.2 and 3.3) are therefore constrained by both phase-equilibriumdata and a limited amount of reference, or "anchor", calorimetric values.Berman's premise is further supported by more recent investigations, which showthat thermodynamic properties retrieved from solubility and mineral-stabilityexperiments at relatively low-temperatures and pressures are in some casesinconsistent with corresponding data retrieved from both calorimetric andphase-equilibrium studies (Sverjensky etal, 1991; Pokrovskii and Helgeson,1995; 1997b). This suggests that reliable thermodynamic data for minerals,gases and aqueous species must be properly constrained by all available types ofexperimental (and field) data spanning as broad a range of temperatures andpressures as possible.

Nordstrom etal. (1990) apparently contravene these views, however, with thereasonable argument that because reversible solubilities for many minerals have

JNC TN8400 99-079

never been convincingly demonstrated at low temperatures and pressures,equilibrium constants for corresponding reactions should not be included in athermodynamic database appropriate for such conditions. We agree with this,but believe such considerations should be exercised when the data are applied toa particular problem, not when the database itself is being developed. There isalways some level of interdependence among thermodynamic data, and valuableconstraints on the thermodynamic properties of minerals that exhibit reversibleequilibrium at low temperatures can therefore be extracted from the results ofhigh-temperature and high-pressure experiments involving minerals that do notexhibit such behavior.

3.1.3 Documentation

Quality assurance is an important component of any applied R&D program,and particularly that being carried out by JNC for the permanent disposal ofhigh-level nuclear wastes. A quality-assured thermodynamic database issufficiently well documented that results of any calculation using the data can betraced back to original data sources. This requirement is addressed in thepresent study by documenting appropriate references, compiling a library of thereferenced studies, and documenting assessments of the accuracy of selectedvalues.

In addition to quality-assurance issues, it is also important that data analysisprocedures used to retrieve thermodynamic parameters from experimental andfield studies are adequately documented. This is because independent retrievalsmay lead to recommended values of thermodynamic properties that are inconflict with accepted values in the database. To resolve these conflicts, it isessential to understand the thermodynamic framework and assumptionssupporting the procedures used to retrieve the database values, as well as thestatistical/mathematical basis for selecting, and rejecting, experimentalobservations. Also, it is necessary that the database should be updated andrevised as results of new experimental or field studies become available. This alsorequires familiarity with the details of the data analysis procedures supportingthe database.

3.1.4 Verification of accuracy

Verifying the accuracy of thermodynamic data is necessary to build confidencein inferences drawn from the results of geochemical calculations that are basedon the data. An essential step in assessing the accuracy of a database is tocompare calculated values of thermodynamic parameters (e.g., standard Gibbsfree energies of reaction, or corresponding equilibrium constants) with theirexperimental counterparts over as broad a range of temperatures and pressures aspossible. Such comparisons are effectively documented in the form of diagrams,in which the reported uncertainty of each experimental value is also portrayed.A more rigorous test of the accuracy of the data is to compare calculated results

- 9 -

JNCTN8400 99-079

with constraints derived from geologic observations, particularly if theseconstraints refer to conditions of temperature, pressure and time that have notbeen simulated experimentally. Activity diagrams are especially useful in thisregard because calculated equilibrium relations among minerals, gases andaqueous solutions in various chemical subsystems can be simultaneouslycorrelated with the observed compositions of natural waters. Inconsistenciesrevealed by such correlations are common at relatively low temperatures andpressures, however, and result from the effects of metastability and fromuncertainties in the state of crystallinity and degree of order/disorder in theminerals considered (e.g., Helgeson et al., 1978).

3.2 Internally Consistent Databases for Minerals, Gases and AqueousSpecies

Databases that partially fulfill the requirements discussed in Section 3.1, andwhich also include data for minerals, gases and aqueous species, have evolvedmore-or-less continuously since 1974 through the combined efforts ofresearchers affiliated with the Laboratory of Theoretical Geochemistry at theUniversity of California, Berkeley. For convenience, the results of this collectiveeffort are referred to here as the SUPCRT model, and its associated databases.

3.2.1 SUPCRT

An internally consistent thermodynamic database developed primarily on thebasis of calorimetric and phase-equilibrium data was first developed by Helgesonet. al. (1978). It includes standard thermodynamic properties for 83 minerals inthe system Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2.Several of these minerals exhibit considerable non-stoichiometry andcomplications due to temperature-dependent disordering and phase transitions.This study also pioneered the use of equations of state for aqueous species [Na+,K>. O2(aq) and SlO2(aq): Helgeson and Kirkham (1974 a,b; 1976), Waltherand Helgeson (1977) and Delany and Helgeson (1978)] to retrieve Gibbs freeenergies of formation of minerals from the results of solubility and mineral-stability experiments. The accuracy of the data is verified for more than 130reactions in the form of diagrams, where experimental solution compositions, orphase-equilibrium reversal temperatures (see Section 4.3.1.1), are compared withcalculated equilibrium constants, or univariant/divariant equilibrium curves.

Johnson et al. (1991) utilized subsequent improvements to theoretical modelsgiving more accurate representation of the thermodynamic and dielectricproperties of H2O at subcritical and supercritical temperatures and pressures (seeSection 4) to add data for 294 aqueous species, and an additional 96 minerals^ ,

3- Many of the data for minerals are from Table 9 of Helgeson et al. (1978), which are basedsolely on calorimetric data from several different sources. The reliability of these data was notassessed by Helgeson et al. (1978), nor by Johnson et al. (1991).

- 1 0 -

JNCTN8400 99-079

to the original Helgeson et al. (1978) database. The revised database is referredto as SPRONS92.DAT, and is included in the SUPCRT software packagedescribed by Johnson et al. (1991).

Oelkers et al. (1995) discuss results of calculations using SUPCRT and amodified version of SPRONS92.DAT, which includes revisions tothermodynamic data for minerals and aqueous species in the system AI2O3-H^O-NaCl (Pokrovskii and Helgeson, 1995), and unpublished revisions to datafor minerals and aqueous species in the system Na2O-Al2O3-SiO2-HCl.Standard Gibbs free energies of formation are the only data documented bythese authors, however, (the complete database will be described in a futurereport; E. H. Oelkers, pers. comm.).

Revisions and additions of new data to SPRONS92.DAT are also available fromthe Lawrence Livermore National Laboratory (LLNL), Livermore, California.The revised database (SPRONS96) can be obtained from LLNL at ftp://sl22.es.llnl.gov. Databases supporting EQ3/6 and the Geochemist's Workbench,which incorporate data in SPRONS96, can also be obtained at this site.

3.3 Internally Consistent Databases for Minerals

Three databases that partially fulfill the requirements discussed in Section 3.1have been developed for minerals. All these databases also consider thethermodynamic properties of H2O and simple H2O-CO2 mixtures. None ofthe databases include data for other aqueous solutes, however, and they aretherefore less comprehensive in this regard than the databases discussed inSection 3.2.

3.3.1 Berman (1988)

Berman (1988) derived an internally consistent database constrained primarilyby the results of phase-equilibrium studies and a limited number of calorimetricreference values for 67 minerals in the system NaiO-I^O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2~TiO2-H2O-CO2. The minerals considered are those forwhich phase-equilibrium data were available, and for which complications due tosolid-solution behavior are minimal. Retrieved values of standard molal Gibbsfree energies and enthalpies of formation, and standard molal heat capacities andvolumes are reported. Coefficients in an empirical heat capacity equation givenby Berman and Brown (1985) are provided, as are coefficients in an empiricalequation for calculation of standard molal volumes over an appropriate range ofpressures and temperatures. Berman (1988) also lists empirical equations andcoefficients to calculate the effects of temperature-dependent phase transitionson the standard molal heat capacity and associated thermodynamic properties ofakermanite, alpha cristobalite, hematite, magnetite, alpha quartz and lowtridymite, and similar effects of disordering on the standard molal heat capacityand associated thermodynamic properties of dolomite, gehlenite and K-feldspar.

11

- 1 1 -

JNCTN8400 99-079

Phase equilibrium data [approximately 1200 experimental results involving 180equilibria] are used to retrieve values of the thermodynamic parameters using amathematical programming technique (Berman et al., 1986). The results ofcalculations using the retrieved data are compared with experimental phase-equilibrium results (44 figures). Good agreement overall is obtained. Less than1% of the experimental data are discordant with calculated values.

3.3.2 Holland and Powell (1990)

Holland and Powell (1990) derived an internally consistent database on the basisof phase-equilibrium studies and a limited number of calorimetric referencevalues for 123 minerals in the system Na2O-K2O-CaO-MgO-MnO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2. Values of standard molal enthalpies offormation, and standard molal entropies and volumes retrieved fromexperimental phase-equilibrium studies utilizing calorimetric enthalpies offormation of 23 reference minerals are reported. Coefficients in an empiricalheat capacity equation are provided, as are coefficients of thermal expansion andcompressibility. Retrieval of standard molal enthalpies of formation is carriedout using a least-squares regression technique. Results are documented in atabular format for several reactions. Good agreement is achieved overall withrespect to both the experimental database, and data retrieved by Berman (1988).

3.3.3 Gottschalk (1997)

Gottschalk (1997) derived an internally consistent database constrainedprimarily by the results of phase-equilibrium studies and a limited number ofcalorimetric reference values for 94 minerals in the system Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2. Retrieved values of standardmolal enthalpies of formation, and standard molal entropies are reported.Standard molal volumes and coefficients of thermal expansion andcompressibilities from various sources are used in the retrievals. Coefficients inan empirical heat capacity equation from Haas and Fisher (1976) are provided.Gottschalk: also lists coefficients in an empirical heat capacity equation fromBerman and Brown (1985) to extrapolate values beyond the upper temperaturerange constrained by the calorimetric data. Phase equilibrium data(approximately 5300 experimental results involving 253 equilibria)-are used toretrieve values of the thermodynamic parameters using an iterative regressiontechnique. An advantage of this approach is that all available experimentalresults are considered in the regression procedure, whether they are consistentwith other data in the set or conflicting. The results of calculations using therecrieved data are compared with experimental phase-equilibrium results [allfigures and references to experimental data are available at http://www.gfz-potsdam.de/ - navigate to "major projects", then "thermodynamische daten furgesteinbildende minerale (thermodynamic data for rock-forming minerals)].Good agreement overall is obtained, reproducing 92% of the available phase-equilibrium results reported in the literature.

12

- 1 2 -

JNCTN8400 99-079

3.4 Other Internally Consistent Databases, and Data Compilations

Other internally consistent databases for minerals that are derived on the basis ofphase-equilibrium and calorimetric data are described by Robinson etal. (1983),Halbach and Chatterjee (1984), Holland and Powell (1985), Berman et al.(1986), Saxena et al. (1993) and Berman and Aranovich (1996). These databasespertain to minerals in relatively small chemical subsystems, however, and aretherefore of limited use for general geochemical calculations. Although they arenot considered here for this reason, these studies are important additionalsources of reliable thermodynamic data, which can in some cases be merged withother internally consistent databases with little, if any, conflict (Saxena, 1997).

Robie et al. (1978) and Hemingway et al. (1982) describe databases for a largenumber of minerals, and a limited number of gases and aqueous species. Thesedatabases are internally consistent, but reported values are evaluated exclusivelyon the basis of calorimetric investigations carried out by the U.S. GeologicalSurvey. These calorimetric databases have been superseded by the databasesdescribed in Sections 3.2 and 3.3 for reasons discussed in Section 3.1.2. Thecalorimetric data reported by Robie et al. (1978) and Hemingway et al. (1982)nevertheless provide important constraints on evaluations of phase equilibriumdata, and are used to varying degrees in all the databases described in Sections3.2 and 3.3.

Numerous databases, including most that support geochemical modeling codessuch as PHREEQE and EQ3/6, are compilations of log K values obtained frommany different sources. These data have not been evaluated simultaneously, norare they necessarily compatible with all available calorimetric, phase-equilibriumand other experimental constraints. These data compilations are at best onlyformally consistent, and are not considered further here.

There are numerous compilations of thermodynamic data for geochemicalcalculations that are also, at best, only formally consistent. Nordstrom andMunoz (1985), for example, cite 206 literature sources of thermodynamic datafor minerals, gases and aqueous species that are appropriate for geologic systems,and 40 sources on the thermodynamic properties of H2O.

3.5 Comparison of Reliable Thermodynamic Data for Minerals

Arthur et al. (L997) compared standard molal volumes and entropies, andstandard molal Gibbs free energies and enthalpies of formation, of minerals thatare common to the Helgeson et al. (1978), Berman (1988), Holland and Powell(1990), Johnson etal. (1991) and Oelkers etal. (1995) databases at 25°C and 1bar [the Gottschalk (1997) database had not been published at the time thiscomparison was carried out]. Comparisons among any two of these databasesare of interest because discrepancies in reported values for a given mineral

13

- 1 3 -

JNCTN8400 99-079

indicate that at least one of the values must be in error. The comparisons do notprovide a basis for deciding which value, if either, is actually correct, however.

The results are summarized in Figs. 3.5_1 - 3.5_4 where, for convenience, theabbreviations 78HEL, 88BER, 90HOL, 91JOH and 95OEL refer to Helgesonetal. (1978), Berman (1988) Holland and Powell (1990), Johnson et al. (1991),and Oelkers et al. (1995), respectively. Mineral names are abbreviated in thefigures as:

• elements - gph (graphite), iron (elemental Fe),

• oxides - bcri (beta cristobalite), coe (coesite), cor (corundum), hem(hematite), ilm (ilmenite), lime [CaOfcJ], mt (magnetite), mang(manganosite), per (periclase), q (quartz), bq (beta quartz), ru (rutile), sp(spinel),

• hydroxides - br (brucite), dia (diaspore),

• carbonates - arag (aragonite), cc (calcite), dol (dolomite), fdol (Fe-dolomite) mag (magnesite), rhc (rhodocrosite), sid (siderite), and

• silicates- acra (acmite), ak (akermanite), ab (albite), abh (albite-high), abl(albite-low), aim (almandine), and (andalusite), andr (andradite), ann(annite), an (anorthite), ant (antigorite), anth (anthophyllite), cap (Ca-Alpyroxene), eel (celadonite), chr (chrysotile), clin (clinochlore), cz(clinozoisite), crd (cordierite), cumm (cummingtonite), di (diopside), ed(edenite), ep (epidote), fa (fayalite), fo (forsterite), fs (ferrosilite), geh(gehlenite), gl (glaucophane), gr (grossular), grun (grunerite), hed(hedenbergite), jd (jadeite), kao (kaolinite), ksp (K-feldspar), kals(kalsilite), ky (kyanite), law (lawsonite), ma (margarite), me (meionite),merw (merwinite), mont (monticellite), mu (muscovite), ne (nepheline), pa(paragonite), parg (pargasite), phi (phlogopite), pre (prehnite), pswo(pseudo-wollastonite), py (pyrope), pyhl (pyrophyllite), san (sanidine), sill(sillimanite), sph (sphene), ta (talc), tr (tremolite) and wo (wollastonite).

A notation in the figures, such as 90HOL - 78HEL, signifies that the indicatedparameter in one database (i.e., from Helgeson etal., 1978) is subtracted fromthat of another (i.e., Holland and Powell, 1990).

Differences among standard molal volumes retrieved by Holland and Powell(1990) and those determined by Helgeson etal. (1978), Johnson etal. (1991)and Berman (1988) are shown in Fig. 3.5_1. As can be seen, there is littlediscrepancy among these data. This is because molar volume data are calculatedon the basis of X-ray cell refinements, which are routinely determined with smallstandard errors, in the range of 0.1-0.2%. Molar volumes in the 91JOHdatabase for celadonite, cummingtonite, glaucophane, grunerite, merwinite, andnepheline differ significantly compared with corresponding values in the 90HOLand 88BER databases, however.

14

- 1 4 -

JNCTN8400 99-079

30

20

10

-10

-20

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I N I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I

o•o

90HOL-78HEL90HOL-88BER90HOL-91JOH

©

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1CC HUE E Q>AJ On

m k u u c - H ^ E tap.o m:HuiS"s5-i c u ej Ek tn® °«n ocu

a i o u u o t j e E e a a c m

Minera l

Figure 3.5_1. Differences in standard volumes of minerals berween the 90HOL and 78HEL,88BER and 91JOH databases.

A plot similar to Fig. 3-5 1 is shown for standard entropies in Fig. 3.5_2, whereit can be seen that the entropies determined by Holland and Powell (1990) andBerman (1988) agree in most cases, but discrepancies exist for albite, clinochlore,cordierite, gehlenite and phlogopite. Berman (1988) assigns entropy values for

10

1 o

u J

Q

-10

-15

-20

I IT! 1TI UTTI I I I I I I I I I M I I I I ITIT I I I I I I I I I I I I 1 I I I I I I I I I I I I I I I I I I I I I I I I I I I

O@

©

• o

o•

o

90HOL-78HEL90HOL-88BER90HOL-91JOH

I I I I I I I II I I II I I I I I I I I I I I I I I I I I II I I I I I I I I I I I I I II I I I I I I I I I I I I IT I I I I I I I I I IXL CtUkE E "U^ OUaOQOlLtr^EE CIU

< H E -u EE a a o. m

Mineral

Figure 3.5_2. Differences in standard entropies of minerals between the 90HOL and 78HEL,88BERand 91JOH databases.

.15

- 1 5 -

JNCTN8400 99-079

"high" albite to albite, whereas Holland and Powell (1990), Helgeson et al.(1978) and Johnson et al. (1991), attribute values for "low" albite to this phase.Significant discrepancies (e.g., greater than ± 2 cal K-l mol"1) exist between the90HOL and 78HEL and 91JOH databases for ferrous dolomite, siderite,acmite (aegerine), almandine, andradite, annite, celadonite, edenite, epidote,gehlenite, glaucophane, nepheline, pargasite and prehnite.

A plot similar to Fig. 3.5_1 is shown for standard enthalpies in Fig. 3.5_3- The90HOL and 88BER data agree reasonably well, but data for albite, high albite,clinochlore, cordierite, and meionite differ significantly (e.g., greater than + 2kcal mol"1)- The discrepancy for albite may be more apparent than real forreasons noted above. A number of such discrepancies also exist between the90HOL and 78HEL and 91JOH databases, i.e., for corundum, spinel,akermanite, high albite, andalusite, andradite, anorthite, anthophyllite,clinozoisite, cordierite, grossular, jadeite, kalsilite, kyanite, lawsonite, margarite,merwinite, monticellite, muscovite, nepheline, paragonite, phlogopite,pyrophyllite, sillimanite and tremolite. Many of these minerals are aluminousphases, and the discrepancies could therefore reflect a systematic error in the78HEL and 91JOH databases (Section 4.3.4.3).

Differences among standard Gibbs free energies of formation retrieved byBerman (1988) and those of Helgeson et d. (1978) and Johnson etal. (1991) areshown in Fig. 3.5_4 [the 90HOL database does not include free energy values].Data from Oelkers et al. (1995), which, as noted earlier, include several revisionsto the 78HEL database, are also shown in the figure for comparison. Significant

I 2

-A

-6

1 1 r i i i 1 1 i 1 1 i i i 1 1 i i 1 1 \ 1 1 1 1 1 1 i i i i i 1 1 1 i 1 1 1 1 1 1 1 r i 1 1 i 1 1 i i 1 1 1 i 1 1 1 1 1 1 1 1 1

O 90HOL-78HEL• 90HOL-88BERO 90HOL-91JOH ©

oO

CT U U ^ ^ H E III a t3 ^ TtE H 01 ^ 3 B OCrO CU-H U U o"x ^(1 H f c t ( t0 b fflftttBH H E <a n o u M E E a a

M i n e r a l

Figure 3.5_3. Differences in standard enthalpies of formation of minerals between the 90HOL and78HEL, 88BERand 91JOH databases.

16

- 1 6 -

JNCTN8400 99-079

-6 -

I I I I I I I I I I I I I I I I I I I I I I I I I I I M I I I I M I I I I I I I I I I I I I I I

oo

©

Q ©•

©©

oo

88BER-78HEL88BER-91JOH88BER-95OEL

% @ ® 9

03

.4

©I I I I I I I I I I I I I I M 1 I I I I I I I I M I I I I I I I I I I I I I I I I I I 1 I 1 I I Iat u -4 'H E a) ,D O M U 01 £ IO U O MX! -H '

Minera l

Figure 3.5_4. Differences in standard Gibbs free energies of formation of minerals between the88BER and 78HEL, 91JOH and 95OEL databases.

discrepancies (e.g., exceeding ± 2 kcal mol-D are apparent between the 88BERand 78HEL and 91JOH databases for corundum, spinel, akermanite,andalusite, anorthite, anthophyllite, Ca-Al pyroxene, cordierite, grossular,kaolinite, kyanite, lawsonite, margarite, merwinite, monticellite, paragonite,phlogopite, pyrophyllite, sillimanite and tremolite. Revisions incorporated intothe 95OEL database, however, agree substantially better with the 88BER data.This improvement includes revised data for corundum, diaspore, andalusite,kaolinite, kyanite, paragonite, pyrophyllite and sillimanite. Moreover, majordiscrepancies (> ± 2 kcal moH) remain only for albite and muscovite. Thediscrepancy involving albite is probably due to differences between the 88BERand other databases in assigning the properties of either low, or high, albite toalbite.

Figures 3.5_1 - 3.5_4 reveal generally good agreement among all the databaseswith regard to standard molal volumes and entropies, but .rather pooragreement with regard to standard enthalpies and Gibbs free energies offormation. This may seem surprising because all the databases are internallyconsistent and are constrained by similar, and in some cases identical,calorimetric and phase-equilibrium data. Discrepant values could result for anumber of reasons, including differences among the databases in adoptedcalorimetric reference data, and uncertainties that are inherent in extrapolatingdata that are retrieved from high-temperature, high-pressure experiments to themuch lower reference pressure and temperature (Engi, 1992). The 88BER and90HOL databases generally agree better with each other than they do witheither of the 78HEL and 91JOH databases. It is encouraging, however, that

17

- 1 7 -

JNCTN8400 99-079

recent revisions incorporated by Oelkers et al. (1995) bring a number offormerly discrepant values in the 78HEL and 91JOH databases intosignificantly better agreement with those of 88BER and 90HOL. Theevolution of these databases therefore appears to be on a convergent path.Incorporation of constraints derived from solubility and mineral-stabilityexperiments at relatively low temperatures and pressures may be needed toresolve remaining discrepancies.

3.6 Reliable Databases for Geochemical Calculations

3.6.1 Recommended databases

The databases described in Sections 3.2 and 3.3 are considered the most reliableavailable. Each is internally consistent, and selected values of thermodynamicproperties are based on evaluations of at least calorimetric and phase-equilibriumdata. Moreover, the accuracy of the selected values is documented in the formof diagrams comparing calculated and experimental values of equilibriumconstants, or calculated and experimentally observed pressure-temperaturecoordinates of univariant or divariant equilibria. Future revisions and expansionsof the databases described by Berman (1988), Holland and Powell (1990),Johnson et al. (1991) and Gottschalk (1997) are expected.

Of these preferred databases, the SUPCRT model and associated databases,such as that described partially by Oelkers et al. (1995), are the most relevant toJNC's R&D program. This is because the database includes the thermodynamicproperties of minerals, gases and aqueous species, all of which are needed toevaluate mineral-water equilibria at the relatively low temperatures and pressuresof primary interest. The databases published by Berman (1988), Holland andPowell (1990) and Gottschalk (1997) are less useful, because they do notinclude data for aqueous species, and consider only the thermodynamicproperties of pure fluid phases of H2O, and H2O-CO2 mixtures.

3.6.2 Databases not recommended

The other databases noted in Section 3.4 are not recommended because:

• they are derived primarily or entirely from calorimetric data (see Section3.1.2), and/or

• they are uncritical compilations, for which the internal consistency amongreported values is highly questionable.

The latter compilations also suffer in many cases from inadequatedocumentation, and little or no evidence is given that the accuracy of the datahas been verified by direct comparison with all available experimental results.

18

- 1 8 -

JNC TN8400 99-079

3.6.3 De velopment strategy

The review of thermodynamic databases summarized above is the foundation ofa strategy to develop reliable thermodynamic databases appropriate for JNC'sgeochemical calculations (Arthur et ai., 1997). This strategy includes thefollowing steps:

1. adopt the thermodynamic model and database (SPRONS92.DAT)comprising the SUPCRT software package (Johnson et ai, 1991),

2. update SPRONS92.DAT with revised and new data for minerals, gasesand aqueous species reported in the literature since 1991,

3. verify the accuracy of the revised database by comparison of calculated andexperimental equilibrium constants for important heterogeneous reactions(mineral and gas solubilities), and important aqueous-speciation reactions,

4. revise equilibrium constants and reaction enthalpies at 25°C and 1 bar inthe PHREEQE databases, using SUPCRT and SPRONSJNC, and

5. calculate the values of coefficients in a polynomial expression used byPHREEQE to account for the temperature dependence of equilibriumconstants by regression of corresponding values of equilibrium constantscalculated using SUPCRT and SPRONS.JNC.

Implementation of this strategy is the subject of the remainder of this report.Section 4 provides background information on the thermodynamic frameworkof the SUPCRT model. Steps 2, 4 and 5 are discussed in Section 5, anddocumented in Appendices A and B. The results of Step 3 are discussed inSection 6, with reference to figures in Appendices C and D.

19

- 1 9 -

JNCTN8400 99-079

4 Thermodynamic Framework

The SUPCRT model includes:

• an equation of state for H2O (Levelt-Sengers et ai, 1983; Haar et ai,1984),

• equations enabling calculation of the dielectric properties of the solvent asfunctions of temperature and pressure (Johnson and Norton, 1991),

• the revised HKF (Helgeson-Kirkham-Flowers; Helgeson etal., 1981)equations of state for aqueous species, and equations to calculate theirapparent standard partial molal thermodynamic properties as functions oftemperature and pressure (Tanger and Helgeson, 1988), and

• equations of state for minerals and gases, and equations to calculate theirapparent standard molal thermodynamic properties as functions oftemperature and pressure (Helgeson etal., 1978).

The thermodynamic framework represented by these equations as a whole, andtheir temperature, pressure and solvent-density (PH O) regions of validity, hasevolved more or less continuously since 1974 (Helgeson and Kirkham, 1974a,b;Helgeson and Kirkham, 1976; Helgeson etal., 1978; Helgeson etal., 1981;Shock and Helgeson, 1988; Tanger and Helgeson, 1988; Johnson et at., 1991(see also Johnson etal, 1992); Shock etal., 1992; Sassani and Shock, 1992;Shock and Koretsky, 1995; Haas et al., 1995; Shock etal., 1997a,b; Sverjensky etai, 1997). The SUPCRT model permits calculation of the apparent standardmolal thermodynamic properties of minerals and gases from 1 to 10000 barsand from 0°C to a maximum value consistent with the Maier-Kelly (Maier andKelly, 1932) heat-capacity coefficients for the mineral or gas of interest (seebelow). For charged aqueous species, calculation of the apparent standard partialmolal Gibbs free energy of formation is restricted to PH O S 0.35 g-cm3, and toT< 35O°C, or T> 400°C at P < 500 bars. Calculation of the standard partialmolal enthalpy of formation of charged species and their standard partial molalentropy, heat capacity and volume is limited to PH O 0.35 g-cm3 and T ^350°C at P < 1000 bars. 2

Thermodynamic relations in the SUPCRT model are briefly summarized in thissection with the objective of identifying the primary data needed to calculate thethermodynamic properties of minerals, gases, aqueous species and reactions asfunctions of P and T(see Sections 4.2.1.1 and 4.2.2.5). These data comprise theprimary database (SPRONS.JNC) described in Section 5. In-depth descriptionsof the SUPCRT model are included in the references noted above.

4.1 Standard-State and Other Conventions

The standard state for thermodynamic components that are stoichiometrically

20

JNCTN8400 99-079

equivalent to minerals calls for unit activity of the pure component at allpressures and temperatures. For liquids, including HTO^/J , the standard statecorresponds to unit activity of the pure solvent at any pressure and temperature.The standard state for gases is unit fugacity of the hypothetical ideal gas at 1 barand any temperature. For aqueous species other than HiO, the standard state isunit activity in a hypothetical ideal one molal solution referenced to infinitedilution at any pressure and temperature.

Standard molal Gibbs free energies and enthalpies of formation of minerals,gases and aqueous species are calculated in terms of their apparent standardmolal counterparts4'. The apparent standard molal Gibbs free energy andenthalpy of formation (A<J°r and AHrT, respectively) are defined at a givenpressure and temperature by:

AG°PJ = AG) + {G°PJ - G°hTr) (4.1_1)

and

AHPJ s AH) + (H°PT - HMy (4.1_2)

where AGy and AH°f represent the standard molal Gibbs free energy and enthalpyof formation from the elements in their stable phase at the reference pressure(Pr = 1 bar) and temperature (Tr = 25°C). The parenthetical terms in theseequations refer to differences in the absolute standard Gibbs free energy (G°Jand absolute standard enthalpy (H°) caused by changes in pressure (P - Pr) andtemperature (7"- Tr).

The thermodynamic properties of aqueous ionic species refer to two half-cellreactions: one involving formation of the ion from its element and the other, byconvention, formation of H+ from H2(g)- The reactions are always written suchthat the mass of electrons is balanced when the two half-cell reactions arecombined. The number of electrons produced in the combined reaction is thusequal to the number consumed, and it is therefore unnecessary to specify theirthermodynamic properties explicitly (e.g., Garrels and Christ, 1965). Thestandard molal properties of ions derived in this manner are referred to asconventional properties-?. The conventional standard molal properties of aqueousionic species are related to their absolute counterparts by:

4- Apparenc standard molal quantities are defined as a matter of convenience to avoid thenecessity of accounting for changes in the stable phase of the elements with changes intemperature and pressure (e.g., Anderson and Crerar, 1993). It is unnecessary toaccount for these changes because the thermodynamic properties of the elements alwayscancel in any balanced chemical reaction.

5- Conventional standard molal properties of aqueous solutes are equivalent to theirconventional standard partial molal analogs (Helgeson et JZ/,1981). These two terms areused interchangeably in the following discussion.

21

- 2 1 -

JNCTN8 400 99-079

A —° A — °.«bl -7 A — ° «bi (A. 1 X\

AJZPT = Az. P: T — Z A .2^ , > v^--i_3;

and

"y./1. r ~ ^j.p.r'^j^H.p.f ' ~

where AE ^p T and AE}'p"hj denote the conventional and absolute standard molal

Gibbs free energy or enthalpy of formation of the y'-th ionic species, E''r T andE^f'j. stand for the conventional and absolute standard molal entropy, heatcapacity or volume of the^-th ion, and Zj represents the ion's charge. Thequantity AE^"6^ stands for the absolute standard molal Gibbs free energy orenthalpy of H+ formation, and E°'"bl represents the hydrogen ion's absolutestandard molal entropy, heat capacity or volume. All conventional standardmolal properties of the hydrogen ion are thus equal to zero at any temperatureand pressure.

Although the thermodynamic properties of the aqueous electron, e-, are notconsidered explicitly in SUPCRT, it is convenient to define these properties in aconventional sense that maintains consistency with the basic thermodynamicframework in this model. This enables the results of calculations using SUPCRTto be directly incorporated into databases that support certain geochemicalmodeling codes, such as PHREEQE, in which oxidation-reduction reactions arewritten in terms off. Although the thermodynamic properties of the aqueouselectron are in fact unknown (Hostetler, 1984), its conventional thermodynamicproperties can nevertheless be defined by assuming that the reaction forformation of the hydrogen ion,

\l2U2{g) * H* + e,

also refers to "formation" off- (e.g., Drever, 1982). Thus,

Aa;J r= AS^;r> (4-1-5)

— °,abs _ ~°.«l>* ( 4 \ fa)

and, as follows from Eqns. (4.1_3) and (4.1_4),

AS°lPT= E't RT = 0. (4-1-7)

Thus, as for H+, all conventional^ standard molal properties of e- are equal to zeroat any temperature and pressure. An additional assumption, often made inelectrochemical studies, that

/>. T

— o 9 —

JNCTN8400 99-079

(i.e., the so-called "hydrogen-ion convention"; Denbigh, 1971; Puigdomenech etal., 1997) is not adopted here, because it results in only a slight simplification ofnotation, and is otherwise unnecessary (Anderson and Crerar, 1993).

Conventional standard molal properties of an aqueous electrolyte are related tothe corresponding conventional properties of its constituent ions by additivityconstraints (Shock etal., 1992):

and

where subscripts k and j refer to the electrolyte and ion, respectively, and vj, *stands for the number of moles of the j-th. ion in one mole of the k-thelectrolyte. Equations (4.1_3), (4.1_4), (4.1_8) and (4.1_9) imply that thestandard molal thermodynamic properties of aqueous anions are equivalent tothose of the corresponding fully associated acid electrolyte, and that thestandard molal thermodynamic properties of an aqueous electrolyte are equal tothe stoichiometric sum of the corresponding properties of the cation and anion.

The units of thermodynamic quantities considered in the SUPCRT model aretemperature in Kelvins (°K), pressure in bars, energy in calories (cal), mass inmoles (mol) and volume in cubic centimeters (cm3). We retain these units infavor of SI standards to avoid confusion.

4.2 Thermodynamic Relations

The parenthetical terms in Eqns. (4.1_1) and (4.1_2) are evaluated usingequations of state for pure minerals and gases, and equations of state for aqueousspecies that account for changes in both the thermodynamic and dielectricproperties of fluid phases of H2 O as functions of temperature and pressure.Thermodynamic functions relate equation-of-state parameters characterizing thestandard molal volume to corresponding values of the isobaric heat capacity,entropy, and Gibbs free energy and enthalpy of formation. The functionscontain adjustable coefficients determined either by evaluation of experimentaldata (Section 4.3) or by estimation techniques based on empirical correlationsamong known values of standard molal or partial molal quantities (Section 4.4).

4.2.1 Minerals and Gases

The equation of state for minerals adopted in the SUPCRT model is given by(Helgeson etal., 1978):

23

- 2 3 -

JNCTN8400 99-079

K,T= Kr.Tr + ZAVu' (4.2.1_1)(=1

where V° refers to the standard molal volume of the mineral and AV°t stands forthe change in the standard molal volume caused by the /-th of $PT phasetransitions that occur between Pr,Tr and P,T. Although the effects of variationsin temperature and pressure on the standard molal volume are not considered inthis equation-of-state, this simplifying approximation is appropriate for mostminerals over a broad range of pressures and temperatures. This is because theeffects of thermal expansion and compression cause opposing changes in K o nthe order of 3% or less at temperatures less than 800°C at 1 bar, and pressuresless than 20 kb at 25°C (Helgeson etaL, 1978; Berman etal., 1986). Evaluationof mineral compressibilities and expansivities may be important, however, forlow-entropy (e.g., solid-solid) reactions and reactions involving highlycontrasting volumetric properties (Berman, 1988; Holland and Powell, 1990;Gortschalk, 1997). The equation of state for minerals is also used for gases, inwhich case $PT = 0, and V°RT= V^Tr.

The apparent standard molal Gibbs free energy and enthalpy of formation of amineral or gas is calculated using Eqns. (4.1_1), (4.1_2) and (4.2.1_1), and thefollowing equations from Helgeson etal. (1978) for the parenthetical terms inEqn. (4.1_l)and(4.1_2):

Tr = -S'^iT- Tr)+ I J C^dT-

T

i-i

+ J VMdPij AvtiidPZ^

(4.2.1_2)and

K,r-X\Tt = ET J C;, dT+ J VlrdP-il^V\ dP+ £ AH\.T Pr ''lp±T "l

(4.2.1_3)

An expression for the standard molal entropy consistent with Eqns. (4.2.1_2)and (4.2.1_3) is given by:

1 + V " ' *T &H°

• £ J C^idlnT+Z—^ (4.2.1_4)/-I 7 ' ' - i >••

, 24

_ 2 4 —

JNCTN8 400 99-079

In Eqns. (4.2.1_2) - (4.2.1_4), 0r refers to the number of phase transitions fromPT> Tr to Pr, T (where Tj = Tr); $p stands for the number of phase transitionsfrom Pr,Tto P, T\ P, , T represents the pressure of the i-th. phase transition at T,and Af/r° denotes the change in the standard molal enthalpy of the i-th. phasetransition. The isobaric heat capacity, Cft (., is expressed in terms of the Maier-Kelly power function (Maier and Kelly, 1932):

= a, c,T '\

where a^ b;, and q stand for regression coefficients valid over the temperaturerange 7/ to T;+i-

Substitution of Eqn. (4.2.1_5) into Eqns. (4.2.1_2), (4.2.1_3) and (4.2.1_4)leads to (Helgeson eta/., 1978; Johnson etal., 1991):

1-1 IT rz HV^P-PJ

- E j Av,J^»-

and,

1+0

^j

-PJ-I.) AV\' - ' / > .

AH.

(=i

(4.2.1_8)

Equations (4.1_1), (4.1_2) and (4.2.1_6) - (4.2.1_8) are the fundamentalequations in SUPCRT that are used to calculate thermodynamic properties ofminerals and gases over a wide range of pressures and temperatures.

- 2 5

JNCTN8400 99-079

4.2.1.1 Primary therniodynamic data for minerals and gases. Inspection of Eqns.(4.1_1), (4.1_2) and (4.2.1_6) - (4.2.1_8) indicates that for gases and mineralsthat do not undergo phase transitions, the following data are needed to calculatetheir apparent standard molal thermodynamic properties at a given temperatureand pressure: AGC, AH°f, 5ft7>, Vft7> ,a., b., rand T (where Tmax refers to theupper temperature limit of validity of the Maier-Kelly coefficients). These dataare also required for minerals that experience phase transitions, in addition to theenthalpy and volume change at each transition temperature, and Maier-Kellycoefficients for each transitional phase and the upper temperature limits of theirvalidity. In practice, the only first-order phase transitions^ that have beenconsidered in this framework are those for which the Clapeyron slope is positive(Helgeson etal., 1978). Lambda transitions have also been evaluated to accountfor the effects of substitutional order/disorder in albite, dolomite, K-feldsparand epidote (Helgeson etal., 1978).

4.2.2 Aqueous species: Summary of the revised HKF model

The structure of the revised Helgeson, Kirkham and Flowers (HKF) model isrepresented by the total differential of the partial molal Gibbs free energy of the

j-ch ion (or neutral species) in a hypothetical ideal one molal solution corre-sponding to the standard state at any temperature and pressure:

dG° = -S°dT + V°dP.

Changes in G° caused by variations in temperature and pressure are evaluated byintegrating this equation from reference conditions to the temperature andpressure of interest:

P,T T P

J dG] = -]s;PrdT+ \v\TdP.Pr, Tr ' Tr Pr

The HKF model provides a framework for evaluating this equation using semi-empirical equations-of-state for \'\ and associated equations for the isobaricstandard partial molal heat capacity, C° (which are needed to evaluate the firstterm on the right hand side of this equation). The equations-of-state are semi-empirical in the sense that they account for both solvation (non-empirical) andnon-solvation (empirical) contributions to the standard partial molal volume andheat capacity. The equation of state for aqueous ions and neutral species at any

6- First-order phase transitions are characterized by discontinuities in the temperature dependenceof the entropy, enthalpy, volume, heat capacity, expansivity and compressibility of a mineral. Incontrast, lambda transitions result from continuous infinitesimal changes in the internalstructure of the mineral, or its distribution of atoms, with variations in pressure and/ortemperature. The dependence on temperature of the heat capacity, expansivity andcompressibility of a mineral undergoing a lambda transition differ significantly before and afterthe transition, in contrast to the behavior of first-order transitions (Helgeson etal., 1978) .

. 26

- 2 6 -

JNCTN8400 99-079

temperature and pressure7 is given by (Tanger and Helgeson, 1988):

(4.2.2_1)

where V stands for the standard partial molal volume of the y-th ion. Thesolvation contribution (AV°) is represented by terms containing the a; equation-of-state coefficients, which are pressure- and temperature-independent andunique to the j-th species. The non-solvation contribution (AKj) is representedby remaining terms, which contain the conventional Born coefficient, co (seebelow). The parameter £ is a conversion factor equal to 41.84 bar cm3 cal-1.

Comments on the solvation and non-solvation contributions to this equation ofstate, and associated equations for the isobaric heat capacity, are summarized inSections 4.2.2.1 - 4.2.2.3. The comments address how various parameters thatappear in expressions for the standard partial molal thermodynamic properties ofaqueous solutes (Section 4.2.2.4) are related to the solute's partial molal volumeand heat capacity.

4.2.2.1 Solvation contribution to V°PT- The solvation contribution to the standardpartial molal volume arises from the change in free energy involved in moving anion of radius re and charge, Z, from a vacuum and placing it in H2O(7J ofdielectric constant e (Born, 1920):

N(Ze)2(l

where AG° denotes the standard partial molal Gibbs free energy of ion solvation,or Born function for they-th ion, Na stands for Avogadro's number (6.02252 x1023 mol-1). and e represents the absolute electronic charge (4.80298 x 10-10

cm3/2 gl/2 s-l). This equation, based only on theoretical consideration ofcoulombic forces, has been shown to predict enthalpies of hydration that areusually within an order of magnitude of values determined experimentally (e.g.,Shock and Helgeson, 1988).

To simplify notation in the following, all properties are taken to apply to che_/'-th ion at agiven temperature and pressure.

27

- 2 7 -

JNCTN8 400 99-079

The effective ionic radius of the/-th aqueous ions, re, is related to its correspond-ing crystallographic ionic radius (rx) by

re = rx+\Z £(anions), or

re = rx+ |Z | (0.94 + g) (cations), (4.2.2_3)

where the "g" function is introduced in the revised HKF model to account forthe effects on re ofvariations in 7*and P. Tanger and Helgeson (1988) derive anempirical function for g:

S =

in which p is a dimensionless variable (equal to PH.O/1 g-cm3), ag and b, denoteregression coefficients (Shock et al., 1992) and/"stands for a pressure- andtemperature-dependent difference function. Values of/are given for H2O byShock et al. (1992). Values of g have been retrieved from regressions ofexperimental data over a wide range of temperatures and pressures on thestandard partial molal volumes and heat capacities of NaCl(rf#) (Tanger andHelgeson, 1988; Shock et al., 1992). The results indicate g = 0 when T <150°C, or when P > 2000 bars.

The Born function [Eqn. (4.2.2_2)] refers to the properties of individual ions,which cannot be determined experimentally (i.e., only the thermodynamicproperties of electrolytes containing the ion of interest are experimentallyaccessible). For this reason, a conventional electrostatic Born "coefficient"consistent with Eqn. (4.1_4) is defined:

(lbs abi

- z 2r(4.2.2_4)

and the corresponding conventional Born function is then given by:

= m 4 - 1 . (4.2.2_5)

The solvation contribution to the partial molal volume is derived from theconventional Born function, i.e., (Tanger and Helgeson, 1988; Shock andHelgeson, 1988):

*• The effective radius of neutral aqueous species and polyatomic ionic species cannot be assessedunambiguously because it is not possible in these cases to compute r^ Alternative approachesdescribed by Shock et al. (1989) and Shock and Helgeson (1988), respectively, are used toestimate effective radii for these species.

28

- 2 8 -

JNCTN8400 99-079

AV =8AG,

dP

d CO

IFF (4.2.2_6)

where Q refers to a solvent Born function defined by (Helgeson and Kirkham,1974a; Helgeson etal., 1981)

Q " 7[dFjr (4.2.2J7)

The magnitude of the solvation contribution is thus a function of both theconventional Born coefficient, co [and therefore of the charge and effectiveelectrostatic radius of the j-th. species, Eqn. (4.2.2_4)], and of the dielectricconstant of the solvent and its associated pressure derivatives (Section 4.2.2.3).

4.2.2.2 Non-solvation contribution to V° T- The revised HKF model assumes thatany discrepancies in comparisons of experimental values of V with AV°, which iscalculated using the conventional Born function [Eqn. (4.2.2_5)] and the firstidentity in Eqn. (4.2.2_6), can be attributed to non-solvation contributions, andthat the discrepancies can be accounted for with equations of the form (e.g.,Shock and Helgeson, 1988):

AVn =

r-e

where *P and 0 denote temperature- and pressure-independent constants equalto 2600 bars and 228°K, respectively and a]_j denote empirical pressure- andtemperature-independent coefficients unique to they'-th aqueous solute. Thenon-solvation contributions are due to other interactions involved in thehydration process, primarily the energetics associated with disrupting the waterstructure near the hydrated ion. The values of the coefficients #/..^are obtainedby regression of experimental data on the partial molal volumes of electrolytescontaining the ion of interest (Section 4.3), or by estimation techniques based oncorrelations among standard partial molal thermodynamic properties (Section4.4). Regression strategies are described by Shock and Helgeson (1988), Shocketal. (1989; 1997a) and Sverjensky etal., (1997).

4.2.2.3 Heat capacities of aqueous solutes. Conventional standard partial molalheat capacities (at constant pressure) of aqueous ions are considered in terms ofsolvation and non-solvation contributions, in a manner analogous to thatdiscussed above for conventional standard partial molal volumes, i.e.,

C° - AC + A f (4.2.2 9)

29

- 2 9 -

JNCTN8400 99-079

The solvation contribution to C° is related to the conventional Born function[Eqn. (4.2.2_5)] by (Tanger and Helgeson, 1988; Shock and Helgeson, 1988):

AS. = -dAGs

dT(4.2.2_10)

anc

ACPs = T3 AS.

dT

= coTX+2TY\d CO

{dT-T\~l

d co

dT2 (4.2.2_H)

where the parameters Xand Ydenote additional solvent Born functions given by:

Y=l (d2e

-2sY1.

Discrepancies in comparisons of experimental values of c° and AC'P are similarlyattributed to non-solvation contributions, and are accounted for when P = Pr

with equations of the form (e.g., Shock and Helgeson, 1988):

ACrn = c, +(r-ef (4.2.2_12)

where cj and r? refer to empirical pressure- and temperature-independentcoefficients unique to the^-th ion. Regression of experimental data usingstrategies such as described by Shock et a I. (1989) permits values for thesecoefficients to be retrieved. They are estimated if experimental data areunavailable (Section 4.4).

A relation describing the dependence of C° on pressure is derived in terms of thepartial molal volume, consistent with the identity:

(4.2.2.13)

or,

(dp J= -T

d2vs

dT'

cP =cPr.T rt.T

- 7d2V

dT2dP. (4.2.2.14)

Integration yields (Tanger and Helgeson, 1988):

.30

- 3 0 -

JNCTN8400 99-079

C°p =c2

L/l (r-<

+ coTX + 2TY

.(

'd

yd

2 T

T-Q

CO

T P

,3

-n

3

P 1

-1)

14

d CO

dT2p

' V+P |

(4(4.2.2.15)

The pressure and temperature partial derivatives of the conventional Borncoefficients in this equation [see also Eqn. (4.2.2_6)] are given by (Tanger andHelgeson, 1988):

d 0)

dP= - 7 7

Z(4.2.2.16)

dco= -7]

Z

( 3 . 0 8 2 + g ) 2 \{B(4.2.2.17)

and

d~co \rdT - n

Z

(3 .082+g)2 J ( d T2

(4.2.2.18)

where the partial derivatives of the g function for H2O are given by Shock et al.(1992), and 77 represents a constant equal to 1.66027 x 105 A cal moH.

4.2.2.4 Apparent standard partial molal thermodynamic properties of aqueous ionsand neutral species. The apparent standard partial molal Gibbs free energy andenthalpy of formation of aqueous species are calculated using Eqns. (4.1_1) and(4.1_2), equations analogous to Eqns. (4.2.1_2) and (4.2.1_3) for aqueousspecies (Tanger and Helgeson, 1988; Shock and Helgeson, 1988), and Eqns.(4.2.2.1 ) and (4.2.2.11):

Tr=-~Spr,Tr(T-T)-CI

1 ^ I

and,

- f fT-Q \ T-Q

1a3(P-Pr) + a4\

-T+T + al(P-Pr) + a2

Q-T

0

TIn

0 2

Tr(T-Q[

T{Tr-Q

1

'Pr, Tr

(4.2.2_20)

.31

- 3 1 -

JNCTN8400 99-079

2T-©

(T-Q.

T-Q

a3(P-Pr

1

T-Q r I

•a>\~

The corresponding expression for S°p T is given by:(4.2.2_21)

T-Q

TT

n

e{\ i _ 1

U3(P irj-ra4m

1

T-Q

IT / i 75r

1

rr-0

1

0

(4.2.2_22)

Equations (4.1_1), (4.1_2) and (4.2.2_20) - (4.2.2_22) represent the HKFmodel as it is incorporated into SUPCRT.

4.2.2.5 Primary thermodynamic data for aqueous species. Inspection of Eqns.(4.1_1), (4.1_2) and (4.2.2_20) - (4.2.2_22) indicates that the following data areneeded for the '-th aqueous solute to calculate its corresponding apparentstandard moial thermodynamic properties at a given temperature and pressure:A G°{ . AH° , s"^ Tr, &1...4, c1...2-> Mpr, Tr a n d Z. Species that have been considered

within this framework include aqueous ions and electrolytes (Shock andHelgeson, 1988; Tanger and Helgeson, 1988, Shock et ai, 1997a) inorganicneutral species (Shock et at., 1989), organic species (Shock and Helgeson, 1990),and inorganic and organic metal complexes (Sverjensky etal., 1997).

4.2.3 Reactions among minerals, gases and aqueous species

The change in the apparent standard molal Gibbs free energy or enthalpy of areaction is given by

1 , J

where AS refers to A.G or AH, V, denotes stoichiometric reaction coefficients ofminerals (and/or gases), Vy stands for those of aqueous species, and V H20 refersto that of fluid H T O under subcritical (liquid or gaseous) or supercriticalconditions. The corresponding equilibrium constant (^'riRr) is given by:

_32

- 3

JNCTN8400 99-079

rP,T

In KK,r = RT (4.2.3_2)

where R stands for the gas constant. The equilibrium constant can be calculatedat any P and Fusing Eqns. (4.2.3_2), (4.2.3_1), (4.1_1) and (4.1_2), and

• Eqn. (4.2.1_6) for minerals and gases,

• Eqn. (4.2.2_20) for aqueous species, and Eqn. (4.2.2_4) for the convention-al Born coefficient and its associated pressure and temperature derivatives[Eqns. (4.2.2_16) - (4.2.2_18] plus associated values of the g function givenby Tanger and Helgeson (1988) and Shock et al. (1992), and

• equations summarized by Johnson and Norton (1991) and Johnson et al.(1991) for calculation of the thermodynamic properties of H T O as afunction of temperature and pressure.

All these equations are incorporated into the SUPCRT software package(Johnson et al., 1991), which, with appropriate thermodynamic data (Sections4.2.1.1 and 4.2.2.5), permits calculation of equilibrium constants and otherreaction properties over the range of temperatures and pressures noted in theintroductory paragraph of Section 4.

4.3 Retrieval of Thermodynamic Properties from Experimental Data

Experimental data are evaluated using thermodynamic relations summarized inSection 4.2 to retrieve values of the thermodynamic parameters identified inSections 4.2.1.1 and 4.2.2.5. The evaluation approach is summarized below forseveral types of experimental methods that have been used to derive much of thedata in SPRONS.JNC. This is followed by a brief description of statistical/mathematical techniques to analyze experimental results, and to retrieve aninternally consistent set of thermodynamic properties. Alternative methodsdescribed in Section 4.4 are used to estimate the data identified in Sections4.2.1.1 and 4.2.2.5 if appropriate experimental results are unavailable.

4.3.1 Reaction data

Reaction equilibria among minerals and a fluid phase are studied using a varietyof experimental techniques. Two alternative statements of Eqn. (4.2.3_1) areappropriate for such experiments, depending on whether the fluid is pure HiO,or an aqueous solution, i.e.,:

_ ° V"* »" °o r (4.3.1_1

i' - 1 2 2

^ (4.3.1_1 = 1 > = 1 -' 2

33

- 3 3 -

JNCTN8400 99-079

respectively. Phase-equilibrium experiments are evaluated using Eqn. (4.3.1_L).Although experiments evaluated using Eqn. (4.3.1_2) are also phase-equilibriumexperiments in a strict sense, we refer to them as solubility experiments toemphasize the difference between Eqns. (4.3.1_2) and (4.3.1_1).

4.3.1.1 Phase-equilibrium experiments. These experiments characterize reversalsin the relative stabilities of reactant and product mineral assemblages (Gordon,1973; Carmichael, 1977; Newton 1987; Navrotsky, 1987; Wood, 1987;Kerrick, 1987; Lofgren, 1987). The reversals are determined by holding an initialreactant assemblage at fixed P-T conditions for a specified period of time. Thepressure and temperature are then rapidly reduced and the reaction products, ifany, identified. A new pressure and/or temperature are then selected, and theexperiment repeated using a fresh set of reactants. Ideally, a number of suchexperiments will closely approximate equilibrium conditions, which are boundedby the experimentally determined set of P-T coordinates, or "half brackets",over a range of temperatures and pressures. The exact equilibrium temperatureand pressure are rarely determined in phase-equilibrium studies, however.

Each phase-equilibrium experiment defines a specific P- T coordinate at whichAG°rPT > 0 (reactants stable), or AG°rr T < 0 (products stable). This constitutes an

rPTinequality constraint on the standard molal Gibbs free energy of reaction, i.e.,:

1

E v 0, (4.3.1. l_l

which can be expanded such that all thermodynamic variables are written interms of fitting parameters and standard molal properties. For example,simplifying the discussion in Section 4.2.1 by assuming no first-order or lambdatransitions, Eqn. (4.3-1-1 1) can be written as:

AG r.P.T (-CrblTT1\{T-Trfl \ ^

To evaluate this equation, one or more sets of phase-equilibrium data areplotted on a P-T diagram (e.g., Fig. 4.3.1.l_l ). Equilibrium conditions, whereAG'rPT = 0, are then estimated by calculating the best-fit curve through all the P-T half brackets, such that the curve, representing univariant equilibrium, passesbetween half-brackets where reactants are stable and those where products arestable. Regression techniques applied to the experimental dataset with respect toEqn. (4.3.1.1_2) and the condition AG°pr = 0 are then used to retrieve values of

_34

- 3 4 -

JNCTN8400 99-079

II

2

1 P

0

o o Wairakite + 2H.O

260 280 300 320 340 360

Temperature (°C)

Figure 4.3.1_1. .P-7~ diagram showing calculated and experimental equilibrium conditions for thereaction laumontite ** wairakite + 2 H2O. The curve is calculated using SUPCRT andSPRONS.JNC. Experimental data are from Liou (1971). Half brackets where the zeolitelaumontite is the stable phase are indicated by open symbols; half brackets where the zeolitewairakite is stable are indicated by filled symbols (see Helgeson et al., 1978, Fig. 9lb). Thecalculated curve is consistent with all the experimental data, except the point indicating thatwairakite is stable at 340°C and 6 kb.

unknown properties (e.g., AG° ). In practice, additional constraints on a few ofthe parameters in this equation (e.g., the £,• Maier-Kelly coefficients) are usuallyrequired to adequately constrain the regression calculations. These independentconstraints are obtained using other experimental techniques, such as calorimetry(Section 4.3.2.1).

Alternative approaches to that described above have been used to evaluate phase-equilibrium data. Berman (1988) evaluates inequalities in equations similar toEqn. (4.3.1.1_2) explicitly using a linear programming technique (Gordon,1973; Berman et al., 1986). The other internally consistent databases describedin Section 3.3 are derived using alternative regression-based methods unique toeach database. Differences in the regression methods deal mainly with theproblem of locating true equilibrium temperatures and pressures between theexperimentally determined P-T half brackets (Engi, 1992). The strengths andlimitations of regression and linear programming techniques are discussed byBerman et al. (1986) and Kolassa (1990).

Thermodynamic data for 83 minerals in SPRONS.JNC were originallyretrieved by Helgeson et al. (1978) using the approach described above. Thedata added to this database by Johnson et al. (1991) to generate SPRONS92.DAT (Section 3.2) are from Table 9 of Helgeson et al. (1978). The added dataare for selected elements, oxides, halides, sulfates, carbonates and sulfides, and

.35

- 3 5 -

JNCTN8400 99-079

are retrieved solely from calorimetric investigations. Although the reliability ofthese calorimetric data is untested on the basis of experimental phase-equilibrium constraints, they appear to be more consistent with phase relationsobserved in geologic systems (Helgeson et al., 1978) than values adopted inprevious studies (Helgeson, 1969).

4.3.1.2 Solubility experiments. These experiments use a variety of techniques^ todetermine the equilibrium constants of reactions involving one or more minerals(and/or gases) and an aqueous solution. Attainment of equilibrium is thus theprimary goal of these experiments, in contrast to phase-equilibrium studies,where it is only necessary to approximate equilibrium conditions in terms ofbounding temperatures and pressures. This requires verification that the reactionis reversible, which can be demonstrated by approaching equilibrium fromconditions of both undersaturation and supersaturation of the aqueous solution'scomposition with respect to the reaction of interest. Non-ideal behavior of theaqueous phase must also be accounted for to accurately calculate the activities ofaqueous reactants and products that partially or completely determine the valueof the equilibrium constant.

To retrieve thermodynamic properties from the results of solubility studies, theexperimental equilibrium constants must first be converted into Gibbs freeenergies of reaction using Eqn. (4.2.3_2), and then cast into terms containingfitting parameters and standard molal properties using appropriate equationsdescribed in Sections 4.2.1 and 4.2.2.4. Unknown properties (e.g., AG°f ) areobtained by regression of the derived equations using the experimentallydetermined equilibrium constants as constraints over an appropriate range oftemperatures and pressures. Additional independently determined parameters(e.g., Maier-Kelly coefficients) may be required to adequately constrain theregression calculations.

In practice, the results of solubility experiments have been used primarily to testand refine the accuracy of thermodynamic properties retrieved from phase-equilibrium and calorimetric data. An example of this use of solubility data isillustrated by comparison of Figs. 4.3.1.2_1 and 4.3.1.2_2 (see also Figs. 48aand 47a, respectively, in Helgeson et al., 1978). Fig. 4.3.1.2_1 shows experimen-tal phase-equilibrium data for the reaction:

pyrophyllite + H2O ** kaolinite + 2 quartz,

where the corresponding univariant equilibrium curve calculated using SUPCRTand SPRONS.JNC is also indicated for comparison. As can be seen, thecalculated curve is poorly constrained by the limited amount of experimentaldata. The reliability of most of these data (Thompson, 1970) may also be

References cited in Section 6 include detailed descriptions of these techniques. The bookedited by Ulmer and Barnes (1987) describes associated experimental equipment.

. 36

- 3 6 -

JNCTN8400 99-079

Kaolinite+ 2 Quartz

-o

250

Pyrophyllite+ H,O

Thompson (1970)O kaolinite+quartz stable0 pyrophyllite stable

Reed and Hemley f 1966)@ reaction direction

indeterminate

300 350 400 450

Temperature (°C)

Figure 4.3.1.2_1. Calculated univariant equilibrium curve and experimental observations (symbols)of phase equilibria among kaolinite, quartz, pyrophyllite and HoO.

-1.7

-1.8

-2.2

O Hemley et al. (1980)

Pyrophyllite

Kaolinite+ 2 SiO,(aq)

"Quartz saturationi . , , i .

200 220 240 260 280

Temperature (°C)

300 320

Figure 4.3.1.2_2. Calculated (solid curve) and experimental (symbols) equilibrium constants forthe reaction pyrophyllite + HiO ** kaolinite + 2 S\O2(aq). The size of the symbols is greater thanthe analytical uncertainty assigned by Hemley et al. (1980) to SiO2{aq) measurements (±5% of thereported value). The uncertainty in temperature measurements is + 5°C (Hemley et al., 1980).Note that wsiO2(^) = SiO2(a ) f°r these experimental conditions.

.37

- 3 7 -

JNCTN8400 99-079

questionable (Section 4.3.4.2).

Fig. 4.3.1.2_2 shows experimental equilibrium constants at 1 kb, and theircalculated counterparts (using SUPCRT and SPRONSJNC), for the similar,solubility reaction:

pyrophyllite + H2O ** kaolinite + 2 SiOjiaq).

As can be seen, the calculated curve is in good agreement with the availableexperimental data, within stated uncertainty limits. Moreover, this curveintersects the dashed curve representing quartz saturation at approximately303°C. This partially confirms results from the phase equilibrium experiments(Fig. 4.3-1.2 1), which indicate that pyrophyllite, kaolinite and quartz shouldequilibrate at 1 kb when T ~ 305°C.

Similar uses of solubility data to test and refine thermodynamic propertiesretrieved from phase-equilibrium and calorimetric experiments are described byHelgeson et al. (1978) for various minerals in the systems: MgO-SiO2-H2O,CaO-MgO-SiO2-CO2-H2O, Al2O3-SiO2-H2O, K2O-Al2O3-SiO2-HCl-H2O,Na2O-Al2O3-SiO2-HCl-H2O, Na2O-K2O-Al2O3-SiO2-H2O( CaO-FeO-Fe2O3-SiO2-H2O, and CaO-FeO-Fe2O3-Al2O3-SiO2-CO2-H2O. The thermo-dynamic properties of these minerals (forsterite, talc, chrysotile, antigorite,wollastonite, anthophyllite, enstatite, quartz, sepiolite, calcite, dolomite,diopside, tremolite, gibbsite, boehmite, diaspore, corundum, kaolinite,pyrophyllite, andalusite, albite, low albite, high albite, K-feldspar, high sanidine,maximum microcline, analcime, paragonite, muscovite, anorthite, kalsilite,nepheline, epidote, andradite, hedenbergite, magnetite and hematite) are thusconstrained by three different types of experimental data. Most of these datapertain to relatively high temperatures and pressures, however, which are farremoved from conditions of primary interest in the Japanese repository concept(see Section 6). It is'similarly noted that Johnson et al. (1991) revised Gibbs freeenergies and enthalpies of formation of several Ca-bearing minerals in theHelgeson et al. (1978) database to be consistent with updated values of Gibbsfree energies of Ca2+ and CO32- formation retrieved from experimentaldeterminations of calcite and aragonite solubility reported by Plummer andBusenberg(1982).

As noted in Section 3.2, all the data for minerals from Helgeson et al. (1978),and the revisions incorporated by Johnson et al. (1991), are included inSPRONSJNC. More recent uses of solubility data to test and refinethermodynamic properties retrieved from phase-equilibrium and calorimetricexperiments are reported by Sverjensky et al. (1991) and Pokrovskii andHelgeson (1995; 1997b). The results of these studies are also incorporated inSPRONSJNC (Section 5.2.2).

38

- 3 8 -

JNCTN8400 99-079

4.3.2 Mineral and gas data

The heat capacities and molar volumes of minerals and gases are independent ofall other thermodynamic properties because they can be determined directlyusing calorimetric methods (heat capacity), or calculated from refinements ofX-ray data on a mineral's unit-cell dimensions, or from the ideal gas law (molarvolumes). Calorimetric experimental techniques and apparatus are summarizedby McCullough and Scott (1968) and Robie (1987). Nordstrom and Munoz(1985) describe the procedure to calculate molar volumes from unit-cell data.The unit-cell dimensions (Bloss, 1971) of many rock-forming minerals aredescribed by Deer et al. (1962-1963).

To evaluate these experimental data, various empirical expressions are assumedfor the heat capacity as a function of temperature (i.e., Eqn. 4.2.1_5; see alsoAnderson and Crerar, 1993), or molar volume as a function of pressure andtemperature (e.g., Berman, 1988; Holland and Powell, 1990; Gottschalk, 1997).The fitting parameters in these expressions are then determined by regression ofone or more experimental datasets that span as broad a range of temperatures orpressures as possible.

4.3.2.1 Statzdard molal heat capacities. The empirical tf/..,3 parameters inSPRONS.JNC used with Eqn. (4.2.1_5) to calculate isobaric heat capacities as afunction to temperature are:

• from calorimetric investigations (e.g., Kelly, 1960; Pankratz, 1964a,b;Walther and Helgeson, 1977; King etai, 1975; Pankratz and King, 1965,Pankratz and King, 1970; Pankratz and Kelley, 1964; Pankratz, 1968a,b;King and Weller, 1961; Mah et al, 1967; Mills, 1974),

• generated by Helgeson et al. (1978) by calculation or regression of heatcapacity data reported by others (Stull and Prophet, 1971; Holm et al.,1967; Perkins etal., 1977; Kiseleva etai, 1972, 1974; Holm and Kleppa,1966; Thompson etal., 1974; Krupka etal., 1977a,b; Kelley etal., 1953;Robie and Hemingway, 1973), or

• estimated using equations described by Helgeson>? al. (1978) andcalorimetric data from King (1955) and King and Weller (1961).

The coefficients are valid from 25°C to an upper temperature limit correspond-ing to the maximum temperature investigated experimentally, or to thetemperature of phase transitions (see Section 5 and Appendix A). Equation(4.2.1_5) yields fits of experimental heat capacities in this temperature range towithin + 0.1 cal moM K-l, or less (Helgeson et al., 1978). Less accurate fits areobtained, however, in the case of minerals with high Debye temperatures{Denbigh, 1971; Berman and Brown, 1985). The effects of solid-state phasetransitions, order/disorder, and vacancy defects on the heat capacity and otherthermodynamic properties of minerals are evaluated by Helgeson et al. (1978),

39

- 3 9 -

JNCTN8400 99-079

Robie et al. (1978) and Berman and Brown (1985). These effects wereaccounted for in the original Helgeson et al. (1978) database, and are thusincorporated in SPRONS.JNC.

4.3.2.2 Standard molal volumes. The volumetric properties of minerals and gasesin SPRONS.JNC are limited to standard molal volumes at the referencetemperature and pressure. This is because the equation of state for minerals andgases adopted in SUPCRT (Section 4.2.1) does not consider the effects ofvariations in temperature and pressure on the standard molal volume. Associateddata characterizing thermal expansivities and compressibilities of minerals aretherefore unnecessary (Helgeson etui, 1978). Standard molal volumes inSPRONSJNC are:

• reported values (Robie and Waldbaum, 1968; Robie et al., 1966; Fyfe etal, 1958; Ernst, 1968; Chatterjee, 1970; Kunze, 1961, Helgeson andKirkham, 1974a),

• computed by Helgeson et al. (1978) using published data on unit-celldimensions (Donnay and Ondik, 1973; Burnham, 1965; Deer et al., 1962-1963; Berry, 1974), or

• estimated using procedures described by Helgeson et al. (1978) and datafrom Sheppard and Gude (1970) and Steinfink (1958).

The reported values for minerals, and values computed by Helgeson et al,(1978), are based on refinements of unit-cell data determined by X-raydiffraction. Standard volumes determined in this manner are generally accurateto within +0.05 to ±0.25% (Nordstrom and Munoz, 1985). It is not uncommon,however, for several volume determinations to disagree by more than the limitsof reported uncertainties. This is often observed when the molar volumes ofnatural and synthetic samples of the same mineral are determined.

4.3.3 Electrolyte data

Equation-of-state parameters (aj _ j , cj and C2, see Section 4.2.2.4) for aqueoussolutes are retrieved from experimental measurements of the apparent molalvolumes and heat capacities of electrolytes over a range of temperatures andelectrolyte concentrations. For a single electrolyte solution, apparent molalproperties {<Pz ) are related to their partial molal analogs by:

- — f ~ d (4.3.3.1)

where,

o itz

' " (d»h

(4.3.3_2)

P.T

. _40

- 4 0 -

JNCTN8400 99-079

and nik stands for the molality of the k-i\\ electrolyte (Helgeson, 1981). Theretrieval procedure therefore involves:

• extrapolation of the apparent molal properties to reference-state conditionsof infinite dilution, at which point the corresponding standard partial molalproperties are defined,

• calculation of non-solvation contributions to the standard partial molalvolume, or heat capacity,

• regression of the non-solvation volumes or heat capacities as a function oftemperature and pressure to determine respective values of the empiricalcoefficients, #/,../, or f/..,2, and

• calculation of corresponding equation-of-state parameters for the electro-lyte's constituent ions.

An approach to carry out the first of these tasks is described in Section 4.3.3.1.Regression strategies that address the three latter tasks are discussed in Section4.3.3.2. Calorimetric methods for experimental determination of apparent molalheat capacities are described by Robie (1987) and Chen et al. (1994).Experimental methods for determination of apparent molal volumes aredescribed by Hepler et al (1965), Ellis (1968) and Barta and Hepler (1986).

4.3.3.1 Partial molal volumes and heat capacities of aqueous electrolytes. Anapproach to extrapolate experimental apparent molal properties to infinitedilution is described by Helgeson et al. (1981) and Helgeson (1981). Theapproach is based on calculation of differences between experimental apparentmolal volumes or heat capacities and values of these properties that are estimatedusing a version of the extended Debye-Hiickel equation described by Helgesonet al. (1981). These so-called difference functions are defined by (Helgeson,1981; Shock and-Helgeson, 1988):

TV v* KJ ,Pv.t = vk + 1 • a n d (4.3.3.1_1

P;,k^ CF.k f— (4.3.3.1_2)

where pv k and p; k denote difference functions for the partial molal volume andheat capacity of the k-t\v electrolyte, respectively, b y, k an<^ b J, £ a r e terms thatcan be calculated from temperature and pressure derivatives of the extendedterm of the Debye-Hlickel equation (Helgeson, 1981), /represents the effectiveionic strength,

/ = 1/2 Y z V , (4.3.3.1_3)

41

- 4 i -

JNCTN8 400 99-079

where Z stands for the ion's charge and m represents its molality, and V k is givenby

v,= J> . . , , (4.3.3.1.4)j

where v,-t£ refers to the number of moles of they'-th ion in the electrolyte.

Helgeson (1981) notes that for completely dissociated electrolytes, the effectiveand stoichiometric ionic strength,

IB l/lZv^.m^ (4.3.3.1.5)j

are equivalent, and that a plot of Eqn. (4.3.3.l._l) or (4.3.3.1_2) versus I at agiven temperature and pressure should therefore be linear. Extrapolation of thelinear curve in such plots to the intercept, 1 = 0, will then yield v\ or c°ft,respectively. This behavior is confirmed for a large number of electrolytes inrelatively dilute solutions, but deviations from linear behavior are often observedat higher ionic strengths (Helgeson et al. 1981; Shock and Helgeson, 1988/O).Representative results are shown in Figs. 4.3.3-1 1 and 4.3.3.1_2, for example.The deviations are caused by the effects of ion-association, which become morepronounced with increasing ionic strength and increasing temperature.

Shock and Helgeson (1988) and Shock et ai (1997a) employ this approach todetermine standard partial molal volumes of 75 electrolytes, and standardpartial molal heat capacities of 80 electrolytes. These data serve as primaryconstraints in the regression strategies described below to determine standardpartial molal properties of the corresponding ions. Correlations among theretrieved ionic properties enable estimates to be made of standard partial molalproperties of other ions and complexes, for which experimental data areunavailable (Section 4.4).

4.3.3.2. Equation-vf-state parameters for aqueous ions. These parameters areobtained by regression of non-solvation contributions to the standard partialmolal volumes and heat capacities of corresponding electrolytes. The non-solvation parameters are determined by rearranging Eqns. (4.2.2_1) and(4.2.2.9), i.e.,

AVlt =V\- AV^.and

and thus by subtracting the respective solvation contributions calculated using

10- The appendix to this reference contains 37 pages of supplemental data supporting thisconclusion, and is available in microfiche form from the National Auxiliary PublicationService (document No. 04597), P.O. Box 3513, Grand Central Station, New York, NY10163-3513.

. 42

- 4 2 -

JNCTN8400 99-079

22T a:

-i—i—i—I—i—i—i—r

8 9

Figure 4.3.3.1_1. Calculated values (symbols) of the difference function [Eqn. (4.3.3.1_1)] for theapparent molal volumes of various electrolytes at 25°C and 1 bar (from Helgeson , 1981; Fig 7.20).Extrapolation to conditions of zero ionic strength, indicated by the linear portion of the curves,defines the standard partial molal volume. Similar plots by Helgeson (L981), Helgeson et al.(1981) and Shock and Helgeson (1988), document sources of experimental data.

0 0.5 1.0 1-5 2.0 25I

Figure 4.3.3.1_2. Calculated values (symbols) of the difference function [Eqn. (4.3.3.1_2)] for theapparent molal heat capacities of various electrolytes at 1 bar and temperatures between 15 and30°C (from Helgeson, 1981; Fig 7.19). Extrapolation to conditions of zero ionic strength,indicated by the linear portion of the curves, defines the standard partial molal heat capacity.Similar plots by Helgeson (1981), Helgeson et al. (1981) and Shock and Helgeson (1988),document sources of experimental data.

- 4 3 -

JNCTN8400 99-079

Eqns. (4.2.2_6) or (4.2.2_11) from the experimentally constrained values of thestandard partial molal volume or heat capacity (i.e., Section 4.3.3_1).

With the non-solvacion parameters in hand, the regression strategy focusses onretrieving values for the empirical coefficients #/....#, and C/...2- One approach thathas been used for this purpose (e.g., Shock and Helgeson, 1988; Shock et ai,1997a) to retrieve all the equation-of-state parameters for aqueous solutes inSPRONS.JNC (Section 5.2.1) combines terms in Eqn. (4.2.2_8),

a-,(4.3.3.2_1)

F -3 + " ^ 7 7 ' (4.3.3.2_2)

such that the non-solvation volume is represented by a linear equation withrespect to temperature given by,

t (4 ?, 3 i 3)AV = a + . l O i : ) l " J I

T - 0

The analogous equation for the non-solvation heat capacity is Eqn. (4.2.2_12):

= c, +

which is linear with respect to (T- 0) 2 . Plots of AV° , versus 1/(7"- 0), or ACl .*• - , > n k in,it

versus 1/(7"- 0 ) 2 , can thus be fit to experimentally constrained data on non-solvation volumes or heat capacities, respectively, to determine a, or c\, from theintercepts of the resultant linear curves (at T = 25°C), and £, or C2, from theirslopes. Plots of this kind are illustrated in Figs 4.3.3.2_1. Corresponding datafor the ionic constituents of the electrolyte are determined using Eqn. (4.1 9).

Shock and Helgeson (1988) and Shock et at. (1989) demonstrated that equation-of-state parameters for aqueous species obtained by regression or experimentalstandard partial molal volumes and heat capacities in the manner describedabove correlate linearly with the standard partial molal volume or heat capacityof the species at 25°C and 1 bar. The derived correlations for ionic species aregiven by (Sverjensky et al., 1997):

*, = (0.013684) {K;rp+(41.84)Q)/Vi7.rQftrr}+0.1765 (4.3.3.2_4)

a, = (33.423){r;rirr+(4l.84)fl>ftrrQft7.r}-347.23 (4.3.3.2_5)

a3= -(0.l435){i>;rr+(4l.84)G)ftrrQftrr}+7.0274 (4.3.3.2_6)

4 4

- A 4 -

JNCTN8400 99-079

40

i/(T-e) x 10 i/{T-e>2xio42.S

a4= -(138.17 ){V^>7,+(41.84 )o>ftJ. 0 , , r r}-26355

c, = (0.6087) C'm

= (2037)^-30460

Figure 4.3.3.2_1. Non-solvacion contributions to the standard partial molal volume and heatcapacity of NaTcC>4 plotted versus temperature functions given by Eqns. (4.3.3.2_3) and (4.2.2_12),respectively (from Shock etal., 1997a).

(4.3.3.2_7)

(4.3.3.2_8)

(4.3.3.2_9)

where Q^.^ a n d ^ j r (see Sections 4.2.2.1 and Section 4.2.2.3, respectively) areequal to 5.903x10-7 (bar-1) and -3.09x10-7 (K-2), respectively, at Tr = 25°C andPT = 1 bar, and wh, n is given by Eqn. (4.2.2_4). These correlations can besubstituted into Eqns. (4.1_1), (4.1_2) and (4.2.2_20) - (4.2.2_22) to deriveregression equations for the standard partial molal Gibbs free energy andenthalpy of formation, and the standard partial molal entropy, in which theregression parameters are only V Tr >C°PtTrt and £»ft Tr (Sverjensky et al., 1997).

4.3.4 Statistical/Mathematical analyses

Retrieval of thermodynamic properties from experimental data is carried outusing statistical/ mathematical techniques on three levels:

• analysis of properties,

• analysis of reactions, and

• simultaneous evaluation of multiple reactions

The techniques applicable to each of these levels are briefly described below.

4.3.4.1 Properties. Regression techniques to evaluate standard molal heatcapacities and volumes seek to minimize the residual function defined by:

_45

- 4 5 -

JNCTN8400 99-079

where R stands for the residual among the set of i...n determinations, q; refers toparameter values used as estimators of the measured data, Q;, and Wt denotes aweighting factor, which is usually taken as being inversely proportional to themeasurement precision [i.e., the more precise (smaller in precision magnitude)data are accorded more weight in the regression] (e.g., Engi, 1992). Forexample, Qj could represent measured values over a range of temperatures, qiwould then denote corresponding heat capacities calculated using Eqn.(4.2.1_5), and W; would refer to the inverse of the precision of each measure-ment. The problem then becomes one of finding values for the temperature-independent linear fit parameters (a;, b;, c;) in the Maier-Kelly equation thatlead to a minimization of the residual function.

The next step in the analysis entails comparison of individual measurements tocorresponding values of q\, which, to continue with the example in the precedingparagraph, would be calculated using the Maier-Kelly equation and theoptimized values for a; , bi, and r;at the measurement temperature. Error plotsare useful devices for visualizing such comparisons (Robinson et al., 1983). Theerror is defined by:

Error = Wi(Qj-qt),

and a plot of values over the temperature range of the measurements provides avisual picture of the overall quality of the data set. An error plot is shown, forexample, in Fig. 4.3.4.1_1 for a set of calorimetric measurements of anorthite'sheat capacity reported by Krupka et al. (1979). Ideally, the errors should becentered about the zero axis, and should not exceed the precision of themeasurement technique (two standard deviations are reported by Krupka et al,,1979). As can be seen, all die data meet these requirements, and all are thereforeconsidered consistent.

In similar experiments, some of the data may exceed two standard deviationsfrom the weighted average among all the data in the set, however, and these dataare then considered to be discordant. Rejection of discordant data is notautomatic, and two approaches are taken for dealing with such data. First, thedata may be rejected if an examination of experimental technique points topossible causes for the discrepancies. Potential sources of experimental errorinclude inadequate compositional analyses of starting materials, lack ofinformation concerning the ordering/disordering state of the reactants, andother errors or ambiguities, which can only be detected by thorough assessmentsof the experimental technique.

If errors in the experimental procedures cannot be identified, then thediscordant data must be retained in the evaluation because there is no scientificbasis for rejecting these data (i.e., rejection criteria are not based solely onstatistical evaluations). In such cases, the influence of discordant data on

46

- 4 6 -

JNCTN8400 99-079

ie

OO

-6 -

-18

I

, !

, ,

1 ,

, ,

, :

" I 1 "

•7«

+ *•"V 4- A J H

• J . I 111111 • 1 1 ,

ii11. ii i

+-H-

j * i 1 • • 1 1

-p-rn-rr

.+. +

I ' M l l l

. • • ! » . T T | •

Anorthi

~T ~ ~+ -tjf + +

m i •l a

" M m

+

+

-

_

+ +

r 1 1 • i 1

369 359 488 450 688 ESe gea ese 7aa 7sa sea ose sea ose IBBS

T emperatora / K

Figure 4.3.4.1_1. Error plot as a function of temperature (from Robinson et al., 1983) fordifferential scanning calorimetry measurements of the heat capacity of anorthite reported byKxupka etal. (1979).

regression parameters is minimized through adjustment of weightingparameters. Such adjustments may involve increasing the magnitude of themeasurement precision (i.e., acknowledging greater uncertainty in these data)thus decreasing the weight accorded to the discrepant data and their influenceon the residual function. Regression techniques for evaluation of thermodynam-ic data are described by Haas (1974), Haas and Fisher (1976), Robinson et al.(1983), and Nordstrom and Munoz (1985).

4.3.4.2 Reactions. Standard molal thermodynamic properties retrieved fromexperiments involving reactions are not independent because they aredetermined by the individual thermodynamic properties of all reactant andproduct phases and aqueous species. Reaction-based data that constrain theinternally consistent databases described in Sections 3.2 and 3.3 are predomi-nantly constrained by phase-equilibrium results.

Two statistical/mathematical approaches have been developed for evaluation ofthermodynamic properties from phase-equilibrium studies (Berman et al., 1986):

• mathematical (or linear) programming (MAP), and• regression analysis.

The MAP approach translates each P-T half-bracket into an inequality relation[Eqn. (4.3.1.1_1)] and a corresponding inequality constraint equation given bythe following objective function (Engi, 1992):

47

- 4 7 -

JNCTN8400 99-079

1=1(4.3.4.2_l)

where the primed symbols are similar to those discussed above for the residualfunction evaluated in regression analyses, but differ in the sense that parametervalues may be determined using both equality and inequality constraints. In thissense, MAP differs from regression methods because the objective function iscapable of operating on individual half-brackets, rather than on pairs of half-brackets and associated assumptions about the true location of the equilibriumpoint, and more generally about the probability distribution of the equilibriumposition between half-brackets. The merits and deficiencies of both approachesare considered by Berman et al. (1986), Holland and Powell (1990) andKolassa (1990). Both approaches have been used successfully to evaluatethermodynamic data from phase-equilibrium studies using a minimum ofadditional calorimetric constraints.

The regression-based methods for data selection described earlier for individualproperties are similar in principle to selection methods based on regressionapplied to individual reactions. Selection criteria derived from MAP evaluationsare also basically determined by comparison of the weighted average of a set ofthermodynamic properties with observed values. Discordant data are readilyidentified in such comparisons, and may be rejected if warranted by asubsequent review of experimental procedures.

Robinson et al. (1983), for example, used regression methods to evaluatesolubility data from Hemley et al. (1980) and phase-equilibrium data reportedby Thompson (1970) for the reaction (see Section 4.3.1.2J:

kaolinite + 2 SiC^O^) ** pyrophyllite + H2O.

The Gibbs free energy change for this reaction over a broad temperature range isshown in Fig. 4.3.4.2_1, where it can be seen that the Hemley et al. (1980) dataare closely approximated by the weighted average of the full data set. TheThompson (1970) data, however, are consistently displaced upwards withrespect to the weighted average.

An error plot for these data (Fig. 4.3.4.2_2) reveals that the solubility data all liewithin one standard deviation of the weighted average (one standard deviation isthe error of precision assigned to these data by Hemley et al., 1980). Incontrast, the Thompson (1970) data exceed two standard deviations of theweighted average [two standard deviations is the precision reported byThompson (1970)]. These results suggest that the Thompson (1970) data are, atbest, discordant. A review of the experimental technique used by Thompson(1970) suggests that the reason for the discordance could be due to the finelyground kaolinite used in the experiments and/or to the short duration of the

48

- 4 8 -

JNCTN8400 99-079

4BB -fSfl SSB 600

Temperature / K

8S0 788

Figure 4.3.4.2_1. Standard Gibbs free energies of reaction as a function of temperature for thereaction: kaolinite + 2 SiO2(aq) rt pyrophyllite + H2O (from Robinson et al., 1983). Opensymbols represent calculations based on measurements of dissolved silica concentrations reported byHemley et al. (1980). Solid symbols connected by lines denote values computed from the phase-equilibrium experiments ofThompson (1970).

oo

M

a -s

- le

I . • . -p-T • ' • 1 I ' ' • | <

- 1,

I

•tea 4SB see E5a e

Temperature / K

7ea

Figure 4.3.4.2_2. Error plot as a function of temperature for the reaction: kaolinite + 2 SiC^aq) -pyrophyllite + H 2O (from Robinson et at, 1983). Open symbols represent the experimental resultsof Hemley et al. (1980). Closed symbols connected by lines represent P-T half brackets determinedby Thompson (1970). The dashed lines denote two times the experimental precision reported byHemley et al. (1980), or two times the width of the Gibbs free energy of reaction "bracket"corresponding to the P-ThalEbrackets.

_49

- 4 9 -

JNCTN8400 99-079

experiments (Robinson etai, 1983). The Thompson (1970) data were finally-rejected by Robinson et al. (1983) for these reasons, not simply because the dataare discordant based on the statistical evaluation of the full data set.

This example again illustrates that discordant data can be readily identifiedusing statistical methods, but that the cause of the disagreement may not alwaysbe as straight-forward as its detection. Thus, thermodynamic relations andstatistical/mathematical evaluations are useful for detecting consistent anddiscordant data, but technical competence and experience in laboratoryinvestigations is indispensable for final data selection/rejection decisions.

4.3.4.3 Simultaneous evaluation of multiple reactions. Matrix analytical methodsare used in simultaneous evaluations of multiple reactions to set up a generaloptimization problem similar to that described in Section 4.3.4.2. Thesemethods also ensure internal consistency, and have been used to construct all theinternally consistent databases discussed in Sections 3.2 and 3.3.

Matrix methods are based on a constraint matrix, which consists of an orderedarray of constraints written in matrix format. Constraint matrices developed forMAP analyses include two sub-matrices, which are defined separately usingequality and inequality constraints. A single matrix consisting of equalityconstraints is set up for regression-based methods.

An instructive example of the approach is given by Powell and Holland (1985),who adopt a regression method based on calculation of enthalpies of reactionfrom phase-equilibrium data (Section 4.3.1.1) to construct the following matrix:

b = Rh, (4.3.4.3_1)

where R denotes the matrix of stoichiometric coefficients among a set ofreactions, h stands 'for the vector of enthalpies of formation for each of theminerals considered (i.e., these are the primary values being calculated in thisexample), and b refers to the vector of reaction enthalpies, which are calculatedusing an appropriate statement of Eqn. (4.2.3_1). For this particular application,b represents a vector of "centers" of reaction enthalpies corresponding to pairs ofP-Thalf brackets determined in a set of phase-equilibrium experiments.

The objective of the calculations in this regression approach is to minimize valuesof the following quantity:

| | b -Rh | | 2 (4.3.4.3_2)

which, for the example considered by Powell and Holland (1985) involving highalbite (ab), paragonite (pa), andalusite (and), kyanite, (ky), jadeite (Jd), corun-

50

- 5 0 -

JNCTN8400 99-079

dum (cor), quartz (q) and water (H2O) is given by:

R =

b=

= enthalpies[ab| 1

1 °j 1| 1

1j Ah

1 **1 AI~-1 A^

pa0-1

-1-1-1

f°r,P, T*°r.P,T

{°r,P,T{°r,P,T

1 AH\PiT

of formation ofand ky jd cor

0 0 - 1 00 1 1 00 0 0 11 0 0 00 1 0 0

(jd+q = ab)(pa = jd+ky+H20)(pa = ab+cor+H20)(pa+q=ab +and+H2 0)(pa+q = ab+ky+H20)

q-100-1-1

11

H2O]01111

Although the matrix can be solved in principle using conventional methods, i.e.,

h =

the problem considered in this example is not amenable to solution because thereare five equations (fixing the enthalpies of reaction) and eight unknowns(enthalpies of formation of ab, pa, and, ky, jd, cor, q, and H2O). To overcomethis problem, Powell and Holland (1985) expand R by six rows of the form:

where the value, 1, is centered on the position of an "anchor" mineral, for whicha corresponding row in b is added containing a calorimetrically determinedreference value for the enthalpy of formation of the anchor phase.

The anchor minerals in this example are assumed to be and, ky, jd, cor, q andH20, for which calorimetric values for the enthalpy of formation at 1 bar and25°C from Robie et al. (1978) are used to calculate enthalpies of formation forab and pa (Powell and Holland, 1985). These authors also demonstrate howweighting factors can be incorporated into the matrix formulation of the residualfunction in regression evaluations.

Matrix analytical methods are useful because they ensure that derived databasesare internally consistent (Section 3.1.1). There are two important limitations inthis approach, however. First, errors in any one anchor datum will be propagatedthroughout the database. The database derived by Helgeson et al. (1978), forexample, appears to suffer from this problem (Nordstrom and Munoz, 1985).Standard molal Gibbs free energies and enthalpies of formation for aluminousminerals in this database contain a systematic error of 1.55 kcal mol-1, which wastraced by Hemingway et al. (1982) to the use of an incorrect value adopted for

51

- 5 1 -

JNCTN8400 99-079

the reaction kaolinite + H2O = 2 gibbsite + 2 SiO^iaq). The incorrect value wassubsequently used by Helgeson et al. (1978) to calculate the enthalpy offormation of kaolinite. Kaolinite was adopted as a reference mineral, and theerror was therefore propagated throughout all aluminous phases in this database.Re-evaluation of the AljC^-Ir^O-NaCl system (Pokrovskii and Helgeson, 1995)may have partially corrected this problem (Section 3.5), but associated effects onthe internal consistency of the database are uncertain as a result (Section 6.4.1).

The second weakness in the use of matrix analytical methods for simultaneousevaluation of thermodynamic data is simply the fact that the matrices aredifficult to evaluate for complex, multi-component systems. Thus it is not asimple matter to undertake periodic updates and revisions of internallyconsistent thermodynamic databases.

4.4 Estimation of Thermodynamic Properties and Equation-of-State-Parameters

The standard molal volume, entropy, heat capacity and equation-of-stateparameters of several minerals in SPRONS.JNC are estimated by Helgeson etal. (1978) using techniques that are briefly described in Section 4.4.1. Similarly,the standard partial molal volume, entropy, heat capacity and equation-of-stateparameters of many aqueous ions are estimated by Shock and Helgeson (1988),Shock et al. (1997a), Sverjensky et at. (1997) and others, based on correlationsthat are deduced empirically from relations observed among experimentallydetermined standard partial molal properties of other ionic solutes. Thecorrelations that have been used to estimate thermodynamic properties inSPRONS.JNC are described in Section 4.4.2.

4.4.7 Minerals

Helgeson et al. (1978) use the concept of structurally identical, or similar, classesof minerals as the basis for estimation of standard molal entropies, volumes andheat capacities. The structural classes considered include ortho and ring silicates,chain and band silicates, framework silicates, sheet silicates and carbonates.Estimation techniques for standard molal volumes and entropies are describedbelow. This is followed by a brief description of the technique used to estimatestandard molal heat capacities.

Reasonably accurate estimates of the standard molal entropy or volume ofminerals can be obtained by first writing a reversible reaction between themineral for which the standard entropy or volume is to be estimated, and otherminerals in the same or similar structural class whose entropies or volumes areknown, using oxide formula units to balance the reaction if necessary. If, forexample the standard entropy, or volume, of the mineral akermanite isunknown, then an appropriate reaction for estimation of these quantities is:

52

5 2 -

JNCTN8400 99-079

Ca2MgSi2O7 + a -Al 2 Oj * Ca2Al2SiO7 + MgO + SiO,

(akernianite) (corundum) (gehlenite) (periclase) (a-quartz)

for which,

AC° . C* . C° , C° C° C° , (4.4.1_1r ~ eclilcnire pcriclase a-quMti corundum ^akcrmanucpcnclisc a- qi

and,

AV = V .. , + V ., + V - V . - V, (4.4.1_2)r gchlenite pcndasc a- quirrz corundum akermanue

Helgeson et al. (1978) rearrange equations such as Eqn. (4.4.1_1) and (4.4.1_2)such that unknown parameters, including the unknown entropy and volume oireaction, are grouped together on the left-hand sides of these equations, i.e.,:

S° + AS° = S° + S° + S° -S° ' (4.4.1_3)akermanicc r gchlenicc peridosc ot-quara corundum

and/ + &y° = y + y° + V - V A (4.4.1_4)

akcrmanitc r gchlcmtc pcnclasc a-quartz corundum •

Then, designating the left-hand sides of such equations generally as 5° and V°„respectively, the standard molal entropy of the /-th mineral (e.g., akermanite)can be estimated using:

r," ^s.Pr.Tr \ * s, Pr, Tr + * t.Pr.Tr)S,Pr,Tr = —p . (4.4.1_5)

assuming the standard molal volume of the mineral is known. Conversely, thisequation can be re-arranged to estimate the standard molal volume of themineral if the standard molal entropy is known.

Equation (4.4.1_5) is used to estimate the standard molal entropy of severalnon-ferrous silicate minerals in SPRONSJNC (see Table 3 of Helgeson et al.,1978). It is also appropriate for non-ferrous carbonates, chlorides, sulfates andoxides, but inappropriate for ferrous silicates, due to crystal field stabilizationeffects imposed on silicate structures by the ferrous ion. As a first approxima-tion, Helgeson et al. (1978) use a modified version of Eqn. (4.4.1_5) for suchminerals given by:

p D s>Pr, Tr \ s. Prt, Tr iPrtTrj _

O . _ _ = - 2.\'r > (4^ ^ 1 6)2^/v.rr "' ' ' ~

where ft./ stands for the number of moles of ferrous iron per mole of themineral. Equation (4.4.1_6) is used to estimate the standard molal entropy of

- 5 3 -

JNCTN8400 99-079

several ferrous silicate minerals in SPRONS.JNC (see Table 3 of Helgeson etal.,1978).

Similarly, the contribution of structural H T O to the standard molal entropies ofhydrous silicates is estimated by assigning a value of 9.6 cal mol'1 K-1 at 25°Cand 1 bar to the oxide formula unit (5^,^ ) representing H2O that is tightlybound in crystallographic lattices (Helgeson et al., 1978). Loosely bound H7Oin the structural channels of zeolites is assigned a value of 8 cal mol-1 Kr1.

Helgeson et al. (1978) have shown that the estimated entropy values of ferrousand non-ferrous silicates at 25 °C and 1 bar generally agree to within ±1% ofvalues determined calorimetrically. The effects of errors of this magnitude oncalculated entropies of reactions at high temperatures are negligible. The effectsof such errors on calculated Gibbs free energies of formation at high tempera-tures may exceed several hundred cal moH K"1, but the errors tend to cancel ifall the estimated data are consistent with one another, and if more than oneestimated value is involved in the calculation.

Heat capacities of minerals are estimated by Helgeson etal. (1978) on the basisof additivity constraints and the assumption that the heat capacity of reactionamong oxide and silicate minerals of the same structural class is equal to zero atall temperatures. This approach is formulated as a structural algorithm given by:

Wx - LVi.r^Pi' v*,r (4.4.1_7)

where the properties to be estimated are represented by the subscript x, thosethat are known are distinguished by the subscript i , and vx.r and v\.r denotestoichiometric coefficients (positive for products and negative for reactants) ofthe unknown and known minerals, respectively, in a given reference reactionamong structurally'similar phases. Comparison of heat capacities estimatedusing this algorithm with corresponding data determined calorimetricallyindicates that discrepancies are generally less than 2% of the calorimetric values.

Restating Eqn. (4.4.1_7) in terms of equation-of-state parameters for minerals(a;, bt, c; ) consistent with the Maier-Kelly equation [Eqn. (4.2. r_5)J allowsestimates of these parameters to be made in accordance with the followingequations (Helgeson etal., 1978):

x-1

= £ vi.raJvx.r* (4.4.1_8)

I

x- 1

= L v;.A/vx,r, (4.4.1_9)

54

- 5 4 -

JNC TN8400 99-079

andX- 1

c* = E v,,r<7/v,.t • (4.4.1_10)

Maier-Kelly coefficients for 66 minerals in SPRONS. JNC are estimated usingEqns. (4.4.1_8) - (4.4.1_10) (Helgeson etai, 1978 - Table 7). Comparison ofsimilar estimates with experimental counterparts indicates that the estimatedcoefficients may differ considerably with experimental values (Helgeson et al.,1978), but that corresponding heat capacities are nevertheless closely approxi-mated at both low and high temperatures. This is because discrepancies amongthe coefficients tend to cancel when they are used in Eqn. (4.2.1_5).

4.4.2 Aqueous solutes

As noted in Section 4.3.3, values of the standard partial molal entropy, heatcapacity, volume and conventional Born coefficient of an aqueous solute areneeded at the reference temperature and pressure in order to calculate thestandard partial molal Gibbs free energy and enthalpy of formation of the soluteat other temperatures and pressures. Although the appropriate data have beendetermined experimentally for many aqueous solutes, there are numerous ionsand other aqueous species for which experimental data are presently lacking.

To address this situation, Shock and Helgeson (1988) proposed several empiricalcorrelations among S°, C° , and V • The correlations plot as straight lines ondiagrams of 5° vs. V\S° vs. C°, or V° vs. C°p, where the slopes and intercepts of thelines are determined by groups oE ions or ionic species of similar type andcharge. Shock et al. (1997a) recently proposed revisions to the originalcorrelations of Shock and Helgeson (1988), and have also proposed newcorrelations for additional types of ionic species. Additional correlations formetal-ligand complexes have also been recently generated by Sverjensky et al.(1997). Because-the correlations developed by Shock and Helgeson (1988),Shock et al (1997a) and Sverjensky et al. (1997) are the basis for estimates ofpartial molal properties and equation-of-state parameters for numerous aqueoussolutes in SPRONSJNC, the correlation equations and parameters, andsupporting figures illustrating correlation behavior are summarized in Table4.4.2_1 and Figs. 4.4.2_1 to 4.4.2_23. Figures 4.4.2_1 to 4.4.2_15 are fromShock et al.{\997). The remaining figures are from Sverjensky et al. (1997).

Uncertainties in standard partial molal properties estimated using thecorrelations in Table 4.4.2_1 are evaluated by Sverjensky et al. (1997).Uncertainties in 5° and C°p are estimated to be within ±5 cal moM K~!.Uncertainties in y° are estimated to be approximately ±5 cm3 mol"1. Theuncertainties in the standard partial molal entropy and heat capacity are moresignificant than uncertainties in the standard partial molal volume, and would,for example, generate uncertainties in calculated values of the partial molal Gibbsfree energy of formation at 500°C of ±2400 cal mol-l and ±1100 cal mol"1,

_55

- 5 5 -

JNCTN8400 99-079

Table 4.4.2_1. Correlations among standard partial molal volumes fV9, heac capacities (Cp) and

entropies (S) of cationic and anionic aqueous species at 25°C and 1 bar-'.Species Correlation Eqn. Parameters Figure

Ions, Oxygen-Bearing Ionic Species and Non-Conventional Hydroxide Complexes'2

monovalenc, monatomic cations, except Li+

divalent transition cations

alkaline earth cations, and Pb'+

crivalenc canons excluding rare earths

monovalent, monatomic halide anions

other monovalent anions

non-metal oxygen bearing species (#O = 2)

non-metal oxygen bearing species (#O = 3)

non-metal oxygen bearing species (#O = 4)

metal oxygen bearing species (#O = 2)

1st row transition elements (#O=4)

1st row transition elements (#O=4)

higher-order transition elements (#O=4)

tetravalent cations

monovalent, MO"

divalent MOH+ (transition metals)

divalent MOH+ (alkaline earths)

divalent lAO(aq) (transition metals)

divalent MO (aq) (alkaline earths)

divalent HMO2- (transition metals)

divalent HMO?- (alkaline earths)

divalent MO22" (transition metals)

divalent MO22" (alkaline earths)

trivalenc MOH^+ (1st row transition mecals)

trivalent MOH2+ (all others)

trivalent MO+ (1st row transition metals)

trivalent MO+ (all others)

trivalent HMO2 (1st row transition metals)

trivalent HMO2 (all others)

tetravalent MOH3+

tetravalent MO^+

tetravalent HMOi*

tetravalent kAOifaq)

tetravalent HMO3'

monovalent, monatomic cations, except Li*1

K=yS+z

Cp = u S + v

y

1.29

0.92

0.19

0.50

1.29

1.06

1.05

0.87

0.78

0.25

0.75

0.48

0.44

0.1

0.45

0.45

0.16

0.45

0.16

0.54

0.25

0.54

0.25

0.45

0.16

0.45

0.16

0.54

0.25

0.16

0.16

0.25

0.25

0.35

u

-0.88

z

-20.5

0.0

-14.8

-4.0

1.8

0.07

-3.3

3.0

11.6

11.7

9.5

-8.2

27.3

-43.3

-12

-12

4.9

-12

4.9

-4.8

11.7

-4.8

11.7

-12

4.9

-12

4.9

-4.8

11.7

4.9

4.9

11.7

11.7

19.3

V

22.2

4.4.2_1

see ref. c

4.4.2_4

4.4.2_5

4.4.2_6a

4.4.2_6c

4.4.2_6d

4.4.2_6b

est.

est.

est.

est.

est.

est.

est.

est.

esc.

est.

esc.

esc.

est.

est.

est.

esc.

esc.

est.

est.

est

est.

4.4.2_2

.56

- 5 6 -

JNCTN8400 99-079

Species

other monovalent cations

divalent transition cations

alkaline earth cacions and Pb~+

trivalent cations excluding rare earths

monovalent, monatomic halide anions

other monovalent anions

non-metal oxygen-bearing anions (Zj = -1)

non-metal oxygen-bearing anions {Zj = -2)

non-metal oxygen-bearing anions (Z. = -3)

oxyacids and acid oxyanions

metal oxygen bearing species (unprotonated)

metal oxygen-bearing species (protonated)

tetravalent cations

monovalent MOH(aq)

monovalent M O

divalent MOH+

divalent MO(aq)

divalent HMO2"

divalent MO22-

trivalent M0H 2 +

trivalent MO*

trivalenc ¥tMQi(aq)

trivalent MOv

tetravalent MOH3+

tetravalent MO2+

tetravalent HMO2"1"

tetravalent MOj^q)-

tetravalent HMO3-

monovalent, monacomic cations, except Li+

divalent transition cations

alkaline earth cations, and Pb2+

trivalent cations excluding rare earths

monovalent, monatomic halide anions

non-metal oxygen-bearing anions (Zj = -1)

non-metal oxygen-bearing anions {Zj = -2)

non-metal oxygen-bearing anions (Z. = -3)

oxyacids and acid oxyanions

metal oxygen bearing species (#O = 2)

metal oxygen bearing species (#0 = 4)

Correlation Eqn.

Cp = W V+ X

Parameters

0.064

0.53

-0.19

0.91

0.0

0.62

0.60

0.60

0.60

1.65

-2.06

-2.06

0.31

-1.14

-1.14

-1.14

-1.14

-2.28

-2.28

-1.14

-1.14

-2.28

-2.06

-1.14

-1.14

-2.28

-2.06

-2.28

w

-0.68

0.58

-1.0

1.82

0.0

0.55

0.55

0.55

1.94

-0.12

0.40

14.2

5.5

-11.9

41.7

-28.2

-31.6

-33.8

-63.3

-92.8

-46.8

-34.5

95.5

31.1

9

15.5

9.0

-15.5

-24.

-106.2

-37.2

-60.8

-24

-34.5

-37.2

-60.8

-24

-34.5

-24

X

8.3

5.5

-26.7

49.0

-28.2

-32.

-70.

-108.

-65.8

7.3

45.8

Figure

4.4.2_2

see ref. c

4.4.2_4

4A.2J

esc.

4.4.2_8

4.4.2_9

est.

est.

est.

4.4.2_10

4.4.2J1

est.

est.

est.

est.

est.

est.

est.

est.

est.

esc.

4.4.2_3

est.

4.4.2_12

est.

4.4.2_13

4.4.2_14

- 5 7 -

JNCTN8 400 99-079

Species

tetravalent cations

monovalent MOHfaq)

monovalent M O

divalent MOH+

divalent 'MO(aq)

divalent HMO2-

divalent MO22 '

trivalent MOH2+

trivalent M O

trivalent HMC^fagJ

trivalent MO2-

tetravalent MOH3+

tetravalent MO21"

tetravalent HMC>2+

tetravalent MC^fa^)

tetravalent HMO3-

Correlation Eqn.

5 correlations^

Parameters

3.1

e

1.32

1.42

1.32

1.42

1.52

1.62

1.32

1.42

1.52

1.62

1.32

1.42

1.52

1.62

1.72

165.3

f

-6

-11

24.5

20.5

15.5

11.

37

83

123

118

74

108

140

135

130

Figure

est.

est.

est.

4.4.2_15

est.

est.

est.

est.

est.

est.

est.

est.

est.

est.

Metal-Ligand Complexes^

neutral Cl complexes, y = 1 or 2

monovalent cations and ligands, y = 1 or 2

divalent cations, monovalent ligands,y = 1

sulfate complexes

carbonate complexes

monovalent cations, y = Cl"

divalent cations, y = CIl

divalent cations, j> = CH3COO

complexes containing monovalent ligands

metal sulfate complexes

S correlations-?

Cp correlations^

V correlations^

footnote #3

footnote #7

footnote #5

footnote #9

footnote #10

d

18.0

63.3

93.8

footnote #5

footnote #6

4.4.2_16

4.4.2_20

4.4.2_21

4.4.2_22

4.4.2_23

4.4.2_17

4.4.2_18

4.4.2_19

*- Shock etal., 1997a; * - Sverjensky etaL, 1997;f - Shock and Helgeson, 1988.1- #O refers to the number of oxygen atoms in the complex; "est. " stands for estimated

correlation parameters; M denotes a cation; Zj represents the charge of the j-th hydrogen-freeanion.

2- The following correlation equation is used to relate the standard partial molal entropy of nonconventional hydroxide complexes (Section 5.2.5 ) to the standard partial molal entropy ofthe corresponding cation:

5 . = e S + f .complc. W Z,

where S° and 5° denote the entropy of the complex and cation,respectively.comple« f^Z, ' '

.58

- 5 8 -

JNCTN8400 99-079

Following the notation of Sverjensky et al (1997) for stepwise association reactions involving

monovalent ligands,

ML;; , 1 + L" - MLf,

where M refers to a metal cation, y stands for the number of ligands (L) and Z denotes the

charge on the_y-th complex, the entropy correlation equation is given by:

where, '"'

AS° =5° 7-S° T - S° ,r r - 1

and, for neutral complexes with L = CK

*• For the stepwise association reaction (footnote #3), the heat-capacity correlation equation for

mono- and divalent cation complexes with Cl- and CH3COO (acetate) ligands is given by:

AC° , , = 1.25C° ,,+ d. .

where ACp ] refers to the standard partial molal heat capacity of the association reaction,

C stands for the standard partial molal heat capacity of the metal cation, and Z refers to

the charge on the complex.

•*• For the stepwise association reaction (footnote #3), the volume correlation equation for

complexes containing monovalent ligands is given by:

&Vr} = O.1L419V^,,,+ 8.9432,

where AV represents the standard partial molal volume of the association reaction, Vr.y v r M-'1

refers to the standard partial molal volume of the metal cation, and Z refers to the charge on

the complex.

6- For the stepwise association reaction (footnote #3), the volume correlation equation for

complexes containing divalent ligands is given by:

r . J ' - l ' Z M2' Z

where &.V represents the standard partial molal volume of the association reaction, V

refers to rhe standard partial molal volume of the metal cation, and Z refers to the charge on

the complex. For metal-sulfate complexes:

rz = -0.25Z- 0.3 and 5z = -2.88Z+ 3.32

where Z denotes the charge on the complex.

•7- For the stepwise association reaction (footnote # 3), the parameters in analogous correlation

equations for the standard partial molal entropies of association of complexes formed from

59

- 5 9 -

JNCTN8400 99-079

monovalent metal cations and monovalent ligands are:

az.a L = - ° - 0 0 0 4 7 9 ^ . + 0.3185, and /? = -0.05757^. - 3.4494,

where SL denotes the standard partial molal entropy of ligands, which are taken by Sverjensky

etal. (1997) from Shock and Helgeson (1988).

Parameters in correlation equations for the standard partial molal entropies of association of

complexes formed from divalent cations and monovalent ligands (footnote #3) are:

az : L. = 0.0157625°. + 0.03874, andA, ( L = 0.103445°. + 7.5807

where SL denotes the standard partial molal entropy of ligands, which are taken by Sverjensky

etal. (1997) from Shock and Helgeson (1988).

Parameters for standard partial molal entropies of association that are consistent with the

reaction:

where M z+2 refers to mono-, di- and trivalent cations, and the corresponding correlation

equation;

where S° zi refers to the standard partial molal of the cation (taken from Shock and Helgeson,1988;, are given by:

azso*- = - ° - 0 5 5 Z + 0.055, and /3, = 13.84Z + 18.16 ,4 4

where Z refers to the charge on the complex.Parameters in correlation equations analogous to that in footnote #9 for the standard partial

molal entropy of association of complexes formed from mono- and divalent cations and

carbonate ligands, consistent with the reaction:

M ^ 2 + CO2

3" - MCOfare given by:

0.213,and^c o 2 .= 66.82Z+ 28.67,

where Z refers to the charge on the complex.

60

- 6 0 -

JNCTN8400 99-079

40

^ 20

"5E o

o

.H..2Q

-40

•60

°C, 1 bar

-100 -SO -60 -40 -20 0

l"1 K"1)20 40

(cal mol"1 K"1)

Figure 4.4.2_1. Correlation of standard partial molal volumes with entropies for monatomic ions(and NH4+) at 25°C and 1 bar. Symbols represent values retrieved by Shock et al. (1997a) andShock and Helgeson (1988) from experimental data using the approach described in Section 4.3.3.

20

!1_ ooE .1075

,£-20Q.

•30 :

-40

25°C, 1 b

cr»

>ar

m*»at

Corf-~

2CU' N a*7Cd*1 A 9

Srrf T ^B a "

F .

or"

,1 C S ^ -

•Br" :

-100 -80 -60 -40 -20 0

S° (cal mol"1 IC1)

20 40

Figure 4.4.2_2. Correlation of standard partial molal heat capacities with-entropies formonatomic ions (and NH4+ and N2H5*") at 25°C and 1 bar. Symbols represent values retrieved byShock et al. (1997a) and Shock and Helgeson (1988) from experimental results following theapproach described in Section 4.3-3.

o

"3

Q.oIU

20

10

-10

-20

-30

25°C, 1 bar

-40-60 -40 -20 0

V°(cm3mor1)

20 40

Figure 4.4.2_3. Correlation of standard partial molal heat capacities with volumes for monatomicions (and NH4

+) at 25°C and 1 bar. Symbols represent values retrieved by Shock et al (1997a) andShock and Helgeson (1988) from experimental data using the approach described in Section 4.3.3.

61

- 6 1 -

JNCTN8400 99-079

"oE

cal

Q.

"oE

m

E•£•

-5

•10

•15

-20

-25

-30

-35

iOH"

-10

5D40

30

20

10

0

-10

-20 '-10

y

0

0

HS"/

. . . t . . . . 1 .

10 20

(cal mor1

• , . i . . . . . .

CN"

^ ^ HS

10 20

(cal mol"1

SCN-Q^:yr :

A :

30 4

. . . i , i1 i i

SCNV^-

-f^^^ -OCN- -

•-

B^

30 41

rC1)

5 15 25S"° (cal mor1 1C1)

-20 -10 0 10 20 30S" (cal mor1 IC1)

40 50

60

£•40o

Figures 4.4.2_4 (above) and 4.4.2_5 (three figures to 6 2 0the right). Correlations of standard partial molal vol- § a

umes with entropies at 25°C, 1 bar for monovalent 1 a.anions (Fig.4.4.2_4) and non-metal oxygen-bearingspecies (Fig.4.4.2_5).

- 2 0

- 4 0-60 -40 -20 0 20

S° (cal mol'1 IC1)40 80

202-Oxygen

u o "

Metal

wo;

Species ./•"'

Q SHo<* «t H. | 1M

/ = =

A

10

-40 -30 - 2 0 - 1 0 0 10 20

S° (cal mol1 JC1)

30

4-OxygflnFirst Bow Trantitioci

Uetal Spacles

55

50

» 40

4-OxygenHigher-Order Transition

Metal Species

15 25 35 45

S° (cal mol'1 K"1)

15 25 35 45

S° (cal mor1 IC1)

55

-10

-15

\ " 2 0

°E-25

l> -30

-35

55

First Hydroxide

Cr(OH)*'

Complexes

F.(OH)*1 .

-

D

-50 -45 -40 -35 -30 -25 -20 -15

S° {cal mor1 JC1)

Figure 4A.2_6 (a-d). Correlations of standard partial molal volumes with entropies at 25°C and 1

bar for metal oxygen-bearing species.

62

- 6 2 -

JNCTN8400 99-079

oS

'b

Monovalent &Divalent

Oxyanlona40

^ 20

g "20

10 -40

-600 20 40

S°(calmor1 JC1

60

Acids & AcidOxyanions

-20 0 20 40S° (cal mof1 K"1)

Figures 4.4.2_7 (left) and 4.4.2_8 (right). Correlations of standard partial molal heat capacitieswith entropies at 25°C and 1 bar for nonmetal oxygen bearing species [Fig. 4.4.2_7; monovalentanions (squares), divalent anions (circles)], and non-metal acid and acid oxyanion species [Fig.4.2.2_8; circles from Shock et al (1997a), squares from Shock and Helgeson (1988)]

E

IO

-80

-100

ZnOH*

PbOH'

-30-20-10 0 10 20 30 40

S° (cal mol"1 KT1)

-40 -20 0

S° (cal mor20 40 60 80

•1 ts-i\

J-30-20-10 0 10 20 30S° {cal mor1 K'1)

Figures 4.4.2_9 (above) and 4.4.2_10 (two figures to the right). Correlations of standard partialmolal heat capacities with entropies for metal oxygen-bearing species (Fig. 4.4.2_9) and non-conventional hydroxide complexes of divalent cations (Fig. 4.4.2_10 - see Section 5.2.5).

.65

- 6 3 -

JNCTN8400 99-079

60

"oE

(cal

Q.0

IO

40

20

0

-20

-40

-60 -

HFtOjTT+L)

HFeO^S+B)

Monovalent Oxyanlons Cl°.

-50-20 -10

-20

0 10 20 30 40 50

V° (cm3 mor1)

-50-40-30-20-10 0 10 20 30S° (cal mol"1 K"1)

-80-10 0 10 20 30 40 50 60 70 80 90

V° (cm* mor1)

Figures 4.4.2_11 (above) and 4.4.2_12 (two figures to the right). Correlations among Q ™^ V°for non-conventional third hydroxide complexes of divalent metals (Fig. 4.4.2_11, see Section5.2.5) and monovalent and divalent non-metal oxygen-bearing species (Fig. 4.4.2_12).

40

20

o

1-20(0

u-40

-60

Acids & AcidOxyanions

25

£•»

E 10o

SIO,2-Oxygen Metal Species A

A1O,-

& This study

O Shack «t «L (1983) 0 0 ,

-80 -60 -40 -20 0

C°p (cal mol'1 KT1)

20

-10 0 10 20 30 40 50 60

V° (cm3 mor')

60

£-50OE 40

nE 30

,2. 20

10

4-Oxygen

MoO,-

Metal

wo;*

SpeciesTc

H»O • >0 / Q P ) l ^ '

- ^ O HCrO/ .MnO/

B :

-80 -60 -40 -20 0

C°p (cal mor1 IC1)20

Figures 4.4.2_13 (above) and 4.4.2_14 (two figures to the right). Correlations among Q and y°for non-metal oxygen-bearing species that contain hydrogen (Fig. 4.4.2_13) and metal oxygen-bearing species (Fig. 4.4.2_14).

64

JNCTN8400 99-079

40

30

20

10

« Or

•10

-20

-30

-40

:A

" InOH*: A

; CdOH"

NIOH*

P b O H ' /

F«OH*<T*l.)

40

~ 30

* 20

1 10"au 0 :

5-10a.

1-20\tn

-40-30-20-10 0 10

S° (cal mor' K"1)

-30

-40

B

r

I- O

•Ana

Pbo/

7HBO :

'F.O ) :

F*O(T»L)

-40-30-20-10 0 10

mor1 K'1)

30

20

k 10

^ - 2 0

1-30o

°-50

c

:HZno; i

: / w*:A:/ HNIO,-

HPbO,"

/

/

B ' .

-

-40-30-20-10 0 10

Figures 4.4.2_l5. Correlations of standard partial molal entropies of non-conventional hydroxidecomplexes (Section 5.2.5) widi the entropies of corresponding divalent metal cations at 25°C and 1bar. Symbols refer to values regressed from experimental results by Shock et al. (1997a), and linesare consistent with correlation equations and associated parameters in Table 4.4.2_L.

15

10

5

0

-s

• - —

Si*

1 -

MC.+, +

(LIST

NaCt°

- •

a- - Maj

_ _ _ * — • ~ ~

10.0 15.0 20.0 2S.0 30.0

C«. HOC1 If'

1Q0

90

SO

70

60

SO

40

30

20

10

0

ZnCHjCOO0O -

. , - I-OJ

n>a

-ao -CM. MOC

1 1C-

1

40

30

Z0

10

0

-10

-20

-30

-40

NiCK,COt>

LICP K10Kai"l!bBl<C(sBr0 _

-50 -40 -20 -10 0

I. CM> HO."1

10 20

Figure 4.4.2_16. Correlation of thestepwise standard partial molal entropyof association of chloride complexeswitii the standard partial molal entropyof the cation at 25°C and 1 bar (seeTable 4.4.2_1, footnote #3). Symbolsrefer to calculated values fromSverfensky et al. (1997) based onthermodynamic data that areincorporated in SPRONS.JNC.

Figure 4.4.2_17. Correlation of thestepwise standard partial molal heatcapacity of association with thestandard partial molal heatcapacity of the cation at 25°C and 1bar (see Table 4.4.2_1, footnote #4).Symbols refer to calculated values fromSverjensky et al. (1997) based onthermodynamic data that areincorporated in SPRONS.JNC.

Figure 4.4.2_18. Correlation of thestepwise standard partial molal volumeof association with the standardpartial molal volume of the cation at25°C and 1 bar. (see Table 4.4.2_1,footnote #5). Symbols refer tocalculated values from Sverjensky et al.(1997) based on thermodynamic datathat are incorporated in SPRONS.JNC.

65

- 6 5 -

JNCTN8400 99-079

to

30

20

10

0

-10

-20

-30

"5—OJDS

NJSQ,"

uso«-

M* +

KSO,-

- MSCv

RbSO,-

1 i

_CsSO,-

-

-10 10 15

U0L-'

30

i30

20

10

0

-10

-SO

-30

- — .NiSO,'

— • -

M* +

CoSO,'

i —

- MSO*0

SO/

1 -1"

— —

-3S -30 -2S -20 -IS

60

SO

•to

30

20

10

0

-10

-20

- MSCV

-60 -50 -45 -40 -3S -30 -Z5 -20

Figure 4.4.2_19. Correlation of the standard partial molal volumes of association of sulfate ionpairs involving mono-, di- and trivalent cations with the standard partial molal volumes of thecations at 25°C and 1 bar (see Table 4.2.2_1, footnote #6). Symbols refer to calculated values fromSverjensky et al. (1997) based on thermodynamic data that are incorporated in SPRONS.JNC.

66

- 6 6 -

JNCTN8400 99-079

id

13, 5<

20

15

10

5

0

5-03!

+ F- -

• " " "

MF°

BbF»

• - " "

15.0 20.0 25.0 30.0

Sit>, CM. HOC1 r l

35.0

20

i is

j 10

.5 5

0

-5

-10

• MCI£i +

HaCl»

5-01S7l«-4,0BS

a- .

. *-

Ma;

_— — -

Pba,»

25.0

20

S 15

I

0

-5

-10

• M *

• —

I—4.45

Br- - MBr"

.

KBr»- • -

CsBr» ;

10.0 20.0 2S.0 30.0 3SD 40.0

Figure 4.4.2_20. Correlation of the standard partial molal entropy of association for addition of amonovalent ligand to a cationic species with the standard partial molal entropy of the cationicspecies at 25°C and 1 bar (see Table 4.2.2_1, footnote #7). Symbols refer to calculated values fromSverjensky et al. (1997) based on thermodynamic data that are incorporated in SPRONS.JNC.

67

- 6 7 -

JNCTN8400 99-079

20

t 15

' . 5

'23

-10

s»-aozs

F- -

— • -

MF*

~

— - — i •••—

CaF*

—i

BaF-

-50 -30 -20 -10

. U L HCC< K-<

30

20

10

0

-10

-20

1

M* +

I-Ol

—i 1 —

S 0 4 " -

uso,-

u

1 r i

MS04"

NiSO,"

KSO,"

•10 - S O 5 10 IS 20 25 30 35 40

Sir, CAL xa;' ie'

40

30

0

-10

-20

-1O

. M+++ S07 - M

msaj -

MgSOj \ ™

ZnSOj / Fo

CdSO?

i-aon

so4

- > ' s>so? " " ^

-

c»sof

;

- to -35 -30 -25 -20 -15

S M " . CAL HOC' K-'

-10

20

10

5

0

-5

-10

+ cucoa -

Ft

M9CCH.CQO)*

-SO -40 -30 -20 -10

3 40

^3 30

20

J-OD1- U.0

so4" -

3cSO

/ ^ r

uso;r:

M5O 4

ErSO; DyS

Ot VbSO*

a" EuSO; SmSOJ S J S O ;

TbSOt PrSO*

-70

10

-60 -55 -SO

5 J — . CAL HOC' K-'

-4S

Figures 4.4.2_21 (three figures on the left) and 4.4.2_22 (three figures on the right). Correlation ofthe standard partial molal entropy of association for addition of a monovalent ligand to a divalentcation (Fig. 4.4.2_21), and for sulfate complexes of mono-, di- and trivalent cations (Fig. 4.4.2_22),with the standard partial molal entropies of the cations at 25°C and 1 bar. [see Table 4.2.2_1,footnotes #8 (Fig. 4.4.2_21) and #9 (Fig. 4.4.2_22)]. Symbols refer to calculated values fromSverjensky et al. (1997) based on thermodynamic data that are incorporated in SPRONS.JNC.

68

- 6 8 -

JNCTN8400 99-079

-20

•30

•40

M+ +

S-1,131- -SIS

coj- - MCOJ

10 15 20

S M * . CAl HOC1 K-'

25

60

\

SO

40

30

20

M + f + CO,- -

MaCC?

MCOS

. • —

CC^1 SrCOj

t •

-

BaCOf

-W -35 -30 -25 -20 -15 -10 -5

S M ~ , CAl not1 (C-1

10

Figure 4.4.2_23. Correlation of the standard partial molal entropies of association of carbonatecomplexes involving mono- and divalent cations with the standard partial molal entropy of thecations at 25°C and 1 bar (see Table 4.2.2_1, footnote #10). Symbols refer to calculated values fromSverjensky etal. (1997) based on thermodynamic data that are incorporated in SPRONSJNC.

respectively. Combined uncertainties in estimated equation-of-state parame-ters may lead to uncertainties in A G as high as + 700 cal mol"1 at 500°C and 1kb, or ±1500 cal mol-l a t 1000 °C and 5 kb (Shock and Helgeson, 1988).

69

- 6 9 -

JNCTN8 400 99-079

5 Description of Thermodynamic Databases

The thermodynamic databases SPRONSJNC and PHREEQE.JNC aredescribed in this section. Section 5.1 provides an overview of the approach usedto generate these databases. SPRONSJNC is described in Section 5-2.PHREEQE.JNC is described in Section 5.3. The databases are listed inAppendices A (SPRONSJNC) and B (PHREEQEJNC).

5.1 Overview

The procedure to develop SPRONSJNC and PHREEQEJNC is illustratedschematically in Fig. 5.1_1. SPRONS92.DAT (Johnson etal., 1991) is the basicsource of thermodynamic data in SPRONSJNC, which also includes new andrevised data published in the peer-reviewed scientific literature since 1991.PHREEQEJNC is derived from SPRONSJNC using SUPCRT to calculatethermodynamic properties of relevant reactions. Remarks concerning thesecalculations, and associated software, are summarized in the followingparagraphs. SUPCRT is described by Johnson etal. (1991), and is available fromthe Laboratory of Theoretical Geochemistry, University of California, Berkeley.

MPRONS is a pre-processor used to modify the SPRONS database. It is aninteractive program that asks the user for additions, deletions or modificationsto the database, executes the requested changes, and generates a new databasethat incorporates the new or revised data. In practice, any suitable text editorcan also be used for this purpose, in which case it is essential that formatting and

SPRONS92.DATplus new/ re vised dacapublished since 1991

CMPRQNS,

SPRONS.JNC

COPRONS>

DPRONS.JNC

Output

compare withexperimentalresults and/or phaserelations observed innatural systems

[PHREEQEJNC j—<J>HREEQE

Figure 5.1 1. Schematic diagram of che procedure used to develop SPRONSJNC andPHREEQE.JNC. Boxes refer co data or databases, ovaJs refer to software (see text).

70

- 7 0 -

JNCTN8400 99-079

unit conventions are strictly adhered to (Tables 5.1 1 to 5.1_3), and that thetotal numbers of minerals, gases, aqueous species and comment lines in thedatabase are accurately updated (these totals are appended to the end of thedatabase, as can be seen in Appendix A, for example).

CPRONS is an interactive pre-processor that converts the sequential access fileSPRONS.JNC into its direct access equivalent, DPRONSJNC. DPRONSJNC increases the run-time efficiency of calculations carried out by SUPCRT.

SUPCRT consists of the following subprogram modules:

• SUP - an executive program that reads user-generated input files and thedatabase file DPRONSJNC, passes these data to the REAC module andinterfaces calculated reaction properties with the reporting module REP,

• REAC - calculates the apparent standard molal Gibbs free energy andenthalpy, and the associated standard molal entropy, heat capacity andvolume, of reactions among minerals, gases and aqueous species as afunction of temperature and pressure,

• HiO - calculates the electrostatic and standard molal thermodynamicproperties of H2O as a function of independent state conditions specifiedby the user, and

• REP - writes an output file, which lists all relevant data used in thecalculations extracted from DPRONS.JNC, together with calculatedstandard molal thermodynamic properties of reactions (a "PLT" file, whichcontains calculated values in a format suitable for two-dimensional plotting,may also be written at the user's discretion).

Two input files are required for calculations using SUPCRT. One, the CON(conditions) file, specifies the range of independent state conditions to beconsidered in the calculations, including either:

• the liquid-phase side of the H2O vaporization boundary, which requiresuser specification of the temperature, or pressure, range, or

• single-phase regions of H T O stability, which requires user specification oftemperatures and pressures, temperatures and H2O densities, or specifica-tion of T and log K, or P and log K.

The temperature, pressure and solvent-density regions of validity of theSUPCRT model are summarized in the introductory paragraph of Section 4.

The other user-specified input file required by SUPCRT is the RXN (reactions)file. This file specifies reactions among minerals, gases and aqueous species whosestandard molal thermodynamic properties are to be calculated by SUPCRT over

71

- 7 1 -

JNCTN8400 99-079

Line

1

2

3

4

5

6

Var

name

abb rev

ref

AG°f

a (100)

Var

scform

ecform

date

AH°f

£(103)

Var Var

CO

f(10-5)

Tmax ( f o r a>b,c)

Format

lx, a20, a30

lx, al5,5x, a40

lx, a5, 15x, a9

4x,2(2x,f 12. l),2(2x,f 8.3)

4x, 3(2x,fl2.6)

8x, f 7.2

Table 5-1 1 - Generic species data block in SPRONSJNC for gases, and minerals that do notundergo phase transitions. Abbreviations: Var. (variable), Format (FORTRAN77 format), abbrev.(abbreviation), scform (structural chemical formula), ecform (elemental chemical formula), ref(literature reference - see Appendix A) and date (date of last revision). Units: AG°r and AH°r (calmol-l), S°Pri Tr (cal mol-l K-l), V°Pn Tr (cm3 mol-l), a (cal mol-l K-l), b (cal mol-l K>2), c(cal Kmol-l), and 7 ^ (K)[see Section 4.2.1].

Line

1

2

3

4

5

6

7

Var

name

abbrev

ref

AG°f

a; (100)

AH°Ti

an (100)

Var

scform

ecform

date

AH°f

b, (103)

AV°Ti

bn (103)

Var Var

S°Pr. Tr

. ^(10-5)

{dPldT)Tl

cn(10"5)

V°Pr, Tr

T 77, Pr

Format

2x, a20, a30

2x, al5, 5x, a40

2x, a5, 15x, a9

4x, 2(2x,f 12.1), 2(2x,f 8.3)

4x, 3(2x, f 12.6), 2x, f 7.2

2x,f8.1,2(2x, fl0.3)

4x,3(2x,fl2.6)

8x, f 7.2

Table 5.1_2. Generic species data block in SPRONS.JNC for minerals that undergo phasetransitions. Abbreviations: as in Table 5.1_L. Units: as in Table 5.1 _ 1 , and T xi, Pr (K). AH°j^ (ca\mol-l), AV°T, (cm3 mol-l), {dPSdT) (bar K-l), *,,„ (cal mol-l K-l), bu „ (cal mol-l Kr^^c^ (cal Kmol-l), anJ T^^ „ (K)[see Section 4.2.1].

Line

1

2

3

4

5

6

Var

name

abbrev

ref

AG°f

^ (101)

Mio°)

Var

scform

ecform

date

AH°f

a2{\Q-2)

r2(104)

Var Var

COJ Pr, Tr

a3(lQ0)

ffl^,rr(10-5) charge

Format

2K, a20, a30

6x, al5, 5x, a40

6x,a5, 15x, a9

4x, 2(2x,f 10.0), 4x,f 8.3

4x, 4(2x, f 8.4, 2x)

4x, 3(2x, f8.4,2x),9x, f3.0

Table 5.1_3. Generic species data block in SPRONS.JNC for aqueous species. Abbreviations: as inTable5.1_l. Units: as in Table 5.1_1, and #/ (cal mol"1 barl), <ii (cal mol"1), a3 (cal K mol"1

bar ]) , a4 (cal K mol"1), cj (cal moI^K"1), rj (cal K mol"1), a fri n (cal mol-1) and charge(dimensionless) [see Section 4.2.2].

72

7 2

JNCTN8400 99-079

the range of conditions specified in the CON file. The reactions are specified bythe user in terms of the appropriate reaction stoichiometry and correspondingnames of mineral, gas and aqueous reactants and products.

The output from SUPCRT is processed by MDB (Modify DataBase; Arthur etal., 1997) to generate revised versions of PHREEQEJNC. The SUPCRToutput file tabulates the standard molal thermodynamic properties of reactionsat the reference temperature and pressure, and also over a range of T-Pconditions specified in the CON file. The temperature dependence of theequilibrium constant for corresponding reactions in PHREEQE is calculatedusing either the van't Hoff equation or a polynomial expression constrained byempirical temperature-independent coefficients. In the former case, MDBextracts values of log K and the reaction enthalpy at 25°C from the SUPCRToutput file, and incorporates these values into datablocks for the correspondingreaction in PHREEQE.JNC. In the latter case, MDB calculates values of theempirical coefficients by regression of log K vs. lvalues calculated by SUPCRT,and then writes these coefficients, together with log Ka.t 25°C , into appropriatedatablocks in PHREEQE.JNC. For each such modification, MDB appends arecord to PHREEQEJNC specifying data that were added or revised, as well asthe date and identity of the person making the revisions.

The accuracy of the data in SPRONS.JNC is assessed by comparing calculatedequilibrium constants for selected reactions with their experimental counterparts.A number of such assessments are documented in Section 6, where it can be seenthat in some cases discrepancies exist between calculated and experimentalresults. Unfortunately, determining the reason for such discrepancies is notstraightforward, because they may be generated by errors in the thermodynamicproperties of one or more reactants or products, and/or by inappropriateexperimental technique or mis-interpretation of experimental results. We expectthat future revisions to SPRONS.JNC, as noted in Section 2, will partially orcompletely eliminate all such discrepancies (as suggested by the dashed line inFig- 5.1_1), but this may require additional experimental work by JNC andothers. Similarly, we note that despite efforts to avoid completely any errors oftranscription from original data sources, some errors of this type may exist inSPRONS.JNC. Thus, if discrepancies are encountered between calculated andexperimental results, it is recommended that the relevant data should first bechecked to confirm that they have been correctly entered into the database.

5.2 SPRONS.JNC

5.2.1 Description

SPRONS.JNC includes standard molal Gibbs free energies and enthalpies offormation, and standard molal entropies and volumes at the reference pressure(1 bar) and temperature (25°C) for 143 minerals that do not undergo phase

73

- 7 3 -

JNCTN8400 99-079

transitions, 33 minerals that undergo one phase transition, 17 minerals thatundergo two phase transitions, 2 minerals that undergo three phase transitions,and 16 gases. Also included are Maier-Kelly heat capacity coefficients (Eqn.4.2.1_5) that permit calculation of corresponding apparent standard molal Gibbsfree energies and enthalpies of formation, and standard molal entropies atpressures from 1 to 10000 bars and temperatures from 0°C to a maximum valueconsistent with the Maier-Kelly coefficients. SPRONSJNC also includesstandard molal Gibbs free energies and enthalpies of formation and standardmolal entropies at the reference pressure and temperature, and HKF equation-of-state coefficients (aj...a4, cj, C2, and CO; Section 4.2.2) for 1147 aqueousspecies. Together with equations of state for fluid phases of H T O and equationscharacterizing the dielectric properties of the solvent as functions of pressure andtemperature (encoded in SUPCRT's subprogram module HyO), apparentstandard partial molal Gibbs free energies and enthalpies of formation, andstandard partial molal entropies of these aqueous species can be calculated over abroad range of temperatures and pressures. The apparent standard molalthermodynamic properties of minerals, gases and aqueous species in SPRONSJNC can be used with SUPCRT to calculate corresponding properties ofreactions.

The data in SPRONSJNC that are taken from SPRONS92.DAT are describedin Section 5.2.2. Sources of new data, and of revisions to data in SPRONS92.DAT, are discussed in Sections 5.2.3 and 5.2.4.

5.2.2 Sources of unrevised data

Unless otherwise noted (Section 5.2.3 and 5.2.4), thermodynamic data inSPRONSJNC are from references 1-19, Appendix A. The data for mineralsare mostly from Helgeson et al. (1978), but additional data for Sn-bearingminerals (Jackson and Helgeson, 1985), and a small amount of calorimetric data(references 6, 7, 8, 15 and 16, Appendix A), are also included. Standard molalGibbs free energies and enthalpies of formation are not available for severalminerals, including:

• bromellite, chabazite, chloritoid, cummingtonite, dickite, ferropargasite,ferrotremolite, fluorphlogopite, fluortremolite, glaucophane,, grunerite,leonhardite, richterite, staurolite, zincite, almandine, 14A-amesite, edenite,epistilbite, ferroedenite, fiuoredenite, heulandite, natrolite, Ca-, K- and Na-pnillipsite, pyrope, spessartine, stilbite, aegerine, larnite, riebeckite, 7A-cronstedrite, ferrogedrite, hastingsite, magnesiohastingsite, magnesio-riebeckite, and PD (proton-deficient)-oxyannite

(an entry in SPRONSJNC of "999999" is the default null value assigned to theGibbs free energy and enthalpy of formation when these data are unavailable).Calculated results involving these minerals therefore refer only to the parentheti-cal terms in Eqns. (4.1_1) and (4.1_2).

- 7 4 -

JNCTN8400 99-079

The standard Gibbs free energies of formation of calcite and aragonite retrievedby Helgeson et al. (1978) are corrected by Johnson et al. (1991) in order to beconsistent with the experimental solubilities of these minerals determined byPlummer and Busenberg (1982). The Gibbs free energies and enthalpies ofseveral other Ca-bearing minerals evaluated by Helgeson et al. (1978), includinganorthite, clinozoisite, diopside, dolomite, epidote, laumontite, wairakite,wollastonite, lawsonite, and margarite, are adjusted to be consistent with therevised data for calcite and aragonite (see reference 19, Appendix A).

Thermodynamic data and equation-of-state coefficients for aqueous ions andionic species are from Shock and Helgeson (1988). Similar data for inorganicneutral species are from Shock et al. (1989). Data for inorganic metalcomplexes attributed to unpublished work in SPRONS92.DAT (reference 5,Appendix A) have since been published, and in some cases revised (reference 22,Appendix A). These newer data supersede those from reference 5, and areincorporated in SPRONSJNC (Section 5.2.3). Data for many of the 86 organicspecies that are included in SPRONS92.DAT (reference 4, Appendix A) areomitted in SPRONSJNC because these species are not relevant to the Japaneserepository concept, nor are they helpful in retrieving thermodynamic propertiesof other, more relevant, aqueous species from experimental data and fieldobservations. Recent data for organic acids and metal-organic complexes are,however, included in SPRONS.JNC (see Section 5.2.3), because these speciesare known to be generated by diagenetic alteration of organic matter insedimentary environments (e.g., Kharaka et al., 1983; Barth and Bjorlykke,1993). These species may therefore be relevant to the Japanese repositoryconcept, and may also affect groundwater chemistry at field sites that are beinginvestigated by JNC [e.g., the Mobara site; Kamei (1997); Sasamoto et at.(1999c)]. Data for gases are from Wagman et al. (1982) and Kelley (1960).

It should perhaps be emphasized that data from the sources described above arethemselves constrained by supplementary data from numerous other sources, asis generally true of all thermodynamic databases. The supplementary data forminerals and gases are documented in footnotes appended to Tables 2, 3, 7, 8and 9 of Helgeson et al. (1978). These data include standard molal entropies ofseveral elements from Wagman et al. (1968; 1969), and standard molal Gibbsfree energies and enthalpies of formation, and standard molal entropies, derivedfrom calorimetric studies.

Sources of supplementary data for aqueous ions and ionic species are referencedin footnotes to Tables 11 and 12 of Shock and Helgeson (1988). Standardpartial molal volumes and heat capacities at the reference temperature andpressure are retrieved from experimental data on apparent molal properties ofelectrolytes (Section 4.3.3.1). Additional data are from Tanger and Helgeson(1988), who similarly retrieved these data from experimental measurements ofapparent molal properties. Supplemental standard partial molal entropies, and

75

- 7 5 -

JNCTN8400 99-079

enthalpies and Gibbs free energies of formation at the reference temperature andpressure, are taken primarily from CODATA (1978) and Wagman et al. (1982),and also from Berg and Vanderzee (1978), Jackson and Helgeson (1985) and(for lanthanide cations) from Morss (1976).

Sources of supplementary data for inorganic neutral species are referenced infootnotes to Tables 4 and 7 of Shock et al. (1989). Supplemental standardpartial molal volumes and heat capacities at the reference temperature andpressure are from Olofsson et al. (1985), Tiepel and Gubbins (1972), Allred andWoolley (1981), Barbero et al. (1983) and Pierotti (1965). Supplementalstandard partial molal entropies, and enthalpies and Gibbs free energies offormation, are from Wagman et al. (1982) and Olofsson et al. (1985).

5.2.3 Sources of new and revised data

References 20 - 40 (Appendix A) document new and revised thermodynamicdata included SPRONS.JNC. These references are briefly summarized below.

Ref. 20: Pokrovskii and Helgeson (1995) evaluate experimental solubilitiesreported in the literature for gibbsite, boehmite, diaspore and corundum toderive an internally consistent set of thermodynamic data for AP+, Al(OH)2nAl(OYV)$(aq) and Al(OH)4", and to retrieve standard molal Gibbs free energiesof formation of boehmite and diaspore at the reference pressure and tempera-ture. This is an important study because all available calorimetric, phase-equilibrium, solubility and potentiometric data pertinent to the AI2O3-H2O-NaCl system are considered over a wide range of pressures and temperatures,and because the retrieved data for this chemical subsystem are internallyconsistent. Standard molal thermodynamic properties and Maier-Kelley heatcapacity coefficients for corundum, gibbsite, boehmite and diaspore from Table2 of this reference are included in SPRONS.JNC. Standard partial molaithermodynamic properties and HKF equation-of-state coefficients for theaqueous aluminum species noted above, and for NzMOjfaq) and NaOHf^^),from Table 3 of this reference are also included in SPRONS.JNC. Theseinternally consistent data are also consistent with data for Na+, Cl- and OH-from Shock and Helgeson (1988) and data for NzCi(aq) from Shock et al.(1989), and thus are consistent with the data for these species in SPRONS.JNC.

The data for A13+ and A1(OH)4" (i.e., AIO2-, see Section 5.2.5) from Pokrovskiiand Helgeson (1995) are accepted here rather than alternative data for thesespecies recommended by Shock et al. (1997a). This is because the Pokrovskiiand Helgeson (1995) data are consistent with the available solubility data lorgibbsite and boehmite, and because they are internally consistent withcorresponding data for the other aqueous aluminum species noted above. Shocket al. (1997a), on the other hand, assert that there is considerable disagreementamong experimental solubilities reported for gibbsite and boehmite at low pH.To avoid this confusion, they use experimental data from Couturier et al. (1984)

76

- 7 6 -

JNCTN8400 99-079

for the hydrolysis reaction:

Al3t + 2H2O ~ AlOj -

to retrieve the standard partial molal entropy of AJ3+. "While we agree there issome scatter in the solubility data (Figs. C.ll and C.15, Appendix C), we donot believe this is sufficient reason to adopt this approach. The availablesolubility data provide important experimental constraints on the thermody-namic properties of AJ3+ and A1(OH)4", and we feel it is better to account forthese constraints, despite the scatter in the data, than to ignore them.

It is of interest to note that the thermodynamic properties determined byPokrovskii and Helgeson (1995) and Shock et al. (1997a) for Al(OH)4- arevirtually identical, but that the standard partial molal Gibbs free energy offormation of AJ3+ reported by Shock et al. (1997a) is nearly 1 kcal mol"1 morepositive than that retrieved by Pokrovskii and Helgeson (1995). Similarly, thepartial molal enthalpy of formation is nearly 2 kcal mol"1 more positive, and thepartial molal entropy is approximately 3 cal mol-1 K'1 more positive, thancorresponding values retrieved by Pokrovskii and Helgeson (1995).

Ref. 21: Shock et al. (1997a) use correlations among experimentally determinedstandard partial molal volumes, heat capacities and entropies to estimatestandard partial molal properties and HKF equation-of-state parameters formore than 300 inorganic cations and anions, polyatomic anions, oxyanions, acidoxyanions, neutral oxy-acid species, dissolved gases and hydroxide complexes ofmetal cations. In addition to these new data, revised data for 80 species fromShock and Helgeson (1988) are also provided. These revisions are motivated byimprovements to previous correlations (Sassani and Shock, 1992; 1994). Therevised correlations account for the coordination of aqueous ions, and associatedeffects on estimates of effective ionic radii and partial molal entropies (see alsoPuigdomenech etui, 1997). The data summarized in Tables 4, 5 and 10 of thisreference, and all the revisions to data from Shock and Helgeson (1988), areincluded in SPRONS. JNC.

Ref. 22: Sverjensky et al. (1997) regressed experimental ion-association datareported in the literature to retrieve standard partial molal properties and HKFequation-of-state coefficients for 57 aqueous metal complexes with halogen (Q-,F-, Br, I-), carbonate, sulfate, nitrate, acetate, and H3S1O4- ligands. Correlationsdeveloped on the basis of experimental standard partial molal heat capacities,volumes and entropies of association, combined with similar data from Shockand Helgeson (1988) for aqueous cations and anionic ligands, are used tocalculate provisional estimates of standard partial molal properties and equation-of-state coefficients for an additional 52 complexes, for which little or noexperimental data are available. The data summarized in Tables 2, 3 and 12 ofthis reference are included in SPRONS.JNC.

77

- 7 7 -

JNCTN8400 99-079

Ref. 23: Pokrovskii and Helgeson (1997a) regressed experimental dissociationconstants reported in the literature to retrieve standard partial molal propertiesand HKF equation-of-state parameters for KC[(aq). The retrieval procedureused data from Shock and Helgeson (1988) for the corresponding properties ofK> and Ch The data for KCl(aq) are therefore consistent with these data, andwith corresponding data in SPRONS.JNC.

Ref. 24: Pokrovskii and Helgeson (1997b) regressed experimental data on thesolubilities of gibbsite and corundum in aqueous KOH solutions to retrievestandard partial moial properties and HKF equation-of-state coefficients forKAIO2 (aq) and ¥JD\A(aq). These data are consistent with the thermodynamicproperties of K+ and OH- in SPRONS.JNC retrieved by Shock and Helgeson(1988), and with the revised properties of A1O2- in SPRONS.JNC (Ref. 20)determined by Pokrovskii and Heigeson (1995).

Ref. 25: Haas et al. (1995) used experimental data from the literature andcorrelation algorithms to retrieve or estimate standard partial molal thermody-namic properties and HKF equation-of-state parameters for 246 inorganicaqueous lanthanide complexes with halogen (C1-, F-), hydroxide, carbonate,sulfate, bicarbonate, nitrate and orthophosphate ligands. The retrieval andestimation procedures are constrained by data from Shock and Helgeson (1988),

-and reported values are therefore consistent with the data in SPRONS.JNC.The data are listed in the appendix of this reference, and were obtained fromthe authors (E. L. Shock, at http://zonvark.wustl.edu/geopig/).

Ref. 27: Shock and Koretsky (1995) regressed experimental equilibriumconstants for association of metal-organic complexes involving monovalentorganic acid ligands to retrieve, or estimate, standard partial molal thermody-namic properties and HKF equation-of-state coefficients for 270 metal-organicspecies. The organic ligands and associated acids that are represented inSPRONS.JNC include formate, acetate, propanoate, butanoate, pentanoate,glycolate, lactate, oxalate and succinate [the partial molal thermodynamicproperties of these ligands and their corresponding acids are from Ref- 26(Shock, 1995)]. Analogous data for 114 metal acetate complexes from Ref. 33(Shock and Koretsky, 1993) are also included in SPRONSJNC. All the datafrom Refs. 26, 27 and 33 are consistent with data for inorganic aqueous ions andionic species in SPRONSJNC from Shock and Helgeson (1988) and Shock etal. (1997a). The organic-species data are reported in various tables andappendices in Refs. 26, 27 and 33, and were obtained in the present study fromthe senior author (E. L. Shock, at http://zonvark.wustl.edu/geopig/).

The data for the organic acids and ligands noted above are included inSPRONS.JNC because these species are found commonly in the formationwaters of sedimentary basins (e.g., Carothers and Kharaka, 1978; Kharaka et al.,1993). These species may also affect mineral diagenesis, and the aqueous

78

- 7 8 -

JNCTN8400 99-079

speciation behavior of inorganic elements such as Ca, Al and Fe (Kharaka et al.,1986; Lundegard and Kharaka, 1990; Harrison and Thyne, 1992).

Ref. 29: Saccocia and Seyfried (1993) reinterpreted published experimentalphase-equilibrium data involving chamosite (synonymous according theseauthors with l4A-daphnite) and retrieved values of the standard molal Gibbsfree energy and enthalpy of formation for l4A-daphnite that are consistent withthe standard entropy, volume and Maier-Kelley heat capacity coefficients forthis mineral evaluated by Helgeson et al. (1978). The recommended data areincluded in SPRONS.JNC.

Ref. 31: Sverjensky etui. (1991) reconciled inconsistencies in the thermodynam-ic properties of minerals in the systems K2O- and Na2O-Al2O3-SiO2-H2O-HClusing an analysis procedure that integrates the results of phase-equilibrium andcalorimetric experiments with the results of solubility experiments at hightemperatures. Recommended revisions to values reported by Helgeson et al.(1978) for the Gibbs free energy of formation of muscovite, phlogopite, K-feldspar, sanidine and microcline are incorporated in SPRONS.JNC.

Standard partial molal thermodynamic properties and HKF equation-of-statecoefficients for HCl(aq) are also retrieved by Sverjensky et al. (1991). Thesedata are not used in SPRONS.JNC, however, because newer data for this species(Tagirov et al., 1997; see Ref. 40) are more consistent with all experimentallydetermined dissociation constants for H.Q(aq) over a wider range of tempera-tures, pressures and H2O densities than were considered by Sverjensky etal. (1991). Calculated thermodynamic properties of this species neverthelessagree closely with values calculated using the data of Sverjensky et al. (1991).

Ref. 35: Oelkers et al. (1995) determined standard partial molal thermodynam-ic properties and HKF equation-of-state coefficients for two aluminum acetatecomplexes [Al(CH3COO)2+ and Al(CH3COO)2+] using the data for A13+ fromRef. 20 and the procedure described in Ref. 33. These data are accepted ratherthan data for these species from Ref. 33 because they are consistent with the datafor A13+ from Ref. 20.

Ref. 36: Shock et al. (1999) use experimental data from the literature andcorrelations to estimate partial molal thermodynamic properties and HKFequation-of-state coefficients for divalent, trivalent, quadravalent, pentavalentand hexavalent actinide ions. These data are included in SPRONSJNC, andwere obtained from the senior author (E. L. Shock, pers. comm.).

Ref. 37: Shock et al. (1997b) use the available experimental data from theliterature to estimate HKF equation-of-state parameters for aqueous uraniumcations and non-conventional hydroxide complexes (Section 5.2.5), and toretrieve standard molal thermodynamic properties and Maier-Kelley heat

79

- 7 9 -

JNCTN8400 99-079

capacity coefficients for uraninite that are consistent with thermodynamicproperties reported by Grenthe et al. (1992) and experimental solubilities at hightemperatures determined by Parks and Pohl (1988). The data summarized inTables 1 and 2 of Shock et al. (1997b) are included in SPRONS.JNC.

Ref. 38: Standard partial molal thermodynamic properties and HKF equation-of-state coefficients for Pd2+, PdCK VdC\2(aq), PdCl3-, PdCl42-, Pd(OH)+ andPdOfaq) are estimated by Sassani and Shock (1990) using the limited availableexperimental data on dissociation constants from Droll et al. (1957), Biryukovand Shlenskaya (1964) and Izatt et al. (1967). Standard molal thermodynamicproperties and Maier-Kelley heat capacity coefficients for Pd(c) and FdO(c) arealso reported. The data incorporated into SPRONS.JNC are from Tables 1 and2 of this reference. These data are provisional estimates, which may be revised inwhole or in part by Sassani and Shock (1999).

Ref. 39: Standard partial molal thermodynamic properties and HKF equation-of-state parameters for the ion-pairs NaB(OH)4(#g>) and NaSO,^ are retrievedby Pokrovski et al. (1995) from potentiometric measurements of the respectiveassociation constants between 50 and 200°C. The data from Table 5 of thisreference are included in SPRONS.JNC, and are consistent with thermodynam-ic properties and HKF equation-of-state parameters in this database for Na+,OH- and SO42- from Shock and Helgeson (1988) and Shock et al. (1997a).

Ref. 40: Tagirov et al. (1997) retrieved standard partial molal thermodynamicproperties and HKF equation-of-state coefficients for HCl(aq) based onassociation constants consistent with measured solubilities of AgClfrj and Ag(V).The experimental data determined in this study are evaluated simultaneouslywith association constants retrieved from other solubility and electricalconductance measurements reported in the literature between 25 and 700°C,and between 1 bar and 5 kb. The retrieved data for WCX(aq) from Table 6 ofTagirov et al. (1997) are incorporated in SPRONS.JNC. Standard partial molalproperties and HKF parameters for AgCl2~ were also determined by Tagirov etal. (1997), and are included in SPRONS.JNC for completeness. The data forboth HCl(aq) and AgC^- are consistent with data in SPRONS.JNC becausethey were retrieved using thermodynamic properties and HKF equation-of-statecoefficients for Cl- from Shock and Helgeson (1988), which are unrevised byShock et al. (1997a), and thermodynamic properties and Maier-Kelleycoefficients for AlCl(c) (chlorargyrite) and Ag(c) from Helgeson et al. (1978).

5.2.4 Data for minerals not considered by Helgeson et al (1978)

Thermodynamic data in SPRONS.JNC and PHREEQE.JNC support differentmodels of hydrolysis reactions involving non-stoichiometric solid solutions.Helgeson et al. (1978) prefer a modeling approach that considers mixing ofatoms among energetically equivalent sites in the crystalline lattice, as well asexchange of atoms between energetically distinct sites. A model consistent with

80

- 8 0 -

JNCTN8400 99-079

this approach is described by these authors and involves calculation of theactivities of thermodynamic components of the solid solution from site-mixingapproximations. Component activities are then correlated with the compositionsof the minerals and used as descriptive variables in activity diagrams.SPRONS.JNC includes data for minerals that are stoichiometrically equivalentto the thermodynamic components of many solid solutions, including severalthat are important in relatively low-temperature groundwater systems. Aagaardand Helgeson (1983) and Giggenbach (1985) use similar data and the modeldescribed above to calculate equilibrium mineral-stability relations appropriatefor such systems. Arthur et al. (1993) and Arthur (1994) use this approach tomodel equilibrium porewater compositions in engineered bentonite barriers.

The PHREEQE series of codes do not include solid-solution models in thegeneral sense considered by Helgeson et al. (1978), although ion-exchangereactions can be simulated. Rather, solid-solution behavior is grossly approxi-mated using a surrogate stoichiometric phase to represent the solid solution. Thestoichiometry of the surrogate phase is defined such that it is within the range ofcompositions exhibited by the solid solution it represents, but the stoichiometryis not variable, as would otherwise be consistent with solid-solution behavior.The advantage of this approach is that the thermodynamic properties of thesurrogate phase can be estimated using a variety of techniques, such as describedby Tardy and Garrels (1974), Mattigod and Sposito (1978) and Chermak andRimstidt (1989)".

For this reason, it is necessary to include thermodynamic data for such surrogatephases in SPRONSJNC in order to calculate equilibrium constants andenthalpies using SUPCRT, which can then be incorporated into PHREEQEJNC. Estimated thermodynamic properties for a limited number of suchphases representing smectite (Na-, K-, Ca- and Mg- nontronites, beidellites andmontmorillonites), saponite (greenalite and celadonite), chlorite (chamosite and7A-daphnite) and-illite solid solutions are included in SPRONSJNC.

These data are from Refs. 30, 32 and 34 (Appendix A). Most of the data areestimated by Wolery (1976), who used a re-calibrated and slightly modifiedversion of the technique described by Tardy and Garrels (1974) to estimateGibbs free energies of formation, and methods described by Helgeson et al.(1978) to estimate corresponding standard molal entropies and Maier-Kelly heatcapacity coefficients. Gibbs free energies and enthalpies of formation ofceladonite, greenalite, 7A-chamosite and 7A-daphnite are combined with

1]~ In passing, ic is of interest to note that a third modeling approach appropriate for solid-solution minerals is described by Bourcier (1985), and is incorporated in the EQ3/6software package (Wolery et al., 1990). This approach is similar to that described byHelgeson et al. (1978), but considers ideal mixing of end-member thermodynamiccomponents of the solid-solution, rather than ideal mixing of atoms on energeticallyequivalent sites.

81

- 8 1 -

JNCTN8400 99-079

standard entropies, volumes and heat capacities retrieved by Helgeson et al.(1978). All the thermodynamic properties of illite and Na-, K-, Ca- and Mg-nontronites, beidellites and montmorillonites are estimated (Wolery, 1976). Itis reasonable to include these data in SPRONS.JNC because they are consistentwith thermodynamic data for the other minerals retrieved by Helgeson et al.(1978)[T. Wolery, pers. comm.}. It is not possible to assess the accuracy of thesedata because experimental solubilities corresponding to the exact stoichiometryof the surrogate phases are not available. It is possible, however, to assess whetherthe data are reasonably consistent with mineral stability relations observed innatural systems. A few such assessments are described in Section 6.11 forstoichiometric surrogates of smectite and illite solid solutions.

Halloysite is metastable with respect to its isostructural and isochemical analogkaolinite, and may persist for significant periods of time in relatively lowtemperature geologic systems. The standard molai entropy and volume ofhalloysite, and associated Maier-Kelley heat capacity coefficients, are reportedby Helgeson et al. (1978), and are included in SPRONS.JNC, but its Gibbs freeenergy and enthalpy of formation are not determined by these authors. Becausehalloysite may be important in partially controlling groundwater compositions atsome of JNC's field sites (Kamaishi, Tono and Mobara), we calculatedprovisional estimates of its Gibbs free energy and enthalpy of formation (Ref.28). This was accomplished by calculating the difference between calorimetricGibbs free energies of formation of kaolinite and hailoysite retrieved by Robie etal. (1978), and adding this difference to the Gibbs free energy of formation ofkaolinite determined by Helgeson et al. (1978). A similar procedure was used toestimate hallosyite's enthalpy of formation. These are considered to beprovisional estimates, but it is cautioned that the validity of this estimationprocedure may not be supported by recent experiments on the relative stabilitiesof kaolinite and another of its isochemical analogs, dickite (Zotov et al., 1998).

5.2.5 Conventional and non-conventional aqueous species

The non-conventional form of hydroxide complexes and other aqueous speciesare adopted in SPRONSJNC, but conventional forms are represented inPHREEQEJNC. The thermodynamic properties of conventional species areobtained by adding H2O to the stoichiometry of their non-conventionalcounterparts, assuming the thermodynamic properties of the correspondingreactions, including the logarithm of the equilibrium constant, are equal to zeroat any temperature and pressure (Wagman et al., 1982). Such reactions aresummarized in Table 5.2.5_1 for species that could be important in geologicsystems. It is essential that reactions in PHREEQEJNC that include conven-tional hydroxide complexes and other conventional aqueous species are writtenin terms of their non-conventional counterparts before thermodynamicproperties of the reaction are calculated using SUPCRT and SPRONS.JNC.

82

JNCTN8400 99-079

Table 5.2.?_1. Selected conventional and non-conventional aqueous species in PHREEQE.JNCand SPRONS.JNC, respectively, and reactions for converting non-conventional species into theirconventional counterparts (log K for all such reactions equals zero at any temperature and pressure).

Conventional Species(PHREEQE.JNC)

Ai(OH)2+

Al(OH)3r^;

A1(OH)4-

KAl(OH)4(aq)

NaA\(OH)4(aq)

Bi(OH)2+

Bi(OH)3(^)

Bi(OH)4-

Cd(OH)2(aq)

Cd(OH)3-

Cd(OH)4-?-

H2CO3(aq)

Ca(H3SiO4)+

Fe(OH)2(aqJ

Fe(OH)3-

Fe(OH)2+

Fe(OH)3(aq)

Fe(OH)4-

Mg(H3SiO4)+

Mn(OH)2(aq)

Mn(OH)3-

Mn(OH)42-

Na(H3SiO4)f^J

Ni(OH)2(aq)

Ni(OH)3-Ni(OH)42-

HASiO4faq)

H3SiO4-

?b(OH)2(aq)

Pb(OH)3-

Sn(OH)2(aq)

Sn(OH)3-

U(OH)22+

U(OH)3+

U(OH)4(aq)

U(OH)5-

U O 2 ( O H ) 2 ^ ;

Non-conventional Species(SPRONS.JNC)

AIO+

HAIO 2 C^;

AJO2-

KMO2(aq)

NaMO2(aq)

BiO+

HBiO2(aq)

BiO2"

CdO(aq)

HCdO2-

CdO22"

CO2(aq)

Ca(HSiO3)+

F e O ^

HFeO2-

FeO+

H¥tO2(aq)

FeO2-

Mg(HSiO3)+

UnO(aq)

HMnO2-MnO22-

Na(HSiO3)f^;

N\O(aq)

HNiO2-

NiO22"

$\O2(aq)

HSiO3-

VbO(aq)

HPbO2-

SnOfaej)

HSnO2-

UO2+

HUO2+

UO2(aq)

HUO3-

UO 3(aq)

Conversion Reaction

A1O+ + H2O = A1(OH)2+

HAlO2r^; + H2O = Al(OH)3r^;

A1O2- + 2H2O = A1(OH)4-

KMO2(aq) + 2H2O = KA1(OH)4^;

NaAlO 2 r^ + 2H2O = NaAJ(OH)4r^i

BiO*- + H2O = Bi(OH)2+

HBio 2 r ^ ; + H 2 O = Bi(OH)3r^;

BiO2- + 2H2O = Bi(OH)4-

C d O ^ ; + H2O = Cd(OH)2(aq)

HCdO2- + H2O = Cd(OH)3-

CdO22- + 2H2O = Cd(OH)42-

CO2(aq) + H2O = H2CO3^J

Ca(HSiO3)+ + H2O = Ca(H3SiO4)+

FeO(aq) + H2O = Fe(OH)2(aq)

HFeO2- + H2O = Fe(OH)3-

FeO^ + H2O = Fe(OH)2+

HFcO2(aq) + H2O = Fe(OH)3r^J

FeO2- + 2H2O = Fe(OH)4-

Mg(HSiO3)+ + H2O = Mg(H3Si04)+

MnO(aq) + H2O = Mn(OH)2^J

HMnO2- + H2O = Mn(OH)3-

MnO22- + 2H2O = Mn(OH)42-

N a ( H S i O 3 ) ^ + H2O = Na(H3SiO4)(^;

NiO^J + H2O = Ni(OH)2^J

HNiO2- + H2O = Ni(OH)3-NiO22- + 2H2O = Ni(OH)42-

SiO2f^J + 2H2O = H4SiO4f«^j

HSiO3- + H2O = H3SiO4-

pbor^j + H 2 O = Pb(OH)2r^;

HPbO2- + H2O = Pb(OH)3-

SnO(aq) + H2O = Sn(OH)2(aq)

HSnO2- + H2O = Sn(OH)3-

UO2* + H2O = U(OH)22+

HUO2+ + H2O = U(OH)3+

UO2(aqJ + 2H2O = U(OHU('aq)

HUO3- + 2H2O = U(OH)5-

\5O3(aq) + H2O = UQ2(OH)2(aq)

_83

- 8 3 -

JNCTN8 400 99-079

Conventional Species(PHREEQE.JNC)

UO2(OH)3-

UO2(OH)42-

Zn{OH)2(aq)

Zn(OH)3-

Zn(OH)42-

Non-convencional Species(SPRONS.JNC)

HUO4-

UO42-

ZnO(aq)

HZnCh-

ZnO22"

Conversion Reaction

HUO4- + H2O = UO2(OH)3-

UO42- + 2H2O = UO2(OH)42-

ZnO(aq) + H2O = Zn(OH)2f^J

HZnOv + H2O = Zn(OH)3-

ZnO22- + 2H2O = Zn(OH)4

2-

5.2.6 Consistency between JNC's core thermodynamic database andSPRONS.JNC

As noted in Section 1, JNC is developing in parallel to the present study anadditional thermodynamic database appropriate for minerals, gases and aqueousspecies of radioactive elements. Although this database and SPRONS.JNC aredeveloped independently, there are a number of minerals, gases and aqueousspecies that are common to both databases. These primary, or "core",thermodynamic data in JNC's database for radioelements are from theOECD/NEA Thermodynamic Database Project (Silva et ai, 1995), whichcontains primarily CODATA key values, and additional data recommended byGrenthe et at. (1992). In this section we compare these data with theircounterparts in SPRONS.JNC to determine if the data that are common toboth databases are self-consistent, i.e., if they are identical within stateduncertainty limits.

Although uncertainties are assigned to the core data [at the statistically defined95% confidence interval (Silva et aL, 1995)], absolute uncertainties in theSPRONS.JNC data cannot be assessed unequivocally. This is because there aremultiple sources of uncertainty and ambiguity in interpretive methods used toretrieve these data from experimental results, and additional limitationsassociated with simultaneous evaluation of thermodynamic properties formultiple reactions (Section 4.3.4.3; Helgeson etal., 1978). For these reasons it isconsidered preferable not to assign absolute uncertainties to the SPRONS.JNCdata, rather than to estimate uncertainties that may be both inaccurate andmisleading. We therefore consider the data in these two databases to beconservatively self consistent if reported values in SPRONS.JNC lie within therange of uncertainties assigned to data in the core database, but we do notexplicitly account for uncertainties in the SPRONS.JNC data.

Minerals that are common to both SPRONS.JNC and the JNC core databaseinclude Cu(c), C(c)(graphite), corundum, lime, periclase, and a-quartz. Thestandard molal entropy of lime in SPRONS.JNC (9.5 cal mol-i K-i) differsfrom the corresponding nominal value and associated uncertainty limits in thecore database (9.106 ± 0.096 cal moH K"1). The data for minerals that arecommon to these databases are otherwise self-consistent

84

- 8 4 -

JNCTN8400 99-079

Discrepancies between SPRONSJNC and the core database in AG°p AH°- and S°for aqueous species and gases are shown in Figs. 5.2.6_1 - 5.2.6_3. respectively.The ordinate in these figures refers to the respective value in SPRONSJNCminus the corresponding nominal value in the core database. When thisdifference exceeds uncertainty limits assigned to the nominal value in the coredatabase (indicated by the error bars in Figs. 5.2.6_1 - 5.2.6_3), we take this tomean that the respective data in SPRONSJNC and the core database arediscrepant, in the conservative sense noted above. As can be seen in Fig. 5.2.6_1,the discrepancies defined in this manner in Gibbs free energies of formation areless than 1 kcal mol-i, except for H3PO4(^) , r ^ P O ^ , HPO42-, PO43- andHF2". Discrepancies in enthalpies of formation, as shown in Fig. 5.2.6_2, arealso less than 1 kcal mol-1 , except for the phosphate species, HF?" and SiOjfsq).Discrepancies in entropies (Fig. 5.2.6_3) are less than 1 cal mol-1 K-1, except forHF(aqJ and HSO4-.

The significance of these apparent discrepancies is difficult to assess, however. Itis possible that even crude estimates of absolute uncertainties in SPRONSJNC,although ill-advised for reasons noted above, would eliminate most of thediscrepancies, but probably not all [e.g., AG°f and AH°f for the phosphate speciesand AH°f for SlOjfaq)]. It is also possible to incorporate the core data intoSPRONS.JNC, but this would entail revisions to the thermodynamic propertiesof other minerals, gases and aqueous species that are directly or indirectly

—1

1 m

ol'

u

iffe

renc

e (I

Q

3

2.5

2

1.5

1

0.5

0

-0.5

-I I

0•

••0•AAVTfflHX

O

A13 +Ba2+H3PO4(aq)H2PO42-HPO42-PO43-H F 2 -HSeO3-IO3-Mg2 +S2fg)SO42-Br-j

OH-

-300 -250 -200 -150 -100 -50

A G°.in sprons.jnc (kcal mol" )

50

Figure 5.2.6_1. Differences between the standard Gibbs free energies of formation of aqueousspecies and Sifjj) in SPRONS.JNC and JNC's core thermodynamic database at 25°C and 1 barversus AG°f for each species or gas in SPRONS.JNC. Discrepancies in the data for these speciesare possible because calculated differences exceed uncertainty limits in the core database (indicatedby error bars).

_85

- 8 5 -

JNCTN8 400 99-079

oE

u

uc

1.5

0.5

-0.5

-1

•DO+X

o•

Ba2+H3PO4(aq)H2PO4-HPO42-PO43-HF(aq)HF2-

AAVTQ

ffl

HSO4-IO3-Mg2 +SiO2(aq)CO2(aq)I -

"B"

-300 -250 -200 -150 -100 -50

i - UAH ^ in sprons.jnc (kcal mol" )

50 100

Figure 5.2.6_2. Differences between the standard partial molal enthalpies of formation of aqueousspecies in SPRONS.JNC and JNC's core thermodynamic database at 25°C and 1 bar versus A//°yfor each species in SPRONS.JNC. Discrepancies in the data for diese solutes are possible becausecalculated differences exceed uncertainty limits in the core database (indicated by error bars).

o6

ucV1-4

5

15 20

o•D

••A

1

Br-CO2(aq)H3PO4(aqlH2PO4-HF(aq)HSO4-NH3(aq)

0 Q

-1 -

25 30 35

S (sprons.jnc; cal mol" KT )

40

Figure 5.2.6_3- Differences between the standard partial molal entropies of aqueous species inSPRONS.JNC and JNC's core thermodynamic database at 25°C and 1 bar versus 5° for eachspecies in SPRONS.JNC. Discrepancies in the data for these aqueous ions and neutral species arepossible because calculated differences exceed uncertainty limits in the core database (indicated byerror bars).

86

- 8 6 -

JNCTN8400 99-079

constrained by the substituted data. This is certain to require a considerableamount of time that cannot be accommodated in the present study. Thus,although it is important to resolve the possible discrepancies noted above, suchwork must be deferred until future revisions to SPRONS.JNC are undertaken.

5.3 PHREEQE.JNC

5.3.1 Description

PHREEQE.JNC supports geochemical models of groundwater chemistry andevolution, laboratory investigations of water-rock interaction, and safetyassessments of the Japanese repository concept consistent with JNC's referencescenario (Section 2). Relevant temperatures for these investigations are between 0and L00°C. Corresponding pressures are in the range of 1 to 100 bars. Becausesuch low pressures have negligible effects on most heterogeneous and homoge-neous equilibria, however, a total pressure of 1 bar is considered adequate forthese studies.

The PHREEQE.JNC database is listed in Appendix B. Format and unitconventions are specified in Tables 5.3.1 1 to 5.3. l_3. Thermodynamic datainclude equilibrium constants for mineral-dissolution and aqueous-associationreactions at the reference pressure (1 bar) and reference temperature (25°C). Asnoted in Section 5.1. the temperature dependence of the equilibrium constant iscalculated in the PHREEQE series of codes using either the van't Hoff equation,or empirical coefficients in an analytical expression representing log K(T). In theformer case, MDB (Section 5.1) extracts values of log AT and the reactionenthalpy at 25°C from the corresponding SUPCRT output file, and incorpo-rates these values into datablocks for the reaction in PHREEQE.JNC. In thelatter case, MDB calculates values of the empirical coefficients by regression oflog K vs. T values calculated by SUPCRT, and then writes these coefficients,together with log 'K at 25°C, into appropriate datablocks in PHREEQE.JNC.Both approaches require the reaction enthalpy at the reference pressure andtemperature, and these data are therefore included in PHREEQEJNC.

All equilibrium constants and reaction enthalpies in PHREEQE.JNC arecalculated using SUPCRT and SPRONS.JNC following the proceduredescribed in Section 5.1 and illustrated in Fig. 5.1 1. This ensures thatthermodynamic data in PHREEQE.JNC are in all cases consistent with the datain SPRONS.JNC. The sources of these data are documented in Sections 5.2.2and 5.2.3.

PHREEQEJNC includes data for minerals, gases and aqueous species that arerelevant to geologic systems, and thus which contain the geoelements O, H, Na,Ca, Mg, K, P, F, Cl, Fe, S, C, N, Si, Al, B, Mn and I. Revisions to this databaseare planned, and may include data for minerals, gases and aqueous species ofradioelements, and similar data for other elements (e.g., lanthanides and organic

87

- 8 7 -

JNCTN8400 99-079

Line

1

Var

tname

Var

nelt

Var

tgrw

Format

a8, 2x, i2, 3x, 3 flO.O

Table 5.3.1_1. Generic data block for elements in PHREEQE.JNC. Abbreviations: Var.(variable), tname (alphanumeric name of the element), nelt (index number of the element: numbermust be between 4 and 99), tgfw (gram formula weight).

Line

1

2

3

4

Var

I

sname

Iktosp

lspd)

Var Var Var Var Var Var Var Var Var

nsp

dhsp

csp(I)

kflag

aspl

gflag

asp2

zsp

asp3

thsp

asp4

dha

asp5

adhspl adhsp2 alksp

Format

i4

a8, 2x,i3,2il,6fl0.3

2fl0.3,5el2.5

6(i3, f7.3)

Table 5.3.1_2. Generic data block for aqueous association reactions in PHREEQE.JNC.Abbreviations: Var. (variable), I (index number assigned to the aqueous species formed in thereaction; number must be between 4 and 99 for master species, or between 100 and 1500 for otherspecies), sname (alphanumeric species name), nsp (number of master species in the reaction), kflag [=0 - van't HofFequation is used to calculate log K(T)\ =1 analytical expression is used to calculate logK(T), see below], gflag (activity coefficient flag, see Parkhurst et al. (1980), zsp (species charge), rhsp[sum of operational valences of redox species involved in the reaction , see Parkhurst et al. (1980],dha (the extended Debye-Hiickel a"; term), adhspl [the <?; term used in the WATEQ Debye-Hiickel equation, see Parkhurst et al. (1980)], adhsp2 [the 4 term used in the "WATEQ Debye-Hiickel equation, see Parkhurst et al. (1980)], alksp (species alkalinity), lktosp (logarithm of theassociation constant), dhsp [enthalpy of association (kcal mol"1)], aspl-5 [temperature independentcoefficients used in the analytical expression log K(T) = aspl + asp2 7" + asp3/7" + asp4 Iog7' +asp5/7% for 7t°K)], lsp(I) (index number of master species in the reaction), csp(I)(stoichiometriccoefficient of master species I in the reaction (positive for reactants, negative for products of theassociation reaction).

Line

1

2

3

Var

mname

lmin(I)

aminl

Var

nrninQ

cmin(I)

amin2

Var

thmin

Var

lktom

Var

dhrmn

Var

mflag

Var

simin

amin3 amin4 amin5

Format

a8, 2x, i2,3x,3fl0.2,5x, il,9x, fl0.3

5G4,fll.3)

5el2.5

Table 5.3.1_3- Generic data block for mineral dissociation reactions in PHREEQE.JNC.Abbreviations: Var. (variable), mname (alphanumeric name of the mineral), nminO (number ofaqueous species in the reaction), thmin [sum of the operational valences of redox species in thereaction , see Parkhurst et al. (1980)], lktom (logarithm of the equilibrium constant at 25°C),dhmin (reaction enthalpy, kcal mol"1), mflag [= 0 - van't Hoff equation is used to calculate logK(T)\ =1 analytical expression is used to calculate log K(T), see below], simin [saturation indexdesired in the final solution (simin = 0 corresponds to equilibrium)], lmin(I) [index number of anaqueous species (I) in the reaction], cmin(I) [stoichiometric coefficient of an aqueous species (I) inthe reaction], aminl-5 [temperature independent coefficients used in the analytical expression logK(T) = aminl + amin27* + amin3/7"+ amin4 logT + amin5/72, for r(°K)].

88

- 8 8 -

JNCTN8400 99-079

aqueous species). To accommodate these future revisions, PHREEQE.JNC isdimensioned to include data for 1500 aqueous species. The first 99 indexnumbers are reserved for basis species. The first non-basis species (OH-) isassigned the index number 100.

Mineral names in PHREEQE.JNC are in some cases shortened using thecorresponding abbreviations in SPRONSJNC {Appendix A). This is necessarybecause PHREEQE requires mineral names to be less than 9 characters in length.The abbreviations for some minerals are cryptic, including: CaAlpyrx (Ca-Al-pyroxene); Chm-7A (7A chamosite); Cnc-7A (7A clinochlore); Cnc-l4A (14Aclinochlore); Czo (clinozoisite) a-Crs (a-cristobalite); b-Crs (p-cristobalite); K-fs(K-feldspar); Grn (greenalite); Hd (hedenbergite); Lmt (laumontite); Mng(manganosite); Max-mc (maximum microcline); Mnn (minnesotaite); Mtc(monticellite); Nesque (nesquehonite) and Hi-sa (high sanidine).

5.3.2 Redox reactions

Because the thermodynamic properties of the aqueous electron and H+ are takenby convention to be equal to zero at any temperature and pressure (Section 4.1),equilibrium constants and reaction enthalpies for heterogeneous and homoge-neous redox reactions in PHREEQEJNC can be directly calculated usingSUPCRT and SPRONSJNC. For example, the conventional standard molalGibbs free energy of the reaction:

SO2; + 9H+ + 8e- * HS- + 4H2O(l), (5.3.2_1)

given by,

SAG;

is equivalent to

because the conventional Gibbs free energies of formation of H+ and e- are equalto zero. The quantities on the right-hand side of Eqn. (5.3.2_2) are evaluatedusing SUPCRT by specifying the folio wing ftctive reaction in the RXN file (seeSection 5.1).

SO, * HS" + 4H2O(7j-

This "reaction" is chemically unrealistic because mass and charge are notconserved, but SUPCRT nevertheless calculates the standard Gibbs free energychange according to Eqn. (5.3.2_2). The result is therefore consistent with the

89

- 8 9 -

JNCTN8400 99-079

conventional thermodynamic properties of H+ and e-, and hence with theconventional thermodynamic properties of reaction (5-3-2_l). Equilibriumconstants and enthalpies for all redox reactions in PHREEQEJNC arecalculated in this manner.

5.3.3 Comparison of thermodynamic data in PHREEQEJNC and the H3 TDB

JNC's Heisei 3 (H3) thermodynamic database (TDB) is compared in thissection with PHREEQEJNC. The purpose of the comparison is to establishsome continuity with regard to previous work carried out by JNC that includesthermodynamic calculations using the H3 database. That is, we assess the levelof agreement among data that are common to both databases, and also identifyminerals, gases and aqueous species that are included in one database, but notthe other. The H3 database is described by Yui et al. (1992b). It includes datafrom several sources in a format that is compatible with PHREEQE software.

Equilibrium constants and enthalpies of aqueous association reactions in the H3TDB and PHREEQEJNC are shown in Table 5.3.3_1. The table includes allaqueous ions and complexes that are relevant to geologic systems, and also alimited number of radioelement ions and complexes that are common to bothdatabases. As can be seen, many of the geologically relevant species in the H3database are also present in PHREEQEJNC. Equilibrium constants (25°C) aregenerally in close agreement. Reaction enthalpies (25°C) also compare favorably,although discrepancies exceeding a few kcal moH are not uncommon. Manyaqueous species in the H3 database are not present in PHREEQEJNC, however,and vice i>ersa. Phosphate, carbonate, sulfate and nitrate complexes are generallybetter represented in the H3 TDB, whereas hydroxide and halogen complexesare more prevalent in PHREEQEJNC.

Distinctly different approaches are associated with the H3 TDB and PHREEQEJNC to account for the temperature dependence of the equilibrium constant ofaqueous association reactions. As can be seen in Table 5.3.3_1. the H3 databaserequires equilibrium constants at temperatures other than 25°C to be estimatedusing the van't Hoff equation [i.e., flag (=kflag) = 0 (Table 5.3.1_2)]. Moreover,the association enthalpies of many complexes in this database are equal to zero,and equilibrium constants for the corresponding reactions at any -temperaturemust therefore be equal to the value of the equilibrium constant at 25°C. Incontrast, equilibrium constants between 0 and 100°C in PHREEQEJNC arederived from calculations using SUPCRT and SPRONS JNC (i.e., flag = 1; seeSection 5.1). A comparison of log isf values calculated in this manner at 25 and60°C (Table 5-3-3 1) suggests that even relatively small increases in temperaturecan cause the equilibrium constant to increase, or decrease, by several orders ofmagnitude. This suggests that the van't Hoff equation may not be appropriatefor estimating equilibrium constants at temperatures that are relevant to theJapanese repository concept, particularly if it is assumed that the reactionenthalpy equals zero. Moreover, the good agreement noted above among

_ _ 90

- 9 0 -

JNC TN8400 99-079

Table 5.3.3_1. Equilibrium constants and reactionthe H3 TDB and PHREEQEJNC.

Species

OH-

O2(aq)

H2(aq)

HCO3-

H2CO3(aq)

HSO4-

HS-

H2S2O3(aq)

HS2O3-

HSO3-

H2BO3-

HPO4^-

H2PO4-

KF(aq)

HF2-

H3S1O4-

H2SiO4^-

HCl(aq)

HNO3(aq)

H3?O4(aq)

HlOtf'aq)

H2Se(aq)

HSe-

HSeO3-

H2SeO5(aq)

HSeO4-

A1OH2+

A1(OH)2+

Al(OH)3r^/J

A1(OH)4-

A1F2+

AIF2+

AiF3r^;MF4-

AISO^

A1(SO4)2-

H3TDB

flag'

0

0

0

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

"0

0

0

0

0

0

0

0

0

0

0

0

0

0

AH°r(kcal/mol)

13.345

134.79

-1.759

-3.561

-5.738

4.91

-65.179

-40.14

0.

0.

3.224

-3.53

-4.52

3.46

4.55

0.

0.

168.0

0.

0.

0.

0.

0.

11.9

0.

0

44.06

0.

20.0

2.5

0.

2.15

2.84

Log A'(25*C)

-14.000

-86.08

-3.15

10.33

16.68

2.000

40.681

33.652

39.605

3.823

-9.240

12.350

19.55

3.17

3.749

-9.810

-23.141

-111.0

85.1

81.2

36.3

38.9

1.9

-4.99

-10.1

-16.0

-23.0

7.01

12.75

17.02

19.72

3.02

4.92

enthalpies for aqueous associatior) reactions in

PHREEQE.JNC

flag*

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

AH°r

(kcal/mol)

13.340

133.734

-1.000

-3.513

-5.832

4.90

-64.868

-59.717

-57.184

-60.684

-0.587

3.907

-3.515

-4.52

3.315

4.960

4.220

9.648

4.019

-2.620

168.05

-126.267

-48.097

-46.407

.4.200

11.902

23.490

34.585

43.236

Log K(25*C)

-13.995

-86.003

-3.105

10.329

16.673

1.979

40.677

33.690

40.739

40.153

3.583

-9.249

12.322

19.527

3.168

2.551

-9.585

-0.710

-1.303

21.697

-110.518

81.181

36.304

38.877

1.906

-4.957

-10.594

-16.433

-22.883

Log Ar

(60*0

38.615

4.35

-9.241

74.463

33.416

36.152

2.309

-8.745

-13.725

91

- 9 1 -

JNC TN8400 99-079

AqueousSpecies

BaOH*-

BaO

BaF+

BaCO3(aq)

BaHCO3+

BiOH2+

Bi(OH)2+

Bi(OH)3(^J

Bi(OH)4-

BF(OH)3-

BF2(OH)r

BF3OH-

BF4-

CaOH+

C a O

QzCXjiaq)CaF+

Ca(HCO3)<-

CaCO3(aq)

CzSOifaq)

CaPO4-

CaHPOtfaq)

CaH2PO4+

CaH3SiO4+

CH4(aq)

FeOH +

Fe(OH)2(aq)

Fe(OH)3-

FeCl+

Fe(CI) 2 r^FeF+

F e S O 4 C ^

Fe(HS)2(aq)

Fe(HS)3-

FeHPOifaqJ

FeH2PO4+

Fe3+

FeOH2 +

H 3 T D B

flag*

0

0

0

0

0

0

0

1

1

1

0

0

0

0 .

0

0

0

0

0

0

0

0

0

0

AH°r

(kcai/mol)

15.095

1.85

1.635

-1.58

-1.795

14.535

3.798

-0.869

3.547

1.470

3.100

-0.230

-1.120

-61.039

13.2

28.565

30.3

3.23

-120.280

-180.420

-3.530

-4.520

10.0

20.4

Log A'(25*0

-13.358

-0.40

7.628

13.666

20.274

-12.598

0.940

11.435

3.225

2.309

6.459

15.085

20.961

41.071

-9.5

-20.57

-31.0

2.25

76.250

111.937

15.946

22.253

-13.032

-15.22

PHREEQE.JNC

flag*

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

AH°r

(kcal/mol)

20.917

3.110

2.140

4.035

1.999

4.157

18.657

30.974

45.674

18.517

1.126

-1.394

1.350

-3.165

3.795

1.300

4.783

-64.575

12.287

27.417

32.984

0.723

23.426

0.748

10.200

20.367

Log A'(25^C)

-13.500

-0.498

-0.183

2.645

11.311

-1.105

-3.304

-8.206

-21.107

-12.833

-0.292

-0.644

0.682

11.376

3.327

2.111

-8.575

38.194

-9.315

-20.405

-29.207

-0.161

-8.172

1.427

-13.011

-15.216

Log A'(60*0

_92

_ 9 2 -

JNC TN8 400 99-079

AqueousSpecies

Fe(OH)2+

Fe(OH)i(aq)

Fe(OH)4-

Fe2(OH)yi+

Fe3(OH)45+

FeC12+

FeCl2+

FeCl3f^J

FeF2+

FeF2+

FeF3r^J

FeSO4+

Fe(SO4)2-

FeHPO4+

FeH2P2 +

IO3-

IO4-

KOH (aq)

KCl(aq)

KKrfaq)

Kl(aq)

KHSO4(aq)

KSO4-

KHPO4-

KAl{OH)4(aq)

LiOH(aq)

UCl(aq)

LiSO4-

MgOH +

MgCl*

MgF+

Mg(HCO3) +

MgCO 3(aq)

MgSO4(aq)

MgPO4-

MgHPO4('^)

MgH2PO4+

MgH,SiO4+

H3 TDB

flag*

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

b

0

0

.

0

0

0

1

1

0

0

0

0

AH°r(kcal/mol)

10.0

10.0

10.0

33.5

44.3

15.6

10.0

10.0

12.7

14.7

15.4

13.91

14.60

12.23

5.48

0.

251.0

-

2.25

-3.530

0.

15.419

4.674

-2.775

2.535

1.4

3.100

-0.2

-1.120

Log AT(25*C)

-18.70

-26.63

-34.63

-29.01

-45.4

-11.55

-10.90

-11.90

-6.80

-2.2

0.97

-9.11

-7.61

4.74

11.95

-111.0

-165.0

0.85

12.636

0.64

-11.794

1.82

11.397

2.981

2.25

6.589

15.216

21.066

PHREEQE.JNC

flag*

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

AH%(kcal/mol}

29.367

38.384

47.984

11.163

15.059

165.65

250.667

16.483

2.803

2.990

2.041

277.67

0.690

50.603

13.369

0.805

26.729

0.367

0.567

-2.998

2.182

3.759

Log A'(25*0

-18.661

-25.029

-34.631

-11.531

-7.011

-111.324

-165.044

-14.895

-1.751

-1.737

-1.598

-179.909

0.880

-24.224

-13.649

-1.511

-11.682

-0.135

1.352

11.365

2.979

-8.325

Log K(60*0

-100.769

_93

- 9 3 -

JNC TN8400 99-079

AqueousSpecies

MnOH +

Mn(OH)2(aq)

Mn(OH)3-

Mn(OH)42-

MnCl*

MnCljfaq)

MnCly

MnF+

MnHCO3+

Mnso^caq)

Mn(NO3)2(aq)

Mn3*

MnO42-

NaOHfa^NzCl(aq)

NaF(aq)

NaBrf^j

NA(aq)

NaHCO3(%)

NaCO3-

NaSO4-

NaHPO4-

NaAl(OH) 4(aq)

NzH2BO5(aq)

NaH3SiO4(r^yl

NdOH2+

Nd(OH)2+

Nd(OH)3(%)

Nd(OH)4-

NiOH^

Ni(OH)2f^)

Ni(OH)3-

Ni(OH)42-

Ni2(OH)3+

Ni4(OH)44+

NiSO4(/2£J

NiCl+

NiF+

H3 TDB

flag'

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

AH°r(kcal/mol)

14.40

0.

0.

0.

0.

0.

-3.604

2.17

-0.3

25.76

150.02

-3.604

8.911

1.12

-3.53

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

Log A'(25SC)

-10.59

-34.8

0.607

0.041

-0.305

0.85

11.60

2.26

0.6

-25.507

-118.44

10.080

1.268

0.70

12.636

-8.0

-16.9

-26.5

-37.1

-9.9

-19.0

-30.0

-10.7

-27.7

2.3

PHREEQE.JNC

flag'

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

I

1

1

1

1

1

1

1

1

1

1

1

AH°r(kcal/mol)

14.417

22.117

39.634

56.234

4.553

0.596

3.55

22.2

169.567

12.823

1.206

1.723

1.643

1.932

-0.647

45.489

-64.557

1.631

19.317

27.817

55.134

71.434

13.567

24.987

30.774

47.734

1.433

0.735

Log A'(25*0

-10.59

-22.201

-34.800

-48.287

-0.139

0.88

1.913

-25.509

-118.345

-14.795

-0.777

-0.998

-1.357

-1.540

0.923

-23.627

32.581

-7.754

-8.127

-17.070

-26.37

-37.072

-10.803

-20.706

-31.003

-44.036

-0.996

1.120

Log A'(6CPC)

-31.794

0.282

0.997

-6.608

-14.293

-22.284

-32.068

-9.731

-17.630

-28.610

_94

- 9 4 -

JNC TN8400 99-079

AqueousSpecies

Np3+

NpO 2+

NpO 22 +

NU3(ag)

NH4+

NH4SO4-

NO 2 -

PbOH+

?b{OH)2(aq)

Pb(OH)3-

Pb2OH3+

Pb3(OH)42+

Pb4(OH)4<*+

Pb6(OH)84+

PbCl+

PbCl2(ag)

PbCI3-

PbCl42-

PbF+

PbF2(aq)

Vb(HS)2(aq)

Pb(HS)3-

VbCO 5(aq)

Pb(CO3)22-

pbso4r^;PbtSO4)2

2-

PdOH+

VA(OK)2(aq)

Pu3+

PuO2+

PuO22+

S2-

S22-

S32-

S42-

S52-

S2°32"

H3TDB

flag*

0

0

0

0

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

AH°r(kcal/mol)

0.

35.73

0.

-174.58

-187.055

-187.055

-312.13

-43.76

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

46.23

0.

-28.04

0.

LOR A'(25*0

3.03

-11.37

-32.29

109.83

119.070

120.19

207.08

28.57

-7.7

-17.1

-27.3

-6.4

-23.9

-20.88

-43.6

1.61

2.44

2.01

7.3

10.78

2.59

3.5

-2.12

-4.62

16.9

-18.6

-34.9

20.735

38.015

PHREEQE.JNC

flag*

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

AH°r(kcal/mol)

7-000

35.834

63.934

-174.961

-187.371

-313.538

-43.888

-0.803

23.397

32.214

1.083

1.946

1.879

0.303

-0.661

-2.703

-134.805

-196.525

-0.763

1.537

-13.300

46.234

68.334

-104.534

-161.401

-217.968

-274.235

-61.784

LogK(25*0

3.445

-9.145

-30.035

109.906

119.147

207.269

27.767

-6.192

-16.894

-27.917

1.437

2.003

1.688

1.43

2.06

3.420

82.089

117.078

-1.091

-2.190

17.006

-17.941

-34.213

57.645

94.457

131.049

167.422

38.467

LOR A'

4.304

-25.859

-6.283

-15.152

-25.548

1.578

2.24

1.941

-1.131

-2.071

16.399

-14.713

-29.603

36.701

_95

- 9 5 -

JNC TN8400 99-079

AqueousSpecies

S2O42-

S2O52-

S2O62-

s2o82-

S3O62-

s4cv-S5O62-

SO32-

SO2(aq)

Se2-

SeO32-

SnOH+

Sn(OH) 2(aq)

Sn(OH)3-

SnCK

SnQ\2(aq)

SnCl3-

SnF+

SnF2(aq)

SnF3-

Sn^+

SnOH3+

Sn(OH)4(aq)

Sn(OH)22+

Sn(OH)3+

SnF3*

SnF22+

SnF3+

Snl> 4(aq)

SnSO42+

Sn(SO4)2(aq)

SrOH+

SrCl+

SvCl2(aq)

SrF+

SrHCCy

SrCO3f^;

SrSO4f^J

H3 TDB

flag*

0

0

0

0

0 -

0

0

0

0

0

0

0

0

0

0

0

0 .

0

0

0

0

0

0

0

0

0

1

1

0

AH°r(kcal/mol)

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

14.495

0.

0.

2.486

5.217

1.6

Log K(25*0

-3.397

66.3

29.0

-3.89

-7.90

-17-39

1.05

1.71

1.69

4.08

6.68

9.46

-5.38

-4.77

-4.53

-5.56

-4.85

-6.57

-4.6

-6.31

4.34

-19.6

-6.14

-13.178

-0.2

0.

11.513

2.805

2.55

PHREEQEJNC

flag*

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

(kcal/mol)

-18.567

-2.150

17.766

113.400

-36.701

-106.168

-150.435

-2.817

3.572

-46.817

6.617

10.317

16.634

19.987

1.183

1.150

2.489

4.435

Log A:(25^C)

10.549

2.348

-8.418

-65.501

25.902

76.128

97.474

-3.623

5.443

29018

-3.414

-7.079

-16.599

-13.302

-0.248

0.139

11.509

2.865

Log A"(60*0

-3.105

26.145

-2.927

-6.33

-15-397

-0.047

_96

- 9 6 -

JNC TN8400 99-079

AqueousSpecies

SrNO3+

SrPO4-

SiF62-

U3-

UOH3+

U{OH)4(aq)

U O 2 +

UO2OH(aq)

UO2(OH)2-

UO22+

UO2OH+

UO2(OH)2r^j

UO2(OH)3-

UO2(OH)42-

ZrOH3+

Zr(OH)2^+

Zr(OH)3+

Zr(OH) 4 (aq)

Zr(OH)5-

Zr3(OH)48+

Zr4(OH)88+

ZrSO42+

H3 TDB

flag*

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

AH°r(kcal/mol)

0.

0.

-16.26

24.414

11.217

0.

32.932

34.4

44.723

0.

0.

0.

0.

0.

0.

0.

0.

0.

Log A'

(ire)0.8

4.2

30.18

-8.615

-0.540

-4.479

-7.507

-8.993

-14.193

-20.994

-28.994

-41.994

0.3

-9.7

-16.0

-0.6

6.0

2.5

PHREEQE.JNC

flag'

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

AHcr

(kcal/mol)

-16.959

24.400

11.217

18.234

32.934

50.35

72.650

34.384

44.750

46.650

51.667

68.367

6.147

14.347

21.664

23.164

21.980

Log Ar

(25*C)

26.275

-9.602

-0.541

-4.563

-7.576

-25.738

-44.063

-9.049

-14.267

-19.361

-28.295

-42.075

0.324

-1.728

-5.091

-9.709

-16.004

Log A'

-3.185

-16.557

-25.099

-37.671

0.828

-7.904

-13.699

*-kfkg, see Table 5.3.1_2.

equilibrium constants at 25°C is probably not valid at other temperatures.

Thermodynamic data for a limited number of mineral dissolution reactions thathave been considered by JNC in previous modeling studies of groundwaterevolution are shown in Table 5.3.3_2. As can be seen, equilibrium constants at25°C are generally in close agreement, but significant discrepancies (e.g., greaterthan about one order of magnitude) are evident for dolomite, 'kaolinite, K-feldspar, clinochlore, tremolite and pyrite dissolution. Reaction enthalpies(25°C) are also similar, but discrepancies exceeding a few lccal mol"1 areapparent for dolomite, siderite, kaolinite and K-feldspar. Comments notedabove on the use of the van't Hoff equation for estimating equilibrium constantsat high temperatures also pertain to mineral dissolution reactions, as can be seenby comparing log A'values at 25 and 60°C in the PHREEQEJNC data base.

97

- 9 7 -

JNC TN8400 99-079

Mineral

Calcite

Aragonite

Dolomite

Siderite

Strontianite

Gypsum

Anhydrite

Celestke

Barite

Fluorite

Amorph. Fe(OH)3

Quartz

Gibbsite

Chalcedony

Kaolinite

Phlogopite

K-feldspar

Albice"

Anorthite**

Clinochlore

Tremolice

Epidote

Muscovite

Pyrite**

H3TDB

flag'

1

1

0

0

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

AH°r(kcal/mol)

-2.30

-2.59

-9.44

-6.14

-0.40

-0.03

-4.30

0.23

6.14

4.71

0.

-22.80

49.15

0.

-12.47

0.

0.

0.

0.

0.

-59.38

130.0

LogK(258C)

-8.48

-8.34

-17.09

-10.57

-9.27

-4.60

-4.38

-6.58

-9.98

-10.96

4.89

-3.78

8.77

-3.49

-36.92

36.33

1.78

3.54

26.37

68.35

57.7

45.43

14.60

-86.0

PHREEQE.JNC

flag"

1

1

1

1

1

1

1

1

1

1

rI

I

I

I

I

I

I

I

I

I

I

AH°r

(kcal/mol)

-2.633

-2.654

-7.306

-4.262

1.545

-4.44

-1.770

6.20

2.90

7.875

-24.566

7.507

58.637

-73.975

-5.486

-12.393

-72.427

-146.359

-97.131

-102.562

-57.895

130.684

Log K(25*C)

-8.480

-8.336

-18.144

-10.521

-10.643

-4.306

-5.677

-9.971

-10.037

-3.999

7.756

-3.728

-38.957

37.267

-0.448

2.764

26.578

67.239

61.237

45.940

14.05

-83.610

Log K(60*0

31.355

1.568

20.809

55.772

53.171

25.551

* - mflag, see Table 5.3.1_3; ** - reaction stoichiometry in the H3 TDB

Table 5.3.3_2. Equilibrium constants and reaction enthalpies for selected mineral dissolutionreactions in the H3 TDB and PHREEQE.JNC.

5.3.4 Excluded reactions

As noted in the preceding section, there are a number of aqueous species andminerals that are not represented in PHREEQEJNC for which thermodynamicdata are available in the H3 TDB (and numerous other databases). Several ofthese species and minerals could be important in experimental, field andmodeling studies carried out by JNC. This raises the question whether suchdata should be included in PHREEQE.JNC.

Consistent with the objectives of this project (Section 2), we believe such datashould not be included until an evaluation is made of their reliability at reference

98

- 9 8 -

JNCTN8400 99-079

conditions, and perhaps more importantly at other temperatures considered inthe Japanese repository concept, and until it can be determined that they areinternally consistent with respect to other data in PHREEQE.JNC andSPRONS.JNC. Due to time constraints in the present study, such assessmentswill have to be made by individual users as the need arises.

99

- 9 9 -

JNCTN8400 99-079

6 Evaluation of Database Reliability

The reliability of thermodynamic data in SPRONS.JNC (and, hence,PHREEQEJNC) is evaluated in this section, where equilibrium constants forselected reactions calculated using SUPCRT and SPRONSJNC are comparedwith their experimental counterparts. The comparisons are summarized in theform of diagrams showing calculated and experimental values of log K as afunction of temperature at pressures corresponding to the liquid-phase side ofthe H2O vaporization boundary (Psat), or at higher pressures representing single-phase regions of H2O stability. Diagrams for heterogeneous reactions (gas-solubility and mineral-solution equilibria) comprise Appendix C. Similardiagrams for homogeneous reactions (aqueous-speciation reactions) are includedin Appendix D.

Equilibrium constants are chosen as the basis for this evaluation because theyrepresent the most direct link between the thermodynamic properties of areaction and experimental measurements (e.g., Nordstrom etaL, 1990). Somerefinement of basic experimental data is usually necessary to determine values oflog A", however. For example, an appropriate chemical model of the aqueoussystem and total analytical solute concentrations may be needed to calculate theactivities of species at reference conditions of infinite dilution, which partially orcompletely define the equilibrium constant. Time constraints in the presentstudy do not permit independent retrievals of equilibrium constants fromprimary experimental results, however, and log lvalues reported in the literaturemust therefore be accepted at face value. For this reason, our objective is limitedto identifying reactions for which calculated and experimental equilibriumconstants agree favorably, as well as reactions where the agreement is lessfavorable, suggesting that future revisions to data in SPRONSJNC andPHREEQEJNC may be needed.

The thermodynamic properties of minerals in SPRONSJNC are constrainedprimarily by the results of high-temperature and high-pressure phase-equilibriumexperiments, and by a limited amount of calorimetric data (Section 3.2.1). Thereliability of these data is evaluated by Helgeson etaL (1978), who comparedexperimental solution compositions, or phase-equilibrium reversal temperatures,for over 130 reactions with calculated mineral-stability relations, or univariant/divariant equilibrium curves. Comparisons of calculated and experimentalequilibrium constants for mineral-solution equilibria and aqueous-speciationreactions are similarly documented in other sources of thermodynamic dataincorporated in SPRONS.JNC (see Sections 5.2.2 and 5.2.3).

We supplement these earlier evaluations in the present study, focussing onheterogeneous and homogeneous equilibria at relatively low temperatures andpressures. Although the available experimental data referring to these conditionsis still rather limited, the evaluations documented below are important because

. 100

- 1 0 0 -

JNCTN8400 99-079

they constitute independent checks on the reliability of data in SPRONSJNCand PHREEQEJNC at conditions that are most relevant to the Japaneserepository concept. We also consider a few reactions involving common rock-forming minerals that are known to dissolve incongruently at low temperatures,because the dissolution and precipitation kinetics of these reactions is partiallycontrolled by the equilibrium constant under near-to-equilibrium conditions.Comments on the reliability of thermodynamic data in SPRONS.JNC andPHREEQE.JNC are summarized in Sections 6.1 - 6.12. Laboratory and fieldexperiments needed to improve these databases, and procedures to managethem, are summarized in Section 6.13.

6.1 Gas Solubilities and Acid Dissociation Constants

Plots of calculated and experimental equilibrium constants for gas solubilityreactions are shown in the following figures (Appendix C):

• Fig. C.I; CO2(g),• Fig. C.2; ClU(g),• Fig. C.3; H2S(g),• Fig. C.4; U2(g), and• Fig. C.5; Ncig), Kr(g), N2(g), Rn(g), SO2(g), Ar(g) and O2(g),

where sources of the experimentally determined equilibrium constants are alsodocumented. As can be seen, calculated equilibrium constants represented bythe curves in these figures are in close agreement with most of their experimentalcounterparts, represented by symbols (experimental uncertainties are indicatedby the size of the symbols in Fig. C.5, and are estimated to be slightly largerthan the size of the symbols in Figs. C.1-C.4 (= ± 0.1 log K units)]. Thermody-namic data and equation-of-state parameters for gases from Helgeson et al.(1978) and corresponding data for neutral aqueous species retrieved by Shock etal. (1989) are incorporated in SPRONS.JNC and were used to calculate all thecurves in Figs C.I - C.5. Shock et al. (1989) generate figures similar to Figs C.Iand C.4, and also document comparisons between calculated and experimentalequilibrium constants for solubility reactions involving HefgJ and XefgJ. Thecurves in Fig. C.5 for reactions involving Nefgj, Ki(g), SO2(g) and Ar(gJ areindependent of the experimental data at temperatures greater than 25°C,because equation-of-state parameters for these gases are estimated usingempirical correlation algorithms, as described by Shock et al. (1989). Theagreement shown in Fig C.5 between calculated and experimental equilibriumconstants at temperatures greater than 25°C is therefore noteworthy. Shock et al.(1989) also cite numerous references to experimental gas solubility data notshown in Figs. C.I - C.5, which they assert are also closely consistent with thecalculated curves in these figures. This wealth of experimental gas solubility dataleaves little doubt that accurate gas solubilities can be calculated using SUPCRTand SPRONS.JNC between 0 and 100°C at 1 bar, and at considerably higher

101

- 1 0 1 -

JNCTN8400 99-079

temperatures and pressures.

Several of the gases noted above form weak acids when dissolved in aqueoussolution. Plots of calculated and experimentally determined dissociationconstants for these acids, and related ionic species, are shown in the followingfigures (Appendix D):

• Fig. D.I; H2O,• Fig. D.2; CO2(aq) (i.e., H2CO3 (aq) - see Section 5.2.5),• Fig. D.3; HCO3-,• Fig. D.4; H2S(aq),• Fig. D.5; HSO4-,• Fig. D.6; HF(aq),• Fig. D.7; H3BO3(aq),• Fig. D.8; H3POi(aq),• Fig. D.9; NH4+, and• Fig. D.LO; CH3COOH.

As can be seen, the calculated equilibrium constants are closely consistent withmost of their experimental counterparts. Diagrams similar to Figs. D.2, D.4,D.6, D.7, D.8 and D.9 are generated by Shock et ai (1989), who also includediagrams for HNO3(tfij'J and SO2(aq) dissociation. These authors note thatexperimental equilibrium constants retrieved by Ellis and Giggenbach (1971) forH2S(aq) dissociation at temperatures greater than 100°C (Fig. D.4), and theequilibrium constants retrieved by Read (1975) for H2CO3(aq) dissociationbetween I and 2 kb at temperatures less than 150°C (conditions not consideredin Fig. D.2), are the only experimental values available that differ by more than+0.2 log K units from values calculated using SUPCRT and thermodynamicdata that are incorporated in SPRONS.JNC.

6.2 System SiO2-H2O

6.2.1 Quartz

The solubility of quartz has been experimentally investigated over a broad rangeof pressures and temperatures (Kennedy, 1950; Morey and Hesselgesser, 1951;Khitarov, 1956; Kitahara, I960; van Lier et al., I960; Siever, 1962; Morey et al.,1962; Weill and Fyfe, 1964; Anderson and Burnham, 1965, 1967; Crerar andAnderson, 1971; Hemleyetal., 1980; Walther and Orville, 1983; and Rimstidt,1997). Shock et al. (1989) regressed experimental values of log K reported inmany of these studies using the revised HKF model (Section 4.2.2) to retrieveequation-of-state coefficients and the standard partial molal volume, entropyand heat capacity of SiCbfa^J at 25°C and 1 bar. The conventional borncoefficient for ^>\O2(aq) determined by Walther and Helgeson (1977) andthermodynamic properties of quartz from Helgeson et al. (1978) were adopted

. 102

- 1 0 2 -

JNCTN8400 99-079

in the regression procedure. The retrieved coefficients and properties ofSiO2(aq) are used to generate the curves shown in Fig. C.6, where it can be seenthat the curves accurately represent the available experimental data attemperatures between 0 and 900°C and pressures from 1 bar to 9 kb. Thethermodynamic properties of SiOifaq) retrieved by Shock et al. (1989) and thethermodynamic properties of quartz from Helgeson et al. (1978) are included inSPRONSJNC.

Quartz solubilities calculated in the present study between 0 and 300°C at Psatare shown in Fig C.7, which represents an expanded view of a portion ofdiagram A, Fig. C.6. As can be seen, the calculated equilibrium curve lies near allthe experimental points, but it is apparent that the curve consistently under-predicts measured solubilities slightly over this temperature range. Error barsrepresenting experimental uncertainties are probably smaller than the size of theplot symbols in this figure. These uncertainties are not documented in all theexperimental studies, but we note that silica concentrations are routinelymeasured (e.g., using colorimetric methods; see Govett, 1961) with a precisionof ±5%, and that temperatures are probably accurate to at least ±5°C over thistemperature range. The systematic deviation of the calculated curve from theexperimental data in Fig C.7 is therefore probably real, even when experimentaluncertainties are taken into account.

Figure C.7 incorporates recent experimental data from Rimstidt (1997) onquartz solubilities between 0 an 100°C. These experiments were designed toapproach equilibrium from conditions of undersaturation in pure water at 21, 50,74 and 96°C over equilibration periods ranging from 54 days (74°C) to 4917days (21°C). Rimstidt (1997) combined his results with critically selected quartzsolubility data from the literature to derive an empirical log K(T) function,which predicts that quartz solubility at 25°C is consistent with equilibriumSiOjfaq) concentrations of 10.8 ppm, rather than the widely accepted value of 6ppm (Walther and Helgeson, 1977; Fournier and Potter, 1982). Using thisfunction, Rimstidt (1997) calculates revised standard partial molal properties ofS1O2 (**#)> which are consistent with the solubility of amorphous silica, and withsilica concentrations in ancient groundwaters.

Quartz solubilities determined by Rimstidt (1997) between 0 and 100°C arecompared in Fig. C.8 with solubilities calculated using SUPCRT andSPRONS.JNC. Also shown in the figure are experimental data from van Lier etal. (1960), which Rimstidt (1997) concludes are from equilibrated experiments,and data from Mackenzie and Gees (1971), Morey et al. (1962) and Fournier(I960), which Rimstidt (1997) suggests are from experiments that did not reachequilibrium. As can be seen, the calculated curve under-predicts the solubilitydata of Rimstidt (1997) and van Lier et al. (1960) by a factor less than 2 overthis temperature range.

103

- 1 0 3 -

JNCTN8400 99-079

The observations summarized above with regard to Figs. C.7 and C.8 suggestthat the thermodynamic properties of S\O2(aq) in SPRONS.JNC may need tobe revised. Although such revisions are probably minor, they are importantbecause this would entail revising the properties of several other minerals inSPRONS.JNC, which were retrieved by Helgeson et al. (1978) using thestandard Gibbs free energy of formation of SiC)^^^ determined by Waltherand Helgeson (1977).

6.2.2 Amorphous silica

The solubility of amorphous silica has been experimentally investigated over arange of pressures and temperatures (Hitchen, 1935; Okamoto et al., 1957;Elmer and Nordberg, 1958; Kitahara, I960; Morey et at., 1964; Fournier andRowe, 1977; Chen and Marshall, 1982). The thermodynamic properties ofamorphous silica in SPRONS.JNC are from Helgeson et al. (1978), whoadopted the standard Gibbs free energy at 25°C recommended by Walther andHelgeson (1977).

The solubilities of amorphous silica between 0 and 300°C calculated usingSUPCRT and SPRONS.JNC are compared with experimental solubilities inFig. C.9. The calculated values agree closely with their experimental counter-parts over this temperature range. In contrast, solubilities determined in someof the older studies noted above do not agree with the calculated values. This isapparently because the earlier studies failed to allow sufficient time for the solidand solution phases to equilibrate (Morey et al., 1964).

6.2.3 Chalcedony

The solubility of chalcedony was determined by Fournier and Rowe (1966)between 125 and 255°C at Psat. Fournier (1973) later measured its solubilitybetween 92 and 25-9°C. Fournier (1977) fit the combined data points fromthese two studies to an empirical log K(T) function. Walther and Helgeson(1977) digitized figures displaying the solubility data of Fournier and Rowe(1966) and Fournier (1973) and similarly fit these data to an empirical log K(T)function, which enabled the standard Gibbs free energy of formation ofchalcedony to be estimated at 25°C and 1 bar, assuming chalcedony in factconsists solely of microcrystalline quartz (see Section 6.2.4, however). This valuewas adopted by Helgeson et al. (1978), and is incorporated in SPRONS.JNC.

Chalcedony solubilities between 0 and 100°C calculated using SUPCRT andSPRONS.JNC are compared in Fig. C. 10 with values calculated using thetemperature functions of Walther and Helgeson (1977) and Fournier (1977).The close agreement among solubilities calculated using SPRONS.JNC and theempirical function of Walther and Helgeson (1977) is expected because thesame Gibbs free energy for chalcedony constrains both these calculations.Solubilities calculated using the log K(T) function of Fournier (1977) are greater

104

- 1 0 4 -

JNCTN8400 99-079

than those calculated using SPRONS.JNC at low temperatures, but converge athigher temperatures as the lower temperature limit of the experimentallycalibrated range (92°C) is approached.

6.2.4 Moganite

Heaney and Post (1992) suggest that chalcedony is a mixture of microcrystallinequartz and moganite, a little known silica polymorph. Gislason et al. (1997) usethe principle of detailed balancing and experimentally determined rates ofmoganite dissolution to recommend provisional estimates of its standard Gibbsfree energy and enthalpy of formation, and standard entropy, at 25°C and 1bar. The corresponding value of log if for moganite hydrolysis equals -3.14,which corresponds to a dissolved silica concentration of 44 mg kg-1. We havenot included these data in SPRONS.JNC, given the provisional nature of theseresults, but such data should be included in future revisions of this databasewhen more definitive experimental data characterizing moganite's thermody-namic properties become available.

6.2.5 Aqueous speciation

As noted in Section 6.2.1, Shock et al. (1989) regressed experimental constantsfor the quartz solubility reaction using the revised HKF model to retrieveequation-of-state coefficients and the standard partial molal volume, entropyand heat capacity of SiC^ftf^ at 25°C and 1 bar. The retrieved coefficients andproperties of SiQjtaq) are used to generate the curves in Fig. C.6, where it canbe seen that calculated and experimental quartz solubilities are in closeagreement over a broad range of pressures and temperatures. The thermody-namic properties of SiQxf&q) may need to be revised, however, to be consistentwith recent experimental quartz solubilities determined by Rimstidt (1997)between 0 and 100°C.

Sverjensky et al. (1997) regressed experimental equilibrium constants between 0and 350°C at Psat reported by Harman (1928), Roller and Ervin (1940),Greenberg and Price (1957), Schwarz and Muller (1958), Ingri (1959),Lagerstrom (1959), van Lier et al. (1960), Volosov et */.(1972), Seward (1974)and Busey and Mesmer (1977) for the reaction

K i S i O ^ ; * H3SiO4- + H*

to retrieve thermodynamic properties and HKF equation-of-state coefficients forH^SiO^, using thermodynamic data for W^SiO^iaq) from Shock et al. (1989).The results are shown in Fig. D.I 1, where the curve represents values calculatedusing SUPCRT and SPRONS.JNC and symbols refer to most of theexperimental studies noted above. As can be seen, the calculated values agreewith experimental counterparts to within about ±0.1 log A'units at temperaturesgreater than 60°C, but the agreement is notably poorer at lower temperatures.

105

- 1 0 5 -

JNCTN8400 99-079

6.3 System AI2O3-H2O

Mineral solubilities and the thermodynamic properties of minerals and aqueousspecies in this chemical subsystem have been studied intensively over the past100 years. A thorough review of the experimental studies is summarized byPokrovskii and Helgeson (1995). As noted in Section 5.2.3, thermodynamicdata and equation-of-state coefficients in SPRONSJNC for minerals andaqueous species comprising this subsystem are from this reference.

6.3.1 Gibbsite

Gibbsite solubilities in dilute acidic solutions, where A13+ is the dominant Alspecies in solution, have been experimentally determined between 0 and 100°Cby Frink and Peech (1962), Kittrick (1966a), Singh (1974), May et al. (1979),Bloom and Weaver (1982), Peryea and Kittrick (1988), Nagy and Lasaga (1992)and Palmer and Wesolowski (1992). The standard molal Gibbs free energy andenthalpy of formation, and standard entropy and volume, of gibbsite at thereference temperature and pressure in SPRONSJNC are from Pokrovskii andHelgeson (1995), who adopted the calorimetric values recommended by Robieet al. (1978). The experimental solubilities of gibbsite at 25°C determined byPeryea and Kittrick (1988) and Palmer and Wesolowski (1992) were selected byPokrovskii and Helgeson (1995) to calculate the standard partial molal Gibbsfree energy of formation of A13+. This value and the corresponding standardpartial molal enthalpy of formation from Cox et al. (1989) are used to calculatethe standard partial molal entropy of A13+ at 25°C and 1 bar. Calculatedequilibrium constants using SUPCRT and SPRONS.JNC for the gibbsitesolubility reaction between 0 and 100°C at 1 bar are compared with experimen-tal values determined in the studies noted above in Fig. C. 11, where it can beseen that the calculated curve is consistent with most of the experimental data.The experimentally determined equilibrium constants determined by Frink andPeech (1962) and Kittrick (1966a) were later questioned by Bloom and Weaver(1982) because the gibbsite used in these older experiments was covered with areactive surface material suspected to be microcrystalline gibbsite.

Gibbsite solubilities in dilute alkaline solutions, where AIO2" [or, equivalently,A1(OH)4-; see Section 5.2.5] is the dominant Al species in solution, have beenexperimentally determined between 6.4 and 130°C by Fricke and Jucaitis(1930), Tsirlina (1936), Fulda and Ginsberg (1951), Russell et al. (1955), Ikkataiand Okada (1962) Lyapunov et al. (1964), Kittrick (1966a), Apps (1970), Bereczand Szita (1970), Packter (1979), Apps and Neil (1990), Wesolowski (1992) andVerdes et al. (1992). Pokrovskii and Helgeson (1995) regressed experimentalequilibrium constants retrieved from these studies to determine the standardpartial molal Gibbs free energy of formation of AlOo". The regression curvegenerated by Pokrovskii and Helgeson (1995) is compared in Fig. C.I2 withexperimental equilibrium constants. As can be seen, the calculated curve agrees

106

- 1 0 6 -

JNCTN8400 99-079

closely with most of the experimental values. The same agreement is expectedusing SUPCRT and SPRONSJNC because thermodynamic data fromPokrovskii and Helgeson (1995) are adopted in the present study. This isconfirmed in Fig. C.13, where equilibrium constants calculated using SUPCRTand SPRONSJNC for the gibbsite solubility reaction in alkaline solutions arecompared with experimental values determined by Apps and Neil (1990),Wesolowski (1992) and Verdes et ai (1992).

6.3.2 Boehmite

Experimental data characterizing the solubility of gibbsite at low temperatures inslightly acidic to moderately alkaline solutions, where A1OH2+, A1(OH)T +

and/or A\(QH.) $(aq) are the dominant Al species, are difficult to evaluatebecause the solubilities are extremely low. At higher temperatures, gibbsitedehydrates to form boehmite (Russell et al., 1955; Khodakovsky et al., 1980).Pokrovskii and Helgeson (1995) therefore evaluate the thermodynatnicproperties and HKF equation-of-state coefficients for A1OH2+, Al(OH)2+ andAl(OH)3 (aq) from experimental data on boehmite solubilities at relatively hightemperatures {- 50 to 300°C).

Experimental solubilities of boehmite [yAlO(OH)] in alkaline solutions (Russelletai, 1955; Kuyunko etal., 1983; Apps etal., 1989; Verdes, 1990; Verdes et al.,1992; Bourcier et al., 1993; Castet etal., 1993) are used by Pokrovskii andHelgeson (1995), together with the thermodynamic properties of AlO^'determined as noted above (and properties of NaAlC^fafv' also determined bythese authors), to calculate the standard Gibbs free energy of formation ofboehmite at 25°C and 1 bar. Calculations using the thermodynamic dataretrieved by Pokrovskii and Helgeson (1995) of equilibrium constants for theboehmite solubility reaction in alkaline solutions are compared with theirexperimental counterparts in Fig. C.14. As can be seen, the calculated values areclosely consistent with the available experimental data between 50 and 300°C atPsat, but there is a tendency for the calculations to slightly underpredict theexperimentally determined values at temperatures less than about 16O°C.Experimental uncertainties are not reported in all cases, but we estimate themconservatively to be about ±0.1 log A." units and ±5°C, which is roughlycomparable to the size of the plot symbols in this figure.

A similar comparison of calculated and experimental equilibrium constants forthe boehmite solubility reaction in acidic solutions (where AP+ is the dominantAl species in solution) is shown in Fig. C.I5. where it can be seen that thecalculated curve agrees closely with all the experimental data, except equilibriumconstants retrieved by Verdes (1990) at 70°C and Verdes etal. (1992) at 90°C.The otherwise close correspondence between calculated and experimental valuesis noteworthy because the thermodynamic properties of A13+ retrieved byPokrovskii and Helgeson (1995) are independent of the experimental data onboehmite solubilities. The size of the plot symbols in Fig. C. 15 is probably

107

- 1 0 7 -

JNCTN8400 99-079

comparable to, or smaller than, experimental uncertainties, which are attributableprimarily to the low concentrations of AJ3+ in the experimental solutions, and toambiguities in evaluating the activity coefficient of AJ3+ in solutions with highionic strength (Pokrovskii and Helgeson, 1995).

As noted above, thermodynamic properties and HKF equation-of-statecoefficients for A1OH2+, A1(OH)2

+ and A\(OH) 3(aq) in SPRONSJNC arebased on experimental measurements of boehmite solubility in moderatelyacidic to moderately alkaline solutions (Kuyunko et al., 1983; Verdes, 1990;Verdes et al., 1992; Bourcier etal., 1993; Castet et at, 1993). Comparisons ofcalculated and experimental equilibrium constants for the boehmite solubilityreaction in systems where A1OH2+, Al(OH)2+ and A\(OH)^(aq) are thedominant Al species in solution are depicted in Figs. C.16, C.17 and C.18,respectively, as functions of temperature at Psat. As can be seen in these figures,there is considerable scatter in the experimental data. The calculated curves inFigs. C.16 and C.17 are within the combined experimental and computationaluncertainty reported by Bourcier et al. (1993). The thermodynamic propertiesand equation-of-state parameters for A1OH2+ andAl(OH)2+ in SPRONS.JNCare therefore consistent with these experimental results, but not with the resultsof the other experimental measurements noted in the figures. The curve in Fig.C.18 was generated by Pokrovskii and Helgeson (1995) by regression of theexperimental values of log Kiox the indicated reaction, and using supplementaldata on corundum solubilities (see below). The curve falls within the scatter ofthe data, but there is considerable disagreement among the experimental values,and between most of these values and the calculated curve.

The experimental confusion regarding boehmite solubilities in moderately acidicto moderately alkaline solutions, as shown in Figs. C.16 - C.18, can only beresolved by additional experimentation. The thermodynamic properties andHKF coefficients for AlOH^, Al(OH)2

+ and A1(OH)3 fa^> recommended byPokrovskii and Helgeson (1995) are provisionally included in SPRONS.JNCpending experimental clarification of boehmite's solubility behavior.

6.3.3 Diaspore

Experimental data on the solubility of diaspore in NaOH solutions between 200and 350°C at Psat (Druzhinina, 1955; Bernshtein and Matsenok, 1965; Wefers,1967; Chang etal., 1979; Verdes etal., 1992) were regressed by Pokrovskii andHelgeson (1995) using their thermodynamic properties and HKF equation-of-state parameters for AIO2" and NaAlO^a^,) to determine the standard Gibbsfree energy of formation of diaspore at 25°C and 1 bar. Diaspore solubilities indilute NaCl - NaOH solutions between 100 at 325°C and Psat are calculated byPokrovskii and Helgeson (1995) and compared with experimental valuesdetermined by Apps et al. (1989), which were not considered in the regressionprocedure. The results (Fig. 9, Pokrovskii and Helgeson, 1995) indicate that thethermodynamic properties of diaspore and A1O2- are consistent with the

108

- 1 0 8 -

JNCTN8400 99-079

experimentally determined solubilities.

6.3.4 Corundum

Experimental data from Becker et al. (1983) on the solubility of corundumbetween 2.5 and 6 kb at 670°C were regressed by Pokrovskii and Helgeson(1995) using their retrieved thermodynamic properties and HKF equation-of-state coefficients for AIO2". and thermodynamic properties for corundum at25°C and 1 bar from Cox et al. (1989), to determine the partial molalthermodynamic properties of Al(OH)$(aq). The retrieved data are used tocalculate corundum solubilities between 1 and 2.5 kb at 500°C, and thepredicted values are compared with experimental values reported by Morey(1957) and Ragnarsdottir and Walther (1985). The calculated values of log A'are within 0.3 log units or less of their experimental counterparts (see Fig. 23.Pokrovskii and Helgeson, 1995).

6.3.5 Aqueous speciation

As noted in Section 6.3.1, partial molal thermodynamic properties and HKFequation-of-state coefficients for A13+ are determined by Pokrovskii andHelgeson (1995) by regression of experimental data on gibbsite solubilities.These properties are used by Pokrovskii and Helgeson (1995), together withpotentiometric data on AJ3+ hydrolysis and boehmite solubility data reported inthe literature, to calculate corresponding thermodynamic properties andequation-of-state coefficients for A1(OH)2+. Equilibrium constants for thehydrolysis reaction calculated using SUPCRT and SPRONS.JNC are comparedwith their experimental counterparts between 0 and 100°C at 1 bar in Fig. D.I2,where it can be seen that the calculated constants agree to within 0.1 log A'" units(approximately equal to the size of plot symbols) with most of the experimentaldata. Additional experimental data for this reaction between 50 and 250°Creported by Nikolaeva and Tolpygina (1969), Verdes (1990) Caster et aL (1993)and Bourcier et al (1993) are considered by Pokrovskii and Helgeson (1995),but are not shown in Fig. D.I2. The experimental equilibrium constantsdetermined by Verdes (1990), and the value reported by Bourcier et al. (1993)at 250°C, differ by more than 0.1 log AT units from the values calculated usingSUPCRT and SPRONS.JNC.

The reliability of thermodynamic data and equation-of-state coefficients for thespecies A1(OH)2+ an<^ ^(OH.)^(aq) is difficult to assess at low temperatures andpressures, and in near-neutral pH solutions where these species are important,because gibbsite solubilities under such conditions are of the same order ofmagnitude as the analytical detection limit for dissolved aluminum."Wesolowski and Palmer (1994), however, have developed a general model ofaluminum's speciation behavior based on their experimental measurements ofgibbsite solubilities at 50°C in 0.1 molal NaCl solutions containing acetate,bistris and tris pH-buffers, which is consistent with earlier studies by these

109

- 1 0 9 -

JNCTN8400 99-079

authors on gibbsite's solubility behavior in acidic and alkaline solutions (Palmerand Wesolowski, 1992; Wesolowski, 1992), and experimental measurements ofboehmite solubilities at temperatures between 50 and 250°C at Psat (Verdes,1990; Bourcier et ai, 1993; Castet etal., 1993). The model permits calculationof hydrolysis constants for Al(OH)2+ and Al(OH)^(aq) at temperatures between0 and 100°C at 1 bar that are consistent with all these experimental constraints.

These constants are compared with corresponding values calculated usingSUPCRT and SPRONSJNC in Figs. D.13 and D.14, respectively. As can beseen, the hydrolysis constants for Al(OH)2+ determined by Wesolowski andPalmer (1994) are closely consistent with values calculated using SUPCRT andSPRONS.JNC over this temperature range (Fig. D.13). Hydrolysis constantsfor A\(OH) ^(aq) from Wesolowski and Palmer (1994), however, agree with thevalue calculated using SUPCRT and SPRONS.JNC only at 100°C (Fig. D.14).The experimental uncertainty assigned to this constant is less than 0.2 log Kunits (Wesolowski and Palmer, 1994), which suggests that the discrepanciesindicated in the figure are significant. Wesolowski and Palmer (1994)demonstrate that AlCOH^fc^) does not contribute significantly to the aqueousspeciation of aluminum between 0 and 100°C, however, which suggests that thediscrepancies indicated in Fig. D.14 would not generate serious errors ingeochemical calculations referring to these conditions.

As noted in Section 6.3.1, the partial molal thermodynamic properties and HKFequation-of-state coefficients for AIO2" [i.e., A1(OH)4"; see Section 5.2.5] aredetermined by Pokrovskii and Helgeson (1995) by regression of experimentaldata on gibbsite solubilities. Equilibrium constants for the correspondinghydrolysis reaction calculated using SUPCRT and SPRONS.JNC are comparedwith their experimental counterparts between 0 and 100°C at 1 bar in Fig. D.I5,where it can be seen that the calculated constants are closely consistent withexperimental values determined by Palmer and Wesolowski (1992) andWesolowski and Palmer (1994), but that a discrepancy between 0.5 and 1 log Kunits is generated with respect to experimental constants determined by May etal. (1979). Palmer and Wesolowski (1992) suggest that the anomalously highsolubilities determined by May et al. (1979) are due to some form of metastablematerial or extremely fine-grained gibbsite on the surface of the solid used inthose experiments.

6.4 System SiO2-AI2O3-H2O

6.4.1 Kaolinite

The standard molal Gibbs free energy and enthalpy of formation, and standardentropy and volume, of kaolinite at the reference temperature and pressure inSPRONS.JNC are from Helgeson et al. (1978). These authors computed thestandard Gibbs free energy of formation of gibbsite from the calorimetric value

110

- 1 1 0 -

JNCTN8400 99-079

of its standard enthalpy of formation determined by Hemingway and Robie(1977), and used these data together with the compositions of mineralassemblages and coexisting interstitial waters in Jamaican bauxite deposits andweathered Hawaiian basalts to calculate the standard Gibbs free energy offormation of kaolinite consistent with the following reaction:

kaolinite + H O * 2 gibbsite + 2 SiO (aq).

Helgeson et al (1978) note that the A(7y-for kaolinite derived in this manner isconsistent with solubility data from Kittrick (1966b) for coarsely crystallinekaolinite, but that the &H°r of kaolinite is 2510 cal moM less negative than thecalorimetric value determined by Hemingway and Robie (1977). The approachtaken by Helgeson et al. (1978) is critically evaluated by Hemingway et al(1982), who conclude that this enthalpy is incorrect.

The thermodynamic properties of kaolinite recommended by Helgeson et al.(1978) are therefore questionable. We note, however, that revisions to thethermodynamic properties of minerals and aqueous species in the system AI2O3-H2O recommended by Pokrovskii and Helgeson (1995) are incorporated inSPRONSJNC, and that the results of recent experimental studies on thesolubility of kaolinite are now available. It is therefore possible to evaluate theaccuracy of the thermodynamic data for kaolinite adopted in the present studyby comparison of equilibrium constants for the kaolinite solubility reactioncomputed using SUPCRT and SPRONS.JNC with their experimentalcounterparts.

The solubility of kaolinite in dilute acidic solutions, where A13+ is the dominantAl species in solution, has been experimentally determined at 25 and 80°C byMay et al. (1986) and Nagy et al. (1991). Polzer and Hem (1965), Kittrick(1966b), Reesman and Keller (1968), Huang and Keller (1973), Devidal et al(1996) and Zotov -et al. (1998) have measured its solubility in alkaline solutionsbetween 25 and 300°C at Psat. Equilibrium constants calculated usingSUPCRT and SPRONS.JNC for the kaolinite solubility reaction in acidicsolutions are compared with the relevant experimental data in Fig. C.I9 . Theexperimental data referring to alkaline conditions from Devidal et al. (1996),Kittrick (1966b) and Zotov et al. (1998) are recalculated in the present study forconditions in acidic solutions using equilibrium constants for the reaction,

A13+ + 4 H2O ** A1(OH)4- + 4 H+,

based on data for the aqueous aluminum species from Pokrovskii and Helgeson(1995) [see Fig. D.I5]. As can be seen, the calculated solubility of kaolinite is inexcellent agreement with the experimentally determined values reported byKittrick (1966b) and May et al. (1986) at the reference temperature andpressure. There is considerable scatter, however, in the experimental solubility

111

- 1 1 1 -

JNCTN8400 99-079

data at higher temperatures and pressures. The calculated curve passes withinthis scatter, but calculated and experimental values at a given temperature differby as much as 3 orders of magnitude. Zotov et al. (1998) evaluate the effects ofgrain size on kaolinite solubilities. As can be seen in Fig C.I9, the solubilityincreases slightly with decreasing grain size, but the effects are too small toexplain the scatter in experimental solubilities shown in this figure.

The equilibrium constant calculated using the data for kaolinite from Helgesonet al. (1978) and unrevised data for the A13+ ion from Shock and Helgeson(1988) [inverted solid triangle in Fig. C.19] is nearly two orders of magnitudesmaller at 25°C and 1 bar than the corresponding experimental data and thevalue of the equilibrium constant calculated in the present study (open circle).This suggests that the revised thermodynamic properties for A13+ fromPokrovskii and Helgeson (1995), which are consistent with the thermodynamicproperties of gibbsite determined by Robie et al. (1978), have resolved some ofthe confusion concerning kaolinite's solubility behavior.

Equilibrium constants for the kaolinite solubility reaction in alkaline solutionsbetween 25 and 150°C at Psat measured by Devidal (1996), and recalculated bythese authors based on experimental results from Polzer and Hem (1965),Reesman and Keller (1968) and Huang and Keller (1973), are shown in Fig.C.20. As can be seen, there is also considerable scatter among these experimen-tal data. The curve calculated using SUPCRT and SPRONS.JNC passes withinthis scatter, but calculated and experimental values differ by as much as 2 ordersof magnitude.

Additional experimentation is clearly needed to resolve the discrepancies inkaolinite's solubility behavior at temperatures greater than 25°C. In themeantime, the thermodynamic properties of this mineral determined byHelgeson et al. (1978), and included in SPRONS.JNC, are acceptedprovisionally. It is important to note that questions raised by Hemingway et al.(1982) concerning the standard enthalpy of formation of kaolinite calculated byHelgeson et al. (1978) are still unresolved. Moreover, because kaolinite is used asa reference phase in simultaneous evaluations of aluminous mineral equilibria byHelgeson et al. (1978), the enthalpies of formation of these phases may also bequestionable (see Section 4.3.4.3). Unfortunately, the scatter in experimentalsolubilities depicted in Figs. C.19 and C.20 preclude the use of these data tohelp clarify the thermodynamic properties of kaolinite.

6.4.2 Kaolinite, boehmite, diaspore, andalusite and pyrophyllite

Equilibria among various minerals in the A^C^-SiC^-^O system are examinedin a series of experiments at high temperatures and pressures by Hemley et al.(1980), Huang (1993) and Zotov et al. (1998). The following diagramsdocument comparisons of equilibrium constants calculated using SUPCRT andSPRONS.JNC for the investigated reactions among the indicated minerals and

112

- 1 1 2 -

JNCTN8400 99-079

an aqueous phase:

• Fig C.21; kaolinite-boehmite,• Fig C.22; kaolinite-diaspore,• Fig C.23; pyrophyllite-kaolinite,• Fig C.24; pyrophyllite-diaspore,• Fig C.25; pyrophyllite-andalusite,• Fig C.26; andalusite-corundum, and• Fig C.27; andalusite-diaspore.

The equilibrium activity of S I O T ^ ^ at the experimental pressures andtemperatures determines the value of the equilibrium constant for all thesereactions. Silica activity is closely approximated by the total molality ofdissolved silica because the solutions are sufficiently dilute and acidic that theconcentrations of other silica species would be vanishingly small under suchconditions, and because S\Oj(aq) is uncharged. Dissolved silica is determinedwith a precision of ±5% of the measured value in the experiments of Hemley etal. (1980), and temperature is accurate to ±5°C. Similar experimentaluncertainties are assumed here for the experimental results reported by Huang(1993) and Zotov et al. (1998). As can be seen in these figures, the calculatedequilibrium constants agree in some cases to within a few tenths of a log A'unitwith their experimental counterparts (Figs. C.23, C.24 and C.25), but in othercases discrepancies on the order of 0.5 to 1 log A'units are apparent (Figs. C.21,C.22, C.26 and C.27).

Figures C.21-C.23 and C.25-C.27 are similar to Fig. 47(a-d) of Helgeson et al.(1978), who compared calculated equilibrium constants with unpublishedexperimental results from J. J. Hemley, which presumably are the same resultslater reported by Hemley et al. (1980). Comparison of our figures with Fig. 47of Helgeson et al. (1978) indicates that our calculated curves in Figs. C.21,C.22, C.26 and C.27 are offset slightly from those generated by Helgeson et al.(1978), and that the latter curves agree significantly better with the experimentaldata. We note that the reactions considered in Figs. C.21, C.22, C.26 and C.27involve minerals (boehmite, diaspore and corundum) whose thermodynamicproperties are revised by Pokrovskii and Helgeson (1995) from values originallyretrieved by Helgeson et al. (1978), based, in part, on the experimental resultsportrayed in their Fig. 47. This suggests that additional work may'be needed toreconcile the discrepancies documented in Figs. C.21, C.22, C.26 and C.27such that the resulting calculated curves are consistent with the experimentaldata of Hemley et al. (1980), as well as with the generally lower temperature andpressure experimental constraints evaluated by Pokrovskii and Helgeson (1995).

6.5 System

Equilibria among various minerals in this system are examined in a series ofexperiments, generally at high temperatures and pressures, by Montoya and

113

- 1 1 3 -

JNCTN8400 99-079

Hemley (1975), Sverjensky et al. (1991), Burch (1993), Murphy et al. (1996)and Wilkin and Barnes (1998). The following diagrams document comparisonsof equilibrium constants calculated using SUPCRT and SPRONS.JNC for theinvestigated reactions among the indicated minerals and an aqueous solution:

• Fig C.28; K-feldspar-muscovite-quartz (0.5 kb),• Fig C.29; K-feldspar-muscovite-quartz (1.0 kb),• Fig C.30; K-feldspar-muscovite-quartz (2.0 kb),• Fig C.31; muscovite-andalusite-quartz,• Fig C.32; muscovite-kaolinite,• Fig C.33; muscovite-quartz-pyrophyllite,• Fig C.34; albite-paragonite-quartz,• Fig C.35; albite, and• Fig C.36; analcime.

Equilibria among K-bearing minerals in this system at temperatures between 300and 600°C and pressures from 0.5 to 2 kb were determined experimentally bySverjensky et al. (1991). The results of this study are consistent with earlierinvestigations by Hemley (1959), Hemley and Jones (1964) and Montoya andHemley (1975), which therefore are not considered further in the present study.Sverjensky et al. (1991) evaluated the thermodynamic properties of thefollowing reactions (structural formulas of minerals as noted in Appendix A):

• 1.5 K-feldspar + H+ ^ 0.5 muscovite + 3 quartz + K+,• K-feldspar + H+ ** 0.5 andalusite + 2.5 quartz + K+,• muscovite + H+ + 1.5 H2O ** 1.5 kaolinite + K+• muscovite + H+ + 3 quartz "=* 1.5 pyrophyllite + K+, and• muscovite + H+ ** 1.5 andalusite +1.5 quartz +1.5 H2O + K+,

by measuring the total analytical concentrations of K+ and H+ in quenchedsolutions equilibrated with the mineral reactants and products. It was assumedas a first approximation that the ratio of these concentrations, tnu K /?nti H (wherem denotes molality), defines the equilibrium constant because the activitycoefficients for K+ and H+ are approximately equal (and therefore cancel) andbecause the presence of other K- and H-bearing aqueous species are assumed tobe present in negligible concentrations. Reactions analogous to the above werealso considered by these authors to account for HCifaq) and KClfdq) complexformation, which it was assumed becomes significant at temperatures greaterthan about 300°C. Sverjensky et al. (1991) retrieved thermodynamic propertiesand HKF equation-of-state coefficients for HC\(aq) from the results of theirexperiments on K-feldspar-muscovite-quartz equilibrium, but these data are notincluded in SPRONS.JNC for reasons discussed in Section 5.2.3.

Equilibria among Na-bearing minerals in this system were determinedexperimentally by Montoya and Hemley (1975), Burch (1993), Murphy et al.(1996) and Wilkin and Barnes (1998). Montoya and Hemley (1975) used the

114

- 1 1 4 -

JNCTN8400 99-079

same experimental approach as Hemley (1959), Hemley and Jones (1964) andSverjensky et al. (1991) to evaluate the thermodynamic properties of thefollowing reactions between 300 and 500°C at 1 kb (structural formulas ofminerals as noted in Appendix A):

• 3 albite + 2 H+ ** paragonite + 6 quartz + 2 Na+,• 2 paragonite + 2 H+ ** 3 kaolinite + 2 Na+,• 2 paragonite + 6 quartz + 2 H+ ** 3 pyrophyllite + 2 Na+, and• 2 paragonite + 2 H+ ** 3 andalusite + 3 quartz + 2 Na+,

by measuring the total analytical concentrations of Na+ and H+ in quenchedsolutions equilibrated with the mineral reactants and products, h was assumedthat the ratio of these concentrations, mu Na lmtt H> defines the equilibriumconstant. Burch (1993; see also Burch et al., 1993) determined steady-statedissolution rates of albite at 80°C and pH 8.8 using a continuously-stirred flow-through reactor. The solubility of albite under these conditions was estimatedfrom solution compositions sampled at steady-state in the dissolution andprecipitation experiments nearest to equilibrium, as well as from near-equilibrium batch experiments. Murphy et al. (1996) and Wilkin and Barnes(1998) investigated the solubility of analcime. The experiments carried ouc byMurphy et al. (1996) reacted analcime (from Mt. St. Hilaire, Quebec) at 25°Cin 0.1 molal NaCl - 0.01 molal NaHCC>3 solutions that were continuouslyequilibrated with atmospheric Q.Q>i(g). Wilkin and Barnes (1998) reactedanalcime (from Mt. St. Hilaire, Quebec and Wikieup, Arizona) in doublydistilled H2O purged of CO2 and O2 in rocking autoclaves from 25 to 300°Cat Psat.

6.5.1 K-feldspar, muscovite, quartz

Equilibrium constants for the reaction

1.5 K-feldspar + H+ ** 0.5 muscovite + 3 quartz + K+,

between 300 and 600°C at 0.5, 1 and 2 kb calculated using SUPCRT andSPRONS.JNC are compared with their experimental counterparts determinedby Sverjensky et al. (1991) in Figs. C.28-C.30, respectively. Two calculatedcurves are shown in each figure representing solutions in which K+ and H+, orYiQX(aq) and HC\(aq), are assumed to be the dominant species in solution(reactions "1" and "2" as labelled in the figures, respectively). Experimentaluncertainties (+0.15 log K units) are estimated by Sverjensky et al. (1991). Ascan be seen, most of the experimentally determined equilibrium constants areconsistent with calculated values for reaction 1 at 300°C, or reaction 2 attemperatures greater than 300°C. Discrepancies significantly exceedingexperimental uncertainties are apparent, however, for the experimental datum at500°C and 0.5 kb (Fig. C.28), and the experimental data at temperaturesgreater than 300°C at 2 kb (Fig. C.30).

115

- 1 1 5 -

JNCTN8400 99-079

6.5.2 Muscovite, andalusite, quartz

Equilibrium constants calculated using SUPCRT and SPRONS.JNC for thereaction

muscovite + HCl(aq) ** 1.5 andalusite + 1.5 quartz + 1.5 H T O + KClfaq),

between 0 and 600°C at 1 and 2 kb are compared with their experimentalcounterparts determined by Sverjensky et al. (1991) in Fig. C.31. Experimentaluncertainties (±0.15 log K units) are omitted in this figure for clarity. As can beseen, the experimentally determined equilibrium constants are generallyconsistent with the calculated curves, but discrepancies slightly exceedingexperimental uncertainties are apparent.

6.5.3 Muscovite, kaolinite

Equilibrium constants calculated using SUPCRT and SPRONS.JNC for thereaction

muscovite + H+ + 1.5 HiO * 1.5 kaolinite + K+,

between 0 and 35O°C at 1 kb are compared in Fig. C.32 with the experimentalvalue at 300°C determined by Sverjensky et al. (1991). The calculated curve isconsistent with this value and its associated uncertainty (±0.15 log K units).

6.5A Muscovite, quartz, pyrophyllite

Equilibrium constants for the reaction

muscovite + H+ + 3 quartz ** 1.5 pyrophyllite + K+,

between 0 and 400°C at 1 kb calculated using SUPCRT and SPRONSJNC arecompared with their experimental counterparts determined by Sverjensky et al.(1991) in Fig. C.31. The two calculated curves in this figure represent solutionsin which K> and H+, or KCl(aq) and HClfaq), are assumed to be the dominantspecies in solution (reactions " 1 " and "2" as labelled in the figure, respectively).As can be seen, the calculated curve for reaction 1 is consistent with theexperimental data and their associated uncertainties (±0.15 log K units). Thecalculated curve for reaction 2 is inconsistent with these data. Complexformation of KCl(aq) and HCl(aq) is apparently unimportant at temperaturesbelow about 300°C, although the exact temperature and pressure at which thistransition in complexing behavior occurs is uncertain (Sverjensky et al., 1991).

6.5.5 Albite, paragonite, kaolinite, pyrophyllite, andalusite, quartz

Helgeson et al. (1978) compare calculated equilibrium constants for the

116

- 1 1 6 -

JNCTN8400 99-079

reactions:

3 albice + 2 H+ "* paragonite + 6 quartz + 2 Na+,2 paragonite + 2 H+ " 3 kaolinite + 2 Na+,2 paragonite + 6 quartz + 2 H> ** 3 pyrophyllite + 2 Na+, and2 paragonite + 2 H+ ** 3 andalusite + 3 quartz + 2 Na+

with their respective experimental counterparts determined by Montoya andHemley (1975) (see Figs. 68a-d of Helgeson et ai, 1978, respectively).Calculated equilibrium constants are closely consistent with all the experimentalvalues, except for the last reaction above where discrepancies on the order of 0.5log K units are evident. Thermodynamic properties and equation-of-stateparameters for H+ and Na+ from Helgeson and Kirkham (1976), and standardmolal thermodynamic properties for the minerals in these reactions determinedby Helgeson et al. (1978), were used in the calculations. These data areincorporated in SPRONS.JNC, and similar agreement between equilibriumconstants computed using this database and experimental values determined byMontoya and Hemley (1975) is therefore expected. This is confirmed in Fig.C.34, which is similar to Fig 68a of Helgeson et al. (1978).

6.5.6 Albite

The equilibrium constant determined by Burch (1993) for the albite solubilityreaction at 80°C is compared with values calculated using SUPCRT andSPRONS.JNC in Fig. C35. The state of order/disorder of the albite used inthe experiments is unknown, and two calculated curves are therefore shownrepresenting equilibrium with respect to high albite (completely disordered) andlow albite (completely ordered). As can be seen, the experimental solubility isnearly an order of magnitude more soluble than that calculated for thedisordered phase, and nearly two orders of magnitude more soluble than thatcalculated for the ordered phase. Burch (1993) calculated the solubility of albitefrom steady-state solution compositions observed in dissolution and precipita-tion experiments that were "nearest" equilibrium. The equilibrium constantdetermined in this study is thus an approximation, but it is unclear how closethe approximate value is to the actual equilibrium value.

6.5.7 Analcime

Equilibrium constants for the reaction

(NaAl)1+xSi2.xO6-nH2O~

(l+x)Na+ + (l+x)Al(OH)4- + (2-x)SiO2(aq) + [n-2(l+x)]H2O

between 0 and 300°C at Psat calculated using SUPCRT and SPRONS.JNC (x= 1, n = 1) are compared with their experimental counterparts determined by

117

- 1 1 7 -

JNCTN8400 99-079

Murphy et al. (1996) [Mr. St. Hilaire analcime: x = 1.05, n = 1] and Wilkin andBarnes (1998) [Mt. St. Hilaire analcime: x = 1, n = 1; Wikieup analcime: x =0.85, n = 1] in Fig. C.36. As can be seen, the experimental values determinedby Wilkin and Barnes (1998) for the Mt. St. Hilaire sample are remarkablyconsistent with calculated counterparts over the full range of temperaturesconsidered, taking into account the experimental uncertainties determined bythese authors. Significant discrepancies between calculated and observedsolubilities are evident for the Wikieup analcime, however, presumably becausethis phase is significantly enriched in Si and deficient in Al relative to theidealized composition assumed for analcime in SPRONS.JNC. The solubilityof Mt. St. Hilaire analcime determined by Murphy et al. (1996) at 25°C is morethan an order of magnitude greater than that determined by Wilkin and Barnes(1998) and calculated using SUPCRT and SPRONSJNC The sample used byMurphy et al. (1996) is slightly richer in Si and poorer in Al than that used byWilkin and Barnes (1998), but it is unlikely that this can explain the discrepancybetween these experimental equilibrium constants.

6.6 System Mg0-Si02-H20

Equilibrium relations among various minerals in this system have beencharacterized experimentally by Christ et al. (1973) and Hemley et al. (\977SL,

b). The latter study evaluated the thermodynamic properties of the followingreactions (structural formulas of minerals as noted in Appendix A):

• 2 talc ** 3 forsterite + 5 SiOjfaq) + 2 HjO,• talc + H T O ** chrysotile + 2 SiO2(aq)• 16 talc + 15 H i O " antigorite + 30 SiOjfaq),• 7 talc >=* 3 anthophyllite + 4 SiC^U^ + 4 H2O,• talc » 3 enstatite + S\Oi(aq) + H2O,• 2 anthophyllite » 7 forsterite + 9 SiOzCaq) + 2 H2O,• anthophyllite * 7 enstatite + S\O2(aq) + H2CX and• 2 enstatite ** forsterite + SiC>2(aq),

at relatively high temperatures and pressures by measuring the total analyticalconcentrations of SiO2 (aq) in quenched solutions equilibrated with the respectivemineral reactants and products. The equilibrium activity of SiO2(aq) (which isapproximately equal to its molality, see Section 6.4.2) determines the value ofthe equilibrium constant for all these reactions. Christ et al. (1973) similarlyevaluated the thermodynamic properties of the following reaction (structuralformula of sepiolite as noted in Appendix A):

• sepiolite + 8 H ^ 4 Mg+ + 6 SiO2(aq) + 11 H2O,

between 50 and 90°C at 1 bar by analyzing equilibrated solutions for pH and fortotal concentrations of Mg-+ and SiOifaq) to estimate corresponding activities

. 118

- 1 1 8 -

JNCTN8400 99-079

of the aqueous reactants and products using the Debye-Hiickel equation (e.g.,Garrels and Christ, 1965).

Helgeson et al. (1978) compare calculated equilibrium constants with theexperimentally determined values for all the above reactions (Figs. 27-30 andFig. 34 of Helgeson et al., 1978, respectively). Calculated equilibrium constantsagree closely with all the experimental data. Thermodynamic properties andequacion-of-state parameters for Mg2+ from Helgeson and Kirkham (1976),similar data for SlO2(aq) from Walther and Helgeson (1977), and standardmolal thermodynamic properties for the minerals in these reactions fromHelgeson et al. (1978) were used in the calculations. Most of these data areincorporated in SPRONS.JNC, but thermodynamic properties and equation-of-state coefficients for SiOifaq) are revised by Shock et al. (1989) from thosedetermined by Walther and Helgeson (1977), as noted in Section 6.2.1. Therevisions are relatively minor, however, and are not expected to significantly alterthe consistency among experimental and calculated equilibrium constants for theminerals in this system, as documented by Helgeson et al. (1978). This isconfirmed in Figs. C.37 and C.38, which exhibit the same close correspondenceamong calculated and experimental results as Figs. 27 and 34, respectively, ofHelgeson et al. (1978).

6.6.1 Aqueous speciation

Experimental data for the hydrolysis of Mg2+ between 0 and 150°C at Psat arecompared in Fig. D.I6 with equilibrium constants calculated for this reactionusing SUPCRT and SPRONS.JNC. As noted by Shock et al. (1997a), the closeagreement among most of the experimental data and the calculated curve isremarkable because the HKF equation-of-state parameters for MgOH+ areestimated independently of experimental constraints, using the correlationalgorithms developed by these authors.

6.7 System Ca0-Si02-AI203-H20

There are few experimental data characterizing the solubilities of minerals in thissystem. Roselle and Baumgartner (1995) measured the solubility of theassemblage:

• anorthite + 2 HC\(aq) * CzC\i(aq) + andalusite + quartz + HiO

in supercritical chloride solutions from 400 to 600°C at 2 kb. Equilibriumconstants retrieved by these authors are compared with equilibrium constantscalculated using SUPCRT and SPRONS.JNC in Fig. C39. As can be seen, thecalculated curve is consistent with the experimental data at 500 and 600°C, butthe discrepancy at 400°C is significantly greater than the experimentaluncertainty.

119

- 1 1 9 -

JNCTN8400 99-079

6.7.1 Aqueous speciation

Experimental data for the hydrolysis of Ca2+ between 0 and 450°C at Psat andat 0.5 and 1 kb are compared in Fig. D.17 with equilibrium constants calculatedfor this reaction using SUPCRT and SPRONSJNC. As can be seen, theexperimental data are closely consistent with the calculated curve over this rangeof temperatures and pressures. This supports the validity of correlationsdeveloped by Shock et al. (1997a), because equation-of-state coefficients forCaOH+ were estimated using these correlations independently of theexperimental data shown in the figure.

6.8 System CaO-MgO-FeO-BaO-SrO-H2O-CO2

Plummer and Busenberg (1982), Busenberg et al. (1984) and Busenberg andPlummer (1986) carried out a series of experiments between 0 and 91°C at 1 barto investigate mineral-solution and aqueous-speciation equilibria in this system.These authors determined the solubility of aragonite, calcite, vaterite,strontianite and witherite over this temperature range, and corresponding ion-pair formation constants for CaHCO3+, CzCO^(aq), SrHCO3+, SnQO^(aq),BaHCC>3+ and BaCC^fa^ that are internally consistent with the solubility data.The experimental data and thermodynamic properties retrieved from them byPlummer and Busenberg (1982), Busenberg et al. (1984) and Busenberg andPlummer (1986) supersede numerous earlier investigations, which are criticallyevaluated for the CaO-CO2-H2O system by Langmuir (1968) and Jacobsen andLangmuir (1974), summarized by Busenberg et al. (1984) for the SrO-CO2-H2O system, and summarized by Busenberg and Plummer (1986) for the BaO-CO2-H2O system. The comprehensive experimental investigations of thischemical system by Plummer and Busenberg (1982), Busenberg et al. (1984)and Busenberg and Plummer (1986) did not include Fe, and correspondingthermodynamic properties of siderite and ferrous-carbonate complexes.

As noted in Section 5.2.2, Johnson et al. (1991) corrected the standard Gibbsfree energy and enthalpy of formation of calcite and aragonite in their SPRONSdatabase (SPRONS92.DAT) to be consistent with the solubility data for thesephases determined by Plummer and Busenberg (1982). The data forstrontianite and witherite were unrevised, however, and are therefore uncon-strained by the experimental solubilities determined by Busenberg et al. (1984)and Busenberg and Plummer (1986), respectively. The thermodynamicproperties of strontianite and witherite in SPRONS.JNC are thus the originaldata from Helgeson et al. (1978), which are constrained solely by calorimetricmeasurements (Table 9 of Helgeson et al., 1978). The thermodynamicproperties of siderite are similarly constrained only by calorimetric data.Helgeson et al. (1978) did not compare these calorimetric-based properties withother experimental observations, and notes that they are therefore subject togreater uncertainty.

120

- 1 2 0 -

JNCTN8400 99-079

Experimental data reported by Plummer and Busenberg (1982), Busenberg et al.(1984) and Busenberg and Plummer (1986) were regressed by Sverjensky et al.(1997) to determine partial molal thermodynamic properties and HKFequation-of-state coefficients for CzCO^faq), SrCO^(aq) and baCO^(aq).These data are included in SPRONSJNC. Similar data for the CaHCC>3+ ion-pair in this database are attributed by Johnson et al. (1991) to unpublished workfrom Sverjensky (ref. 5> Appendix A), but these data are not documented bySverjensky et al. (1997). Data for the SrHCO3+ and BaHCC>3+ ion pairs alsowere not evaluated by these authors, and are not included in SPRONSJNC.

6.8.1 Aragonite and calcite

Equilibrium constants for the reactions

aragonite ** Ca2+ + CO32-, andcalcite * Ca2+ + CO32-

between 0 and 100°C at 1 bar calculated using SUPCRT and SPRONSJNCare compared with their experimental counterparts determined by Plummer andBusenberg (1982) in Figs. C.40 and C.4I, respectively. As can be seen, thecalculated curves agree closely with all the experimental data. This is expectedbecause these experimental data partially constrain the standard molalthermodynamic properties of aragonite and calcite in SPRONSJNC.

6.8.2 Strontianite

Equilibrium constants for the reaction

strontianite ** Sr2+ + CO32-,

between 0 and 100°C at 1 bar calculated using SUPCRT and SPRONS.JNCare compared with their experimental counterparts determined by Busenberg etal. (1984) in Fig. C.42. The calculated curve underpredicts the experimentallydetermined solubility product of strontianite by more than an order ofmagnitude over this temperature range. As noted above, the thermodynamicproperties of strontianite in SPRONS.JNC are constrained only by calorimetricmeasurements. The discrepancies in Fig. C.42 suggest these data should berevised to be consistent with both the calorimetric constraints and solubility datathat are now available.

6.8.3 Witherite

Equilibrium constants for the reaction

witherite ** Ba2+ + CO32-,

121

1 2 1 -

JNCTN8400 99-079

between 0 and 100°C at L bar calculated using SUPCRT and SPRONSJNCare compared with their experimental counterparts determined by Busenbergand Plummer (1986) in Fig. C.43. The calculated curve severely underpredictsthe experimentally determined solubility product of witherice by 3 to 4 ordersof magnitude over this temperature range. As noted above, the thermodynamicproperties of witherite in SPRONS.JNC are constrained by calorimetricmeasurements alone. The discrepancies in Fig. C.43 suggest these data shouldbe revised to be consistent with the available calorimetric and solubility data.

6.8.4 Siderite

Equilibrium constants for the reaction

siderite «* Fe^+

between 0 and 100°C at 1 bar calculated using SUPCRT and SPRONS.JNCare compared with experimentally determined solubility products at 25°C inFig. C.44. As can be seen, the curve falls within the scatter of the data, butthere is considerable disagreement among the experimental values, and betweenmost of these values and the calculated curve. Additional experimentation isneeded to resolve experimental discrepancies in the solubility product of sideriteat 25°C and at higher temperatures to better constrain siderite's standard molalthermodynamic properties.

6.8.5 Aqueous speciation

Dissociation constants for the ion pairs CaHCO3+, CaCO^faq), SrCO^(aq) andBa.CO3 (aq) calculated using SUPCRT and SPRONSJNC between 0 and100°C are compared with experimentally determined dissociation constants inFigs. D.18-D.21, respectively. As can be seen in Fig. D.18, calculateddissociation constants for CaHCO3+ are reasonably consistent with experimentalvalues determined by Plummer and Busenberg (1982), but discrepancies slightlyexceeding experimental uncertainties are apparent at temperatures less than65°C. Calculated dissociation constants for CaCO^(aq), shown in Fig. D.19,are closely consistent with all but one of the experimentally determined valuesreported by Plummer and Busenberg (1982), as is expected because theseexperimental data were regressed by Sverjensky et al. (1997) to retrieve thepartial molal thermodynamic properties and equation-of-state coefficients forthis species. Experimental data determined by Reardon and Langmuir (1974)also lie within 0.1 to 0.2 log K units of calculated equilibrium constants for thisreaction. The excellent agreement among calculated and experimentaldissociation constants for SrCO^(aq) and Ba.CO}(aq), as can be seen in Figs.D.20 and D.21, respectively, is similarly due to the fact that experimental datafor SrCO^ (aq) dissociation from Busenberg et al. (1984) and for BaCO^faq)dissociation from Busenberg and Plummer (1986) were used in the regressioncalculations by Sverjensky et al. (1997) to retrieve the thermodynamic properties

. .122

1 2 2 —

JNCTN8400 99-079

of these species. Experimental data on the dissociation constant of SrCO^aq) at25°C from Hasegawa et al. (1970) are clearly discrepant with respect to thecalculated curve in Fig. D.20, and the experimental value determined byBusenberg et al. (1984). Experimental data on the dissociation constant ofRaCO^aq) at 25°C from Benes and Selecka (1973) are similarly discrepant withrespect to the calculated curve in Fig. D.21, and the experimental value fromBusenberg and Plummer (1986). The experimentally determined dissociationconstant for ¥>a.CO-$(aq) reported by Palmer and Van Eldik (1983) agreesclosely with that determined by Busenberg and Plummer (1986).

Sverjensky et al. (1997) regressed experimental data from Reardon andLangmuir (1974) and Siebert and Hostettler (1977) on the dissociation constantof hAgCO$(aq) between 10 and 90°C to retrieve partial molal thermodynamicproperties and equation-of-state coefficients for this species. As can be seen inFig. D.22, equilibrium constants for this reaction calculated using SUPCRT andSPRONS.JNC agree closely with the data from Siebert and Hostettler (1997),and Jie within 0.2 log K units of the values determined by Reardon andLangmuir (1974). There is considerable scatter among the other experimentaldata at 25°C, however.

Correlation algorithms developed by Shock et al. (1997a) were used by theseauthors to predict the standard partial molal properties of SrOH+. Associationconstants for this species calculated using SUPCRT and SPRONS.JNC arecompared in Fig. D.23 with values determined experimentally between 5 and50°C by Gimblett and Monk (1954). As can be seen, the calculated curve isclosely consistent with all the experimental data, which supports the validity ofthe correlation approach used by Shock et al. (1997a).

6.9 System CaO-BaO-SrO-SO3-H2O

6.9.1 Anhydrite

The solubility of anhydrite between 0 and 350°C at Psat determinedexperimentally by Yeatts and Marshall (1969) is compared in Fig. C.45 withcalculated solubilities using SUPCRT and SPRONS.JNC. The standard molalthermodynamic properties of anhydrite in SPRONS.JNC are from Helgeson etal. (1978). Sverjensky et al. (1997) regressed the solubility data of Yeatts andMarshall (1969) to retrieve the standard partial molal thermodynamic propertiesand HKF equation-of-state coefficients for the CaSO^faq) ion pair, and this isreflected by the close agreement among calculated and experimental solubilitiesshown in Fig. C.45.

6.9.2 Barite

The solubilities of barite between 0 and 300°C at Psat determined experimental-

123

- 1 2 3 -

JNCTN8400 99-079

ly by Blount (1977), Striibel (1967), Melcher (1910), Templeton (1960),Malinin et al. (1969), Felmy et al. (1990) and Jiang (1996) are compared withequilibrium constants for this reaction calculated using SUPCRT andSPRONS.JNC in Fig. C.46. The standard molal thermodynamic properties ofbarite in SPRONS.JNC are from Helgeson et al. (1978), and are based solely oncalorimetric measurements. The partial molal thermodynamic properties andequation-of-state coefficients of Ba2+ and SO42"are from Shock and Helgeson(1988), and were retrieved independently of the solubility data for barite. Theclose correspondence among most of the calculated and experimental solubilitiesfor this phase is therefore noteworthy, because it constitutes independentconfirmation that the thermodynamic data for barite and the aqueous ions Ba2+

and SO42- are reliable over this temperature range. Experimental equilibriumconstants for this reaction reported by Striibel (1967) are clearly discrepant withrespect to calculated counterparts and the other experimental data.

6.9.3 Celestite

The solubility of celestite at 25°C determined by Felmy et al. (1990) iscompared with the equilibrium constant for this reaction calculated usingSUPCRT and SPRONS.JNC in Fig. C.47. The standard molal thermodynamicproperties of celestite in SPRONS.JNC are from Helgeson et al. (1978), and areconstrained solely by calorimetric measurements. The partial molal thermody-namic properties and equation-of-state coefficients of Sr2+ and SO42- are fromShock and Helgeson (1988), and were retrieved independently of the solubilitydata for celestite. As can be seen, this mineral is calculated to be nearly an orderof magnitude more soluble at 25°C than measured by Felmy et al. (1990).

6.10 System Fe0-SW-H20-HCI

6.10.1 Pyrite

The solubility of pyrite in chloride solutions has been determined experimentallyby Crerar et al. (1978) between 200 and 350°C at Psat. Calculated pyritesolubilities using SUPCRT and SPRONS.JNC in solutions equilibrated withFeCh or FeCUfaq) are compared with experimental values determined byCrerar et al. (1978) in Figs. C.48 and C.49, respectively. The thermodynamicproperties of pyrite in SPRONS.JNC are constrained only by calorimetric data(Helgeson et al., 1978). Sverjensky et al. (1997) regressed experimentaldissociation constants for FeCl+ from Heinrich and Seward (1990) and Palmerand Hyde (1993), and total dissociation constants for FeC^ftf^J reported byWood and Crerar (1985), Heinrich and Seward (1990) and Fein et al. (1992),to retrieve the standard partial molal thermodynamic properties and HKFequation-of-state coefficients for these species. The close correspondence amongthe calculated and experimental solubilities for pyrite shown in Figs. C.48 andC.49 constitutes independent confirmation that the thermodynamic data for

. . 124

- 1 2 4 -

JNCTN8400 99-079

pyrite and both ferrous chloride complexes are reliable over this temperaturerange.

6.10.2 Pyrrhotite

Crerar et al. (1978) measured the solubility of pyrrhotite in chloride solutionsbetween 200 and 35O°C at Psat. Berner (1967) also measured the solubility of asample of nearly stoichiometric pyrrhotite (Feo.98S) at 25°C and 1 bar in dilutesolutions equilibrated with HjSfg). Pyrrhotite solubilities calculated usingSUPCRT and SPRONS.JNC are compared with the experimental valuedetermined by Berner (1967) in Fig. C.50, and with solubilities measured byCrerar et al. (1978) in Figs. C.51 and C.52. The thermodynamic properties ofpyrrhotite in SPRONSJNC are constrained only by calorimetric data(Helgeson et al., 1978). The standard partial molal thermodynamic propertiesand HKF equation-of-state coefficients for Fe2+ were revised from valuesrecommended by Shock and Helgeson (1988) by Shock et al. (1997a).Thestandard partial molal thermodynamic properties and HKF equation-of-statecoefficients for FeCl+ and FeCljfaq) were determined by Sverjensky et al.(1997), as noted above. As can be seen in Fig. C.50, pyrrhotite is calculated tobe more than an order of magnitude more soluble at 25°C than measured byBerner (1967). A similar discrepancy is noted in Fig. C.51 for the solubility at200°C, but better agreement is apparent in this figure, and in Fig. C.52, for thesolubilities measured at higher temperatures. Additional experimentation isneeded to better constrain the solubility behavior of pyrrhotite at temperaturesbetween 0 and 300°C.

6.10.3 Magnetite

Two experimental datasets characterizing the solubility of magnetite and relativestabilities of ferrous hydroxide complexes between 25 and 300°C at Psat arereported by Sweeton and Baes (1970) and Tremaine and LeBlanc (1980). Bothsets of data were obtained from measurements of magnetite solubility insolutions of varying pH, but equilibrium constants derived from these data forthe hydroxide complexes differ by as much as two log units. Shock et al.(1997a) note that it is not evident that the dataset of Sweeton and Baes (1970) isintrinsically more accurate than that of Tremaine and LeBlanc (1980), butnevertheless select the data of Sweeton and Baes (1970) to retrieve by regressionthe partial molal thermodynamic properties and equation-of-state coefficientsfor ferrous hydroxide complexes that are incorporated in SPRONS.JNC. Therationale for this decision is that retrieved parameters, such as the standardpartial molal entropies of these complexes, are more consistent with empiricalcorrelations constructed by Shock et al. (1997a) than are similar parametersretrieved from the dataset of Tremaine and LeBlanc (1980). Calculatedmagnetite solubilities using SUPCRT and SPRONS.JNC between 0 and 300°Cat Psat in solutions equilibrated with Fe2+, FeOH+, ¥e(OH) j(aq) and Fe(OH)3"are compared with their experimental counterparts determined by Sweeton and

125

- 1 2 5 -

JNCTN8400 99-079

Baes (1970) in Fig. C.53. As can be seen, the agreement between calculated andexperimental equilibrium constants is excellent over this temperature range, asexpected.

6.10.4 Aqueous speciation

Association constants for the first, second and third hydrolysis constants ofFc(II) calculated using SUPCRT and SPRONS.JNC between 0 and 350°C atPsat are compared with their experimental counterparts measured by Sweetonand Baes (1970) and Tremaine and LeBlanc (1980) in Figs. D.24, D.25 andD.26, respectively. As expected, there is close agreement between calculatedvalues and the experimental constants determined by Sweeton and Baes (1970)because these experimental data constrain the partial molal thermodynamicproperties and equation-of-state coefficients of the ferrous hydroxide complexesin SPRONS.JNC. Significant discrepancies are evident, however, betweencalculated association constants and the experimental values determined byTremaine and LeBlanc (1980). As noted above, there is no reason to believe theexperimental data of Sweeton and Baes (1970) are more accurate than those ofTremaine and LeBlanc (1980), other than the fact that thermodynamicproperties of the hydroxide complexes retrieved from the former dataset aremore consistent with correlations developed by Shock etal. (1997a) than are thelatter. Additional experimentation is needed to resolve the discrepanciesbetween these two experimental datasets.

Sverjensky etal. (1997) document comparisons of experimental and calculateddissociation constants for FeCl+ and FeClafc^ over a wide range of tempera-tures and pressures (Figs. 4 and 17, respectively, of Sverjensky etal., 1997). Theexcellent agreement between calculated and experimental dissociation constantsdocumented by Sverjensky et al. (1997) would be expected in similarcalculations using SUPCRT and SPRONS.JNC, because the partial molalthermodynamic properties and equation-of-state coefficients for FeCl+ andYe.Q\2(aq) in this database are from Sverjensky et al. (1997). This is confirmedin Fig. D.46, which illustrates comparisons between calculated and experimen-tally determined dissociation constants for FeCl+ between 0 and 600°C at Psatand at 0.5, 1 and 2 kb.

6.11 Stability Relations Among Smectites, and the Solubility of Illite

As noted in Section 5.2.4, thermodynamic data in SPRONS.JNC andPHREEQE.JNC support different models of hydrolysis reactions involving non-stoichiometric solid solutions. The PHREEQE series of codes do not includesolid-solution models in the general sense considered by Helgeson et al. (1978),although ion-exchange reactions can be simulated. Rather, solid-solutionbehavior is approximated using a surrogate stoichiometric phase to represent thesolid solution. The stoichiometry of the surrogate phase is defined such that it iswithin the range of compositions exhibited by the solid solution it represents,

126

- 1 2 6 -

JNCTN8400 99-079

but the stoichiometry is not variable, as would otherwise be consistent with solid-solution behavior. For this reason, estimated thermodynamic properties for alimited number of such phases, including those representing di-octahedralsmectites (Na-, K-, Ca- and Mg- nontronites, beidellites and montmorillonites)and illite, are included in SPRONSJNC. These data are estimated by Wolery(1976), who used a re-calibrated and slightly modified version of the techniquedescribed by Tardy and Garrels (1974) to estimate Gibbs free energies offormation, and methods described by Helgeson et al. (1978) to estimatestandard molal entropies and Maier-Kelly heat capacity coefficients.

6.11.1 Smectites

Experimental data on the solubilities of clay minerals whose compositions areidentical to those of the surrogate phases in SPRONS.JNC are not available, andthe accuracy of the estimated thermodynamic data for these phases is thereforedifficult to evaluate quantitatively. It is possible, however, to assess whether theestimated data are consistent with phase relations observed in natural systems.In this approach, logarithmic activity diagrams are used to correlate thechemistry of aqueous solutions with the stabilities of coexisting minerals atequilibrium. The idealized stoichiometry assigned in the present study to thesmectite clays dictates the intercepts and slopes of boundaries on such diagrams,which in turn define the stability fields of these minerals. The compositions ofnatural waters plotting within a given stability field, or along one of itsboundaries, is necessary, but not sufficient, evidence that the solution hasequilibrated with the corresponding minerals.

Stability relations among minerals, including smectites, in the systems

• K2O-MgO-Al2O3-SiO2-H2O,• Na2O-K2O-MgO-Al2O3-SiO2-H2O, and• CaO-MgO-Al2O3-SiO2-H2O

are correlated, for example, with the compositions of deep Japanesegroundwaters in Figs. C.55 - C.58, respectively. These diagrams are constructedusing the Geochemist's Workbench (Bethke, 1996) and its associatedthermodynamic database, which was modified in the present study to ensurethat the thermodynamic properties of hydrolysis reactions among minerals andaqueous species are consistent with the data in SPRONSJNC. The groundwa-ter chemistry database, compiled by JNC, includes analytical data forapproximately 15,000 samples from throughout Japan. These data werescreened on the basis of sampling depth and temperature, and to discriminateamong samples obtained at depths greater than, or less than, 200 m, to derive adatabase consisting of approximately 1000 samples that characterize thechemistry of "deep" groundwaters in Japan. These data were used withPHREEQE and the H3 TDB (see section 5.3.3) to calculate the logarithms of

127

- 1 2 7 -

JNCTN8400 99-079

activity quotients represented by the axes in Figs. C.55 - C.58. Stabilityrelations among the minerals in these figures are calculated assuming the activityof SiO2(aq) is controlled by amorphous silica solubility at 19°C, which is theaverage temperature of the deep groundwater dataset.

As can be seen in Figs. C.55 - C.58, the deep groundwater compositions plotrather consistently in the stability fields of the montmorillonite end members ofthe smectite clays. Discernable trends in the groundwater data are also revealedsuggesting that ion-exchange reactions among these clay minerals control theaqueous activities of Na+, K>, Ca2+ and Mg2+. These trends are roughly parallelto the slopes of stability-field boundaries between montmorillonite endmembers, and in some cases are coincident with them (Figs. C.57 and C.58).Small adjustments in log K values for the reactions that determine theseboundaries in Figs. C.55 and C.56 (< 0.5 log K units) are found by trial anderror to generate better agreement with the groundwater data, but theseadjustments are arbitrary, and have therefore not been incorporated inSPRONSJNC.

The observations in Figs C.55 - C.58 that most of the deep groundwaters plot inthe stability fields of clay minerals is qualitatively reasonable because reactionsamong groundwaters and primary aluminosilicate minerals are known toprecipitate clay minerals as reaction products at low temperatures (e.g. Drever,1982; Langmuir, 1997). It is not known, however, if such reactions actuallyoccur in the host rocks from which the groundwater samples were obtained, noris information available characterizing the mineralogy of these clay minerals, ifthey exist. Thus, although the thermodynamic data in SPRONSJNC for thesmectites appear to be compatible with known stability relations among mineralsin groundwater systems, additional experimentation and field studies areneeded to confirm this conclusion. Alternative models of smectite-waterequilibria that more realistically account for the solid-solution behavior of theseminerals (e.g., Aagaard and Helgeson, 1983) should also be tested using theavailable data in SPRONS.JNC for end-member components of smectite [e.g.,stoichiometrically equivalent to pyrophyllite, margarite, muscovite, paragoniteand others (Aagaard and Helgeson, 1983; Ransom and Helgeson, 1993; 1994)].

6.11.2 ////Ye

The solubility and stability of natural illites have been investigated experimental-ly by Routson and Kittrick (1971), Sass et al. (1987) (later reinterpreted by Aja,1991), Aja etal. (1991a,b), and Yates and Rosenberg (1996). All the studiesother than Aja et al. (1991b) fail to report Mg concentrations in the experimentalsolutions, however, and therefore cannot be used to test the reliability ofthermodynamic data for illite in SPRONS.JNC.

Aja et al. (1991b) measured the compositions of solutions coexisting with illite,

12 8 -

JNCTN8 400 99-079

kaolinite, and gibbsite between 25 and 250°C at Psat. Their interpretation ofphase equilibria in this system is criticized by Essene and Peacor (1995), whoassert that equilibrium was either not attained in the experiments, or that thecomposition of the illite solid-solution controlling aqueous compositions wasmis-identified. Aja and Rosenberg (1996) argue that Essene and Peacor (1995)misinterpreted these experimental data, but this is disputed by Essene andPeacor (1997).

Despite these questions of interpretation, the basic experimental data generatedby Aja et al. (1991b) can be used to test whether the thermodynamic data forillite in SPRONSJNC are qualitatively reasonable. That is, although ourassumption that Hike's solid-solution behavior can be approximated using astoichiometric surrogate phase is a gross simplification, solution compositions at,or near to, equilibrium with the illite surrogate, kaolinite and gibbsite should notconflict severely with solution compositions measured by Aja et al. (1991b). Therelevant reaction is

illite + 0.9 H2O + 1.1 H+ *

kaolinite + 0.3 gibbsite + 1.5 SiQ2(aq) + 0.6 K+ + 0.25 Mg2+,

where thermodynamic data for "stoichiometric" illite in SPRONS.JNC,

K0.6(Mg0.25Al1.8)(Si3.5Alo.5)01o(OH)2)

are estimated by Wolery (1976), as noted above.

Equilibrium constants calculated using SUPCRT and SPRONS.JNC for thisreaction between 0 and 250°C at Psat are compared in Fig. C.59 withequilibrium constants retrieved from experimental solution compositions by Ajaet al. (1991b). The solid symbols refer to solutions sampled at the end of theexperiments, and "their open-symbol counterparts refer to solutions sampled atearlier times. As can be seen, the calculated equilibrium constants at relativelylow temperatures are up to 3 log K units lower than their experimentalcounterparts, but these differences tend to decrease with increasing reactiontime. At temperatures greater than 100°C, the calculated equilibrium constantsare closely consistent with the experimental values determined at the end of theexperiments. It is questionable whether gibbsite is stable, or metastable, in theexperiments at temperatures greater than about 100°C (e.g., Pokrovskii andHelgeson, 1995), but accounting for boehmite rather than gibbsite in the abovereaction (as shown by the dashed curve in Fig. C.59) does not significantly alterthe close correspondence between calculated and experimental equilibriumconstants at these temperatures, as can be seen in the figure.

The comparison of calculated and experimental equilibrium constants illustratedin Fig. C.59 suggests that the thermodynamic data for illite in SPRONS.JNC

129

- 1 2 9 -

JNCTN8400 99-079

are reasonably consistent with the limited amount of relevant experimental dataover this range of temperatures and pressures. Although discrepancies attemperatures less than about 100°C are significant, they appear to diminish withincreasing reaction time and temperature, which supports the contention ofEssene and Peacor (1995) that equilibrium was not achieved in these experi-ments. We emphasize, however, that the reaction considered in this comparisonis a gross approximation of illite's true solid-solution behavior, and thatalternative modeling approaches that more realistically account for such behaviorshould be tested in similar comparisons with these experimental data.

6.12 Aqueous Dissociation Reactions

Experimental dissociation constants for Na+, K+, Mg2+, Ca2+, Ba2+, Sr2+, Fe2+,and Mn2+ complexes with C1-, F-, SO42-, B(OH)4-, H3SiO4- or C H 3 C O Oligands are compared with corresponding dissociation constants calculated usingSUPCRT and SPRONSJNC in Figs. D.27 - D.50. Although most of thesediagrams, and numerous others, are similarly described by Sverjensky et al.(1997), we include them in the present study because they incorporateexperimental dissociation constants that were not considered by these authors.Comments summarized below address instances where these new and additionalexperimental data compare unfavorably with calculated values, although as canbe seen in Figs. D.27 - D.50, calculated dissociation constants generally agreeclosely with their experimental counterparts.

Experimental dissociation constants for NaSO4- and NaB(OH)4(k^J determinedby Pokrovski et al. (1995) between 0 and 300°C at Psat are compared withvalues calculated using SUPCRT and SPRONS.JNC in Figs. D.29 and D.30,respectively. Partial molal thermodynamic properties and HKF equation-of-state coefficients for NaSO4- and NaB(OH)4fa#j in SPRONS.JNC weredetermined by regression of these experimental data, and the close correspon-dence between calculated and experimental dissociation constants in thesefigures is therefore expected. Dissociation constants for NaSO4- between 150and 320°C at Psat determined in flow-calorimetry experiments by Oscarson etal. (1988a) are generally consistent with their calculated counterparts, and withthe experimental constants determined by Pokrovski et al. (1995).

Dissociation constants for the Na-acetate complex calculated using SUPCRTand SPRONSJNC between 270 and 330°C at Psat are compared withexperimental values determined by Oscarson et al. (1988b) in Fig. D.31. Thepartial molal thermodynamic properties of this complex at 25°C and 1 bar inSPRONS.JNC are from Shock and Koretsky (1993), who used the correlationalgorithm proposed by Shock and Helgeson (1988) to estimate correspondingequation-of-state coefficients. The poor agreement shown in the figure betweencalculated and experimental dissociation constants is attributed by Shock andKoretsky (1993) to incorrect dissociation constants for HC\(aq) used by

130

- 1 3 0 -

JNCTN8400 99-079

Oscarson et al. (1988b) to retrieve their dissociation constants for Na-acetate.

Dissociation constants for KSO4- calculated using SUPCRT and SPRONS.JNCbetween 0 and 200°C at Psat are compared with experimental values for thisreaction in Fig. D.33. Sverjensky et al (1997) regressed experimental data fromTruesdell and Hostetler (1968), Quist et al (1963) and Bell and George (1953)(not shown) to retrieve partial molal thermodynamic properties and equation-of-state coefficients for this species. Dissociation constants determined byRighellato and Davies (1930) and Jenkins and Monk (1950) at low temperaturesare consistent with the calculated curve in Fig. D.33, and the experimental dataof Truesdell and Hostetler (1968) and Quist et al. (1963).

Dissociation constants for MgCl+ calculated using SUPCRT and SPRONSJNC are compared with their experimental counterparts from 0 to 300°C atPsat in Fig. D.34, and from 300 to 600°C at higher pressures in Fig. D.35.Sverjensky et al. (1997) regressed experimental data from Majer and Stulik(1982) and Saccocia and Seyfried (1990) to retrieve partial molal thermodynam-ic properties and equation-of-state coefficients for this species. Dissociationconstants determined by Gillespie et al. (1992) and Johnson and Pytkowicz(1978) are consistent with calculated values between 25 and 330°C at Psat (Fig.D.34), but dissociation constants retrieved at higher temperatures and pressuresfrom conductance measurements by Frantz and Marshall (1982) differsignificantly (Fig. D.35).

Dissociation constants for MgF+ between 0 and 300°C at Psat calculated usingSUPCRT and SPRONS.JNC are compared with experimental values in Fig.D.36. Sverjensky et a I (1997) regressed experimental data from Richardsonand Holland (1979) to retrieve partial molal thermodynamic properties andequation-of-state coefficients for this species. Dissociation constants determinedMajer and Stulik (1982) are closely consistent with calculated values at lowtemperatures, bur dissociation constants calculated by Richardson and Holland(1979) using experimental data from Cadek et al. (1971) and Tanner et al.(1968) are lower by less than 1 log K unit than dissociation constants calculatedusing SUPCRT and SPRONS.JNC.

Dissociation constants for CaCl+ and QzQ\2(aq) calculated using SUPCRT andSPRONS.JNC are compared with experimental values from 0 to 350°C at Psatin Figs. D.37 and D.38, respectively, and from 400 to 600°C at higher pressuresin Figs. D.39 and D.40, respectively. Sverjensky et al. (1997) regressedexperimental data from Majer and Stulik (1982), Alakhverdov (1985), Simonsonetal (1985), Ramette (1986), Williams-Jones and Seward (1989) and Gillespieet al. (1992) to retrieve partial molal thermodynamic properties and equation-of-state coefficients for CaCl+. Experimental data from Ramette (1986) andWilliams-Jones and Seward (1989) were used by Sverjensky et al. (1997) toretrieve partial molal thermodynamic properties and equation-of-state

131

- 1 3 1 -

JNCTN8400 99-079

coefficients for CaQ2(aq). Figures D.37 and D.38 confirm that dissociationconstants for CaCl+ and CzCljfaq) determined in the respective experimentalstudies are consistent with calculated values between 25 and 360°C at Psat, butdissociation constants retrieved at higher temperatures and pressures by Frantzand Marshall (1982) differ significantly (Fig. D.39 and D.40, respectively).

Dissociation constants for CaF+ between 0 and 300°C at Psat calculated usingSUPCRT and SPRONSJNC are compared with their experimental counter-parts in Fig. D.41. Sverjensky et al. (1997) regressed experimental data fromRichardson and Holland (1979) to retrieve partial molal thermodynamicproperties and equation-of-state coefficients for this species. Dissociationconstants determined Majer and Stulik (1982) are closely consistent withcalculated values at low temperatures, but dissociation constants calculated byRichardson and Holland (1979) using experimental data from Tanner et al.(1968), Cadek et al (1971) and Aziz and Lyle (1968) differ from valuescalculated using SUPCRT and SPRONS.JNC by less than 1 log AT unit. Similardiscrepancies are apparent in the solubility of fluorite between 0 and 260°C atPsat determined by Richardson and Holland (1979) (Fig. C.54).

Dissociation constants for MnCl+ between 0 and 300°C at Psat calculated usingSUPCRT and SPRONS.JNC are compared with experimental dissociationconstants reported by Wheat and Carpenter (1988) and Gammons and Seward(1996) in Fig. D.49. Sverjensky et al. (1997) regressed these experimental datausing the partial molal thermodynamic properties and HKF equation-of-statecoefficients for Cl- from Shock and Helgeson (1988) to retrieve partial molalthermodynamic properties and equation-of-state coefficients for MnCl+. Thesource of thermodynamic properties for Mn2+ used in this regression procedureis unclear, however, because these data were not determined by Shock andHelgeson (1988). Partial molal thermodynamic properties and equation-of-stateparameters for Mn2+ from Shock et al. (1997a), which are included inSPRONS.JNC, apparently differ from the corresponding data used bySverjensky et al. (1997) because the calculated curve in Fig. D.41 is displacedupward by 0.3 to 0.4 log K units relative to the corresponding curve depicted inFig. 17 of Sverjensky et al. (1997). A similar displacement is noted in thecalculated curve shown in Fig. D.50 for M.nSO^(aq) dissociation compared withthe corresponding curve in Fig. 14 of Sverjensky et al. (1997), who used the datafrom Wheat and Carpenter (1988) as experimental constraints. Theseobservations suggest that the thermodynamic data for MnCl+ and M.nSOi(aq)in SPRONS.JNC should be revised by regression of the experimental data inFigs. D.49 and D.50, using partial molal thermodynamic properties andequation-of-state coefficients for Cl- from Shock and Helgeson (1988), and forMn2+ from Shock et al. (1997a).

132

- 1 3 2 -

JNCTN8400 99-079

6.13 Comments on Database Management

We conclude this section with comments on the conditions adopted for areliable thermodynamic database (Section 3.1) with regard to SPRONS.JNC,and, hence, PHREEQEJNC

6.13.1 Internal consistency

SPRONS.JNC is partially consistent in the sense defined by Engi (1992),because all the data are compatible with basic thermodynamic definitions andfunctional relations comprising the SUPCRT model, and fundamentalexperimental and field observations that constrain these data are consistentlyevaluated within this modeling framework. The databases are not fullyconsistent, however, because the rationale for selecting certain parameters, suchas standard molal or partial molal properties at the reference pressure andtemperature, are not generally documented in sufficient detail in original datasources.

The internal consistency of SPRONS.JNC should be maintained as thisdatabase is revised. Revisions to the thermodynamic properties of boehmite,diaspore and corundum recommended by Pokrovskii and Helgeson (1995), forexample, have resulted in less favorable agreement among calculated andexperimental equilibria involving these minerals and various aluminosilicates thanwere achieved in the original evaluation of these data by Helgeson et al. (1978).Similar discrepancies can be expected if the revised partial molal properties ofSlOzfaq) determined by Rimstidt (1997) are incorporated in SPRONS.JNC.Resolving such discrepancies for a given reaction is reasonably straightforwardusing regression techniques, but matrix analytical methods may be required ifmultiple reactions are affected by the revised property.

6.13.2 Experimental basis

Additional experimental determination of mineral solubilities at relatively lowpressures and temperatures (= 0 to 150°C at Psat) are needed to improveconfidence that the thermodynamic data in SPRONS.JNC are reliable forconditions that are most relevant to the Japanese repository concept. Thethermodynamic properties of minerals in this database are constrained primarilyby phase-equilibrium studies and a limited amount of calorimetric data. Theseproperties should be integrated with those of aqueous species and gases, andresults compared with independent experimental solubility equilibria. Recentstudies of this kind, which are remarkably few in number, are described bySverjensky et al. (1991) and Pokrovskii and Helgeson (1995), and provide auseful framework for similar work by JNC and others in the future. Based onthe evaluations discussed in preceding sections, similar studies are recommendedto revise standard molal thermodynamic properties in SPRONS.JNC for:

133

- 1 3 3 -

JNCTN8400 99-079

• albite,• strontianite,• witherite,• siderite,• celestite,• pyrrhotite,• magnetite, and• fluorite.

Evaluations of data reliability such as are described in Sections 6.1 - 6.12 shouldalso be undertaken routinely as the results of new solubility and aqueous-speciation studies become available.

Experimental investigations of mineral solubilities at relatively low temperaturesare often complicated by sluggish reaction kinetics. To overcome this problem,experiments at higher temperatures are useful because reaction-rates generallyincrease with increasing temperature, and because thermodynamic relationsincorporated in SUPCRT enable extrapolation of the high-temperature data tolower temperatures with reasonable confidence. We also recommend, however,that field investigations of phase relations in natural groundwater systems shouldbe given greater priority for purposes of evaluating the reliability of thermody-namic data. The temperature in such systems is low, but reaction times greatlyexceed those that can be accommodated experimentally. Detailed characteriza-tion of the mineralogy and groundwater chemistry comprising such systems isrequired to extract meaningful data that can be used to test the accuracy ofthermodynamic data. Such characterization should take into account the effectsof metastability, differences in crystallinity and the state of order/disorder inminerals formed under different conditions in different geologic environments,and the effects of solid-solution on mineral compositions.

The minerals in SPRONSJNC are stoichiometric phases, but as noted aboveseveral non-stoichiometric minerals, such as the clays, zeolites and chlorites, arealso important in geologic and near-field environments considered in theJapanese repository concept. The compositions of such minerals are variablewithin limits, and result from ideal or non-ideal mixing of thermodynamiccomponents in solid solution. Helgeson et al. (1978), Stoessell (1979), Aagaardand Helgeson (1983) and Giggenbach (1985) describe models of this behavior inwhich the activities of components computed from site-mixing approximationsare correlated with the compositions of the minerals and used as descriptivevariables in activity diagrams. The approach is advantageous because itcircumvents the need to assign values for the standard Gibbs free energies offormation to one or another solid-solution mineral with a specified composition.SPRONS.JNC includes data for several minerals that are stoichiometricallyequivalent to thermodynamic components used in these models to constrain thethermodynamic behavior of solid-solution minerals. This suggests that thereliability of these data could be evaluated by comparing predicted mineral

134

- 1 3 4 -

JNCTN8400 99-079

stability relations in various chemical subsystems with phase relations observed innatural systems.

6.13.3 Documentation

The documentation criteria adopted in the present study are that the selectedthermodynamic data are traceable to original experimental sources, and thatthese sources are scientifically defensible and reproducible. The traceabilitycriterion is met by referencing sources from which the standard molal and partialmolal properties in SPRONS.JNC were obtained, and these sources in turnidentify sources of primary experimental results that were used to retrieve thesedata. The sources of thermodynamic data in SPRONS.JNC are summarized inSections 5.2.2 and 5.2.3, and are referenced in Section 8. The sources ofexperimental constraints used to retrieve these data are identified in thesereferences, and most are also documented in the present report. The scientificdefensibility and reproducibility of the primary experimental results aredocumented in the original references.

6.13.4 Verification of accuracy

The accuracy of thermodynamic data in SPRONS.JNC is verified in the presentstudy by comparing calculated thermodynamic quantities with their experimen-tal counterparts, which are documented in the various diagrams comprisingAppendixes C and D. Similar diagrams, and others, constructed using identicalthermodynamic data are documented in the references summarized in Sections5.2.2 and 5.2.3. It is recommended that a library of such diagrams should alsobe developed by JNC, and that these should be updated and revised as theresults of new experimental investigations become available.

135

- 1 3 5 -

JNCTN8400 99-079

7 Acknowledgements

Enlightening discussions with Drs. Greg Anderson (University of Toronto) andBill Bourcier (LLNL) clarified various aspects of the SUPCRT model (anyinaccuracies in the present report are the sole responsibility of the authors,however). Dr. Everett Shock (Washington University) kindly provided inadvance of publication thermodynamic data and equation-of-state coefficientsfor the actinide ions that are included in SPRONS.JNC, and Dr. Tom Wolery(LLNL) explained the techniques used to estimate the thermodynamicproperties of solid-solution surrogate phases included in this database. Theefforts of Mr. Makoto Yoshizoe (Mitsubishi Corp.) and Mr. Shinichi Kataoka(Mitsubishi Heavy Industries) in providing contractual and logistical support tothis project are gratefully acknowledged.

136

- 1 3 6 -

JNCTN8400 99-079

8 References

Aagaard, P. and Helgeson, H. C. 1983. Activity/composition relations among silicatesand aqueous solutions: II. Chemical and thermodynamic consequences of idealmixing of atoms on homological sites in montmorillonites, illites and mixed-layer clays. Clays Clay Miner., 31(3), 207-217.

Ackerman, T. 1958. Aussagen uber die eigendissoziation des wassers aus molwarmessungen geloster elektrolyte. A. Elektrochem., 62, 411-419.

Ahrland, S. and Kullberg, L. 1971. Thermodynamics of metal complex formation inaqueous solution. I. A potentiometric study of fluoride complexes of hydrogen,uranium(VI), and vanadium (IV). Acta Chim. Scand., 25, 3457-3470.

Aja, S. U. 1991. Hike equilibria in solutions. III. A re-interpretation of the data of Sasset al. (1987). Geochim. Cosmochim. Acta, 55, 1365-1374.

Aja, S. U. and Rosenberg, P. E. 1996. The thermodynamic status of composkionally-complex clay minerals: Discussion of "clay mineral thermometry-a criticalperspective". Clays Clay Miner., AA{A), 560-568.

Aja, S. U., Rosenberg, P. E. and Kittrick, J. A. 1991a. Hike equilibria in solutions. I.Phase relationships in the system K2O-AI2O3-S1O2-H2O between 25 and250°C. Geochim. Cosmochim. Acta, 55, 1353-1364.

Aja, S. U., Rosenberg, P. E. and Kittrick, J. A. 1991b. Illite equilibria in solutions. II.Phase relationships in the system K^O-MgO-A^C^-SiC^-H^O. Geochim.Cosmochim. Acta, 55, 1365-1374.

Allakhverdov, G. R. 1985. Calculation of the formation constants of singly chargedcomplex ions of bivalent metals in solutions. Russ. J. Ploys. Chem., 59, 39-41.

Allred, G. C. and Woolley, E. M. 1981. Heat capacities of aqueous acetic acid, sodiumacetate, ammonia and ammonium chloride at 283.15 K, 298.15 K and 313.15K: AC°p for ionization of acetic acid and for dissociation of ammonium ion. / .Chem. Thermo., 13, 155-164.

Alvarez, J., Crovetto, R. and Fernandez-Prini, R. 1988. The dissolution of NT and H2in water from room temperature to 640 K. Ber. Bunsenges. Phys. Chem., 92,935-940.

Anderson, G. M. and Burnham, C. W. 1965. The solubility of quartz in supercriticalsteam. Am. J. Set., 263, 494-511.

Anderson, G. M. and Burnham, C. W. 1967. Reactions to quartz and corundum withaqueous chloride and hydroxide solutions at high temperatures and pressures.Am.]. Sci.,265, 12-27.

Anderson, G. M. and Crerar, D. A. 1993. Thermodynamics in Geochemistry. OxfordUniversity Press, Oxford, U. K. 588p.

Apps, J. A. 1970. The stability field of analcime. Ph.D. Dissertation, Harvard Univ.,347p.

137

- 1 3 7 -

Apps, J. A. and Neil, J. M. 1990. Solubilities of aluminum hydroxides andoxyhydroxides in alkaline solutions. Correlation with the thermodynamicproperties of Al(OH)4". In. Chemical modeling of aqueous systems II, (D.C.Melchior and R.L. Bassett, eds.), Am. Chem. Soc. Symp. Ser., 416, 414-428.

JNCTN8400 99-079

supercritical water. Geochim. Cosmocbim. Acta, 47', 1573-1578.

Bell, R. P. and George, J. H. B. 1953. Incomplete dissociation of some thallous andcalcium salts at different temperatures. Tram. Faraday Soc, 49, 619-627.

Benes, P. and Selecka, H. 1973. Ion pair formation and solubility of barium carbonatein aqueous solutions. Radiochem. Radioanal. Lett., 13, 339-348.

Benson, B. B. and Krause, D., Jr. 1976. Empirical laws for dilute aqueous solutions ofnonpolar gases. / . Chan. Phys., 64, 689-709.

Benson, B. B., Krause, D. and Peterson, M. A. 1979. The solubility and isotopicfractionation of gases in dilute aqueous solution. I. Oxygen. /. Soln. Chem., 8,655-690.

Berecz, F. and Szita, L. 1970. Electrochemical method for the solubility anddissolution of solid compounds. Some thermodynamic properties of the systemAl(OH)3-NaOH-H2O. Electrochim. Ada, 15, 1407-1419.

Berg, R. L. and Vanderzee, C. E. 1978. Thermodynamics of carbon dioxide andcarbonic acid: (a) the standard enthalpies of NaoCOsfo), NaHCO3(j;J andCO2(g^ in water at 298.15 K; (b) the standard enthalpies of formation, standardGibbs energies of formation, and standard entropies of COi(aq), WCOy(aq),CO32-(aq), NzHCOy(s), Na2CO3f;J, Na2CO3-H2O^ ) and Na2CO3-10H2O(s).J. Chem. Thermo., 10, 1113-1136.

Berman, R.G. 1988. Internally-consistent thermodynamic data for minerals in thesystem Na-> O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2.Journal ofPedology, 29(2),445-522.

Berman, R.G. and Brown, T.H. 1985. Heat capacity of minerals in the system Na-?O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2. Contrib. Mineral.Petrol., 89, 168-183.

Berman, R.G. and Greenwood, H.J. 1985. An internally consistent thermodynamicdata base for minerals in the system Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO-1-TiO2-H2O-CO2. Atomic Energy Canada, Ltd. Tech. Rep. 377,62p.

Berman, R. G. and Aranovich, L. Ya. 1996. Optimized standard state and solutionproperties of minerals. I. Model calibration for olivine, orthopyroxene,cordierite, garnet, and ilmenite in the system FeO-MgO-CaO-Al2O3-TiO2-SiO2. Contrib. Mineral. Petrol., 126, I-24.

Berman, R.G., Engi, M. and Greenwood, H.J. L986. Derivation of internally consistentthermodynamic properties by the technique of mathematical programming: Areview with application to the system MgO-SiO2-H2O. Journal of Petrology,27(6), 1331-1364.

Berner, R. A. 1967. Thermodynamic stability of sedimentary iron sulfides. Am. J. ScL,265, 773-785.

Berry, L. G. 1974. Powder diffraction file search manual, minerals. Joint Comm.Powder Diffraction Standards, Pub. M-l-23, 833p.

13?

- 1 3 9 -

JNCTN8400 99-079

Bernshtein, V. A. and Matsenok, Ye. A. 1965. Equilibrium in the interaction ofdiaspore with solutions of sodium hydroxide at temperatures of 250 and 300°C.J.App. Cbem. USSR, 38,1898-1901.

Bethke, C. M. 1996. Geochemical Reaction Modeling. Oxford University Press,Oxford, U. K. 397p.

Beuschlein, W. L. and Simenson, L. O. 1940. Solubility of sulfur dioxide in water./.Amer. Chem. Soc, 62, 610-612.

Biryukov, A. A. and Shlenskaya, V. I. 1964. Composition and stability constants ofchloro-complexes of palladium(II). Russ. J. Inorg. Chem., 9, 450-452.

Bloom, P. R. and Weaver, R. M. 1982. Effect of the removal of reactive surfacematerial on the solubility of synthetic gibbsites. Clays Clay Miner., 30, 281-286.

Bloss, F. D. 1971. Crystallography and Crystal Chemistry. Holt, Rinehart and Winston,Inc. New York, 545p-

Blount, C. W. 1977. Barite solubilities and thermodynamic quantities up to 300°Cand 1400 bars. Amer. Mineral., 62, 942-957.

Born, M. 1920. Volumen und hydrationswarme der ionen. Zeit. Physik., 1, 45-48.

Bourcier, W. L. 1985. Improvements in the solid solution modeling capabilities of theEQ3/6 geochemical code. UCID 20587, Lawrence Livermore NationalLaboratory, Livermore, California.

Bourcier W.L., Knauss K.G. and Jackson K.J. 1993. Aluminum hydrolysis constants to250° from boehmite solubility measurements. Geochim. Cosmochim. Acta, 57,747-762.

Boyle, R. W. 1911. The solubility of radium emanation. Application of Henry's law atlow partial pressure. Phil. Mag., 22, 840-854.

Broene, H. H. and DeVries, T. 1947. The thermodynamics of aqueous hydrofluoricacid solutions. / . Amer. Chem. Soc, 69, 1644-1646.

Brown, P. L., Sylva, R. N., Batley, G. E. and Ellis, J. 1985. The hydrolysis of metalions. Part 8. Aluminum (III). /. Chem. Soc. Dalton Trans., 1967-1970.

Bruno J., Wersin P. and Stumm W. 1992. On the influence of carbonate in mineraldissolution: II. The solubility of FeCO3(s) at 25°C and 1 atm total pressure.Geochim. Cosmochim. Acta, 56, 1149-1155.

Burch, T. E. 1993. Albite dissolution and precipitation kinetics at 80°C: Thedependence of solution saturation state. Ph.D. Dissertation, Yale University,New Haven, Conn.

Burch, T. E., Nagy, K. L. and Lasaga, A. C. 1993. Free energy dependence of albitedissolution kinetics at 80°C and pH 8.8. Chem. Geol., 105, 137-162.

Burnham, C. W. 1965. Ferrosilite. Carnegie Inst. Washington Year Book, 64, 202-204.

Busey, R. H. and Mesmer, R. E. 1977. Ionization equilibria of silicic acid and

140

- 1 4 0 -

JNCTN8400 99-079

polysilicate formation in aqueous sodium chloride solutions to 300 C. Inorg.Chem., 16, 2444-2450.

Busenberg, E. and Plummer, L. N. 1986. The solubility of BaCC^cr) (witherite) inCO2-H2O solutions between 0 and 90°C, evaluation of the association constantsof BaHCO3+(aq) and BaCC>3(aq) between 5 and 80°C, and a preliminaryevaluation of the thermodynamic properties of Ba2+(aq). Geocbim. Cosmocbim.Acta, 50, 2225-2233.

Busenberg, E., Plummer, L N. and Parker, V. B. 1984. The solubility of strontianite(SrCC^) in CO2-H2O solutions between 2 and 91°C, the association constantsof SrHCC>3+(aq) and SrCC>3(aq) between 5 and 80°C, and an evaluation of thethermodynamic properties of Sr2+(aq) and SrCC>3(cr) at 25°C and 1 atm totalpressure. Geocbim. Cosmocbim. Acta, 48, 2021-2035.

Butler, J. N. and Huston, R. 1970. Potentiometric studies of multicomponent activitycoefficients using the lanthanum fluoride membrane electrode. Anal. Chem., 42,1308-1311.

Cadekj J., Vesely, J. and Sulcek, Z. 1971. Bildung von fluoridkomplexen miterdalkalimetallen. Collection Czechoslov. Chem. Commun., 36, 3377-3381.

Carmichaei, D. M. 1977. Chemical equilibria involving pure crystalline compounds. InShort course in application of tbermodynamics to petrology and ore deposits (H. J.Greenwood, ed.), Mineral. Assoc. Canada, Toronto, 47-65.

Carothers, W. W. and Kharaka, Y. K. 1978. Aliphatic acid anions in oil-field waters -implications for origin of natural gas. Am. Assoc. Petrol. Geoi Bull., 62, 2441-2453.

Castet, S., Dandurand, J.-L., Schott, J. and Gout, R. 1993. Boehmke solubility andaqueous aluminum speciation in hydrothermal solutions (9O-35O°C):Experimental study and modeling. Geocbim. Cosmocbim. Acta, 57, 4869-4884.

Chang, B.-T., Pak, L.-H. and Li, Y.-S. 1979. Solubilities and rates of dissolution ofdiaspore in NaOH aqueous solutions. Bull. Chem. Soc. Japan, 52, 1321-1326.

Chatterjee, N. D. 1970. Synthesis and upper stability of paragonite. Contr. Mineral.Petrol, 27, 244-257.

Chen, C-T. A. and Marshall, W. L. 1982. Amorphous silica solubilities. IV. Behavior inpure water and aqueous sodium chloride, sodium sulfate, magnesium chloride,and magnesium sulfate solutions up to 350°C. Geocbim. Cos?nochim. Acta, 46,279-287.

Chen, X., Izatt, R. M. and Oscarson, J. L. 1994. Thermodynamic data for ligandinteraction with protons and metal ions in aqueous solutions at high tempera-tures. Chem. Rev., 94, 467-517.

Chermak, J. A. and Rimstidt, J. D. 1989. Estimating the thermodynamic properties(AG°f and AH°f) of silicate minerals at 298 K from the sum of polyhedralcontributions. Amer. Mineral., 74, 1023-1031.

Chernosky J.V. and Berman R.G. 1989. Experimental reversal of the equilibrium:clinochlore + 2 magnesite = 3 forsterite + spinel + 2 CO2 + 4 H2O and revised

141

- 1 4 1 -

JNCTN8400 99-079

thermodynamic properties for magnesite. Am. J. Sci., 289, 249-266.

Christ, C. L. and Hostetler, P. B. 1973. Studies in the system MgO-SiO2-CO2-H2O:II. The activity product constant of magnesite. Am. J. Sci., 268, 439-453.

Christ, C. L, Hostetler, P. B. and Siebert, R. M. 1973. Studies in the system MgO-SiC>2-CO->-H2O: III. The activity product constant of sepiolire. Am. J. Sci., 273,65-83.

Claussen, W. F. and Polglase, M. F. 1952. Solubilities and structures in aqueousaliphatic hydrocarbon solutions. / . Am. Chem. Soc, 74, 4817-4819.

CODATA. 1978. CODATA recommended key values for thermodynamics 1977.CODATA Bull. 28, 17p

Couturier, Y., Michard, G. and Sarazin, G. 1984. Constantes de formation descomplexes hydroxydes de l'aluminum en solution aqueuse de 20 a 70°C.Geochim. Cosmochim. Acta, 48, 649-659.

Cox, J. D., Wagman, D. D. and Medvedev, V. A. 1989. CODATA key values forthermodynamics. Final report of the CODATA Task Group on key values forthermodynamics. Hemisphere Publ. Corp., New York, 271p.

Crerar, D. A. and Anderson, G. M. 1971. Solubility and solvation reactions of quartzin dilute hydrothermal solutions. Chem. Geol., 8, 107-122.

Crerar, D. A. and Barnes, H. L. 1976. Ore solution chemistry V: Solubility ofchalcopyrite and chalcocite assemblages in hydrothermal solution at 200 to35O°C. Econ. Geol., 71, 722-794.

Crerar, D. A, Susak, H. J., Borcsik, M. and Schwartz, S. 1978. Solubility of the bufferassemblage pyrite + pyrrhotite + magnetite in NaCl solutions from 200° to350°C. Geochim. Cosmochim. Acta, 42, 1427-1439.

Crovetto, R., Fernandez-Prini, R. and Japas, M. L. 1982. Solubilities of inert gases andmethane in H2O and D2O in the temperature range of 300 to 600 K. /. Chem.Phys., 86, 1077-1086.

Crozier, T. E. and Yamamoto, S. 1974. Solubility of hydrogen in water, seawater andNaCi solutions. / . Chem. Eng. Data, 19(3), 242-244.

Culberson, O. L. and McKetta, J. J. 1951. Phase equilibria in hydrocarbon-watersystems. III. The solubility of methane in water at pressures to 10,000 PSIA.Petrol. Trans. AIME, 192, 223-226.

Curry, J. and Hazelton, C. L. 1938. The first thermodynamic ionization constant ofdeuterio-carbonic acid at 25°C. J. Amer. Chem. Soc, 60, 2773-2776.

Cuta, F. and Strafelda, F. 1954. The second dissociation constant of carbonic acidbetween 60 and 90°C. Chem. Listy, 48, 1308-1313.

Deer, W. A., Howie, R. A. and Zussman, J. 1962-1963. Rock-forming Minerals (vols. 1-5) John Wiley&Sons, Inc., New York.

Deiany, J. M. and Helgeson, H. C. 1978. Calculation of the thermodynamics of

142

- 1 4 2 -

JNCTN8400 99-079

dehydration in subducting oceanic crust to 100 kb and 800°C. Am. J. Sci., 278,638-686.

Denbigh, K. 1971. The Principles of Chemical Equilibrium, 3rd ed. CambridgeUniversity Press, Cambridge, U. K. 494p.

Devidal J-L., Dandurand J-L. and Gout R. 1996. Gibbs free energy of formation ofkaolinite from solubility measurement in basic solution between 60 and 170°C.Geochim. Cosmochim. Acta, 60(4), 553-564.

Dickson, A. G., Wesolowski, D. J., Palmer, D. A. and Mesmer, R. E. 1990.Dissociation constant of bisulfate ion in aqueous sodium chloride solutions to25O°C. /. Phys. Chem., 94, 7978-7985.

Donahoe R.J., Liou J.G. and Hemingway B.S. 1990. Thermochemical data formerlinoite: 1. Low-temperature heat capacities, entropies, and enthalpies offormation at 298.15 K of six synthetic samples having various Si/Al and Na/(Na+ K) ratios. Amer. Mineral., 75, 188-200.

Donnay, J. D. H. and Ondik, H. M. 1973. Crystal data determinative tables, 3rd ed.U.S. Dept. Commerce, Natl. Bur. Standards, Joint Comm. Powder Diff.Standards, 2, 1580p.

Drever, J. I. 1982. The Geochemistry of Natural Waters. Prentice-Hall, EnglewoodCliffs, N.J. 388p.

Droll, H. A., Block, B. P. and Fernelius, W. C. 1957. Studies on coordinationcompounds. XV. Formation constants for chloride and acetylacetonatecomplexes of palladium(II). Jour. Phys. Chem., 61, 1000-1004.

Drummond, S. E., Jr. 1981. Boiling and mixing of hydrothermal fluids: Chemicaleffects on mineral precipitation. Ph.D dissertation, Penn. State Univ., 357p.

Druzhinina, N. K. 1955. Solubility of diaspore in aluminate solutions. TsvetnyyeMetally, 28, 54-56 (in Russian).

Ellis, A. J. 1963. The effect of temperature on the ionization of hydrofluoric acid. / .Chem. Soc, 1963, 4300-4304.

Ellis, A. J. 1968. Partial molal volumes in high-temperature water. Part III. Halide andoxyanion salts. / Chem. Soc. (A), 1968, 1138-1143.

Ellis, A. J. and Golding, R. M. 1963. The solubility of carbon dioxide above 100°C inwater and in sodium chloride solutions. Am. J. Sci., 261, 47-61.

Ellis, A. J. and Giggenbach, W. 1971. Hydrogen sulphide ionization and sulphurhydrolysis in high temperature solution. Geochim. Cosmochim. Acta, 35,247-260.

El-Shazly, A. E. K. 1995. On the tiiermodynamic data of kaolinite. Amer. Mineral., 80,1048-1053.

Elmer, T. H. and Nordberg, M. E. 1958. Solubility of silica in nitric acid solutions. /.Am. Ceram. Soc, 41(12), 517-520.

- 1 4 3 -

JNCTN8400 99-079

Engi, M. 1992. Thermodynamic data for minerals: a critical assessment. In: Thestability of minerals (G.D. Price and N.L. Ross, eds.), Chapman & Hall, London,267-328.

Ernst, W. G. 1968. Amphiboles. Springer-Verlag, New York, 125p.

Essene, E. J. and Peacor, D. R. 1995. Clay mineral thermometry - A criticalperspective. Clays Clay Miner., 43, 540-553.

Essene, E. J. and Peacor, D. R. 1997. Illice and smectite: Metastable, stable or unstable?Further discussion and a correction. Clays Clay Miner., 45(1), 116-122.

Fein, J. B., Hemley, J. J., D'Angelo, W. M., Komninou, A. and Sverjensky, D. A. 1992.Experimental study of iron-chloride complexing in hydrothermal fluids.Geochim. Cosmochim. Acta, 56, 3179-3190.

Felmy, A. R., Rai, D. and Amonette, J. E. 1990. The solubility of barite and celestitein sodium sulfate: Evaluation of thermodynamic data. / . Soln. Chem., 19(2),175-185.

Fisher, J. R. and Barnes, H. L. 1972. The ion-product constant of water to 350°. / .Phys. Chem., 76(1), 90-99.

Fournier, R. O. I960. Solubility of quartz in water in the temperature interval from25°C to300°C. Geol. Soc. Amer. Bull., 71, 1867-1868.

Fournier, R. O. 1973. Silica in thermal waters: Laboratory and field investigation.Proc. Symp. on Hydrogeochemistry and Biochemistry, Tokyo, Japan, 1970. Vol. I.Hydrogeochemistry. Clarke, Washington, D. C , 122-138.

Fournier, R. O. 1977. Chemical geothermometers and mixing models for geothermalsystems. Geothermics, 5, 41-51.

Fournier, R. O. and Rowe, J. J. 1966. Estimation of underground temperatures fromthe silica content of water from hot springs and wet-steam wells. Am. J. Sci, 264,685-697.

Fournier, R. O. and Rowe, J. J. 1977. The solubility of amorphous silica in water athigh temperatures and pressures. Amer. Mineral., 62, 1052-1056.

Fournier, R. O. and Potter, R. W. 1982. An equation correlating the solubility ofquartz in water from 25° to 900°C at pressures up to 10,000 bars. Geochim.Cosmochim. Acta,46, 1969-1973.

Frantz, J. D. and Marshall, W. L. 1982. • Electrical conductances and ionizationconstants of calcium chloride and magnesium chloride in aqueous solutions attemperatures to 600°C and pressures to 4000 bars. Am. J. Sci., 282, 1666-1693.

Fricke, R. and Jucaitis, P. 1930. Untersuchen iiber die gleichgewichte in den systemenAl203-Na-10-HoO und AI2O3-K2O-H2O. Z. Anorg. Allg. Chem., 191, 129-149.

Frink, C. R. and Peech, M. 1962. The solubility of gibbsite in aqueous solutions andsoil extracts. Soil Sci. Soc. Amer. Proc., 26, 346-347.

144

JNCTN8400 99-079

Frink, C. R. and Peech, M. 1963. Hydrolysis of the aluminum ion in dilute solutions.Inorg. Chem., 2, 473-478.

Fulda, W. and Ginsberg, H. 1951. Tonerde und Aluminium. Walther de Gruyter andCo., Berlin, v.l, 31-32.

Fyfe, W. S., Turner, F. J. and Verhoogen, J. 1958. Metamorphic reactions andmetamorphic fades. Geol. Soc. America Mem., 75, 253p.

Gammons, C. H. and Seward, T. M. 1996. Stability of manganese (II) chloridecomplexes from 25 to 300°C Geochim. Cosmochim. Acta, 60(22), 4295-4311.

Ganor, J., Mogollon, J. L. and Lasaga, A. C. 1995. The effect of pH on kaolinitedissolution rates and on activation energy. Geochim. Cosmochim. Acta., 59(6),1037-1052.

Garrels, R. M. and Christ, C. L. 1965. Solutions, Minerals and Equilibria. Harper &Row, New York, N. Y. 450p.

Garrels, R. M., Thompson, M. E. and Siever, R. 1961. Control of carbonate solubilityby carbonate complexes. Am. J. Sci., 259, 24-45.

Giggenbach, W. F. 1985. Construction of thermodynamic stability diagrams involvingdioctahedral potassium clay minerals. Chem. Geol., 49, 231-242.

Gillespie, S. E., Oscarson, J. L., Chen, X., Izatt, R. M. and Pando, C. 1992. Thermody-namic quantities for the interaction of Q- with Mg i+, Ca2+ and H+ in aqueoussolution from 250 to 325°C. / . Soln. Chem., 21(8), 761-788.

Gimblett, F. G. R. and Monk, C. B. 1954. E.M.F. studies of electrolytic dissociation.Part 7. - Some alkali and alkaline earth metal hydroxides in water. Trans.Faraday Soc, 50, 965-972.

Gislason, S. R., Heaney, P. J., Oelkers, E. H. and Schott, J. 1997. Kinetic andthermodynamic properties of moganke, a novel silica polymorph. Geochim.Cosmochim. Acta, 61(6), 1193-1204.

Goodman, J. B. and Krase, N. W. 1931. Solubility of nitrogen in water at highpressures and temperatures, hid. Eng. Chem., 23, 401-404.

Gordon, T. M. 1973. Determination of internally consistent thermodynamic data fromphase equilibrium experiments. Journal of Geology, 81, 199-208.

Gottschalk, M. 1997. Internally consistent thermodynamic data for rock-formingminerals in the system SiO2-TiO2-Al2O3-Fe2O3-CaO-MgO-FeO-K2O-Na2O-H2O-CO2. Eur.J. Mineral., 9, 175-223.

Govett, G. J. S. 1961. Critical factors in the colorimetric determination of silica. Anal.Cbim. Acta, 25, 69-80.

Greenberg, S. A. and Price, E. W. 1957. The solubility of silica in solutions ofelectrolytes. /. Phys. Chem., 61, 1539-1541.

Greenwald, I. 1941. The dissociation of calcium and magnesium carbonates andbicarbonates. /. Biol. Chem., 141, 789-796.

145

- 1 4 5 -

JNCTN8400 99-079

Grenthe, I., Fuger, J., Konings, R.J.M., Lemire, R. J., Muller, A. B., Nguyen-Trung, C.and Wanner, H. 1992. Chemical thermodynamics of uranium. Elsevier SciencePubl., Amsterdam, 7l5p.

Haar, L, Gallagher, J. S. and Kell, G. S. 1984. NBS/NRC Steam Tables. Thermody-namic and Transport Properties and Computer Programs for Vapor and LiquidStates of Water in SI Units. Hemisphere Pub., "Washington, D. C., 320p.

Haas, J. L., Jr. 1974. PHAS20, a program for simultaneous multiple regression of amathematical model to thermocnemical data. NTIS AD-780301. I62p.

Haas, J. L., Jr., and Fisher, J.R. 1976. Simultaneous evaluation and correlation ofthermodynamic data. Am. J. Set., 276, 525-545.

Haas, J. R., Shock, E. L. and Sassani, D. C. 1995. Rare earth elements in hydrothermalsystems: Estimates of standard partial molal thermodynamic properties ofaqueous complexes of the rare earth elements at high pressures and temperatures.Geochim. Cosmochim. Acta, 59, 4329-4350.

Halbach, H. and Chatterjee, N. D. 1984. An internally consistent set of thermody-namic data for twenty one CaO-Al2O3-SiO2-H2O phases by linear program-ming. Contrib. Mineral. Petrol, 88, 14-23.

Harman, R. W. 1928. Aqueous solutions of sodium silicates: Part VIII. / . Phys.Chem., 32, 44-60.

Harned, H. S. and Robinson, R. A. 1940. Temperature variation of the ionizationconstants of weak electrolytes. Trans. Faraday Soc, 36, 973-978.

Harned, H. S. and Scholes, S. R. 1941. The ionization constant of HCO3- from 0 to50°. J.Amer. Chem. Soc, 63, 1706-1709.

Harned, H. S. and Bonner, F. T. 1945. The first ionization of carbonic acid in aqueoussolutions of sodium chloride. / . Artier. Chem. Soc, 67, 1026-1031.

Harrison, W. J. and Thyne, G. D. 1992. Prediction of clastic diagenesis in the presenceof organic acids. Geochim. Cosmochim. Acta, 56, 565-586.

Hasegawa, Y., Kawashiwa, H. and Sekine, T. 1970. Studies of the alkaline earthcomplexes in various solutions-V. Calcium(II) and strontium(II) complexes withcarbonate ions in 1 M sodium chloride media. Bull. Chem. Soc. Japan, 43, 1718-1722.

Haselton Jr. A.T., Cygan G.L. and Jenkins D.M. 1995. Experimental study ofmuscovite stability in pure H T O and 1 molal KC1-HC1 solutions. Geochim.Cosmochim. Acta, 59:3, 429-442.

Heaney, P. J. and Post, J. E. 1992. The widespread distribution of a novel silicapolymorph in microcrystalline quartz varieties. Science, 255, 441-443.

Heinrich, C. A. and Seward, T. M. 1990. A spectrophotometric study of aqueous iron(II) chloride complexing from 25 to 200°C. Geochim. Cosmochim. Acta, 54,2207-2221.

Helgeson, H. C. 1969. Thermodynamics of hydrothermal systems at elevated

146

- 1 4 6 -

JNCTN8400 99-079

temperatures and pressures. Am. J. Sci., 267, 729-804.

Helgeson, H. C. 1981. Prediction of the thermodynamic properties of elecrrolytes athigh pressures and temperatures. In. Chemistry and geochemistry of solutions athigh temperatures and pressures (D. T. Rickard and F. E. Wickman, eds.),Pergamon Press, New York, 133-177.

Helgeson, H. C. and Kirkham, D. H. 1974a. Theoretical prediction of thethermodynamic behavior of aqueous electrolytes at high pressures andtemperatures. I. Summary of the thermodynamic/electrostatic properties of thesolvent. Am.]. Sci., 27 A, 1089-1198.

Helgeson, H. C. and Kirkham, D. H. 1974b. Theoretical prediction of thethermodynamic behavior of aqueous electrolytes at high pressures andtemperatures. II. Debye-Hiickel parameters for activity coefficients and relativepartial molal properties. Am. J. Sci., 274, 1199-1261.

Helgeson, H. C. and Kirkham, D. H. 1976. Theoretical prediction of the thermody-namic behavior of aqueous electrolytes at high pressures and temperatures. III.Equation of state for aqueous species at infinite dilution. Am. J. Sci., 276, 97-240.

Helgeson, H.C., Delany, J.M., Nesbitt, H. W., and Bird, D.K. 1978. Summary andcritique of the thermodynamic properties of rock-forming minerals. Am. J. Sci.,278-A, 1-229.

Helgeson, H. C , Kirkham, D. H. and Flowers, G. C. 1981. Theoretical prediction ofthe thermodynamic behavior of aqueous electrolytes at high pressures andtemperatures: IV. Calculation of activity coefficients, osmotic coefficients, andapparent molal and standard and relative partial molal properties to 600°C and5 kb. Am.J. Sci., 281, 1249-1516.

Hemingway, B. S. and Robie, R. A. 1977. Enthalpies of formation of low albite(NaAlSi3Os), gibbsite (Al(OH)3) and NaAlCb: revised values for AHof 298 andACV 298 of some alumino-silicate minerals. U.S. Geol. Survey Jour. Research, 5,413-429.

Hemingway, B.S., Hass, J.L., Jr., and Robinson, G.R., Jr. 1982. Thermodynamicproperties of selected minerals in the system Al2O3-CaO-SiO2-H2O at298.15°K and 1 bar (105 pascals) pressure and at higher temperatures. U.S. Geol.Surv. Bull. 1544. 70p.

Hemingway B.S., Robie R.A. and Apps, J.A. 1991. Revised values for the thermody-namic properties of boehmite, AIO(OH), and related species and phases in thesystem Al-H-O. Amer. Mineral., 76, 445-457.

Hemley, J. J. 1959. Some mineralogical equilibria in the system ^ O - A I T O I - S I O - ) -H2O. Am. J. Sci., 257, 241-270.

Hemley, J. J. and Jones, W. R. 1964. Chemical aspects of hydrothermal alteration withemphasis on hydrogen ion metasomatism. Econ. Geol., 59, 238-369.

Hemley, J. J., Montoya, J. W., Christ, C. L. and Hostetler, P. B. 1977a. Mineralequilibria in the MgO-SiO2-H2O system: I. Talc-chrysotile-forsterite-brucitestability relations. Am.J. Sci, 277, 322-351.

147

- 1 4 7 -

JNCTN8400 99-079

Hemley, J. J., Montoya, J. W., Shaw, D.R. and Luce, R. W. 1977b. Mineral equilibriain the MgO-SiO2-H2O system: II. Talc-antigorite-forsterite-anthophyllite-enstatite stability relations and some geologic implications in the system. Am. J.Sci, 277, 353-383.

Hemley, J.J., Montoya, J.W., Marinenko, J.W., and Luce, R.W. 1980. Equilibria in thesystem AhC^-SiC^-^O and some general implications for alteration/mineralization processes. Econ. Geoi, 75, 210-228.

Hepler, L. G., Stokes, J. M. and Stokes, R. H. 1965. Dilatometric measurements ofapparent molar volumes of dilute aqueous electrolytes. Trans. Faraday Soc, 61,20-29.

Hitch, B. F. and Mesmer, R. E. 1976. The ionization of aqueous ammonia to 300° inKC1 media. / . Soln. Chem., 5, 667-680.

Hitchen, C. S. 1935. A method for experimental investigation of hydrothermalsolutions, with notes on its application to the solubility of silica. Trans. Inst.Mining Met., 44, 255-280.

Holland, TJ.B. and Powell, R. 1985. An internally consistent thermodynamic datasetwith uncertainties and correlations: 2. Data and results./. Metamorphic. Geol., 3,343-370.

Holland, T.J.B. and Powell, R. 1990. An enlarged and updated internally consistentthermodynamic dataset with uncertainties and correlations: the system K2O-Na2O -CaO -MgO -MnO -FeO -FeaOj-AbC^-TiC^-SiCb-C-^-Cb. /Metamorphic. GeoL 8, 89-124.

Holm, J. L. and Kleppa, O. J. 1966. The thermodynamic properties of the aluminumsilicates. Amer. Mineral., 51, 1608-1622.

Holm, J. L., Kleppa, O. J. and Westrum, E. F., Jr. 1967. Thermodynamics ofpolymorphic transformations in silica. Thermal properties from 5° to 1070°Kand pressure-temperature stability fields for coesite and stishovite. Geochim.Cosmochim. Ada, 31, 2289-2307.

Hostetler, J. D. 1984. Electrode reactions, aqueous electrons, and redox potentials innatural waters. Am. J. Sci, 284, 734-759.

Hostetler, P. B. 1963. The stability and surface energy of brucite in water at 25°C.Am. J. Sci., 261, 238-258.

Huang, W. H. and Keller, W. D. 1973. Gibbs free energy of formation calculatedfrom dissolution data using specific mineral analyses. III. Clay minerals. Amer.Mineral, 58, 1023-1028.

Huang, W. L. 1993. Stability and kinetics of kaolinite to boehmite conversion underhydrothermal conditions. Chem. GeoL, 105, 197-214.

Hudson, J. C. 1925. The solubility of sulfur dioxide in water and in aqueous solutionsof potassium chloride and sodium sulphate. /. Chem. Soc, 1925, 1332-1347.

Ikkatai, T. and Okada, N. 1962. Viscosity, specific gravity and equilibriumconcentrations of sodium aluminate solutions. In: Extractive metallurgy of

148

- 1 4 8 -

JNCTN8400 99-079

aluminum (G. Gerhard and P. T. Stroup, eds.), Interscience Publ., 159-173.

Ingri, N. 1959. Equilibrium studies of polyanions IV. Silicate ions in NaCl medium.Acta Chem. Scand., 13, 758-775.

Ipatieff, B. and Teodorovish, B. P. 1934. Solubility of hydrogen in water underpressure at high temperatures. Zhurnal Obscbei Khimii, 4, 395-399.

Iwatsuki, T. and Yoshida, H. 1999. Groundwater chemistry and fracture mineralogy inthe basement granitic rock in the Tono uranium mine area, Gifu Prefecture,Japan - Groundwater composition, Eh evolution analysis by fracture fillingminerals. Geochemical Journal (in press).

Izatt, R. M., Eatough, D. and Christensen, J. J. 1967. A study of Pd2+(aq) hydrolysis.Hydrolysis constants and the standard potential for Pd, Pd2+ couple. / . Chem.Soc, 1967(A), 1301-1304.

Jackson, K. J. and Helgeson, H. C. 1985. Chemical and thermodynamic constraints onthe hydrothermal transport and deposition of tin. II. Interpretation of phaserelations in the Southeast Asian tin belt. Econ. GeoL, 80(5), 1365-1378.

Jacobsen, R. L. and Langmuir, D. 1974. Controls on the quality variations of somecarbonate spring waters. / . HydroL, 23, 247-265.

Jenkins, I. L. and Monk, C. B. 1950. The conductances of sodium, potassium andlanthanum sulfates at 25° . / Amer. Chem. Soc, 72, 2695-2698.

Jiang, C. 1996. Solubility and solubility constant of barium sulfate in aqueous sodiumsulfate solutions between 0 and 80°C./. Soln. Chem., 25(1), 105-111.

Johnson, G. K. and Bauman, J. E., Jr. 1978. Equilibrium constants for the aquatediron(II) cation. Inorg. Chem., 17, 2774-2779.

Johnson G.K., Tasker I.R., Flotow H.E., O'Hare P.A.G. and Wise W.S. 1992.Thermodynamic studies of mordenite, dehydrated mordenite, and gibbsite.Amer. Mineral., 77, 85-93.

Johnson, J. W. and Norton, D. 1991. Critical phenomena in hydrothermal systems:State, thermodynamic, electrostatic, and transport properties of H2O in thecritical region. Am. J. ScL, 291, 541-648.

Johnson, J. W., Oelkers, E. H., and Helgeson, H. C. 1991. SUPCRT92: A softwarepackage for calculating the standard molal thermodynamic properties ofminerals, gases, aqueous species, and reactions from 1 to 5000 bars and 0° to1000°C. GeoL Soc. Am. short-course manual, San Diego, Ca., Oct. 21-24, 1991.

Johnson, J. W., Oelkers, E. H., and Helgeson, H. C. 1992. SUPCRT92: A softwarepackage for calculating the standard molal thermodynamic properties ofminerals, gases, aqueous species, and reactions from 1 to 5000 bars and 0° to1000°C. Computers and Geosciences, 18, 899-947.

Johnson, K. S. and Pytkowicz, R. M. 1978. Ion association with H+, Na+, K>, Ca2+,and Mg2+ in aqueous solutions at 25°C. Am. J. Sci., 278, 1428-1447.

Kamei, G. 1997. Natural analouge study of waste glass dissolution in bentonite. PNC

149

- 1 4 9 -

JNCTN8400 99-079

TN8410 97-035, Power Reactor and Nuclear Fuel Development Corp., Tokai-Mura, Ibaraki, Japan (in Japanese).

Kelley, K. K. I960. Contributions to the data on theoretical metallurgy. XIII. Hightemperature heat content, heat capacity and entropy data for the elements andinorganic compounds. U.S. Bur. Mines. Bull., 584, 232p.

Kelley, K. K., Todd, S. S., Orr, R. L, King, E. G. and Bonnickson, K. R. 1953.Thermodynamic properties of sodium-aluminum and potassium-aluminumsilicates. U.S. Bur. Mines. Rept. Inv., 4955, 21p.

Kennedy, G. C. 1950. A portion of the system silica-water. Econ. GeoL, 45, 629-653.

Kerrick, D. M. 1987. Cold seal systems. In. Hydro thermal experimental techniques (G.C. Ulmer and H. L. Barnes, eds.), John Wiley and Sons, New York, 293-323.

Kharaka, Y. K., Carothers, W. W. and Rosenbauer, R. J. 1983. Thermal decarboxyl-ation of acetic acid: Implications for origin of natural gas. Geochim. Cos?nochim.Acta, 47, 397-422.

Kharaka, Y. K., Law, L. M., Carothers, W. W. and Goerlitz, D. F. 1986. Role oforganic species dissolved in formation waters from sedimentary basins in mineraldiagenesis. In: Roles of organic matter during sediment diagenesis (D. L. Gautier,ed.), Soc. Econ. Paleontol. Min., SEPM Spec. Pub., 38, 111-122.

Kharaka, Y. K., Lundegard, P. D., Ambats, G., Evans, W. C. and Bischoff, J. L. 1993.Generation of aliphatic acid anions and carbon dioxide by hydrous pyrolysis ofcrude oils. Appl. Geochem., 8, 317-324.

Khitarov, N. I. 1956. The 400°C isotherm for the system H2O-S1O2 at pressures up to2,000 kg/cm2. Geochemistry, 1956 (1), 55-61.

Khodakovsky, I. L., Katorcha, L. V. and Kuyunko, N. S. 1980. Thermodynamicproperties of compounds in the AI2O3-H2O system and their equilibriumrelations in the range 25-300°C. Geokhimia, 11, 1606-1624 (in Russian).

King, E. G. 1955. Low-temperature heat capacity and entropy at 298.16°K of analcite./. Am. Chem. Soc, 87, 2192-2193.

King, E. G. and Weller, W. W. 1961. Low-temperature heat capacities and entropies at298.15°K of diaspore, kaolinite, dickite, and halloysite. U.S. Bur. Mines Rept.Inv., 5810, 6p.

King, E. G., Ferrante, M. J. and Pankratz, L. B. 1975. Thermodynamic data forMg(OH)2 (brucite). U.S. Bur. Mines Rept. Inv., 8041, 13p.

Kitahara, S. I960. The solubility of quartz in water at high temperatures and highpressures. Rev. Phys. Chem. Japan, 30, 109-114.

Kittrick, J. A. 1966a. The free energy of formation of gibbsite and A1(OH)4" fromsolubility measurements. Soil Sci. Soc. Amer. Proc, 30, 595-601.

Kittrick, J. A. 1966b. Free energy of formation of kaolinite from solubility measure-ments. Amer. Mineral., 51, 1457-1466.

150

- 1 5 0 -

JNCTN8400 99-079

Kiseleva, I. A., Topor, N. D. and Mel'chakova, L. V. 1972. Experimencal determina-tion of the heat content and heat capacity of grossularite, andradite and pyrope[abs.]. Geochim. Internat., 9, p. 1087.

Kiseleva, I. A., Topor, N. D. and Andreyenko, E. D. 1974. Thermodynamicparameters of minerals of the epidote group. Geochim. Internat., 11, 389-398.

Klots, C. E. and Benson, B. B. 1963. Solubilities of nitrogen, oxygen and argon indistilled water./. Marine Res., 21, 48-57.

Kofler, M. 1912. Die loslichkeit der Ra-emanation in wasser in ihrer abhangigkeit vonder temperatur. Sitsungsber. Akad. Wiss. Wien, Math-Naturwiss., Kl, 121, 2169-2180.

Kolassa, J. E. 1990. Confidence intervals for thermodynamic constants. Geochim.Cosmochim. Acta, 55, 3543-3552.

Krupka, K. M., Robie, R. A., and Hemingway, B. S. 1979. High-temperature heatcapacities of corundum, periclase, anorthite, CaAl2Si2O8 glass, muscovite,pyrophyllite, KAIS13O8 grossular, and NaAlSi3Os glass. Amer. Mineral, 64, 86-101.

Krupka, K. M., Kerrick, D. M. and Robie, R. A. 1977a. High temperature heatcapacities of dolomite, talc and tremolite, and implications to equilibrium in thesiliceous dolomite system [abs.]. Geol. Soc. America Abs. with Programs, 9,p.1060.

Krupka, K. M., Robie, R. A. and Hemingway, B. S. 1977b. The heat capacities ofcorundum, periclase, anorthite, CaAl2Si2Og glass, muscovite, pyrophyllite,KAlSijO 8 glass, grossular and NaAlS 13(1)8 glass between 350 and 1000 K [abs.].Am. Geophys. Union Trans., 58, p.523.

Kunze, G. 1961. Antigorit. Stuktur, theortische grundlagen und ihre praktischebedeutung fiir weitere serpentin-forschung. Fortschr. Mineralogie, 39, 206-324.

Kuyunko, N. S., Malinin, S. D. and Khodakovsky, I. L. 1983. An experimental studyof aluminum ion hydrolysis at 150, 200, and 250°C. Geochem. Internat., 20, 76-86.

Lagerstrom, G. 1959. Equilibrium studies of polyanions III. Silicate ions in NaQC>4medium. Acta Chem. Scand., 13, 722-736.

Langmuir, D. 1968. Stability of calcite based on aqueous solubility measurements.Geochim. Cosmochim. Acta, 32(8), 835-851.

Langmuir, D. 1969. The Gibbs free energies in the system Fe-O->-H2O-CCh at 25°C.USGS Prof. Paper 650-B, 180-183.

Langmuir, D. 1997. Aqueous Environmental Geochemistry. Prentice Hall, Upper SaddleRiver, N. J. 600p.

Larson, T. E., Sollo, F. W. and McGurk, F. F. 1973. Complexes affecting the solubilityof calcium carbonate in water. Research Rept. 68. Univ. Illinois Water ResourcesCenter, Urbana, 111., 49p.

151

- 1 5 1 -

JNCTN8400 99-079

Lavrova, E. M. and Tudorovskaya, G. L. 1977. Solubility of sulfur dioxide in aqueoushydrochloric acid solutions. J. App. Chem. USSR, 50, 1102-1106.

Lemire, R. J., Saluja, P. P. S. and Campbell, A. B. 1992. Aqueous partial molar heatcapacities and volumes of NaTcC>4 and NaReO,}. / . Soln. Chem., 21, 507-523.

Levek-Sengers, J. M. H., Kamgar-Parsi, B., Balfour, F. W., and Sengers, J. V. 1983.Thermodynamic properties of stream in the critical region./. Phys. Chem. Ref.Data, 12(1), 1-28.

Lietzke, M. H., Stoughton, R. W. and Young, T. F. 1961. The bisulfide acid constantfrom 25 to 225° as computed from solubility data. / . Phys. Chem., 65,2247-2249.

Liou, J. G. 1971. P-T stabilities of laumontite, wairakite, lawsonite, and relatedminerals in the system CaA^SiiOs-SiC^-H^O. Jour. Petrology, 12(2), 379-411.

Lofgren, G. 1987. Internally heated systems. In. Hydrothermal experimental techniques(G. C. Ulmer and H. L. Barnes, eds.), John Wiley and Sons, New York, 324-332.

Loy, H. L. and Himmelblau, P. M. 1961. The first ionization constant of hydrogensulfide in water. / . Phys. Chem., 65, 264-267.

Lundegard, P. D. and Kharaka, Y. K. 1990. Geochemistry of organic acids insubsurface waters - field data, experimental data, and models. In. Chemicalmodeling of aqueous systems II (D. C. Melchior and R. L. Bassett, eds.), Am.Chem. Soc, Washington, D. C , 169-189.

Lyapunov, A. N., Khodakova, A. G. and Galkina, Z. G. 1964. Solubility ofhydrargillite in NaOH solutions containing soda or sodium chloride at 60°Cand 95°C. Tsvetnye Metally, 37(2), 48-51.

Mackenzie, F. T. and Gees, R. 1971. Quartz: Synthesis at earth-surface conditions.Science, 173, 533-535.

Mah, A. D., Pankratz, L. B., Weller, W. W. and King, E. G. 1967. Thermodynamicdata for cuprous and cupric oxides. U.S. Bur. Mines Rept. Inv., 7026, 20p.

Maier, C. G. and Kelley, K. K. 1932. An equation for the representation of hightemperature heat content data. / . Am. Chem. Soc, 54, 1064-1072.

Majer, V. and Stulik, K. 1982. A study of the stability of alkaline-earth metalcomplexes with fluoride and chloride ions at various temperatures bypotentiometry with ion-selective electrodes. Talanta, 29, 145-148.

Malinin, S. D. and Savelyeva, N. I.. 1972. The solubility of CO2 in NaCl andsolutions at 25°, 50° and 75°C under elevated pressures. Geochem. Internat.,9(5), 410-418.

Malinin, S. D. and Kurovskaya, N. A. 1975. Solubility of CO2 in chloride solutions atelevated temperatures and pressures. Geochem. Internat., 12(2), 199-201.

Malinin, S. D., Uchameyschvili, N. Ye. and Khitarov, N. I. 1969. Application of thetheory of strong electrolytes to the solubility of barite in aqueous metal chlorides

152

- 1 5 2 -

JNCTN8400 99-079

under hydro thermal conditions. Geokhimiya, 927-938.

Markham, A. E. and Kobe, K. A. 1941. The solubility of carbon dioxide and nitrousoxide in aqueous salt solutions. / . Am. Cbem. Soc, 63, 449-454.

Maronny, G. 1959. Constantes der dissociation de I'hydrogenene sulfure. Electrochim.Acta, 1, 58-69.

Marshall, W. L. and Jones, E. V. 1966. Second dissociation constant of sulfuric acidfrom 25 to 350° evaluated from solubilities of calcium sulfate in sulfuric acidsolutions. / . Phys. Chem., 70, 4028-4040.

Mattigod, S. V. and Sposito, G. 1978. Improved method for estimating the standardfree energies of formation (AG"V 298 15 ) of smectites. Geochim. Cosmochim.Acta., 42, 1753-1762.

May, H. M., Helmke, P. A. and Jackson, M. L. 1979. Gibbsite solubility andthermodynamic properties of hydroxy-aluminum ions in aqueous solution at25°C. Geochim. Cosmochim. Acta, 43, 861-868.

May, H. M., Kinniburgh, D. G., Helmke, P. A. and Jackson, M. L. 1986. Aqueousdissolution, solubilities and thermodynamic stabilities of commonaluminosilicate clay minerals: Kaolinite and smectites. Geochim. Cosmochim.Acta., 50, 1667-1677.

Markham, A. E. and Kobe, K. A. 1941. The solubility of gases in liquids. Chem. Rev.,28,519-588.

Marshall, W. L. and Jones, E. V. 1966. Second dissociation constant of sulfuric acidfrom 25 to 350°C evaluated from solubilities of calcium sulfate in sulfuric acidsolutions. /. Phys. Chem., 70, 4028-4040.

McCollough, J. P. and Scott, D.W. 1968. Experimental Thermodynamics. Butterworths,London. 606p.

McGee, K. A. and Hostetler, P. B. 1975. Stability constants for MgOH+ and brucitebelow 100°C. Am. Geophys. Union Trans. (EOS), 54, p.487.

Melcher, A. C. 1910. The solubility of silver chloride, barium sulphate and calciumsulphate at high temperature./. Am. Chem. Soc, 32, 50-66.

Mesmer, R. E. 1971. Hydrolysis of iron(2+) in dilute chloride at 25°. Inorg.Chem.,10, 857-858.

Mesmer, R. E., Baes, C. F., Jr. and Sweeton, F. H. 1972. Acidity measurements atelevated temperatures. VI. Boric acid equilibria. Inorg. Chem., 11, 537-543.

Mesmer, R. E., Patterson, C, S., Busey, R. H. and Holmes, H. F. 1989. Ionization ofacetic acid in NaCl(aq) media: A potentiometric study to 573 K and 130 bar./ Phys. Chem., 93, 7483-7490.

Miller, G. R. and Kester, D. R. 1976. Sodium fluoride ion-pairs in seawater. Mar.Chem., 4, 67-82.

Mills, K. C. 1974. Thermodynamic Data for Inorganic Sulphides, Selenides and Tellurides.

: 153

- 1 5 3 -

JNCTN8400 99-079

Butterworths, London, 845p.

Montoya, J.W. and Hemley, J. J. 1975. Activity relations and stabilities in alkali feldsparand mica alteration reactions. Econ. CeoL, 70, 577-594.

Morey, G. W. 1957. The solubility of solids in gases. Econ. GeoL, 52, 225-251.

Morey, G. W. and Hesselgesser, J. M. 1951. The solubility of quartz and some othersubstances in superheated steam at high pressures. Amer. Soc. Mech. Eng. Trans.,73, 865-875.

Morey, G. W., Fournier, R. O. and Rowe, J. J. 1962. The solubility of quartz in waterin the temperature interval from 25° to 300°C. Geochim. Cosmochim. Acta., 26,1029-1043.

Morey, G. W., Fournier, R. O. and Rowe, J. J. 1964. The solubility of amorphoussilica at 25°. / Geophys. Res., 69(10), 1995-2002.

Morrison, T. J. and Billet, F. 1952. The salting-out of nonelectrolytes. Part II. Theeffect of variation of the nonelectrolyte. /. Chem. Soc, London, 1952, 3819-3822.

Morrison, T. J. and Johnstone, N. B. 1954. Solubilities of the inert gases in water. / .Chem. Soc, London, 1954, 3441-3446.

Morss, L. R. 1976. Thermochemical properties of yttrium, lanthanum and lanthanideelements and ions. Chem. Rev., 76, 827-841.

Murphy W.M., Pabalan R.T., Prikryl J.S. and Goulet C.J. 1996. Reaction kinetics andthermodynamics of aqueous dissolution and growth of analcime and Na-clinoptilolite at 25°C. Am. J. Sci., 296, 128-186.

Murray, C. N., Riley, J. P. and Wilson, T. R. S. 1969. The solubility of gases indistilled water and sea water - I. Nitogen. Deep-Sea Res., 16, 297-310.

Nagy, K.L. and Lasaga, A.C. 1992. Dissolution and precipitation kinetics of gibbsite at80°C and pH 3: "The dependence on solution saturation state. Geochim.Cosmochim. Acta, 56, 3093-3111.

Nagy, K. L., Blum, A. E. and Lasaga, A. C. 1991. Dissolution and precipitationkinetics of kaolinite at 80°C and pH 3: The dependence on solution saturationstate. Am.]. Sci., 291, 649-686.

Nakayama, F. S. 1971a. Thermodynamic functions for the dissociation of NaHCO3°,NaCO3-, H2CO3 and HCO3-. / . Inorg. NucL Chem., 33, 1287-1291.

Nakayama, F. S. 1971b. Magnesium complex and ion-pair in MgCC>3-CO2 solutionsystem. / . Chem. Eng. Data, 16, 178-181.

Nasanen, R. 1946. Zur einwirkung der saure- und basenzusatze auf die fallungskurvevon bariumcarbonat.. Suomen Kemistilehti, 90, 24-2.

Nasanen, R. 1947. Potentiometric study on the first ionization of carbonic acid inaqueous solutions of sodium chloride. Acta Chem. Scand., 67, 204-209.

- 1 5 4 -

JNCTN8400 99-079

Nasanen, R., Merilainen, P. and Leppanen, K. 1961. Potentiometric decermination ofthe solubility product of lead carbonate. Ada Chem. Scand., 15, 913-918.

Naumov, G.B., Ryzhenko, B.N. and Khodakovsky, I.L. 1971. Handbook ofTbermodynamic Data. Atomizdat, Moscow, 327p.

Navrotsky, A. 1987. Models of crystalline solutions. In. Thermodynamic modeling ofgeological materials: Minerals, fluids and melts (I.S.E. Carmichael and H. P.Eugster, eds.), 17, Reviews in Mineralogy, Mineral. Soc. Amer., 35-69.

Newton, R. C. 1987. Thermodynamic analysis of phase equilibria in simple mineralsystems. In. Thermodynamic modeling of geological materials: Minerals, fluids andmelts (I.S.E. Carmichael and H. P. Eugster, eds.), 17, Reviews in Mineralogy,Mineral. Soc. Amer., 1-33.

Nikolaeva, N. M. and Tolpygina, L. N. 1969. Hydrolysis of aluminum salts atelevated temperatures. Izvestiya Sibirskogo Otdeleniya AN SSSR, SeriyaKhimicheskikh Nauk, 7, 49-55 (in Russian).

Nordstrom, D.K. and Munoz, J.L. 1985. Geochemical Thermodynamics. Benjamin/Cummings, Menlo Park, Ca., 477p.

Nordstrom, D.K., Plummer, L.N., Langmuir, D., Busenberg, E., May, H.M., Jones,B.F. and Parkhurst, D.L. 1990. Revised chemical equilibrium data for majorwater-mineral reactions and their limitations. In. Chemical modeling of aqueoussystems II, (D.C. Melchior and R.L. Bassett, eds.), Am. Chem. Soc. Symp. Ser.,416,399-413.

Noyes, A. A. 1907. The electrical conductivity of aqueous solutions. Carnegie Inst.Publ. No. 63, Washington, D. C , 352p.

Oda, C , Yoshikawa, H. and Yui, M. 1996. Effects of aging on the solubility ofpalladium. In. Scientific Basis for Nuclear Waste Management XIX (W. M.Murphy and D.A. Knecht, eds.), Mat. Res. Soc. Symp., 412, 881-887.

Oda, C , Shibata, M. and Yui, M. 1999. Calculation of porewater chemistry incompacted bentonite for the 2n& progress (PA) report. Japan Nuclear CycleDevelopment Institute, Tokai-Mura, Ibaraki, Japan, Technical Report (inpreparation).

Oelkers, E. H. and Helgeson, H. C. 1988. Calculation of the thermodynamic andtransport properties of aqueous species at high pressures and temperatures:Dissociation constants for supercritical alkali metal halides at temperatures from400 to 800°C and pressures from 500 to 4000 bar. / Phys. Chem., 92, 1631-1639.

Oelkers, E.H., Helgeson, H.C., Shock, E.L., Sverjensky, D.A., Johnson, J.W. andPokrovskii, V.A. 1995. Summary of the apparent standard molal Gibbs freeenergies of formation of aqueous species, minerals, and gases at pressures 1 to5000 bars and temperatures 25 to 1000°C. / Phys. Chem. Re/Data, 24(4),1401-1560.

Okamoto, G., Okura, T. and Goto, K. 1957. Properties of silica in water. Geochim.Cosmochim. Acta, 12, 123-132.

155

- 1 5 5 -

JNCTN8400 99-079

Olofsson, G., Oshodi, A. A., Qvarnstrom, E. and Wadso, I. 1985. Calorimetricmeasurements on slightly soluble gases in water. Enthalpies of solution ofhelium, neon, argon, Krypton, xenon, methane, ethane, propane, 1-butane andoxygen at 288.15, 298.15 and 308.15 K. /. Chem. Thermo., 16, 1041-1052.

Onda, K., Sada, E. Kobayashi, T., Kito, S. and Ito, K. 1970. Salting-out parameters ofgas solubility in aqueous salt solutions. J. Chem. Eng. Data, 3(1), 18-24.

O'Sullivan, T. D. and Smith, N. O. 1970. The solubility and partial molar volume ofnitrogen and methane in water and in aqueous sodium chloride from 50 to 125°and 100 to 600 acm. /. Phys. Chem., 74, 1460-1466.

Oscarson, J. L., Izatt, R. M., Brown, P. R., Pawlak, Z., Gillespie, S. E. and Christensen,J. J. 1988a. Therrnodynamic quantities for the interaction of SO4-- with H +and Na+ in aqueous solution from 150 to 320°C. / . Soln. Chem., 17(9), 841-863.

Oscarson, J. L, Gillespie, S. E., Christensen, J. J., Izatt, R. M. and Brown, P. R. 1988b.Thermodynamic quantities for the interaction of H+ and Na+ withCiH^CVand Cl- in aqueous solution from 275 to 320°C. /. Soln. Chem., 17(9), 865-885.

Packter, A. 1979. Studies on recrystallized aluminum trihydroxide precipitates: Theenergetics of dissolution by sodium hydroxide solutions. Coll. Polymer Sci., 257,977-980.

Palmer, D. A. and van Eldik, R. 1983. The chemistry of metal carbonato and carbondioxide complexes. Chem. Rev., 83, 651-731.

Palmer, D. A. and Drummond, S. E. 1988. Potentiometric determination of the molalformation constants of ferrous acetate complexes in aqueous solutions to hightemperatures. / . Phys. Chem., 92, 6795-6800.

Palmer D.A. and Wesolowski D.J. 1992. Aluminum speciation and equilibria inaqueous solution: II. The solubility of gibbsite in acidic sodium chloridesolutions from 30 to 70°C. Geochim. Cosmochim. Acta, 56, 1093-1111.

Palmer D.A. and Hyde K.E. 1993. An experimental determination of ferrous chlorideand acetate complexation in aqueous solutions to 300°C. Geochim. Cosmochim.Acta, 57, 1393-1408.

Palmer D.A. and Wesolowski D.J. 1993. Aluminum speciation and equilibria in aqueoussolution: III. Potentiometric determination of the first hydrolysis constant ofaluminum (III) in sodium chloride solutions to 125°C. Geochim. • Cosmochim.Acta, 57, 2929-2938.

Palmer, D. A. and Wesolowski, D. J. 1997. Potentiometric measurements of the firsthydrolysis quotient of magnesium (II) to 250°C and 5 molal ionic strength(NaCl). / Soln. Chem., 26(2), 217-232.

Pankratz, L. B. 1964a. High-temperature heat contents and entropies of andalusite,kyanite, and sillimanite. U.S. Bur. Mines Kept. Inv., 6370, 7p.

Pankratz, L. B. 1964b. High-temperature heat contents and entropies of muscovite anddehydrated muscovite. U.S. Bur. Mines Rept. Inv., 6708, 8p.

156

- 1 5 6 -

JNCTN8400 99-079

Pankratz, L. B. 1968a. High-temperature heat contents and entropies of dehydratedanalcite, kaliophilite, and leucite. U.S. Bur. Mines Rept. Inv., 7073, 8p.

Pankratz, L B. 1968b. High-temperature heat contents and entropies of fourcrystalline sodium-calcium silicates. U.S. Bur. Mines Rept. Inv., 7201, 8p.

Pankratz, L. B. and Kelley, K. K. 1964. High-temperature heat contents and entropiesof akermanite, cordierite, gehlenite, and merwinite. U.S. Bur. Alines Rept. Inv.,6555, 5p.

Pankratz, L. B. and King, E. G. 1965. High-temperature heat contents and entropies oftwo zinc suifides and for solid solutions of zinc and iron sulfides. U.S. Bur.Mines Rept. Inv., 6371, 6p.

Pankratz, L. B. and King, E. G. 1970. High-temperature enthalpies and entropies ofchalcopyrite and bornite. U.S. Bur. Mines Rept. Inv., 7435, 10p.

Parkhurst, D. L, Plummer, L. N. and Thorstenson, D. C. 1980. PHREEQE - acomputer program for geochemical calculations. U. S. Geol. Surv. Water Resour.Invest. Rept. 82-14.

Parks, G. A. and Pohl, D. C. 1988. Hydrothermal solubility of uraninite. Geochim.Cosmochim. Acta, 52, 836-875.

Patterson, C. S., Slocum, G. H., Busey, R. H. and Mesmer, R. E. 1982. Carbonateequilibria in hydrothermal systems. First ionization of carbonic acid in NaClmedia to 300°C. Geochim. Cosmochim. Acta, 46, 1653-1663.

Patterson, C. S., Busey, R. H. and Mesmer, R. E. 1984. Second ionization of carbonicacid in NaCl media to 250°C. /. Soln. Chem., 13, 647-661.

Pearson, D., Copeland, C. S. and Benson, S. W. 1963. The electrical conductance ofaqueous sodium chloride in the range 300 to 383°. / . Arner. Chem. Soc, 85,1044-1047.

Perkins, D., Ill, Essene, E. J., Westrum, E. F., Jr., and Wall, V. J. 1977. Application ofnew thermodynamic data to grossular phase relations. Contr. Mineral. Petrol.,64, 137-147. •

Peryea, F. J. and Kittrick, J. A. 1988. Relative solubility of corundum, gibbsite,boehmite, and diaspore at standard state conditions. Clays Clay Miner., 36, 391-396.

Pierotti, R. A. 1965. Aqueous solutions of nonpolar gases. / . Phys. Chem., 69, 281-288.

Pitzer, K. S., Roy, R. N. and Silvester, L. F. 1977. Thermodynamics of electrolytes. 7.Sulfuric acid. / . Amer. Chem. Soc, 99, 4930-4936.

Plummer, L. N. and Busenberg, E. 1982. The solubilities of calcite, aragonite, andvaterite in CO2-H2O solutions between 0 and 90°C, and an evaluation of theaqueous model for the system CaCC^-CO-i-HiO. Geochim. Cosmochim. Acta.,46, 1011-1040.

PNC. 1992. Research and development on geological disposal of high-level radioactivewaste. PNC TN1410 93-059, Power Reactor and Nuclear Fuel Development

_ _ 157

- 1 5 7 -

JNCTN8400 99-079

Corp., Tokai-Mura, Ibaraki, Japan.

Pokrovski, G. S., Schott, J. and Sergeyev, A. S. 1995. Experimental determination ofthe stability constants of NaSO/}- and NaB(OH)4 in hydro thermal solutionsusing a new high-temperature sodium-selective glass electrode - Implications forboron isotopic fractionation. Chem. GeoL, 124, 253-265.

Pokrovskii V.A. and Helgeson H.C. 1995. Thermodynamic properties of aqueousspecies and the solubilities of minerals at high pressures and temperatures: Thesystem Al2O3-H2O-NaCl. Am. J. ScL, 295, 1255-1342.

Pokrovskii, V. A. and Helgeson, H. C. 1997a. Calculation of the standard partial molalthermodynamic properties of KC1° and activity coefficients of aqueous fCCl attemperatures and pressures to 1000C and 5 kbar. Geochim. Cosmochim. Acta,61(11), 2175-2183.

Pokrovskii V.A. and Helgeson H.C. 1997b. Thermodynamic properties of aqueousspecies and the solubilities of minerals at high pressures and temperatures: Thesystem A12O3-H2O-KOH. Chem. GeoL, 137, 221-242.

Pokrovskii V.A. and Helgeson H.C. 1998. Thermodynamic properties of aqueousspecies and the solubilities of minerals at high pressures and temperatures: Athermodynamic interpretation of mineral equilibria in the system K2O-Na2O-A12O3 -SiO2-H2O—HC1. Geochim. Cosmochim. Acta (submitted).

Polzer, W. L. and Hem, J. D. 1965. The dissolution of kaolinite. / . Geophys. Res., 70,6233-6240.

Potter, R. W. and Clynne, M. A. 1978. The solubility of the noble gases He, Ar, Krand Xe in water up to the critical point. / . Soln. Chem., 7, 837-844.

Powell, R. and Holland, T.J.B. 1985. An internally consistent thermodynamic datasetwith uncertainties and correlations: 1 Methods and a worked example. / .Metamorphic Geoi, 3, 327-342.

Pray, H. A., Schweickert, C. E. and Minnieh, B. H. 1952. Solubility of hydrogen,oxygen, nitrogen, and helium in water at elevated temperatures. Ind. Eng.Chem., 44, 1146-1151.

Price, L. C. 1979. Aqueous solubility of methane at elevated pressures and tempera-tures. AAPGBulL, 632, 1527-1533.

Prutton, C. F. and Savage, R. L. 1945. The solubility of carbon dioxide in calciumchloride-water solutions at 75, 100 and 120°C and high pressures. / . Am. Chem.Soc, 67, 1550-1554.

Puigdomenech, I., Rard, J. A., Plyasunov, A. V. and Grenthe, I. 1997. Temperaturecorrections to thermodynamic data and enthalpy calculations. In: Modeling inAquatic chemistry (I. Grenthe and I. Puigdomenech, eds.), OECD/NEA, Paris,427-493.

Quist, A. S. and Marshall, W. L. 1968. Ionization equilibria in ammonia-watersolutions to 700° and to 4000 bars of pressure. / . Phys. Chem., 72, 3123-3128.

Quist, A. S., Franck, E. U., Jolley, H. R. and Marshall, W.L. 1963. Electrical

158

- 1 5 8 -

JNCTN8400 99-079

conductances of aqueous solutions at high temperature and pressure. I. Theconductances of potassium sulfate-water solutions from 25 to 800° and atpressures up to 4000 bars. / Phys. Chem., 67, 2453-2459.

Raaflaub, J. 1960. Untersuchungen iiber die magnesium komplex verbindungen vonoxalet und carbonat. Helvetiae Chim. Acta., 43, 629-634.

Rabe, A. E. and Harris, J. F. 1963. Vapor liquid equilibrium data for the binary systemsulfur dioxide and water. / Chem. Eng. Data, 8, 333-336.

Ragnarsdottir, K. V. and Walther, J. V. 1985. Experimental determination ofcorundum solubilities in pure water between 400-700°C and 1-3 kbar. Geochim.Cosmochim. Acta, 49, 2109-2115.

Ramette, R. W. 1986. Copper (II) complexes with chloride ion. Inorg. Chem., 25,2481-2482.

Ransom, B. and Helgeson, H. C. 1993. Compositional end members and thermody-namic components of illite and dioctahedral aluminous smectite solid solutions.Clays Clay Miner., 41(5), 537-550.

Ransom, B. and Helgeson, H. C. 1994. Estimation of the standard molal heatcapacities, entropies, and volumes of 2:1 clay minerals. Geochim. Cosmochim.Acta, 58(21), 4537-4547.

Read, A. J. 1975. The first ionization constant of carbonic acid from 25 to250°C andto 2000 bar. / Soln.Chem., 4, 53-70.

Read, A. J. 1982. Ionization constants of aqueous ammonia from 25 to 250°C and to2000 bar. / . Soln.Chem., 11, 649-664.

Read, A. J. 1988. The first ionization constant from 25 to 200°C and 2000 bar fororthophosphoric acid./. Soln. Chem., 17, 213-224.

Reardon, E. J. and Langmuir, D. 1974. Thermodynamic properties of the ion pairsMgCO3° and CaCO3° from 10 to 50°C. Am. J. Set., 274, 599-612.

Reed, B. L. and Hemley, J. J. 1966. Occurrence of pyrophyllite in the kekituk con-glomerate, brooks range, northeastern alaska. U.S. Geol. Survey Prof Paper550-C, p. C162-C166.

Reesman, A. L. and Keller, W. D. 1968. Aqueous solubility of high-alumina and clayminerals. Amer. Mineral, 53, 929-941.

Reiterer, F., Johannes, W. and Gamsjager, H. 1981. Semimicro determination ofsolubility constants: Copper (II) carbonate and iron (II) carbonate. Mikrochim.Acta, 1, 63-72.

Richardson, C. K. and Holland, H. D. 1979. The solubility of fluorite in hydrother-mal solutions, an experimental study. Geochim. Cosmochim. Acta, 43, 1313-1325.

Righellato, E. C. and Davies, C. W. 1930. The extent of dissociation of salts in water.II. Uni-bivalent salts. Trans. Faraday Soc, 26, 592-600

159

- 1 5 9 -

JNCTN8400 99-079

Rimstidt, J. D. 1984. Quartz solubility at low temperatures. Geol. Soc. Amer. Abstr.Prog., 16, 635.

Rimstidt, J. D. 1997. Quartz solubility at low temperatures. Geochim. Cosrnochim.Acta., 61(13), 2553-2558.

Rimstidt, J. D. and Barnes, H.L. 1980. The kinetics of silica-water reactions. Geochim.Cosmochim. Acta., 44(11), 1683-1699.

Ringbom, A. 1953. Solubility of sulfides. Report to Anal. Sect, of IUPAC.

Robie, R. A. 1987. Calorimetry. In. Hydrothermal experimental techniques (G. C.Ulmer and H. L. Barnes, eds.), John Wiley and Sons, New York, 389-422.

Robie, R. A. and Waldbaum, D. R. 1968. Thermodynamic properties of minerals andrelated substances at 298.15°K (25°Q and one atmosphere (1.013 bars) pressureand at higher temperatures. U.S. Geol. Surv. Bull. 1259, 256p.

Robie, R. A. and Hemingway, B. S. 1973. The enthalpies of formation of nesquehonite,MgCO3«3H2O, and hydromagnesite, 5Mg04C0 2 *5H 2 0. U.S. Geol. SurveyJour. Research, 1, 543-547.

Robie, R. A. and Hemingway, B. S. 1991. Heat capacities of kaolinite from 7 to 380 Kand of DMSO-intercalated kaolinite from 20 to 310 K. The entropy of kaoliniteAl2Si2O5(OH)4. Clays Clay Miner., 39(4), 362-368.

Robie, R. A., Bethke, P. M., Toulmin, M. S. and Edwards, J. L. 1966. X-raycrystatlographic data, densities and molar volumes of minerals. In. Handbook ofPhysical Constants (S. Clark, ed.), Geol. Soc. America Mem., 97, 27-73.

Robie, R.A., Hemingway, B.S. and Fisher, J.R. 1978. Thermodynamic properties ofminerals and related substances at 298.15°K and 1 bar (105 pascals) pressure andat higher temperatures. U.S. Geol. Surv. Bull. 1452, 456p.

Robinson, G.R., Haas, J.L.Jr, Schafer, CM. and Hazelton, H.T. 1983. Thermody-namic and thermophysical properties of selected phases in the MgO-SiO2-H2O-CO2,CaO-Ai2O3-SiO2-H2O-CO2, and Fe-FeO-Fe2O3-SiO2 chemical systems,with special emphasis on the properties of basalts and their mineral components.U.S. Geol. Surv. Open-File Rept. 83-79, 429p.

Roller, P. S. and Ervin, G. 1940. The system calcium oxide-silica-water at 30 C. Theassociation of silicate ion in dilute alkaline solution. / . Amer. Chem. Soc, 62,461-471.

Roselle, G. T. and Baumgartner, L. P. 1995. Experimental determination of anorthitesolubility and calcium speciation in supercritical chloride solutions at 2 kb from400 to 600°C. Geocbim. Cosmochim. Acta, 59(8), 1539-1549.

Routson, R. C. and Kittrick, J. A. 1971. Illite solubility. Soil Sci. Soc. Amer. Proc, 35,714-718.

Rumyantsev, V. N. 1993. Some specific features of quartz solubility in aqueouschloride solutions at increased temperatures and pressures. Russ. J. Inorg. Chem.,38(6), 897-901.

. 160

- 1 6 0 -

JNCTN8400 99-079

Rumyantsev, V. N. 1995. Solubility of quartz in NaOH aqueous solutions at elevatedtemperatures and pressures. Russ.J. Inorg. Chem., 40(1), 40-45.

Russel, A. S., Edwards, J. D. and Taylor, C. S. 1955. Solubility and density ofhydrated aluminas in NaOH solutions./. Metals, 7, 1123-1128.

Ryzhenko, B. N. 1963. Determination of the dissociation constants of carbonic acidand the degree of hydrolysis of the CO3-- and HCO3- ions in solutions of alkalicarbonates and bicarbonates at elevated temperatures. Geochemistry, 1963, 151-164.

Ryzhenko, B. N. 1965. Determination of the dissociation constant of hydrofluoric acidand the conditions for replacement of calcite by fluorite. Geochem. Int., 2, 196-199.

Saccocia, P. J. and Seyfried, W. E., Jr. 1990. Talc-quartz equilibria and the stability ofmagnesium chloride complexes in NaCl-MgCl2 solutions at 300, 350, and400°C, 500 bars. Geochim. Cosmochim. Acta, 54, 3283-3294.

Saccocia P.J. and Seyfried, Jr. W.E. 1993. A resolution of discrepant thermodynamicproperties for chamosite retrieved from experimental and empirical techniques.Amer. Mineral., 78, 607-611.

Saddington, A. W. and Krase, N. W. 1934. Vapor-liquid equilibria in the systemnitrogen-water. J. Amer. Chem. Soc, 56, 353-361.

Sasaki, Y., Shibata, M., Yui, M. and Ishikawa, H. 1995. Experimental studies on theinteraction of groundwater with bentonite. In. Scientific Basis for Nuclear WasteManagement XVIII (T. Murakami and R.C. Ewing, eds.), Mat. Res. Soc. Symp.,353, 337-344.

Sasamoto, H., Yui, M. and Arthur, R. C. 1999a. Status of geochemical modeling ofgroundwater evolution at the Tono in-situ test site, Japan. Japan Nuclear CycleDevelopment Institute, Tokai-Mura, Ibaraki, Japan, Technical Report (inpreparation).

Sasamoto, H., Yui, M. and Arthur, R. C. 1999b. Hydrochemical investigation andstatus of geochemical modeling of groundwater evolution at the Kamaishi in-situtest site, Japan. Japan Nuclear Cycle Development Institute, Tokai-Mura,Ibaraki, Japan, Technical Report (in preparation).

Sasamoto, H., Yui, M. and Arthur, R. C. 1999c. Modeling studies of saline typegroundwater evolution - A test case for Mobara groundwater chemistry, Japan.Japan Nuclear Cycle Development Institute, Tokai-Mura, Ibaraki, Japan,Technical Report (in preparation).

Sass, B. M., Rosenberg, P. E. and Kittrick, J. A. 1987. The stability of illite/smectiteduring diagenesis: An experimental study. Geochim. Cosmochim. Acta, 51, 2103-2115.

Sassani, D. C. and Shock, E. L. 1990. Speciation and solubility of palladium in aqueousmagmatic-hydrothermal solutions. Geology, 18, 925-928.

Sassani, D.C. and Shock, E.L. 1992. Estimation of standard partial molal entropies ofaqueous ions at 25°C and 1 bar. Geochim. Cosmochim. Acta, 56, 3895-3908.

161

- 1 6 1 -

JNCTN8400 99-079

Sassani, D.C. and Shock, E.L. 1994. Errata to Sassani & Shock (1992). Geochim.Cosmochim. Acta, 58, 2756-2758.

Sassani, D. C. and Shock, E. L. 1999. Solubility and transport of platinum-groupelements in supercritical fluids: Thermodynamic properties of Ru, Rh, Pd andPt solids, aqueous ions and aqueous complexes to 5 kbar and 1000 C. Geochim.Cosmochim. Acta, (in press).

Saxena, S. K. 1997. Systematization and estimation of thermochemical data onsilicates. In: Modeling in aquatic chemistry (I. Grenthe and I. Puigdomenech,eds.). OECD/NEA, Paris, 289-323.

Saxena, S. K., Chatterjee, N., Fei, Y. and Shen, G. 1993. Thermodynamic Data Base forSilicates and Oxides. Springer Verlag, Heidelberg, 428p.

Schofield, R. K. and Taylor, A. W. 1954. The hydrolysis of aluminum salt solutions. /.Chem. Soc, 4445-4448.

Schwarz, V. R. and Muller, W. D. 1958. Die wasserlosliche monokieselsaure. Z. Anorg.Allg. Chemie, 2296, 273-279.

Seewald, J. S. and Seyfried, W. E., Jr. 1991. Experimental determination ofportlandite solubility in H2O and acetate solutions at 100-350°C and 500 bars:constraints on calcium hydroxide and calcium acetate complex stability.Geochim. Cosmochim. Acta, 55, 659-669.

Seward, T. M. 1974. Determination of the first ionization constant of silicic acid fromquartz solubility in borate buffer solutions to 350°C. Geochim. Cosmochim. Ada,38, 1657-1664.

Sheppard, R. A. and Gude, A. J., III. 1970. Chemical composition and physicalproperties of phillipsite from the Pacific and Indian oceans. Amer. Mineral., 55,2053-2063.

Shock, E. L. 1995. Organic acids in hydrothermal solutions: Standard molal thermody-namic properties of carboxylic acids, and estimates of dissociation constants athigh temperatures and pressures. Amer. J. Sci., 295, 496-580.

Shock, E.L. and Helgeson, H.C., 1988, Calculation of the thermodynamic andtransport properties of aqueous species at high pressures and temperatures:Correlation algorithms for ionic species and equation of state predictions to 5 kband 1000 C. Geochim. Cosmochim. Ada, 52, 2009-2036.

Shock, E.L., and Helgeson, H.C. 1990. Calculation of the thermodynamic andtransport properties of aqueous species at high pressures and temperatures:Standard partial molal properties or organic species. Geochim. Cosmochim. Acta,54, 915-945.

Shock, E. L. and Koretsky, C. M. 1993. Metal-organic complexes in geochemicalprocesses: Calculation of standard partial molal thermodynamic properties ofaqueous acetate complexes at high pressures and temperatures. Geochim.Cosmochim. Acta, 57, 4899-4922.

Shock, E. L. and Koretsky, C. M. 1995. Metal-organic complexes in geochemicalprocesses: Estimation of standard partial molal thermodynamic properties of

. 162

- 1 6 2 -

JNCTN8400 99-079

aqueous complexes between metal cations and monovalent organic acid ligandsat high pressures and temperatures. Geochim. Cosmochim. Acta, 59, 1497-1532.

Shock, E.L. Helgeson H.C. and Sverjensky D.A. 1989. Calculation of the thermody-namic and transport properties of aqueous species at high pressures andtemperatures: Standard partial molal properties of inorganic neutral species.Geochim. Cosmochim. Acta, 53, 2157-2183.

Shock E.L., Oelkers, E.H., Johnson, J.W., Sverjensky, D.A. and Helgeson, H.C. 1992.Calculation of the thermodynamic properties of aqueous species at highpressures and temperatures. / . Chem. Soc. Faraday Trans., 88(6), 803-826.

Shock, E. L., Sassani, D. C , Willis, M. and Sverjensky, D. A. 1997a. Inorganic speciesin geologic fluids: Correlations among standard molal thermodynamicproperties of aqueous ions and hydroxide complexes. Geochim. Cosmochim.Acta, 61(5), 907-950.

Shock, E. L., Sassani, D. C. and Betz, H. 1997b. Uranium in geologic fluids: Estimatesof standard partial molal properties, oxidation potentials, and hydrolysisconstants at high temperatures and pressures. Geochim. Cosmochim. Acta, 61(20),4245-4266.

Shock, E. L., Sassani, D. C. and Betz, H. 1999. Actinide ions in aqueous solution:Summary of standard state properties and estimates at high temperatures andpressures. Appl. Geochem. (submitted).

Siebert, R. M. and Hostettler, P. B. 1977. The stability of the magnesium carbonateion pair from 10° to 90°C. Am. J. Set., 277, 716-734.

Siever, R. 1962. Silica solubility, 0-200°C, and the diagenesis of siliceous sediments. /.GeoL, 70, 127-150.

Silva, R. J., Bidoglio, G., Rand, M., Robouch, P. B., Wanner, H. and Puigdomenech, I.1995. Chemical thermodynamics of americium. Elsevier Science Publ., Amster-dam, 374p.

Simonson, J. M., Busey," R. H. and Mesmer, R. E. 1985. Enthalpies of dilution ofaqueous calcium chloride to low molalities at high temperatures. / . Phys. Chem.,89(4), 557-560.

Singer, P. C. and Stumm, W. 1970. The solubility of ferrous iron in carbonate-bearingwaters. ]. Amer. Water Works Assoc, 62, 198-202.

Singh, S. S. 1974. The solubility product of gibbsite at 15°, 25°, and 35°C SoilSci.Soc. Amer. Proc, 38, 415-417.

Smith, H. J. 1918. On equilibrium in the system ferrous iron in carbonate-bearingwaters. /. Am. Chem. Soc, 40, 879.

Steinfink, H. 1958. The crystal structure of chlorite. I. A monoclinic polymorph. ActaCryst., 11, 191-195.

Stephan, E. F., Hatfield, N. S., Peoples, R. S. and Pray, H. A. H. 1956. The solubilityof gases in water and in aqueous uranyl salt solutions at elevated temperaturesand pressures. BMI 1067, p. 54, Battelle Mem. Inst., Columbus, Ohio.

163

- 1 6 3 -

JNCTN8400 99-079

Scoessell, R. K. 1979. A regular solution site-mixing model for illites. Geochim.Cosmochhn. Acta, 43, 1151-1159.

Striibel, G. 1965. Quantitative untersuchungen uber die hydrothermale loslichkeit vonflusspat (CaFi). Neites Jahrb. Mineral. Monatsh., 3, 83-95.

Striibel, G. 1967. Zur kenntnis und genetischen bedeutung des systems BaSCj-NaCl-H2O. Neues Jahrb. Mineral. Monatsh., 223-234.

Stull, D. R. and Prophet, H. 1971. JANAF thermochemical tables, 2nd ed. Nad. Bur.Standards, Natl. Standards Ref. Data Ser., NBS37, H4lp.

Su C. and Harsh J.B. 1994. Gibbs free energies of formation at 298 K for imogolite andgibbsite from solubility measurements. Geochim. Cosmochim. Acta, 58(6), 1667-1677.

Suleimenov, O. M. and Krupp, R. E. 1994. Solubility of hydrogen sulfide in purewater and in NaCl solutions, from 20 to 320°C and at saturation pressures.Geochim. Cosmochim. Acta, 58(11), 2433-2444.

Sullivan, T. O. and Smith, N. O. 1970. The solubility and partial molar volume ofnitrogen and methane in water and aqueous sodium chloride from 50° to 125and 100 to 600 atm. /. Phys. Chem., 74(7), 1460-1466.

°C

Sverjensky, D.A., 1987, Calculations of the thermodynamic properties of aqueousspecies and the solubilities of minerals in supercritical electrolyte solutions. In.Thermodynamic modeling of geologic materials: Minerals, fluids and melts(I.S.E. Carmichael and H.P. Eugster, eds.), Mineral. Soc. Amer., Reviews inMineralogy, 17, 177-209.

Sverjensky D.A., Hemley J.J. and D'Angelo W,M. 1991. Thermodynamic assessmentof hydrothermal alkali feldspar-mica-aluminosilicate equilibria. Geochim.Cosmochim. Ada, 55, 989-1004.

Sverjensky, D.A., Shock, E.L. and Helgeson, H.C. 1997. Prediction of the thermody-namic properties of aqueous metal complexes to 1000C and 5kb. Geochim.Cosmochim. Acta, 61(7), 1359-1412.

Sweeton, F. H. and Baes, C. F., Jr. 1970. The solubility of magnetite and hydrolysis offerrous ion in aqueous solutions at elevated temperatures. / . Chem. Thermody-namics, 2, 479-500.

Szeparowicz, M. 1920. Untersuchungen iiber die verteilung von radiumemanation inverschiedenen phasen. Sitsungsber. Akad. Wiss. Wien, Math-Naturwiss., Kl Abt.Ha, 129,437-454.

Tagirov, B. R., Zotov, A. V. and Akinfiev, N. N. 1997. Experimental study ofdissociation of HC1 from 350 to 500 C and from 500 to 2500 bars: Thermody-namic properties of HCl(^). Geocbim. Cosmochim. Acta, 61(20), 4267-4280.

Tanger, J. C. and Helgeson, H. C. 1988. Calculation of the thermodynamic andtransport properties of aqueous species at high pressures and temperatures:Revised equations of state for the standard partial molal properties of ions andelectrolytes. Am. J. Set., 288, 19-98.

164

- 1 6 4 -

JNCTN8400 99-079

Tanner, S. P., Walker, J. B. and Choppin, G. R. 1968. Thermodynamic paramecers ofthe alkaline earth mono-fluorides. /. Inorg. Nucl. Chem., 30, 2067-2070.

Tardy, Y. and Garrels, R. M. 1974. A method of estimating the Gibbs energies offormation of layer silicates. Geochim. Cosmochim. Acta, 38, 1101-1116.

Templeton, C. C. 1960. Solubility of barium sulfate in sodium chloride solutions from25° to 95°C. / . Chem. Eng. Data, 5, 514-516.

Tiepel, E. W. and Gubbins, K. E. 1972. Partial molal volumes of gases dissolved inelectrolyte solutions. /. Phys. Chem., 76, 3044-3049.

Thompson, A. B. 1970. A note on the kaolinite-pyrophyllite equilibrium. Am. J. Set.,268, 454-458.

Thompson, J. B., Jr., Waldbaum, D. R. and Holvis, G. L. 1974. Thermodynamicproperties related to ordering in end-member alkali feldspars. In. The Feldspars(W. S. MacKenzie and J. Zussman, eds.), Crane, Russack and Co., New York,218-248.

Tremaine, P. R. and LeBlanc, J. C. 1980. The solubility of magnetite and thehydrolysis and oxidation of Fe2+ in water to 300°C. /. Soln. Chem., 9, 415-442.

Truesdell, A. H. and Hostetler, P. B. 1968. Dissociation constants of KSO4- from 10°-50°C. Geochim. Cosmochim. Acta, 32, 1019-1022.

Tsirlina, S. M. 1936. The solubility of aluminum hydroxide in sodium hydroxidesolutions (the system Al(OH)3-NaOH-H2O). Legie Metally, 5(3), 28-37 (inRussian).

Ulmer, G. C. and Barnes, H. L. 1987. Hydrothermal experimental techniques, JohnWiley and Sons, New York, 293-323.

van Lier, J. A., de Bruyn, P. L. and Overbeek, J. T. G. 1960. The solubility of quartz./. Phys. Chem., 64, 1675-1682.

Verdes, G., 1990. Sohibilite' des hydroxydes d'aluminum entre 20 et 300°C.Proprie'tes thermodynamiques des principales especes naturelles du systemesAI2O3-H2O. Ph.D. dissertation, Paul Sabatier Univ., Toulouse, France, 267p.

Verdes, G., Gout, R. and Castet, S. 1992. Thermodynamic properties of the aluminateion and of bayerite, boehmite, diaspore and gibbsite. Eur. J. Mineral., 4, 767-792.

Volokhov, Yu. A., Pavlov, L. N., Eremin, N. I. and Mironov, V. E. 1971. Hydrolysis ofaluminium salts./. Appl. Chem., 44, 243-246.

Volosov, A. G., Khodakovsky, I. L. and Ryzhenko, B. N. 1972. Equilibria in thesystem SiC>2-H2O at elevated temperatures along the lower three-phase curve.Geochem. Int., §, 362-377.

Wagman, D.D., Evans, W.H., Parker, V.B., Halow, I., Bailey, S.M., and Schumm, R.H. 1968. Selected values of chemical thermodynamic properties, Part 3. Natl.Bur. Standards Tech. Note 270-3, 264p.

165

- 1 6 5 -

JNCTN8400 99-079

Wagman, D.D., Evans, W.H., Parker, V.B., Halow, I., Bailey, S.M., and Schumm, R.H. 1969. Selected values of chemical thermodynamic properties, Part 4. Natl.Bur. Standards Tech. Note 270-4, 14lp.

Wagman, D.D., Evans, W.H., Parker, V.B., Schumm, R.H., Halow, I., Bailey, S.M.,Churney, K.L and Nuttall, R.L. 1982. The NBS Tables of Chemical andThermodynamic Properties. Jour. Phys. Chem. Ref. Data, 11 (suppl. 2), 392 p.

Walther, J. V. and Helgeson, H. C. 1977. Calculation of the thermodynamicsroperties of aqueous silica and the solubility of quartz and its polymorphs atlign pressures and temperatures. Am. J. Sci., Ill, 1315-1351.

Walther, J. V. and Orville, P. M. 1983. The extraction-quench technique fordetermination of the thermodynamic properties of solute complexes: applicationto quartz solubility in fluid mixtures. Amer. Mineral., 68, 731-741.

Walther, J. V. and Woodland, A. B. 1993. Experimental determination andinterpretation of the solubility of the assemblage microcline, muscovite, andquartz in supercritical H T O . Geochim. Cosmochim. Acta., 57, 2431-2437.

Weast, R. C. 1979. CRC handbook of chemistry and physics, 60th ed. CRC Press, Inc.,Boca Raton, Florida.

Wefers, K. 1967. Zur chemischen technologie des bauxitaufschlusses. Teil 1: Dassystem NaaO-A^Oj-^O. Metall, 25, 422-431.

Weill, D. F. and Fyfe, W. S. 1964. The solubility of quartz in H2O in the range 1000-4000 bars and 400-500°C. Geochim. Cosmochim. Acta., 28, 1243-1255.

Wheat, C. G. and Carpenter, R. 1988. MnCl+ and MnSC>4 association constants to170°C. /. Soln. Chem., 17(5), 467-480.

Wilkin, R. T. and Barnes, H. L. 1998. Solubility and stability of zeolites in aqueoussolution: I. Analcime, Na-, and K-clinoptilolite. Amer. Mineral, 83, 746-761.

Williams-Jones, A. E. and Seward, T. M. 1989. The stability of calcium chloride ionpairs in aqueous solutions at temperatures between 100 and 360°C. Geochim.Cosmochim. Acta, 53, 313-318.

Wesolowski D.J. 1992. Aluminum speciation and equilibria in aqueous solution: I. Thesolubility of gibbsite in the system Na-K-Cl-OH-A1(OH)4 from 0 to 100°C.Geochim. Cosmochim. Acta, 56, 1065-1091.

Wesolowski D.J. and Palmer, D. A. 1994. Aluminum speciation and equilibria inaqueous solution: V. Gibbsite solubility at 50°C and pH 3-9 in 0.1 molal NaClsolutions (a general model for aluminum speciation; analytical methods).Geochim. Cosmochim. Acta, 58(14), 2947-2969.

Wiebe, R., Gaddy, V. L. and Heins, C , Jr. 1933. The solubility of nitrogen in water at50, 75 and 100° from 25 to 1000 atmospheres. / . Amer. Chem. Soc, 55, 947-953.

Wolery, T.J. 1976. Some chemical aspects of hydro thermal processes at mid-oceanicridges: A theoretical study. I) Basalt-sea water reaction and chemical cyclingbetween the oceanic crust and the oceans. II) Calculation of chemical

166

- 1 6 6 -

JNCTN8400 99-079

equilibrium between aqueous solutions and minerals. Unpublished Ph.D. thesis,Northwestern University, 111.

Wolety, T.J. 1992. EQ3/6, a software package for geochemical modeling of aqueoussystems: package overview and installation guide (Version 7.0). LawrenceLivermore National Laboratory Report UCRL-MA-110662 PT I, Livermore,CA.

Wolery, T. J., Jackson, K. J., Bourcier, W. L., Bruton, C. J., Viani, B. E., Knauss, K. G.and Delany, J. M.. 1990. Current status of the EQ3/6 software package forgeochemical modeling. .In. Chemical modeling of aqueous systems II (D.C.Melchior and R.L. Bassett, eds.), Am. Chem. Soc. Symp. Ser., 416, 104-116.

Wood, B. J. 1987. Thermodynamics of multicomponent systems containing severalsolid solutions. In. Thermodynamic modeling of geological materials: Minerals,fluids and melts (I.S.E. Carmichael and H. P. Eugster, eds.), 17, Reviews inMineralogy, Mineral. Soc. Amer., 71-95.

Wood, S. A. and Crerar, D. A. 1985. A numerical method for obtaining multiplelinear regression parameters with physically realistic signs and magnitudes:Applications to the determination of equilibrium constraints from solubilitydata. Geochim. Cosmochim. Acta, 49, 165-172.

Wright, J. M., Lindsay, W. T., Jr. and Druga, T. R. 1961. The behavior of electrolyticsolutions at elevated temperatures as derived from conductance measurements.WAPD-TM-204, AEC Research and Development Report.

Wright, R. H. and Maas, O. 1932. The electrical conductivity of aqueous solutions ofhydrogen sulphide and the state of the dissolved gas. Can. J. Res., 6, 588-595.

Yamamoto, S., Alcauskas, J. B. and Crozier, T. E. 1976. Solubility of methane indistilled water and seawater./. Chem. Eng. Data, 21(1), 78-80.

Yasunishi, A. and Yoshida, F. 1979. Solubility of carbon dioxide in aqueous electrolytesolutions. /. Chem. Eng. Data, 24(1), 11-14.

Yates, D. M. and Rosenberg, P. E. 1996. Formation and stability of endmember illite:I. Solution equilibration experiments at 100-250°C and Pv,soln- Geochim.Cosmochim. Acta, 60(11), 1873-1883.

Yeatts, L. B. and Marshall, W. L. 1969. Apparent invariance of activity coefficients ofcaJcium sulfate at constant ionic strength and temperature in the system CaSO,i-Na2SC>4-NaNO3-H2O to the critical temperature of water. Associationequilibria. /. Phys. Chem., 73(1), 81-90.

Yui, M., Makino, H., Ashida, T., Umeki, H., Ishiguro, K. and Neyama, A. 1992a.Dissolution behavior of vitrified waste and evaluation of radionuclide solubilitiesin near-field porewater chemistry. PNC TN8410 92-161, Power Reactor andNuclear Fuel Development Corp., Tokai-Mura, Ibaraki, Japan.

Yui, M., Takeda, S., Komuro, M., Makino, H., Shibutani, T., Umeki, H., Ishiguro, K.,Takase, H. and Neyama, A. 1992b. Modelling of groundwater evolution forperformance assessment of high-level radioactive waste isolation (in Japanese).PNC TN8410 92-166, Power Reactor and Nuclear Fuel Development Corp.,Tokai-Mura, Ibaraki, Japan (in Japanese).

167

- 1 6 7 -

JNCTN8400 99-079

Yui, M., Sasamoto, H. and Arthur, R. C. 1999. Groundwater evolution modeling forthe 2nd progress (PA) report. Japan Nuclear Cycle Development Institute,Tokai-Mura, Ibaraki, Japan, Technical Report (in preparation).

Zotov, A., Mukhamet-Galeev, A. and Schott, J. 1998. An experimental study ofkaolinite and dickite relative stability at 150-300°C and the thermdynamicproperties of dickite. Amer. Mineral, 83, 516-524.

168

- 1 6 8 -

JNCTN8400 99-079

Appendix A: Listing of the SPRONS.JNC Database

(see Tables 5.1_1 - 5.1_3 for formatting and unitconventions)

- 1 6 9

sIubscances | database developed for tne Japan Nuclear CycleDevelopment Institute (JNC) -.Sequential-access thermodynamic datafile Co be used as inputtn program cprons,a code that concerts sprons. jnc into its direct-access equivalent(dprone.jncl , which is used by program Supcrt.MOTE species can be added, deleted, or modi, tied using programmprons

last updated' 20 Jan 98 by r artlmr

1.Apr.98: s2o3-2 data corrected |r arthur)

14 Apr,98: corrected names of species HB02, ag, BO2- and Na'H2BO3, aq toB(Oil) 3 , aq B(OH)4- and NaB(OHJ 4,aq,respectively, in accordanceref 39 (r. arthur)

REFERENCES: cited below as "ref:8,1

O

I

Helgesan, h.C., Delany, J.H, Nesbicc, H , v* , , and Bird, D,K. ,197 0, Summary and Critique of the ThermodynanuCPrupertles o£ Pock-Forming Minerals. ftmer, Jour = Sci,,278ft, 229p

Shock, E L , and Helgeson, H C , 1988, Calculation of thethermodynamic and transport properties of aqueousspecies at high pressures and temperatures' Correlationa Igori thms for ionic species and equation of statepredictions to 5 kb and 1000 c- Geochim Cosmochim, Acta52, 2009-2Q36.

Shock, EL., Helgeson, H,C, , and Sverjensky, D,ft, , 19 B9,Calculation of the thermodynamic and transportproperties of aqueous species at high pressures and

temperatures: Standard partial molal properties o£

pp_ 2157-2183.

Shock, E-L-, and Helgeson, H.C,, 1990, Calculation of tnethermodynamic and transport properties of aqueousspecies at high pressures and temperatures, Standardpartial molal properties of organic species =Geochim Cosmochim Acta. 54, 915-945.

Sverjenslty, D A , 1990, Thermodynamic properties of aqueousinorganic metal completes- Geochim Cosmochim Acta(see ref 221,

Wagman, D,D. , Evans, W,H, , Parker, V.B., Schumm, R - H- ,lialow, I . , Bailey, S.H, , Churney, K.L. , Nuttall, R.L- ,1&82, The NBS Tables of Chemical and ThermodynamicProperties• Jour. Phys. Chem. Ref. Data, V. 11,

supplement no. 2, 392 p.

Robie, R. A. , Hemingway, B_S- , and Fisher, J, 5. , 197 9,Thermodynamic Properties of Minerals and RelacedSubstances at 29B.15 K and 1 Bar (10*'5 Pascals)PrpSEure and at Higher Temperatures, U.S. Geol, Surv,

Bull 1452, 456 p.

iel ley, l~ h~ , I9 60 Contributions tn the Data in TheoreticalMetallurgy XI11 - High Temperature Heat Content, HeatCapacities and Entropy Data for the Elements andInorganic Compounds U S Bureau of Mines Bulletin5B4, 232 p-

Bowers, T.S. , and Helgeson, II C., 1983, Calculation of thethermodynamic and geochemical consequences of nonidealmixing m the system H20-CO2-NaCl on phase relations

in geologic systems: Equation of state for H2O-CO2-NaClfluids ac high pressures and temperatures: Geochim,Cosmochim. Acta, 47, 1247-1275,

Suerjensky, D. A. , 1967, Calculations of the cnermodyn.ara.icproperties of aqueous species and the solubilities Ofminerals in supercritical electrolyte solutions, inCarmiclisel, 1.5.E, and H. P. Eugster, eds,, ThermodynamicModel ing of Geologic Materials, Minerals, Fluids and

17 177-209

Shock, E L , Personal calculation, Laboratory of TheoreticalGeochemistry, Dept Geol Geophys , Univ Cft,Berkeley, CA_

Jackson, K_J., and Helgeson, H.C,, 19^5, Chemical andthermodynamic Constraints on the hydrothermal transportand deposition of tin: II, Interpretation of phaserelations in tne Southeast Asian tin belt: Econ, Geol.,80 <5), 1365-137B.

Helgeson. H.C,reactions, .temperature;

1985, Errata II _ Thermodynamics of minerals,d aqueous solutions at high pressures andAmer. Jour. Sci., 2 85, 815-855.

Shock, E L . , and Helgeson, H.C. , 1989, Corrections to Shockand Helgeson U9BB) |ref.2 about I. Geochim. Cosmochim,Acta. 53. 215

Pankratz, L B , 1970 Thermodynamic Data for Silver Chlorideand Silver Bromide '• U 5 Bureau of Mines Report ofInvestigations 17430, 12 p

Pankratz, L. B. , and king, E G , 197 0, High-TemperatureEnthalpies and entropies of chalcopyrite and bornite-U, S. Bureau of Mines Report of Investigations #7 435.10 p,

Johnson, J. w. , Personal calculation. Earth Sciences Dept,=

Parameters gxven provide smooth metastableextrapolation of one-bar steam properties predictedby the Haar et al, (19841 equation of state totemperatures < the saturation temperature (99,632 C) ,

Gibbs free energies calculated from solubility data reported byFlummer. L.N. and Busenberg, £_ , 1982. The Solubilitiesof Calcite. Aragonite, and Vaterite in CO2-H2O SolutionsBetween 0 and 90 C and an Evaluation of the AqueousModel of the System CaCO3-CO2-H2O Geochim Cosmochim.Acta, 46, 1011-1040 Enthalpies adjusted for thecorrection in the GibbS free energy

Gibbs free energies and enthalpies were corrected to beconsistant with updated values of Cibbs freeenergies of Ca++ and CO3-~ (Shock and Helgeson |ref:2aboveJ) together with the solubilities of calcite andaragonite reported by Busenberg and Plummer Iref;18above]

Pokrovafci i, V, A, and Flelgeson, H. C. 1995. Thermodynamicproperties of aqueous specie; and the solubilities ofminerals at high pressures and temperatures, The SystemAl2O3-H2O-iJaCl , Am. Jour. Sci., 295, 1255-1342,

Shock, E L Sassani. D C . Willis, H and Sverjensky,D A 1997 Inorganic species in geologic fluidsCorrelations among standard molal thermodynamicproperties of aqueous ions and hyrowide completesGeochim, CosmOChim Acta, 61(5), 9 07-950

, Sver^ensky, D.A., Shock, E, L, and Helgeson- H C 1997Prediction of the thermodynamic properties of aqueousmetal complexes to 1000C and 5kb, Geochim. Cosmochim.Acta, 61(7), 1359-1412.

, Pokrovskii, V. A. and Helgeson, H, c. 1997a, Calculationof the standard partial molal thermodynamic propertlesof hCl' and activity coefficients of aqueous KC1 attemperatures and pressures to 1000C and 5 kbar, Geochim,Cosmochim, Acta, 61(11), 2175-2183.

Polrnvskii; V. ft, and Helgeson, H. c. 1997b, Thermodynamicproperties of aqueous species and the solubilities ofminerals at high pressures and temperatures: the systemA12O3-H2O-KOH Chem Geol 13^ 221-242

Haas- J R Shock, E L and Sassani, D C (1995) flare earthelements in hydrothermal systems• Estimates of standardpartial racial thermodynamic properties of aqueous completesof the rare earth elements at high pressures and temperaturesGeochim. Cosmochim. Acta, 59, 4329-4350

, Shock, E. L, (1995) Organic acids in hydrothermal solutions: Standardmolal thermodynamic properties of carboxylic acids, and estimates

2nH2;oo\CvoI

o

^Appendix A. 1

of dissociation constants at high temperatures and pressures ,Araer. J. Sci., 295, 396-5B0.

Shock, E, L, and koretsky, C, H. (1995) Metal-organic completes ingeochemical processes. Estimation of standard partial molalthermodynamic properties of aqueous complexes between metal cationsand monovalent organic acid ligands at high pressures andtemperatures Geochim Cosmochim Acta, 59. 1497-1532

Standard molal Gibbs free energy and enthalpy of formation from ref(7) included with original data from ref (1) CAUTION^ These datamay not be internally consistent with the ref (1) database

Standard molal Gibbs free energy and enthalpy of formation fromSaccocia, P_ J_ and Seyfried, W. E,, Jr. (1993) A resolution ofdiscrepant thermodynamic properties for chamosite retrieved from

values are consistent with thermodynamic data for minerals from refU) - The nomenclature for crtoctahedral chlorines adopted by theauthors requires that the terms chamosite, daphnice and14A-daphmte all refer to Fe5A12Sx3O10(OHt8 and are synonymous,

Standard molal Cibbs free energy and enthalpy of formation fromWolery, T. J, (1916) Some chemical aspects of hydrothermal processesat mid-oceanic ridges A theoretical study _ I) Basalt-sea waterreaction and chemical cycling between the oceanic crust and theoceans II) Calculation of chemical equilibrium between aqueoussolutions and minerals Unpublished Ph D thesis. NorthwesternUniversity, 111 CAUTION- the reliability of these data areuncertain and the data may not be internally consistent with theref (1) database

Standard molal Gibbs free energy and enthalpy of formation, and thirdlaw entropy (rauscovite), adjusted from ref tl) values according torecommendations by SverjensVy. D. A, , Heraley, J_ J. and D1Angelo,w. H (1991j Thernod/namic assessment of hydrothermal alkalifeldspat-mica-alurninosilicate equilibria, Geqchim, Cosmochim,Acta, 55, 985-1004,

Standard molal Gibbs free energy and enthalpy of formation, third-lawentropy, standard molal uolume, and Maier-fcelley heat capacitycoefficients and corresponding temperature range from ref (30( ,CAUTION _ the reliability of these data are uncertain, and the datamay not be internal ly consistent with the ref (1) database.

ShocV E L and Koretsky. C H (1993) Metal-organic completesin geachemical processes• Calculation of standard partial molalthermodynamic properties of aqueous acetate completes at highpressures and temperatures Geochim Cosmochim Acta, 57,4899-4922.

Database development group iii/3 (1988) Errors in computation ofestimated delh2 98 for montmor-x endmembers of smectite-di solidsolution: internal memo 88db 3 Lawrence Livermore NationalLaboratory.Livermore, CA.

Osikers, E. H. , Helgeson, H, C. , Shoclt, E. L, , Sverjensky, D, A, ,John5on, J, H, and Pokrovskia, V. A. (1995) Summary of apparentstandard partia 1 molal Gibbs free energj.es of formation of aqueoussptCies, minerals, and gases at pressures 1 to 5000 ba r s andtemperatures 25 to 1000 C J- Phys_Chcm_ Rtf _ Data, 24(4),1401-iseo.

Shock, E. L., Sassani, D. C. and Bet 2, H, ( in reuision) Actinide ionsin aqueous solut ion • Summary of standard state properties andGS t IIUBLGS at h I Q ri temperatures and oressures Appl Geochem

Shock, E L , Sassani, D C and Betz, H (1997) Uranium in geologicfluids '• Estimates of standard partial molal properties, oxidationpotentials, and hydrolysis constants at high temperatures andpressures. Geochim. Cosmochira Acta, 61 (201, 4245-4266

Sassani, D. C. and Shock, E. L. (1990) Speciation and solubility ofpalladium in aqueous magmatIC-hydrothermal solutions. Geology, 18,92 5-926. CAUTION These data may be revised by Sassani, D, c, andShock, E, L. Solubility and transport of platinum-group elements insuper cr it ical fluids - Therraodynamic proper c les of P.u, Eh, Fd and Ptsol Ids, aqueous ions and aqueous completes to 5 kbar and 1000 C,

Pokrovski, G. S., Schott, J. and Sergeyeu, A, S. (199 5) Experimentaldetermination of the stability constants of NaSO4- and NaB(OH)4 inhydrothermal solutions using a new high-temperature sodium-selective glass electrode - Implications for boron isotopic

tractlonacion, Chem. Geol,, 124, 253-265,

, _ , Tagirov, B, R, , Zotov, A,, V, and Akinfiev, W, N, (19 97) Experimentalstudy of dissociation of HCl from 350 to 500 C and from 500 to 2500bars; Therraodynamic properties of HCl(aq), Geochim. Cosmochim_Acta, 61(20),4267-4280.

MINERAL ABBREVIATIONS ARE CONSISTENT WITH THOSE FECOMMENDED BYTHE AMERICAN MINERALOGIST AND PUBLISHED BY

Kretz, B , 1983,Amer Mineral ,

Symbols for RocV-Fnrming Mineralsv 68, pp 277-279

n

o

.Appendix A' 2

toI

minerals that do not undergo phase transitions j

AKEFJIANITEAltre£:l,19

-879362,060 090000

1700 00ALABAHD1TEM bicef.l

-•52178,011.400000

1803.00ALBITE.LOWLo-Abret-1

-BB63O8 061 700000140000

ALUIHTEAluref ,-1

-1113600,0153.450000650 00

AMESITE.7AAms-7Aref 1

999999,081.030000

1000.00AMORPHOUS-SILICAAmor-Slre£:l

-202892 05 930000

622 00AIIALCIHEAnlref'1

-738098,053.490000

1000.00

Ca2HgSi2O7 :Ca<2IHg(l)Sil2)O(7)15,Mar,90

-9264970 50 030 92 81011 400000 -11,400000 :

MnS itin (1) S11)5,Hay,78 I

-51000,0 19,200 21,460 j1.800000 ,000000

NalAlSi3)OBNall)Al(l)Si(3)O(8)5 Hay,78

-939680 0 49.510 100.07013,900000 -15,010000

KA13(OH)6(SO4)2Kil)Al(3IS(2)OU4)H(6)5,May.78-1235600,0 78,400 293-600

,000000 -54 950000

Mg2Al(AlSi)O5(0H)4Mg(2)AK2)Sitl)O(9)H(4)5,May.78

999999,0 52.000 103.00024.738000 -20,230000

SiO2-NH2OSiU)O(2)H(2N)O(N>5,May,78

-214568,0 14,340 29 00047.200000 -22.780000

NaAlSi2O6»H2OHa(l)Al(l)Sil2)O|7)H(2)5,Hay.78

-790193,0 56.000 97.10024.140000 -8.880000

AMALCIME, DEHYDRATED NaAlSi2O6Dhyd-Anlref-1

-674989.042.090000

1000.00ANDALUSITEAndrefrl

-580587.041 310833

1043 00AHDRADITEfidrref:1,19

-1296819.0113,5320001200.00

ANGLESITEAngre£:l

-194353 010 960000

1100.00ANHYDRITE

Ma(l)Al(l)Si(2)O(6)5 May 78

-714678,0 41,900 89,10024,140000 -8.880000

A12S1O5A1(2ISK1)O(5)5.May,78

-615866,0 22 200 ' 51 5306.292556 -12,392063

Ca3Fe2Si3O12Ca(3)Fe(2)Si(3>0(12)15Mar,90-1380345,0 70,130 131,85015.636000 -30.889000

PbSO4Pb(l)Sfl)0(4)5 May 78

-219870 0 35.510 47,95031,000000 4,200000

CaSO4

Anhref.l

-315925.016,7800001453.00

ANNITEAnnref:l

-1147156.0106.4300001000.00

ANORTWTEAnre£:l,19

-954078 063,311000

1700.00ARAGOHITEArgref.1,18

-269683.020.130000600.00

ARTINITEArtre£;l

-613915,070.8700001000,00

AZURITEAzrref:l

-334417.036,880000780,00

BARITEBrtref:l

-325563.033.800000

1422.00BEIDELLITE,CACa-Beiref-32

-1280909 082.191000600.00

BEIDELLITE, KK-Beire£:32

-1281773,083.319000600,00

BEIDELLITE, MGMg-Beire£:32

i -1277064.0: 81.945000: 600.00

BEIDELLITE,NANa-Bei

: re£i32i -1279688.0i 83.277000i 600 00| BERMDTITEi Brn• ref-12: -34750.0• 15,510000

Ca(llS(l)O(4) :5.May,78 i

-342760.0 25,500 45.940 i23,600000 ,000000 i

KFe3(AlSi3)O10(OH)2K(l|Fe(3)Al(l)Sil3)O(12)H(2)5.Hay,78 !-1232195,0 95,200 154,320 :29,770000 -13.310000 i

Ca(A12Si2)O8 ICa(l)Al(2)Si(2)O(8) '•15-Mar. 90 !-1007552.0 49 100 100 790 :14 794000 -15.440000 |

CaCO3Ca(llC(l)O(3! I9.Mar.90 :-2BB531.0 21 560 34 15010.240000 -3.340000

Mg2(OH|2(CO3l»3H2OMg(21CllMO(8|H(8)5 May.78

-69B043.0 55.670 96.90027.660000 -7.430000

Cu3IOH)2(CO3)2Cul3)Cl2lOl8)H(2)5,Hay,78

-390100,0 66 970 91 01077 440000 -.920000

BaSO4Ba(llS(l)O(4|5.Hay.78

-352100.0 31.600 52,100.000000 -8.430000

Ca0.165A12,33Si3.67O10(OH>2Ca(0.165)Al(2.33)Sil3,67)OU2IH(2l14 Jan 98-1370654 0 5B-300 129 53037,150000 -18.030000

K0.33A12.33Si3,67010(OHI2K(0.33)Al(2.33lSi(3,67}O(12lH(2)14,Jan.98-1371891,0 60.510 133,70038,400000 -17,920000

Mg0,165A12,33Si3 67010(OH)2Kg(0 165!Al(2.33)Si(3.67)0(12)H(2)14.Jan.98-1366883.0 57,700 123,19037.260000 -18.020000

Na0.33A12,33Si3,67O10(OH)2Na(0,33)AK2.33)Si(3.67)O(12)H(2)14,Jan,98-1369757,0 59,620 130,54037 780000 -IB 250000

SnS2Sn(l)S(2)5.Hay.78

-36700,0 20,900 40,9604 200000 .000000

1000,00BOEHMITE

Bhmre£-20

-219599 012.902000900,00

BROHELLITEBrmre£:l

999999.08 450000

1200,00BPUCITEBrcref;l

-199646,024.147000900.00

CA-AL-PYROXENECa-Al-Pxref:1,19

-742067 054 130000

1400,00CALCITECalrefil.18

-269B80.024.9800001200.00

CASSITEPITECstref:12

-124260,017.2460001500,00

CELADONITEClnref:1,30

-1305895,080.250000

1000.00CELESTITEClsref.l

-320435.021,8000001500,00

• CERUSSITE: Cer: re£;l

-150370 012.390000

: 800.00CHABAZITECbz

1 refil: 999999.0! 146.000000: 1000 00: CHALCEDOm• Cha• re£:l: -204276.0: 11.220000; 848,00i CHAHOSITE,7A: Chm-7A: ref:1,30

AIO(OH)

A1(1)O(2)H(1)29 Apr,97

-238240.012,421000

BeOBe(llOd)5,May,78

999999.04-000000

Hg(OH)2Mg(l)O(2)H(2)5,Hay.78

-221390.04,012400

CaAl(AlSi)O6

8 890 19-3,228000

3.380 8-3 170000

15,090 24-6,110000

Ca(l)Al(2)Si(l)O(6)15 Mar.90

-783793,06-420000

CaCO3Ca(l)C(l)0(3)9.Mar,90

-288552.05.240000

SnO2Sn(l)O(2)5.May.78

-138800.02.802600

35 000 63-14,900000

22.150 36-6.200000

12.500 21-4.900100

K(HgAllSi4010(OHI2K(l)Mg(l)Al(l)Si{4IO(12)H(29 Jan 98-1394899 025 300000

SrSO4Sr(llS(l)O(4)5.Hay,78

-347300,013,300000

PbCO3Pb(l)C(l)O(3)5,May.78

-168000.028,600000

Ca(A12Si4)O12

74.900 157-18 540000

28,000 46.000000

31,300 40.000000

'6H2OCa(l)Al(2)Si(4IOI18)H(12)5,May,78

999999.044 470000

SiO2Si(llO(2)5.Hay.78

-217282,08,200000

152,900 247-16-430000

9,880 22-2.700000

Fe2Al(AlSl)05(OH)4Fe(2)Al(2)Si(l)o(9)H(4)9 Jan 98

535

309

630

500

934

550

1

100

.250

,590

,760

,688

znH00oo

Io

_Appendix A: 3

1L

—aCO

1

-828026.084 910000

1000 00CHLORAFGSfRITECrgref.7,15

-26247.014,330000728,00

CHLORITOIDCldref 1

999999 060,630000

1000,00CHRYSOTILECtlre£;l

-964871,075,8200001000 00

CINNSBAFC mief.l

-10940,010-460000618.00

CLINOCHLORE.llA14A-Cncref :1

-1961703,0166 500000900 00

CLIIIOZOISITECzoref.1,19

-1549240,0106,118000700.00

COPPER,NATIVECuref-1

,05.410000

1357.00CORDIERITECrdref il

-2061279,0143-8300001700 00

COPDIERITE, HYDROUSHyd-Crdref .1

-2121350.0155,2300001700,00

CORUNDUMCrnref-20

-378167 029,321000

1200,00COVELLITECv

I refl• -12612,0: 10,600000I 1273.00i CFISTOBALITE,ALPHA: A-Crs: refl

-902403,0 64-700 10625 400000 -18,770000

SgClAgd)Cl(l)5,May,78

-30370,0 23.000 25.1,821000 -2.430000

FeA12SiO5(OH)2Fe(l)All2)SidlO(7)HI2)5 May 78

999999 0 42100 69.17.130000 -13,630000

Mg3Si205IOHI4Mgl3)SiU)O(9)HI4l5.Hay.78-1043123 0 52,900 108.31-600000 -17 580000

HgSHgd)S(l)5,May,78

-12750,0 19.700 28,3.720000 ,000000

Mg5Al(AlSl3)O10lOHI8Mg(5)Al(2)Sil3)O(18IH(8)5 May 78-2116964 0 111 200 20742 100000 -37 470000

Ca2A13Si3O12(0H)Ca(2)Al(3ISil3)O(13)Hd)15.Mar.90-1643781.0 70,640 13625,214000 -27.115000

CuCu(l)5 May 7S

,0 7.923 71,500000 .000000

Mg2A13IAlSl5)O18Mg|2)Al|l]SU5)0d8>5,May,78-2183199 0 97 330 23325,800000 -38 600000

Mg2A13IAlSi5)O18*H20Mg(2)Al(4)Si(5)O(19)H(2)5.May,78-2255676,0 111,430 24125,800000 -38.600000

A12O3AK2IOI3)05 May,98

-400500.0 12,170 ' 251.644000 -12.0070000

CuSCu d)S(1)5,May,78

-12500.0 15,900 202 640000 000000

S1O2S1(1IO(2)5,May.78

200 :

727

800

500

416

110

200

113

220

220

575

420

-203895,013 980000

1000.00CRISTOBALITE, BETAB-Crsref .1

-203290.017,390000

2000,00CUMMINGTONITECumrefl

9999990185,240000800,00

CUPRITECprref:l

-35384.014 080000

1515,00DftPHNITE,14ADph-14Aref:1,29

-1551548,0176,2100001000,00

DIASPORADspref-20

-220150.012.273000900.00

DICKITBDckref:l,7

999999,072 7700001000.00

DIOPSIDEDiref,1,19

-723780 052.870000

1600,00DOLOMITEDolref;1,19

-517760 041 5570001000,00

DOLOMITE, DI SORDEREDDis-Dolref:l,19

-515653.044,7110001000,00

DOLOMITE,ORDEREDOrd-Dol

i ref:l,19: -517760,0i 44.711000• 1000,00: EPIDOTE• Ep• ref-1,19: -1450906 0: 117,622000• 1100,00• EPIDOTE, ORDERED: Ord-Ep: ref.1,19

-216755,0 10,372 25 7403,340000 -3 810000

SiO2Si(l)O(2)5May-78

-215675,0 11-963 27,380.310000 -9.890000

Mg7Si8O22(OH>2Mg(7)Si(8)O(24)H(2)5 May.78

999999.0 127.500 271.90058.610000 -44.660000

Cu20Cu (21011)5,May.78

-40830.0 22 080 23 4375.880000 -.760000

Fe5Al(AlSi3)O10IOH)8Fel5)AK2)Si(3)O(18)H(8)9 Jan,98-1696591,0 142 500 213,42043.760000 -33.820000

AIO(OH)Ald)O(2)Hlll29 Apr.97

-238924.0 8,146 17,76013.070000 -2.903000

A12Sl2O5(OH)4Al(2)Sl(2)O(9)H(4l5.May,78

999999.0 47.100 99.30029 200000 -21,520000

CaMg(SiO3)2Ca(l)Mgd)Si(2)O(6)15,Mar,90

-765378,0 34,200 66.0907,840000 -15.740000

CaMg(CO3}2Ca(l)M3(l)C(2)O(6)15 Mar 90

-556631,0 37 090 64 36523.952000 -9.884000

CaMg(CO3)2Ca(l)Hg(l)C(2)O(6)15,Mar,90

-553704,0 39,840 64,39017.779000 -10.948000

CaMg(CO3)2Ca(l)Mgd)C(2)O(6)15.Mar,90

-556631.0 37,090 64,34017,779000 -10,943000

Ca2FeA12Si3012(OH)Ca(2)Fed)A112ISi(3IO(13IH(l|15.Mar.90-1543992.0 75.280 139,20012 816000 -31 864000

Ca2FeA12S13O12(OH)Ca(2)Fed)Al(2)Si(3)O(13)H(l)15 Mar.90

-1450906 0113 7B00001100,00

FAYALITEFaref ;1

-330233,036,510000149000

FERPOPAPGASITEFe-Prgreftl

999999.0213.5700001000.00

FERHOTREMOLITEFe-Trref:l

999999.0197.930000800.00

FEKKOUS-OXIDEFrs-Oxref ,1

-60097.012,1220001600.00

FLUORITEFlref-1

-280493.014.3000001424.00

FLUORPHLOGOPITEF-Phlref:l,7

999999.096 130000

1000.00FLUORTREMOLITEF-Trref.l

999999.0183,710000800.00

FORSTERITEForef:l

-491561 035.810000

1800.00GALENAGnref:l

-23115011.170000

1388 00: GEHLENITE

Gh• ref.l,19i -903148,0• 63.740000• 1800,00i GIBBSITE

Gbsref:20

-276025.0: 13.073000• 600,00i GLAUCOPHANEi Ginj refil

-1544016.0 75-200 139 20014 690000 -28 920000

Fe2SiO4Fe(2)Si(l)O(l)5,May,78

-354119,0 35,450 46,3909.360000 -6,700000

Na(Ca2FelAl|(Al2Si6IO22(OHI2Na(l)Ca(2)Fe(l)Al(3)Si(610(24)H(2)5,May,78

999999,0 185.500 279.89042,990000 -47.290000

(Ca2Fe5)Si8O22|OH|2Ca(2)Fe(5ISi(8)O(24)H(2l5 May 78

999999 0 163 500 282 80058 950000 -41 170000

FeOFed)O(l)5.May,78

-65020,0 14,520 12.0002.072000 -.750000

CaF2Cad)F(2l5.May.78

-293000.0 16.390 24,5437,280000 .470000

KMg3(AlSi3)O10(FI2KU)Mg(3IAl(l) Si (3)0(101 F(2)5.May,78

999999,0 80 380 146.37026.740000 -20 410000

(Ca2Mg5)Si8O22(F)2Ca(2)Mg(5)Si(8)O(22)F(2)5,May.78

999999,0 129,400 270,45055.250000 -43,730000

Mg2SiO4Mg(2ISi(l)O(l)5.May,78

-520000.0 22.750 43,7906.540000 -8.520000

PbSPbdISdl5,May.78

-23500,0 21.800 31,1902.200000 000000

Ca2(A12Si)O7Ca(2)Al(2)Sid)0n)15,Mar.90

-951225,0 48,100 90,2408.000000 -15.120000

AKOHI3Ald)OI3)H(3l29 Apr,97

-309065 0 16 360 31 95640 696000 -2,920000

Ha2(Mg3A12)S1BO22{OH)2Na(2IMg(3)Al(2)Sl(B)O(24)H(2)5,May.78

znz

vo

IoVO

.Appendix A. 4

999999 0190 260000800,00

GOLD,NATIVEAure£:l

.05 660000

1336-00GRAPHITEGrref 1

.04.030000

2500,00GREEMALITEGrnref:l,30

-716501 081 650000

1000 00GROSStJtARGrsref.1,19

-1496307.0104.0170001000.00

GRUNERITEGruref-1

999999.0198,830000800.00

HALITEHIref-1

-91807,010 9B0000

1073 00HALLOYSITEHalref d, 7, 28

-903628 272,7700001000,00

HEDEHBERGITEHdref-1,19

-638998 054 810000

1600,00HUHTITEHunref; 1

-1004710,084.170000

1000 00HYDPOHAGNESITEHydro-Hgsref 1

-1401687,0141.4600001000,00

ILLITE111ref:32

-1303971 086 044000

600 00JADEITEJdref.l

999999 059.360000

AuAudi5,May.78

.01.240000

CCd)5,Hay,7 8

,01140000

Fe3Si2O5(OH)4

130 000 269.700 •-50.010000 :

11.330 10.215000000

1.372 5.298-2,040000 i

Fe(3)Si(2)O(9)H(4) :9,Jan,98

-787774 032 600000

Ca3A12Si3O12

72 600 115 000-15 390000

Ca(3)Al(2)Si(3IO(12) :15.Mar.90-1582737.017.013000

Fe7Si8O22(OH|:

60.870 125.300-27,318000

Fe(7)Si(8)O(24|H(2)5.Hay.78

999999.060.930000

NaClNalllCld)5,May,78

-98260,03.9OOO0O

A13Si205(OH)4

163,300 256.670-39.550000

17 240 27 015000000

Al(2)Si(2)O(9)H(4)9,Jan,98

-9B0294.729,200000

CaFe(SlO3)2

48,520 99,300-21.520000

CadlFell)Si(2IO(6l5 Har 90

-678276 08.170000

CaMg3(CO3)4

40.700 68.270-15-010000

Cad)Mg(3)C(4)0d2)5,Hay.78-1082600.042,860000

71,590 122,900-20 440000

Mg5(OH)2(Co3)4'4H20Hg(5)C(4)O(lB)H(10)5,May,78-1557090.065.2B0000

K0.6Hg0,25All

139,380 208.800-21,670000

,8A10.5Si3.5O10(OH12K(0.6)MSt(O.25»Al(2.3)Si(3.5IO(12IHI2)14.Jan.98-1394709 038 570000

HaAl(SiO3)2NalDAldlsil5.Hay.7B

63 590 138 940-17 B20000

2)0(61

-679445,048.160000

1400.00K-FELDSPARK-Fsre£:l,31

-895610 076.6170001400 00

KAOLINITEKinref.l

-905614,072.7700001000.00

KYANITEKyref:l

-580956,041,393132466,00

LAUMONTITELmtref'1,19

-1596823 0123,2000001000.00

LEONHARDITELnrre£:l

999999.0235.0000001000 00

LIMELimref ;1

-144366.011,670000

2000.00MAGNESITEHgsref:l

-245658.019.7310001000,00

MALACHITEMaire£:l

-214204,027.760000780.00

MANGAMOSITEMngref-1,6

-86735 011,110000

: 1800,00MERWIHITEHer

1 re£il,19i -1036526.0

72,970000i 1700,00i METACINNABAEI Met-Cin• re£:l: -10437.0: 10,520000• 1000,00• MICROCLINE, MAXIMUMi Max-McI re£:1.31

-722116.011,420000

K(AlSi3)O8K(l)Al(l)Si(3)9 Jan 98-949424 04.311000

Al2Si2O5(OH)4

31,900 60.400 :-11.870000 i

0(8) I

51 130 108 870-29.945000

Al(2)Si(2)O(9)H(4) I5.Hay,78-982221.029.200000

A12SJO5Al(2)Sid)O(5)5 May 78-616897.06,816463

Ca(A12Si4)O12"

48.530 99 520 i-21,520000 i

20.000 44 090 i-12.882104 ]

4H20Ca(l]AK2)Si(4)0d6)H(8l •15,Mar.90-1728664.044.470000

Ca2(A14SiB)O24

116 100 207,550-16.430000

•7H2OCa(2)AK4)Si(8)O(31)H(14l5.May.78

999999.088.940000

CaOCad)O(l)5 May.78-151790,01.080000

MgCO3Mg(llC(llO(3l5 May.78-265630.012,539000

Cu2(OH)2(CO3)

220,400 407.860-32,860000

9,500 16.764-1.560000

15.700 2B018-4.748000

Cu(2)C(l)O(5)H(2)5 May.78-251900.043,780000

MnOMndlOdl5.May.78

-92070,01 940000

Ca3MglSiO4)2

44.500 54.860-1.340000

14.270 13.221-.880000

Ca(3)Mgd)Si(2)O(8)15.Mar.90-1090796,011.960000

HgSHgdISdl5 May 78

-11800.03.630000

K(AlSl3IO8

60.500 104.400-14.440000

21,200 30 169.000000

Rd)Al|l)Si|3)O(8)9.Jan.98

-895610 063.830000

1400.00MINNESOTAITEMnnref'1,30

-1070048 0BB,310000800,00

MOHTICELLITEMtcre£:l

-512829,036,820000

1400 00MONTMOPILLONITE,CACa-Monref•34

-1272340 080.180000600,00

MONTMORILLONITE,KK-Monref:34

-1273300 0B4.320000600,00

MONTMORILLOUITE,HGMg-Monre£;34

-1268590.079,940000600 00

MONTMOPILLONITE,NANa-Monref.34

-1271210,0Bl,270000600,00

MUSCOVITEMsre£:l,31

-1335667.097.5600001000.00

NEPHELINENeref.l

-472872.035.908062

1500,00HONTRONITE.CACa-Nonref-32

-1079492 078.191000600.00

NONTEONITE.KK-Non

• ref!32: -1080356,0• 79-319000: 600,00: NONTPONITE.MGi Hg-Non• re£i32i -1075647.0: 77.945000• 600.00• NONTRONITE.NA: Na-Non: refi32

-949424.0 51.130 108,74112.900000 -17.050000

Fe3Si4O10(OH)2Fe(3ISi(4IO(12)H(2l9 Jan 98

-1153366 0 83 500 147 86042.610000 -11,150000

CaMgSlO4Cad IHgdl Si (110(415,Hay.78

-540800,0 26.400 51 4705,340000 -8,000000

CaO.165MgO 33A11.67S14O10(OHI2Ca(0.165)Mg(0.33)Ald.67)Si(4)O(12)H(2)

14.Jan.98-1361490.0 59,893 133,264

39.500000 -16.650000

K0,33MgO.33A11.67Si4010IOH)2K(0.331 Mg(0-33)Aid 671Si(4IOI12|H(2)15,Jan.98

-1362B23 0 62.103 137,43240.750000 -16.530000

Mg0.495A11.67Si4O10(OH)2Mg(0.495)Ald,67)Si(4)O(12)HI2l15.Jan.98

-1357862,0 59,131 131 24739,610000 -16,630000

NaO 33Mg0.33A11.67Si4O10(OH|2IIa(0.33)Mg(0.33)Al(1.67|Si(4IO(12)H(2)15,Jan.98

-1360684.0 61.213 134,27140.130000 -16.870000

KA12(AlSl3IO10(OH)2Kd)Al(3)Si(3)O(12IH(2)9,Jan 9B

-1427644 0 70 000 140 71026 380000 -25 440000

Na(AlSi)O4Na(l)Ald)Sid)O(4)5.May.78

-500241.0 29.720 54.1606.457918 -7,327965

CaO.165Fe2AlO 33si3 67O10(OH)2Ca(O.165)Fe(2)Al(O.33)Si(3 67)O(12)H(2)14.Jan 98-1166692.0 66.350 131,10052.930000 -13.200000

K0.33Fe2A10 , 33Si3 . 67O10 (OHI 2K(0.33lFe(2)Al(0,33)Si(3,67)O(12)H(2)14 Jan.98-1167926.0 68 570 135-27054 180000 -13.090000

HgO 165Fe2AlO 33S13 67O10IOHI2Hg(0 lS5]Fe(2|Al(0 33ISi(3 67|O(12)H(2)14.Jan,98-1162924,0 65,740 129,76053,040000 -13.190000

Ha0.33Fe2Al0.3 3Si3.67O10(OHI2Na(O-33|Fe(2)Al(O.33ISi(3 67)O(12)HI2I14 Jan 98

znHoo

^Appendix A 5

1

1 *

1

-1078271 079-277000600,00

PALLADIUMPdref;3B

05,800000

973 00Pd-OXIDEPd-OXref'3B

-1440003.300000

973.00PARAGONITEPgref-1

-1326012 097.430000

1000.00PARGASITEPrgrefi1,19

-2846728.0205.8000001000 00

PERICLASEPer

: refl• -136086,0t 10.180000[ 2100,00• PHLOGOPITE: PHI: ref'l,31• -1396423 0: 100 610000: 1000 00| POTASSIUM-OXIDE! y.-oxi ref 1: -77056 0i 18.510000: 1100,00j PYRITE' Py• refl: -3B293 0: 17-880000

1000.00PifROPHYLLITE

| Frl; ref:1= -1255997,0

79 4320(10: 800 00: RHODOCHPOSITE• Pds: ref.l: -195045.0• 21,990000: 700.00: RICHTERITE: Pec: ref'l: 999999 0: 194 800000j B00.00i POHARCHITEi Sn-Ojcj ref.12

-1165798 0 67.660 132.110 •53,560000 -13.420000

PdPdd)20.Jan.98

0 8.990 8.850 :1,380000 000000

PdOPdd)O(l) :20,Jan,98

-20400,0 13.200 14.070 i14.200000 .000000

NaA12(AlSi3)O10IOHI2Na(l)Al(3)Si(3)Od2)H(2)5,May 78-1416963 0 66 400 132 53024.50000D -26 440000

Na(Ca2Hg4Al)(A12Si6)O22(OH)2Ha(l)Ca(2)Mg(4)Al(3)Ei(6)O(24)H(2)15,Mar,90-3016624.0 160.000 273.50041,660000 -50.210000

MgOHg(l)Od)5,May,78

-143800,0 6,440 11,2481.740000 -1.480000

KMg3(AlSi3)O10(OH)2K(l)Mgl3IAl(llSi(3)O(12)H(2)9,Jan,98-1488303 0 76 100 149,66028 780000 -21 500000

K2OK(2)0d)5,May,78

-86800,0 22,500 40.3808.650000 --880000

FeS2Fed)S(2)5 May, 78

-41000,0 12,650 23,9401.320000 -3.050000

A12Si4O10(OH)2Al(2)Si(4)O(12)H(2)5,May,78-1345313,0 57,200 126-60039 214000 -17.2B2000

MnCO3Mn(l)Cd)O(3)5,Hay,78

-212521.0 23.900 31.0759,300000 -4,690000

Ha2 (CaHg5)Si8O22 (OH) 2Ma(2)Ca(l)Mg(5ISi(8)O(24)H(2)5 May 7B

999999 0 137 600 272 BOO61 100000 -46 150000

SnOSnd)O(l)S.May.70

-61459.09,550000

1237.00RUTILERuref:7,9

-212883,015 014420

1800 00SANIDINE,HIGHHi-Saref.1,31

-893974,063,830000

1400.00SEPIOLITESepref:l

-2211192.0157.920000800.00

SIDERITESd.ref :1,13

-162414,011 630000885,00

SILLIMANITESilref.l

-580091,040,023988

1200.00SILVER, NATIVEAgref-1

05,090000

1234.00SMITHSONITESmtre£:l

-174850,09,300000

780,00SODIUM-OXIDENa-Oxrefd

-89883 018.250000

1000,00SPHALERITESpref-1

-47947.011,770000

130000SPINELSpnref.l

-517006,036.772808

2000.00i STAUEOLITE: SC: reftl1 399393 0: 207,120000• 1000.00: STRONTIANITE: Str: ref:l

-68340.03,500000

TiO2Ti(1)O(2)Mar.83

-226101 02 720501

K(AlSi3)O8K d ) Al (1) Si (3 )9.Jan,98

-946774.012,900000

13,660 20,895 •,000000

12 020 18,820-2 365364

DIB)

54.530 109.008-17,050000

Mg4si6O15(0H)2(H20)2«4H2OMg(4)Si(6)O(23)Hd4)5 Hay 78-2418000.0104,300000

FeCO3Fetl)C(110l3l5.May.78

-179173.026.800000

A12SiO5Al(2ISid)O(5)5,May.78-615099.07.390511

AgAgd)5.May.78

.02.040000

ZnCO3Zn(l)ClllOO)5.May.78

-194260,033.000000

Na20Na(2)O(l)5.May,78

-99140.04.890000

ZnSZnd)S(l)5-May 78

-49000 01 260000

MgA12O4Mg(l)Al(2)O(4)5,May.78

-546847 06,415456

146.600 285.600-18.650000

25 100 29 378,000000

23.130 49.900-11,674053

10,170 10.272.360000

19,700 28.275-000000

17,935 25.000-2.890000

14 019 23.830-1.160000

19 270 39-710-9.708792

Fe2A19Si4O23(OH)Fe(2)Al(9|Si(4)O(24)Hd)5 May 78

999999.036,940000

SrCO3SrdlC(l)O(3)5,May,78

117,100 221.400-57,220000

-275470,023,520000

1197.00SYLVITESyrefil

-97735 09,890000

1043,00TALCTelrefil

-1320188,082,482000BOO,00

TENORITETnref.l

-30568 011,530000

1600.00TITANITETire£:7,9,19

-587129.042 234220

1670.00TREMOLITETrref;1,19

-2770245,0188,222000800.00

WAIRAKITEWairef-1,19

-1477432,0100,4000001000.00

URANINITEUranref;37

-246610,015 003000573.15

WITHERITEWthref.l

-27B400.021,500000

1079.00WOLLASTONITEWo

: ref;1,19: -369225.0

26,6400001400.00

HURTZITEWurre£ = l

-44810,0• 11 820000• 1300.00: ZINCITE> Znci ref:l: 999999,0: 11.710000i 2000,00• ZOISITEi Zo: ref:l,19

-294600,06.320000

KClKUICld)5 May 78

-104370 05,200000

Mg3Si4O10(OHI2

23.200 39-5,080000

19.730 37,770000

Mg(3)Si|4)O(12)H(2)5,May,78-1410920,041,614000

CuOCud)O(l)5-May.7B

-37200.01,880000

CaTlSlO5CadJTi d)Si (1Mar-90

-620960 05 703951

62.340 136-13 342000

10,180 12-1,760000

10(51

30 880 55-9.525038

(Ca2Mg5)Si8O22(OH)2Ca(2)Mg(5ISi(8)O(24)H(2)15.Mar.90-2944038.057,294000

Ca(A12Si4)O12"

131,190 272-44-822000

2H2OCa(l)Al(2)Si(4)O(14IH(4)15.Mar.90-1579333.044,470000

UO2UI1IOI2I18.Jan.98

-259320,07 586000

BaCO3Ba(l)C(l)O(3)5.May.78

-297500,011.060000

CaSiO3Ca(l)Si(l)O(3)15,Mar 90

-389590,03.600000

ZnSZnd)S(l)5.May.78

-45850.01.160000

ZnOZnd)O(l)5.May,78

999999.01,220000

105,100 186-16.430000

18,400 24-1 839000

26.800 45-3,910000

19,600 39-6.520000

14,064 23-1 040000

10-430 14-2.180000

Ca2A13Si3O12(OH)Ca(2IAl(3ISi(3)O(131H(ll15.Mar.90

.010

.524

250

220

.650

.920

.870

638

,810

,930

,846

,338

2noo•U

_Appendix A 6

-1549119 0106 118000700.00

-1643691 025 214000

70 740 135 900-27-145000

CD

I

minerals thaC undergo one phase transi.cj.on

ALBITE Na(AlSl3IO8Ab Na(l)Al(l|Si(3))O(8)ref 1 5,Hay 78

-886308-0 -939680 0 49,510 100 250fil 700000 13 900000 -15 010000473 00 999999 0 999999,000 999999,000B1.B80000 3-554000 -50,1540001200,00

ALBITE,HIGH UaAlSl3OBHi-Ab Na(l)Al(l)Sil3IO(8)refil 5,May.78

-884509.0 -937050-0 52 300 100 43061,700000 13,900000 -15 010000623 00 999999 0 999999,000 999999.000fi4 170000 13 900000 -15 010000

1400 00HLMANDINE Fe3A12Si3O12Aim Fe(3)Al(2)Si(3)OU2)ref.l 5.May.78

999999,0 999999.0 75,600 115.28097,520000 33,640000 -18,730000848.00 999999,0 999999.000 999999 000107,090000 14-660000 -10 6300001600 00

AHESITE,14A Hg4A12(Al2Si2|O10|OH)814A-Am Mg(4)Al(4)Si(2)O(18)H(8)ref.l 5.Hay.78

999999-0 999999.0 108.900 205,400172,590000 34.980000 -41.670000848.00 999999,0 999999,000 999999.000169.400000 41,240000 -44,3700001000.00

ANTIGORITE Hg48Si34O85(OH)62Atg Hg(48)si(34)O(147|HI62)ref 1 5 Hay 7 8

-15808020,0 -17070691,0 861,360 1749.1301228,450000 513,760000 -286.68000084800 999999,0 999999,000 999999.000

1234.830000 501,240000 -281,2800001000.00

CLINOCHLORE.7A Mg5AlIAlEi31O10(OH)87A-Cnc Hg(5IAl(2ISi(3IOI18)H(8)refil 5 May,78

-1957101 0 -2113197 0 106 500 211 500162 820000 50 620000 -40,88000084B00 999999-0 999999-000 999999.000

166 010000 44 360000 -38 18000U900.00

COESITE SiO2Cos SMllOU)ret;1 5.May 78

-203541,0 -216614 0 9 650 20 64111 000000 8 200000 -2.700000848 00 999999.0 999999 000 999999 00014 190000 1 940000 000000

2000.00CPISTOBALITE SiO2Crs Si 11)012)refl 5,Hay,78

-203895.0 -216755.0 10.372 25.74013,980000 3.340000 -3.810000543,00 321.0 999999 000 999999.00017 390000 .310000 -9 8900002000 00

DBPHNITE.7& Fe5Al(AlSi3IO10(OH)87I\-Dph Fe(5)Al(2)Si(3IO(18)H(8)

ref;l,30 9,Hay.98-1544331.0 -1689504.0 138,900 221,200172,530000 52,280000 -37,230000848,00 999999.0 999999,000 999999.000175.720000 46.020000 -34.6300001000,00

EDENITE Na(Ca2Mg5)IAlSi7)O22(OH2)Ed Na(l|Ca(2)Mg(5)AlU)Si(7)O(24)H(2)ref'l 5.Hay 78

999999.0 999999.0 161.000 271,000199.710000 48,780000 -46,010000848.00 999999,0 999999.000 999999.000202,900000 42.520000 -43.3100001000.00

EPISTILBITE CalA12Sl6)O16*5H2OEps CaUIAl(2)Si(6IO(211H(10)refil 5, May. 78

999999-0 999999.0 152 900 267 560157 040000 60.870000 -21.830000818.00 999999,0 999999.000 999999,000163,420000 48.350000 -16.4300001000.00

FERKOEDENITE HalCa2Fe5)IAlSi7)O22(OHI2Fe-Ed Na(l>Ca(2jFe(5)Altl)Si(7)O(24)H(2)re£>l 5.Hay,78

999999.0 999999.0 193.700 280.900209.420000 50 440000 -42 360000848.00 999999.0 999999 000 999999 000212,610000 44.180000 -39,6600001000.00

FERSOSILITE FeSiO3Fs Fe(l)Si(l|O(3)re£:l,13 5,May.78

-267588,0 -285658.0 21.630 32.95226.490000 5,070000 -5.55000041300 37.0 056 67,00023,865000 8.780000 -4.7000001400.00

FLUOPEDENITE Na(Ca2Mg5)(AlSi7)O22(F)2Fl-Ed Ma(l)Ca(2)Hg(5)Al(l)Si(7)O(22)F(2)ref.l 5,May,78

999999-0 999999.0 146.700 272.500195.230000 46.740000 -44.920000848.00 999999.0 999999.000 999999.000198.420000 40,480000 -42,2200001000,00

HEFZENBEBGITE SnSHrz Sn(l)S(llref'12 5.Hay.78

-25023,0 -25464,0 18,360 29.0108.530000 7.480000 .900000

875.00 160,0 999999.000 999999.0009.780000 3.740000 .000000

1153.00HEULANDITE Ca(A12Si7IO18*6H2OHul Ca(l)Al(2)Si(7IO(24)H(12)ref:l 5,Hay,78

999999 0 999999.0 182.400 316.370179.660000 69.070000 -24.530000848,00 999999.0 999999.000 999999,000189.230000 50.290000 -16.4300001000.00

KALSILITE K(AlSl)O4Kls K(l)Al(l)Si(l)O(4)refrl 5.May.78

-481750,0 -509408,0 31.850 59.89029.430000 17.360000 -5,320000810.00 1600 999999.000 999999.00042.500000 ,000000 ,0000001800.00

LAHSONITE CaA12Sl207(OH)2-H2OLws Ca(l)Al|2)Sl(2)O(10)H(4|

ref.1,19 15.Mar.90-1073408.0 -1158104,0 55,800 101.32081,800000 23.360000 -16.260000

848.00 999999.0 999999.000 999999,00084 990000 17 100000 -13 5600001000 00

MAGNETITE Fe3O4Mag Fe(3)O(4)ref:l 5.May.78

-242574.0 -267250,0 34.830 44.52421,880000 48.200000 .000000

900.00 999999.0 999999000 999999,00048.000000 .000000 .0000001800.00

MARGAKITE CaAl2(A12Si2)O10(OH)2Mrg Ca(l)AK4ISi(2)O(12)H(2lref-1,19 15 liar.90

-1394150.0 -1485803.0 63,800 129.400102,500000 16,350000 -28,050000848.00 999999.0 999999.000 999999.00099.310000 22.610000 -30,7500001000.00

NATROLITE Na2IA12Si3)O10*2H2ONtr Na(2)Al(2)Si(3)O(12)H(4)refil 5.May,78

999999 0 999999.0 101.600 169.72095.760000 40.080000 -15.060000

848,00 999999.0 999999.000 999999-00092.570000 46.340000 -17.7600001000.00

NESQUEHONITE MgCO3"3 H2ONsh Hg(llC(l)O(6)H(6)ref-1 5.May.78

-412035.0 -472576.0 46 760 74.790-1574 804000 3899 173000 -417 325000306.50 184.0 999999,000 99999900025.246000 91,289000 -4.222000340.00

NICKEL NiNi Nl(l)refil 5,May.78

.0 .0 7.140 6 5884.060000 7.040000 000000

633 00 ,0 999999,000 999999,0006,000000 1.800000 000000

1725.00PHILLIPSITE,CA Ca(A12Si5)O14*5H2OCa-Php Ca(l)Al(2)Si(5)O(19IH(10)ref.l 5.May.78

999999.0 999999.0 166.600 265.000145.820000 52.670000 -19.130000848.00 999999.0 999999.000 999999.000149,010000 46.410000 -16.4300001000 00

PHILLIPSITE,K K2(A12Si5)O14*5H2OK-Php K(2)Al(2)Si(5IO(19)H(10)ref:l 5,May.78

999999.0 999999,0 172,100 265.000152.660000 60.240000 -18,450000848.00 999999.0 999999000 999999,000155.850000 53.980000 -15.7500001000.00

PHILLIPSITE,NA Na2(A12Si51O14'5H2ONa-Php Na(2)Al(2ISil5IOI19)HllO)re£:l 5 May 78

999999.0 9999990 172.400 265,000152.400000 56.480000 -20.46000084800 999999.0 999999.000 999999,000155.590000 50.220000 -17.7600001000,00

PREHNITE Ca2A12Si3O10(OH)2Prh Ca(2IAl(2)Si(3IO(12)H(2|

znHCO-p.oO

O

VD

.Appendix A: 7

re£l 19 15,Mar,90-1390097,0 -1481649.0 65,000 110.33091,600000 37,820000 -19-600000848.00 999999-0 999999.000 999999.000

101.170000 19,040000 -11,5000001000.00

PfflOPE Mg3A12Si3O12Prp Mg(3)Al(2ISi(3IO(12)ref-1,7 5 May 78

999999 0 999999.0 62.300 113.27091,690000 32.640000 -20.920000848,00 999999,0 999999.000 999999.000

101,260000 13-860000 -12,8200001800,00

QUAKTZ SiO2Qtz Sltl)0(2)ref:l 5,Hay,78

-204616 0 -217650,0 9,880 22 68811 220000 8 200000 -2 700000848 00 290 0 372 38.50014.410000 1.940000 .0000002000,00

QUICKSILVER HgHg Hg11)refil 5,May.78

,0 ,0 18,170 14 8226,440000 000000 190000

629 00 14140 0 999999.000 999999 0004 970000 .000000 .000000

3000.00EPESSARTINE Mn3A12S13O12Sps Mnl3)Al(2>Sil3)O(12)ref.l 5,May,78

999999,0 999999,0 74,500 117,90094,480000 33.240000 -19,120000848.00 999999 0 999999 000 999999 000104 050000 14 460000 -11.0200001800 00

STILBITE NaCa2(A15S113)O36*14H2OStb Ha(l)Ca(2)Al(5)Si(13)O(5O)H(28)re£:l 5,Hay.78

999999,0 999999,0 399.300 649 910390,550000 137,680000 -49,84000084800 999999,0 999999,000 999999,000

400,120000 118,900000 -41.7400001000.00

TIN,NATIVE SnSn Snll)re£-12 Aug.85

,0 .0 12,110 16.2894,120000 6,300000 ,000000

505,06 1680.0 999999-000 999999-0007,300000 .000000 .000000

3000,00

minerals that undergo two phase transitions

flCANTHITE Ag2SAcn Ag(2)S(l)re£:l 5,May,78

-9146,0 -7550.0 34,300 34,20015,630000 8.600000 .000000450,00 950.0 999999.000 999999.0001,819000 53,000000 .000000

620.00 600,0 999999,000 999999,00021 600000 000000 000000

1000,00SEGEPINE NaFe(SiO3)2Agt Ha(l|Fe(l)Si(2)0(6)ref.l 5,Hay,78

999999,0 999999,0 36,700 64.37046,160000 19,310000' -9,460000

950.00 999999,0 999999,000 999999.00052,420000 10.010000 -7.6800001050,00 999959,0 999999.000 999999.00050,270000 10.890000 -7,680000

1400,00ANTHOPHYLLITE Hg7Si8O22(OH)2Ath Mg(1)Si(B)O(24)H(2)re£:l 5.1Iay 78

-2715430.0 -2888749.0 128.600 261,100180.682000 60.571000 -38.462000903,00 999999,0 999999,000 999999.000197,542000 41.614000 -13,3420001258 00 999999.0 999999000 999999,000199,522000 41,614000 -13,3120001800.00

BORNITE Cu5FeS4Bn Cu(5)Fe(l)S(4)re£:l 16 5llay.78

-86704,0 -79922.0 99.290 98.60049.760000 35.080000 -1.350000485.00 1430.0 999999.000 999999.000-34.310000 247.000000 -000000540.00 ,0 999999,000 99999900080.330000 -2040000 ,000000

1200 00BUNSENITE NiOBsn Hi(1)0(1)re£:l 5.May.78

-50573,0 -57300.0 9,080 10,970-4,990000 37.580000 3.890000525,00 ,0 999999.000 999999.00013.880000 ,000000 ,000000565,00 .0 999999.000 999999 00011,180000 2 020000 .000000

2000 00CHALCOCITE Cu2SCc Cu(2)S(l)ref.l 5.May.78

-20626,0 -19000,0 28,900 27.48012,630000 18.B2OOOO .000000376.00 920.0 999999,000 999999,00026.780000 -7.350000 ,000000717,00 287,0 999999.000 999999,00020.320000 000000 000000

1400 00CHALCOPYEITE CuFeS2Ccp Cu(l)Fe(l)S(2|re£:l,16 5.May.78

-44900.0 -41453.0 31,150 42.83020,790000 12-800000 -1-34000083000 2405.0 999999.000 999999.000

-141.400000 210.000000 .000000930.00 ,0 999999,000 999999.00041.220000 .000000 ,0000001200 00

CFONSTEDTITE,7A Fe2Fe(FeSi)05(OH)47A-Csd Fe(l)Si(l)O(9)H(4|ref.l 5,Hay.78

999999.0 999999.0 73.500 110.90084.790000 41.840000 -12.476000950,00 999999.0 999999,000 999999,00097,300000 23.240000 -8.9300001050,00 999999 0 999999.000 999999,00093,010000 25.000000 -8,330000

1500.00ENSTATITE HgSiO3En Hg(l)Si(l)O(3)re£:l 5,May.78

-348930.0 -369686,0 16,200 31.27624.550000 4,740000 -6.280000903.00 166,0 ,020 381,61528,765000 .000000 .000000

1258.0029,260000

1800.00FERKOGEDRITEFe-Gedref:l

999999,0196.270000

390,0 1..000000

11.900,000000

(Fe5A12)(A12SiS|O22(OH)2Fe(5)Al(llSi(6IO(21IH(2)5,May.78

999999,0 153,500 265.90058.390000 -39.010000

903,00 999999.0 999999,000 999999 000204.700000 48,910000 -26.4500001258,00 999999,0 999999,000 999999-000205,6900001500,00

HASTINGSITEHsreftl

999999,0211.570000

48,910000 -26.450000

Na(Ca2Fe4Fe)(A12Si6IO22(OHI2Na(11Ca(2)Fe(5)AK2)Si(6)OI24)H(2l5 May 78

999999,0 189,200 280,30050.880000 -44.880000

950.00 9999990 999999.000 999999,000217.B20000 41,580000 -43,1000001050.00 999999.0 999999.000 999999,000

zn4Oo

Io

215,6800001500.00

HEMATITEHemre£:l

42.460000 -43,100000

-178155,023,490000

950,00 160,036.000000

1050,0031,710000

1B00 00LMUIITE Ca2SiOlLrn Camsill)O(l)ref.l,8 5.May.78

999999,09.740000

Fe2O3Fe(2)O(3)5 May.78

-197720,018.600000

999999.000.000000

.0 999999,0001 760000

20.940 30,274-3,550000999999-000.000000999999 000000000

999999,034.870000

970.00 440.0 999999,00032.160000 11,020000

30,500 51.600-6.260000999999,000,000000

1710.00 3390,0 999999,000 999999.00049,000000 000000 .0000002000,00

MAGNESIOHASTIUGSITE Na(Ca2Mg4Fe)(A12S16IO22(OH)2Hg-Hs Na(l)Ca(2)Hg(4)Fe(l)AK2)Si(6)O(24)H(2lref.l 5,May.78

999999.0 999999.0 163.800 273,800203.800000 49,550000 -47.80000095000 9999990 999999 000 999999,000210.060000 40,250000 -16,0200001050.00 999999.0 999999,000 999999 000207.910000 41.130000 -46.0200001500 00

MAGNESIOFIEBECKITE Na2(Mg3Fe2)S18O22(OH)2Hg-Rbkref.l

999999,0186.950,198.1050194

.260000

I!a(2)Mg(3)Fe(2)Si(8)OI24)H(2)5,May,78

999999,075.140000

00 999999,0 999999,,770000 56.5400001.00 999999.0 999999480000

1500.00PYRKHOTITEPoref.l

-24084,0

411.17

59812

,19000000,40000000200000

58.300000

FeSFell)S(l)5,May,78

-54000.026,400000

570.0 999999.,000000

120 0 9999992 380000

138 000 271.300-45,180000

000 999999,000-41.630000

,000 999999 000-41 630000

14,410 18,200.000000

000 999999,000000000

000 999999 000000000

_Appendix A'

146B 00P.IEBECTITE Na2(Fe3Fe2)Si8022(OH)2Rbk Na(2)Fe(5)Si(B)O(24)H(2)r e f . l 5,Hay,78

999999.0 999999,0 156,600 274,900192,090000 76,140000 -42-990000950,00 999999 0 999999,000 999999 000204 600000 57 540000 -39 4400001050 00 999999 0 999999 000 999999.000

200 310000 59,300000 -39.4400001500,00

minerals that undergo three phase transitions

IRONFeref:7,8

03 040000

1033 DO11-1300001183,005,800000

1673,006.740000

1B12.00PD-OXYANHITEPd-Oxnr e f l

FeFell!5 May 78

07.580000

326,0 999999,000,000000

215,0 999999,0001,980000

1 6 5 0 999999,0001,600000

6 520 7600000999999,000000000999999.000000000999999.000000000

092

KFe3(AlSi3)O10(OH)O-K(l)Fel3)AlU)Si(3)O(12)H(l)5,May.78

999999-0 999999,0 68,500 143,20088,340000 54.120000 -18,060000848,00 999999.0 999999.000 999999,00097,910000 35.340000 -9,960000950,00 999999,0 999999,000 999999 000116,680000 7,440000 -4 6300001050 00 999999 0 999999,000 999999 000

110 240000 10 080000 -4,6300001100 00

gases

Ar, gAr|g)ref'6,S

CH4,gCH4(g)ref'6,!

CO2,gCCOIglref 6 1

H2,gH2lg)ref:6,l

H2O,gH2O(g|ref 17

i,0

4,9680008000 00

-11122,45-650000

1500.UU

J-94254 0

10 5700002500,00

3,0

6.5200003000 00

-54524.812.664700

2523,15

ARGONAr(l)27,Dec,89

,0.000000

METHANEC(1)HI4)15,Dec,87

-17880,011,440000

CARBOH-DIOXIDEC(1)O(2)27 Dec 89

-94051 02.100000

HYDROGEHHI2)27,Dec,89

.0.780000

STEAMH(2IO24.Mar,90

-57935,1-10,404100

37

44

51

31

44

008,000000

518-,460000

0851.060000

234,120000

,763,013078

H2S,g HYDROGEN-SULFIDE

H2S(g)

re£:6,

He,gHelg)ref.6,

Kr,gKrlglref'6,

N2,gN2(g)re£;6,

NH3,gHH3(g)ref:6,

Ne,gNelglref:6,

02,g02 (g)re£;6,

Rn, gRn(g)ref'6,

S2,gS2(g)ref:6,

SO2 gSO2(g)ref:6.

Xs,gXelglre£:6,

3-8021,0

7 8100002300,00

8,0

4,9680008000,00

a.0

4,9680008000,00

8.0

6,8300003000,00

8-3932.0

7,1100001800.00

8.0

4.9680008000.00

8,0

7.1600003000.00

a,0

4.96B00O3000.00

818953,0

8,7200003000.00

8-71748.0

11,0400002000,00

80

4.9680008000,00

H(2)S(1)

27,Dec,89-4931 0

2 960000

HELIUMHell)27,Dec.89

,0.000000

KBYPTONKr(l)27.Dec.89

0,000000

NITROGENN(2)27.Dec,89

,0.900000

AMMONIAH(1)HI3)26.Jul,89

-11021.06.000000

NEONNed)27.Dec 89

.0,000000

OXYGEN0(2)27,Dec.89

.01.000000

RADONP-n(l)27,Dec.89

.0.000000

SULFURS(2I27.Dec.89

306810160000

SULFUR-DIOXIDES(1)O(2)27, Dec,89

-70944,01-880000

XENONXell)27 Dec 89

0.000000

49.185- 460000

30,151.000000

39,217.000000

45,796-.120000

46,000-.370000

34.973,000000

49.029-.400000

42,120.000000

54,540-.900000

59.330-1.840000

40,555,000000

.000

,000

.000

.000

,000

.000

,000

aqueous species

FORMIC-ACID, aq H2CO2FOAC(aq) C(l)H(2)O(2)+(0)ref! 26 17 Jun 92

-88982,6,3957

26 1000FORMATEFOR-ref,26

-83862.5.7042

17,0000ACETIC-ACID,aqACAC(aq)re£-26

-94760.11.619842.0760

ACETATEAE-ref;26

-88270,7.752526.3000

PROPANOIC-ACID,PRAC(aq)ref:26

-93450.11,005762.9700

PROPANOATEPRO-ref:26

-867809.699252.3000

-1016807,7713 23,1000 -0HCO2-H(1)C<1)O(2>-28.Feb.92-101680,4,7242 7

-12,4000 1.C2H4O2

38 90083183300

(1)

21,70036303003

C(2)HI4IO(2)+(0)6 Mar.92

-1161005,2180 2,

-1,5417 -0,C2H3O2-C(2)H(3)O(2)-28,Feb.92

-116160,8,6996 7.

-3,8600 1aq C3H6O2

C(3)H(6)O(2H6-Mar.92

-122470.18-7077 -0-1.1900 -0

C3H5O2-C(3)H(5)O(2)-28.Feb.92

-122630,12 1344 9,-4,2000 1,

BUTANOIC-ACID.aq C4H8O2BUAC(aq)ref:26

-91210.13.270272 4342

BUTANOATEBUT8ref:26

-34650.11.772462.3135

PENTANOIC-ACID,PEAC(aq)re£:26

-89240-15.459691.0659

PENTANOATEM-PEH8-ref:26

-82630,13.930486.5816

GLYCOLIC-ACID,,glyacreft26

-1264008 7445

43-6669GLYCOLATEC2H3O3-ref:26

-1211707,6349

26 0463LACTIC-ACID,aqlacacref.26

42.70050881500

(1)

20,60058253182

(0)

49 40077921500

•(1)

26 500,0612,2276

C(4)H(8)O(2|+(0)6.Mar,92

-127950,23,3487 -02 9924 -0C4H7O2-C(4)H(7)O(2)'17.Jun,92

-128630,17.0492 7-3.5666 1

aq C5H10O2C(5IHU0IO(26 Mar 92

-133690.28,3156 -15,2450 -0C5H9O2-C(5)H(91O(2)17.Jun,92

-134380,24.8456 -1-3.2539 1

lq C2H4O3C(2)H(4)O(3I16,Jun 92

-15489012 1496 4-0,4655 -0

C2H3O3-C(2)H|3)O(3)17,Jun,92

-154700,11,0570 0-4-0271 1C3H6O3C(3IH(6)O(3)16.Jun.92

56.100.69852155

-ID

31.800,4458.1469

I-M0)

62.80083741710

-(1)

38.300.0403,0496

t(0)

43.100,0222,3017

-ID

26.20098342334

+ (0)

-3

-2

_-t

-3-

-3

-3

— 3

-3

-3

-3

-3

-3

10020.

9742-1

99460,

1385-1

.55230

.2805-1

74410

,4837

949S0

.8060-1

.28120

-2360-1

o

O

_Appendix A: 9

-12780011,172061 0199

LACTfVTEIac8ref,26

-122530.9,8498

44,9518OXALIC-ACID,aqOXACref-26

-1686408.4291

25,4991H-OXALATEHoxa-ref:2b

-166907,7,92766 5915

OKALATEOjf-2ref.26

-161100,6,9414

-10.761BSUCCIMIC-ACID.aqSUCACref 26

-17780012 987251.0740

H-SUCCItJATEHsuc-ref;26

-172060,11,661726 117

SUCCINflTESuc-2ref;26

-164380,10,4577

-14,0383GLYCINE.aqGLY(aq1ref-4

-88618,7 604614,1998

ALANINE, aqALAIaqlref ;4

-88800,9.9472

34,9465Ac+2Ac+2ref'36

-79200,0 18657,9173

Ac+3Ac + 3ref;36

-153200,-2-59313 9756

Hg +Ag+ref, 2

-164000-17 24321 6290C3H5O3-

3-0

C(3)H(5)O<3>-17.Jun.92

-164070,12.8244

-3,7823C2H2O4

8.1,

C(2)H(2)O(4)+28 FEB 92

-19458012.3793-2,7181

C2HO4-

1-0,

C(2)H(1)O(4)-17.JUN.92

-195600,11.2406-6 3548

C2O4-2C(2)O(4l-(17.JUN.92

-197200,9.6716

-18.67B7C4H6O4

2,1,

2)

0,3.

49 80080832572

(11

31,90009901469

(01

44.00078662957

•(11

36 00005000831

10.900B66904B0

C(4)H(6)O(4l+(0)28 FEB 92

-21B00022.71090,3050C4H504-

-0-0

C(4)H(5)O(4)-16.JUN.92

-217350.19.7057

-3-9932C4H4O4-2

00

CI4)HI4IO(4)'17.JUH.92

-217350,15.B622-4-7180C2H5NO2

32

62 300,5623,1744

-111

45,200,12269446

-12)

19.500,5716,9170

C(2IH(5IOI2)N(l)+(0l4.Sep 87-1228467 0825-3-4185C3H7NO2

10-

37 8409119,2330

CI3)H(7)O(2IH(l)+(0)4,Sep,B7-132130,

11.7629-1 7690Ac(+2IAc(11+(2)16 Jan 98-73200,

-7 3171-56215Ac(+3IAc (11 + (3116Jan.98-155300,

-14 1059-10 7344

»g( + )Ag(1)+(1)l.Jul.87

11_

80

112

40.000,3023,2658

4,000.6064,9979

-39,000,2780,1668

-3

-3

-3

-3

-3

-3

-3

-3

-3

-3

-2

-2

,49170

,3091-1

,29070

2436-1

,1787-2

.71780

5935-1

.4346

.0717C

.2652C

.4764

1958

184271 728512,7862

AgOH, aqAgOH(aq)ref:21

-21900.2,2665-0.3221

AgO-AgO-ref:21

-5500,1,46400.8786

AgCl,aqAgCllaqlref:22

-17450.5 20889.8168

AgC12-AgC12-ref.40

-51350,7.13274,8953

AgC13-2AgC13-2ref-22

-82710,14.504035.8339

AgC14-3AgCl4-3ref:22

-112280-20,038655.0238

AgF,aqAgFtaqlref,22

-49459,2.5788

12.1829AgCO3-AgCO3-ref:22

-111430.2,258815,2147

Ag(CO3)2-3Ag(CO3)2-3ref-22

-236890.3,7128

36,5589AgHO3,aqAgHO3(aq)ref.22

-773B,6.7660

24.1485Ag(H5J2-Ag(HS>2-refi22

010.365437.2753

AgfAel,aqAg(Ae),aqref.33

25275.-3 5608-1.4254AgOH(O)AgUIOUIH12.Dec.97-31800.

-2.1912-5,1937AgO(-l)Ag(l)O(ll-12,Dec,97-16300,

-4.1994-9.4103AgCKO)Ag(1)Cl(1)17,Sep.97-18270,4.9399

-1 6698AgC12(-)Ag(1}C1(2)20.Jan.98-55438.9,8065-6.7789AgC13l-2lAg(l)Cl(3)17 Sep 97

-105613,27.6363-.8570AgC14(-3)Ag(l)Cl(4)17,Sep.97-150616,

17.5407.1496,2160

I(l) + (0)

17,2006.6063-.0300

(1)

13,9007.38391.4171

+ (0)

34.1003 8015-.0300

- f 1 J

49-780189470-6667

-(2)

44.500-5,11922.5402

-(3)

35 00041,1504 -10 4309

243AgF(01Ag(1)F(1)H6.Jan,98-54722.

-1.4818-0,8218AgCO3(-lAg(l)C(l!C17 Sep, 97

-142490.-2.2632-5,1123

4.2796

h (0)

16.7406.3255

-0.03 80

3(3)-(1)

0.0006,63261.6310

Ag(CO3)2(-3lAg(l)Cl2IO(6)-(3)17,Sep.97

-304200.1 2872

-8 7993AgNO3(0l

-19.0005.23715,0992

Ag(l)N(l)O(3)+(0]17,Sep,97-23320.8.74233,3372Ag(HSI2(-,

49,0002,3069-.0380

1Ag(l)H(2)S(2|-(l)6.Jan.98-8200.

17.53114,7273AgCMCOO

44,680-1 147"S

0.9527

Ag(llC(2)H(3)O(2)17 Aug 92

_ 1

_-*

~2

-2

—3

-3

-4

-2

_2

_2

-3

—3

,63181

-68830

.6053-1

,98320

,1844-1

.9214-2

4801-3.

.71770

,6854-1

.8322-3

.14040

.5037-1

-70840,8,3987

48,3694Ag(Ae)2-Ag(Ae|2-ref:33

-158990.16-2287

110,8373Ag+2Ag+2ref: 2

64300,-.4299

15,2224Al+3Al+3ref:20

-116543-3 340410,7000

A1OH+2A1OH+2ref;20

-166468..2580

38,0000A1O+A1O+ref,20

-215465,3,5000

46.7000A1O2-A1O2-ref:20

-1987003.72B0

19,1000Al(Ae)+2Al(Ae)+2ref:33,35

-208564.2.1643

63 2437Al(Ae)2+Al(Ae)2+ref.33,35

-299359.8.5167

109,3239Am+2Am+2ref:36

-89600.0 02949 6780

Am+3Atn+3ref:36

-142900,-2.95316-5235

Ann-4Am+4reft36

-82900.-4,316440.0550

Am32i-AmO2+ref:36

-91650.12725711,7300

0-0

Ag(CH3COO)2-

38,900.7485,0300

Ag(l)C(4)H(6)O(4)-|l)17 Aug 92-210560,

31 841830 5473Ag(+2)Ag(1)+(2)16,Feb.8S64200.

-8.8310-4.1142AK+3)Al(l)+(3)29.Apr 97-128681.

-17.1108-B.0600A1OHI+2)AlUIOIDt30.Apr,97

-185096.-9.69S5-2.6000A1OI+)Al(1 )O (1H29,Apr.97

-241825.-2.4600-1,5000A1O2I-)Al(1)0(21-29 Apr,97-2220793,9800

-6.2000

-60

91

142

1(1

91

49.90075928741

-21,000.2210,3201

-80 800.9917,8711

)-M2)

-46.820,6000.7666

i-dl

6-17.000.3000.B089

-(11

-11

A1CH3COO+2

-7 000,5170,7595

Al(l)C(2)H(3)O(2)+<2)15.Jan,98

-249130.-2.496111.8151Al(CH3COOA1(1|C(4)]15,Jan,9B

-372080,13.015631.4722Am(+2)Am{l)+(2)16.Jan.98-85100.

-7 7042-5 3363Am(+3)Am{1)+(3)16.Jan.98

-147400.-14.9848-10.3270

Am(+4)Am(l)+(4)16 Jan.98-99200.

-16,3144-3.2586

AmO2(+lAtn( 1)0(2)18,Jan.98

61

12 +rl(6

00

81

112

_123

-32.770.7288.5579

)O(4I+(1)

8.520.6302,4210

-3,00076631000

-48,900.6223.3161

104 000.9330.7484

)

-3

-4

-2

-2

-2

-2

—2

-2

-3

-2

-2

_2

,30500

0952-1

.41392

.07163

,57672

.81001

,9435-1

67572

,31701

46042

.15943

-021S4

o

OO

o

Io

_AppendixA. 10

AmO2+2AmO2-t2ref:36

-177100,3,

• 2 .

41213999

-1404003.

23.Ar, aqAr(aq)ref -3

AsO2-AS02-ref:21

AsO4-3AsO4-3ref-21

_;AurAu+ref;21

6J5,

11856816

390000036471

-836503,3

-11U

37

AuCl aqAuCllaq)ref•22

AuC12-AuC12-ref-22

AuClH-AuC13-ref;22

Au (HS)AulHS)ref:22

Au(Ae1AulAelref:33

Au(Ae)AulAe)ref,33

Au + 3Au + 3ref-21

70

11-0

2

161

2-2-

1216

21014104

L54970.,0308,1352

39000.53125089

-3184,,0357,0551

-36781.5192,6764

-67811,,68787155

2429,,3420.8038

,aq,aq

103B2-

_1890

-498702130.7432

138240,.1917.4610

-192400.0 5496

-8 0048AmO2(+2)Am(DO(2) +18,Jan,98

-155800,-0,1662-1,3438

Ar(O)Ar (1) + f 0)26 Jun 87-2870

6 869B7,3160AS02I-)As(l)0(2l-12.Dec,97

-102540,0,0554

-8-7381A3O4I-3)Astl)OI4)-12,Dec,97

-212270.-5,2609

-26.6841Au 1 + )Au11)+I1)5Jan-9847900

0 8428-3 0956AuCKD)

-4 9005 53500 6223

12)

-20.8005.81391.3732

14 3003 0499-.3073

ID

9,7005.73051 4820

13)

-38,9007.B0915,3990

25 6005.41390.1648

Au(l)Cl(l)*(O)5,Jan.98-2140.

9,4008-5,0371

AUC12I-IAu(l)CK2)5 Jan 98-44725.

20,3482-8,0300AuC13l-2)Au(llCU3l5.Jan.98-86023.

32 9687-11,8910

Au(HS)2(-lAu(1)H(2)S6,Jan-98-2509-

22,3572-1,8007AUCH3C00

41.4702,0481

-0,0380

-ID

53.600-2-25470,8173

-(2)

61 390-7 21512 2827

i(2)-ID

56.770-3,04430.7693

Au(l)C(2|H|3)O(2)10 Sept 92-68310.

17 15768,3843AulCH3C0O)

4B 000-0,9969-0,03002-

Aull)CI4)H|6)O|4)-!l)10 Sept 9;-186750,

36,639224,0193

Au(+3)Au(l)+(315.Jan.98

>61,300

-8.65340,7010

-2

-2,

-3,

-2-

-2,

-2.

-3

-3

-4

-3

-3

-4

B0161

77202,

06300,

7812-1

5614_3

.81371

,16760

.6201-1

.1419_2

,7032-1

,48820

2936— 1

103600-1 716723-5775

AuC14-AuC14-ref;22

35332,-0.536119,7251

B(0H)3,aqB(0H)3(aq)ref:39

-2315408,0000

40,0000B(0H)4-B(0H|4-ref:39

-2756105 520045,0000

BF4-BF4-ref.2

-355400.7,979611.8941

Ba+2Ba+2ref: 2

-134030.2.73833,8000

BaOHfBaOHtref:21

-172300.3,0700-5,7064

BaCl+BaCl+ref!22

-164730.3.4534

11,8213BaF+BaF+ref>22(tab. 3)

-201120.,9652

16.7505BaC03,aqBaC03(aq)ref:22

-263830,.1361

-14.3440Ba(Ae)+BalAe)+ref-33

-223650.6,6253

48,9806Ba(Ae)2,aqBa(Ae)2,aqre£:33

-31262013 9186103.6344

Ba|Ala)+Ba(Ala)+ref:27

97800-11.9654-4,7048AuC14(-)Au(l)Cl14)5Jan.9823573.

-9,0876-3,3107

BOH3I0)

-54 80010,43522,4115

- (1)

-32,7209.31481.5579

B(l)O(3)HI3)+(0)20,Jan.98

-256B207,5000-6,8500

B0H4I-)B(1)O(4)H(20 Jan 98

-3212306 3300

-19,3300BF4I-)BIDF(4)-I16.Feb.88-376400,

11.7027-4.1753

Ba(+2)Ba(l)+(2)1 Jul 87-128500.

-10,0565-3.4500BaOH(+l)

38 79015.00000.0450

4)-(l|

24.5003 80000,9000

1)

43 0001,1504.9779

2,300-.0470.9850

BalDO(DHID + (D12.Sep.97-175900.-.2B25

-7.5974BaCl(+)BafDCKl17.Sep.97-165323..6537

-1,6759BaF(+)Ba (1) F(D •15 Sep 97

-206510-5,4218-.8529BaC03(0)

27 , 5005.8541.1362

l + (l)

24.0005.4861,1895

•• (1)

5.5007.B740.4675

Ba(l)C(l)O(3)+(0l17.Sep 97

-285850.-7,4461

-10,0418BaCH3CO0+

16.0008,6697-,0380

Ba(l)C(2)H(3)O(2) + (D17 Aug 92

-242850.8,3926

11,6995

33.5002.45740,0459

Ba(CH3COOI2Ball)C(4)HI6)OI4)10 Sept 92

-358010.26 206630,9388

59 700-4.5556-0.0300

Ba(C3H6NO2)+Ba(l)C(3)H(6)Nll)OI2)14.Auq,93

-2.26433.

-2 4033-1.

-6,44000.

-3.2500-1,

-3.2628-1.

-2,36332.

-2.76721

-2.80601

-2,.55481

-2.47110

-3,12591

-3.B6230

+ (1)

-210013,9,4348

58,4325Ba(Ala)2,aqBa(Ala)2,aqref(27

-28528720.1040

133.7647Ba(But)+Ba(But)+ref,27

-218640,10.645489.0694

Ba(But)2,aqBa(But)2,aqref:27

-302827.22.5399

203.1160Ba(For)+Ba(Forl+ref :27

-2197754 656918 1411

Ba(For)2,aqBa(For)2,aqref,27

-304769,9.7700

30.3870Ba(Gly|+Ba(Gly)+ref-27

-211341.6.9656

32.1389Ba(Gly)2,aqBa(Gly)2,aqref•27

-287819.14 864770,3874

Ba(Glyc)+Ba(Glyc)+ref:27

-256564,6,5329

49.2137Ba(Glyc|2,aqBalGlyc)2,aqref:27

-378689.13 7306

104.4137Ba(Lac)+Ba(Lac)+ref-27

-257433.8 7414

70,2142BaILac)2,aqBad-ac) 2, aqref-27

-380522.18,4752

156.8818BaI Pent 11Ba(Pent|+ref:27

-243703, 56,09715,2528 -0.2391 -3.409516,0850 -0.2977 1,

Ba(C3H6NO2l2Ba(l)C(6)H(12)N(2)O(4t14.Aug 93

-359051, 107,02641.3073 -10 4865 -4 486541.4112 -0,0300 0,

BaCH3(CH2)2CO2+8a(l)C(4)H(7)O(2)*(ll14,Aug,93

-253285, 44,64718,2150 -1.4160 -3.5319261794 -0.1247 1,

Ba(CH3CH2CH2CO2)2Ba(l)C(B)H(14)O(4l14.Aug 93

-378066, 85,59247.2556 -12.8248 -4,732465.5159 -0.0300 0,

BaCHO2+Ba(llC(l)HUIO(2l + U )26,Aug.93-228918. 34 5473.5906 4,3358 -2 92731.0380 0.0279 1-Ba(CHO2)2Ba(l)C(2)HI2)O(4)26,Aug,93-329933, 62,275

16.0719 -0.5623 -3,44335,4799 -0.0300 0.Ba (C2H4NO21 +Ba(l)CI2)HI4)N(llO(2)+(ll27 Aug 93-2358OB, 54,3279.2295 2,1164 -3,16046.8602 -0,2709 1.Ba(C2H4NO2)2Ba|llC(4)H(8lN(2)O(4)27.Aug.93-343302, 102 940

28,5140 -5.4575 -3,957719,3830 -0 0300 0

BaCH3OCO2+Ba(l)C(2)H(3)O(3)+(l)30,Aug,93

-282924. 34,0008.1729 2,5314 -3.116B

11.8129 0,0358 1.BalCH3OCO2l2Ba(l)C(4)H(6)O(6)30.Aug 93

-436833 66,05925 7444 -4 3677 -3 843231,2096 -0,0300 0

BaCH3CH2OCO2+Ba(l)C(3IH(5)O(3)f(l)30.Aug.93

-291416, 41,00013.5626 0.4195 -3-339619 4498 -0 0697 1

Ba(CH3CH2OCO2)2Bafl)C(6IH(10)O(6)30,Aug,93

-453654, 80,91937.3316 -8.9265 -4,322249.4461 -0,0300 0

BaCH3(CH2)3CO2+Ba(l)C(5|H(9IO(2)+(l)31 Aug 93

_Appendix A 11

-216357.12,8030

125,4720Ba (Pent! 2 , aqBa(Pent)2,aqre£-27

-2982B927.1717

292,2076Ba(Prop)tBa(Prop!+ref;27

-221005,8 5720

75 0141Ba (Prop) 2 aqBa(Prop)2,aqref.27

-307529,18.0991

167.7909Be+2Be+2ref!21

-90550- 571B

17.0245BeOHtBeOH*ref;21

-139900,2,3302

30 9714EeO,aqBeO(aq1ref:21

-138600,1,8917

13.5675BeO2-2BeO2-2re£,21

-152900-3 2657

34 0366BeCl +BeCltref,22

-115316.1,1974

16,6475BeC12,aqBeC12laq)ref-22

-145521.5.0297

39.6530BeF+

ref;22-158493,

-1 260323 7740

BeF2 aqBeF2(aq)ref,22

-231386.- 5250

45,6271BeF3-BeF3-ref•22

-259492,23,482239,1471

51,147-3,4843-0,2231

Ba(CH3CH2CH2CH2CO2)2Ba(l)C(10)H(18)O(4)31.Aug 93

-389909 100.59858,5642 -17,267596,4819 -0.0300

BaCII3CH2CO2-fBalllC(3)Hl5)O(2)+(ll15.Sep,93

-248190.13 151521 0377

39.3470 5756

-0,0446Ba(CH3CH2CO2)2Ba(liC(6)H(10)O(4)15,Sep,93

-368336,36.413853,2379

Be (+2)Be(1)+(2)15.Sep 97-91500

-9 1742-4,2160

BeOH(+l)BelllOUIJ16,Sep,97

-153200,-2,09452 9542BeO(O)Be(1)0(1)H16,Sep,97

-144100.-3,1609-.3660BeO2l-2)Bell)O(2)-16-Sep.97

-189700.1906

-5 6215BeCK+1)BelDCKl13.Sep,97

-124996--4,85483,3197BeC12(0)Be(llCl(213 Sep.97

-156432,4.50268.7262BeF(+l)

15,Sep.97-177322,

-10 85604.1893BeF2(0)Be(l)F(2)15,Sep,97

-258350.-9,060410,8026

BeF3(-l)Be(1)F(3)15 Sep 97

73,356-8.5671-0,0300

-32 1009,34621,5475

ni) + ti)

-17,9006 5792

8222

h (0)

-25,1006.9887-.0300

-O)

-41,0005 67883,8330

) + ll)

92.3107,6512

-0.8467

) + (0)

130.4403.9733-00380

• 111

59 20010 0098-.3447

+ (0)

71 7209,3042-.0380

- (1)

-3,

-5,

-3

-4,

_2.

-2

-2.

_2

-2

-2

-2

-2

7497]

1999(

3226]

2842(

3996

6923

.6482

7868-

,5783

9651

.3302

.4044

-302532.

62BeF4-2BeF4-2ref:22

,20528555

-370691,1

79Be(Ae)+Be(Ae)+ref;33

.0882

.5432

-1740205

74Be(Ae)2,lBe(Ae)2,iref,33

.0795,5470»qaq

-263740.11

131Bi+3Bit3ref:21

-127

BiOH+2BiOH+2re£:21

29

BiO+BiOtref,21

2-39

BiO2-BiO2-ref;21

5-59

Bi(Ael+2Bi(Ael+2ref:33

5107

Bi(Re)2+Bi(Ae)2+re£:33

.7442

.9355

22880..0957.5027

-32300,46938610

-29300,,9487.8159

-61700,2319,7858

-67750..16909465

-157070.11201

Bi(Ae)3,Bi(Ae)3,ref'33

,9760,6950aqaq

-24554019

313Br-Br-ref -.2

5-3

Br3-Br3-ref-2

7454,6160

-24870,,2690,8000

-331512,-7 277616 5406

BeF4(-2)Be(l)F(4)-15,Sep,97

-386096.-5.121421.4033

BeCH3COO+

104.7808,6034.0401

(2)

190.1207.7560,3329

Be(l>C(2)H(3|O{2|+(l)11 Mar 93

-213040.4 6238

16,7410Be(CH3COO):

-45,6003.92641.2465

Be(l)C(4)H(6)O(4)11 Mar 93

-336230.20.896140.7754

Bi(+3)Bi(1) + (3 )11.Sep 9719360.

-10,4536-2,8715

BlOH(+2)

16.Sep.97-44800

-1.7539-6.0900

BiO ( + )Bi(1)0(1)+16.Sep.97-30300.

-.5825-19 8601

BiO2(-)Bi(1)O12)-16,Sep 97-71600,

4.9920-28.9859

BiCH3COO+2

-43.800-2,4661-0,0300

-45,0009.85062,2651

(1)+(2)

-19.5006.44331,3552

(1)

19.1005,9810,2634

(1)

45,1003.7909.9456

Blll)C(2IH(3lOl2)+(2)26 Sept 92-96420.

4,838628.2236

-15.2003,85081,2860

Bi(CH3COO)2+Bi(l)C(4)H26 Sept 92-212380,

21.461963.6303

(6)O(4)+(l)

9.600-2.68770.4046

Bl(CH3COO)3Bi(l)C(6)H(9)O|6)26 Sep.92

-329240.40 4309103.9230

Br(-IBr(l)-U)1.Jul.87-29040.6,5940

-6,8110Br3(-IBr (3) - (1)12 Jul 87

28.60010.1406-0.0300

19,8004.74501-3858

-2,

-2.

_2.

-3.

-2,

-2

-2

-2

-2

-3

-4

— 3

4781-1

5672-2

97001

64270

34673

.70642

.75481

.9853-1

,97892

,66611

45030

,1430-1

-25590,9,099217,2705

BrO-BrO-re£:21

-8000,2,32063.4104

BrO3-BrO3-ref-2

4450.6-96173.7059

BrO4-BrO4-re£:21

28200.8.736111.4884

CH4,aqCH4(aq)ref; 4

-8234,6.7617

42.0941CN-CN-ref:21

412005 47147.6773

CO2,aqCO2(aqlref ;3

-92250.6.246640.0325

CO3-2CO3-2ref. 2

-126191.2.8524-3.3206

Ca+2Ca+2ref :2

-132120- 19479,0000

CaOHtCaOHtref:21

-171300.2.7243

11.1286CaCl+CaCl+ref-22

-163100.2,7148

20.8839CaC12,aqCaCU(aq)ref:22

-194000.6,2187

23,9610CaF+CaF+ref;22

-31170,14 4364-1.8939

BrO(-)

51.500.07598490

11.Sep.97-22500, 9,700

-2.1131 6,5758-8,7381 1,4820

BrO3(-|

12 Jul.87-16030 38 650

9,2173 2,1272-7,2308 10433

BrO4(-)

30,Apr.973100. 47 600

13.5515 .4200-4.0937 ,9085

CH4I0)

31.Aug.87-21010. 20.990

8,7279 2,321210.4707 -.3179

CN(-l)

11.Sep.9736000. 22 500

5,5813 3,5497-6.6400 1,2900CO2I0ICI1IOI2I-M0)26.Jun.87-98900. 28.100

7.4711 2 81368.8004 -.0200CO3I-2)

1.Jul .87-161385. -11,950

-3,9844 6,4142-17,1917 3.3914

Ca(+2|Ca(l)+(2)3.Jun 87

-129800. -13 500-7.2520 5,2966-2.5220 1,2366

CaOH(+l)

12,Sep,97-179600. 6,700

-1.1303 6.1958-2.7493 .4496

CaCK-O

17.Sep.97-168607. 4,500

-1.1497 6,1949.5241 ,4862CaC12(0lCa(l)Cl(2)+(0l17,Sep.97

-211060. 6.0007-4058 2 83223.2720 - 0380CaF(t)

-3 3758-1

-2.6915-1.

-3,1600-1-

-3,3391-1.

-3,1397

-3.0096-1.

nH

oO\OVO

Io

-2,6143- 2 ,

-2,7314

-3 0851

12,Sep.97

.Appendix A: 12

CO

CO

I

-200390.,1568

30,1743CaHCO3+CaHCO3 +ref-5

-273830.3,191142,3545

CaCO3,aqCaCO3{aq)ref;22

-262850,-.3907

-11 5309CaEO4,aqCaSO4(aqlref,22

-312930.2.4079-8.4942

CalHSiO3l+Ca(HSiO3)+ref!22

-3762991 064730,8048

Ca(Ae)+Ca(Ae)+ref;33

-221660.5,900258,1976

Ca(Ae)2,aqCa(Ae)2 aqref-33

-311570.12,9911115,9068

Ca(Ala(+Ca(Alal+ref;27

-208472,8 712467 7227

Ca(Ala)2,aqCa(Ala)2,aqref,27

-284046,19.1765146.0369

Ca(But|+Ca(But)+ref 27

-2174679,923598.3731

Ca(But)2,aqCa(Eut)2,aqref;27

-302268,21,6124215 3882

Ca(For)+Ca(For]+ref:27

-217933,3,934627,4342

Ca(For)2,aqCa(For)2,aqref-27

-208600-7.39583,0968CaHC03l+)CalllHIlIC1 Jan 91

-294350.,0104

8,5559CaCO3(0l

-9,0008,64996911

(1(0(3J+(1)

16-0005.7459,3084

CaU!C(l|OI3) + IOI17.Sep,97

-287390,-8.7325-9 0641CaSO4(0)

2,5009,1753-.0380

Ca(l)S(l)0(4)+(0!12,Sep,97-345900.-1.8992-8,1271

5.0006.4895-.0010

Ca(HS103)(+1)Ca (1)H(1)S15 Sep 97-403109-5,17873.6619CaCH3C00+

i(1)0(3)+(1)

-1.9907,7785,5831

Ca(l)C(2IHI3)O(2)+tl)5 Apr 93-245620-6,623213 8857Ca(CH3COO)

12,5003 15050 3636

2Ca(l)C(4)H(6)O(4)5 Apr 93-36265023.937935.2043

32,300-3,6556-0,0300

Ca(C3H6NO2(+Ca(l)C(3)H(6)O(2)N(l)14,Aug.93

-24708313 488818.2713Ca(C3H6N0:

34 5550 45400 0279

!)2

-2.

-2,

-2

-2,

_2

-3

-3,

Mil

-3

Ca(l)C(6)H(12)H(2|O(4l14,Aug,93-364714.39-044845.6768

78.835-9,6021-0,0300

CaCH3(CH2l2CO2+Ca(l)CI4)H(7)O(2)+(l)14 Aug 93-257034.16.449728,3657

23,105-0,71660,2025

Ca(CH3CH2CH2CO2)2CaU)C(8)H(14)O(4)14,Aug,93-384411.

44-993169 7815CaCHO2tCalllC(l)]16,Aug,93-231998,1,82643,2242Ca(CHO2)2

57,401-11 9404-0,0300

3(l)O(2)+(l|

13.0055,03050,3539

Ca(l)C(2|H(2|O(4)16 Aug 93

-4

-3

-4

-2

47321.

77941

41790.

70040,

56491

05271

.76850

1

33651

,39300

,45891

,63890

,85441

42Ca(Glyl+Ca(Gly)+ref:27

641

Ca(Gly)2Ca(Gly|2ref:27

-1382

Ca<Glyc)

302982-84256594

209240.-2431,4246,aq,aq

2855559371,6597

yref-27

-255541,5,785457.8209

Ca(Glycl2,aqCa(Glyc)2,aqref.27

-378403.12,8031116,6861

Ca(Lac)+Ca(Lac)+ref;27

-256587,8 0009

79.0115Ca(Lsc)2,agCa(Lac)2,aqref:27

-380563.17.5477169.1540

Ca(Pent)+Ca(Pent)+ref:27

-215129.12.0805134.7595

Ca(Pent!2,aqCa(Pent)2,aqref:27

-297634,26,2442304 4798

CatProp)+Ca(Prop)+ref.27

-219818.7,850384,3239

CatProp|2,aqCat Prop) 2, aqrefi27

-306942.17 1716180.0633

Cd+2Cd+2ref \2

-18560,0537

15.6573CdOH+CdOH+ref.21

-335050. 34 08413 8094 0 3220 -3 34989.7454 -0 0300 0.Ca(C2H4NO2)+Ca(llC(2)H(4)0(2)W(l)+(ll16.Aug,93

-238629. 32,7857,4595 2.8241 -3.08739,0464 0.0543 1Ca(C2H4NO2)2Ca(llC(4IH(8|N(2|O(4)16.Aug 93-347942 74 74926,2517 -4,5733 -3,864123.6485 -0.0300 0.CaCH3OCO2+Ca(l)C(2)H(3)O(3)+(l|16,Aug,93

-285318, 17.5056.3436 3,2594 -3,041113,9991 0,2873 1Ca(CH30CO2l2Ca(l)C(4)H(6)O(6)16,Aug,93-441481. 44.47323.4820 -3,4840 -3.749635.4751 -0.0300 0.CaCH3CH2OCO2+Ca(11C(3)H(5)O(3)-Ml)16.Aug,93-294436, 23,0011,7524 1.1355 -3.264721.6361 0,2025 1.Ca(CH3CH2OCO2)2Ca(l)C(6)HtlO>0(6l16.Aug,93

-459217. 57,36435.0629 -8,0266 -4.228453.7117 -0 0300 0.CaCH3(CH2)3CO2+Ca(l)C(5)H(9)O(2!+(l)16.Aug,93

-263187. 29.60521,7185 -2,7923 -3,676741.3334 0,1023 1.Ca (CH3CH2CH2CH2CO2) 2CaUIC(10)H(18IO(4)16.Aug.93-396159, 72,40756,3017 -16.3832 -5.1064100 7475 -0 0300 0.

CaCH3CH2CO2+Ca(l)C(3)H(5)O(2)+(l)15,Sep,93

-251925, 17,80511.3857 1,2776 -3.249623,2239 0.2832 1,Ca(CH3CH2CO2|2Ca(l)C(6)H(10)O(4)15,Sep,93-374653 45 16534,1451 -7,6668 -4,190557,5034 -0.0300 0.Cd(+2)

-17,40016.5176 -2.33631.2528 2

l.Jul.87-18140.

-10 7080-3 7476CdOH(+)Cd(l)OUIH(l)12,Dec,97

-615000.147318,8886

CdO.aqCdO(aq)ref:21

-47500,-0 1471-0.3806

CdO2-2CdO2-2ref'21

-67300,0,79223,4810

CdCltcdcl+ref:22

-52627,3.099026 6485

CdC12,aqCdC12(aq)re£:22

-84651.6.626534 2501

CdC13-CdC13-ref:22

-115971,11,282656,4451

CdCl4-2CdC14-2ref:22

-146081,16,491976.2256

CdF+CdF+ref,22

-87373,0.542331.0752

CdF2,aqCdF2(aq)ref:22

-1551641 071840.2242

Cd(Ae)+Cd(Ae)fref!33

-109460,6,304364 3035

Cd(Ae)2,aqCd(Ae)2 aqreft33

-199400.13.4090126.2752

Cd(Ae)3-Cd(Ae)3-ref.33

-28803021.9033213.8505

Cd(Ala)+Cd(Ala)+ref;27

-73400.-7.4141-0,5290CdO(0)Cd(1J 0(1) +12,Dec,97-59750,

-8 1341-5 2141CdO2(-2)Cd(l)O(2l-12,Dec,97

-101000,-5,8401-15.2361

CdCl(t)Cd(l)CKl)5 Jan.98-59392

-0.21162.3572CdCl2(0)Cd(l)cl(2)5.Jan.98-101362,8,40166 8482CdC13(-llCd(l>Cl(3)5,Jan,98-144916,19,77059.7459CdC14|-2)Cd|llCl(4l5.Jan-98

-190793,32.490311.0502

CdF(+)

-2 9008,64710,5985

{01

-4 2008.9312

-0,0300

(2)

-20 3008,03033.5190

+ (1)

0,7505 82620,5394

+ (0)

10,3102,4408

-0.0380

-(1)

10.860-2,02761,4662

-12)

0,230-7.02713.2060

Cd(l)F(l)+(l)6.Jan.98-97544,

-6.45443.2268CdF2(0lCd(l)F(2l-6.Jan 98

-180369-5.16148,9247CdCH3COO+

-13.1108,27990.7483

^ (0)

-23.7207,7717-00380

Cd(l|C(2)H(3IO(2l+(l)17 Aug 92

-135920,7.6112

15 7327

6,6002.75930 4496

Cd(CH3COO)2Cd(l)C(4)H(6)O(4)17 Aug 92

-254520,24.958438.8081

24,600-4,0570-0,0300

Cd(CH3COO)3-Cdll)C(6)H(9)O(6)-ll)10 Sep 92

-376010.45.703665,4786

31.900-12 21991,1469

Cd(C3H6NO2)+Cd(l)C(3)H(6)O(2)H(l)14,Aug,93

-2,

-2

-2,

-2

-3,

-3

-4

— 2

-2

-3

-3

-4

47241,

44260

5375-2.

77021,

,12630

.5963-1

1221-2

,51211

56560

.09351

,81070

.6683-1

+ (1)

zn

SO

OVO

.Appendix A, 13

CO

-100082,9,1151

73.7914Cd(Ala>2,aqCd(Ala)2,aqref-27

-17994019.5944

156-4053Cd(But)+Cd(But)+ref;27

-105285,10,3259

104 4311Cd|But)2.aqCd(But)2,aqref.27

-191463.22,0303

225,7566CdI For I +Cd(For)+ref-27

-1049324 3381

33,5224Cd(For)2,aqCdlFor)2,aqref;27

-191523,9.260453-0278

CdlGly)+Cd(Gly)+ref-27

-100236.6,6477

47,5446Cd<Gly)2,agCdlGly)2,aqref-27

-16057614 355093 0282

Cd(Glyc)+Cd(Glyc)tref,27

-142281,6,1880

63 8836Cd(Glycl2,aqCd(Glyc)2, aqref'27

-2653BB.13 2210127.0546

Cd I Lac) +Cd (Lac) +ref;27

-143409.8 401985 0322

Cd (Lac) 2 aqCd(Lac)2,aqref.27

-267699,17,9656179,5224

CdtPentI+Cd(Pent)+ref carla

-141016, 29,23814,4742 0.063020 1183 0 1098Cd(C3H6NO2)2Cd(l)C(6)H(12)N(2)O(4)14,Aug.93-263420 71.877

40-0653 -10.003449,2806 -0-0300CdCH3(CH2l2CO2+Cd(l)C(4)H(7)O(2l+tll14,Aug.93-147174, 17.788

17,4297 -1097030 2127 0 2832Cd(CH3CH2CH2CO2)2Cd(l)C(8|H(14)O(4|14.Aug.93-276419, 50,443

46,0136 -12.341773,3853 -0,0300

CdCHO2+

-3.3773

-4.4352

-4,6811

26 .Aug .93-121320. 7 68B2,8097 4.6479 -2,89515.0712 0,4379 1.Cd(CHO2l2CdlllC(2IH(2)O(4)26.Aug.93-226403, 27.12514 8299 -0 0792 -3.392013 3492 -0 0300 0CdlC2H4HO2)+Cd(l)CI2)H(4)O(2)N(l)+(l)27.Aug.93-1320B8. 27.0008,4525 2,4231 -3,128310,8935 0,1417 1.

Cd|l)C(4|H(8)N(2)O[4|27.Aug.93

-246607, 65,00027 2722 -4 974627 2523 -0 0300CdCH30CO2+Cd(l)C(2)H(3)O(3)+(l)30,Aug.93

-174381, 12,1887,3293 2,865615,8461 0.3686Cd(CH3OCO2l2Cd(l)C(4)H(6)O(6)30.Aug.93-331279, 37,514

24,5024 -3.885139,0789 -0,0300CdCH3CH2OCO2 +Cd(l)C(3)Hl5)O(3)+(l|30.Aug.93-183519 17.888

12 7361 0 739023 4831 0 2792CdlCH3CH2OCO2|2Cd(l)C(6)H(10)O(6)30,Aug.93-349085, 50,673

36,0834 -8,427957.3155 -0,0300CdCH3(CH2)3CO2+Cd(11CI5IH(9)O(2l+tl)31,Aug 93

-3.0819

-103384.12,4829

140,8184Cd(Pent)2,aqCd(Pent)2,aqref•27

-187389-26,6621314,8482

Cd(Propl+Cd(Propl+ref:27

-1079088 2526

90-3786Cd(Prop)2,aqCd(Prop)2,aqref:27

-196520,17,5895

190,4317Ce+2Ce+2ref:21

-74900.0.13158,5755

Ce+3Ce+3ref:21

-161600.-3.4B33-0.3550

CeOH+2CeOH+2ref,25

-206800.2.7525

-3,6840CeOtCeO+ref:25

-195900,2,8409

-35,2162CeO2-CeO2-ref:25

-222100.5.0465

-51.0768CeCl+2CeCl+2ref.25

-193400.-0,174614.4780

CeCl2+CeC12+ref:25

-224400,2.95112,5793

CeCl3,aqCeCl3(aq)ref:25

-255200,6,4972

-31,3975CeCl4-CeCl4-ref:25

-153764,22.698543,1804

24,288-317190,1832

Cd(CH3CH2CH2CH2CO2)2Cd(l)Cfl0)Hfl8!O(4)31.Aug.93-288726, 65.449

57,3222 -16.7845104,3513 -0.0300

CdCH3CH2CO2+Cd(l)C(3)H(5IO(2l+(l)15.Sep-93

-142338.12 366025,0710

12.4880.89570,3636

Cd(CH3CH2CO2)2Cd(l]C(6)H(10)O(4)15.Sep,93-267043.

35,165561.1072Ce(+2)Ce(1)+(2)9.Dec.97-70300,

-7,4538-5,5196Ce(+3>Ce(1)+(3)10 Dec 97-167400

-16 27B9-12,7510

CeOH+2Ce(l)O(l)ll.Dec-95

-218200.-1,0606-9,9807CeOtCe(1)0(1)l.Dec 95

-208900.-0,8430

-18.5361CeO2-Ce(l)0(2)1,Dec.95

-230300,4.5418

-26.2767CeCl+2CelDCllll.Dec.95

-203800.-8.1993-4.6011CeC12+Ce(1)Cl(2l.Dec,95

-242300,-0 5763-6.3002CeC13(aq)

38.207-8,0682-0 0300

1,4008.66531,0376

-49 00012 13022.3265

1(1)+(2I

-2.76,16731,1000

+ (1)

13.46.07720,3491

-(11

38.63 96261 0449

) + (2)

-22.18,95251,3914

) + (1)

-5.15,97770.6305

CelUCiml.Dec.95

-283500.8.0855

-15-9948CeC14-CelllCK4l.Dec-95

2.62.5659

-0.0300

-3,

-5,

-3,

-4.

-2.

-2

-2

-2

-1

-2

_T

-3

7173

1486I

2901

2326I

4708

.1059

,7351

.7441

9667-

.4399

.7551

.1132

-286100,11 2558

-67 0564CeF+2CeF+2ref,25

-234700.-2,828115,8334

CeF2+CeF2+ref;25

-306200-2,55388.9628

CeF3,aqCeF3laqlref'25

-376600.-2.2777

-21,3883CeF4-CeF4-ref,25

-446500,-0.8995

-45.3959CeBr+2CeBr+2ref-25

-1B69BB.0.8072

13,8428CeHCO3+2CeHCO3+2ref:25

-304500.0 6941

35 5792CeCO3+CeCO3+ref:25

-297887.-0.9160

-21,4145CeH2PO<l+2CeH2PO4+2ref:25

-4351001.693039.4058

CeNO3+2CeNO3+2ref.25

-189900.1,4120

30,1006CeIO3+2CeIO3+2ref-25

-194792.0,9706

29.8495CeC104+2CeC101+2ref:25

-166246.3 509942 4445

CeSO4+CeSO4+ref,25

-32760019 7046

-33.6847CeF+2Ce (1)F(1Hl.Dec,95-242000.

-14,6820-3.7656

CeF2+Ce(l)F(2hl.Dec 95

-324100.-14,0092-4.3051CeF3(aq)Ce(l|F(3ll.Dec,95

-409300,-13 3348-12 5158

CeF4-Ce(l)FU)-l.Dec.95-498900

-9.9693-28-3978

CeBr+2Ce(l)Bir(lll.Dec.95

-195709.-5,8045-4.9716CeHCO3+2

l.Dec.95-330200,-6 08233,3307CeCO3 +CedlCUXl.Dec,95

-309988.-10.0134-16.3769

CeH2PO4+2

0.3-2 00031.6238

M2)

-14,311.50841-2776

v (1)

-10,111-23730,7003

-19 710 9718-0 0300

•111

-46 19.64882.3239

1 + (2)

-25,018,01781,4382

:il)O(3)+(2)

-9 58 13091 204B

D(3)+(l)

-40.69,67361.1729

Ce(l)H(2IP(l)O(4)+(2l1-Dec 95

-480100-3 64503,8826CeNO3 + 2

-25 97 17701.4477

Ce(l)NU)OI3) + (2)l.Dec.95

-223200.-4,32530,3288CeIO3+2

1 Dec.95-225358.

-5.40270,4044CeC104+2CelllCKll.Dec.95

-2100260 78634 4497CeS04+CelllSllll.Dec.95

-32,27.43191,5475

3<3)+(2)

-28,977,85481.4967

)O(4)+(2)

-36 065 44561 6005

-3 5935-1

-217192

-2.19981

-2 22760

-2.3668-1

-2.53892

-2 5275

-2.36491

-2,6282

-2,6001

-2,5556

-2 8114

nH

o4Oo

Io

.Appendix A: 14

-331500.1,5220

-22,4285Ce(Ae)+2CelAe)+2re£i33

-2535902 948753 6757

Ce(Ae)2+Ce(Ae)2+ref,33

-344550,9,5157950022

Ce(Ae)3,aqCe(fle)3,aqref-33

-43176016,9252

1300191Ce+4Ce+1ref-21

-121300.-4 279240 2790

Cl-Cl-re£.2

-31379.4,0320-4 4000

C1O-C1O-re£-21

-88002 35993,4786

ClO2-C1O2-re£i21

4100,5,21636,4977

C1O3-C1O3-re£'2

-1900.7,16658,5561

C1O4-C1O4-re£; 21

-20408 141116.4500

Cm+2Cm+2ref.36

-77100,0,00949,9946

Cm+3Citn-3re£-36

-141200-2 96336.6776

Cm + 4Cm+4re£:36

-380200,-4,0622

-15,3380CeCH3COO+2

-12,67,33970.73B4

Ce(l)C(2)H(3)O[2)+(2)10 Eep 92

-286390-0 58258.8731Ce(CH3COO)Ce(1) C (4) >10 Sep 92

-405090,15,452725,8754

-25 1005 98091,4382

2 +(6)O(J)-U)

-4,300-0.32190.6143

Ce(CH3COO)3Ce(l)C(6|H(9|O(6)10 Sep 92

-524960,33,542640,1094

Ce(+4|Ce11)+(4)10.Dec,97

-137700-18,2247-3 0141

Cl(-)Cltl)-(l)11,Sep,97-39933.

4.B010-5,7140C1OI-ICKIIOID-11.Sep.97-25600

-2,0164-8.6974C1O2I-)C1UIOI2)11 Sep.97-15900,4.9580-6,9659C1O3I-)C1(1)O(3]12.jul.87-218509.7172

-5,5401C1O4(-)Cl(1)0(4)

10,300-7,1281-0.0300

-100 10012.89963 6961

13,5605.56301.4560

(1)

10,0006.53561,4767

(1)

21,2003.79491,2637

(1)

38 8001,93071,0418

-11111,Sept.97-30910

15 5654-6,5700Cm(+2)Cmll)*(2>16.Jan.98-74100,

-7,7516-5,2956Cm(+3)Cm(l)+(3)16.Jan 98-147000,

-15,0112-10,3066

Qn (+ 4)On {1) + (4)16.Jan.98

43 500-7 8077

.9699

-4 0008,78101,1216

-49,20011,61382.3265

-2.

_2

-3

-1

-2

-2

_2

-2

-3

-3

-2

-2

6 1 1 0 11 . i

7518 |

4177 i1 j

1656 I0.

02554,

8470-1

6955-1.

9839-1

1807-1.

4224-1.

,45842

,15823,

-70700.-4,316440,0550

Co+2Co+2ref-21

-13000,-1,225215,2013

CoOH*CoOH*ref•21

-56025-0 256126,6839

CoO.aqCoO(aq)re£;21

-41000--1,55668,7031

CO02-2Co02-2ref-21

-63200-0 059021,8518

COC1+C0CI+ref:22

-45157.1.8028

22.7656CoF+CoF+ref.22

-81732.-0.765926,8657

Co(Ae)+ColAe)+ref:33

-103260,5.029460,4543

Co(Ae)2,aqCo(Ae)2,aqref:33

-192770,11,9141

115,2121Co(Ae)3-Co(Ae)3-ref-33

-281890,20.3474

198,1420! Co(Alal +

Co(Alal+ref;27

: -940997.8202

! 69 3955: Co(Ala)2,aq• Co(Ala)2,aq: ref,27: -173793.j 18,09951 145.3423: Co(But)+: Co(But)+: re£-27

-86200, -104.000-18,3144 12,9330-3.2586 3 7484

Co(+2)Co (1) + f 2)15 Sep 97-13900. -27,000

-8.9356 5,3191-4.6234 1.4769

CoOHIt)Co(l)O(l/H(l)+(2)11,Dec,97-68450. -10.000

-8 4039 9 04571.8542 0,7003COO(O)Co(l)O(l)+(0)11,Dec.97-58800- -17.800

-11,5736 10.2791-2.0567 -0,0300

Co02(-2)Co(ll0(2l-I2l11 Dec,97-99000 -32,700

-7.9219 8.8540-9.4714 3,7127CoCll+lCo(l)Cl(1)+(1)5.Jan,98-53965. -11.270

-3.3766 7.07020.4323 0.7191CoF(+)Co (1) F (1) + (1)6,Jan.98-93191, -22.600

-9,6486 9.53541,3018 0,8926COCH3COO+Co(l)C(2)H(3)0(2)+(l)17 Aug 92

-132080. -6.5004,4992 3.9806

13,7619 0.6472Co(CH3COO)2Co(l)C(4)H(6)0(4)10 Sep 92

-251460. 7.50021,3120 -2.632134 9629 -0.0300Co(CH3COO)3-Co(l)C(6)H|9)0(6)-(l)10 Sep 92-373730. 10,400

41,8989 -10,712758.9793 1.4714Co(C3H6N02)+Co(l)C(3)H(6)H(l)0(2)14,Aug.93

-136245. 20.00011 3148 1.299018.1475 0 2482Co(C3H6N02)2

-2,0218 14 :

-2,4095 i2 , •

-2 4315 !1, i

-2,3004 i0, !

-2.4514 |-2, !

-2,63941.

-2.38011,

-2.96491.

-3.65990.

-4,5110-1.

+ (1)

-3 24671.

Co(l)C(6)H(12)N(2)0(4)14.Aug,93

-259272, 60,00036.4127 -8.562645,4353 -0,0300CoCH3(CH2)2C02+Co(l)C(4)H(7)0(2)+(l)14 Aug 93

-4.28420

-99984.9 0507

100 5727Co(But)2, aqCo(But)2,agref:27

-18613520,5354

214.6936Co(For)+Co(For)+ref!27

-993993,0614

29,6264Co(For)2,aqCo(For)2,aqref-27

-1849267,765541.9649

Co(Gly)+Co(Gly)+ref:27

-951955,3683

43,5722Co(Gly)2,aqCo(Gly)2,aqref:27

-17595712 860181,9652

Co(Glyc)+Co(Glyc)+ref:27

-1368714.9137

60.0521Co(Glyc)2,at3Co(Glyc)2 aqref:27

-26010111.7260

115.9914

Co(Lac)+ref:27

-1373857 128181.2111

Co(Lac)2,aqCo(Lac)2,aqref,27

-26145716.4707

168-4594Co(Pent I +Co(Pent)+ref;27

: -97933j 11.2090

136,9956' Co (Pent) 2, aq| Co(Pent)2,aq• ref;27: -182034: 25.16721 303.7853• Col Prop) +i Col Prop) +j ref.27

-144234- 4 69914 3185 0.1200 -3 370828,2419 0 4799 1

Co(CH3CH2CH2CO2)2Co(l)CIB)H(14)OI4)14,Aug.93

-274655. 33,31442,3610 -10,9009 -4530169,5400 -0,0300 0,COCH02+Coll)C(l)H(2)OI2)*(l)26,Aug,93

-118148. -5.401-0,3037 5,8638 -276633,1004 0,6305 1,Co(CH02)2Co(l)C(2)K(2)0(4)26.Aug,93

-223371, 9,99711,1773 1,3615 -3 24109 5039 -0 0300 0Co(C2H4N02l+Coll)C(2)H(4)H(l)0(2)+(l)27.Aug.93-129082 15.0005.3273 3,6539 -2,99918.9227 0.3260 1.COIC2H4N02I2Co(l)C(4)H(8)N(2)0(4)27.Aug,93-243427. 55.000

23 6197 -3.5341 -3.755323,4070 -0.0300 0

CoCH30C02+Co(l)CI2)HI3IO(3)+(l)30.Aug.93-171331, -0.9014,2158 4,0944 -2.953213.8754 0 5681 1Co(CH30C02)2Coll)C(4)H(6)0(6)30.Aug.93-329556. 20,386

20.8501 -2,4444 -3.640835,2337 -0,0300 0COCH3CH20C02+Co(l|CI3)H(5)0(3l+(ll30,Aug 93

-179856, 4,7999 6212 1 9722 -3 1766

21 5123 0.4799 1Co(CH3CH2CC02)2Co(l)C(6)H(10)O(6l30.Aug,93

-346408, 33.54532.4370 -7,0030 -4,119853,4702 -0,0300 0CoCH3(CH2l3C02+Co(l)C(5)H(9)0(2l+(ll31 Aug 93

-150673 11 19919.5901 -1,9551 -3,588841,2096 0,3837 1Co(CH3CH2CH2CH2CO21 2Co(l)C(10)H(18)OI4l31.Aug.93

-286935. 48 32053 6696 -15 3437 -4 9976100 5060 -0 0300 0

COCH3CH2C02+Co(l)C(3)H(5)0(2)+(l)15,Sep,93

SOvD

O

M3

_AppendixA: 15

-101557,6.9775

86,5252Co (Prop I 2 . aqCo(PropI 2,aqref-27

-18940516 0946

179 3685

Cot 3ref'21

32000.-2.867816,4739

CoOHt-2CoOH+2ref-21

-23000-1,088416,5492

Cr+2ref;21

-39400.- 8036

15 0502

Cr+3rsf:21

-49300.-2,782417,9914

CrOH+2CrOHt2ref 21

-100500-2.648231.4127

CrO+CrO+ref:21

-92800,-1,1728-3 1901

CrO2-CrO2-re£21

-125300.1.201310 0021

CrO4-2CrO4-2ref;21

-1748005 4891-2,8608

Cr2O7-2Cr2O7-2ref:21

-312970.12,43038,6580

Cs +Cstref-2

-69710,6,14756.2700

CsOH.aqCsOH(aq)ref:21

-138347. -0.6019 2545 2 1152

23.1002 0,5608ColCH3CH2C02l2Co(l)C(6)H(10)OI4)15Sep,93-263492 21.078

31 5192 -6 643357 2620 -0,0300

Co I+3)Co(ll+(3I5.Jan.98

-4 0819

22000.-14,7777-8,0659

CoOHI+2)

-73,00011.54392,6901

11 Dec 97-36100, -27.800

-10 4353 9,8425-4-1549 1 4769

15,Sep,97-39000, -24.200

-9 7400 9 5688-4 5215 1 4287

Cr(+3)

15,Sep,97-60000. -77,000

-14,5709 11.4661-7 6992 2,7403CrOH(+2)C r ( l ) O l l l H ( l | + l 2 >16 Sep 97-118600 -46 100

-14,2423 11,3347,1024 1.7607CrOI+lCr(l)O(l)+(l)16,Sep.97

-105000. -26.300-10.6385 9,9161-9 3085 .9437CrO2(-lCr(l)0(2)-(l)16,Sep,97

-148300, -6,700-4.8403 7,6350-7.2511 1.7331CrO4(-2)Cr(l)O(4)-(2)11 Sep 97-210930 13,8005 6223 3 5382

-15 7861 3,0024Cr2O7(-2)Cr(2)O(7)-(2)11.Sep,97

-355370, 72,00022,5680 -3.1161-8,9622 2 1216Cs(t)

1 Jul 87-61670. 31.750

-.1309 4.2094-5,7360 ,0974CsOHCs(l|O(l|H(l)+(0l12.Sep,97

-2.3475

-2 3762

-2,1765

-2,1901

-2,5788-1.

-3,0113

-3.7119-2,

-105000,5.6685

-12.8052CBCI,aqCsCKaqlref-22

-1009008,4010

-6.0563CsBr,aqCsBr(aq)ref-22

-94610.9,5646-9,4143

Csl.aqCsl(aq)ref-22

-83460,11,6513-7,2120

CslAel,aqCs(Ae), aqref;33

-158010.11786529.6579

Cs(Ae)2-Cs(Ael2-ref;33

-245900,19.883971.0739

Cu+Cu+re£:21

11950..8070

17.9233CuCl.aqCuCllaq)refi22

-22608.4 1084

17 3292CUC12-CuCl2-ref.22

-58038.8.3943

36.7555CuC13-2CUC13-2ref;22

-89963.13,248263.9808

Cu(Ae),aqCu(Ae),aqref:33

-76770.7.300956.0175

Cu(Ae)2-Cu(Ae)2-ref.33

-165000.15.0715

127,5564Cu+2Cu+2ref: 2

-112300,6.0571 3,

-9.5325CsCllO)Ce(1)C1(1)+(C13.Sep 97

-100950.12.7344-7.9234CsBr10)

35.9U037400300

1)

52 58073792000

Cs(l)Br(l)+(0)13.Sep.97-88490.

15.5757-8,4469CsKO)Cs(1)I(1)+(0)13.Sep.97-77820.

20,6709 -2.-8,0048CSCH3COO

57,30037890010

60.30038151000

Cs(l)C(2)H(3)O(2)19 Aug 92

-176320.20.9974 -2,5.2264 -0,Cs(CH3COOI2-

57.50050200300

CsillCI4)H(6)O(4)-lll10 Sep 92-293570.

40 7670 -10.17.8580 0

Cu( + |Cu(l)+(1)1,May,9717132,

-5.8040 8-.2438CuCKOICu(llCl(l) + l(14 Sep 97-26338.2 2530 4,9670CuCl2(-l)cu(l)cl(2)-(:14.Sep.97-72903.

12,7182 03,6846 1CuC13(-2)

73.200.26715208

9.700,0165.4046

3)

22.060.8575.0380

1)

26,960.7442.2219

Cu(l)CK3)-(2)14, Sep 97

-118524.24,5700 -37,9089 2CUCH3COO

23.280.9140,8579

Cu(l|C(2)H(3|O(2)19 Aug 92-99970,

10,0483 114,3883 -0Cu(CH3COO)2-

10 Sep 92-219740,

29.0205 -535.7339 1

Cu(+2)Cu(1)+(2)1 Jul 87

28,70079460300

)O(4)-(l)

37.000,6592.0691

-3

-3

-3

-3

-3

-4

-2

-2

-3

-3

-3

-3

.02930

,30540

.42280

.63350

.64690

.4642-1

,53901

87210

.3047-1

.7947-2

.19430

.9786-1

15675.-1,102120,3000

CuOH+CUOH+ref:21

-30200,-.0277

21.5062CuO,aqCuO(aq)ref;21

-20800,-.3937

12.1490CUO2-2CUO2-2ref•21

-41200,.6024

7.6532CUC1 +CuCl+ref;22

-16250.1.7480

29.3560CuC12,aqCuC12(aqlref;22

-46142.5.0806

37.5948CuC13-CUC13-ref,22

-75338,9.6259

63.8881CUC14-2CUC14-2ref:22

-10357914,669687.5037

CuFtCuFi-ref;22

-53739,-.8164

33 5733Cu (Ae) +Cu(Ae)+ref:33

-75640,4.972262.4950

Cu(Ae)2,aqCu(Ae|2,aqref:33

-165820,11 8801

120.6150Cu(Ae)3-Cu(Ae)3-ref:33

-255810.20.2654

206,0700Cu(Ala)+CulAla) +ref'27

15700, -23.200-10,4726 9.8662-4.3900 1 4769CuOH(+l)Cu(l)O(l)H(l)+(l|1,May.97-41700, -6,100

-7.8416 8.8142.2246 .6472CuO(0)Cu(l)0(l)+IO)1.Hay. 97-34200. -12,400

-8,7360 9.1675-3 3197 .7384CuO2(-2)Cu(l)O(2)-|2)1.May. 97-74400. -23,100

-6,3038 8,2129-13.9325 3,5647

CuCH+l)Cu{l)Cl(l)+Il)14 Sep.97-23847. -6.510

-3.5103 7.12282,9530 ,6472CuCl2(0lCu(l)CK2) + IO)14-Sep.97-64160 0 7804 6270 3.9244B.0108 -.0380CuC13(-l)Cu(1)C1(3)-(1)14,Sep,97

-106846, -2,21015,7252 -.437711 7108 1 6605CuC14(-2)C U ( 1 I C 1 I 4 I - I 2 )

14 Sep 97-152534, -18 480

28,0407 -5,278214.0532 3,4923

CuF(i-l)Cu(1)F(1)+(1)15.Sep.97-64285. -18.840

-9 7719 9 58383 8226 8334CUCH3COO+Cu(l)C(2)H(3)O(2)+(l)19 Aug 92

-103120. -1,3004,3620 4.0290

14-7244 0.5681Cu(CH3COO)2Cu(l|C(4)H(6)O(4)19 Aug 92

-222690. 14,20021.2264 -2 592536.8408 -0,0300

Cu(CH3COO)3-CuU)C(6)H(9)O(6)-(l)10 Sep 92

-345320. 18.99041.7019 -10.642262,1534 1,3408

CUIC3H6NO2I+Cull)C(3)H(6IN(l)OI2l16.Aug,93

-2,

_2

-2

-2,

_2

_2

-3

-3

-2

-2

-3

-4

34612

45471

41780

5183-2

63381

97020

,4290-1

,9382-2

37501

.95921

65640

.5029-1

+ (11

_AppendixA: 16

CO

-70595,7.738770,7759

Cu(Ala)2,aqCu(Ala)?,aqref:27

-154654IB 0655

150 7452Cu(But)+CulButltref.27

-71854.8.9947

102,6486Cu(But)2,aqCu(Butl2,aqref-27

-15847020.5014

220.0963CulForWCuiFor)+ref;27

-70888,3,0050

31 6869Cu (For) 2. aqCu (For) 2, aqref:27

-156551.7 731547.3676

Cu tGly) +Cu(Gly|+ref'27

-712955 286444,9395

Cu|Glyl2,aqCu(Glyl2,aqref:27

-156477.12.826287.3679

CulGlyc)*Cu(Glyc)*ref-27

-109438.4.855562.0660

Cu(Glyc)2,aqCu (Glyc) 2 , aqref:27

-23302211 6921

121 3943Cu(Lac)+Cu|Lac)+ref,27

-110347,7,070383,2379

Cu(Lac I 2,aqCu I Lac) 2 , aqref 27

-235047.16,4367173,8623

Cu(Pent)*Cu(Pent)+ret:27

-109970 25 00011,1165 1.376219,1100 0,0974Cu(C3H6NO2)2Cull)Cf6)Htl2)N|2)Of4)16 Aug 93

-237360. 65 00036 3271 -8 523047.3132 -0.0300CuCH3(CH2)2CO2+CuCl)C(4)H(7)O<2)i-<l>14.Aug.93

-114768- 9.88014,184a 0,168229.2044 0,4046Cu(CH3CH2CH2CO21 2CuU)C(B)H(14IO(4|14 Aug,93

-245176. 4009442.2754 -10.861371.4180 -0,0300

16,Aug,93-88300- -0.220

-0 4430 5 92114 0629 0.5536CulCH02)2Cull)C(2)H(2IOI4l16.Aug.93

-193183, 16.77711.0979 1-385111,3819 -0.0300

Cu(C2H4NO2)+Cu(l)C(2IIII4)N(l)OI2)16 Aug 93

-102408 25,0005.1238 3,74139,8852 0,1739Cu(C2H4NO2)2Cu(l)CI4)H(8)N(2)O(4)16.Aug.93

-221770, 63,00023.5338 -3.494425 2850 -0 0300CUCH3OCO2+Cu(l)C(2)H(3)O(3)+(l|16.Aug.93-142561, 4 2804,0750 4.147014.8378 0,4862Cu(CH3OCO2)2Cu(llC|4)H(6)O(6)16,Aug.93-300664 27 166

20,7705 -2 420537 1116 -0,0300CUCH3CH2OCO2+Cu|llc(3)H(5)O(3)*(l)16,Aug 93

-1514B1. 9,9809,4856 2,014722,4748 0,3993Cu(CH3CH2OCO2)2Cu(l)C(6)H(10)O(6)16.Aug 93

-3181B4, 40 32532,3514 -6,963455.3481 -0,0300CuCH3(CH2|3CO2*CuUICI5IH!9IOI2) + (ll16-Aug,93

-3,2385

-4 2B07

-3,3653

-4,5266

-2 7606

-3-2377

-2.9907

-3 7518

-2.9474

-3,6376

-3,1710

-4,1163

- 6 9 8 1 7 .1 1 , 1 5 1 6

1 3 9 . 0 3 1 4Cu (Pent 1 2, aqC u ( P e n t ) 2 , a qr e f - 2 7

- 1 5 4 3 8 2 .2 5 . 1 3 3 2

3 0 9 , 1 8 8 2C u ( P r o p ) +C u ( P r o p ) +r e f ! 2 7

- 7 4 1 2 4 ,6 9 1 9 7

8 8 . 5 4 8 6C u ( P r o p ) 2 , a qC u f F r o p I 2 , a qr e f . 2 7

- 1 6 2 9 9 5 .1 6 . 0 6 0 6

1 8 4 . 7 7 1 4D y + 2b y + 2r e f - 2 1

- 1 0 2 8 0 00 . 0 2 0 69 . 8 6 9 0

D y + 3

i e £ : 2- 1 5 8 7 0 0 .

- 3 . 0 0 0 39 . 5 0 7 6

D y O H + 2D y O H + 2ref:25

- 2 0 4 7 0 0 ,2 , 6 1 5 42 , 8 7 6 9

D y O +D y O +r e f - 2 5

- 1 9 3 4 0 02 6 9 3 5

- 2 8 . 1 5 1 1B y O 2 -D y O 2 -re£:25

- 2 2 6 4 0 0 .4 , 7 4 1 4

- 3 7 . 5 6 2 9D y C l + 2D y C l + 2r e f : 2 5

- 1 9 0 4 0 0 ,- 0 . 2 7 2 92 4 , 6 3 8 5

D y C 1 2 +D y C 1 2 +r e f : 2 5

- 2 2 1 4 0 0 .2 . 8 4 4 9

2 1 6 0 4 1D y C 1 3 , a qD y C 1 3 ( a q lr e f : 2 5

- 2 5 2 2 0 0 .6 . 3 2 6 8

- 1 - 3 9 2 5D y C 1 4 -

- 1 2 1 2 2 1 .1 9 , 4 4 7 24 2 , 1 7 2 1

1 6 3 8 0- 1 . 8 9 3 3

0 - 3 0 4 1Cu(CH3CH2CH2CH2CO2)2C u [ l ) C ( 1 0 ) H ( 1 8 ) O ( 4 )1 6 . A u g , 9 3

- 2 5 7 4 7 0 . 5 5 . 1 0 05 3 . 5 9 0 2 - 1 5 3 2 0 0

1 0 2 . 3 8 3 9 - 0 , 0 3 0 0C u C H 3 C H 2 C O 2 +C u l l l C ( 3 I H ( 5 I O ( 2 ) + ( l )1 6 , A u g , 9 3

- 1 0 9 5 7 79 , 1 1 2 6

2 4 , 0 6 2 7

4 5 8 02 1 7 1 90 4 7 9 9

C u ( C H 3 C H 2 C O 2 ) 2C u ( l ] C ( 6 ) H ( 1 0 ) O ( 4 l1 6 , A u g . 9 3

- 2 3 5 2 6 8 ,3 1 . 4 3 3 65 9 . 1 3 9 9

D y ( + 2 )

1 0 D e c 9 7- 9 9 9 0 0

-7.7248- 5 , 3 1 5 9

D y l + 3 1

1 3 . J u l . 8 7- 1 6 6 5 0 0 .

- 1 5 , 1 0 7 4-9,4919

D y O H + 2D y ( l ) O l l ) ll . D e c . 9 5

- 2 1 6 5 0 0 .- 1 . 3 9 4 1- 8 . 0 8 6 3

D y O +D y ( 1 ) 0 ( 1 ) •l . D e c , 9 5

- 2 0 9 0 0 0 .- 1 2 0 5 6

- 1 6 , 4 9 9 1O y O 2 -D y ( 1 ) O ( 2 )1 , D e c . 9 5

- 2 3 7 7 0 0 .3 . 7 9 3 6

- 2 2 , 0 6 0 1D y C l + 2

2 7 . 8 5 8- 6 . 6 0 3 6- 0 , 0 3 0 0

- 3 . 6 0 08 . 7 7 2 41 . 1 1 4 4

- 5 5 . 2 0 01 1 , 6 8 7 9

2 , 3 7 9 2

U ( l ) + ( 2 )

- 1 0 , 96 , 2 9 5 01 . 2 2 0 6

+ (1)

4 66 . 2 2 5 50 . 4 7 9 9

- (1)

28.64.26361.1949

D y ( l ) C l ( l ) + ( 2 )l . D e c 9 5

- 2 0 3 2 0 0 .- 8 . 4 4 1 0- 1 . 4 3 8 6

D y C 1 2 +

-29.59.05161.5067

D y t l ) C l ( 2 ) + U Il . D e c . 9 5

- 2 4 2 2 0 0 .- 0 8 3 4 7- 0 1 3 0 0

D y C 1 3 ( a q l

- 1 4 46 0 7 7 00 . 7 6 8 6

Dy(l)ClO)l . D e c . 9 5

- 2 8 4 2 0 0 .7 , 6 6 4 6

- 5 , 5 6 5 7D y C 1 4 -

-9,62 . 7 4 2 4

- 0 , 0 3 0 0

- 3 , 5 8 2 81

- 4 9 9 4 30

- 3 , 1 5 5 61

- 4 , 0 7 8 40

-2,45962

- 2 . 1 5 4 53

- 2 , 7 2 1 32

- 2 , 7 2 9 11

- 2 9 3 5 7-1

- 2 . 4 2 9 92

- 2 . 7 4 4 41

- 3 , 0 9 5 8C

DyC14-r e f - 2 5 1 Dec 95

-28300011 1518

-18 8614DyF+2DyF+2ref,25

-232400.-2 945125.4842

DyF2+DyF2+ref-25

-304500-2 683727,3446

DyF3,aqDyF3(aq)re£:25

-375400,-2.44818,6168

DyF4-DyF4-ref:25

-445600,-1.04021.799B

DyHCO3+2DyHCO3+2ref:25

-3013000 6017

45.9011DyC03+

-329600 - 1 6 41 9 4 4 6 7 - 1 8 9 0 9

- 1 7 7 4 6 0 1 . 8 7 7 6D y F + 2

yref-25

-295800,-0,9340

-16,3311DyH2PO4+2DyH2PO4+2ref:25

-431800,1.6038

49.8123DyNO3+2DyNO3+2ref:25

-185400.1 3347

40.8317DyS04+DyS04+ref:25

-341600,-1.4956

-17.6132Dy(Ael+2Dy(Ael+2ref-33

-2505902-859164.0720

DyfAe)2+Dy(Ael2+re£;33

-341450,9 4257

114 4678Dy(Ae)3,aqDy(Ae)3,aqre£;33

1.Dec,95-241100, -IS,4

-14,9683 11.6229-0,6031 1,3375

DyF2 +

-3 5828-1,

-2,1601

y1 Dec 95

-323800. -14,1-14,3302 11,3726

1,8651 0,7686DyF3(aq)Dy(l)F(3l1,Dec.95

-409800. -25,0-13,7557 11.1483-2.0868 -0 0300

DyF4-

1.Dec,95-500800. -54.9

-10.3182 9.7972-12,4591 2.4692

DyHCO3+2

-2.3523-1.

1.Dec.95-329700. -18.2

-6.3082 8,22076.4931 1,3375DyCO3+

l1,Dec,95

-310100. -48,1-10-0536 9,6821-14,9713 1 2858

-34,87.27211.5897

-43 87,51041 7247

-2 3633

Dy(l)H(21P(l)O(4)+(2)l.Dec 95

-479700,-3,86687.0451D1-NO3+2Dy(llN(llO(3)+(2)l.Dec.95-223200

-4 51593.4913DySCUt

(l.Dec 95

-379000, -17,9-4.1268 7,3650

-13,9325 0.8222DyCH3COO+2DyU)C(21H(3>0(2) + (2)11 Sep 92

-286150. -34,200-0.7970 6,056112.0356 1,5790

Dy(CH3COO>2*DyUIC(4)H(6)O|4|+(ll11,Sep.92

-405710, -16 30015 2330 -0.236332 0457 0 8002Dy(CH3COO>3Dy(llC(6)H(9)O(6)11.Sep.92

_AppendixA: 17

-431590,16.7548

160,0243Dyt4Dy+4ref121

-55700-4 316440 0550

Er+2Er + 2ref.21

-91600,-0,010410 3150

Er+3Er+3ref-2

-159900-3.30418,2815

ErOH+2ErOH+2ref:25

-206000,2 55265 8637

ErO+ErO+ref,25

-194800,2,6315

-24.9068ErO2-ErO2-ref^25

-2288004 6152

-31.3910ErCl+2ErCl+2ref;25

-191700.-0.606221,6825

ErC12+ErCl2+ref-25

-222600,2,4799

15,6173ErC13,aqErC13(aqlrefi25

-2534005 8915

-12 6987ErC14-ErC14-ref,25

-284200,10,7108

-34.9400ErF+2ErF+2ref 25

-233700,-3,286722.3012

EiF2»ErF2+ref;25

-526620,33,127950,5384

Dy(+4)Dy (1) + (4)10,Dec.97-73400.

-18 3144-3 2586

Erl+2)Er(1)+(2)10,Dec,97-89150,

-7,7996-5,2548

Er(+3)

13.Jul 87-168500.

-15,8492-10,0215

ErOH+2ErlllOdlfl.Dec.95

-219000.-1 5478-7 2307

ErO+Erd)O(l)1,Dec.95-211600,

-1,3551-15,5621

ErO2-Er(l)O(2l1,Dec,95

-2415003.4877

-20.1453ErCl+2ErIDCllll.Dec,95

-205400,-9.2588-2 6303

ErC12+

l.Dec.95-244700.

-1,7255-2.4550

ErC13(aq)

-5 400-7,2677-0.0300

-104 00012 93303 7484

-5,5006,79811,1437

-58,30011,97942,4115

11) + (2)

-14 66 35561 2776

Ml)

0.66.28030.5394

-(1)

24.04.37921.2669

+ (21

-33.29.38101-5579

+ (1)

-19.06.42700.8449

Er(l)Cl(3ll.Dec.95

-287100.6 6023

-9.4955ErC14-Er(l)Cl(4l.Dec,95

-333200,18.3744

-23,7519ErF+2Er(llFU)1 Dec 95

-242900,-15.8018-1.7948

ErF2 +Er(llFl2ll.Dec,95

-15 63 1580

-0,0300

)-(l)

-24.7-1,47892 0080

+ (2)

-20,411,94861.3642

+ 111

-4

-2

-2

-2.

-2

_2

-2

-2

-2

-3

-3

"2

14840.

02184.

45652.

12383.

71492

72291.

9231-1.

39612

70761,

05180,

.5385-1

.12572,

-305900,-3.063720.9464

ErF3.aqErF3(aq)ref(25

-376B00.-2.8834-2.6893

ErF4-ErF4-ref:25

-447100.-1,5016

-14.8367ErHCO3+2ErHCO3+2ref-25

-302600.0.2724

43,0537ErCO3+ErCO3+.ref-25

-297200-1 0539

-17,2819ErH2P01+2ErH2PO4-i-2ref:25

-433100,1,2754

46.9907Er 1103+2ErNO3+2ref:25

-186600,1,0128

38.1891ErSO4+ErSO4+ref(25

-342700j 1.3743: -18,7119: Er(Ae)+2

Er(Ae)+2• ref:33: -251770.i 2.5305

61.2455ErlAe)2+

: Er(Ae)2+: ref-33• -342620i 9.0662: 108,62933 Er(Ae)3,aq! Er(Ae)3,aqi ref:33i -432750.1 16 3195• 148.7181: Er+4| Er+4• ref;21i -28100.: -4 3256I 40.0003• Eu+2: Eu+2: ref-21

-325700,-15.2566-0.4598

ErF3(aq)Er(l)F(3)l.Dec 95

-411900-14.8179-6.0166

ErF4-Er(l)F(4)-1,Dec.95

-503500.

-16.1LI.73330.8002

-27.711.5640-0.0300

1)

-59.3-11.4431 10.2350-18.4650

ErHCO3+2Er(l)H(llCl.Dec.95

-332200.-7.11165,3015ErC03+Er(l)C(l)Ol.Dec.95

-312600-10 3510-15.5009

ErH2PO4+2

2 5390

1)0(31+12)

-22.68.53451,4006

(3)+<l)

-51 99.80B61.3480

Er|l)H(2)P(l)OI4)+(2)l.Dec.95

-482200.-4,66005,8534ErNO3+2

-39.37,56551,6556

Er(l)N(l)O(3)+(2)l.Dec.95

-226000.-5.30112.2996ErSO4+ErIDSIDOl.Dec.95-381048.

-4 4228-14.4621

ErCH3COO+2

-49.77.81821.8100

(41+11)

-21.17.48140 8683

Er(l)C(2)H(3)O(2l+(2l11 Sept 92-288520.

-1.602210.8439

-38.6006,37871.6444

Er(CH3COO)2+Er{l)C(4)H(6)O(4)+(D11 Sept 92

-40854014.352829.7206

-22 3000,11460.6926

Er(CH3COO|3Er(llC(6)H(9lO(6)11 Sept 92

-529990,32 065746 6086

Er(+4)Er(1)+(4)10, Dec.97-45900.

-18 3402-3,3197

Eul+2)Eulll+12)10 Dec.97

-13,200-6 8520-0 0300

-104.70012.94963.7615

-2

-2

-2

-2.

_2

-2

-2

-2

-2

-3

-4

-2

14821

16630

3058-1

48492

35101

5863

5598

5961]

7127

.3722]

1045

.0207

-129200.0.04079.5539

EuCl+EuCl+reft25

-161000,5.1742

36.2777EuC12,aqEuC12laq)ref,25

-193600.9 115258 1447

EuC13-EuC13-refi25

-226000.13.946091.9571

EUC14-2EUC14-2ref:25

-25B500.19,4730

131.0045EuF+

ref:25-194600-2 6504

41.1681EuF2,aqEuF2(aq|ref:25

-261000.3.5866

63.8849EuF3-EuF3-ref:25

-3277005.5026

111.0055EuF4-2EUF4-2ref:25

-394600.7.6287

161,1451Eu(Ala)+Eu(Ala)+ref-27

-205330.11.053263,4566

Eu(Ala)2,aqEulAla)2,aqref(27

-28112021 8707180.8470

Eu(Butl+Eu(But)+ref,27

-214119.12.2638

114,0923Eu(But)2,aqEu(But)2, aqref-27

-126150,-7,6776-5.3567EuCl +Eu(1)C1(1)1 Dec 95

-164000.4.84996.6125EuC12laq)Eu(l)Cl(2ll.Dec.95-204600

14 474015,1277

EuC13-Eu (DC1 (3)l.Dec.95

-246800,26,272123.7331

EuC14-2Eu(l)Cl(4)1 Dec 95

-290600,39.765632.4289

EuF+

l.Dec.95-202200.

-1.31107.4480EuF2(aq)Eu(1)F(1)l.Dec.95

-282200,0.9784

17.1229EuF3-Eu(1)F(3)•1,Dec,95

-365700.5.6556

27.2121EuF4-2Eull)F(4)-l.Dec.95

-455700,10.843137,7158

-2.4008,75781 0929

+ (1)

19,53.84870.2557

35 000 0641

-0,0300

- (1)

44,7-4.57900.9527

-(2)

48.6-9.87842,4755

HI)

1,76,26690,5256

-4,15.3596

-0.0300

- (1)

-20.53,52441.9339

-(2)

-58,11.49364-0961

Eu(C3H6HO2)+Eu(l)C(3)H(6)H(l)O(2)14.Aug.93

-242060,19.205824.4724

49.7-1.7947-0.2006

Eu(C3H6HO2l2

-2

_t

-3.

-3,

-4.

_2

-2.

-3.

-3.

+ (1)

-3,

Eu(l)C(6IH(12)N(2)O(4)14.Aug.93

-35851045.620557.7759

98.6-12 1799-0,0300

EuCH3(CH2)2CO2+Eu(l)C(4)H(7)OI2l+(l)14.Aug.93

-251804.22.161834,5668

38.239-2.9570-0 0278

Eu(CH3CH2CH2CO2)2Eu(l)C(8)HH4)OI4)14.Aug 93

-4

-3.

46152

97941

37730

8650-1

4226-2

72471

81930

0127-1

2272-2

57291

66490

.69511

oHoo-fc.oo

_Appendix A. 18

CO

-298535,24 3067250,1983

EulForltEu(Forl+re£:27

-2148726 2755

43 1702Eu(For)2, aqEu(For)2,aqref .27

-300521.11,536777,4695

Eu(Gly)+EulGlyl+ref'27

-2066298,5841

57,1645Eu(Gly)2,aqEu(Gly)2,aqre£'27

-283817,16.6314

117 4699Eu(Glycl+Eu(Glyc)+re£,27

-252044.8,1255

73.5346Eu(Glycl2,aqEulGlyc)2, aqrefi27

-37404615 4973

151,4961Eu(Lac)+Eu(Lac)+ref.27

-252899.10.340794,7163

Eu(Lac]2,aqEu(Lac)2,aqtef 27

-376425,20,2419

203,9641EuI Pent 11Eu(Pent}+ref,27

-21171414 4215150 5000

Eu(Prop)+Eu(PropItref.27

-216648,10.1903

100,0361Eu(Propl2,aqEu(Prop)2,aqref-27

-30318619,8658

214,8734Eu+3Eu«3re£:2

-377392, 77.20651,5686 -14,518881.8806 -0,0300EUCHO2+

26,Aug 93-227054 28 1397 5431 2,7814 -3 09079 4253 0.1254 1,Eu(CHO2)2Eull)C(2)H<2)0(4)26,Aug.93-329314, 53,989

20,3852 -2,2565 -3,621621.8445 -0.0300 0

Eu(C2H4NO2)+Eu(llC(2)H(4)N(llO(2)+(l)27 Aug.93-234136, 47,919

13.1760 0,5767 -3.323615.2476 -0.173B 1.Eu(C2H4NO2)2Eu(l)C(4)H(8)N|2)O(4J27.Aug.93-342929. 94 554

32,8272 -7 1514 -4 136035,7476 -0 0300 0

EUCH3OCO2+Eu(l)C(2)H(3)O(3)+(l)30.Aug.93

-279938. 32.63912.0562 1.0166 -3.277320,2002 0,0564 1

Eu(CH3OC02)2Eu(l)C(4)HI6IOI6)30 Aug 93-433849. 64 278

30 0577 -6,0619 -4,021547.5743 -0,0300 0

Eu(CH3CH2OC02)+Eu(l)C(3)H(5)O(3)*U)30.Aug.93-288803. 38.339

17,4658 -1.1113 -3-500927.8372 -0 0294 1Eu(CH3CH2OCO2)2Eu(l)C(6)H(10)O(6)30 Aug 93

-451723, 77.43741,6449 -10,6207 -4,500565,8108 -0.0300 0

EuCH3(CH2)3CO2+Eo(llC(5)H(9IO(2|+(l)31,Aug.93-257888, 44 739

27,4350 -5 0392 -3 913147 5345 -0,1257 1

EUCH3CH2CO2+Eu(l)C(3)H(5)O(2)+(l|15,Sep,93-246872, 32,939

17,0986 -0,9659 -3,485829,4251 0,0521 1Eu(CH3CH2CO2)2Eu(l)C(6)H(10)O(4)15 Sep 93-367621, 64,970

40,7270 -10,2606 -4,462669,6025 -0 0300 0Eul-i-3)Eu(l)+(3)13,Jul,87

-137300,-3.10376,0548

EuOH+2EuOH+2ref;25

-183200,2,65690,5828

EuO+EuOtre£:25

-171700.2,7458

-30,6415EuO2-EuO2-ref:25

-203600.4,8468

-42.3249EuCl+2EuCl+2ref-25

-169100.-0,377717,8123

EUC12+EuC12*ref:25

-200000,2 72628 5409

EuC13aqEuC13(aq)ref,25

-230800,6,2132

-22,7003EUC14-EuCl4-ref-25

-261600.10 9946

-52 2612EJF+2

EuF+2ref.25

-210700.-3.045318.7828

EuF2 +EuF2+ref:25

-282500.-2,795814,4597

EuF3,aqEuF3(aq)ref:25

-353200.-2,5616

-12,6911EuF4-EuF4-ref;25

-423200,-1,1887-31,3648

EUSO4+EuSO4+ref>25

-144700,-15.3599-10 4900

EuOH+2Eu(l)O(l)f1 Dec 95

-194373,-1,2969-8,7585

EuO+EulllOUl*l.Dec,95-186500

-1,0743-17 2120

EuO2-Eu(l)O(2)-1,Dec.95

-214100-4.0541

-23.5471EuCl+2Eu(l)CKl)l,Dec.95

-181300-8.6968-3,6844

EuC12i,Eu(l)Cl(2)l.Dec.95

-220100.-1,122-4,5117EuC13(aq)Eu(l)Cl(3ll.Dec.95-261800,7,3881

-12.9719EuC14-Eu(l)Cl(4;l.Dec.95-306800

19 0660-29,0648

EuF+2EuUIFdl-l.Dec 95-219200.

-15.2112-2,8489

EUF2+Eu(l)F(2ll.Dec 95

-301700.-14,6044-2,5166

EuF3(oq)Eu(llF(3)l.Dec,95

-387300.-14 0324-9 4929

EuF4-Eu(l|F(4)l.Dec.95

-477800,-10.6780-23.7779

EuSO4+Eu(llSd)1 Dec 95

-53.00011 7871

2.3161

l(l) + (2)

-8,06.2659

1,1815

(1)

7.76.16630 4322

(1)

32,1

4,15481,1424

+ (2)

-26.9

9.15141.4671

+ 11)

-11 16.1B700 7191

-5,32,8493

-0.0300

l-(l)

-10.5-1.74731,7870

M2)

-17.011.71371-3115

• 111

-12.711.48130.7384

-23.111 2555-0 0300

-ID-51,89,93262.4042

O(4)+(l|

_2

_2.

_2

-2,

-2

-3

-3

-2

-2

-2

-2

14403.

,72532,

73451.

9465-1,

.41942,

73251

.08430

.5671-1

.15012

.17521

19880

,3375-1

-320200.-1 4399-20.B829

EuHCO3+2EuHCO3+2ref ,25

-279800,0.492838.9648

EUCO3+EuCO3+ref:25

-274300-0,9842

-19.5642EuH2PO4+2EUH2PO4+2ref-25

-410500.1.4946

42.8673EutJO3+2EuNO3+2ref.25

-165000,1.2198

33.7330Eu(Ae)+2Eu{Ae)+2ref:33

-2293902,7500

57,1309Eu(Ae)2+Eu(Ae)2+ref:33

-320420,9.3029

101.2917Eu(Ae)3,aqEu(Ae)3,aqref:33

-410690,16.6413

138.7162Eu(But)+2Eu(But)+2ref-27

-225716.6.7698

97.2089Eu(But)2+Eu(But)2+ref:27

-313068.17,7879197.0574

Eu(Forl+2Eu(Forl+2ref-27

-2249680.7809

26.2700Eu(For)2+Eu(For)2*ref:27

-311559,5.1383

27.6085Eu(Pent)+2Eu(Pent)+2ref,27

-347200,-4 2627-14.9306

EuHCO3+2Eu 11) H (1) Cl.Dec,95

-307500.-6.57204.2473EuCO3+Eu(l)C(l)O1 Dec 95

-287900-10,1779-15,9695

EuH2PO4+2

-15 37 41840.7790

(l)O(3)+(2)

-15,28,31981.2860

(3)+(l)

-45,49.73431 2465

Eu(l)HI2IP(l)O(4l+<2>l.Dec,95

-457600,-4 12364.7993EuMO3+2

-31,77 35171 5372

Eu(llH(l)O(3)+l2)l.Dec.95

-201600,-4.79511,2455EuCH3COO*2

-39,77,61781.6556

Eu(l)C(2)H(3)O(2)+(2)10 Sep 92

-264280.-1,06669,7898

-31,1006.16901,5269

Eu(CH3COO)2i-Eu(l)CI4)H(6IO(4l+(ll10 Sep 92-383670.

14,930727.6639

-12,000-0 11230 7384

Eu(CH3COO)3Eu(l)C(6)H(9)O(6)10 Sep 92

-504320,32.851243.1323

0.200-7.1605-0,0300

EuCH3(CH2)2CO2+2Eu(l)C(4)H(7)O(2)+(2)14.Aug,93

-276036,8 7503

24.2698

-19,8562.30691.3552

Eu(CH3CH2CH2CO2)2+

-2 60271

-2.50722

-2,35811.

-2 60842

-2,58072

-2,73482

-3 39611

-4,13700

-3.1406

Eu(l)CIB)H(14)O(4|+(l)14.Aug,93

-405964.35,650462.2411EuCHO2*2EulllCllU26.Aug 93

-249786.-5,8667-0.8716

Eu(CHO2)2-

14,439-8.25920.3351

miO(2) + (2l

-29,9568,03841,5067

1-

Eu(llC(2IH(2IO(4l+lll26.Aug.93-354544.4 76302.2050

-9,4313,88120 6911

EuCH3(CH2l3CO2t2Eu(llC(5)H(9)O(2)t|2)1.Sep.93

-4,25271

-2,53642

-2 97581

4OO

Io

_AppendixA: 19

-223706.8.9288

133.6500Eu(Pentl2+Eu(Pent)2+ref * 27

-30903522 3402

283.9817Eu(Prop)+2Eu(Prop 1+2refi27

-227972,4,6974

B3-18OOEu(Prop)2*Eu(Prop)2+ref.27

-317566,13,4114

163.4871Eu+4Eu+4re£:21

5000-4 307140 0515

F-F-ref :2

-67340,6870

4.4600Fe+2Fe+2ref 21

-21870-.7867

14,7860FeOH+FeOH+ref•21

-65850,-.2561

21 4093FeO.aqFeO(aq)ref.21

-50720-.50295,8901

FeCl +FeCl +ref.22

-53030,2 1468

24,6912FeCl2,aqFeCl2(aq)ref-22

-73480.5,5057

22.9295FeF+FeF+ref'22

-91157.-.4234

26.37B5Fe(Ae)+FetAe)+refi22

-282516, -13,35614.0201 0.239537.2375 1.2610

Eu(CH3CH2CH2CH2CO2)2 +

-3,

Eud)C(10IH(18IO(4l + (l)l,Sep-93

-418206 29 80246 7679 -12 633593.2071 0 0 9 9 9

EuCH3CH2CO2+2Eull)C(3)H(5)OI2)+(2)15.Sep,93

-270831. -25.1563,6905 4,2941

19 1280 1 4382EulCH3CH2CO2l2+Eud)C(6)H(10)O(4) + (l)15.Sep.93

-396115, 1,91324,9646 -4.060149,9630 0,5256

Eu(+4)Eu (11 + (4)10-Dec-97-12700. -103 300

-18,2951 12 9322-3,2178 3.7353

F(-]F(l)-d)l.Jul.87-80150 -3 1501,3588 7.6033-7,4880 1,7870Fe(+2)Fe(1)+(2)11 Sep,97-22050. -35.300

-96969 9-5479-4,6437 1.4382FeOH1+11FedlOdlHdl + d )12.Sep-97-78080, -10000

-8 4039 9.04570209 7003FeOFedlO(ll + (0)1.Hay,97-62950, -10-000

-9,0053 9.2791-3.0345 - 0300FeCK + lFe(l)Cl(11+(ll12 Sep,97-61260 -10 060

-2,5367 6,74011,1617 ,7003FeC12(0)Fe(llCl(2)+(0117.Sep.97-78490. 43.0005,6650 3,51642 9135 - 0380FeF(+l)Fe(l)F(l)+(l)15.Sep.97

-101452. -20,920-B.8124 9,20671.2102 ,8683Fe(CH3COO) ( + 1Fe(llCI2)H(3lO(2)+(l)12.Sep.97

-4.

-2,

-3.

_2

-2,

-2,

-2

-2

-2,

-3

-2

35852

71231

93152

81091

02264

8352-1

37802

43151

4066C

67411

0131C

,4146]

-111900.5,2246

591160Fe(Ae)2,aqFe(Ae)2(aq)ref-22

-20180012.1698

113.7691Fe(Ala)+Fe(Ala)+ref;27

-103252.8 1661

69 2856Fe(Ala)2,aqFe(Alal2,aqref:27

-182987,18.4732

144,5703FelButltFe(But)+ref'27

-108714.9.3758

99.8978Fe(But)2,aqFe(But)2,aqref:27

-194743,20,9091

213 9216Fe(For)+Fe(For)tref:27

-108225,3,3887

29,0080Fe(For)2,aqFe(For i2, aqrefi27

-193710.B 1392

41 1929Fe(Gly)+Fe(Gly)+ref:27

-103038.5.677442.4593

Fe(Gly)2,aqFe(Gly12,aqrefi27

-182709.13,233981,1932

Fe(Glyc)+Fe(Glyc)+ref:27

-146010.7.483659.3916

Fe(Glycl2 aqFe(Glyc)2,aqref,27

-269459.16.B444

115,2196FelLac)+Fe(Lac|tref:27

-139060, -1,5004.9785 3,7863 -2.984813,5263 ,5756 1.Fe(CH3COOI2(0)Fed)C(4)H(6)O(4) + (0l12 Sep 97-259100 11.530

21.9370 -2.8791 -3.685834.4870 -.0380 0.Fe(C3H6NO2)+Fe(l)C(3tH(6)N(llO(2l+(ll14.Aug.93

-145225, 18,05812.1558 0 9760 -3.281418.0100 0 2792 1Fe(C3H6HO2)2Fe(l)C(6)H(12)N(3)O(4)14.Aug,93

-268535, 57.24637.3244 -8-9189 -4,321945,1671 -0.0300 0.

FeCH3(CH2)2CO2+Fe(l|C(4)H(7)O(2)+(l!14 Aug 93

-151642 6.60815.1141 -0.1954 -3,403728,1044 0,4496 1,

Fe(CH3CH2CH2CO2l2Fe(llC(8IH(14)O(4|14.Aug.93

-281765. 35.81243 2727 -11.2572 -4 567869 2718 -0 0300 0FeCHO2+

16,Aug.93-125651. -3.4920,4923 5.55752,9629 0.6063Fe(CHO2|2FedlC(2)H(2IO(4)16,Aug.93

-230658. 12,49512 0952 0 98929 2357 -0 0300Fe(C2H4HO2)+Fe(11C(2)H(4IN(l)O(2)-16.Aug,93

-134682, 20,0006.0837 3.35338.7852 0-2482Fe(C2H4NO2)2Fe(l)C(4IHI8)NI2IO(4)16,Aug,93

-248527. 58,01824,5311 -3.890323.1388 -0,0300

FeCH3OCO2i-Fed)C(2)H(3)O(3) + dl16,Aug.93-179149, 1.008

10.4932 1 621713 7379 0 5394Fe(CH3OCO2)2Fed)C(4)H(6)O(6)16.Aug.93

-337416. 22.88333,3487 -7,359334.9654 -0,0300FeCH3CH2OCO2+Fe(l)CI3)H(5)O(3) + d l30.Aug 93

-3 2789

-1472897,4532

80,5362Fe (Lac I 2, aqFeI Lac I 2,aqref-27

-272042.16,8444

167,6874Fe(Pent)+Fe(Pentl+ref•27

-10663511 5343

136.3259Fe (Pent) 2, aqFe(Pent)2,aqref:27

-190586,25-5409

303,0133Fe(Propl+Fe(Propl+ref;27

-110833.7,303485,8682

Fe(Prop}2, aqFe|Prop)2,aqref:27

-19900816.4683

178 5967Fe+3Fe+3ref:21

-4120,-2,425619.0459

FeOH+2FeOH+2ref;21

-57 800,-1 156214,6102

FeO+FeO+re£:21

-53100.-3.711B

-15 3982FeO2-FeO2-ref 21

-88000.2,3837

-13.3207FeCl+2FeCl+2ref:22

-37518,- 7164

23 B149FeF+2FeF+2ref.22

-79645.-3,429423.9805

Fr+Fr+ref:21

-188437. 6 70810,4168 1,656721,3748 0 4496

Fe(CH3CH2OCO2l2Fe(l)C(6IH(10)OI6)30 Aug.93-355495. 36.043

33,3487 -7,359353,2020 -0.0300

FeCH3ICH2)3CO2+Fe(l|C(5)H(9)O(2l+(l)lSep,93

-158054. 13 10820.3852 -2.268741.0721 0-3539FelCH3CH2CH2CH2CO2)2Fe(DCI10)Hll8)O(4)16,Aug.93

-293990, 50.854.5813 -15.7000

100.2378 -0.0300FeCH3CH2CO2+Fed)C|3IH(51OI2) + (l)16.Aug 93

-146301, 1.30B10,0542 1,791422.9627 0,5324Fe(CH3CH2CO2|2FedlCl6lH(10)O(4l16,Aug,93

-271598- 23.57632 4309 -6 999656 9937 -0 0300Fe(+3)

11.Sep.97-11B50. -66,300

-13.6961 11.1141-6.8233 2.5812FeOH(+2)

1.May. 97-70000, -25 400

-10.6009 9.9077-4,7048 1.4382

FeO(+l)

1,May.97-61000, -11,100

-16.8408 12.3595-12.8325 7191

FeO2(-l)

1.Hay.97-110700. 10.600

-1,9602 6.5182-14,5028 1.4662

FeCK + 2)

14,Sep.97-50820, -42,740

-9.5277 9 4878-2.3482 1 7013

FeF(+2l

-3,2095

-4,1575

-3 6216

-5.0353

-3,1945

-4 1196

-2.2127

-2,3407

-2.0827

-2,6979- 1 .

-2 3851

15,Sep.97-87141, -25,700

-16,1520 12.0915-1,4787 1.4477

Frl + |

12 Dec.97

.Appendix A 20

Ga+3Ga+3ref:21

-705004,71392.5442

-380002 837816 2356

GaOHtGaOH+ref.21

-91100,1.6572

48.3870GaO+GaOtref-21

-866002,1299

-0.7503GaO2-GaO2-refi21

-128700,3,624714 3978

Gd+2Gd+2ref:21

Gd+3Gd+3ref: 2

GdOH+2GdOH+2ref.25

GdOtGdO+ref-25

_GdO2-GdO2-ref:25

-70600,0.00949,9946

-158600,-2 97716 5606

-204500,2,7389-3,5082

-193000,2,8425

34,9963

-2250005 0344

-50 6235GdCl+2GdCl+2ref.25

GdC12+GdC12+ref 25

GdCl3,

-190400,-0,263018,1232

-2213002 84929.5260

aqGdC13(aqltef:25

-62500.3,7284-4,3586Gal+31Ga(l)+(3)15 Sep 97-50600,

-14 7065-8,4326GaOH(+|GadlOdlH10,Dec,97-116700

-3,73215,0115GaO(+)Ga(l)O(ll+10 Dec 97-100900-2.5806-8.6363GaO2(-)Gad)Ol2l-10,Dec.97-153900,1 0721-5,8659Gd(+2)Gd(l)+(2)10Dec,97-67400

-7,7516-5,2956Gdl+31Gdlll+(3I13.Jul.87-164200

-15 0506-10,3474

GdOH+2

35,1004,28490,0203

-79.00011.51972.7787

d)-r(l)

-67.3007,21072,0700

(1)

-29,2006.76290.9986

111

-10.0005 32211 7777

-4.3008.78101.1216

-49 20011 66562.3265

Gd(l}O|l)Hlll+l2)1, Dec,95-213400,

-1,0936-9-9196GdO+GdUIOIlH1 Dec.95-205500-0,8409-18,4750

GdO2-Gdll)O|2)1,Dec-95-2330004 5111

-26 1341GdCl+2GddlClll1,Dec.95-200600.

-8.4170-3,3636GdC12+

-2.96.17861 1000

111

13.16.08010.3539

-111

38 33 97691 0495

+ 121

-22.39.04251.4006

Gd(l)CK2) + (l)1 Dec 95-239000

-0,8272-3,8858GdC13(aqlGdlllCllJ1,Dec,95

-5 46.08030.6305

)

-2,9330 I1. j

-2.17093, ;

-2.6246 i1 i

-2,6722 i1, ;

-2,8232-1.

-2.45842.

-2.15683.

-2,72372

-2,74411,

-2 9654-1,

-2.43092.

-2,74471,

-252100,6.3836

-19,6565GdC14-GdC14-ref-25

-282900,11,1317-49,0467

GdF+2GdF+2ref:25

-232200.-2 919619.3937

GdF2+GdF2+ref.25

-304100.-2.652615.9952

GdF3,aqGdF3(aq)ref:25

-374900-2 3913-9.6471

GdF4-GdF4-ref-25

-445000.-1.0260-27.4519

GdHCO3+2GdHCO3+2ref.25

-301200.0.602639.1396

GdCO3+GdCO3+ref:25

-295500,-0 9530

-19 8322GdH2PO4+2GdH2PO4+2ref:25

-431B00.1.6048

43.0549GdNO3+2GdHO3+2ref:25

-1857001.3205

33.6609GdSO4+GdSO4+ref:25

: -331500,-1.4776

-20 9360i Gd(fte)+2: Gd(Ae)+2i ref;33i -250490,i 2,8605i 57.3241! Gd|Ae)2+: Gd(Ae)2+• ref-33

-2802007,8028

-11,9138GdC14-GdlllCH4|1 Dec.95

-324300.19.3995

-27.4478GdF+2

2.22.6888-0 0300

-d)

-0.2-1.87611.6310

Gd 11) F111 +1211.Dec.95-239300,

-14.9041-2.5281Q3F2 +Gd(l)F(2l+1.Dec.95-321B00-

-14.2557-1.8906GdF3(aqlGd(l)F(3)1 Dec 95-407400.

-13.6174-8.4349

GdF4-Gd(llF(4)-1.Dec,95

-497300.-10.2805-22.1609

GdHCO3+2GddlHdlt1.Dec.95

-326700.-6,30434.56B1GdCO3+GdlDCdK1.Dec-95-307600.

-10,1036-15.8269

GdH2PO4+2

-14 411,59351 2776

111

-10.211.34570.7096

-19.911.0949-0.0300

d)

-46.49,77562.3239

:ll)O(3)+(2)

-9,78,21531,2048

)I3I+(1)

-40.B9.709511729

Gd(l)H(2)P(l|O(4)f(2)1.Dec.95-476600.-3.86325.1201GdNO3+2

-26,17.26861.4574

Gd(l)N(llO(3l+(2|l.Dec 95

-219800-4,55351,5663GdSO4+

-32.57.53231.5475

Gdd)S(l)O(4l + ll)l.Dec.95-376800.

-4-1705-14 7880

-1207,38220 7287

GdCH3COO+2Gd(l|C(2)HI3IO(2|+(2)10 Sep 92-283100.

-0.794510.1106

-25.7006.05671.4477

Gd(CH3COOI2+Gd(llC(4|H(6)O(4l+(ll10 Sep 92

-3,10150

-3,5809-1

-2 16282

-2,18961

-2.21600

-2 3539-1

-2.51832

-2.36121

-2.6192

-2.59072

-2 6065]

-2.7461

-341350.9 4165

102,0230Gd(Ae)3,aqGd(Ae)3,aqref:33

-431490,16.8116

141,7603GdlBut)+2Gd(But)+2ref:27

-246839.6,8808

97.4167Gd(But)2+Gd|Butl2+ref:27

-334041.17,9029

197,8246Gd(For)+2Gd(For)+2ref•27

-246091.0.8917

26.4744Gd(For)2+Gd(For)2+ref!27

-332531.5 2546

28.4144GdlPentl+2Gd<Pent 1+2re£:27

-244829.9.0391

133-8403Gd(Pentl2+Gd(Pentl2+ref:27

-330007,22.4554

284.7556Gd(Prop)+2Gd(Propl+2ref:27

-249081,4.8065

83,3388Gd|Prop)2+Gd(Prop)2+ref:27

-338525.13.5253

164.2235Gd+4Gd+4ref:21

12600.-4 353238.8394

H+

-401740, -4-70015.2134 -0,234228 2899 0 6223

GdlCH3COO)3Gd(l)C(6|H(9|OI6l10 Sep 92

-521580, 9-80033,2662 -7,321544.1903 -0,0300

GdCH3ICH2)2CO2+2GddlC(4|H|7|O(21 + (2)16 Aug 93

-294884. -14,4679.0211 2.2007

24.5906 1.2776Gd(CH3CH2CH2CO2)2+G d d ) C ( 8 | H ( 1 4 | O | 4 | + ( l l16 ,Aug ,93-424078, 21 787

35.9294 -8,365762.8670 0,2229GdCHO2+2

-3 407 8

-4 .1541

-3.1518

-4.2642

16.Aug.93-268634. -24.567

-5.5954 7.9307 -2.5476-0.5508 1.4287 2,

Gd(CHO2l2+Gd(llC(2]H(2)O(4l + d l16.Aug.93

-372659 -2.0845 0511 3.7601 -2.98772,8309 0.5831 1

GdCH3ICH2l3CO2+2Gd(l)C(5)H(9)OI2)+(2)lb.Aug.93

-301364. -7.96714.2927 0.1259 -3 369837,5583 1 1815 2

Gd (CH3CH2CH2CH2CO2) 2+G d d l C d O ) H l l 8 I O ( 4 | + ( l )16.Aug 93

-436320. 37,15047.0464 -12,7369 -4,723893.8330 -0.0116 1.

GdCH3CH2CO2 + 2GddlC(3IHI5IOI2l + l2l16.Aug.93

-289666. -19 7673 9537 4 1983 -2 9423

19.4489 1,3552 2Gd(CH3CH2CO2)2+Gdd)CI6)H(10IO(4 | + ( l |16.Aug.93

-414216. 9.26125.2465 -4.1796 -3.822650.5890 0.4100 1,

Gdl+4)

-2.0180

10 Dec,97-5700. -107.600

-18 4052 12 9700-3.5030 3.8013

H( + l

ref:2

H2,aqH2(aq)ref :3

.0000

.0000

17,Jul.890,

.00000000

H2I0)HI21+I0)13.Jul,87

.000,0000,0000

.Appendix A: 21

42365,1427

27.6251H2O2,aqH2O2(aq)ref;21

-32030.6 1922

10 3600HO2-HO2-re£:21

-160902,6566

-1,5190HA1O2,aqHA102(aq)ref-20

-2075003 6B0839,0000

H2AsO3-H2AsO3-ref :2

-140330,5,7934

15-8032HAsO2,aqHAsO2(aq)ref;21

-96240,5,59846,7990

H3AsO4,aqH3AsO4laq)re£i21

-1831007 935718 2805

H2AsO4-H2AsOl-re£,21

-180010.6 7429

16.9206HASO4-2HASO4-2re£-21

-1707904,39947.9908

HBeO2-HBeO2-re£;21

-172200,2-9518

56 2537HB1O2,aqHBiO2(aq)ref,21

-79300,5.2306

-81.1398HBrO.aqHBrO(aq)ref 21

-197005 57959-8576

HCO3-HCO3-ief:2

-1000.4,7758 35,0930H2O2H(2|O12|+(O|11,Sep.97-45690,

13,80087292090

7 ,3370- . 9 9 7 5

HO2I-1

2 - 8 6 8 6

11.Sep.97-38320, 5.700

-1.2961 6.2619-10.6529 1,5449

HA1O2I0IHI1)A1U)0(2) + (0)29 Apr. 97-230730 -6 5001.2058 5.27612,5000 ,3000H2ASO3I-)H(2)As(l)O(3)-il)3,Jul,87-170840, 26,4006,3646 3 2485-3 6253 1 2305HAsO2(0)H(l)As(l)O(2)+(0)12,Dec,97-109110. 30.1005.8913 3.4280-2.4438 -0.1158H3AsO4(0lH(3)AB(1)O(4I+(0)12, Dec, 97-215700. 44.000

11 5925 1 19902.2209 -0.3263H2AsO4(-)H(2)As(l)O(4)-(ll12.Dec,97

-217390. 28 OOO8,6835 2,3351-3,1567 1,2055HASO4I-2)H(l)As(l)O(4)-(2)12 Dec 97

-216620 -.4002.9611 4.5853

-12.7102 3,2197HBeO2(-ll

33 30097081351

* ( 0 )

54.60079120300

+fOI

33 80045651719

16.Sep.97-206700, -- 5719 5.7 5374 2.HBiO2(0lH(l)Bill)O(2)16.Sep.97-B63OO,

4.9892 3.-33,2840 - .

HBrOH(l |Br( l lO( l l11 Sep 97-27000.

5.8410 3.-1 2012 - .

HCO3I-I

-2,97640,

-3 0822

-2,7253-1 .

-3.0421-1

-3.1379- 1 ,

.9013-2 ,

-2 7553-1

-3.0204

l.Jul.87

-140282,7,5621

12,9395HCdO2-HCdO2-re£;21

-86500,0,9080

23 2446HCeO2,aqHCeO2(aq)ref:25

-239300,5.0117

-72.9937HC1, aqHCl(aq)refr40

-30411.16.157346,4716

HC1O,aqHClO(aq)re£;21

-19100.5,59279 9023

HClO2.aqHClO2(aq)re£:21

1400.7.670619.1373

HCo02-HCO02-re£-21

-83400-0.097144.7712

HCrO2,aqHCrO2(aq)ref-21

-138100.1.5359

-16.2043HCrO4-HCrO4-ref:21

-183700.8.2211

15.5492HCUO2-HCUO2-re£:21

-60100.1 3202

-3,2749HDyO2,aqHDyO2(aq)ref,25

-238200.4,6969

-60 3933HEuO2,aqHEuO2(aqlref-25

-2160004,8064

-64.9060HErO2.aqHErO2(aq)refi25

-164898.1.1505

-4.7579HCdO2(-)H(llCd(l)C12,Dec.97

-117400,-5.5570-2.8512HCeO2(aq)

23.5301.2346

1.2733

((2) - (1)

-10.900

7 91761 7965

H(l)Ce(l)O(2)l.Dec.95

-249500.4.4582

-30 4525HCK0)H(1)C1(1H20 Jan,98-30285,

48-53.9917

-0.0300

•10)

0.421

-11,4311 -46.1866-5,2811

HC1OHIllClllIC11,Sep,97-28900.

5 8751-1 1808HC1O2HI1IC1I1K11,Sep.97-12400,

10,94552,5672HCo02(-l)H(11 Co 11K11.Dec.97-117100.-8,01553.9116HCrO2(0)

0.0000

>ll) + (0)

33.9003,4387

-.1734

)(2)+(0)

45.0001.4527

-.3415

3(2)-(1)

-25.5008.89262,0211

H(l)Crll)OUI+(0)16.Sep.97

-157300.-4.0259-10,7140

HCrO4(-)H(l)Cr(l)(11.Sep.97

-210000.12.2925-2.7290HCuO2(-l)H(l)Cu(l)(1.Hay.97-86300

-4 5527-8,0659HDyO2(aql

6.0007,3211-.0300

3(4)-(l)

46.6000.9174.9230

3I2)-<1)

.3007 5282,5464

H(llDy(l)O(2)l.Dec.95

-251100.3.6855

-26,0730HEuO2faq)

39.14.3051-0.0300

HEu(llO(2l(1)l.Dec.95

-228200.

3.9540-27,6415

HErO2(aq)

42.44.1968

-0.3000

H(l|Er|l)O(2)1,Dec.95

-2,

-2.

-2,

-3

-3

-2

-2

-3

-2

8266-1.

,5492-1,

96320,

.30360.

02180.

,23140

.4475-1

,61250

.2871-1

,5907-1

.93130

,94240

4?-54.

HF2-HF2-ref:2

40100.54647085

-138160,5

-1.HF.aqHF(aq)ref: 3

22633751

-71662,3,14.

HFeO2-HFeO2-ref:21

47533647

-95400,

36!HFeO2,aqHFeO2(aq)ref:21

62721624

-1011002

-37.HGaO2, aqHGaO2(aq)ref:21

74018300

-137300,3,

-12,HGdO2, aqHGdO2(aq)ref:25

44701716

-237500.5,

-72,HHfO2+HH£O2+ref:21

01175835

-237800,2

72HH£O3-HHfO3-re£,21

06294834

-279200.3.

57,HHgO2-HHgO2-re£-21

49087445

-4520013.

HHo02, aqHHoO2(aq)ref?25

,8118.7588

-241300.4

-62HIO,aqHlO(aq)ref:21

3

HIO3,aqHIO3(aq)refi21

.7380,2688

-23700..8979.7260

-254300.3.3186

-24,0971HF2(-)H(l)F(2)-(12.Jul.87

-155340,4.9797-9.7974HF(0)H(llF(ll+(7.Feb.89-76835..7042

-.1828HFeO2(-l)H(l)Fe(l)C1.May,97

-125700.-6.24401,4468HFeO2

4,-0.

11

3.1-

0)

5.-.

1(2}

34.84476

0300

22 10079282934

22.5004732

0007

- (1)

-15,000

8.1.

H(l)Fe(l)O(2)1 May 97

-120300-1.0905

-18,2305HGaO2

6-,

H(l)Ga(l)O(2)10.Dec.97

-158600.0.6328-9.2677HGdo2(aq)

5.-0

H(l)Gd(l)O(2)l.Dec.95-247200,4,4582

-30.3099HH£O2(+)

3,-0.

H(l)Hf(1IOI2)12.Dec.97

-264200-2 742115 7669HH£O3(-)

19058564

+ 10)

22 200

1776

0300

-(0)

2,9005060

0439

48.29917

0300

+ (1)

-51,0006.1

H(1)H£(1)O(3)12,Dec.97

-331800.0.74278.0059HHgO2(-l)

8221

3268

-111

-34.300

52.

H(l)Hg(l)O(2l12,Dec,97

-73800-3.3572

-8.9825

HHo02(aql

71.

H(l)Ho(l)0(2)

l.Dec.95-253800.

3-7900-26 7248

HIOH(1]I(1)O11.Sep.97

-33000.1.7354

-4.9085HIO3H(1)I(1IO

11,Sep.97

4.-0,

(Di

5

(3)J

45611506

-(11

2.30006895962

40.5.2544.0300

h (0)

22.800,0694,0053

M0)

-2,91610

-2 9849-1

-2.80810

-2,5208-1

-2.733B0

-2.80510

-2,96320

-2 66551

-2.8096— 1

-2,6401-1

-2 9356C

-2.8506C

zn

o

Ioso

_Appendix A' 22

1

to

ro

1

-317006 834614.8674

HInO2,aqHInO2(aq)ref,21

-119800.4.2864

-44,5111HLuO2,aqHLuO2laqlref'25

-240200-4.2864

-44.3938HHnO2-»lnO2-ref:21

-1210001 0354

20 5255MIo04-Hilo04-re£,21

-2064007 732033,3930

HH02,aqHN02(aq)ref-21

-12100.5 91518-7050

HH03,aqmiO3(aq)re£:21

-247307 162313 8907

H112O2-HN2O2-re£-21

18200,6.5748

21.6724H2N2O2,aqH2N2O2(aqlref:21

8600: 8 6337

34,9001HWbo3,aqHHbO3(aq)

j re£:21• -236800.

5 7110j 20 2299

HHdO2 , aqHIIdO2(aq)

i re£:25: -238000• 4,9843: -71.5974: HlJiO2-i HMiO2-• ref:21: -81980: - 8143• 54 2564• H3PO2,aq: H3PO2(aq)• ref 21

-505008 9050.8357HInO2H(l)In(llC11,Dec,97

-135100,2.6831

-20 5527HLuO2(aq)

39 9002 2530-.2642

(2)i-(0)

27,2004,6987

-0 0300

H(l)LuillO(2l1.Dec.95-255100,2,6831

-20,5120HMnO2(-l)

27,14.6987-0.0300

H(l)Mn(l)0(2)-(l)12 Sep.97

-149900,-5 2480-3,7067HMo04(-l)

-9 1007.SP031.7685

Hll)Mo(ll0l4)-(l)5,Jan,98-238500,

11,09662,7912MN02HIIINUIO11,Sep,97-28500,

6.6590-1.6697HNO3I0)H(1)N(1IOll.Sep.97-45410

9-70636320

MN2O2(-1)H(1)IJ(2)O15.Sep,97-9400,

8,2753-1,1401H2N2O2I0I

32.5001.39081 1359

2)+(0)

32.4003 1378-.1507

31+101

42 7001,9367- 3066

21-111

34 0002,49141,1132

H(2)N(2)0(2I+IOI15 Sep 97-13700

13.30194.9097KHbO3(0)

52 000.5163

-.4475

H(l)Nb(l)Ol3)*(0|5.Jan.98-257950,6.16423 3616HMdO2(aq)

31.1003,3252-0 4710

H(l)Nd(l)O(2)1,Dec,95-24B0004.3B65

-30,1062HNlO2|-l>Hd)Hi(l)16-Sep 97-118760

-9 76196 7430H3PO2(0)

47,84.0304-0,0300

0(2)-(ll

-36 0009 56883 1664

H(3)P(l)O(2)+(0)15,Sep,97

-3

-2

-2

_2

-3

-3

-3

-3

-3

-3

_2

1470 i0, ;

88980 i

8898 i0, i

5619 j- 1 , ]

2376-1

05420,

18020,

1210

.32880.

03370.

.96020.

.3753-1.

-125100,6,5352

12,4140H2PG2-H2PO2-ref:21

-122400.5,2026

13.7063H3PO3,aqH3PO3(aqlref.21

-204800,4.2704

17.9261H2PO3-H2PO3-ref:21

-202350.4.1649

19,9762HPO3-2hPO3-2re£;21

-194000.3.4463

11.6523H4P2O7.aqH4P2O7(aq)re£:21

-4B5700.9,297534.8301

H3P2O7-H3P2O7-re£;21

-483600.9.129235.9785

H2P2O7-2H2P2O7-2ref:21

-4B0400.9,0963

40 6359HP2O7-3HP2O7-3ref121

-471400,8.3302

32.1587H3PO4,aqH3PO4(aqlref O

-273100,8 272717,9708

H2PO4-H2PO4-ref :2

-270140.• 6.4875i 14 0435

HPO4-2j HPO4-2• ref.2: -260310.j 3.6315• 2.7357! HPbO2-1 HPbO2-| ref-21

-145600.8,1731 2.-.1623H2PO2I-)H(2IP(1)O(2I-15 Sep 97

-146700.4 9190 3

-4.4604 1H3PO3I0IH(3)P(l)O(3)t15,Sep.97-230600,2.6439 42 0783H2PO3I-)H(2)P(1)O(3)-15.Sep.97

-231700.2.3699 4.

-1.9142 1HPO31-2)H(1)P(1)OI3I-15 Sep 97-231600..6347 5

-11.2232 3H4P2O7I0)

36,9005430218B

ID

24 10082232637

(0)

43.60071453203

(1)

31.70080651491

(2)

4 00049741527

H(4)P(2IO(7)*(0)15.Sep.97-542200.

14.91998.9430H3P2O7I-)H(3)P(2)O(7I15 Sep-97-544100.

14.51224.5838H2P2O7I-2)H(2)P(2|O(7|15.Sep.97-544600-

14,4299,5505 2HP2O7I-3I

64.00011306292

(1)

51 00003988566

-(2)

39.0000760621B

H(1)P(2)O(7)-(3I15.Sep.97-543700.

12.5558 0-8.8807 4

H3PO4I0IH(3)P(1IO(4)ll.Jul.B7

-30792012.41B21.7727H2PO4I-IH(2)P(1)OI4)3.JU1.87-309820.8,0594 2

-4.4605 1HPO4I-2)H(1)P'1)O(4)3.Jul.87

-308815.10857 5

-14.9103 3HPbO3(-llHll)Pb(l)O(216.Sep,97

-11 00062086470

HOI

38.000B691.2200

-(11

21 600,5823.3003

"(2)

-8.000,3233-3363

)-(!>

-3,11680

-2,9823-1

-2-88820

-2.Bin-1

-2,8051

-3,39570

-3.3788-1

-3 3754

-3.2980-3

-3.29240

-3 1122-1

-2,8239-2

-81000,4.4403

-22.3600HPrO2,aqHPrO2(aqlref'25

-239700.4.9706

-74.0012H2S,aqH2S(aqlref: 3

-66736.5097

32 3000HS-HS-ref .2

2860.5.01193.4200

H2S2O3,eqH2S2O3laq)reft21

-128000.7.4242191373

HS2O3-HS2O3-re£:21

-127200,6 196418 9745

H2S2O4,aqH2S2O4(aqlref.21

-147400.B.6525

24,1023HS2O4-HS2O4-ref:21

-1469007.615923.9326

HSO3-HSO3-ref:2

-126130,6,701415.6949

HSO4-HSO4-ref :2

-180630.6.97B820.0961

HSO5-HSO5-ref:21

-152370.8.939135.7254

HSbO2, aqHSbO2(aqlref;21

-97400.2.9726-8.9525

HScO2,aqHScO2(aqlre£i21

-1042003.0599

-17 2935 1HPrO2(aq)H(l)Pr(l)O(21.Dec.95

-250100,4.3S37

-29 7599H2S(0)H(2)S(l |*(0l26.Jun.87

-9001,6 7724 54 7300 -

HS(-)

18,0004 54821 3566

-2 9054-1

47,04,0423

-0 0300

30 00096461000

l.Jul.B7-3850. 16.300

4.9799 3 4765-6.2700 1 4410H2S2O3H(2)S(2)O(3)+(0)11.Sep.97

-150400. 45.00010.3493 1.67622.5672 -.3415HS2O31-1)

11 Sep,97-179100.

10.8142-.3049HSO3I-)

11.Sep-97-153900 30.5007 3510 2 8549-2 3216 1.1676H2S2O4H(2)S(2)O(4)+(0)11.Sep.97-175300, 51.000

13.3462 .50234.583B -.4323HS2O4I-1)

36.5001.50051.0760

33 4002 37711.1233

30.00011081748

ll)

50 70023498611

(0)

11.10094751719

+(0)

3,Jul,87-149670.8-5816

-3,3198HSO4I-I

3.JU1.87-212500.9,2590-1,9550HSO5I-)H(l)Sll)OIS)-11.Sep 97

-18538014 04304.4819 .HSbO2(0)H(l)Sb(l)O(2)11,Sep.97

-116600.-0,5203 5-8.8400 0,HScO2

H(l)Sc(l)O(2)11 Dec.97

-3 0590

-2.9849-1

-3.2067

-3 0828-1.

oH00

oo

Io

-3,2260-1,

-3 1338-1

-31618-1.

-3.3594-1.

-2,7574

.Appendix A: 23

i

CD

CO

1

-231600,3.3422

-47.9689HSe-HSe-ref-21

10500,4.98236.9147

H2SeO3,aqH2SeO3(aq)re£i21

-101850.7 947522 9944

HSeO3-HSeO3-re£ 21

-98340,6,4061

20.4808HSeO4-HSeO4-re£-21

-1081007,5244

23,2855HS1O3-HSiO3-ref:22

-242801,2,9735

j 8 1489• HSmO2,aq: HSmO2(aq): re£:25• -237100: 4 9296: -69,5359: HSnO2-i HSnO2-: re£-21: -97300: 4 1971• -6 7372: HTt>02, aqj HTbO2|aqI: ref:25: -238700,: 4,7517! -62,8548• HT1O2,aq: HT102(aq)i ref 21: -57600• 5.1759

-79,1473HTinCi2, aqHTraO2laq)

: ref,25-240300

: 4 5464• -55 5327: HU02, aqI HUO2(aq): re£,371 -198000,•' 5,1622• -78,8543• HU02 +: HUO2t: ref-37

-244300.0,3770

-21,7545HSe(-lHlllSelll-11 Sep 97

3800.•1 3855

-7.0678H2SeO3

30.3005,6066

-0,0300

(1)

19.0004,02271,3400

Hl2)Se(l|OI3l+(0)11,Sep,97-121290

11 62404 1356HSeO3(-)

49.7001 1819- 4127

H(l)Se(l)0(3l-(l>11,Sep,97-122980,7,8624-1.7105HSeO4|-)

32 3002.65511.1402

H(l)Sell)0(4l-lll11 Sep,97-139000

10,5922-.5697HSiO3(-l

35.7001 58371.0885

H(l)Slll)O13)-ll)13,Sep,97

-273872.-0,5181-7 3123HSmO2lag)

5,0005 94671 5511

H(l)Sm(l)0(2)1.Dec,95-247700,4,2552

-29,2507HSnO2l-l|

45,94.0768-0.3000

H(l)Sn(l)O(2)-ll)12,Sep 97-1221002 4678

-12,2825HTtO2(atj)

9 4004 77791 4874

H(l)Tb(l)OI2)1. Dec.95-251000.3,8228

-26,9285HT1O2

40.94.2425-0 0300

Hfl)Tl(l|O(2l+(0)11.Dec.97-65600.4,8579

-32.5914HTmO2(aq)

53,1003.8372

-0,0300

H(l)Tm(l)0(2)1 Dec, 95-254500,3,3186

-24 0360HU02ID)U(l>u(l)o20.Jan,98-205100,4.8252

-32,4895HUO2I+)

HIDUIDO20 Jan 98

34,74 4476

-0.0300

(21 + 10)

52.9003.8489

-0.0300

I2I-M1)

-2.

-2 ,

-3,

-3,

-3.

-2

-2

-2

-2

-2

_2

-2

79450

9602-1,

25940.

1039-1,

2168-1,

7575-1

95460.

8B09— 1

93690

97970,

91610,

97840,

-233200.3,2291

14,0517HUO3-HUO3-ref:37

-274100.3.1824

68.0400HUO4-HUO4-ref- 37

-3148004 936436.9351

H3VO4,aqH3VO4(aqlref;21

-249200.6,9310

15.3166H2VO4-H2VO1-ref:21

-243990.6-4502

38.1088HVO4-2HVO4-2re£:21

-233000,4 541086.3755

HWO4-HW34-re£:21

-223400,7,766134,7493

HYO2,aqHYO2|aq)ref-21

-241700,4.4506

-50,6646HYhO2,aqHYbO2(aq)ref:25

-233800,4 6011

-58 9357HZnO2-HZnO2-re£:21

-110720.,5623

35.0874HZrO2+HZrO2+re£:21

-239700,2,1106

70,5343i H3rO3 -

HZrO3-• re£:21: -281500,: 3,5625

55.3517: He,aq: He(aq|: ref:3

-254800,0 1055-2 6271HUO3I-)H(1)U(1)O20.Jan,98-321200,

-0,009211,2651HUO4I-IHdlUdlO20 Jan.96-3629004,27481.4672H3VO4I0)

-11.4005-70390,7287

3)-(1)

-41,3005-74912,2503

4)-d)

-20-1004,06371,9339

H(3)V(l)O(4)+(0)5.Jan.98-284600,9.13920.8561H2VO4I-)H(2)Vd)O5Jan.9B-280620.7,96534.2579HVO4I-2I

Hd)Vd)O5,Jan.98

-277000.3 307714.7484HMO4I-1)HdlWdlO15,Sep.97-255000.

11,18203 1986HYO2HI1IYI11O12,Dec,97-254600,3.0828

-22.6916HYbO2(aq)

37 1002,1640-0 2218

4)-(l)

29,0002,62521,1898

4)-(2)

4 0004 44693.1527

4)-(1)

31.2001.35321.1559

2) +10)

31.8004,5443-0.0300

H(llYb(llO(2)1,Dec,95-2465003.4560

-24.8711HZnO2(-l)H(l)Zn(l)(17.Sep,97-142370.

-6.40471.0394HZrO2(+l)H(1)Zr(1)1 May.97

-265300-2.629915.1558HZrO3l-l)H( 11 Sr d )1.May,97-333300.9168

7.2726He(0)He (1) + (0113.Jul,87

36.54,3859-0 0300

3(2)-(ll

-16.0008,25881,8669

3(2)+(l)

-49 7006,78781,3060

D(3I-(1)

-32 7005-39012,1199

-2,78331

-2,7765-1

-2.9556-X

-3.15670

-3,1082-1

-2,9156~2

-3,2412-1

-2.90630

-2,92180

-2.5141-1

-2.67021

-2 8168-1

326

Hf+4Hf+4ref.21

465847220707

-132600.-439

HfOH+3HfOH+3reff21

,3761,6914

-189000,0

57HfO+2HfO+2ref:21

,9047,6774

-186000217

H£O2,aqHfO2(aq)ref.21

_;

40Hg2+2Hg2+2re£'21

421

Hg+2Hg+2ref: 2

-18

HgOH+HgOH+ref:21

136

HgO,aqHgO(aq)ref:21

0-8

HgCl+HgCl+ref:22

232

HgC12,aq

0179.6401

231400,.8096,1163

36710.,0263,B090

39360..52800613

-12700,.25051808

-8900.6191,6440

-2155..49415048

HgC12(aq)ref:22

648

HgC13-HgC13-re£:22

1078

HgC14-2HgC14-2ref;22

-42838,0150,6578

-745045003.0458

-150,6967

4 5634Hf(+4)Hf (D-M4)12,Dec.97-150250

-18,4638-3,7271HfOH(+3)Hf IDOIDf12 Dec.97-211800.

-5,56706,2949H£O(+2)HflllOIlM12.Dec,97-200900.

-2.8551-4.6845HfO2

14,0205 4762-.2123

-111.20012,99963.8552

IID-M3)

-72,8007.92672.6777

•12)

-46,2006,87431,7607

HfI1)OI2)+(0)12.Dec.97-262600-3.36398.8615Hg2(*2)Hg(2l+(2)10 Dec.9739880.

2.0479-0,2234Hg(+2)Hg(l)+(2)l.Jul.8740670.

-9 0707-2.5865HgOH(+)

HglDOdll12.Dec.97-20400,

-4.71966.4374HgOHg(l)Od)-12.Dec 97-19200

-6,2664-8,0863HgCl(-r)Hg(l)Cl(i;6.Jan.98-7374,

-1.68864,9328HgCl2(O)Hg|l)Cl(26,Jan,98-56787,6,9084

11.8560HgC13(-)Hg(l)Cl(36-Jan 98-99299

17.8603IB,2101

HgC14(-2)

-45.1007,0739-0,0300

15,7104.9491,8201

-8.6809,31521 1512

*dl + d)

16,7007.58720,2998

MO)

8 2008,2051

-0.0300

) + (l)

11.6706.40670.3735

I-M0)

24,6403,0277-0.0380

1-111

30,510-1 27691-1676

Hg(l)Cl(4)-|2l6.Jan.98

-2

-2

-2

-2

-2

-2

-2

-2

-2

-2

-3

-3

.807B0

.01564

,54883

66092

,63980

,86362

.40402

,583B1

,51980

70911

.06450

.5173-1

2oo

.Appendix A. 24

-10698815,5903

103.5610HgF+HgF+re£;22

-30204,-0,049237 2987

Hg(fle)+HglAe)+ref;33

-54760,5,6341

70,1764HglAe)2,aqHg(Ae)2.aqre£-33

-14658012 729514(1.9402

Hg(Ae)3-Hg(Ae)3-ref:33

-23902021.0462

235,9096Ho+2Ho+2ref 21

-96900.0,00949,9946

Hot 3ho+3re£:2

-161400,-3 11988 6686

HoOH+2HoOH+2ref,25

-207500.2.63741.9108

HoO+HoO+ief.25

-1962002,7146

-29,1412Ho02-Ho02-re£i25

-229100.4.7894

-39 5064HoCl+2HoCl+2ref 25

-193100.-0-416822-3450

HoC12+HoC12+ref;25

-2241002 685117 3007

HoC13 anHoC13laq)ie£-25

-14502330,288823.9860

HgF(+)Hg(l)Fll)H6.Jan.98-39512.

-7 89865 7934HgCH3COO+

28 360-6,16182,7846

111

-4 4808 84750 6223

Hg|l)CI2)H(3)O(2)+(l)17 Aug 92-79390.

5,978718.3452

18,5003.39350,2712

Hg(CH3COOI2Hg(l|C(4)H(6)O(4)17 Aug 92

-1987B023 300443,9053

40 100-3,4080-0,0300

HglCH3COO)3-Hgll)C(6)Hl9)O(6)-(l)10 Sep 92

-321900, 51,40043,6061 -11,386174.0939

Hol+2)Ho(l)+(2)10.Dec,97-94200.

-7,7516-5,2956Hol+3)Ho (1) + (3 )13,Jul,87

-169000,-15 3992-9 8178

HoOH+2

0 8508

-4,3008,78101.1216

-54.30011 80262 3899

Ho(l)0(l)H(l)+|2|1, Dec,95

-219000,-1,3394-8,3714

HoO+Hod)O(l)1 Dec 95

-211400-1,1548

-16.7843Ho02-Ho(1)0(2)1.Dec.95

-240000,3 9112

-22 6712HoCl+2Ho(l)Cl(l1,Dec,95

-205600,-8,7940-2.1720

HoC12+Ho(l|Cl(21,Dec-95-244600

-1 2272-1.5607HoC13(aq)

-9,76,27151,2048

+ (D

5.96.20770,4615

-11)

30.04 21601 1748

) + (2)

-28,49,19341,4867

) + (ll

-13 16 23710,7483

Ho(l)Cl(3)1,Dec,95

-4,0311 !— 2 '

-2 4524 i1 ;

-3,0261 i1, ;

-3 7421 !0 . i

-4 581S i-1-

-2.45842.

-2.14243.

-2.72352

-2.73121.

-2 9406-1

-2.41542.

-2.72821.

-254900,6,1565

-8,3500HoC14-HoC14-ref;25

-285700,10.9513

-29.7863HoF+2HoF+2ref;25

-235200.-3,085223,2937

HoF2+HoF2+ref-25

-307400,-2.840023.1340

HoF3,aqHoF3(aq)ref;25

-378300,-2 61841.6591

HoF4-HoF4-ref:25

-448500,-1,2375-9.0382

HoHC03+2HoHC03+2ref;25

-3040000 455743.5512

HoC03 +HoC03+ref;25

-298600,-0 9954

-17 4516HOH2P04+2HcH2PO4+2ref:25

-434600,1.4594

47.5067HON03+2HoN03+2ref;25

-1882001 1895

36.5060HoS04+HoS04+ref,25

-344200.-1,4371

1 -18.6528i Ho(Ae)+2

Ho(Ae)+2•• ref'33• -253270.: 2.7148I 61.7679: Ho(Ae)2+: Ho(Ae)2+• ref;33

-286400,7 2496

-7,9841HoC14-Ho(l)Cl(41,Dec,95

-331700,18 9611-21,4419

HoF+2Ho(l)Fll)1,Dec,95

-243800.-15,3064-1.3364

HoF2+Ho (1) F (2)1.Dec.95

-326500.-14.7070

0,4343HoF3laqlHoll)FI3ll.Dec-95

-412500.-14 1706-4,5051

HoF4-Ho(l|F(4)1.Dec.95

-503400,-10.7997-16.1550

HOHCO3+2Ho(l)Hll)1 Dec 95

-332100,-6,66205,7598HoC03+HolDCdl1,Dec,95

-312600.-10-2047-15 2972

HoH2P04+2

-7,82.9030

-0,0300

-111

-14 0-1,70811,8460

+ 12)

-17.811,74621,3288

+ 11)

-13.511.50980.7584

-24 211 3090-0,0300

- (1)

-53.79,98602,4471

C(l)o(3)+(2)

-17.08,35381,3115

0(3)+11)

-47.09.74331.2659

Ho(l)H(2)P(l)O(4)+(2l1.Dec,95

-4B2100.-4.21236.3118HoN03+2

-33,57,39301,5684

Ho(l)N(l)0(3)+(2)1,Dec,95

-225600,-4 87172.7579HoS04+

-42.17.65371 7013

Ho(l)S(l)0(4|+(l)I.Dec.95

-381500.-4.2696

-14 2584

-17,07.42120.8111

HoCH3COO+2Ho(llC(2)H(3IO<2)+(2]11.Sep.9:

-288520,-1.155311.3023

-32.9006.20891.5579

Ho(CH3COO)2+Ho(l)C(4)H(6)0(4)+(ll11 Sept 92

-3,07860

-3,5628— 1

-2,14612

-2,17091

-2 19310

-2,3324-1

-2.50352

-2,35701

-2,6048

-2,5775

-2.6024

-2.7311

-344120.9.2621

110,0599Ho(Ae)3,aqHo(Ae)3 aqref-33

-434250,16,5645

153.0665Ho+4Ho+4ref:21

-30500-4.316439.9963

I-I-ref; 2

-12410,7.7623-6.2700

13-13-ref'2

-12300.9.8500

20.871210-IO-ref:21

-9200,.6131

1 1172103-IO3-ref :2

-30600.5,71487,7293

104-IO4-ref-21

-140009.283112.6081

In+3In+3re£:21

-23400.-2.236120.3744

InOH+2InOH+2ref:21

-74600.2.0372

30.2531InO+InO+ref:21

-69400.2 5804

-22.2654InO2-InO2-ref.21

-106700.4,3832

-20.4685InCl+2InCl+2ref-22

-407930,14,831730.6149

-14.600-0.07440.7686

Ho(CH3COO)3Ho(l)C(6)H(9)0(6)11 Sept 9:

-528670,32.713048,1201Ho(+4)Ho(1)+(4)10.Dec,97-48300,

-18,3144-3 2789

I (-)I (1) - (1)1,Jul,87-13600,

8,2762-4.9440

I3<->I (3 ) -(1)12 Jul 87-12300,

16.2697-.3661I0I-)1(1)0(11-11,Sep.97-25700

-6 2757-10 0825

103(-)1(1)0(3)-12,Jul-87-52900.6.1725

-6.33451041 -11(110(4)-30 Apr 97-36200.

14,8827-3.4419

In(+3)In(ll+(3)12.Dec.97-25000.

-13.2378-6.2122

InOH(+2)

11,Dec,97-94700.

-2,8058-0.2234

InO(+)InlllOll)11.Dec,97-76900.

-1 4833-14 B0B4

InO2(-)In (1) 0 (2)11.Dec.97

-125300,2,9224

-16,7435InCl(+2)InlllCKl6 Jan 9B

-3.100-7,1070-0,0300

-104,20012 93303 7484

25,5001,46091,2934

57,200-.6447.7628

11)

-1 4008 19831,6530

(1)

28 3003,32401.2002

(1)

53.000-.0933.8264

-63.00010,94332,5346

H(l)tU)

-44,7006,84931-7366

+ 11)

-2-6006.33850 5907

-(11

15,9004,59831,3901

1 + 12)

-3-

-4.

-2.

-3.

-3,

-2

-3

-3

-2

-2

-2

-2

39201

13130.

021B4.

1211-1,

4516-1.

5195-1

,0342-1

,3942-1

23163

-66292

71761

,8997-1

zo

IoVO

_Appendix A 25

1

CO

1

-59226.-0,644122,2354

InF+2InF+2ref;22

-97016-3.350722,5771

KtK»ref: 2

-67510,3,55907,4000

KOH,aqTOHIaqlref'24

-103877,3.6808-.4880

kCl, aqKCl(aq)ref:23

-96500,7,2386-1,434

KBr,aqRBrlaqlref:22

-90010,8,05801,4496

Kl.aqKKaq)ref-22

-77740.9.8369

: 2,7214: KA102.aqi KAlO2laql: ref•241 -264381• 6 0070• 1 3940: KHS04 aq: KHSO4|aq)! ref!22: -243400,: 9,1226i 39.9849! KSO4-! KSO4-

ref-22• -246640• 5.9408| 9,9089

KIAeJ.agRIAel,aqref!33

-155420,• 9,9020: 40,5631

K(Ael2-j K(Ae)2-• ref'33: -242990,: 17,8481: 94,0916: K(But),aqi K(But),aqj re£;27

-66209-9.3513-2.7149

InF(+2)In(llFllt+6,Jan 98-98718

-15-9600-1.8453

K( + )K(ll+(li3,Jun.87-60270-

-1,4730-1 7910KOHK(1)O(1)H(17,Sep.97

-112104.1-2058.6520RC1I0)K(1)Cl(11+15,Sep 97-97400

9 89286,0310KBr(0)K(l)Br(1)+13,Sep.97-86320.

11.8970-4,6580

KII0)K f 1) I (1) +13.Sep 97-71829,

16.2406-4,2160KA1O2I0)

-38,8005,41651,6444

12)

-23 53012,01601.4099

24,1505 4350.1927

11+10)

28.0005.2761-.0500

(01

39 1001 8616-.0300

(0)

47,5001.0670-.0050

01

49.200-.6402-.0050

KU)A1(1)OI2) + (0)17 Sep.97-274982,6 88581 2120KHSO4I0)

17,Sep,97-267400,14,49648,7230KSO41 -)K(1)S(1)O12 Sep,97-2769806 7274

-5,2549KCH3COO

35,7001 0436-.0500

l)O(4)+(0)

55,000,0453

-.0010

4)-(ii

35.0003-09891,0996

KI1)C(2)H(3IO(2I17 Aug 92-175220,

16.39379 0167

47,600-0 6874-0 0300

K(CH3COO)2-K(1)C(4|H(6)O(4)-(1)10 Sep 92-292900.

35.798425,2533

60.700-B.31930,7097

KCH3ICH212CO2K(1)C(4)H(7)O(2|26.Aug.93

-2,39242

-2.11922,

-2.71201

-2,82680,

-3.18800.

-3,27080.

-3.45030.

-3.06370.

-3,37820,

-3.0571-1.

-3.45660

-4,2588-1,

-152161.13,979882 2231

KtBut)2-K(Butl2-ref;27

-236375,26,3402190,0492

KIForl.aqK(For),aqref:27

-151413,7,93979 8889

K(For)2-K(For)2-ref,27

-234866.13 686820.4973

KIGlyc|,aqK(Glyc),aqref-27

-188721.9.8131

40.8892K(Glyc>2-K(Glyc)2-refi27

-309741.17-595593.1092

K(Lac),aqK(Lac),aqref.27

-190081.12 057262,8615

K(Lac)2-KILacl2-ref-27

-312475.22 2742143,7822

KIPentl.aqK(Pent),aqref!27

-150151.16,1707119,5323

K(Pent>2-K(Pent)2-ref-27

-232342.30,8965

277.0852K(Propl,agR(Prop),aqref;27

-1543211 11 8793: 67 4299

K(Prop|2-: K(Prop>2-: ref;27: -240709,: 21.9605

156.3920i Kr.aq: Kr(aq)• ref;3

-187401, 58,76826.3520 -4,604023,4967 -0.0300KICH3CH2CH2CO2I2-KU)CI8IH(14)O(4)-(1)26 Aug.93

-316310, 85 95656.5369 -16.477859,8305 0.3272KCHO2K(1IC(1|H(1)O(2I26.Aug.93-161151. 48.668

11 6070 1.1839-1 6447 -0.0300K(CHO2)2-K(1)C(2)H(2IO(4|-(1)26.Aug.93-264561, 63.193

25.6408 -4,3345-0.2055 0.6721KCH3OCO2K(1)C(2IH(3)O(3)30,Aug.93-214171. 53.168

16.1774 -0.60149,1302 -0,0300KICH3OCO2I2-K(1)C(4IH(61O16I-(1I30,Aug,93-370519, 73.33535,1810 -8.076125,5242 0 5185KCH3CH2OC02K(1)C(3|H(5]O(3)30.Aug.93

-223541, 58.66621,6610 -2.767616.7671 -0.0300K(CH3CH2OCO2)2-K(l)C(6|H(10)O(6l-(l|30 Aug.93

-388842 86.18246.6039 -12,562543,7607 0.3236KCH3(CH2)3CO2K(1)C(5IH(9)O(2)1.Sep.93

-193881, 65.26831.7005 -6,705036.4644 -0.0300K(CH3CH2CH2CH2CO2)2-KUIC(10IH(18)O(4l-(l)1.Sep.93-328765, 100.60667.6627 -20.850790.7965 0,1041KCH3CH2CO2K(1IC(3IH(5)O(2)15.Sep.93

-182101 53.46B21 2223 -2,586018.3550 -0.0300KICH3CH2CO2I2-KU)C(6!H(10)O(4l-(l)15,Sep.93

-306125. 74.01145,8408 -12.268647.5525 0,5082KrIO)Kr (1) + (Ot13-Jul 87

-3.86830

-5,1161-1

-3 25870

-3.8389-1

-3,44770

-4 2333-1

-3.67440

-4.7055-1

-4.08940

-5,5761-1

-3,65620

-4,6740-1

3554,6,2721

37,8226La+2La+2ref:21

-77700.0.10648,7551

La+3La+3ref; 2

-164000-2.78804,2394

LaOH+2LaOH+2ref:25

-208900.2.6766-0,5065

LaO+

ref:25-195900-2.7794

-31,7836LaO2H,aqLaO2H(aqlref!25

-239300.4 8611

-66.8987LaO2-LaO2-ref:25

-221700.4,8931

-44.4914LaCl+2LaCl+2ref-25

-195B00.0,0273

16.8429LaC12+LaC12+ref:25

-226700,3,17856.8244

LaC13,aqLaC13(aq)ref:25

-257600,6 7243

-25,3096LaCl4-LaC14-ref:25

-288400.11 5517-56,5845

LaF+2LaF+2ref:25

-236600,-2,636617-9127

LaF2 +LaF2+ref:25

-3650,7,53338 6985La{+2ILa 11) + (2)9,Dec,97

-72200,-7,5128-5,4789

La(+3ILa(1)+(3113 Jul.87

-169600-14.3824-10,6122

LaOH+2La(l)O(l)H1,Dec.95

-218200,-1,2486-9.0640

1,Dec.95-208900.

-0.9936-17.5379

LaO2H(aq)

2_

8.1,

1506078912281

0,70068250444

-52.00010.2,

(11

6.1

(1)

6,0,

La(l)O(2IH(l)1 Dec,95

-249500.4 0853

-28.3340LaO2-La(l)0(2)-1,Dec,95-230200,4.1637

-24,2193LaCl+2La(l)Cld)1,Dec,95

-206100,-7.7112-3.9594

LaC12+La(l)Cl(2)1.Dec.95

-244900.-0.0177-5.0483LaC13(aq)U(1)C1(3)l,Dec-95

-286400,8.6366

-13,8787LaC14-La(l|Cl(4)1.Dec.95

-33120020.4270

-30.450BLaF+2La(l)F(l)+1,Dec,95

-243400,-14,2103-3-1239

LaF2+La(l) F (2) +1.Dec,95

4-0,

(1)

4.1,

+ (2

96021572

+ (21

-6,624601586

9,213734100

44.015030300

33,811781172

1

-25,78,1-

77244477

+ (11

50

2.-0.

-9 675157003

-3.335170300

-(11

-21.

(2)

_11,1

(11

-7.828397506

16.331443029

-3

-2,

-2 _

-2,

-2.

-2-

-2

_2

-2,

-3,

-3

09040

46832

18443

72732

73781

94780

9510-1

46012

77821

13600

6234-1

19142

2!nHoooo\OKD

Io

.Appendix A: 26

-307800-2 340412 8261

LaF3,aqLaF3(aqlref.25

-377900,-2,0506

-15,3002LaF4-LaF4-ref'25

-447500.-0.6263

-35-5432LaHCO3»2LaHCO3+2ref,25

-307000,0 898838 0197

LaCO3+LaCO3+ref,25

-299900,-0,8237

-20,0908LaNQ3+2LaHO3+2ref 25

-1913001 623932.7363

LaH2PO4+2LaH2PO4r2ref:25

-437600,1.899341 8879

LaSO4+LaSO4+ref 25

-346900,1,6077-27.1374

La(Ae)+2La(Ael+2re£i33

-2557503 1548

56 1530La(Ae)2+La(Ae)2+ref,33

-346160,9,7487

99,3969La(Ae)3,aqLalftel3,aqref-33

-436550.17,1523

136,1072La(But)»2LalBucl+2ref;27

-252198,7 175596 2547

LalBut)2+La(But)2+ret.27

-325200-13 4BB7-3,0531LaF3(aq)Lall)F(3)l.Dec,95-410200

-12.7816-10,3998

LaF4-Lall)F(4)-1 Dec 95-500100.

-9,3060-25,1639

LaHCO3+2

-12 011 0343 -•>0-7287

-22,310.7577 -2,-0 0300

(1)

-50,49.3958 -22.3834

La(l)H(l)ClllOI3l+(2)l.Dec,95-332900

-5-58283 9723LaCO3+

-13.77 935B -21 2693

La(l)C(l)O(3)t(l)l.Dec.95-313100,-9,7872

-16,0917LaHO3+2

-44 29.5838 -21,2275

La(l)N(l)O(3)+(2)1 Dec 95-226000

-3,81340,9705LaH2PO4+2

-37.87.2430 -2,1.6332

Lall)HI2IP(l)O(4)+(2)l.Dec,95-482800.

-3,14344,5243LaSO4tLa(l)S(l)(l.Dec,95

-382600-3.8530-15,0529

-30.26 9845 -21 5168

3(4)+(l)

-16.07,2584 -2 10,7895

LaCH3COO+2La(l)C(2)H(3)O(2)+l2|17 Aug 92

-288710.-0,08049 5148

-29 6005 7863 -21,5067

La|CH3COO)2tLa(l)C(4IH(6)O(4)i-(l)17 Aug 92-407330,

16,021627,1273

-10.100-0,5464 -30 7003

LalCH3COO)3La(l)C(6)H(9)O(6l10 Sep 92-527920,

34.102042,2254

2 800-7,6583 -4-0,0300

LaCH3(CH2)2CO2+2La(l)C(4)H(7)O(2]+(2)26,Aug,93-300593,9,7404

23 9948LMCH3CH2'

-18 4381 9188 -31 3375

CH3CO212+La(l)C(8)H(14)O(4)+(l)26,Aua,93

22131

25050

3942-1

54B12

37431

.6213

6490

51971.

.7756

.4412]

.18871

1B16

-339359,18,2361

195,2276La(For)+2La(For)+2ref-27

-251450.1.1858

25 2949La(For)2+La(For)2+ref,27

-337849,5,5879

25,8186La(Pent 1+2La(Pent)+2ref:27

-2501889 3322

132,6336La(Pent)2+La(Pent)2+refT27

-335325,22.7893282,1786

La(Prop)+2La(Prop)+2ref;27

-254208.5.102682.2145

La(Prop)2+La(Prop)2+ref:27

-34342013 8589161.6388

Li+Li+ref ,2

-69933.-.0237

19.2000LiOH,aqLiOH(aq)ref-21

-1080002.27499.8752

LiCl.aqLlCl(aq)ref:22

-99250.5 5837

17,7136Li(Ae),aqLi(Ae),aqref:33

-1586108,388056.6767

Li(Ae)2-Li(Ae)2-re£:33

-24681016.3412

130.4373Lu+3Lu+3ref ;2

-430176-36,747561,7045LaCHO2+2LalDCIllH26,Aug.93-274343-4,8808-1 1466

La(CHO2)2+

1 6 . 3 7 3- 8 . 6 9 6 8

0 , 3 0 4 1

:(l)O(2) + (2)

-28.5387 65671-4867

La(l)C(2)H(2)O(4)+(l)26,Aug.93-378757.5.86271.6684

-7.4983.44540.6644

LaCH3(CH2)3CO2+2La(l)C(5)H{9IO(2|+(2)l.Sep 93

-30707315,003736.9625

-11-938-0,14391,2366

La(CH3CH2CH2CH2CO2)2+

-4.

_2

-3.

-3.

La(l)C(10)H(18)O(4)+(ll1.Sep.93-442418. 31.735

47,8627 -13.059692.6705 0.0717LaCH3CH2CO2+2La(l)C(3)H(5)OI2)+(2)15.Sep,93

-295142.4.675618.8530

-23.7383,91681-4192

La(CH3CH2CO2)2+

-4-

-2.

La(l)C(6)H(10)O(4)+|l)15, Sep 93

-4198S1,26 057349.4265

Li ( + )Ll(l)+(1)2,Jun,87-66552,

-.0690-.2400LiOHLi(liOU)!12 Sep.97

-121500,-2,2242-1,6493

LiCKO)

LKDClll:13.Sep.97

-1056805 85541 1006UCH3C00

3 847-4.48960.4925

2.70011,5800

.4862

m ) + (O)

1.9006.6181-.0300

l + (0)

13.1403 4416- 0380

Lill)C(2)H(3)O(2)17 Aug 92

-184240.12,697614,6175

19,5000,7639

-0.0300LKCH3COOI2-L i ( l ) C ( 4 ) l H|6)O(4I-I1)1 0 S e p t 9 2

- 3 0 4 6 7 0 .3 2 , 1 2 1 13 6 . 1 8 1 0

L u ( + 3 )L u ( 1 ) + ( 3 )1 3 , J u l . 8 7

25,500-6,87851,2422

-3

-2

-2

-3

-3

-4

29801

57712

02131,

39922

75751

,97222

,85611

,77611

,68700

02100

.30380

,1068-1

-159400,-3,56309.5650

LuOH+2LuOH+2ref:25

-2057002 4374

11.3407LuO+LuO+ref:25

-195200,2.5066

-19.0294LuO2-LuO2-ref'25

-229200.4.3695

-20.2927LuHCO3+2LuHCO3+2re£:25

-302300.0.0033

47.0638LUCO3 +LuCO3+ref;25

-296900,-1.1546-15.3205

LuCl+2LuCl+2ref-25

-190700,-0,882025,5113

LuC12+LuC12+ref'25

-221300.2 1736

22 4451LuCl3,aqLuCl3(aq)ref:25

-251900.5.5129

-2.6969LuCl4-LuCl4-re£;25

-28250010 3535

-17,8947LuF+2LuF+2ref;25

-233300.-3,573025.8414

LuF2+LuF2+ref,25

-305600.-3.388327,2751

LuF3,aqLuF3(aq)ref:25

-167900,-16,4812 :-9,7160

LuOH+2Lu(l)O(l)Hl.Dec 95-219000

-1.8325-5,6622LuO+Lu(l)O(l)+l.Dec,95-212400,

-1.6582-13 8917

LuO2-Lu(l)O(2)-1.Dec-95

-242700.2.8897

-16.6824LuHCO3+2

-63,100L2.22792,4554

( D + ( 2 I

-21 36,47541,3823

(1)

-6,66,39580 6557

(1)

15.84,60991.3901

Lu(llHll)C(l)O(3l+(2!l.Dec.95

-332400-7,76696.3556LUCO3+LulDCIDOl.Dec,95

-314100,-10,5926-15.0324

LuCl+2Lu(l)CKl)l.Dec,95

-204600,-9.9277-1.5761LuCl2+LUI1ICK2Il.Dec,95-244000-

-2 4767-0 3982

LuC13(aq)Lu(l)ClO)1-Dec,95

-2868465.6765-6.0192

LuC14-Lu(l)CK4)1,Dec,95

-33380017.5009

-18.4390LuF+2Lu(l)F(l)+l.Dec,95

-241900,-16,4994-0 7406LuF2+Lu(l)F(2)4l.Dec,95

-324800.-16,04731,5969LuF3(aqlLu(l)F(3)1 Dec 95

-29,58 78841.5067

(3)+(l)

-57.79,89491.4146

+ (2)

-38.99.63531.6444

+ 11)

-26.26 72850.9437

-25.13,5203

-0,0300

-ID

-37 7-1,13232,1990

(2)

-23.612,21921 4192

•ID

-19,212,03920,8449

_2

-2.

_2

-2

-2

-2

_2

-3

-3

-2

-2

09773

70312

71041

89B4-1

45782

,34101

.36852

67651

,0136

n

,5024-1

,0968;

1155]

n£?ooOO

o

.Appendix A 27

-376563,-3.2619

7,3122LuF4-LuFJ-re f -25

-116900-1,88921,3820

LuH2PO4r2LuH2POJ*2re£:25

-432800,1,0060

50 9918LuNO3+2LUIIO3+2re£ '25

-1867000.752342,4310

LuSO4+LuSO4+ref-25

-3422001 2B11

-16,5465Lu(Ae)+2Lu(Ae)*2ref:33

-251290.2.260865 2386

Lu(Ae>2+Lu(Ae)2+ref-33

-342150,8.7721

115.7SO6Lu(Ae)3,aqLu tAel3,aqreft33

-43229015 9409158.7197

Lu+4

-411300,-15,7420-2.5402LuF4-

r e f , 2 1

Mg+2Mg + 2r e f -2

27000,-4 348739,9042

HgOH-i-l lgOH*r e f : 2

MgCl +tlgCl +r e f , 2 2

-108505.-.8217

20.8000

-149255,2 3105

32 0008

-139700.2.223028.6016

-31,811,9264-0.0300

1 Dec,95-503800, -66 ,1

-13,3870 10.6014-13,1521 2.6403

LUH2PO4T2

LuUtH<l)P<llO<4l +1,Dec,95

-482400 -46,3-5 -3207 7 8310

6 9076 1 7607LUIIO3 + 2Lu(l)H(l)O(3)+(2)1,Dec,95-227300, -58.7-5,9353 8,06223.3538 1,9413LUSO4+

-2.2668- 1 ,

-2 5589

-2.5335

1.Dec.95-380630. -26 6-4.6503 7,5708 -2.5867-13,9936 0,9570 1

LuCH3COO+2Lull)C(2)H<3)0(2)+(2)10 Sep 92-288534 -45,400-2,2622 6,6412 -2,685411.8981 1.7486 2LulCH3COO)2+Lu(l)C(4)H(6)OI4)t(l)10 Sep 92-409310 -31-60013 6382 0 3879 -3,342731,7774 1.0276 1LulCH3COO)3Lu(l)CI6)H(9IO(K)10 Sep 92-531620 -25-30031.1419 -6 4897 -4.066350.0850 -0.0300 0Lu(*4JLu(l)+(4)10-Dec.979800 -108.000

-18,3921 12,9608 -2.0186-3,5234 3.8147 4Mg(+2I

-33,0008.3900 -2,39001,5372 2

-19 1006.5827 -2,6906

8449 1

-19.0006.6669 -2,6818.8449 1,

l.Jul 87-111367--8.5990-5.8920MgOHI+1)

g12.Sep.97-152955.-2 13653 2394MgCK + l

MgF+MgFt

2

12.Sep 97-150933.-2,35052,058MgF(+)

12 Sep 97

-177690,-.297538 0239

M3HCO3+MgHCOStref :5

-250200.2.717149.0065

MgCO3,aqMgCO3(aq)ref:22

-238760.-.7355

-10 2416Mg(HSiO3)+Mg|HSiO3)+ref,22

-353025,,6289

36.7882Mg(Ael+Mg(Ae)+ref:33

-198520.5.498164,6297

Hg(Ae)2,aqHg(Ael2,aqref:33

-287830,12,3982121 5413

MgtAla)+Hg(Ala]+ref,27

-185639,8.3169

74,3351Mg(Ala)2,aqMg(Ala)2,aqref-27

-262231,18,5836151.6713

MglButl*Mg(Bucl+ref:27

-193879.9.5279

104 9814Mg(But)2,aqHg(But)2,aqref,27

-278694.21.0196221,0226

Mg(For)+Hg(For)+ref!27

-1943183 5392

34,0484Mg(For)2,aqtig (For) 2, aqref;27

-279367,8,249648.2938

Mg(Gly)+Hg(Gly)+ref:27

-190950.-8,50494.9301MgHCO3(+

)(l

-28.0709-0858,9706

-3,0006,2008.5985

JAN.91-275750.-1,14699,9391MgCO3(0lHg(llC(l|O(3|+(0)17.Sep.97

-270570, -24,000-9,5745 9 5062-8.6159 -.0380Mg(HSiO3)(+1)

(l)i

-2,7316

-2.3831

g15,Sep.97

-385700, -23.780-6.2428 8,1967 -2,52094.6702 .9177 1,MgCH3COOtMgll)C(2)HI3)O(2)+(l)17 Mar 93

-229480, -13 1005.6424 3.5341 -3,012214,8894 0.7483 1,Mg(CH3COO)2Hg(l)C(4)H(6)O(4)17 Mar 93

-349260, -1.20022.4898 -3 0853 -3.708637 1627 -0.0300 0.Mg(C3H6NO2)+Wg<l)C(3)H(6)N(l)O(2)i-(l>14,Aug.93

-231745, 7.96812,5282 0.8210 -3,296819,2750 0 4322 1.

Mg(C3H6MM)2Mg(l)C(6)H[12)H(2)O(4)14.Aug.93

-352641, 44.04237,5967 -9.0318 -4,333147.6352 -0.0300 0.

MgCH3(CH2J2CO2+Mg(l)C(4)H(7)O(2)+ll)26,Aug.93

-240741. -3.48215 4831 -0.3354 -3 419029 3694 0 6063 1

MgjCH3CH2CH2CO2)2Mg(l|C(B)H(14)O(4)26,Aug.93

-370578. 22.60843,5448 -11.3703 -4,579071,7399 -0.0300 0,

MgCHO2+

-2,8144

3.2899

-13.5825.41400.7584

Mg(l)()26,Aug.93

-215678,0 85934,2279Hg(CHO2)2Mg(llC(2)H(2)O(4l26.Aug.93

-321177. -0,70912.3613 0.892311 7038 -0 0300Mg(C2H4HO2)+Mg(l)C(2)H(4)H(l)0(2)+(l)30.Aug.93

-188490,5 8466

48.0086Mg(Gly)2,aqMglGly)2,aqref.27

-267874.13,344388,2942

MglGlycl*HjIGlycl*ref-27

-231489.5,353363,4339

M3(Glycl2,aqtfe(Glycl2,aqref:27

-353983,12.2102122.3206

Mg(Lacl+Mg(Lac)+re£.27

-232904,7.546584.0159

Mg(Lacl2,aqMg(Lac)2,aqref127

-35682616,9548174.7884

1ft (Pent)+Mg(Pent)+ref:27

-191528.11.6846141.3617

Mg(Pent)2,aqHg(Pent)2,aqref,27

-274046,25.6513310.1143

Hg(Prop) +MglProp)*ref:27

-1962577.453090,8863

«g(Prop)2,aqMglProp)2,aqref.27

-283437,16,5787185,6977

Mn+2Mn+2ref-21

-55100,-,101516,6672

MnOH*MnOH+re£:21

-973003213

16,2994MnO.aqMnO(aq)ref,21

-225174. 6 1986 4953 3 194410 0502 0.4555Mg(C2H4HO2)2Mg(l)C(4)H(8)M(2)O(4)30,Aug.93-340003, 39,95624,8034 -4,002825,6069 -0.0300MgCH3OCO2+Mg(l)C(2)H(3)on)t(l)30.Aug.93-266450 -2,0005,2917 3,666015,0028 0,5831Hg(CH3OCO2)2Mg(l)C(4)H(6)O(6)30 Aug.93-424040 18 948

22.0339 -2 913337.4335 -0,0300MgCH3CH2OCO2+Mg(l)C(3)H(5)O(3|t(ll30,Aug.93-274593, 8,000

10.6466 1,561422,6398 0,4322Mg(CH3CH20CO2)2Mg(l)C(6)H(10)O(6>30,Aug 93

-440700. 37.73433,6148 -7,456355.6701 -0,0300MgCH3(CH2)3CO2+lMg(llC(5IHl9)O(2l+ll>7.Sep,93

-246880. 3.01820 7465 -2.397942 3371 0.5055Mg(CH3CH2CH2CH2CO2)2Hg(l)C(10)H(18IO(4l7.Sep,93-382313, 37,615

54.8536 -15,8129102.7059 -0,0300

MgCH3CH2CO2*Mg(l)C(3IH(5)O(2)+(l)15 Sep.93-235660. -B.7B210 4173 1 654724.2277 0,6821Mg(CH3CH2OD2)2Hg(l)C(6)H(10IO(4)15,Sep.93-360889. 10.37332.6970 -7.096559.4618 -0.0300Mn|+2)Mn(l)f(2l30.Apr 97-52900. -16.200

-8,0040 8.8400-3,8697 1,4006MnOH(t)Hn(l|0tl)H(U + (l)12.Sep,97

-106800. .300-6.9901 8 4821-1 2623 5464MnOMn(l)O(l)t(0)12,Sep.97

-3

-3,

-2,

-3,

-3.

-4,

-3

-5,

-3.

-4,

-2

-2

0474

8043

9977

6B981

2190

1685

6366

0465

2096

1306

4480

4899

O

_Appendix A: 28

CO

CO

-81500,- .0376

-1 ,5528MnO2-2MnO2-2r e f : 2 1

-1026001 1489

-4 .0375HnCl*HnCl*t e f , 2 2

-86290.2,8119

24.2838HnF*MnF+ref 22

-123641,.3136

30.2B40MnS04,aqMnS04iaqlr e f : 2 2

-235640,2 1354

-6 2564Mr(Ae)*llnlAe) tr e f , 3 3

-144430,6.0776

63.5668Mn(Ae)2,aqttn(Ae)2,aqr e f - 3 3

-23385013 1542

124.7315MnlAe)3-Mn(Ae)3-r e f | 3 3

-322580,21.6217

211 3036MnlHal tMn{Ala)+ref 27

-133580,B 8873

73.0237nn(Ala)2,aqMn(Alal2,aqre f :27

-21207419 3395

154.8617MntBut)+Mn(Butl+re f ,27

-140788,10 0986

103 6776Hn(Bijt)2,aqMnlBut12,aqref-27

-226367.21,7755

224,2130tin (For) *Hn(For)+ref i27

-99100. -2 500-7.8656 8,8229-5,6215 -.0300

MnO2(-2)Mn(l)O(2)-(2)12 Sep 97

-133300 -15 200-4 9713 7 6937

-17.5991 3,4408llnCl(t)MnUIClUJf (1117.Sep,57-88280, 12,000

-.9126 6,10172 0824 .3686llnF 1 +)MnUIFUI-Mll15.Sep,97

-132454, -13.300-7,0128 8,4994

2.951B 74B3MnSO410)MnlllS(llOI4)+IO)17,Sep,97

-266750 5 000-2.5645 6.7510-7 2308 - 0380

MnCH3C0O+Mn( l )C(2)H(3)O(2 l+( l )17 Aug 92

-169560, 6.3007.0570 2,9786

15.4577 0 .4555Mn(CH3COO)2Mnll)C(4IH(6)O(4)10 Sept 92

-287670 24,20024.3405 -3 ,823638.2716 -0 .0300

MnlCH3COO)3-M n ( l ) C I 6 ) H ( 9 I O ( 6 | - ( l |10 Sep 92

-408280. 31 .50045 0124 -11 940964 5717 1 1536

Hn(C3H6NO2)+Hn(l)C(3)H(6)W(l)O(2)14,Aug.93

-173180. 28,96513.9167 0.284219-8433 0.1124

Mn(C3H6NO2l2

-2 ,4537 !0,

-2 .5734- 2 ,

-2-74121

-2 .48901.

-2 67290 .

-3 .07061-

-3.78510 .

-4,6397- 1

M l )

-3.35421 ,

MnUIC(6)H(12IN(2)O(4l14 Aug.93

-294245 71 52039 4414 -9 .753948.7440 -0 .0300

HnCH3(CH2|2CO2+Mn( l )C(4)H(7)O(2 l* ( l )26,Aug.93

-181341, 17,51516,8770 -0 ,884729,9377 0 2B73

Mn(CH3CH2CH2CO2I2Hn( l lC(8)HH4)O(4)26 Aug 93

-310012, 50 08645,3895 -12 .092472,8487 -0 .0300

MnCHOStMn U1C (11H11) 012) + 11)26.Aug.93

-4,40940,

-3.47661 .

-4,65530,

-1406B14.1094

32,7312Mn(For)2,aqMnlFor)2,acjref-27

-226030,9.0055

51.4842HnlGly)+Mn(GlyJ+re f :27

-134771.6,4299

47 0493Mn(Gly)2,acjlIn(Glyl2,aqre f ,27

-214101.14,100291.4846

Mn(Glyc)+Mn(Glyc)+r e f ' 2 7

-177828,5,9609

63,1381Mn(Glyc)2,aqMn(Glyc)2,aqref : 27

-300155.12,9661

125,5108Mn(Lac)tHn(Lac)+re f :27

-178981.8.1746

84,2783Mn(Lac)2,aqKn(Lac)2,aqref-27

-30297117.7108

177,9788Mn(Pentl+Mn(Pent)»re f :27

-138601.: 12.2563

140.0855Mn(Pent|2,aqMnI Pent)2 aq

i r e f :27-222006,

26.4073| 313.3047

Mn(Prop)+1 Mn(Prop)+: r e f ;27: -143016,• 8 0255i 89 6329I Kn(Prop)2,aq• Mn(Prop)2,aq• r e f .27: -230823,: 17.3347: 188.8879i Mn*3: Mn+3• r e f i 21

-155735 7.4152.2545 4,85904,7962 0-4379MnlCHO2l2Mnll)Ct2)H!2)OI4)26,Aug.93

-259601. 26.76914,2060 0.170112.8126 -0,0300

MnlC2H4N02l+Mn<l)C(2|H(4|N(II0(2H27 Aug 93

-165803. 25 0007,9186 2 6372

10,6185 0,1739Mn(C2H4HCG)2Mhtl)C(4)H(8IH(2)O(4)27,Aug,93

-278847. 64,56126,6481 -4.725326,7157 -0.0300

HnCH3OCO2+Mn(l)C(2)H(3)O(3)+(l )30 Aug 93

-20B594, 11,9156.7761 3.0811

15,5712 0,3735Hn(CH3OCO3)2Mnll)C(4|H(6)OI6)30.Aug,93

-364736. 37.15723.8786 -3 ,635938.5424 -0 ,0300

MnCH3CH2OCO2+Mn(l)C(3)H(5)O(3)Ml)30,Aug,93

-217756. 17.61512,1772 0.966723.2081 0.2832

Hn(CH3CH2OCO2)2Mna)C(6)HU0ICH6)30 Aug 93

-383047 50,31735,4655 -8,194556,7789 -0.0300

MnCH3(CH2)3CO2*Hn(l)CI5)H(9)O(2)Ml)9.Sep.93

-187646, 24.01522.1440 -2,951142,9054 0,1895

Hn<CH3CH2CH2CH2CO2)2Mn(llC(10)H(18)O|4)9,Sep.93

-322033, 65.09256.6981 -16.5352

103,8147 -0.0300MnCH3CH2CO2 +M n ( l l C ( 3 ) H ( 5 ) O ( 2 ) + ( l )1 5 . S e p , 9 3

-176112 , 12 .21511 .8128 1 111124 7960 0 .3686

Mn(CH3CH2CO2l2Mn( l )C(6)H(10)O(4)1 5 . S e p , 9 3

-300037 , 3 7 . 8 5 034.5476 -7.834560.5707 -0 0300

Hn(+3)Hn(ll*(3)l l . S e p 97

- 2 ,

- 3 .

(11

- 3 .

- 3

-3

-3

-3

-4

-3

- 5

-3

- 4

8721]

3662

1063]

8805(

0590

7660

2823

2450

6943

.1228

2672

.2071

MnO4-2MnO4-2ref,21

-20300-2 932016 0611

HnO4-MnO4-ref:21

-120400,5.65S6

-5,2910

Ho04-2Mo04-2ref :21

-107600,7.8248

13.6317

N2,aqN2(aq)ref • 3

-200400,6,96516,6829

-30700 -74 000-14 9340 11 6041-8 2492 2 7035MnO4(-2)Mn(l)O[4)-(2)11,Sep,97

-156600, 15,5006.0368 3-3786

-16.5602 2,9803MnO4(-)

4347,6.2046

35.7911N2H5+N2H5+ref :21

197005 5711

16.0644N2H6+2N2H6+2ref-21

211004,4762

21.7574NH3,aqNH3(aq)ref-3

-6383,5.0911

20,3000NM+NH4+ref :2

-189903,8763

17 4500NH4(Ae),aqlIH4(Ae) ,aqref:33

-107550,11.284958.7075

NH4(Ae)2-NH4IAe)2-ref;33

-19564019.3685

128.93B6H2O2-2N2O2-2ref :21

33200.3.3102

.1067NO2-H02-ref,2

30 Apr 97-129900, 46,50011.3277 1.2912-3.4012 ,9248Ho04(-2)Ho(1J O(4)- 12111,Sep,97-238300,2-7095

-12 7102N2(0)H(2)M0l7.Feb.89

-2495.7.36658.3726

9 00018 66173 0777

N2H5I+)

22,9002.8539-.3468

15 Sep 97-1800 36.100

5,8193 3,4672.3876 .0057N2H6U2)N(2)H(6)M2)15 Sep 97-4000 24 000

3.1468 4-5160,1635 6936NH3 10)

13.Jul.87-19440. 25,770

2,7970 B.624B-1,1700 -.0500NH4 1+IN(1)H(4)M1)l.Jul 87-31850 26.570

2 3448 8 5605-.0210 ,1502MH4CH3COON(1)C(2)H(7)O(2I10 Sep 92

-147230. 50.70019,7719 -2.018715,3233 -00300NH4ICH3COOI2-

10 Sep 92-26520039.509037,5581H2O2(-2)NI2IO(2l-(2l15.Sep 97-2590.2986 5

-15.1139NO2(-

64.700-9,77360,6495

6.6005 63803 1145

-2,1615

-3,0285-2

-3-2472-1.

-2 8909

-3,0836

-3,0195

-2 9090

nH

•zooOO

oVD

-4,4122-1-

-2 7912

3,Jul,87

_Appendix A: 29

1

CO

CO

1

-7700,5.58643,4260

N03-

N03-ref 2

-265077 31617.7000

Na +

ref:20-62591.

1.839018 1800

MaOH,aqHaOHIaq)re£>20

-990951,4675

22,0000NaCl,aqNaClIaqIref•20

-929105 0363

10 8000

NaF.sqNaFlaql

. ref,22

i -128570,: 2.5336

12.3804

: NaBr,aq: NaBrlaq): ref-22

• -85610.i 6,1257: 10.1926

j Nal.aq• Hal(oq): ref:22i -72900,• 7.6488• 12 1001: NaA102,aq| NaA102(aq): ref,20: -260277,

j 4,76401 32,4300i NaB(OH)4,aqi NaB(OHI4

: ref-39• -338580: 6.2600

73,5000

j HaSO-1-: HaS04-

: re£:39i -241780.: 4,7500• 21 0500: NaHSiO3, aq: NaHSiO3(aql• ref 22: -307890,: 3,4928• 20.2395: NalAel.aq: Ma I Ae 1 , aq

ref(33

-25000.5.8590

-7.7808N03(-1

29.4003.44721.1847

N(l)0(3)-(l)1 Jul-87

-494296 7824

-6,7250Na( + )

12.Sep,97-57433-

-2,2850-2,9810NaOHMa(l)n(llH12 Sep 97

-112927.-4,19823.0000NaCKO)Nall)Cl(l)29 Apr-97-961604 7365

-1 3000HaF(O)Na(1)F(1)+13,Sep.97

-135860,-1-5922-.7531NaBr(O)Nad)Br(l)13 Sep 97-84830,

7,1789-1-4111NaKOINa(l)I(l)+13,Sep,97-69101,

10 8979- 9690HaAlO2Ha(1)Al(1]29.Apr,97-277259,,4850

3,8000NaBOH4(0l

35 120-4 68381,0977

13-9603,2560

3306

(1)+(OI

6.0007,4001-.7200

• 101

28.0003.4154- 0380

(0)

12,0006,3689-.0380

+ (0)

34,1002.9214-.0700

(0)

37,7001 4597

-.0010

O (2) + (0)

11.10012.6690-.1000

-3

-3

_2

_2

_2

-2

-3

-3

-4

Na(l)B(l)O(4IH(4)+(0|20 Jan 98

-3788107 5100

-18.9000NaSO4(-)

39 2002 80000,0000

Na(l!Sll)O(4l-(ll20,Jan,98

-275480,3,8300

-2 0200HaHSiO3(0)Mad)Htl)£17.Sep 97

-333894..7500

1,9785NaCH3COO

20,4404,25001 3100

111)0(3)+

10,0005.4483-.0380

Na(llCI2|H(3)OI2)17 Aug 92

-3

-2

(0)

_-

0212-1

0594-1

72601

60540

97480

,71310

.07570

22950

,89750

.09000

,7300-1

81000

-150720,8,3514

49,8989Na(Ae)2-Na(Ae)2-ref-33

-23847016,2062

114,6437Ma(But),aqNa(Buc),aqref; 27

-147269,12,429391,5590

Na(But)2-Na(But)2-ref:27

-231511.24.6982

210.5987Na(For),aqNa(For),aqref: 27

-146521.6,3891

19.2249Ha(For)2-Na(For)2-ref:27

-230001,12,044941 0498

Na(Glyc),aqMa(Glyc),aqref,27

-183829.8,2625

50.2253Na(Glyc>2-Na(Glyc)2-ref:27

-304876,15,9533113 6563

Ha(Lac I,aqHa(Lac),aqref.27

-185189,10.506772.1974

Na(Lac)2-Na(Lac)2-ref:27

-30761020,6323164.3333

Na(Pent),aqNa(Pent ),aqref i 27

-145259.14.6201

128 8681Ma (Pent) 2-NaI Pent)2-ref;27

-227477.29.2549297.6442

Na (Prop) , aqNat Prop),aqreft 27

-173540, 34.20012.6125 0,7884 -3.300312,2617 -0,0300 0,Na(CH3COO)2-Na(l)C(4)H(6)O(4)-(l)10 Sept 92

-292400. 44 00031.7864 -6.7416 -4.093031,5846 0.9633 -1,NaCH3(CH2)2CO2Na(l)C(4)H(7)O(2)26.Aug,93-185529. 45.433

22,5644 -3.1127 -3,711726,7417 -0.0300 0Na(CH3CH2CH2CO2)2-Na(l)C(8)H(14)O(4)-(l)26.Aug.93

-315475, 69.23652.5272 -14,9010 -4,950466.1618 0,5806 -1.NaCHO2Na(l|C(l)H(l)O(2|16.Aug.93

-159279. 35,3337 8196 2 6757 -3 10221,6002 -0,0300 0.NalCH02)2-Na(l)C(2)H(2)O(4)-(l)16.Aug,93-263725. 45.473

21 6308 -2.7566 -3 67316.1257 0.9257 -1Na(CH3OCO2lNa(l)C(2)H(3)O(3)16.Aug.93

-212299. 39,83312.3962 0,8714 -3.291412.3751 -0.0300 0,Na(CH30CO2)2-Na(l)C(4)H(6)O(6)-(l)16,Aug,93

-369684 56,61531.1718 -6.5007 -4.067531.8554 0.7716 -1.

NaCH3CH2OCO2Na(l)C(3)H(5IO(3)16,Aug.93

-221669, 45,53317,8733 -1,2760 -3,517820 0121 -0,0300 0.Na(CH3CH2OCO2)2-Na(l)C(6)H(10)O(6)-(l)16 Aug 93

-388006 69,46242,5939 -10.9852 -4,539750.0919 0.5771 -1.NaCH3(CH2)3CO2Na(l)C(5)H(9)O(2l16.Aug,93

-192009. 51,93327 9193 -5 2291 -3.933139 7094 -0 0300 0MalCH3CH2CH2CH2CO2)2-Na(l)C(10)H(18)O(4)-(ll16.Aug,93

-327929. 83.88663,6519 -19.2699 -5,410397,1277 0,3584 -1,NaCH3CH2CO2Na(llC(3IH(5IOI2l16 Aug.93

-149429,10,328876.7660

Na(Prop)2-Na(Prop)2-ref-27

-235845,20,3185

176,9413NfcO3-HbO3-ref:21

-227100,5 0915

-3 3376Hd+2Nd+2ref.21

-1002000,08609,0616

Nd+3Nd+3ref :2

-160600,-3.37071.6236

NdOH+2NdOH+2re£:25

-206200.2.7413-3.2077

NdO+NdO+ref,25

-194000,2,8304

-34.6589NdO2-NdO2-re£r25

-2234005 0229

-49.9788NdCl+2HdCl+2ref:25

-192400,-0,67468 4972

NdC12+NdC12+ref'25

-223400,2,3933-9.1790

NdC13,aqNdC13laq)ref:25

-254300.5.8726

-51,4009NdC14-NdC14-re£;25

-285100,10.5672

-97,4278NdF+2NdF+2refi25

-180229.17.440821.5999

-1--0,

40,13311000300

Na(CH3CH2CO2)2-Nall|C|6)H|10IOI4|-16 Aug 93-305289,

41,8311 -10,53,8837

HbO3(-l|Hb(l)O(3l-5.Jan,98-255300.4 6485

-11.4066Nd(+2)Nd(1)+(2)10.Dec,97-96100.

-7,5654-5,4382Nd(+3INd(1)+(3)13.Jul.87

-166500.-14.5452-11.8344

NdOH+2

0,

(11

31.

8,1,

57,29169237616

3,20092735829

-0 50070970649

-49 5008,2.

Ndd)Oll)H(l)1,Dec,95

-215500.-1.0874-9.B381

NdO+lid (1) O (1) +1.Dec,95

-207000,-0,8716

-18,3731HdO2-Nd(l)O(2)-1,Dec,95

-2317004.4850

-25.9304NdCl+2Nd(1)Cl(1}1,Dec.95

-203000,-9.4228-6.7094NdC12+Nd(l)Cl(2)1,Dec,95

-241500.-1.9354

-10.413BNdC13(aq)Nd(l)Cl(3llDeC-95

-282700.6 5582

-22 9475IHC14-Nd(l)Cl(4)1,Dec.95

-327000,18,0205

-44,3105NdF+2NddlFdH1 Dec 95

61.

(1)

6,0,

(1)

3,1,

3211255C

+ (2)

-3,317551072

12,7

09553587

37 89825

0559

)

-22,79-1

6,0,

3,-0

4394006

)

-5-95057

6388

1.617060300

-ID

-11,

12)

-1,133246455

-3

(1)

-4

-2

-2

_2

-2

-2

-2

-2

-2

-3

-3

49990

,5082-1

9711

-1

,46612

,17773

73392

.74291

,9643-1

.38942

,69891

05000

.5239-1

.Appendix A 30

1

oO

1

-233900--3 33129.7675

MdF2 +NdF2*ref:25

-305600-3 1113-2 7862

IWF3, aqHdF3(aq)ref,25

-376100.-2,9023-41,3917

NdF4-NdF4-ref-25

-446100,-1,5889-75,7884

NdHCO3*2MdHCO3+2ref:25

-303400.0 1936

29 5859NdCO3+NdCO3+ref 25

-297300.-1,1199-21,1105

NdH2PO4+2WdH2FO4+2refi25

-4338911 1931

33.4289HdNO3+2NdNO3-2ref,25

-188185,• 0,9124

24 1306NdSO4+Ndsn4+

• ref-25: -3-13500,

1,3167-251244

Nd(Ae)+2i Nd(Ae)»2

refi33-252510

: 2 4521: 47 78691 HdlAe)2+• Hd(Ae)2*: ref,33: -343330.i 8.9606: 83.3168j NdlAeU.aq• Nd(Ae)3,aq• ref'33: -433560,I 16,3006• 110,0156• Hd»4: Nd*4• ref,21

-241200.-15,9098-5,8738NdF2+Nd 11) F12 H1 Dec 95

-323500-15 3752-8,4186HdF3(aq)Nd 11) P13)1,Dec,95

-408900.-14.8620-19.4685

NdF4-Nd(l)F(4)-1 Dec.95

-49B700,-11,6574-39,0236

NdHCO3+2Nd(l)H(l)C1,Dec.95

-329200--7,30451 2224NdCO3+lld(l)C(l)C1,Dec,95

-309500,-10,5088-17,3139

NdH2PO4+2

-14.611,98941,2776

11)

-10 411,78490,7096

-20.111,5767-0 0300

(1)

-46,810,32282,3433

'(1)0(3)+12)

-10.28,61151,2126

3(31+11)

-41.29.86341,1729

Nd(l)H(2|P(l|O(4|+(2l1 Dec 95-479076

-4,86251,7743IIdUO3i-2

-26.577,64921,4574

Nd(l)N(l)O(3)+(2)1,Dec,95-222586,

-5,5498-1 7794

NdSO4+

-33.097.92301 5579

Mc3(l)S(l)O(4) + (l)1.Dec.95

-379100,-4.5634

-16.2751

-12,37 53670.7484

NdCH3COO+2Nd(l)C(2)H(3)O(2)+(2)17 Aug 92-285470

-1 79616 7648

-26,1006 45941 4574

Nd(CH3COO)2+Nd(l)C(4)H(6IO(4l+(l)17 Aug 92

-404110,14.099021.7619

-5.3000 20660 6305

Hd(CH3COOI3Ndll)CI6)H(9)O(6)10 Sep 92

-524090,32,021633,1567Ndl+4)Nd11) + 14)10.Dec.97

9,100-6,8393-0,0300

-2,

_2

-2

-2

-2

-2

_2

-2

-2

_2

-3

-4

12122

14331

16450

2970-1

4769

3445]

5779

5495

5903

.7046

.3618

,1027

-47000,-4,274240.2772

Ne, aqNe(aq)ref-3

4565.4.4709

27.0977Bit!Ni+2ref :2

-10900,-1 694213 1905

H1OH+NiOH-fref,21

-52850,-.7075

31-9091NiO.aqNiO(aq)ref-21

-39340.-1.433411.7507

HiO2-2Ni.02-2ref:21

-64200.-.481430.9114

N1C1+WiCl+ref:22

-40920.1.131918.3863

NlFtNiF+refT22

-79768.-1 445522,3170

HilAeltMi(Ae)+ref:33

-101120.4.355656,0621

Ni(Ae)2,aqNi(Ae)2,aqref 33

-190610,11-1327

1051782Ni(Ae)3-Nl(Ae)3-refj 33

-27969019.5212

182 3942NilAla)+Ni(Ala)+ref:27

-93527,7.145164,9703

Nl(Ala)2,aqNi(Ala)2,aqref-27

-62900.-18-2128-2 9327Ne|0)Ne(1)+10)13,Jul,87

-870.3,13525,0523Ni(+2)Ni(1)+(2)l,Jul,87-12900

-11.9181-5.4179NiOH(+)Ni(l)O(l)H16,Sep,97-67650,

-9,50513.2801NiO(O)Ni(l)Otl)+16.Sep.97-56230,

-11.2786-.9975Ni02(-2)Nl (1) O (2) -16.Sep,97-101800.

-8,9493-6.5993Nicl(+)Ni(l)Cltl)12.Sep,97-51400.

-5,0147-1.3846NiFIt)Ni (1) F11) <15.Sep,97

-92315.-11.3080

--4B57NiCH3COO+

-98,70012.89583 6707

16,7404,5177-.2535

-30,80010 43441.5067

K D + ll)

-18,0009,4760,8222

• (0)

25.00010.1751-.0300

• (2)

-38.9009.24953.7992

+ (1)

-17,0007,7140.8111

I. (1)

-26,36010,1875

.9570

Nl(l)C(2)H(3)O(2)17 Aug 97

-131450,2.851211,9745

-11.7004.63430.7287

Ni(CH3COO)2Nill)C(4)H(6)O(4)10 Sep 92-251280.19.403131.4753

0,700-1.8801-0.0300

NilCH3COO)3-Ni(l)Cl6)l10 Sep 92-37403039 882753 0847H1IC3H6NO

1.900-9 92261 6030

2) +

-2 02604.

-2.90860

-2.28632

-2.38601

-2,31260

-2,4089-2

-2,57161

-2,31151

-2,89681

-3.58100

)

-4,4277-1

Nill)C(3)H(6)N(l)O(2)+(l)14.Aug,93-137131.9,664016,3600Ni (C3H6NO

15,0001,95360,3260

2)2

-3.17841

Ni|l)C(6)H(12)N(2)O(4)14 Aua 93

-174545-17 3180

135 3083Ni(But)+Ni(But)+ref;27

-97925.8,3767

96,1758NilBut)2,aqNi(Butl2,aqref:27

-184117.19.7540

204.6596Ni(For)+NilForlfref!27

-97313,2.386825-2125

Ni(For)2,aqNi(For)2,aqref!27

-182853,6.984031.9308

NilGly)+NilGly)+ref;27

-945414 681338.8214

Ni(Gly)2,aqNl(Gly)2,aqref:27

-176531.12.078771 9311

Ni(Glyc)+NilGlycl+ref:27

-135153,4.239155,6378

NllGlyc)2,aqNi(Glyc)2,aqref:27

-25871110 9446

105 9573NilLac)+Hi ILac) +ref:27

-135599.6,4541

76.8142Ni(Lac)2,aqNilLac)2,aqref-27

-25995715,6892

158.4254Nil Pent)tNil Pent) +ref:27

-95874.10.5339132.5696

Ni(Pent)2.aqNi(Pent)2,aqref:27

-262972 50-00034 5040 -7 810541-9478 -0.0300NiCH3(CH2)2CO2+

26.Aug,93-143687. -0.48212,6711 0,771326,4544 0,5608

Ni(CH3CH2CH2CO2)2Ni(l)C(8)H(14)O(4l26 Aug 93

-274625 26.53440,4521 -10.148966,0525 -0,0300NiCHO2«-

-3.3027

26,Aug,93-117573. -10.582

-1 9558 6 52361 3130 0.7096Ni(CHO2)2Ni(l)C(2)H(2)O(4)26,Aug,93-223287. 3.2179.2687 2,11336.0164 -0,0300NilC2H4HO2)+

-3,1621

27 Aug 93-129289 12.0003.6515 4.3097 -2,92997.1352 0.3686 1NilC2H4HO2l2Ni(l)C(4IH(8)NI2)O(4)27,Aug.93-246055, 48 000

21 7107 -2.7819 -3 676419.9195 -0.0300 0NiCH3OCO2+

30.Aug.93-171125, -6.0822.5699 4.7380

12,0879 0,6472NUCH3OCO2I2Ni|l)CI4)H(6)O(6)30,Aug.93

-330154 13.60518.9412 -1 692431 7462 -0 0300

NiCH3CH2OCO2+

-3 5619

30,Aug.93-179581. -0.3827.9B00 2.6079 -3,108819.7248 0,5608 1Ni(CH3CH2OCO2)2Ni(l)CI6)H(10IO(6l30.Aug 93

-346896 26.76530.5284 -6.2512 -4,040949,9827 -0.0300 0

NiCH3(CH2)3CG2*Ni(llCI5)H(9)O(2l-Hll7.Sep.93-150126. 6.018

17 9393 -1 3007 -3 520539.4221 0 4615 1Ni(CH3CH2CH2CH2CO2)2Ni(l)C(10)H(18)O(4)7,Sep.93

.Appendix A: 31

-190002,24,3858

293,7512Mi(Propl+Hi|Propl+ref:27

-996356 3025

82 1010Mi(Prop)2,aqHi(Prop)2,aqref.27

-187632,15 3131

169.3347Np+2Up+2ref-36

-577000 08609,0615

Hp+3Np+3ref;36

-122500,-2,85405,9466

Hp+4Hp+4ref.36

-117800.-4,288640.163b

MpO2+NpO2 +refi36

-2187003 4012-1.9730

HpO2+2HpO2+2ref,36

-190200,3,0837

25.431B02, aqO2(aqlref ;3

3951.5,788935,3530

OCN-OCN-ref-21

-23280,5 75918 3509

OH-OH-ref.2

-37595,1.25274,1500

PO4-3PO4-3ref 21

-243500-.5258

-15,1599P2O7-1P2O7-4ref;21

-286092.51,760797,0185

•11.-0,

NiCH3CH2CO2 +Ni(l)C(3IF15.Sep.93-1379367 6097

21 3127

1(51

20

Hi(CH3CH2CO2)

15.Sep.93-263708.

29,610553,7744Np(+2)Hp(l)+(2116,Jan,98-52100

-7.5654-5,1382Up (+3)Np(l)+(3|16,Jan,98-126000.

-14,7452-10 4288

Npl+4)Np(1)+(4)16,Jan-98

-133000.-18,2500-3.0956NpO2(+)Nptl)0(21-18,Jan 98

-233800.0 5220-7,8826NpO2(+2)Up(l)O(2)18.Jan,98-205700,

-0,2498-0,7938O2(0)O(2)+(0)26 Jun 87-2900,

6,35368,3726OCN(-l)

OlDClDN11.Sep.97-34900

6 2815-6.2530OH(-)Od)H(l)-29.Apr 97-54977,,0738

-10,3460PO4(-3)P(1)n(4)-11 Sep 97

-305300-9,0576

-28,4155P2O7(-1)P(2)O(7|-15,Sep.97

MIC

-5,-0.

8.1,

41,54059170300

-5 78275466388

1)0(1)

14.29889110300

-0 40070970649

-46,40011,2,

53272853

-101,40012.3,

MI;

50

+ 12

51

3-

(11-

31

(1)

11

(3)

95

(4)

,9154.7093

1

-5 200547 8.6305

-22,100,8429.3914

26.040.2528,3913

-111

25,500-2790,2422

-2,560.8423.7246

-53.0002927,6114

-4,

-3.

-4,

_2.

-2

-2

-2

-2

-3

-3

-2

_2

91870

,09351

00300

46612

16933

,02444

.B0051

,76862

.01170

,0386-1

,7821-1

,4045-3

-458700,7.0687

-11,7223Pa+2Pa+2ref:36

-467000 12928.5137

Pa+3Pa+3ref.36

-104600.-2.78225.4329

Pa+4Pa+4ref-36

-141300,-4,274240-2772

Pb+2Pb+2ref :2

-5710,-.00518 6624

PbOH+PbOH+ref.21

-53950,2,4669.8970

PbO.aqPbO(aq)ref:21

-393502.8906

-18-7244PbCl+PbCl+ref:22

-39050,2,9756

10-2182PbC12,aqPbC12(aq)ref.22

-71200.6,64296.9886

PbC13-PbC13-ref:22

-10215011,05475 9698

PbC14-2PbC14-2ref,22

-133177.16,17775,9335

PbF+PbFtref'22

-75860,0,4488

15.9794PbF2,aqPbF2(aq)ref:22

-512800,9.1773

-31,3692Pa(+2)Pa(1)+(2)16.Jan.98-40600.

-7 4602-5,5196

Pa(+3)Pa(l)t(3)16.Jan.98

-107700.-14,5714-10,5103

Pa(+4)Pa (1) + (4)16,Jan.98

-158800.-18,2128-2.9327

Pb(+2IPb (1) + (2)l.Jul.87

220,-7,7939-5,6216

PbOH(+)PblDOIDH16.Sep,97-68900.

-1.7600-7,1085

PbO(O)Pb(1)0(1)+16.Sep.97-44700

-.7236-11.5899

PbCK + lPb11)Cl(1)17.Sep.97-38630.

-,5130-2,0364PbCl2(0)Pb(l)Cl(2)17.Sep.97-77700,8.4416-2 6272PbC13(-)Pb(l|Cl(3l17,Sep.97

-11770019.2141-5.4586PbC14(-2)Pb(l)Cl(4)17,Sep 97-159209,

31,7230-10,2007

PbF(+)Pb (1) F (1H6.Jan 98-80591,

-6.6827-0.9898

PbF2(0)Pb(l)F(2H6.Jan,98

-28.0002.02736,9069

1.6008.66971,0309

-44.30011,46812,2550

-98.80012.895S3.6707

4,2008.81341.0788

l(l) + (l)

-10.0006.4461.7003

10)

22.0006.0351--0300

+ (1)

28,0005,9446,1281

+ (0)

47,0002,4251-.0380

-ID

59.000-1.8089

.7356

-(21

66.000-6.72552.2126

- (1)

B.2608.36960.4266

(0)

-3.1707-4

-2 47052

-2.17653

-2 02604

-2,45682

-2.70611

-2.74900

-2.75771

-3,12790

-3.5733-1

-4.0904-2

-2,50271

-1450561.088816.5543

Pb(HS)2,aqPb(HS)2(aq)re£;22

-200587 4825

28,5025Pb|HS|3-Pb(HSI3-ref;22

-18971,12.339739.6902

Pb(Ae)+Pb(Ae)+ref-33

-97250-6,1543

48,0824Pb(Ae)2,aqPb(Ae)3,aqre£:33

-186890,13.4090102 6053

Pb(Ae)3-Pb(Ae)3-ref:33

-277750.21.6128

165.9232Pb(Ala)+Pb(Ala)+ref 27

-87191.8.9610

57.5413Pb(Ala)2,aqPb(Ala)2,aqref=27

-16627119,5944

132.7356Pb(But)+Pb(But)+ref:27

-92817,10.174888.1802

PblBut)2,aqPb(But)2,aqref:27

-17907722 0303

202.0867Pb(For)+Pb(For)+ref;27

-92150.4.186717.2647

Pb(For)2,aqPb(For)2,aqref:27

-177716.9,2604

29,3579Pb(Glyl+Pb(Gly)+ref:27

-3.0

68.08004225980

-3 .7030-1

-162783. 4 4B0-5,1199 7,75540.6976 -0,0380Pb(HS)2(0lPb(l)H(2)S(2)+(0l6,Jan,98-22851. 52 560

10,4917 1,61934,8505 -0,0380Pb(HS)3(-)Pb(llHI3)S(3l-il)6.Jan.98-28701.

22.35186.7025PbCH3COO+Pb(l)C(2IH(3)O(2)+(l)16 Feb 91

-115880- 36.0007,2429 2,9082

11.5161 0,0057Pb(CH3COO)2Pb(l)C(4)H(6)O(4)16 Feb 91

-229460 69.80024 9584 -4 057030.5811 -0,0300

Pb(CH3COOI3-Pb(l)C(6)H(9)O(6)-(l)08 Apr 93-348760. 88.600

44,9921 -11,936151.5732 0.2871

Pb(C3H6NO2l+Pb(l)C(3)H(6)O(2)N(l)+14,Aug.93

-120275, 58,68814,1088 0,199215,9017 -0,3372

Pb(C3H6HO2l2Pb(l)C(6)H(12)N(2)O(4)14.Aug.93-239191. 110.416

40,0653 -10 003441.0535 -0 0300

PbCH3(CH2)2CO2+Pb(l)C(4|H(7)O(2l+(l)16.Aug.93

-126856. 47.23817.0643 -0.961225.9961 -0,1639

Pb(CH3CH2CH2CO2)2Pb(l)C(8)H(14)O(4)16,Aug.93

-253472, 8B 98246 0136 -12.341765.1583 -0.0300

PbCHO2+

-2,5673

-3,2127

oo

O'•D'•O

-3.07B3

-3 B107

-4.6389-1

(l)

-3,3622

-3,1843

16,Aug.93-100688. 37,1382,4389 4.7962 -2.87970.8546 -0.0100 1Pb(CHO2|2Pb(l|C(2)H(2)O(4)16.Aug.93

-202038. 65,66514,8299 -0,0792 -3,39205.1222 -0,0300 0PblC2H4NO2)+Pb(l)C(2)H|4)O(2)N(l)t(ll16-Aug 93

_Appendix A: 32

ICO

o

-884506 4949

31 1483Pb(Gly)2,aqPb(Gly)2,aqref-27

-16B353,14,355069,3582

Pb|Glyc)+Pb(Glycl+re£-27

-130018,8.2809

47.6306Pb(Glyc)2,aqPb(Glyc)2,aqret:27

-253616.17 9656103 3846

Pb(Lac)+

ref,27-131350.8,2516

68,8031Pb(Lac I 2,aqPb(Lacl2,aqre£-27

-256295.17,9656

155.8527Pb(Pent)+Pb(Pent)tre£:27

-9079312 3324124 5859

Pb(Pentl2,aqPb|Pent)2,agref;27

-175016,26,6631

291.1785Pb (Prop I +Pb(Prop)*ref;27

-956728 1013

74 1249Pb(Prop)2,aqPb(Prop)2,aqref,27

-184202.17 5895166 7618

Pd+2Pd+2ref 2

42200,- .6079

15.3780PdOH+M0H+r e f ; 3 8

-130000 B48426 0312

PdO aqPdOlaq)ref,38

-112312, 56 91B8 0790 2 57126,6769 -0.3103Pb(C2H4NO2)2Pb(llC(4)H(8>N(2)OI4l16,Aug.93-222992, 106,330

27.2722 -4,974619.0253 -0 0300

PbCH3OC02+Pb(llC(2)H(3)O(3)+U)16 Aug 93

-154267, 41 63812,4416 0.852911,6296 -0.07SBPb(CH3OCO2)2Pb(l)CI4IH(6)O(6l16.Aug.93-308946 76 1054

36 0834 -8 427930,8519 -0 0300

PbCH3CH2OCO2+Pb(l)C(3)H(5)O(3)+(l)16.Aug,93-163610, 47.33812,3686 0.884319,2665 -0.1656

Pb(CH3CH2OCO2)2Pb(l)C(61H(10)O<6)16 Aug 93-327120, 89,213

36,0834 -8.427949.0884 -0,0300

PbCH3(CH2)3CO2+Pb(l)C(5|H(9IO(2)+(l|7-Sep.93-133322, 53 738

22 3315 -3,028138,9638 -0 2620

Pb(CH3CH2CH2CH2CO2)2Pb(l)C(10)HUB)0(4)7.Sep.93-265793. 103.98857.3222 -16.784596.1242 -0-0300

PbCH3CH2CO2+Pb(llC(3)H(5IO(2l+(ll16.Aug-93-122252. 41 938

12 0011 1 030320.8544 -0.0838

Pb(CH3CH2CO2)2Pb(l)C(6)H(10IO(4l16.Aug.93

-244164

-3 9063

- 3 , 2 9 3 2

35 165552 8802

Pd(+2)Pdtl)+(2I1 Jul 8742080,

-9.2658-4.3179

pdOHI+)

76.746-8.0682-0 0300

20,Jan,98-27000,

-5 71001 4735

PdO(O)Pdfl)Oll)*(0)20,Jan,98

-22,6009.39191-4006

-13,1007 99430 7483

-5,1486

-3,2750

-4,2326

-2,3960

PdCl+PdCltre£:38

PdC12,PdC12(re£:38

PdC13-PdC13-re£:38

-11500,-0,28671,8779

2500-2.1187

28 4586aqaq)

-35200.4,8050

39.4445

-696008,4201

67,2220PdC14-2PdC14-2re£:36

Pm+2Pm+2ref:21

Pm+3Pm+3re£-21

Pm+4Pm+4r e f : 2 1

Pr+2Pr+2ref '21

Pr+3Pr+3

-104000.12,027584.6986

-92700.0-05209.4303

-158000-3.2471

1.5577

-34200,-4.283640 2193

-92700.0.10648,7551

ref:21

PrOH+:PrOHt:

-162600,-3,20613 9607

1

1

re f :25

PrO+PrO+

-208000.2,7325

-2,6058

ref-25

PrO2-PrO2-

-195700,2.8201

-34,0998

re£:25

-24700,-8.4815-3.7056

PdCi(+)Pd(1)Cl{1)20,Jan-9B

-5500,-2,6082

2 6138PdC12(0)Pd(l)Cl(2)20.Jan,98-53600,

3.95119.1990PdC13(-)Pd(l)Cl(3)20,Jan,98

-103000,12,778212.B203

PdC14(-2)Pd(l |Cl(4l20,Jan.98

-154000.21 586412,9349

Pm(+2)pm(l)+(2)10,Dec.97-88400.

-7.6511-5.3771

Pm(+3IPm(l)+(3)10.Dec 97

-164000.-15,7059-13.1195

Pm(f4)Pm(1)+14)10,Dec.97-50400,

-18.2319-2.9938

Prt+2)Pr (1) + (2)10.Dec,97-88400.

-7,5128-5.4789

Pr(+3)Pr (1) + (3)15.Sep.97

-168800,-14,2894-11.2844

PrOH+2Pr (1) 0 (1)1,Dec,95

-217700.-1.1081-9,6751

PrOtPrd)O( l )1.Dec 95

-209000,-0,8945

-18.2101PrO2-Pr(l)OI2)1.Dec.95

-9.9009.0836

-0-2560

+ (1)

-6,8006.77520.6557

+ (0)

0.4004.1971

-0,2083

-(1)

-3,3000,72761,6759

-121

-21.200-2,73443 5371

-1.9008,74961.0858

-50,00011,91252,3369

-99.70012.89553.6835

0.7008,68351.0444

-50,0008.53282,3369

H(l)+(2)

-4,06.18221.1216

+ (1)

12.06.09860.3685

- I D

- 2 .

-2

-2.

- 3 .

-3

-2 .

- 2

-2

-2

_2

-2

- 2

42840

67121

94230

3073- 1

6714_2

46262

,12961

,0252t

.4683

1882

.7331

.7419

-224700.5.0000

-48,8607PrHCO3+2PrHCO3+2ref-25

-305500,0,4387

35,6716PrCO3+PrCO3+re£:25

-299100,-1,0523

-22,3638PrCl+2PrCl+2re£:25

-194400.-0,519012.1429

PrC12+PrC12+re f :25

-225400.2 5689

-2.0764PrC13,aqPrC13iaqlr e f :25

-256300,6,0618

-39 6599PrCl4-PrCU-re£:25

-287100.10,7857

-79,2757PrF+2PrF+2re f !25

-235700,-3.175913.4052

PrF2+PrF2+re f . 25

-307300.-2.9414

4,1602PrF3,aqPrF3laq)re£;25

-377800.-2.7130

-29.6505PrF4-PrF4-ref:25

-447700,-1.3780

-57,8444PrH2PO4+2PrH2PO4+2re£:25

-436000-1-3489

37.0786PrHO3+2PrNO3+2re£;25

-233400,4.4265

-25.5841PrHCO3+2Pr (1) H (1) C1 Dec 95

-336800.-6,7049

2,4598PrCO3 +

37,04 01111,0691

11)O(3) + f2)

-2B-38,37351.4867

Pr ( l )C(DOI3) + (lJ1,Dec,95

-311600.-10 3427-16.7639

PrCl+2PrUIClU)1.Dec,95

-205300,-9,0442-5,4719

PrC12+Pr(DCH2l1,Dec,95

-243800,-1.5094-7.9993

PrC13 (aq)Pr(l)Cl(3)l.Dec.95

-285200.7 0173

-18.8665PrC14-Pr(l)Cl(41l.Dec.95

-329500,18,5526

-38.0736PrF+2Pr(l)FUH1.Dec,95

-243400.-15 5305-4.6364

PrF2+P r ( l | F ( 2 ) il.Dec.95

-325600,-14,9592

-6,0041PrF3(aq)Pr(DF(3)1 Dec 95

-410800,-14,4032-15-3876

PrF4-P r U l F U l -1,Dec,95

-500700,-11 1430-32.7867

PrH2PO4+2

-41 89 79571.1907

+ 12)

-23-39,29301.4099

+ (11

-6 66,34420,6557

0 62 9974

-0.0300

- I D

-2 ,4-1,5382

1,6681

(2)

-15.011 84021,2860

• I D

-10,711.6187

0 7096

-20.511.4035-0,0300

• 1 1 1

-47.610 12152 3433

Pr(l)H(2)P(l)O(4)+(2)1.Dec,95

-481500,-4,4S44

3,0118PrNO3+2

-27.37.50481,4671

Pr( l )Nl l )O(3)+(21l .Dec 95

-2,9619- 1

-2.50172

-2,35131

-2,40502

-2.71651

-3 06900

-3.5459- 1

-2,13692

-2.16051

-2,18350

-2 3182- 1

-2,59352

n

VD

.Appendix A 33

1

oCO

1

-190000,1.0684

27.7877PrSG4+PtSO4+ref!25

-335500-1 3885

-23 4508PrIAel+ 2PrIAel+2ref:33

-254570,2,6078

41,9424PrIAel2+PrIAel2+re£-33

-345500,9,1362

71,8931Pr(Ae)3,aqPrIAelJ,aqref:33

-435690.16 489890,4470

Pr+4Pr+4

• ref,21i -72700.: -4,2742j 40,3357i Pu+2: Pu+2: ref-36: -735001 0.0520: 9.4303! Pu+3; Pu+3: ret:36: -137400,• -2 8780• 6 0992: Pu+4| Pu+4• ref'36: -114200,i -4,2792j 40,2204: PU02+: PU02+| ref-36• -203100: 3 4012: -1.9730i PU02+2; PUO2+2: ref:36! -180900-; 3,1049: 24,0918: P,a+21 Ra+2• ref-21

-134200,: ,3740: 5.7496j Ra(Ae)+'• Ra(Ae)+i ref:33

-224900, -34,0-5.1660 7.7658-0.5419 1.56B4PrSO4+PrlllSll|OI4l+ll)I.Dec,95-3B15OO -13 1

-4 3882 7 4678-15 7251 0 74B3

PrCH3COO+2Pr(llC(2|H(3)O(2)+(2)10 Sep 92-287860, -26.800

-1.4116 6,29964-7024 1,4671Pr(CH3COOI2tPr(llC(4|H(6)O(4|+(l)10 Sep 92-406710, -6,200

14,5250 0,044117,7378 0,6472

PrlCH3COOI3Prtl)C(6)Hl9)O(6)10 Sep 92

-526750 7 80032 4806 -7 012726 3552 -0 0300

Prl+41Prll]+(4I10,Dec,97-88700, -98,500

-18,2128 12.8958-2.9123 3.6707

Pul+21Pull)+(2)16,Jan 98-6B8OO, -2.000

-7,6511 8,7496-5,3771 1,0858

Pu{+31Pulll+(3I16,Jan,98

-141500, -47,100-14 8009 11-5494-10,4084 2 2955

Pu(+4IPu11)+(4)16,Jan.98-128200 -100.300

-18,2247 12,8996-3,0345 3,6964

PuO21+1Pu(1)0121+(11IB Jan 98

-218600 -5.2000 5220 5 5478-7,8826 0.6305

PUO2I+2IPull)OI2)+l2)18.Jan.98

-196500. -21.100-0.1993 5.8259-1,2012 1 3732Pa(+2IPa(11+(2)11.Sep.97

-126100, 12,900-6,8598 B 4279-5,9474 ,8644RaCH3C0O+RalllC(2IH(3IO(2l+(ll11 Mar 93

-2

_2

-2

-3

-4

-2

_2

-2

_2

-2

-2

-2

56532

59751

7205

37941

12160

02604

46262

16703

02554

80051

,77072

.4953

-223900.6.855444,1726

Ra(Ael2,aqRa(Ae|2,aqref-33

-312940.14 258498.2315

Rb+Rb+ref: 2

-67800.4,29135,7923

RbOH,aqRtOHIaqlref:21

-105100,4,5875

-10.2264RrXTl.aqRbCKaqlref'22

-97870.7 4542-5,6468

RbF.aqRbFlaqlref:22

-136450.4.3647-3-2196

RbBr,aqRbBr(aq)ref:22

-91010.8,4668

-5.1720Rbl.aqRbl(aq)ref:22

-7890010,5225-3 8171

Rb(Ae),aqRb(Ae),aqref,33

-156110,10,694833,9961

Rb(Ae)2-Rb(Ae)2-re£:33

-24400018.692480.2139

ReO4-ReO4-ref,21

-166000.8-6103

18 9300Rh+3Rh+3ref:21

52450,-3,286613.0231

Rn(aqRn(aqlref T 3

-239380,8,9566

10,73702-0

Ra(CH3COOI2

48.000,2315,1754

Ra(l)C(4IH(6)O(4)11 Mar 93

-35326027.032429.0609

Rb( + )Rb(ll+(1)29Jun,87-60020.--9041

-3 6457RbOHIO)RblDOIDH12,Sep,97-113000.3,4168

-8,6363RbCKO)RblllCl(l)13.Sep.97-96800

10.4227-7,1086RbF(O)Rbl11F(l)+13.Sep.97

-139710,2,8788-6,2938RbBr(O)Rb(l)Brll)13,Sep.97-85730.

12.8952-6.9436Ri)I(0)Rb(l)111) +13 Sep.97-71720

17 9145-6,5015RbCH3COO

-4-0

7

(1

4-

78.800,8725.0300

28.80040701502

1 + (0)

32.000.4132,0300

+ (0]

1-

(0

4-

+ (

-

(0

-1_

48 5606465.0100

>

31,600.6115,0010

01

54,200.6747.0100

)

56.300.2982,0010

Rb(l)C(2)H(3)O(2)19 Aug 92-174950,18,33526,7343

-1-0

Rb(CH3COOI2-

53.700,4623.0300

-3

-3

-2

-2

-3

_2

-3

-3

-3

Rbll|Cl4IH(6|OI4)-(l)10 Sep 92

-292450,37,860820,8000

ReO4(-|Re(l)O(4) -10.Dec,97

-188200,

-90

• d

20,0581 -16-7.0800

Rh(+3IRh (1) + (3)15.Sep.9742830,

-15,8020-9,1862

Rn(0)Rn(l)+(0)13 Jul 87

112

68,300.1318,5941

1

48,100,7541,9004

-71,600,9492.6654

-4

-3

— 2

.14921

,89640

.74161

.92020

,20980

-89800

.31200

.51950

.53690

.3441-1

.6081-1

.12563

FuO4-2RuO4-2re£:21

2790,9,086252,5774

-71600,6,95026,6707

S2-2S2-2ref :2

190005.5797

-3.3496S2O3-2S2O3-2ref: 2

S2O4-2S2O4-2ref:21

-124900.6.6685

-0,0577

-143500,6.67843.3115

S2O5-2S2O5-2ref;21

S2O6-2S2O6-2ref,21

-1890007 36183 9715

S2O8-2S2O8-2ref: 2

-231000.8,22575.0331

-266500,13,362212,9632

S3-2S3-2ref -2

S3O6-2S3O6-2ref:21

17600.6,7661- 3595

S4-2S4-2ref :2

S4O6-2S4O6-2ref;21

-229000,8,41555.6683

165007,93812.6081

-248700.10,267211,7042

S5-2S5-2ref: 2

-5000,14,404513,8725PuO4(-2lFu(l)O(4)-(2)5 Jan.98

-1102009.1B87 2.

-12.8325 3.S2I-2)SI2I-12I3.Jul.87

7200.5 8426 3

-16.2955 3.S2O3I-2)S(2)O(3)-(2I3,Jul.87-155000,

12,4951 -7.-14,7066 2.

S2O4C-2)S(2)O(4)-I2I11,Sep 97-1B0100,8.5280 2,

-13.2399 2,S2O5I-2IS(2)O(S)-(2)11.Sep.97

-232000

10 1945 1-12.8732 2,

S2O6I-2)S(2)O(6)-(2I11.Sep,97

-280400.12.3054

-12.2621 7.S2O8I-2)S(2)O(B)-(2)3.Jul.87

-321400.24.8454 -i,-8.1271 2.S3I-2)S(3)-(2)3.Jul.87

6200,8,7396 2

-14,8288 2,S3O6I-2)S(3)O(6)-(2)11.Sep,97

-279000,12.7691

-11.8954 2.S4|-2)S|4)-|2)3 Jul-87

5500.11,6012 1

-13.3622 2.S4O6I-2)S(4)O(6)-(2I11,Sep,97

-292600,17.2902 -1-8,4122 2.S5I-2)S(5)-(2)3 Jul 87

16.00008842423

6 60013871145

6. BOO45361083

16.00072819694

22.00039178772

25.00074148343

30.00090877587

58,40001533281

15.80031509749

33.00072687131

24.70019028390

61.50005022805

-3,3745

-3,1588-2.

zn

OVO

IoJ

-3.2955

-3.1314-2,

-3 2003

-3.2876-2

-3.8061-2,

-3 1403

-3,3068

-3.2586

.Appendix A: 34

1CO

o

1

S5O6-2S5O6-2ref:21

S02,aqS02I3Qref .3

15700.9 11075.5361

-2290008 87257 1576

-71980.6,9502

31.2101SO3-2SO3-2ref-21

-1163002,4632-2.7967

SO4-2SO4-2ret; 2

SCN-SC1I-reE.21

StO2-SbO2-ref 21

£c+3Sc+Jref,21

ScOH+2j ScOII+2

ref-21

ScOScO+ref:21

_ScO2-

: Sc02-: ref.21

;: Sc(Ae)

-177930.8 30141 6400

22160,7.024410.7414

-B2400-0 5113-2,2802

-140200,-2 110921.1134

-19100.-0.41116.7806

-1836000 108921 4773

-218100,2,983124.9439+2

! Sc(Ael+2: ref 33

: SclAelf Sc/Aelj tef:33

-2330102 717560.31952 +

5100.14,4645

-11.9159S5O6I-2I

33 600,0649

2.7051

S(5IO(6)-(2111 Sep 97-281000

13 B806-11 0399

SO2I0)

13,Jul,87-77194.9,18906,4578SO3I-2)

11.Sep.97-151900,-1,7691

-16.7B43SO4 1-2)Sill 0(4)-(3Jun,87-217400

-1 9846-17.9980

SCHI-1)S(1)C(1)N11.Sep,9718270,

9.3687-4 9900SbO2(-llSb(l)0(2l-11 Sep 97

-110000-9 0269

-12 0177Sc(+3ISC 11) -r ( 3 )5.Jan,98

-146800.-12,9294-5 8456

ScOH(+2)SclllOllll11.Dec 97

-200700.-B 7778-6.9659

Sc01+)Sc(1)O(1)11.Dec.97-189800,

-7 S069-14 5843

ScO2(-)Sc(l)O(2)11,Dec,97

-234100,-0.4979

-18.1287

40 0002986

2.6076

0)

38,7002,1383-.2461

2)

-7,0006.4-1943.3210

2)

4 500-6 21223 1463

D-UI34.500

2.07081.1073

(11

-17 1009.28931,8885

-61,00010.81702 5003

Ul) + (2)

-15,7009.18271-2944

(11

-3,6008 68170 6063

-d)

19,2005,94651.3369

EcCH3COO+2Sc(l)C(2)H(3IO(2)+(2)10 Sep 92

-268100,-1.143710.3398

-42,4006.19371-7013

Sc(C113COO)2 +Sctl)C(4tH(SiO(tl*{l)10 Sep 92

-3,3770 i- 2 , i

-3.3527 i- 2 , i

-3,15890 i

-2,7058-2,

-2.6970_2

-3.1662-1-

-2,4057-1,

-2 24443

-2 41602,

-2 4S861.

-2.7583-1

-2.73162,

-324640,9,2794

106,5183Sc(Ae|3,aqSc(Ae)3,aqre£-33

-415370,16,5277

143,9346SeO3-2SeO3-2ref;21

-88400,3 6149- 6517

SeO4-2SeO4-2ref.21

-105500.5.75481.3971

SeCN-SeCN-re£;21

195008,975213.0877

SiF6-2S1F6-2ref; 2

-525700.8,53114,0970

SiO2, aqSiO2(aq)ref: 3

-199190.1.9000

29.1000SIM-2Sm+2ref;21

-123000.-0.035310.5009

Snw-3Sm+3ref: 2

-159100--3.2065

• 1,9385• SmOH+2

SmOH+2re£'25

• -204900.: 2.7076

-1.9523\ SmO+: Snot: ref:25: -193300.• 2 8115i -33 2571: SmO2-1 SmO2-! ref,25: -224700.: 4-9642• -47,3681• SmCl+2: SmCl+2! ref-25

-389320,14.873728 7370

-27.500-0,08990 9706

Sc(CH3COO)3Ec(l)C(6)H(9)O(6)10 Sep 92

-511840,32,574844.9460

SeO3(-2)Sell)OI3)11,Sep,97

-1217001.0478

-15.5417SeO4(-2lSe(llO(4l-11.Sep.97-143200.6.2678

-14,3602SeCN(-llSelllCdll

-20.000-7.0539-0,0300

-(2)

3.1005,33233 1658

(2)

12.9003.29163.0192

1(11 -(1)11.Sep,9718530,

13,8922-3.5845

SiF6(-2)Si(1)F(6|16.Feb. 88

-571000.13 0492-12,6289

SiO2(0)Si(1)0(2)13, Jan. 89

-209775.1.7000

-51.2000Sm(+2)Sn\(l t +12}10.Dec,97

-120500-7.8592-5,2141

Sm(+3)Sm(l)+(3)13.Jul,87

-165200,-15,6108-11,8548

SmOH+2SmlllO(l)1 Dec.95

-214600.-1.1676-9.4714SmO+Smll)O(l)l.Dec,95

-206500-0 9157-17,9657

SmO2-Sm(llO(2)l.Dec,95-233500.4.3393

-25,1156SmCl+2SndlClll1,Dec,95

46.600.2829.9230

-(2)

29,200,6211

2.7716

M0)

18,00020,0000

.1291

-6 2008.B1941.1512

-50.70011,88572.2955

H(l)+<2)

-4.96.20271,1289

•fill

11.06,10760 3837

-111

35.94.04561.0848

1 + (2)

-3

-4

_2

-3

-3

-3

-2

_2

-2

_2

_2

—2

3938 !

1255 |0. ;

8222

0380-2,

3532-1.

3185-2.

70000.

,454021

,13373

,73062,

74101,

.9583-1,

-190900-0,50068 5369

SmC12+SmCl2+ref:25

-221800.2,5888-9,2005

SmC13,aqSmC13(ag»refT25

-252700.6.0BO8

-51.8359SmC14-SnC14-re£i25

-283500.10.8148-97 6675

SmF+2SmF+2ref:25

-232400.-3.15789.7908

SmF2+SmF2+ref:25

-304200-2.9212-2.9564

SmF3,aqSmF3(aq)ref:25

-374800.-2,6941

-41.8267SmF4-SmF4-ref:25

-444B00.: -1.3502

-76.2703SmHCO3+2SmHCO3+2ref;25

-301B000 3694

i 29 6747i SmC03+

SmC03+ref.25

I -296000,• -1,0455i -24.0049i SmH2PO4+2i SmH2PO4+2: ref:25i -432300• 1.370B• 33.5675: SmNO3+2; SmNO3+2

1 ref:25: -186700,: 1,0908| 24.29121 SmSO4+: SmS04+I ref:25

-201700,-8.99B8-6.7552SmC12+Sm(l)Cl(2)l.Dec,95

-240300-1.4617

-10.5032SmC13(aq)Smll)Cl(3)1 Dec 95

-281700.7.0673

-23,0985SmC14-Sm(l)Cl<4)1 Dec.95

-326200.18,6261

-44.5415SmF+2Sm(l)F(l)+1,Dec.95

-239900.-15,4843-5.9197

SmF2+Sm(l)F(2)il.Dec.95

-322200.-14,9061-8,5080

SmF3(aq)Sm(l)F(3)l.Dec.95

-407700.-14.3529-19.6196

SmF4-Sm(1)F f 4)l.Dec.95

-497700.-11.0723-39.2546

SmHCO3+2Sm(l)H(l)l.Dec 95

-327900-6 87271 1765SmCO3 +Sm(l)C(l)l.Dec.95

-30S800.-10.3293-17.3342

SmH2PO4+2

-24 19 27431.4192

+ (1)

-7 76,32760,6644

-0.72.9692

-0,0300

- (1)

-4.3-1 57321,6917

(2)

-15.411.81771.2944

(1)

-11.211,58950.7191

-21.211-3752-0.0300

-11)

-48.510.087B2.3632

-11.98 43651 2366

3I3)+(1)

-42.69.79B01.1907

Sm(l)H(2)P(l)OI4)+l.Dec 95

-477B00.-4,42951.7285SmNO3+2

-28.37.48011.4867

Sm(l)N(llO(3l+(2)l.Dec,95

-221600,-5 1124-1 8252

SmS04+

-35 47 74781 5897

Sm(l)S(l)0(4) + U )1-Dec,95

-2 40692 .

-2.71S51

-307110.

-3 5489-1

-2,13882,

-2.16271

-2 18560

-2,3212-1.

-2.49482

-2.35191

(2)

-2,59582.

-2 5676

"ZnH"ZCO

IoVO

.Appendix A: 35

-342000,-1 3885

-25 0918Sm(Ae)+2Sm(Ael+2ref,33

-251240,2.6264

47,8346Sm(Ae>2+Sm(Ae)2+ref-33

-3421909.1590

S3,3717Sm(Ae)3,aqSm|Ae)3,aqref;33

-432630.16,5088

109,5807Sm+4Sm+4ref:21

-39900.-4.288640,2222

Sn+2Sn+2ref-21

-65700094

7.4160SnO,aqSnO(aq)re£,21

-53600,2,7401

-13,0981SnOHtSnOH+ref-21

-58600,2,9337,9969

Sr+25r + 2ref: 2

-1347607071

10,7452SrOHtSrOHtref.21

-173300,2 86204 7576

SrCltSrCl +ref-22

-1658002,7719

16,6402SrFtSrF-fref-22

-202290,,2336

21 5706SrCO3,aqSrCO3(aq)ref;22

-377800- -13 3-4,3882 7 4678

-16 2954 0 7483SmCH3COO+2Sm(l)C(2|H(3)O(2>+(2)17 Aug 92

-284550- -27,800-1,3667 6,28276,7190 1,4769Sm(CH3COOI2+Sm(l|C(4|H(6|O(4)+(l)17 Aug 92

-403500 -7 60014.5839 0,013821.6725 0,6644

Sm(CH3COO)3SmUJC{6|H(9)OI6l10 Sep 92

-2,7224

-52391032,530733,0056Sm(+4ISmtl)+(4)10,Dec.97-56400

-18.2500-3,0752Snl+2)

6,000-7 0412-0,0300

-101,10012,91543.7093

11 Sep 97-2100 -4.000

-7 7516 8 7810-61919 1.1216SnO

12,Sep.97-60100, 14,800

-1.0905 6,1776-9,6344 -.0300

SnOH(+l)

12 Sep 97-63800 19,200

-.6181 5,9928-5.6622 .2595

Sr(+2ISrtll+(2)l.Jul.87

-131670 -7 530-10,1508 7 0027

-5 0818 1.1363SrOHUll

12.Sep.97-180000. 14,600-.7922 6,0586

-4,5826 ,3306SrCl(+)

17 Sep 97-169790. 11 000

-1.0104 6,1402-.6227 ,3837SrF(+)Srd)F(l)i-H)17.Sep,97

-210670. -6,200-7.2081 8,5761

,2471 .6472SrCO3(0)Sr(l)C(l)O(3)+(0)17,Sep,97

-4,1237

-2.0244

-2.4584

-2,7533

-2 3594

-2.7372

-2-4810

-264860.-.3332

-12,9961SrlAe)+Sr(Ae)+ref,33

-224510,5,9602

53.8109SrlAel2,aqSr(Ae|2,aqref-33

-313610,13,1015109,4234

SrlAlaltSrlAlal+ref-27

-210430.8 7700

63,2691Sr(Ala)2.aqSr(Ala)2,aqref.27

-285431,19-2869139.5534

Sr(Butl+Sr(But)+ref:27

-219575.9-980793.9079

Sr(But)2,agSr(Eut)2,aqref-27

-303925.21,7228

208,9047SrlFor)+Sr(For)+ref=27

-220518,3.9918

22.9691Sr(For)2,aqSr(For)2,aqref:27

-3055138.9529

36.1759Sr(Gly)+Sr(Gl/)+ref;27

-211334.6.3007

36,9719Sr(Gly)2,aqSr(Glyl2,aqref'27

-287199,14.047676,1763

Sr(Glyc)+Sr(Glycl+ref:27

-257717.5 842153 3420

Sr(Glyc)2,aqSr(Glyc)2,aqref:27

8.5009 1201 -2 4237-.0380 0,

-3.0588

-3,7797

-288620.-8 5922-9.5733SrCH3COO+Sr(llC(2)H(3)O(2)i-(l)17 Aug 92-247220 20.0006,7718 3,0884

12.7307 0-2482SrlCH3COO)2Sr(llC(4)H(6)O(4|10 Sept 92

-363740, 42.20024,2102 -3,768532.9508 -0,0300Sr(C3H6NO2)+Sr|l)C(3)HI6)Nll|O(2)+(l)14.Aug,93

-247624 42 69513.6312 0.3947 -3.342417 1163 -0.0948 1Sr(C3H6MO2)2Sr(l)C(6)H(12)N(2IO(4)14.Aug,93

-363933. 89.4B739.3109 -9.699043,4233 -00300SrCH3(CH2)2CO2+Sr(l)C(4)H(7)O(2)+(l>26 Aug 93-257725. 31,24516-5869 -0.765127.2107 0,0785Sr(CH3CH2CH2CO2)2Sr(l)C(8)H(17|O(4)26.Aug,93

-383903. 68,05345.2592 -12 037367.5280 -0.0300SrCHO2+

-4.4040

-3,4646

-4 64990.

l26,Aug,93-233167, 21,1451-9636 4,9821 -2,86012.0692 0,2299 1SrlCHO2)2Sr(l)C(2)H(2)O(4)26,Aug,93-335415, 44 736

14 0817 0 2091 -3.36107.4919 -0.0300 0Sr(C2H4HO2l+Er(l)CI2)H(4)N(l)O(2)f(U27. Aug. 93

-239307. 40,9257.6019 2,7652 -3.09327.8914 -0.0684 1Sr(C2H4NO2)2Sr(llC(4)H(8)N(2)O(4!27.Aug,93-347420, 85,401

26,5176 -4.6704 -3 875121,3950 -0.0300 0SrCH3OCO2+Srll)CI2IH(3IO(3)+(ll30,Aug,93

-286078. 25 6456 4821 3 2052 -3 046912.8441 0 1618 1Sr(CH3OCO2)2Sr(l)C(4)H(6)O(6)30.Aug.93

-38019712.9135110,2025

Sr(Lac)+SrlLac)+ref-27

-258627.8,0696

74,8585Sr(Lac)2,aqSr(Lac)2 aqref'27

-382098.17,6581162.6705

Sr(Pent)+Sr(Pent)+ref:27

-217114.12,1383

130,3108Sr(Pent)2,aqSr {Pent) 2, aqref;27

-299073.26,3546297.9963

Sr(Prop)+Sr(Prop)+ref,27

-221857.7.907479.8554

Sr (Prop) 2, aqSr(Prop)2,aqref:27

-30849117.2820

173.5798Tb+2Tb+2ref,21

-79400.0.02949,6780

Tb+3Tb+3re£:21

-159500.-2.92457.1853

TbOH+2TbOH+2refi25

-205500,2-63481 6043

TbO+TbO+ref:25

-194100,2,7263

-29,4895TbO2-TbO2-ref,25

-226200,4.B006

-40.1590TbCl+2TbCl+2refr25

-441109 55 12523.7481 -3.5809 -3.760633.2217 -0,0300 0SrCH3CH2OCO2*Srll)C(3)H(5)O(3l+(l)30.Aug.93-295697, 29.000

11,9219 1.0649 -3 271820 4811 0 1124 1Sr(CH3CH20CO2)2Sr(l|C(6|H(10)O(6)30.Aug,93-459421, 65,215

35.3352 -8.1390 -4,239751,4582 -0.0300 0SrCH3(CH2l3CO2+Sr(l)C(5)H(9)O(2)+(l)7 Sep.93-263755 37 745

21 8541 -2.8337 -3 682340.1784 -0,0199 1Sr(CH3CH2CH2CH2CO21 2Sr(llC(10IH(18)O(4)7.Sep.93-395432, 83,059

56.5678 -16.4801 -5,117498.4940 -0.0300 0

SrCH3CH2CO2+Sr(l)C(3)H(5)O(2)+(l)15,Sep,93

-252548. 25,94511.5294 1,2116 -3 255522.0690 0.1589 1Sr(CH3CH2CO2)2Srll)C{6)H(10)O|4l15,Sep.93

-374036, 55.81734 4174 -7.7796 -4 201755 2499 -0,0300 0

Tb(+2I

-2,4604

-2,1623

-2 7233

-2.7325

-2.9417- 1 .

10,Dec.97-76200, -2.900

-7.7042 8.7663-5,3363 1.1000Tb(+3I

15 Sep 97-166900, -54,000

-14.9162 11.5979-10.3677 2,4007

TbOHi-2

1,Dec,95-216700. -9 3

-1-3451 6 2720-8 4529 1 1969TbO+Tb(l)O(l)+(l)1.Dec,95-209000, 6,3-1,1230 6.1877-16.8861 0,4555

TbO2-

1,Dec,95-236900, 30 53.93B0 4,2071

-22,8749 1,1676TbCl+2

1,Dec,95

.Appendix A. 36

1

oo

1

-191200.-0,20341B.7B45

TbC12+TbC12+ref:25

-2222002 9196

10 2630TbC13.aqTbCl3lag)ref:25

-253000.6,4214

-20,0913TbCl4-TbCU-re£'25

-283800.11,2397-47,9171

TbF+2TbF+2ref;25

-233200--2.B71819 7334

TbF2+TbF2 +ref,25

-305300.-2.605616,0944

TbF3,aqTbF3laq)ref•25

-376100-2.3534-10,0820

TbF4-TbF4-refi25

-446300.• -0.9496: -27,1819: TbHCCO+2

TbHCO3+2ref-25

! -302100,i 0,7536

42,4558TbCO3 +TbCO3+refi25

-2965001 5196

: -20,3354TbH2PO4+2TbH2PO4*2

: ref:25'. -432600,• 1,6693• 43 8497I TbNO3+2: TbMO3+2• ref-25: -186700,: 1 3991; 34.B3B91 ThSO4+: Tb5O4t: ref;25

-203500,-8.2736-3.4094TbC12+Tbll)CH2)1 Dec,95-242400-0 6498-3,9752TbC13taq)Tb(l)Cl(3)I.Dec-95

-284300.7.8972

-12,0650TbC14-Tb(l)CK4)1 Dec 95

-329400-19-6657

-27-6788TbF+2Tbll)F(l)l.Dec.95

-241600-14,7859-2 5739

TbF2+Tb(l)F(2)l-Dec-95

-324300.-14,1355-1.9B00TbF3(aq)Tb(l)F(3)l.Dec 95

-410200-13.5233-8,5860TbF4-Tbll)F(4)-lDec.95-500900

-10,0938-22 3919

TbHCO3+2TblllHUKI.Dec,95-335300,

-5.92324,5223TbCO3+Tb(l)C(l)t1 Dec-95

-310400-4 0643-14,8084

TbH2PO4+

-28,18.99091.4867

+ (1)

-12 65 99930.7384

-7,22.6479

-0 0300

- i l l

-13.2-1.98611.8257

+ 12)

-17 611 54381.3288

+ (1)

-13.311,28720,7483

-24,0110536-0.0300

ID

-53 29 70252 4254

'(l)O(3) + (.

-34,38.06991.5790

M3I + I1)

-46.77,33240,8002

-2,

-2.

-3.

-3.

-2

-2

_2

-2

)

-2

-2

Tb(l|H(2|P(l)O(4)+(2)l.Dec.95

-479900.-3,70775 0743TbNO3+2

-33,17,21151,5579

Tb(l)N(l)O(3)+(2)1-Dec,95-223800.

-4.36011.5205TbSO4+Tbll)S(l)1.Dec,95

-41,67.45241.6897

3I4)+(1)

-2

-2

43692

75201

10540

5919-1

16772

19451

21980

3616-1

53402

61091

,6256

,5987

-342400,1.5192

-20,2352TblAel+2Tt>( fte) +2ref-33

-251390.2,9247

52.1779Tb(Ae)2+TbiAel2+ref;33

-342250,9 4965

91 4417Tb(Ae)3.aqTb(Ae)3,aqref,33

-432390,16.8495

121.7569Tb+4Tb+4ref-21

-88200.-4 316439,9963

TcO4-TcO4-refi21

-151100,8 613518 9500

TH+2Th+2ref:36

-19700,0.1521B.2741

Th+3Th+3ref;36

-82200,-2 75825.2821

Th+4Th+4ref:21

-168500.-4,288640,2222

T1+T1+ref'21

-7740.4,28844.6024

TlOH.aqTlOH(aq)ref:21

-655505 1759

-10.5781TICl.aqTICKaq)ref.22

-39815.B.1182-6,2744

TIF.aqTIFIaq)ref 22

-379600,-4,0691

-14 8084TbCH3COO+2

-17,17,34240,8111

Tb(l)C(2)H(3)OI2)+(2)10 Sep 92

-286400,-0.63828,0023

-32,5005,99631.5475

Tb(CH3COOI2+Tb(l)CM)fl10 Sep 92

-405780.15.409424.1763

!(S)O(4) + (1)

-14,000-0 31320,7584

Tb(CH3COO)3Tb(l)C(6IH(9)O(6)10 Sep 92

-526470,33.360337,2376

Tb(+4)Tb 11) + {4)10 Dec.97

-105900.-18.3144-3,2789TcO4(-llTc(1)0(4) -30,Apr,97

-173200,

-2.300-7,3624-0,0300

-104,20012.93303,7484

' (1)

47.50018.7256 -13 3543-5-9500

Th(+2)Th(1)+(2)16,Jan,98-13500.

-7.4017-5,5604

Th(+3)Th(1)+(3)16.Jan 98-85100

-14,5095-10.5307

Th(+4)

11.Sep.97-183800,

-18 2500-3,0752TIMTl (1) + (1)12,Dec.97

1280,2,6903

-3,8900T1OHTllllOIDl11 Dec 97-66660

4 8579-8,7585T1C110)T1UICK15.Jan.98-37819,

12,0440-7,2370T1F(O)Tl(1)F(l)6 Jan 98

.9101

2,5008.64081,0176

-43 70011.43702,2450

-101,00012-91543,7093

30 0004,69100,0974

K (11 + (0)

32 5003 8372

-0.0300

) + (0)

48,6901,0092

-0,0380

+ (0)

-2-

-2.

-3.

-4,

_2

-3

-2

-2

-2

-2

-3

61071

75252

41591

15800

02184

5530-1

,47292

.17913

.02444

69011

,9797t

,2768(

-75216,5 4909-3.7726

Tl(Ae) , aqTl(Ae),aqref:33

-95860,11.295532.4138

Tl(Ae)2-

ref:33-183600

19,351676 8519

Tl+3Tl+3ref:21

51300.-1,160727,0098

T1OH+2T10H+Jref:21

-4500,2 3952

13,2638T1O+T1O+ref:21

-32002.9144

-38,6952T1O2-T1O2-ref;21

-41600.5,1854

-57.6278T1C1+2T1C1+2ref'22

9375,-0.290413,4748

Tm+2Tm+2ref:21

-107600-0.046410.6286

Tm+3Tm+3ref -.2

-159900.-3.29678,4826

TmOH+2TmOH+2ref'25

-206100,2,53895.9225

TmO+TmO+ref'25

-194900,2,6339

-24,7834TmO2-TmO2-ref;25

-77118,5 6287-6.3675

T1CH3COO

33 1803 5307-0.0380

T1I1)CI2)H(3)OI2)17 Aug 92

-113350,19,80036.1843

55.200-2.0347-0 0300

TKCH3COO12-

20 Sept 92-230620,39.472119,7269TK+3)Tl (1) + (3 J12,Dec,9747000,

-10 6078-3.0752TlOHI+2)TllllOllll11.Dec.97-18800.

-1,9341-5.1122T1OI+)Tl(110 (1H11.Dec 97-5150.

-0 6673-19.5342

T1O2I-)TKDOI2)-ll.Dec.97-52500.4-8830

-28.3137T1CK+2)TltDClU5.Jan.98

671.-8.4877-4.7774Tml+2;Tm(l)+(2)10.Jul.97-105600

-7.8863-5.1937Tm(+3)Tm{1)+(3)13.Jul,B7

-168500.-15.8312-10.0215

TmOH+2

70.300-9,76840.5643

-46 0009 90172 2752

1(1)+(2)

-23,7006,51181,4192

Ml)

17,7006 01610.2B32

-111

43 5003-82380,9699

) + (2)

-18,5209,07901,3375

-6 7008.82961,1587

-58.10011,97242,4333

Tm(l)O(l)H(11+(2)1 Dec 95

-219000,-1.5805-7.2104TmO+TmUlOIH1,Dec-95

-211600-1 3489-15 5417

TnO2-Tm(l)O(2)l.Dec,95

-14.76,36731,2776

+ 111

0 56 27670 5464

-(1)

-3

-3,

-4,

-2

-2.

-2

-2

-2

-2

-2

-2

-2

01160

59740

4107-1

34043

.69892

,75131

9808-1

,42812

,4529

,1245z

,7136

7231

zoHOO

_Appendix A: 37

-228700,4,6152

-31,2152TmCl+2TmCl+2ref;25

-191600-0 606221 6825

TmC12+TmC12 +re£,25

-222600.2,4761

15,5119TnC13,aqTmC13laqlref 25

-253100,5,8915

-12,6987TmC14-TmC14-re£;25

-2B420010 7064-35 0588

TmF+2TmF+2re£:25

-233800,-3,286722.3012

TmF2 +TmF2 +re£-25

-306000-3,067320.8477

TmF3,aq1 nF3 {aq)re£;25

-376900,-2,8834-2 6893

TmF4-TmF4-re£:25

-447200.-1,5097

-15,0561TtnHCO3 + 2TmHCO3+2re£-25

-3026000 2724

43.0537TmCO3 +TmCO3 +re£:25

-297300.-1,0611

-17,4772TmH2PO4+2TtnH2PO4+2ref-25

-433100.1.2716

46.8B75TmNO3»2TmlJO3+2ref;25

-2414003,4877

-20,0842TmCl + 2Tlnfl )C1 (1)1 Dec 95

-205300-9.258B-2,6303

TmCl2+Tm(llCl(2)1,Dec,95

-244600,-1.7342-2,4550TmCl3(aq)Tm|llCl(3l1 Dec. 95

-287000,6.6023

-9.4955TmCl4-Tm(llCl(4l1.Dec,95

-333100183610-23 7519

TmF+2Tm(l)F(1)+1,Dec,95-243000,

-15.8018-1.7948TmF2+Tmll)F(2)-t1.Dec.95

-325B00-15,2659-0.1598TmF3(aq)Tra(llF(3)1.Dec.95-412000,

-14,8179-6,0166

TmF4-Tmll)F(4)-1.Dec.95

-SO360O-11.4594-18.4650

TmHCO3+2

23,94,37921,2669

+ 12)

-33 09 38101.5579

+ (1)

-18,76,42820,8334

-15,33.1580

-0,0300

-11)

-24 2-1 46761 9951

(2)

-20,311 94861.3642

(1)

-16,011,73770,7895

-27.511-5640-0 0300

•(1)

-59,010,23492,5152

Ttn(l)HlllCUIO(3) +1 Dec 95

-332200-7 11165,3015TtnCO3 +TmlllCllH1 Dec,95

-312700.-10.3695-15,5009

TmH2PO4+2

-22 48 53451.4006

M3) + (l)

-51.69,81811,3268

Tm(l)H(2)Pll)O(4)t1 Dec.95

-482200.-4.66885,8534TmNO3+2

-39,17.56801,6444

TnUllN|l)O(3) + |2)1,Dec,95

-2,

-2.

-2.

-3,

-3

-2.

_2

-2

-2.

(2)

_2

-2

(2)

_2

9231-1

39612

70721

05180

5379-1

12572

14781

1663C

3052-1

4S49

,35021

.5859

-186700.1.0128

38,1891TmSO4+

- 2 2 6 0 0 0 ,-5,30112.29961mSO4+

-49,37,81821,8100

ref-25-342700

-1,3743-18.7119

Tm(Ae)+2Tin(Ae)+2re£:33

-251770.2.5268

61 1431Tm(Ae)2+Tm(Ae)2+ref:33

-342620,9.0621

10B.5166Tm(Ae)3,aqT\n(Ae) 3, aqxe£:33

-432750,16 3195

148.7181•nut 4Tm+4ref-21

-30100,-4.334940,0047

U+2U+2ref:36

-48800.0,10878.8177

U+3U+3refi21

-113550,-2,84385 7945

UOH+2UOH+2ref.37

-161800.2,8136-6,8963

UO+UO+ref:37

-152900.2.9158

-38.5403UO2-UO2-refi37

-183700,5.1728

-57 3622U(Ae)+2U(Ae)+2ref.33

-205480.4 8662

103.6659U(Ae)2+U(Ae)2+ref:33

1,Dec 95-381120, -21,2

-4,4228 7,4814 -2,5961-14,0000 0.8683 1

TnCH3COO+2Tm(llCI2)H(3)O(2)+(2)11 Sept 92

-288500. -38.300-1.6112 6 3814 -2.712310.8439 1.6332 2Tm(CH3COO)2+Tm(l)C(4)H(6)O(4)+(l)11 Sept 92

-408490. -21.90014,3448 0,1131 -3,371929,7206 0-8803 1

TmtCH3COO)3Tm(l)C(6)H(9)O(6)11 Sept 92

-529900. -12.70032,0657 -6.8520 -4.104546,6086 -0,0300 0

Tm(+4)

-2.0199

10,Dec,97-48300. -105 600

-18.3596 12.9511-3,3604 3.7747

UI + 21

16Jan,98-42900. 0.600

-7.5126 B.6950-5,4769 1.0512U{+3)

11-Sep-97-116900. -46 100

-14 7220 11 5280-10,4492 2.2752

UOHI+2)

2O.Jan,9B-167700. 1,200

-0,9087 6,1004-10,8973 1,0376

UOI + )

-2,7413

20.Jan 98-153900. 17 500-0,6648 6,0168

-19.4935 0.2873UO2I-I

20.Jan,98-193600, 43.3004 8473 3 8491

-28 2322 0 9733UCH3COO+2U(l)C(2)H(3)O(2)+(2)17 Aug 92

-235460. -21,3004 1031 4.1308

26,4274 1,3823UICH3COOI2+U(1)C(4)H(6)O(4)+(1)17 Aug 92

-2,9793

-2.9485

-296950,11,6455

192,7896U(Ae)3,aqU(Ae)3 aqref;33

-387360,19.3290

296.5739U(Buc)+2U(But)+2ref;27

-202157,7.1465

95 4995U(But)2+U(But)2+ref,27

-289537,18,1945

194.4029U(For)+2U(For|+2ref-27

-201409.1.159624,5615

U(For)2+U(For)2+ref;27

-288791.5.546825.0070

U|Pent)+2U(Pent)+2ref:27

-200147.9.3061

131,9035U(Prop)+2U(Propl+2ref:27

-204317.5,0757

81-4601U(Prop)2+U(Prop)2+ref;27

-293529.13 8181160 8356

U+4U+4ref:21

-126650.-4,283640.2193

UOH+3UOH+3ref'37

-1826002,1611

37,5484UO+2UO+2ref:37

-180600,2,24037,3127

UO2,aqUO2(aqlref:37

-354230, 1,30020,6554 -2 371860,1258 0,5324

U(CH3COOI3U(1)C(6)H(9)O(6)17 Aug 92

-473790, 17,70039,4128 -9.737497.9996 -0,0300

UCH3(CH2)2CO2+2UI1)C{4)H(7)O(2)+(2|14,Aug,93

-247566, -10 0709,6738 1 9467

24,1323 1,2126U(CH3CH2CH2CO2|2+U(l)C(81H(14)O(4)-t-U)14,Aug.93

-376461, 27.78236,6443 -8,652361.9728 0,1308UCHO2+2Utl)C(l)H(l)O(2l+(2)26 Aug 93

-221316. -20,170-4 9432 7.6782-1.0091 1.3642

U(CHO2)2+Utl)C(2)H(2)O(4)+(l)26.Aug.93

-325806 3 9115,7644 3 47961,9367 0,4925UCH3(CH2)3CO2+2U(1)C(5)H(9)O(2I+I2I31.Aug.93

-254046. -3.57014 ,9410 -0 120937,1000 11144

UCH3CH2CO2+2U(l)C(3)H(5)O|2)+(2)15 Sep 93

-242266, -15,3704.6150 3,929318.9905 1.2944

U(CH3CH2CO2)2+UU)C(6)H(10)Ot4)+(ll15.Sep,93

-366108. 15,25525 9582 -4 451749 6947 0 3215

UI+4)

11,Sep,97-141300, -99,600

-18.2319 12.8955-2,9938 3,6835

UOHI+31

-3 6328

-4,4082

-3 1788

-4,2938

-3.0172

-3,3966

-3 8520

18 Jan.98-19B400 -47 BOO

-2 5064 6.73900,4894 2.305BUOI+21

-2.6753

20.Jan.98-192100. -33.400

-2.3083 6.6513-7.6585 1.5684

UO2I0)

20.Jan,98

.Appendix A: 38

oCO

-22

17U02 +U02 +rsf.21

-23.-

U020H,aqU020H(aq)tef 37

3380046640840

29690.37679002

-261600.3.

20.UO3-UO3-ref:37

-24

27,UO2+2UO2 + 2ref:21

-23.

21UO20H+UO2OH+ref-37

-24,

13,UO3, aqUOj(aq)ref:37

-235

UO4-2UO4-2ref.37

5,13.

UO2(Ae)+UO2(Ae)+re£-33

73904246

3660013BBB024

27680,02560700

177250,76402240

1703007B014213

!96000.09645130

-3201009.83

UO2IAe)2,UO2(Ael2.ref:33

59905297aqaq

-411840,17

16103255228

UO2IAe)3-UO2IAe)3-refT33

-502400,26

275V+2V+2IF£ 21

-113

VOH +VOH+ref:21

,0101,3211

-520006188.8458

-259700-1 75870.8561UO2I+1)U(1)O(2)+(11,Sep 97

-245000.,4614

-7 5363UO2OH(01U(1)O(3)H(20,Jan.98-295900,1.34672,0172UO3I-1)U(llO(3)-(20.Jan 98-2736002 3272

-1.6697UO2I+2)U(1)O(2)-M11.Sep.97-243550.

-4,10844300

UO2OHI+)U(l)O(3)Hl20.Jan.98

-301500,3,8529

-2.1586UO3(0)U(1)Ol3)+20.Jan,98-2996001.4512

-3 1975UO4I-2)U(l)O(4)-20,Jan,98-346200,4,6606

-12,0788UO2CH3C0O-

-26 0006.4 404

-0,0300

11

-6,0005.5725.6388

1) + (0)

-13.9005,2242-0,0300

1)

-19.5004.82941,9223

21

-23.50015.33261 4099

(1|+(1)

4.1004,23180,4925

|0)

-12 9005 1736-0 0300

(2)

-27,1003.92233.6219

h

U(1)CI2)H(3)O(4)+I1)17 Aug 92-363520

15.658822.0118

-1.700-0.40990.5756

UO2ICH3COOI2U(l|C(4|ri(6lO(6)17 Aug 92-484700

33 804451 0592

13.700-7,5309-0 0300

UO2(CH3COO)3-U(1|C(6)H(9)O(8I-(1)17 Aug 92-607960,

55,729486,1855VI+2)V(1)+(2I5 Jan 98

-54000-11 7289-5.2548VOHI+)

IB,300-16,15711,3526

-31.00010,34731.5269

VU)O(l)HUI-Ml)11,Dec,97

-2

-2

-2

_2

_-i

-2

_2

-2

-3

-4

-5

.70620

79801

.83460

,8751-1

-6091•}

,93821

83890

,9716-2

.42621

17640

,0828-1

.2940

V+3V+3ref:21

VOH+2VOH+2ref.21

VO+VO+ref'21

-99800,-1,522329,7729

-57900-1,730423 4604

-111500.-0,12132,7011

-106100.-3.1084-28.3270

VOOH+VOOH+re£;21

VO+2VO+2re£;21

VO2 +VO2+ref-21

VO4-3VO4-3refi21

WO4-2WO4-2ref•21

Xe, aqXe(aq)ref: 3

Y+3Y+3re£;21

YOH+2YOH+2

-155700.-1 569630.8543

-106700.-1.297138.8261

-140300,3.26064,5892

-214900.1.2579

77,6555

-218500.7.20748.3308

3225.7.5196

42.1036

-163800.-2.046321 5366

re£:21

YO+YO+

-210000.2.4985B.0136

ref-21

-114100.-11.4950

2.6079V( + 3)V(l)+(3)5.Jan 98

-62000-11 9981-4.7456VOHI+2)

-16,40010,0,

102

VdlOHIHllHll-Dec.97

-119400.-8.0707-8.1474

VO( + )V(l) 0(1) +11,Dec.97

-109400,-15.3641-16.5602

VOOH(+)

25918002

•55.0004465.4115

M2I

-10,6008,1

(1)

11,0,

VI1|O|2)H|1|(11,Dec.97

-177600,-11.6082

2.9134VOI+2)Vd)O(l) +5.Jan.98

-116300--10.9431

3.3616VO2(+)Vd)0(2) +5.Jan.98-155300.0,1790

-5.8252VO4(-3)Vd)O(4)-5.Jan.98-270600.

-4-70154.7060WO4(-2)Wd)O(4l-15.Sep.97

-236500,8.7933

-12.0991XelOlX e d ) + (0)13.Jul.87-4510

10.579310,1652Y(+3)Y(l)+(3)5,Jan.98-170900.

-12,7741-5 6622YOHI+2)Yd)O(l)H12,Dec,97

-220900,-1,6806-6,6196

YO( + )Y( 1) O d ) +12,Dec 97

100

(2)

101

dl

5

(31

75

(2)

43

1_

102

(1)

61

(1)

90582206

4.900.77114799

MH

-17.7002984.8252

-32 000.0377.5475

-10.100,6817.7003

-35.20057973424

9.700.4B91.0657

14 620.5919.2214

-60.000.7611,4890

+ (2)

-17,200,4099,3201

-2

-2

-2

-2

_2

-2

-2

-2

-3

-3

-2

-2

.30371

.28293

.44532

.14371

29901

.32652

.78631

5845-3

.1424-2

.21630

25083

.70942

-198100,2,5778

-22.6289YO2-YO2-re£:21

-227400,4,5219

-27.0256Y(Ael+2Y(Ae)+2ref:33

-255670,2,8774

59 7114Y(Ae)2+Y(Ae)2+ref:33

-346520,9,4572

105.4982Y(Ae)3,aqY(Ae)3,aqref-33

-43665016.7359

142.6300Yb+2Yb+2ref:21

-128500.-0 132311 7413

Yb+3Yb+3ref: 2

-153000.-3.49837.3533

YbOH+2YbOH+2ref:25

-1993002 57164.6390

YbO+YbOtref.25

-18B2OO,2.6656

-26.1516YbO2-YbO2-ref'25

-221800.4,6743

-33.8142YbCl+2YbCl+2ref:25

-184600-0 841918,7222

YbC12+YhCl2 +ref'25

-215400.2,21379,9034

YbC13, aqYbC13(aq)re£-25

-204600,-1,4890-14.9102

YO2I-1)Y(1|O(2)-(12 Dec 97

-243600,3,2579

-18.7805YCH3COO+2

-2,2006 33930.5831

1)

20.8004.47291.3145

Y(l|C(2)H(3)O(2)+(2)10 Sep 92

-291130.-0,757610,2033Y(CH3COO)2

-41.0006,05161 6782

+Y(1|C(4|H(6IOI4)+(1|10 Sep 92

-411420,15,312728,4687

YICH3COO13

-25,600-0.27360.9437

YI1)C(6)HI9IO(6I10 Sep 92-533170

33.083844.4926Yb(+2)Yb(1)+(2)10,Dec.97

-126800,-8,0980-5 0308Yb(+3)Yb(1)+(3)13.Jul.B7-160300,

-16.3233-10.4493

YbOH+2YbdlOIDI1,Dec.95-210700.

-1 5040-7,5770YbO+

-17.500-7,2550-0.0300

-11,2008,91731 2285

-56.90012.16582.4443

1111 + 12)

-13 16 34381,2538

Yb(l]Odl + (l)1.Dec.95-203400.-1.2698

-15,9287YbO2-Yb(l10(21-1.Dec.95-232900.3,6324

-20,8990YbCl+2YbdlCldl1,Dec,95-196900-9 8331-3 5928YbC12+Ybd)Cl(21,Dec,95

-236000,-2.3759-4,3329YbC13(aq)YblllCl(31 Dec 95

2.26,24220-5188

•ID

25.84.32121.2392

1 + (2)

-31 59,60421 5372

) + (1)

-16.96 68320,8111

1

-2,

-2

-2.

-3,

-4.

_2

_2

_2

-2

-2

-2

-2

71731

9136-1

74762

41191

146S0

4441

,10423

.71672

.72641

,9291-1

3724

.68071

nH2;

Io

_Appendix A' 39

1•-0

oto

1

-2461005 6076

-i : 8306YbC14-

YbC14-ref:25

-276900,10.3734

-49,4701YhF+2YbF+2ref.25

-226900.-3.5184

19.4495YbF2 +

YbF2 +ref;25

-299100,-3 3257

15 3476YbF3,aqYbF3(aq)ref 25

-370100,-3,1673

-11,8214YbF4-YbF4-ref 25

-440400.: -1.B339• -29.2268• YbHCO3+2: YbKCO3+2: ref:25i -295792.: 0,0344: 40,0319| YbC03 +: YbCO3+: ref:25j -290500,: -1,0611• -17,4772; rt>H2PO4+2j YbH2PO4+2• ref-25: -426300: 1 0354

• 13.9143i YbUO3+2: YblIO3+2• ref.25: -179800.

1 0.771635 0774

SfbS04 +

ref-35: -335B00,• -1.2745i -20.0516| Yb(Ae)+2i Yb|Ael+2: ref:33: -244760: 2 2906• 58 1718I Ybf Ae) 2 +: Yb(Ae)2+• ref,33

-2781005 9109

-12.6696YbC14-Yb(llCK4)1.Dec.95

-323800.17,5486

-28,6028YbF+2Ybll) F(l) •»l.Dec,95

-234900,-16.3679-2.7572

YbF2+Ybll)F(2Ml.Dec.95

-317700,-15 8931-2 3377YbF3 laq)YbUIFO)l.Dec,95

-403900.-15,5093-9,1906YbF4-Yb(l)F(4)-1 Dec.95-495300,

-12.2511-23.3159

YbHCO3+2

-12 93 4260

-0.0300

-ID

-21.0-1.14961 9457

(2)

-19,512,17161.3S52

(11

-15,211 97660.7790

-26,511,8317-0,0300

ID

-57.310,54612,4920

)fb(l)H(l)C(l)O(3|t(2)l.Dec.95-323900.-7 69234 3390YbC03+

-20,78 76221.3732

Yb(l)CU)0(3] + (l)l.Dec.95

-305400.-10.3695-15.5009

YbH2PO4+2

-50,29.81811,3268

Yb(l)H(2IPIllO(4)+(2ll.Dec 95

-473900-5 24804.8910YbNO3+2

-37 317 80101,6222

Yb(DNlDO(3) + (2)1. Dec.95-217600.

-5.89221 3371YbSO4+i D (1J b [ 1J

l.Dec.95-37200.

-4.6665-14.B899

-47,08,05411-7728

D(4)+(l)

-20,17,57720,8565

YbCH3COO+2Yb(llC(2)H(3)O(2)+(2l17 Aug 92

-280040-2 19059 8814

-36.6006 61541 6113

Yb(CH3COO)2+Yb(l)C(4)HI6)O(4l+(ll17 Aug 92

-3.

-3.

-2.

-2,

-2.

-2.

-2

-2

_2

-2

—2

-2

02330

5044-1

10232

12191

13770

2724-1

46092

35021

5619

53532

58601

6883

-335520,8.7953

102.7868Yb(Ae)3,aqYblAe)3,aqref;33

-425590,16.0356

139 5859Yb(But)+2Yb(But)+2ref;27

-241293,6,3100

98.2368Yb(But)2+Yb(But)2+ref:27

-32B53617-2830

198,6263Yb(For)+2YblForl+2ref:27

-240545-0.324727.3976

YblFor)2+Yb(For)2+ref:27

-327027.4.635229.2285

Yb(Pent)+2Yb(Pent)+2ref-27

-239283.8,4697

1347001Yb(Pent)2+YbI Pent)2+ref.27

-324503.21.8358

285.5660Yb(Prop)+2Yb(Prop)+2ref 27

-2432764.239584.2616

Yb(Prop)2+Yb|Prop)2+ref;27

-332543.12,9061

165.0447Yb+4Yb+4re£:21

3800--4,344139,9511

Zn+2Zn+2ref-21

-35200,-1 067618.7400

ZnOH+ZnOH+ref:21

-399750, -19.60013.6959 0.362827.8427 0.8449Yb(CH3COO)3Yb(l)CI6)H(9)O(6)10 Sep 92

-520890, -9.70031,3743 -6,584343 4346 -0,0300

YbCH3(CH2|2CO2+2Ybll)C(4)H(7)O(2)+(2)26.Aug,93

-291999, -25.3B77,6274 2.748024.3614 1.4382Yb(CH3CH2CH2CO2)2+Yb(l)C(8)H|14)O(4)+(l)26 Aug 93-422417. 6 B9B

34.4210 -7.783662.4199 0.4496YbCHO2+2Yb(l)C(l)H(l)O(2)+(2)26.Aug.93

-265749. -35.487-6.9803 8 4752-0.7799 1 6005YbtCHO2)2+Yb(DC(2)H(2)O(4) + (l)26.Aug.93-370998. -16,9733.5352 4.36292.3838 0.8111YbCH3ICH2)3CO2+2Yb(DC(5)H(9)O(2) + m7.Sep-93

-298479. -18 88712 9016 0.674537,3291 1.3464Yb(CH3CH2CH2CH2CO2l2+

-3

-4

-3

-4

-2

-2

-3

Yb(l|C(10)H(18)O(4l+ID7,Sep.93-434659. 22,260

45,5373 -12.151693.3859 0.2160

YbCH3CH2CO2+2Yb(l|C(3)H(5)O(2)+(2)15 Sep 93

-286522. -30.6B72.5689 4.742619.2197 1.5269Yb(CH3CH2CO2l2+Yb(l)C(6IH(10)O(4)t(ll15.Sep.93

-412078 -5 62823,7300 -3 573550.1419 0 63B8Yb(+4)Ybll)+(4)10.Dec.97-13600, -106.600

-18,3854 12,9683-3,4215 3,7880

Znl+2)Zn(l)+(2)15 Sep 97-36660. -26 200

-8,9290 6,1282-5,3700 1,4574ZnOH(+l)Zn(l)0(l)H(D + (l)16,Sen,97

-4

-2

-3

_2

-2

,34511

.07590

.09422

.20191

49032

,92501

,3123

.66141

,88512

75991

.0188t

,40982

-81190,1,149915.0306

ZnO,aqZnO (aq)ref-21

-67420-1.2418

.0295ZnO2-2ZnO2-2ref,21

-93290,-.5559

32.5837ZnCltZnCl+ref'22

-66850.1.6583

19.6947ZnC12,aqZnC12(aq)ref;22

-983005 1486

26.1528ZnC13-ZnC13-re£:22

-129310.9,5636

42.2912ZnC14-2ZnC14-2ref: 5

-161890.14.662856.1061

ZnF+ZnF+ref;22

-104109.-0.739528.5991

Zn(Ae)+Zn(Ae)+ref•22

-1256604.848460.4626

Zn|Ae|2,aqZn(Ae)2laqlref;22

-21645011.7443

119.1022Zn(Ae)3-Zn(Ae)3-re£:22

-305740,20.0332

203.1827Zn(Ala)tZn(Alal+re£-27

-116613,7.8514

71.8106Zn(Ala)2,aqZn(Ala)2,aqref:27

-86990. 15.000-4.9677 7.6896-.9975 .3260ZnO(01Zn(l)O(l)«(0)16-Sep 97-78290, -2,000

-10,8072 9 9819-5,0715 -.0300ZnO2(-2lSn(l)O|2)-(2)17.Sep.97

-132100, -40.000-9.1347 9.3301-6,0900 3,8216ZnCK + lZn[llCl(ll+(l)17.Sep.97-66240 23 000

-3,7293 7.20881,0191 .2025ZnC12(0tZn(llCl(2)+(0)17.Sep.97

-109080, 27,0304 7929 3 85924.0338 -.0380ZnCl3(-)2n(l)Cl(3)-(l)17.Sep.97-151060, 25.000

15.5732 -.37795,5147 1-2513ZnC14(-2lZn(l)Cl(4l-(2)JAN 91-195200. 36 000

28.0213 -5,26365.7856 2,6662ZnF|*)Zn(l)F(l)+(l)6.Jan.98

-116131. -21.810-9 5843 9 51011 9435 0 B8O3Zn(CH3COOHI1+)Zn(l|C(2)H(3)O(2)+lll17.Sep.97

-155120, 9.4004.0600 4.147314.5244 .4100

Zn(CH3COOH|2(0lZn(l)C(4)H(6)O(4)+(0l17.Sep.97

-271500. 22 47020.8978 -2,470736,3407 -.0380Zn(CH3COO)3<->Zn(llC(6)H(9IO(6)-(l)17.Sep,97

-394090. 25.00041.1373 -10.425761.4365 1,2513

Zn|C3H6NO2)+Zn(l)C(3|H(6)NlllO(2)+14,Aug,93

-161048. 17.00011,3891 1,274618.8350 0,2956

Zn(C3H6NO3)2Zn(l|C(6)H(12)N(2|O(6)14 Aug.93

-2,

_2

_^

-2

-3-

-3,

-2.

-2-

-3.

-4

•(1)

-3,

57351

33210

4013-2

62481

97710

4227-1

9374

38271

94661

64290

4796-1

24971

.Appendix A: 40

Ito

-197112.18.1164

149,2015ZnlButUZn(But)+ref-27

-121815,9 0597

102 3810Zn(But)2. aqZn(But)2,aqref,27

-207667,20,5521

218,5528Zn(For)+Zn(For)+ref:27

-121477.3 071231,4547

Zn(For)2,aqZn(For)2,aqref:27

-206908.7.7824

45 8240ZnlGly)+ZnlGlyH-ref .27

-117818,5,367745,1185

ZnlGlyl2,aqZn(Gly)2,aqref•27

-19913912 877185 8243

Zn(Glyc)+Zn(Glyc)+ref,27

-159617,4.921661.8303

Zn(Glyc)2,aqZn(Glycl2,aqref-27

-283311.11,7430119,8505

ZnI Lac I*Zn(Lac)tlef:27

-1607317 075581 3400

Zn(Lac)2.aqZn(Lac)2,aqref.27

-285376.16 4877172,3186

Zn(Pent)+Zn(Pent)+ref-27

-1196B311 2171138.7B88

ZnfPent)2,aqZn(Pent)2,aqref•2 7

-283389, 60 00036.4558 -8.5B23 -4.2B6O46.7767 -0,0300 0.

ZnCH3(CH2|2CO2+Zn(llC(4IH(7IO(2)t(l|26,Aug,93

-166539, 5,79014 3386 0 1167 -3 371728 9291 0 4615 1,

Zn(CH3CH2CH2CO2)2Zn(l)C(B)H(14)O(4)26,Aug,93

-296560, 34,74142.4038 -10,9205 -4.531970,8814 -0,0300 0,

ZnCHO2+

-2,76731

-3.24280

(l)

-2.9989

-4 3105,85320,6143

) ( )26 Aug 93-140698-0.27953.78792n(CHO2)2Zn(l)C(2)H(2)O(4)26.Aug.93-245726. 11,424

11,2204 1 341710.8453 -0,0300Zn(C2H4NO2|+Zn(l)C<2)H(4)N(l)O(2l+27,Aug.93-151609, 18,0005.3226 3.66289.6102 0.2792Zn(C2H4NO2)2Zn(l|C(2)H(B)N(2)O(4l27 Aug 93

-267408. 55.00023 6625 -3.553724 7484 -0,0300

ZnCH30CO2+Zn(l)C(2)H(3)O(3l-r(l)3O.Aug.93-194550. 0,1904,2387 4 0776

14.5628 0,5164Zn(CH3OCO2)2Zn(l)C(4IH(6IOI6)30 Aug 93

-353139- 21,81320.8930 -2.461336,5751 -0 0300ZnCH3CH2OCO2+Zn(llC(3lH(5IOI3)+(l)30.Aug,93-200064, 18,0009 4969 2 0126

22 1998 0 2792Zn(CH3CH2OCO2)2Zn(l)C(6)H(10)O(6)30,Aug,93-364728. 55,000

32.4799 -7,022954,8116 -0,0300ZnCH3(CH2)3CO2+Zn(l)C(5)H(9)O(2|+(l)7 Sep 93-172896 12,29019.6055 -1.949441,8971 0,3636Zn(CH3CH2CH2CH2CO2)2Zn(l)C(10)H(18)O(4)7,Sep,93

-2,9541

-3.6426

-3,1715

-3,5894

-203415.25,1842307,6444

Zn(Prop)+Zn(Prop)+ref,27

-1236756.9879

88,3708Zn(Prop)2,aqZn (Prop) 2 ( aqrefi27

-211155.16,1116

183 2279Zr+4Zr+4ref.21

-133270.-4,367039.7423

ZrOH+3ZrOH+3ref:21

-190400..9279

56.7436ZrO+22rO+2refi21

-187600,1.9014

23.3712zrO2,aqZrO2(aq)ref:21

-233400.1,8643

38.4166

-308690 49.74753,7125 -15.3636

101,8474 -0.0300ZnCH3CH2CO2+Zn(l)CI3)H(5IO(2)+(l)15.Sep 93

-1609399.2B34

23.7877

0.1902.09620.5464

Jn(CH3CH2CO2)2Zn(l)C(6)H(10)O(4)15.Sep.93

-285915.31,555858,6033

Zr(+4)Zr (1) + (4)11.Sep,97

-150330,-18,4377-3.6660

ZrOH(+3)ZrlDOdll1.May,97

-212500.-5.50936.0097ZrO(+2)Zr(1)O(1) •1,May,97-204300

-3,1364-3 0141

ZrO2

22.506-6 6473-0 0300

-110,30012.98113,8417

Hlll+13)

-71.6007.90152.6654

+ (2)

-53.4006,97691.8611

Zr(l)O(2)+(0)1,May,97

-263800.-3,2264B.270B

-13,7007,0119-.0300

-4

-3

-4

-2

-2

-2

-2

,9994(

,1627

.08341

,0167

.5511

,6492

,6455

143 minerals that do not undergo phase transition (nminl)33 minerals that undergo one phase transition (nnrin2)17 minerals that undergo two phase transitions (nmin3)2 minerals that undergo three phase transitions (nmin4)

16 gases (ngas)1147 aqueous species (naqs)

1358 total

coranent lines preceed top of mini block

n

oo\OSO

Io

.Appendix A: 41

JNCTN8400 99-079

Appendix B: Listing of the PHREEQEJNC Database

(see Tables 5.3.1J1 - 5.3.1_3 for formatting and unitconventions)

1 1 -

JNC TN8400 99-079

"Dc:

CL

+ o oo as •m . iin o :

no t N O* + • r-f Cl + • (1 flOHH M O t

I O

O O <H i-i <O CO O\ fl IT»

• H H O O HO &

oI O (

+OHf l I O(N-H » rq r i U • tr-i tJO 0)0

1 * J " ( N •<&

com o m hcoiritTvaar^cOT-irj

o n CTL o co m ffi • i

ntTi*Tfl|riria)iHno

o m rO c D O n

• • -us

ococoH ro IN *r o o

c ^ n w n r O i r i q M r j O » c D ^ ) i T i [ N O f ) c o O i r i ^ r i ( i i^y f**ij f*~-j p^ L " l /^ iT J t"^ I^I ^O f * l 'V T ^ 1 rH CT"j T ^ [^ ^H C*J ^ ^ n f™ rH T ^ ^ ^ J O l 01

o r- co+•

X o

- 2 1 2 -

JNCTN8400 99-079

Q .

o no •O CO

- rH

o r-o •o rj

- CO

o mo •

o o• H

o oO P-

- CO

1 H 0 r o o oo HO < > D O c o o c o o v o o k o o c o o mo o o i-ti n o O D O c f i o r - o c o o i - i o « > o r - o i n o m o r o o m o in

f l rH in PJ *^ rH CJ\ 0\ ^ O C* O3 O TH ro O r*** o*\ I rn O iH rO <H roI O l O Oin O ^ i - t O t n t H O ^ X J r H O ' H r H C D r H O O O O I O I

r-t i H t H I I H I H I « - H I r - t l i - f | r H i-*H TH I-H

o ^ o m o c n o o o r ^ o o ^ n o m o r - o I - H O r » i o O J O c n ^ o r jnoo r-r-o r - c o o m n o r - i n o r o * o m i n e o m o " * m o c o p - o ao n o ^ j " . o n oM « O v o - o C T I - O U J - O v o . o P - ^ T O IH • O ' • C J - O O « O m - o r j - o O J H O r o -

- i > * • - ^ - • p-fc • • oo * • r o • * *~H * • i n •• » CN * • ' ^ • • CT» • • p* • - co • CD

Hffi mt-im i \o run - "in o^fco m^f^f O H C I I H I ^ I o i ^o 1-1 m i m i H Hin O O - ^ c n co •** C M - O 1 O - - H r j ^ p O a P I C O t n i o O c-i • a « c ii o i n ^ u e r i t n m O ^ I O W i •*? <*D r^ W iniDcoW) O B O I N O I O O W O ^ H n f j i on O miomO j«"i3<qici] incoinO inT~*\ i~H rBt f*"J ^^ ^ i r U} ^ i f«^ im't ZJ^ il '> ^ ^ i t f^ i i ^ ^ t '* < I t, > ^ i, 'i t/J ^H H ^H t J ^ 5 H fH CO ^O H rH t/J ^ ^ H ^H Ui f**\ H ^H C* 1 1 T ^ rH IJJ L/

m H j VO r-lK m H S fO tHffi VO H X i-i H K CO tHffi ^1 H f f i CO I H I C O "HEC in H i t tHffi m

Hl i-H

in *& oen omino

i O M" i n r - Q - r ~ c n +

n T i ( U O r o r T i C

- 2 1 3 -

JNCTN8400 99-079

oO A?o m

o •O roo o

o •O CDO CO

o •o oo m

oo

r-lOCM

Oo

CNCOCM

o -o cr.o o

o -o .-i

Oin10

O IN• r-

© o

oo

r H

CO

i n

oo

r-t

r>CMinCMCMrH

O CO• rH

o o

t x rH i-i :

in rHm •

o

ooor H

ot-l rorH X

i nCO I Om •>

• CO

a\ coi noCO

ooor H

mi H

f 1

o- H

o en

o

O

i i 3

t HrH1

O

rH

m rHrH TJ

r H

r H

UI

o i

rH Oco r- oiH •• O

2 1 4 -

ICO

25 1.000353Bi0H4-

-21,107-4975299,525 1.000400CaOH+

-12.83338295,7

4 1 000401CaCl*

-.2922410655.54 1.000

402CaCl2

--644500B097 64 1000

403CaF+

,6823423074,04 1.000

404CaHC03+

11,3766702119.64 1,000

405CaC03

33273696159,44 1,000

406CaS04

2,1113822460.34 1,000

410CaH3SiO4

-8.57512422706 44 1.000

425CH4 AQ

38.1946662566.515 1,000

450CsOH

-15-685-1000453 927 1.000451CsCl

- 1391333328,427 1,000452

3 3.000 1 -3 000

310 -145.674

000 .000 .000-1262.701 -.209757822

3 4.000 1 -4 000

310 1.18.517

000 .000 .00048.057 .008051439

3 1.000 1 -1.000

210 11.126

14 1.000

210-1,394

14 2,000

210 11 350

20 1,000

311 1-3.165

15 1.000

210

3,795

15 1.000

210

1,300

16 1.000

310 14.783

000 .000 .000756-098 .130939275

.000 .000 .0001589.350 .272060292

000 .000 0001067 673 .178933274

000 4.000 0002048.601 .339363192

1 1.000

.000 4,000 .0001266.919 .215696046

.000 6.000 ,0001286.832 .216006198

000 .000 .0003799.621 ,572165180

13 1.000 1 -1.000

410-64.575

,000 -4.000 .0001957.295 -335797111

1 10.000 2 8.000 3 -3.000

310

17-687

3 1.000

210653

14 1,000

.000 ,000 ,000-269,095 -.049506083

1 -1.000

.000 .000 .000456 845 .075746038

.00064579.44

.000-5894.27

.000-40791.05

.000-84643 89

,000-57839.51

5.400-110541.90

.000-66449.82

.000-67690.42

.000-211848.92

,000-100765.85

.00011122,83

.000-24335.19

.000462.127

.000-17.763

.000-277.128

.000-583.386

,000-389.929

.000-744.834

.000-463.382

.000-470.850

.000-1377.281

.000-709 737

.00097,848

,000-166.885

4.000

1.000

.000

,000

.000

1.000

2.000

.000

1,000

.000

1.000

000

CsBr.022

1125972.727 1.000453Csl

.982665976.827 1.000500FeOH+

-9.3151356234.58 1.000

501FeOH2

-20.405421087.1

8 1.000502FeOH3-

-29.2071377230.68 1,000

503FeCl+

-.1612858795.1

8 1.000504FeC12

-8,1725121162,58 1,000

505FeF+

1,4273230866,7

8 1.000514Fe+3

-13.011-311058,68 1 000

515FeOH+2

-15,216239182.9

8 1 000516FeOH2f

-18.661-1783755.2

8 1.000517FeOH3

-25.029-2644016.68 1.000

518FeOH4-

-34,631

210

2.220

22 1.000

210-2.550

23 1.000

310 112.287

.000 .000 .000383.709 .063348834

.000 -000 ,000224.949 .038641780

000 2.000 .000458.740 .072604481

3 1.000 1 -1.000

31027.417

.000 2.000 .000180.811 .028793639

3 2.000 1 -2.000

310 -132.984

000 2.000 .000428 934 .059826568

3 3.000 1 -3.000

210 1.723

14 1.000

21023.426

14 2.000

210 1.748

20 1.000

210 310.200

2 -1.000

410 220.367

000 2.000 .000876.802 .147143826

.000 2.000 .0001624.758 .273351854

000 2.000 .0001006,203 .166186287

000 3.000 9.000-101.736 -.017163759

000 3.000 .000113.510 .015220631

3 1.000 2 -1.000 1 -1.000

410 129.367

000 3.000 .000-469.648 -.078431304

3 2.000 1 -2.000 2 -1.000

41038.384

.000 3.000 .000-642.841 -.108881515

3 3.000 1 -3.000 2 -1.000

410 -147.984

000 3.000 .000-619,528 -.109884387

.000-20432.13

.000-11614,28

.000-27012.31

.000-14872.42

.000-31339.83

.000-47742.47

.000-91791.49

.000-54475.98

.0003781.73

.000-9193.40

.00021664 30

.00029996.50

.00024467.08

.000-140.117

.000-82.453

.000-167.456

.000-66 543

.000-156 140

.000-320.423

.000-591.719

.000-366.935

.00034.213

.000-42.482

.000170 453

.000234.158

.000226.853

1

2

3

1

2

3

4

.000

.000

.000

.000

.000

.000

,000

,000

.000

.000

,000

.000

.000

.Appendix B' 4

JNCTN8400 99—079

oomenrH

oo

r-tm

o -O ««?<O 1

o *O 00O CO

o •O CNo in

CD

C L

ooooCO

ooo

rj

r-i

o *O COO CO

o •© inO CO

o -o ino •**

oO rHo o

O •O OO n

OO en• m

o -O VO• o

ooo

in

PJ

ooo

O P~O CM

oo o-O

coo- en • in

woomo

oco r io m»x>o cn co

[ n L r! O Ln rH r4 i i rH LJ I U^ T ( t f l rH j / iI ID r l H IDO H O I ** If- im ^T P» P- I C O X M W J I

*$ i r - i c n i H * * I U D en I D »X> O r n c n ** <o O • *f So co ^ ro i en rn I-H 'tf \ r ?*} LO tC o t*~ *x* rH ro p* r*1 t-t c 1 P*1 co v~~ P" en co i c^ r~~ o O O P r rH p* p* o Or- ino nnmO rorj r-O ^ r-U o r-cq p- r-M r-t r-X P* CDLO m oani: r OHr-i U I H I i n n x) miii en i n ^ m mu- r- mi; p- m2 -r ir>x m ins n ^ J

- 2 1 6 -

JNCTN8400 99-079

o -o enO rr,

O -o rao y?

o •o inO rH

o -O CM

O .

O «3*O rH• m

o oo in• in

O [-in m•• C O

OHrl+• rH r j

<Nen

I CD rH i-H P- rH O"t

X I W> i-H PJ + ID TDO (NTtCTlO rHCnoUi rHtTtUlrO4 *H rH CM CM -H p" n n 'ri O CN 1> X

O COO 'O en

o oo •a in

o mo -o o

O aoO -O '-D

M J i O CO r-) (Ti c

- * •• on m o

nino rus - O r r r

•• O •• —

tc i "X> rH in P- H r-iiinO H U3io U roy?r-[ij cnvocoffl COUDCTIM

cm m r-"0 ^i1 i> m ^ P- io on p-roIDS r-\ y S rH y)2 rj u>2 --H »o g

O 1-H>r j tO !>>

co(d to2

in m Oco to r-

- 2 1 7 -

JNCTN8400 99-079

T5

o oO VP

• cn

O **O CN

• oo mO CJ

• in

O Ho m• o

oO ••OHOH

O CMO CO

• m

O cnO M

O OO O

O CO

o m. CO

O f>© iH

- CM

O HO H

1 CI

H I

spo m o o o D O m o o o o o o mo £o omo m o - w o m o r i o r ~ o m o .-to r - o #V D < T ^ ^ D i H ^ f r- CM ^ P O I H O C O C O f M U 3 r - - ^ m

o m o o r H o v o r j O i - t r o o r - ^ r o u j i H O T - i 0 1 OH Oi-t

o r c o D O t n o t * - o o imo n o i o p - o mo mo coo HO INUJOO~IO CTIOOO ID coo <roo iriroo "^ • o r a » o U J H O rp in o ^JO^O i-(mo o m o o « o

• o 0 - 0 H - O \D • o ^ p ' O 0^0 r o • q < « o i n « o m « o ^ - o i n - o moo

r mHLi> ^ H C O mm CT»H mo « n 1 fo» I H ' O I I D I I H I i o n IMCTIr- H e n HO (NPJ c a r * M Hm CMH*D m r " «* •** i n ^ D U > H c o i m DHl o n ^ U nroinCJ m m H i HU>n 1 o%"jDml 00*0^1 H*oinO CN^UDO H I D I ^ - O m^ocoO o\*ocnO H i o o O OivocnnuTd inrointJ ^ r o o m H H O I ^ I cr»tHOiol V r i o i n chHOr4 csHOr i ^ j "Hor ] m n o n iHHOr^ mHT-im O Hin cocu a? osOj en cnto m ini/] en a\ to *n cnto H a\ to m oicn in trito m mco m cnto vo m w H

o - o • o • o • o -Om OU3 o^c om Oroor- oco or- oo oo o cn

o ooo mo m

- r-

O Ho m• r - l

O CDO ••O rn

in H C O 1 - 1 0 Hr - r a n O M M n U o n m U•spn-icirQ O m m j 2 H m m . QtM coftj ^ coni m coft<

i nm

H mm

am XjCD O<

^r n co cnH w inc o r j i n l co rO m m ,Q r* rUTl CO ( 1 J H

m

m i lCO CU

H O\

m rN

H

+ iX

o oin T3CO b

I r-m

- 2 1 8 -

911S4O6-2 410 - 2 .

7 6 1 2 8 -106 ,16815995568 7

16 4 000912S5O6-2 410 - 2 .

97.474 -150 .43519757256.1

16 5,000 1 28 .000 2 20.000 3-14.000913SO3-2 410 -2

-3,623 -2,817-96236.1

000 10.000 .0004830.090 ,823862961

1 20 000 2 14.000 3-10,000

000 10.000 ,0005922.101 1.016944428

000 4.000 4.500-76.012 -.011796480

16 1,000914SO2

5.4436059447,616 1,000925SeO3-2

29.018-137209,037 1.000975SnOH+

-3.414311262.239 1,000976SnOH2

-7.079-713824,439 1,000977SnOH3-

-16.599-1411683,539 1,0001000SrOH*

-13,302167232,512 1.0001001SrCl +

-.2482936080 212 1.0001002SrF+

1393315152.412 1,0001004SrCO3

2 B654110630,512 1.0001025S1F6-2

1 2,000 2 2,000 3 -1.000

410 ,000 4.000 .0003.572 1826.363 .308250395

1 4000 2 2.000 3 -2,000

410 -2 000 4 000 .000-46,817 -49.881 -.0035375B4

1 2.000 2 2.000 3 -1.000

310 16.617

000 .000 .000144023 .020579352

1.000 1 -1,000

31010,317

.000 .000 .000-150,092 -.025521383

3 2,000 1 -2.000

310 -1.16.634

000 .000 ,000-369,411 -.068739688

3 3 000 1 -3.000

311 1.19.987

000 .000 5,00099.133 ,014069720

1.000 1 -1.000

210 11.813

14 1,000

210 11.150

20 1.000

210

000 .000 ,000940,954 ,158962656

000 .000 0001046.500 ,173031837

4 435

15 1,000

410 -2 000

000 4.000 .0001395.434 .233818757

.000-251911.60

.000-307733.36

,0001B77 60

.000-101820.26

.00011119.27

.000-8438.16

.0007295.27

.00017082.04

5,000-8839.39

.000-50551,22

.000-56581.59

.000-73753.32

.000-1751.763

.000-2149.155

.00028.569

000-662.569

.00017.864

.000-52.041

,00054.228

.000134.129

,000-35.913

.000-344.352

,000-382.094

.000-509,674

000 000 000

.000

,000

.000

.000

1.000

1.000

2.000

3,000

1.000

.000

.000

2.000

-4.000

26,27519516155.213 1.0001075Th+2

-109,071288991.641 1,0001076Th+3

-63.258-1172965.841 1,0001100U+2

-57,06591846.842 1,0001101U+3

-9.602-1048770 842 1,0001102UOH+2

-15.787-599625.442 1.0001103UOH2+

-22.311-2375169.542 1,0001104UOH3

-30.805-5076801.942 1.0001105UOH4-

-41,287-4544090.442 1,0001106UOH+3

-.5411047519.1

42 1.0001107UOH2+2

-2 .007-453944 4

42 1.000HOBU0H3 +

-5 .0031288275,042 1,0001109U0H4

-4 5631603178,3

-16.959 6090.487 .959294846

1 4.000 20 6.000 3 -4.000

210 2.000 2.000 ,000170.300 226.627 .040869947

2 2.000

210 3.000 3.000 .00098.700 -252.869 -.038257331

2 1.000

210 2.000 2.000 .00098.400 145.999 .026809334

2 2.000

210 3.000 3.000 .00024.400 -209.792 -.031242733

2 1.000

410 2.000 3.000 .00041.917 26.700 .006081412

3 1.000 2 1.000 1 -1.000

410 1.000 3.000 ,00055.717 -462.825 -.072635741

3 2,000 2 1.000 1 -2.000

410 .000 3.000 .00072.834 -1180,441 -.192069636

3 3.000 2 1.000 1 -3.000

410 -1.000 3.000 .00084.334 -1077.185 -.177428469

3 4,000 2 1.000 1 -4.000

310 3.000 4.000 ,00011.217 379.997 .059338534

3 1.000 1 -1.000

310 2,000 4.000 .00017.517 -6.700 -.001285081

3 2.000 1 -2.000

310 1.000 4.000 .00023 134 586.501 .093017064

3 3,000 1 -3.000

310 .000 4.000 ,00018 234 653.911 ,106053771

-328137.72 -2210.280

.000-47591.17

.000-5884.17

.000-27966,70

.0008072.53

.000-6457.05

.00018599.63

.00056299.60

.00046716.58

.000-21825.06

,000-305.81

.000-32834,64

.000-36035 34

.000 .000-77,397

.000 .00094,546

.000 ,000-47.805

.000 .00078.494

.000 1,000-6.425

.000 2.000172.365

,000 3.000434.517

.000 4.000397.355

.000 1.000-136.117

.000 2 0004,530

.000 3.000-211.604

.000 4 000-237.333

.Appendix B; 8

JNCTN8400 99-079

O voo -O co

o tn mm^ tn co oCO • VO -

rH O *# 1/1cn • vo -

r- cn M O

m • vo -mo in conn r» r-tin i vo i

i n rH •<* I

O O«r-io cooi i n o o o \ o

in - -r- •f^l r^ *' ^

O Ocoo noi o o o o o

O Ooaoocnomo 'ino•*> . H O -

I

O O O O O O O Oooovoo m o o c o o o o o mo roomo r o o n o r o o o o c o o o O

i ^ i

voin m n mo j

m** mco «JVO

i n o r - rH •** Hi rHTJ I N JJ H J J r^ -o cntJ i i n o H C

O CMO VD

o oO CO O CO

- a

o •O VOO CM

o -o oo en

o •o r-O m

O rHo •

O rno -o m- r-

O COo -o o• CM

o eno -O r*

oo

VOcnCO

o r-O rH- cn

m VD Or- - o- o

i O i mi IN r- CJ< O rH -O1

IHi O i

- 2 2 0 -

1

COCO, .

11

K-Beid 53 -2 68-13794.

Ca-Beid274-2

53 -2.68-13676.

Mg-Beid962-25

3 -2,68-13675.

Berndtit3 -8.0-3338.

Boehmite1-3.0-885

Brucite1-2.0-452.

Bunsenit1-2 0-666.

CaAlpyrx1-8 0-5136.

Calcite15 1.0-1599.

Cassiter1 -4.0-664.

Celadon1 -6 C13 4.0-14328

Celestic12 1,0-1818

Cerussit15 1.0-1848

Chalcedy13 1.0-3123

Chm-7A1 -10-5840

Chlorite3 -10-19991

Chrysotl3 1.0

311-25

034 -3

683 -3

893 -3

525 -5

742 -2

510 -4

775 -6

054-22

393 -2

113 -2

761 -5

0044 -5

0001-34

-8098.4599-1Cnc-7A

1 -16! -14087: O1C-14A; I -16\ -14162: Czo! 1 -13! -12642: Cordier

50645-25

0235-2

50665-15

.0001 -7 32

086296955.000

1 -7.32067368B26

.0001 -7.32

065894557-2.000

39 1 0577782924

.00010 1.0

143391305.000

5 1.006887724

00029 1.0

.106871087.000

3 20.793286373

4.0004 1.0

.2709871152 000

2-2.0.103903817

.0003 -4.0

.1507560776.000

16 1.0301055B79

4,00032 1.0

.308591128.000

3 -2.0.465693023

4,0008 2.0

902158261.000

5 5.0.133247435

.0001 -6.0

.21792980.000

5 5.0140140582

.0005 5.0

.152335846.000

4 2.0.929004296

.000

5-3097 0

767361.095.591

4 0761750.04

5.5545 0

761987.31-92,228

16 2162045.35

7.5643 2

51203,5516.298

3 229129.2912 472

3 139719.1935.976

4 1296156.66-8.480

85519.84-3 163

39 132909.937.457

5 1

795968.52-5.677

98130.55-13.538

97339.27-3.728

172688.4432.842

10 2332564 88-87.115

303 21077279.97

31.12513 2

455736.10070.612

10 2798424.0867.239

10 2801753.9443.257

10 3714177.9252.303

-36.055.33 10

4990.575-38.820165 10

4947 070-39.550

.165 104945.951

146,334.0 1

1212.010-27.075

.0320.101

-2S.611.0

163.991-23 917

.0242,020

-86,411.0 10

1857,336-2.633

582.500.066

.0 3243.842

-17.786.0 7

5185.065-1.770

662.1536.835

673.1547.507

1129.990-87.051

.0 132112.78043.063

.0 137250.236

-52.112.0 52931.70270-150.126.0 13

5097,978-146.359.0 13

5124,825-109.404.0 13

4573.839-149.668

12.33-44533824.12.33-44196302.12.33-44210057.116.0-11064594.1

-2471843.1

-1223060.1

-1886279.12,0-15994942,1

-5010794.12.0-1880950.11.0

-46494406.1

-5787958.1

-5828973.1

-1034783811.0-1791201413.0-6359294913.0-2579166113,0-4410890113.0-4435302013.0-401774501

3

6

9

2

0

0

7

7

3

7

6

5

4

8

6

0

0

7

9

4

13

13

13

2

13

10

3

100

3

3

3

3.

3.

3.

14

1.

1.

5.

8.

6

6

1

67

67

67

.0

00

0

0

0

0

0

0

1 -16-20252

Corundum1 -6J-1807

a-Crs13 1.0-3109

b-Crs13 1.0-3223

Dph-7A1 -16-13593

Dph-14A1 -16-13619

Diaspore1-3.-980

Diopside1 -4.-7122

Dolomite4 1.0-3657

Ord-Dol4 1.0-3677

Dis-Dol4 1.0-3580

Enstatit1 -2.-3818

Epidote1 -133 1.-12602

Ord-ep1 -133 1.-12691

Fayalite1 -4.-4152

K-fs1 -4.-10567

FeO1 -2.-364

Fluorite4 1.0-1722

Forsteri1 -4,-4152

Galena3 -4.-1759

Gehlenit

.0

.193-33

0.728 -

2

.751 -2

.421 -5

.0

.925-25

.0

.951-23

0.072 -

50.056-1

3

.993 -3

.022 -3

.249 -4

0.110 -

6.00.342-1

6.00.663-1

30.095 -

50.643-1

30.484 -

2

.337 -3

0095 -5

0.170 -

5

3 -2.00.073237500

.00010 2.0

.294292276.000

3 -2.0.463608807

.0003-2.0

.48255530710.0008 5.0

.07220169110.000

8 5.0,076289129

.00010 1.0

.159069041.000

3 -2.0.070227146

8.0005 1.0

.6124889308.000

5 1.0,615681181

8.0005 1.0

.599514810.000

3 -1.0.574363172

3.0004 2.0

.9221597443.000

4 2.0

.9351372594.000

8 2.0.629499494

.0003 -4.0

.5923354312.000

8 1.0,056961006

.00020 2.0

.2889262290.000

5 2,0.629499494

-2.00032 1.0

.302652609.000

5 21142309.32

18.3123 3

106064 49-3.449

172039.14-3.005

177782.6155.655

10 2767343 5950.365

10 2767594.51

7.1603 2

55862.2920.964

4 1400510.90-18.144

15 2195522.75-18.144

15 2196492.78-16.600

15 2192169.6211.327

5 1214630.2332.930514 1

707991.7532.930514 1

712918.4419.111

13 1235235.02

-.4487 1

585341 6813.532

3 1.24454.74-10.037

90264.7019.111

13 1235235.02-48.544

16 185853.8956.300

.00 107322.248

-61.812.0

652.8206.980

1124.8755.900

1166.693-127.234.0 13

4920.092-120.147.0 13

4929,156-26.391

.0354.813

-31.9730 5

2577.775-7.306

.01331.265

-7.306.0

1338.260-10.233

.01302.489

-19.773.0 13

1381.763-92.362

.0 10

4560.056-92.338

.0 10

4592.331-36.390

.01502.800

-5.486.0 10

3825.157-25.347

0131.2202.900

628.331-36.390

,01502.800

79.587.0 1

638 116-117.096

4.00-64800136.61

-5095360.11

-10304943.31

-10569625.913.0-42732843.313.0-42849750.21

-2726112.411.0-23089799.41

-11329561.51

-11381374.31

-11117943.911.00-122914B1.212.00

-39985393 712.00

-40269334 21

-13215977.611.0-34348101.01

-1041733.91

-5250972.61

-13215977.618.0-5873232.61

13

3

3

13

13

13

13

2

5

6

6

2

3

3

3

8

.0

.0

.0

.00

.0

.0

.0

.0

nH2

Io

.Appendix B: 10

JNCTN8400 99-079

CD

tH o np- VO • >DID *J O 00

• ID ri 00

• c oCTi COm r-

• VDm p-P- r-o •in vo

- rjit - co•en C J

H CJ

• oCO COCO OH •m H

- 01in pco enH •in m

O Oi •£> CO

in H i

VD

) VD CO

oo co in H3 co m

co in rVD • T

enmr~VDen

i nen

CM

O CM OCM CO

• co inoo mm •in CNr-

HO

HCOr i

oi no

H CMen H

p. . om coi n •\D mCO Hr~

H

OH

cri mo m

• m mvo m

co inin iT

VD oenm en

DOCO

p-

P r-i ITl

o rHp~

ooo

o

[

mHOVO

ooo o

• HOCO

oo

oVD

1

mrioen

ooo

o\ai

CMO

Ooo

oVD

W>O <TiOoooocooo

o a on o ctMOm p- o m mOr• ^ O • P» O • VD O

IfN

tj« VO CM * * COCM rim

- H co r- IN o en> • VD VO • • -• p- • * m. -H o •"

rH IM I O C I frH fO O -H tI CTlrH TH S iH

I O I H C•3* f O ; v l m m r-i ?Z ci in r4

! I M ^ P l r l H) 3* 0 fM Q): m H OOH,C(

r n Q J i H C O r H "

w —ri m H s r

m i m •i ri

i m IH to H HH I M I

O CN O CTi

• oco at

COao

CO -=pmV£>

ino

IN VD ca m H •

mH

mr^

m O(M in

in nor-t enO -

CM CO rH O 1 O

mp- o n en enCO H

VD •en

in •O Ho m

VO Om -c

CO •\D VD

o m o H O ico r-o mo o o o c n o -yo cno p-o coo p-oomo r-f o m CD ^ O •*© coo coo n o-COO OcnOOtNOOHOOmOO'.OO -cnOor-OOP-OOHOVD UIOOOO •CMOOroOOCTiOO^'OOOOOrjOOinOOcriOO

fV f^j « • *& - • CM * • cr • • r\ " " p". - O-) VD - - c^i * * ^ * * r"*' * * en * - ir\ * pj o •* - co " ' en " * TH • * r^ • - r** " * i*o * ' o " •

o m in H in vo m m r—i o H P-. CM t o ^o rn en vo c^t fM vo in p* o r** tM en i o r-i in H en H "T> H O H O ^ ri I-O co c j in CM riVO CO O r-i CO t*1 "=f m H i n r H O CD CO CO W p ' 00 in VO H **

men men mro corj q»o m n men mf*i invD in p p* H rstco mr j r ico rnH ^f-a1 •srrj w n i n n •*srr- en^j p - r H m m n o -a1 m o en oo en p- m n en p- co m H H i*

tf in nCo

i

CM

ii

i

en

i

r-i

ii i

CMI

m m com tM *» P-UJ m n m m m 1 ^ H ^ r- y <» in H m ^ r j co^J1 coc r , m r - c o c n » D i n c o p - c n o m - c i o ^ f f M H c o p - r j

on i£> en ^ en *o o in p* O H J V D en co in r >D en VD IM VOo - o •• o • o - • o • • • o •• o • o • o • o • o o -

o r j a) o i n u - a t o O H - H - n • V D Q J O V O O I T H W - H H D ^ J 1 o i n - - ^ i j . u j - m • <a« J J r-3 • C O J J O ^ J J t>

I ^ >H H O -rH I D I r QJHIO >i I Q I fH-Hf>a-*AJH^rE I f*1d> I HP- H ' a ' J J I i n f i l r - l - i J I P - I P- G I m I r H U I r H O O J l O111 IB H J ^ H P-XJ 1 0 CO P^-U H -H P - l COiJ C-1-—. I -H P--H tD-H TJ T Q CO H HI r4CU Ci

i-H I J3 O I Q , r i I H I -H W r H i H I H I iti g< I iJ •]< I IH H I »H M H T-t U 00 O I H I H H I C r H I H H B| ri I D H I C U1 I C H IX J H f O C i~* i-* E H C ' C ' - I I— TJ 0 i a J J i i E & & i•r-i U U fO r O T ) i l > i n 3 >i tH II rd ffl > i £ n 3 > r - ( td tO

9 0 9

JNCTN8400 99-079

CD

Q .

O oo o r j

? ton in m H

o p-TH 00

r i

in mm rH

r-o^r

cno

H•X-

O

1

OcnCM

i nCilTH

oo*-H

o j CN inC

c 4 C 4 a \ r t < t u s r H o o m o oj iH CN in r oco r- THC*- in UJ ve in m -H ^» M co cn TT CO o m GO vo HCO ino co r-

fO ' P'l ? * O*l CH * P 1 *& * CJ ' VD )* ™ C ) f^ * D * '^ ' i ,i • ^y* • CO * ^Tt ~ nrH rH fN ^O 00 CN CO fO m UD r** m r*l rH fN J1 ^^ Q0 CO rH \O rH TH Q1 VD OD CO r*"

r - t - i n * c o « - H • - H • \gy * i n * i n - m • - H • i n * m • - a 1 •COTH a\ •** •ccco f-tro trim <r< m IOTH moi ^ n rt m *HI O C N r*tH^> \o o i C D H r - i - t m t H o ^ 1 r - i n I mi coi o H I inin iH CN i N i t n CT» rH m -H «H m n mO U3 CO ,—I [— I I J I T I•H i-t

o o o o o o o o o o o o oKIOO»HO moot-to mooa \o n o rsio oo NO COO no r o

o r - o - r o o o m o «Lnoocoo - t - i o o c n o m o »no PJO *JO HO IOO• CO • CO r^ • * f • O3 (^ • • TH • TH CO * • T~- • "'J • 0"i ' ^O • r1* - r™' ' ^ *

ma i o o f l H W i ^ ^ i n n i c o p j r - ^ ) 1 co-<* -girii m MCN r- on» \£ \o o c i c o cn i o i co i

m H Or g VD m cn *o

cnco

cnin en

CO

o voO VD J O rH O O

SJi.I JJ T

r j o i o c o • d " c n * 3 * P " i n c g p g v o * a ' ^ ^ 0 ^ ' p g r H * d | i " 3 l

^ j * o ^> cn p* ro - TH rH ro o p~ m m to rn ct ^ co ^o ^oT H C 0 r * C D ^ ' » J < C n m 0 0 ' £ i p ^ C 0 P - ) O r H ^ l C 0 T I " V D O

CTI H m c n o - H O c o o p - o i n o m CM o i n o o o o m •*» o o m TH Q\co rH iH m • o\ • p* * Tf * o r c^ in • i m i^ •< m rH TH * io ^D rHp—• *H I rH I T H I T H H 1™ rH rH I1"! rH CNI I rH "*J "T rH I rH rH H I rH r" t i • i rH rf "i H I rH rH rH rH I rH I T H CO I H I H I rH

in m rH -<di co «i H in rH in a m rg -c rH in CN m UD -H VD

• o • r * *3" * in • o\ • ?3 • vo • ^ * m * * • o • rH * eg • co - io • p* • TH • in " p - TH

r ~ o Tfoo o m P-CT\ m m corg <o *z< cocn p^to cap- 1H1H mco rgc j rncn O * H I O O CNCN O in c-t r-i r-t o1

cn T H - en •• *rji •*? • p g - m 1 I H m * r H * t o * c o 1 o n * r - « o o * i H * r H - r* • c~ •• C N -co p-j i n pg r n ^p ^ f rH ^ i n TH P * TH rH co m co r n I O TH C*$ n CT\ rH ^ i 1 ^

1 1 1 I O I O IO O O O O O ' O - O OO

*D ^D rH rn rH cn r*> co c-g *H rH co c"" r* I p* TM m *H en i C3 o> c*-i C3 ^ TH IC rH O^ T—i p**CO rl P" 3* IO C3 ^n P" P** rH p— n 4 ^ 5 *i 00 T\ P* T rH PJ f"O rH f P*l pg ^ CO CO fQ 13 ^D co ^^ CN rMMj fO P^ f*1 CO Cg

UICTI r i o comoc*-r-t IM ITI H H n i^ > H H r- men mo cr ip - tnp>i m m m m r n c o c o r H r o p - m r H m ' - O pgco cocoi n • v o * C D « P H O O > r ^ * on • CTI* c n * o - m * r H * r g * C N * P* • *H • p - " i n c o * ^ i •• i n *v o o o m f> enp- COCM o <D vo m m m m ^ro o PI in o o cn^o in-"* LTITH ^ocn o o "fl1 ogcNm m " _ . . . - . - . - . . — _ . . _ . _ . . . . _ „ . _ . . _

PJ co cn i n coin co r-i cn m

>-*oomoou?cr-i o o pg o

rH o n n t

l p~ -*rg

O CO C

i n U m< i — m

IT» rH I PJ O

' 3 CT\ !- »H J

N H H I

J oo I rH rH i U cn tJ rH — m O

cn XJ rrH C

i i O c

cn 4J rH m

- 2 2 3 -

JNCTN8400 99-079

Appendix C: Calculated and Experimental EquilibriumConstants of Mineral and Gas SolubilityReactions as Functions of Pressure andTemperature

2 2 4-

JNCTN8400 99-079

- C O,(g) = CO,(aq)

-2.2

A

V

spronsjncDrummond (1981)Yasunishi and Yoshida (1979)Ondaetal. (1970)Markham and Kobe (1941)Ellis and Golding (1963)Malinin and Kurovskaya (1975)Malinin and Savelyeva (1972)Prutcon and Savage (1945)

1 1 L I 1 I I

50 100 150 200 250 300 350

Fig. C. 1: Logarithm of the equilibrium constant for the reaction CCKfjjJbetween 0 and 35O°C at Psat.

CuDO

-2.2

-2.4

-2.6

-2.8

-3

-3.2

ono•A

- sprons.jncYamamoto et al. (1976)Sullivan and Smith (1970)*Claussen and Polglase (1952)Culberson and McKetca (1951)"Price (1979)*"

A -

•P C H 4 ( g ) = 100bar;«-PC H 4 ( g ) = 20

50

Fig. C.2: Logarithm of the equilibrium constant for the reaction CH,4(gjbetween 0 and 250°C, and pressures from Psat to 100 bars.

_Appendix C 1

- 2 2 5 -

JNCTN8400 99-079

-0.6

-0.8

-1

-1.2

-1.4 -

-1.6 -

-1.8

H S(g) = H,S(aq)

|—i—i—i—i—|—i—r-

sprons jnc

O Suleimenov and Krupp (1994)

O Drummond (1981)

CP°O

50 100 150 200 250 300 350

Fig. C.3: logarithm of the equilibrium constant for the reaction H.2S(g)between 0 and 350°C at Psat.

-2.2 ooA

sprons.|ncTrayetal. (1952)Crozier and Yamamoto (1974)Morrison and Billet (1952)Ipatieff and Teodorovish (1934)

H,(g) = H,(aq) i

150 200 250 300 350

T

Fig. C.4: Logarithm of the equilibrium constant for the reactionbetween 0 and 350°C at Psat.

.Appendix C:2

- 2 2 6 -

JNCTN8400 99-079

8

N«W) • N.(QQ)

D MORRISON a JOHNST0NEII954)O BENSON B KRAUSE (1976)O POTTER a CLYNNeci9T8lO>CHOV£TTO £ T A L ( l 9 8 2 o l

50 100 150 200 250 300 350

TEMPERATURE. *C

OHUDSON (19251ORABE a HARRIS (19631

B SIMEN5ONII910IDLAVROV& a TUOOROVSKA"<A(I97 7|

50 100 ISO 200 250 J00 150

TEMPER liTURE.'C

Krlgl- K/|oq|

• MORRISON 8 JOHNSTONE (19541O BENSON & KRAUS£CI97$>O POTTER a CLYNNEH97a)<0 CfiOVETTO ET AL ( |982e)

100 150 200 250 300 350

TEMPERATURE. T;

ETAL.H9S2)D a B«-LET(r352)O MURRAY ETAl_iraG9!AAL\efiEZETALI

50 ICO 150 200 250 300 350

TEMPERATURE, t

300 350

-JO

-i

gD MORRISON iHD JOHNSTONE 11954)O KLOTS AND BENSON (1963)O CROVETTO ET AL (1982 a)O POTTER AND CLYNNEII978I

2(aq) (100 bors)

O GOODMAN a KRASEI193I)OWEBE ETA1_<I9»)O SAOCMNGTON a KRASE(I9MIO tfSU-LIWN a SMITH (1970)

50 100 150 200 250 300 330TEMPERATURE. "C

O 50 100 150 200 250 300

TEMPERATURE. 'C

D STEPHEN ETAL11956)O BENSON ET AL (19791

50 100 150 200 250 300 35O

TEMPERATURE, t

Fig. C.5: Logarithms of the equilibrium constants of gas solubility reactions as functions oftemperature at Psat [and at 100 bars for the reaction Njlg) ** N i(aq)}. The figures were generatedby Shock et ai (1989) using thermodynamic data for gas and aqueous species that are included inSPRONSJNC.

_Appendix C;3

2 7 -

JNCTN8400 99-079

-15 •

-2.0

5-25 •

-30

-35

LOKB/v

r• 0

rtdoKfcW

Jx E Q6KB"3^ a io" B 15

a 10A ISo toO 1.0• 15O 10© 15© 10 • "

a6KB^

Kemedy (19501

Morey andHessefgesur (1951)

Morey B ot (1962)

WeJlondFyfe«964)

Anderson and&rr*wm 11965)

Hemley el 01.(19801 "

0 0

-Q5

-L0

-1.5

-20

-25

A Morey and Hesselgeswr (ISSI14 k b ]

O 2 k b . 4 k b i A«Jer5onandO 3Vb.5kl)J Bumfiom(l965).I> 4 kb Andenon ond

Bumhom(l967lO Z kb Hemley el tt (1980)

0 100 200 300 400 500 600 700TEMPERATURE. °C

200 300 400 500 600 700 800 900

TEMPERATURE, °C

-L5 •

D |.Tond75O baril Kennedy• 500 ban j (19501<J Ktahora (I960)V Van beret aL (I960)O Sever (1962)O Morey ei ot 0962)O Creror ond Anderson (19711O Hemley et aL (1980)A Rralidl (1984)

-45100 £00 300 400 500 600

TEMPERATURE. "C

A

Fig. C.6: Logarithms of the equilibrium constant for the reaction S1O2 (quartz) ** SiOjfaq) as afunction of temperature at Psat and constant pressure (diagrams A, B and C), and pressure atconstant temperature (diagram D) [from Shock et aL, 1989].

_AppendixC;4

2 0o

JNCTN8400 99-079

tn

co

cuo

U

-1.5

_2

-2.5

-3

-3.5

-4 \-

-4.5

-5

: S i On(c) (quartz) = SiOn(aq)

o•<>•AB

V

+•

sprons |ncHemleyecal. (1980)Crerar and Anderson (1971)Rimstidt (1997)Fournier (1960)van Lier et al. (1960)Kitahara (1960)Kennedy(1950)Siever (1962)Morey e td . (1962)

0 50 100 150

T (°<

200 250 300

Fig. C.7: Calculated and experimental silica molalities (= log K) in solutionsequilibrated with quartz between 0 and 300°C at Psat. Data from "unequilibrated"experiments by Fournier (I960) and Morey et al. (1962) at temperatures < 100°Cnot shown (see Fig. C.8).

70

60

50

40

30

20

10 h

0

oA

A•

- sprons.jnc

Rimstidr (1997)

van Lier er al. (1960)

Mackenzie and Gees (1971)

Morey et al. (1962)

Fournier (1960)

AA

0 20 40 60 80 100T

Fig. C.8: Calculated and experimental silica concentrations in solutions coexistingwith quartz between 0 and 100°C at 1 bar. [open symbols denote equilibratedexperiments; filled symbols refer to unequilibrated experiments (see text)].

_Appendix C:5

2 9 -

JNCTN8400 99-079

_0

II

o

-3.5

ono

- sprons.jncFournier and RoweChen and MarshallMorey et il. (1964)

(1977)(1982)

50 100 150

T (°

200 250 300

Fig. C.9: Calculated and experimental silica molalities (= log A') in solutionsequilibrated with amorphous silica between 0 and 300°C at Psat.

-3

-3.2

-3.4

6D " 3 . 6

2-3.8

-4

-4.2

-4.4

1 1

: S i O,(c) (chalcedony) = SiO2(aq)

s /

V1 1

1 1

sprons.|ncWalther and Helgeson (1977)Fournier (1977)

1 1

-

-

-

20 40 60 80 100

T

Fig. CIO: Solubility of chalcedony between 0 and 100°C at 1 bar calculated usingtemperature functions from Walther and Helgeson (1977) and Fournier (1977),which are based on experimental solubilities between 92 and 259°C determined byFournier and Rowe (1966) and Fournier (1973).

_Appendix C:6

- 2 3 0 -

JNCTN8400 99-079

10

5 -

A

Al(OH)3(c) 4- 3H

uffl+•A

S(J

i

- sprons,|ncSingh (1974)Miyetal. (1979)Kitrrick (1966a)Peryea and Kitmck (1988)Frinkand Peech (1962)Nag)'and Lasaga (1992)Bloom and Weaver (1982)Palmer and Wesolowski 11992)

20 60 80 100

Fig. C.I 1: Logarithm of the equilibrium constant for the reaction gibbsite + 3H+

A13+ + 3H2O(7J between 0 and 100°C at 1 bar.

• F R C K E AND JUCAITIS (I93O)

©TSIRUNA(I936)

• FULDA AND GINSBERG (193)

ORUSSELL. EDWARDS AN3TAYLOR (IS65)

AlKKATAI ANO OKADA (1962)fflLYAPUNOV. KHOCAKOVA, ANDmGALKINA(©64>

APPS (I9TO)BERECZ ANO SZTTA (1970}

6 WESOU3WSM 0992)G VEROES. GOUT. AND CASTET

(1992)

50 DO 150 200

TEMPERATURE. °C

2SO 3O0

Fig. C.12: Logarithm of the equilibrium constant for the reaction gibbsite + OH" **A1(OH)4- between 0 and 300°C at Psat (bom Pokrovskii and Helgeson, 1995).

_Appendix C:7

- 2 3 1 -

JNCTN8400 99-079

too

0.5

-0.5 -

-1 -

-1.5

1 1

Al(OH),(s) + OH"=Al(OH)/3 i

1 {Al(OH)3(s) + OH" = AiO.," + 2H^O(

• ^pr^>

i i i

sprons.jnc( J Wesolowsld (1992)• Apps and Neil (1990)

O Verdes etal. (1992)

1

i

-

20 40 60 80 100

T(°C)

Fig. C.I 3: Logarithm of the equilibrium constant for the reaction gibbsite + OH"A1(OH)4- between 0 and 100°C at 1 bar.

fcJDO

-10

-11

-12

-13

• AlO(OH)(c) +

100 150

T(°C)

-£!

oD•OA

T

- sprons jncRussell etal. (1955)Kuj-unko et al. (1983)Bourcier et J . (1993)Apps etal, (1989)Verdes (1990)"

Verdes etal. (1992)

Castetetal. (1993)

200 250 300

Fig. C.I4: Logarithm of the equilibrium constant for the reaction boehmite +Al(OH)4- between 0 and 300°C at Psat.

_AppendixC:8

- 2 3 2 -

JNCTN8400 99-079

tiDO

10

6 -

4 -

7 _

0 -

-2

1 I , . 1

s- \: v: %-

; AJO(OH)(c) H

, , 1

1 1 1

n\

\

H 3 H + = /

t i i

1 , . , ,

I ' '

ou•AS7

i ,

i i | i i i i |

- 5pron5.|ncBourcier et al. (1993)Verdes (1990)Verdes et al. (1992)Su and Harsh (1994)Peryea and Kittrick (1988)Caster etal. (1993)

_---

I .

..

t .

..

I .

, , i , , , , O ^50 100 150 200 250

T

Fig. C.I 5: Logarithm of the equilibrium constant for the reaction boehmite3H+ « AP+ + 2H2O(l) between 0 and 250°C at Psat.

•2 0

-1

-2 h

-3

- l r—i 1 1 1 1 r T 1 1 r-

o

oT•Affl

- sprons.jne

Kuyunkoetal. (1983)Bourcier et al. (1993)Verdes (1990)Verdes et al. (1992)

Casteteral. (1993)

AIO(OH)(c) + 2H+ = AJOH2+ + H.,0

50 100 150

T(°C)

200 250 300

Fig. C. 16: Logarithm of the equilibrium constant for the reaction boehmite +2H+ * A1OH2+ + H2O(l) between 0 and 300°C at Psat.

_Appendix C:9

- 2 3 3 -

JNCTN8 400 99-079

-1.5

-2

A _

-4.5 -

-50

AJO(OH)(c) + H+ =

A

oT•AE

- spronsjncKuyunko et aJ. (1983)Boureier et al. (1993)Verdes (1990)Verdesetal. (1992)

Cascececad. (1993)

-E]

50 100 150

T(°C)

200 250 300

Fig. C.I7: Logarithm of the equilibrium constant for the reaction boehmite + H+

A1(OH)2+ between 0 and 300°C at Psat.

6DO

-5

-6 -

-7 -

-9 -

-10

1 . t 1 1

; AlO(OH)(c)

[•

. . I I I .

+ H - ) C

1 1 1 1 1

3 = A1(OH)3(

B ^

, i i , ,

i i . . .

aq)

O .-A^E

I , , ,

1 i '

E

O••AE

i i .

i , , , ,

E3E

~ sprons, jncKuyunko et al (1983)Bourcier et al. (1993)Vcrdes (1990)*Verdesetal. (1992)Castetecal. (1993)

1:

1.

,,

,

, 1 , 1 , , , , "

50 100 150

T(°C)

200 250 300

Fig. C.I 8: Logarithm of the equilibrium constant for the reaction boehmiceH2O(7J ** Al(OH)3r^J between 0 and 300°C at Psat.

_Append i x C I O

- 2 3 4 -

JNCTN8400 99-079

10

to 0o

O

-5 -

-10

oTAVffl•-)-O•

- sprons.jncHelgeson et al. (1978)'Helgeson et al. (1978)Devidal etal. (1996)*; undersat.Devidal et al. (1996)'; supersat.Nagy etal. (1991)May etal. (1986)Kittrick (1966b)*Zotov et al. (1998)*; > 0.80e-6 mZotov et al. (1998)*; < 0.25e-6 m

*- recalculated in the present study

AL,SL,O (OH) + 6H+ = 2AP+ + 2SiO (aq)2 2 5

1 i i J_J_ i I

50 100 150

T (°

200 300

Fig. C.I 9: Logarithm of the equilibrium constant for the reaction kaolinite +2 A13+ + 2 SiO2(aq) + 5 H2O between 0 and 300°C at Psat.

-6

-7

: Al Si O (OH) + 2OH" + 5HLO = 2Al(OH)." + 2H,SiO ,(aq)2 2 5 * 4 2 4 4 4 3^

-9

-10

-11

-12

- 1 3 r i i i

A

0ffl•A

- sprons.jncPolzer and Hem (1965)Reesman and Keller (1968)

Huang and Keller (1973)Devidal et al.(I996)

20 40 60 80 100 120 140

T

Fig. C.20: Logarithm of the equilibrium constant for the reaction kaolinite + 2 OH- +5 H 2O <=* 2 A1(OH)4- + 2 H4SiO4(<z^ between 0 and 150°C at Psat. All experimentalequilibrium constants evaluated by Devidal et al. (1996) based on their experimentalresults and results reported by Polzer and Hem (1965), Reesman and Keller (1968) andHuang and Keller (1973).

Appendix C: 11

- 2 3 5 -

JNCTN8400 99-079

JO

60O

-3

-3.5

-4

-4.5

-5

-5.5

-6

-6.5

-7

1 ' ' i ' ' ' I ' ' ' I ' ' ' i ' ' ' [ ' i '

Al2Si2O5(OH)4 = 2A1O(OH) + 2SiO.,(aq) + H,O

oo

O A

O

o

- - - -oAO

— sprons.jnc; Psat- sprons.jnc; 0.5 kb- sprons.jnc, 1.0 kb

Zorovetal. (1998); PsatHuang [1993); 0.5 kbHemleyetal. (1980); 1.0 kb

140 160 180 200 220

T ('

240 260 280 300

Fig. C.21: Logarithm of the equilibrium constant [= 2 log ws,o2(aq)] f°r t n e reactionkaolinite ** 2 boehmite + 2 SiO2f«^) + H2O between 140 and 300°C and pressuresfrom Psat to 1 kb.

too

IN

E

o

-1

-1.5

T I 1 I I 1 I I I I I I 1

; Al2Si2O5(OH)4(c) = 2AlO(OH)(c)

-2 ^

-2.5 -

-3

R,O

180

. . . .

00

sprons.jnc; 1

- sprons.jnc; 2

Hemley et al

Hcmley et al.

kb

kb ,

(1980);

(1980);

1 kb

2 kb

200 220 240 260 280 300 320

Fig. C.22: Plot of 1/2 log K [= log ws;o2(aq)] f°r [he reaction kaolinite »=* 2 diaspore+ 2 SiO2(^) + H2O between 180 and 320°C and pressures of 1 and 2 kb.

_AppendixC::12

- 2 3 6 -

JNCTN8400 99-079

o

-1.6

-1.7

-i.8

~. -1.9

T 1 I | I I I | I I I | I I I | I I I |

; Al,Si O (OH),(c) + H,O = Al,SL,0 (OH) (c) + 2SiO,(aq)

200

oo

- sprons.jnc; 1

- sprons.jnc; 2Hemley ec al.

Hemley ec al.

kb

(1980);

(1980);

1 kb

2 kb

_L

220 240 260

T (°

280 300 320

Fig. C.23: Plot of 1/2 log K [= log w2s;O2(aq)] f°r t n e reaction pyrophyllite + HiOkaolinite + 2 SiOzfaq) between 200 and 320°C and pressures of I and 2 kb.

-1.4

2 -1.6_o

•^ -1.8

o

-2.4

Al2Si4O10(OH)2(c) = 2AlO(OH)(c)

+ 4SiO (aq)

7T J -

• e -

oo

sprons.jnc, 1

Hemley et al

Hemley et al

kb

(1980),

(1980),

1

2

kb

kb

290 300 310 320 330 340

T

Fig. C.24: Plot of 1/4 log A' [= log ?"SiO2(aq)] f°r t n e reaction pyrophyllite ^2 diaspore + 4 SiC^fc^) between 290 and 340°C and pressures of 1 and 2 kb.

_Appendix C 13

3 7 -

JNCTN8400 99-079

_O

-1.1

-1.2

- ,—I—1—I—I I I I I I I—I

: Al2Si4O10(OH)2(c)=Al2SiO5(c)

360

oo

- sprons.|nc; 1

Hemley ct aJ

Hemley et al

kb

. (1980);

. (1980);

1 kb

2 kb

380 400 420 440 460

Fig. C.25: Plot of 1/3 log K [~ log wsjQ2(aqi] for the reaction pyrophyllite **andalusite + 3 S>lC>2(aq) + H 2 O between 340 and 460°C and pressures of 1 and 2 kb.

O

JT

60O

-0.5

-1

-1-5

-2.5

Al2SiO5(c)=.

400 420

SiO2(aq)

• sprons.jnc; 1 kb• sprons.jnc; 2 kb

O Hemley etal. (1980); 1 kbHemley ec al. (1980); 2 kb

440 460 480 500

Fig. C.26: Logarithm of the equilibrium constant [= log "2SJO2(aq)] ^or c^ e r e a c c ' o n

andalusice ° corundum + SiO2f«?^) between 390 and 510°C and pressures of 1 and 2kb.

_AppendixC:14

- 2 3 8 -

JNCTN8400 99-079

joII

tooO

-0.5

-1

-2.5340

AL,SiO5(c) 1,0 = 2 AlO(OH)(c) + SiO^(aq)"

-e—•

• sprons.jnc0 Hemley etal. (1980)

_j i ' i

350 360 370 380 390 400

T

Fig. C.27: Logarichm of the equilibrium constant [= log ws,O2(aq)] f°r t n e reactionandalusite + H2O ** diaspore + SlOjfaq) between 340 and 400cC at 1 kb.

o

bD

o

60o

4.5

4

3.5

3

2.5

2

1.5

1

0.5

sprons.jnc; reaction 1sprons.jnc; reaction 2SverjensUy et al (1991)

1.5 K-feldspar + H = 0.5 muscovke + 3 quartz + K (reaction 1) I

1.5 K-feldspar + HCl(aq) = 0.5 muscovite + 3 quartz + KCl(aq) (reaction 2)

100 200 300 400 500

Fig. C.28: Logarithm of the equilibrium constant [= log (?«ti yjmuy{)] for reactionsin the system K2O-AJ2O3-S1O2-HCI between 0 and 500°C at 0.5 kb.

_Appendix C:15

- 2 3 9 -

JNCTN8400 99-079

60O

14

_o

4 -

3 *

2 -

--

/

- 1

; i

5

5

!

1 ' 1 '

—~_

K-feldspar +

K-feldspar +

, , 1 , ,

> i 1 , . < ,

H* = 0.5 muscovite

i ' r

r—-

+ 3quartz. + K

HCl(aq) = 0.5 muscovite + 3quartz

, , i , , , , 1 , , , , i

• • . . I .

— sprons.jnc;

— sprons.|nc;Sverjensky

(reaction 1)

- • • i i i

reaction 1

ecal. (1991) -

— — — — ;

'"•"I -' • • -

+ KCl(aq) (reaction 2) _

, , , , 1 , , ,

100 200 300 400 500 600

Fig. C.29: Logarithm of the equilibrium constant [= log (mu K^t.H)] f° r reactionsin the system K2O-Al2O3-SiO2-HCl between 0 and 600°C at 1 kb.

6J3O

60JO

60o

5

4.5

4

3.5

3

2.5

-)

1.5

• 5prons.|nc; reaction 1

• sprons.|nc; reaction 2

Sverjensky et al. (1991)

1.5 K-feldspar + H+ = 0.5 muscovite + 3 quartz + K+ (reaction 1)

1.5 K-feldspar + HCl(aq) = 0.5 muscovite + 3 quartz + KCl(aq) (reaction 2)i i i , , , i , i , i i i . , , i i , , , i

100 200 300 400 500

Fig. C.30: Logarithm of the equilibrium constant [= log {mZi K / W I , H ) ] f° r reactionsin the system K2O-Al2O3-SiO2-HCl between 0 and 550°C at 2 kb.

_AppendixC::16

- 2 A 0 -

JNCTN8400 99-079

"if

boo

0 -

-4 -

-6

1 1 1 1 1 1 1 1 1 1 1

-

sprons.jnc; 1kb••• sprons.|nc; 2kb

A Sverjenskyecal. (1991);V Sverjensky et al. (1991);

*- experimental uncertainly =~ ± 0.15 log unit o ^

J

• I KA13S i3O1 0(OH)2 +

i i i 1 i i i i

1kb '

2kb*

HCKaq) = 1 .5A1 2 SIO S

, , , I , , , ,

1 i i >

VA A

*——

f 1.5SiO2 + 1

l , , ,

• 1 i i , i

V

-

-

-

.5H-.O + KCl(aq) "

100 200 300 400 500 600

T

Fig. C.31: Logarithm of the equilibrium constant [= log {mli K / ^ C H ) ] f° r thereaction muscovite + HC\(aq) »* 1.5 andalusite + 1.5 quartz +1.5 H^O + ¥SZ\(aq)between 0 and 600°C and pressures of 1 and 2 kb.

bo_o7

bOO

4.5

3.5

2.5 -

1.5

I I I I I

sprons.jncO Sverjensky et al. (1991)

50 100 150 200

T250 300 350

Fig. C 3 2 : Logarithm of the equilibrium constant [= log (m:< K ^ C . H ) ] f° r c n e

reaction muscovite + H+ + 1.5 H i O >=* 1.5 kaolinite + K> between 0 and 35O°C at1 kb.

_Appendix C:17

- 2 4 1 -

JNCTN8400 99-079

14too

14O

Hi6"

2.5

—i—i—i—|—i—r—l—I—|—i i i—i—|—i—i—i—r-1—i—i—i—i—|—i—,—i—i—|—i—i—r—i—|—i—i—i—r

; muscovite + 3 quartz + H+ = 1.5 pyrophyllite + K+ (reaction 1)

. muscovite + 3 quartz. + HCl(aq) = 1.5 pyrophyllite + KCl(aq) (reaction 2)

1.5

0.5 sprons.jnc; rcaccion Isprotis.jnc; reaction 2

O Sverjenskyetal. (1991)

50 100 150 200 250 300 350 400

T

Fig. C.33: Logarithm of the equilibrium constant [= log {mu vJmx.i\)\ f°r reactionsin the system K^O-AljC^-SiOi-HCl berween 0 and 400°C at 1 kb.

'14bO

_O

(N

60

o

5

4.8

4.6

4.4

4.2

3NaAlSi,0. + 2H+ = NaAl SLO n(OH), + 6SiO. + 2Na+

i ^ i o 3 3 10 2 2

4 -

3.8 -

3.6

-i 1 1 r- —i 1 1 r- T

250

sprons.|nc• Moncoya and Hemley (1975)

i ' ' L_

300 350 400 450' I I I I I -

500 550

Fig. C.34: Logarithm of the equilibrium constant [= 2 (log mCt Na^t.H)] f°r c^e

reaction 3 albite + 2 H+ "* paragonite + 6 quartz + 2 Na* between 250 and 55O°C atlkb.

_Appendix C 18

— 2 4 2 -

JNCTN8400 99-079

soo

-14

-16 -

-18 -

-20 -

-22

-24

I . . 1 1 . 1 1 1 1

_

1- 1 J 11 • ,\ • LV

sprons.jnc; ordered albite (low)• Burch (1993)

NaAISi OO + 2H

1 , ,

2O = Na+ * Al(Or-

, i

i . . .

-

1) ' + 3SiO.(aq)4 1 l

1 i . ,

20 40 60 80 100

T

Fig. C.35: Logarithm of the equilibrium constant for the reaction albite + 2 HjOAJ(OH)4" + 3 SlOiCaq) + Na+ between 0 and 100°C at 1 bar.

-6

. (l+x)Na+ + (l+x)Al(OH) " + (2-x)SiO,faq) + [n-2(l+x)]H,O

-10

-1

-14

-16

-18

O Wilkin and• Wilkin andffl Murphy et

x=l, n=

BarnesBarnes

1

(1998)(1998)

- Mt. St. Hilaire; x= 1- Wildeup; x=0 85, n=

al. (1996) - Mt. St. Hilaire, x= 1.02,

, n=l= [

n=l

40 80 120 160 200 240 280 320

T

Fig. C.36: Logarithm of the equilibrium constant for the analcime hydrolysisreaction between 0 and 300°C at Psat.

^Appendix C:19

- 2 4 3 -

JNCTN8400 99-079

-4

-5

-6

-7

<3 -9

-10

-11

.$•••

sprons jnc; Psat- sprons-jnc; 1.0 kb

O Hemleyetal. (1977a); PsacO Hemley ec al. (1977a); 1.0 kb

100 200 300 400 500

T

Fig. C.37: Logarithm of the equilibrium constant [= 2 log #zs;o2(aq)] f°r t n e teactiontalc + H2O » chrysotile + 2 SiO2(aq) between 0 and 500°C at Psat and 1 kb.

-36

-37

-38

-39

M -40

-41

-42

-43

-44

1

- 0.5Mg4S i6O [ 5(C

~ +1

"_ 2 M g + 3SiCX, (aq

, 1 , , , , 1 , , , , 1 , , , , 1 , ,

1 X

- //

i i . i

1 ' • i '

HI^OH^'tOR,)

) <• 4OH"+ 1.5H2O

oo

1

1 '4 =

o

>-

- spronsChristChrist

1

.jncetal.etal.

1

(<

(1973);(1973)

i i I i i i _

-_

crystalline sepiolitepoorly crysralline sepiolite

1_LJ

-

-

1

20 40 60 80 100

T

Fig. C.38: Logarithm of the equilibrium constant for the reaction sepiolite ** 2 Mg2+

+ 3 S\O2(aq_) + 4 OH- + 1.5 H2O between 0 and 100°C at 1 bar.

_Appendix C:20

- 2 4 4 -

JNCTN8400 99-079

—i i 1 1 ] 1 1 1 1 J i r~ —i 1 i r - -i 1 1 r-

sprons jncRoselle and Baumgartner (1995)

CaAl2SL,Og +• 2HCl(aq) = CaCl2(aq)i , . , , i . , i

SiO,(c)

350 400 450 500

T (°C)550 600

Fig. 39: Logarithm of the equilibrium constant for the reaction anorthite +2 HC\(aq) * Ca.Ch(aq) + andalusite + quartz + H2O between 350 and 625°C at 2 kb.

O

20 40

T

Fig C.40: Logarithm of the solubility product of aragonite between 0 and 100°Cat 1 bar.

.Appendix C:21

- 2 4 5 -

JNC TN8400 99-079

-8.2

-8.4

-8.6

-8.8

-9

-9.2

-9.4

sprons.jncO Plummer and Busenberg (19821

20 40 60 80 100T

Fig C.41: Logarithm of the solubility product of calcite between 0 and 100°Cat 1 bar.

-9

-9.5 -

-10 -

-10.5 -

-11

1 1 1

oc£> °

'. SrCO3(c)

i '

o

= S r 2 + H

_ —

i ,

1 ' i

o

_

i

o o

1

o

— _

1

1- sprons |nc

Busenberg et al.

oo

, 1

(1984)-

O ©Ii

, i

, ,

i

20 40 60 80 100

T

Fig C.42: Logarithm of the solubility product of strontianite between 0 and 100°Cat 1 bar.

.Appendix C:22

- 2 4 6 -

JNCTN8400 99-079

o

-o

-9

-10

-11

-12

-13

-1A

: o

-

o o

C O (c)

• <

1

o

-——1

COD

r+ + cc

_——-* *

O

_—-—

1

o

_ - — • —

1

o o1 1

o o

o

1

o o

sprons.jncBusenberg

_ _ •

1

o o

and Plummer

1

_

o :

1(J986)

-

-

-

20 40 60 80 100T

Fig C.43: Logarithm of the solubility product of witherite between 0 and 100°Cat 1 bar.

oDOAffl

- sprons.|ncSmith (1918)Langmuir (1969)Singer and Srumm (1970)Reiterer ec al. (1981)Bruno etal, (1992)

14to -10.8o

-11

-11.2

-11.4

-11.6

FeCO3(c) = Fe2+

20

T

Fig C.44: Logarithm of the solubility product of siderite berween 0 and 100°Cat 1 bar.

_Appendix C:23

4 7 -

JNCTN8400 99-079

- 1 . J

-2C

-2.5

-3>cgP - 3 . 5

-4

-4.5

-5

-5.5

_ i i i i 1 i i

-

'-

_

-

spronsO Yeatts

< i I i i .

.|ncand Marshall (1969)

, i 1 , , i i 1

• i i i | - r

\

, , • , 1 ,

1

CaSO^

1 1 1 1 1

—1—I

(0

—I [—i—I r -1 •

= CaSO4(aq) :

-_

-

_-

-_

\ ^ -

• i i i i i ('

50 100 150 200 250 300 350

Fig C.45: Logarithm of the equilibrium constant for the reaction CaSO.$(anhydrite) ** CaSOrfag) between 0 and 350°C at Psat.

CUDO

— -11

-11.5

-12

-12.5

o•oA•ffl

o

- sprons.jncBlount (1977)Strubel (1967)Melcher (1910)Templeton (1960)Malininecal. (1969)Felmy etal. (1990)Jiang (1996)

\ O

BaSO fs) = Ba+ '+ S O , "4 4

I i i i , I i i

50 100 150

T (°<

200 250

D:

300

Fig C.46: Logarithm of the solubility product of barite between 0 and 300°C at Psat.

_Appendix C:24

- 2 4 8 -

JNCTN8400 99-079

CUDO

-5.6

-5.8

-6

-6.2

-6.4

-6.6 -

-6.8

- | 1 T"

O sprons.jncO Felmyetal. (1990)

20 40 60 80 100

Fig C.47: Logarithm of the solubility product of celestite between 0 and 100°C at1 bat.

-10

-15

-20

-25

I FeSAc) + 2H+ + Cl" + R,O = FeCP + 2H.,S(aq) + L/2O9(g)

1 r ' ^ ' T ' '

sprons.|ncO Crerar ec al. (1978)

100 150 200 250 300

T

Fig C.48: Logarithm of the equilibrium constant for the reaction pyrite + 2 H+ + Cl'+ H2O « F e O + 2 H2S(aq) + 1/2 O2(g) between 0 and 300°C a: Psat.

.Appendix C:25

- 2 4 9 -

JNCTN8 400 99-079

. FeS2(c) + 2Hf + 2C1" + H2O = FeCl2(aq) + 2H1S(aq) + l/2O,(g)

60O

-10

-12

-14

-16 -

-18

i—i—i—|—i—i—i—i—|—i—r

o

sprons.jncO Crerar et al. (1978)

I . i , i I

270 280 290 300 310 320 330 340 350

T (°C)

Fig C.49: Logarithm of the equilibrium constant for the reaction pyrite + 2 H+ +2 Cl- + H2O * FeCl2(aq) + 2 H2S(aq) + 1/2 O2(g) between 270 and 350°C at Psat.

4

3.5

3

~> s

i i i | . i i |

-

-

- O

1 , I 1 , I , 1

1 1 1 | I

FeS(c) +

i

o

2H+ =

| 1 1 1

— sprons.jncBcrner (1967)

1

Fe2%H2S,g) :

i , , ,

20 40 60 80 100

Fig C.50: Logarithm of the equilibrium constant for the reaction pyrrhotite + 2 H+

** Fe2+ + H.2Sfaq) between 0 and 100°C at 1 bar [calculated in the present study usinglog K= -21.9 at 25°C (Maronny. 1959) for the reaction H2S(g) » 2 H+ + S2-)].

_Appendix C;26

- 2 5 0 -

JNCTN8400 9 9 - 0 7 9

O

4.5

4; FeS(c) + 2H+ + C!" = FeCl+ + K,S(aq)

1.5

0.5

"T 1 1 1 1 V

First phase transitionia pyrrohcite

i

o1 I I

- spronsCrerar

1 >

50

.jncetal. (1978)

, i i

100. , • f

150

T

O

200

i—i—i r—

250

o

300

Fig C.51: Logarithm of the equilibrium constant for the reaction pyrrhotite + 2 H+ +Cl- ** FeCl+ + H2S(aq) between 0 and 300°C at Psat.

7.5

7

6.5

to 6o

5.5

5

4.5

4

I FeS(c)-

-

1 1

1 1

1 1

1 1

1 1

1 I

1 1

1 i

f 1

i p r

: ^

-" 1 T1 I

• 2 H *

i i i

1 1 '

+ 2C1"

, i ,

i i i 1

= FeC]2

o1

i - i i | i - i r

aq) + HnS(aq)

second phasein

transitionpyrrhotite

o1 , , , ,

1 1 1 1 1 1

/

/

- sprons.jncCrerar et al.

, , , , j

A

-_

', '

| ,

, ,

, |

1 1

1 ,

| ,

1 M

|

, 1

|

(1978) -

, , i , •

270 280 290 300 310 320 330 340 350

Fig C.52: Logarithm of the equilibrium constant for the reaction pyrrhotite + 2 H+ +2 Cl- * ¥eC\2(aq) + H2S(aq) between 270 and 350°C at Psat.

_AppendixC:27

JNCTN8400 99-079

20

-20

-30

-40

—1 1 1 1 "

l/3Fe3O4(c) + (2-b)H+ = Fe(OH) (4/3-b)H,O:

A-"

1

- - sprons.jnc; b = 1

- - - - - sprons.jnc; b = 2

sprons.jnc; b = 3

onoA

Sweeton and Baes

Sweeton and Baes

Sweeton and Baes

Sweeton and Baes

(1970)*;b = 0

(1970)', b = 1

(1970)*;b = 2

(1970)';b = 3

* - calculated using the equation and data in Table 4 of this referenceI . - i t_—i—i [ i—i—i—i I i i ' • I i i i i I ' i i

50 100 150 200 250 300

bJjO

Fig C.53: Logarithm of the equilibrium constant for the reaction 1/3 magnetite +(2-b) H+ + 1/3 H2(g) •* Fe(OH)b(2-bH + (4/3-b) H2O (b = 0, 1, 2, 3) between 0 and300°C at Psat.

-9.5

-10

-10.5

-11

-11.5 I-

-12

-12.5

-13

1 1 1 1 1 1 1 . 1 1 1 1 1 1 1 1 1

-

-

: o•_ O .

sprons.jnc

O Strubel (1965)*O Richardson and Holland (1979)

7 * solubility products retrieved from the results- of this study by Richardson and Holland (1979)

- i

. 1 ' • ' '

CaF2(c) -

X

XX

\

i 1 i i i i

1 i . . i

n 2+ _— "Ca + 2F

-

\ \

\ ~:

\\

N-50 100 150

T(°C)200 250 300

Fig C.54: Logarithm of the solubility product of fluorite between 0 and 300°C atPsat.

_Appendix C.28

- 2 5 2 -

JNCTN8400 99-079

16

14 -

X

10 -bO

bDO

1 1 1 1 1 1 1 1

Clinochlore (7A)

Mg-Montmorillonite ^ ^ ^ / ^ ^ v t * ^

>K % ' ' * y Na-Montmorillonite/

/

Kaolinite n^TTi^Tvt (Beidelht-Na1 1 1 1 1 1 1 !

1 1 1

Albice

i i i

log

Fig. C.55: Stability relations among minerals and aqueous solutions in the systemNa2O-MgO-Ai2O3-SiO2-H2O at 19°C and 1 bar. Symbols represent compositionsof deep groundwaters in Japan (= 1000 samples).

IN+X

bD

16

14 ~

12 -

10 ~

1 1 1 1 1

Mg-Montmorillonite

X

: : ^

— x % * ^ K *

Kaolinitei i i i i

I i I

Clinochlore

" ^ ^ ^

"1 —K-Beidellite

l i i i

(7A)

JtJ

• —

f

1 1 1 1

x —< K * /

-

K-Montmorillonite

i i i~~ r

3

log

Fig. C.56: Stability relations among minerals and aqueous solutions in the systemK^O-MgQ-AhiO^-SiC^-r^O at 19°C and 1 bar. Symbols represent compositions ofdeep groundwaters in Japan (= 1000 samples).

_Appendix C29

5 3 -

JNCTN8400 99-079

X

60O

I 1

-

-K

_ >' K X

Kaolinite

i i

1 1 F 1

K-Montmorillonite

i i i i

i i i i

Na-Montmorillonite

i i i i

-

-

I I

i i

-

i

log (^Na+/flH+)

Fig. C.57: Stability relations among minerals and aqueous solutions in the systemNa2O- K2O- MgO-A]2O3-SiO2-H2O at 19°C and 1 bar. Symbols representcompositions of deep groundwaters in Japan (= 1000 samples).

CN

16

14

12

10

60O

~i i i i i i i i i i i—i i i 1—i 1—i r

Clinochlore (7A)

Mg-Montmorillonke

Laumontite

i i i i

9 10 11 12 13

log (aCa2+/au+2)

14 15 16

Fig. C.58: Stability relations among minerals and aqueous solutions in the systemCaO-MgO-AtaO^-SiOo-t^O at 19°Cand 1 bar. Symbols represent compositionsof deep groundwaters in Japan (= 1000 samples).

.Appendix C:30

- 2 5 4 -

JNC TN8400 99-079

o

-4

-6 -

K 0 . 6 M .25A 12.3S H+=

0.3 AI(OH)3 (c)+ 1.5 SiO-,(aq)

ffi

0.25Mg2

o••+o

- sprons ,jnc;

" sprons.jnc;<194d194 d<87d87 d43 d<77d

gibbsite

boenmire <)•

•AH

77 di i "j J

< I i*i a

112 d<91 d91 d= 32d44 d

50 100 150 200 250

T

Fig C.59: Logarithm of the equilibrium constant for the reaction illite + 0.9 H2O1.1 H+ « kaolinire + gibbsite + 1.5 SiO2fa^J + 0.6 K+ + 0.25 Mg2+ between 0 and250°C at Psat [experimental data from Aja et aL (199 lb)].

_Appendix C:31

- 2 5 5

JNCTN8400 99-079

Appendix D: Calculated and Experimental EquilibriumConstants of Aqueous Reactions asFunctions of Pressure and Temperature

- 2 5 6 -

JNCTN8400 99-079

-11.5

-12

T I I 1 I I I * I I I

50

•oA

- sprons.jncAckermannHarned ancNoyes et al.Fisher and

(1958)Robinson

(1907)3arnes (19

(1940)

72)

I • .

100 150

T

Fig. D.I: Logarithm of the equilibrium constant for the reaction H2O ** H+ + OH-between 0 and 150°C at Psat.

-6.2

-6.6

-6.7

-6.8

C O0(aq) + H.O = HCO " + H+ '.

0DO+•ffl0A

~ sprons.jncCurry and Hazeiton (1938)Nasanenetal. (1961)Harned and Bonner (1945)

Read (1975)Nasanen (1947)

Ryzhenko (1963)Patterson et al. (1982)Nakayama (1971a)

ffl

50 100

Fig. D.2: Logarithm of the equilibrium constant for the reactionHCO3- + H+ between 0 and 150°C ar Psat.

_AppendixD:1

- 2 5 7 -

JNCTN8400 99-079

O

—i i r

E3 E3

offlOVA

- sprons jncNasanen (1946)Cuta and Strafelda (1954)Harned and Scholes (1941)Ryzhenko (1963)Patterson et al. (1984)Nakayama (1971a)

50 100 150 200

T

Fig. D.3: Logarithm of the equilibrium constant for the reaction HCO^- «* H+CO32- between 0 and 200°C at Psat.

-6.4

-6.6

-6.8

- H^S(aq) = H+ + US

t>J3O

-i 1 1 r-

V

o•oV

- sprons.jncWright and Maass (1932)Loy and Himmelblau"(19&l)Ringbom (1953)Ellis and Giggenbach (1971)

100

T(°C)

150 200

Fig. D.4: Logarithm of the equilibrium constant for the reaction HiSCaq) •* H+HS- between 0 and 200°C at Psat.

_Appendix D:2

- 2 5 8 -

JNCTN8400 99-079

-I

-3

o

too

-5

-6

-7

i I

HSO" =H+ + SO/4 4

oD•O

- sprons.jnc

Finer etal. (1977)Lietzke et al. (1961)

Dicksonecal. (1990)Marshall and Jones (1966)

o

o:

50 100 150

T (°

200 250 300

Fig. D.5: Logarithm of the equilibrium constant for the reaction HSO4- ** H+

SO42- between 0 and 300°C at Psat.

oA

O o

•OA•+

- sprons.jncBroene and DeVries (1947)Ellis (1963)Aziz and lyle (1969)Ahrland and Kullberg (1971)Ryzhenko (1965)Richardson and Holland (1979)

-4.140

Fig. D.6-. Logarithm of the equilibrium constant for the reaction HF(aq) ° H+ + F-between 0 and 150°C at Psat.

_Appendix D:3

- 2 5 9 -

JNCTN8400 9 9 - 0 7 9

H3B O3(aq) + OH" = H.,B O^ +

{ B(OH)3(aq) * OH" = B(OH)4"

sprons.|ncMesmerecal. (1972

1.5

Fig. D.7: Logarithm of the equilibrium constant for the reaction H^BO^faqJ + OH-H2BO3- + H2O between 0 and 300°C at Psat.

o

-2.5

-3

.3 s

-

o

i —r

>

1

sprons.|ncRead (1988)

1

> . i I i

1

1 ' 1 '

H3PO4(aq)

I . I .

1 1 r ~

= H^P O." H2 4

i 1 I

" 1

H H + •

II

I!

,,

,

-

1 1

1 1

1 I

1

50 100

T(°C)

150

Fig. D.8: Logarithm of the equilibrium constant for the reactionH2PO4- + H+ between 0 and 200°C at Psat.

200

_Appendix D 4

- 2 6 0 -

JNCTN8400 99-079

7.5

7

6.5

6

5.5

5

4.5 -

4 -

3.5

1

- - - • •

o•o

I . , 1 . . . 1

— sprorjs juc; Ps.it

- sprons jnc, 1 kb- sprons jiici 2 kb

Read (19821.0 001 kb

Read (1982), 1 kb

Read (19821; 2 kb

DOAfflV

i . . . i . . .

Hitch and Mcsmei (l<)76)

Bates and Pinching (1149Wright Mil. (1961)

NOJIK (1907)'

Quist and Marshall (1968

J — I - I I -r- I

' - recalculated by Fisher and Barnes (1972)

OH" = NH3(aq) +

40 80 120 160 200

T (°C)

240 280 320

Fig. D.9: Logarithm of the equilibrium constant for the reaction NH4+ + OH" **' + H2O between 0 and 310°C and pressures from Psat to 2 kb.

beo

-4.7

-4.8

-4.9

-5

-5.1

-5.2 -

-5.3

I —I T - I —I

-Q- H+

•o

- sprons.jnc

Noyes (1907)*

Fisher and Barnes (1972)

Mesmeretal. (1989)

*- recaJculared by Fisher and Barnes (1972), i , I , , , I i . i I . i

20 40 60 80 100 120 140

Fig. D.10: Logarithm of the equilibrium constant for the reaction CH3COOH **CH3COO- + H+ between 0 and 150°C at Psat.

_Appendix D:5

- 2 6 1 -

JNCTN8400 99-079

-8.5

; SiO2(aq) + HnO = HSiO3'

-9-5

-10

O

-10.5

H SiO4"

oDOAfflV•

- sprons, jnc

Busey and Mesmer (1977)Seward (1974)Roller and Ervin (1940)

Harman (1928)Sehwarz and Muller (1958)van Lier et al. (1960)Greenberg and Price (1957)

50 100 150 200 250

T

300

Fig. D.I 1: Logarithm of the equilibrium constant for the reactionH3S\O4- + H+ between 0 and 350°C at Psat.

350

-3

-3.5

-4

so -4.5o

-5

-5.5

-6

\ i i T i i r i

A13++ H2O =A1(OH)2+ + H+

D

••oAXo+

- sprons.jncMay « al. (1979)Brown ct al. (1985)Couturier et al. (1984)

Palmer and Wesolowski (1993)Frinkand Peech (1963)Schofield and Taylor (1954)Volokhov cc al (1971)

20 40 60 80 100

T(°C)

Fig. D. 12: Logarithm of the equilibrium constant for the reaction AI3+ + H2O **AJOH2^ + H+ between 0 and 100°C at 1 bar.

_Appendix D:6

6 2 -

JNC TN8400 99-079

-12

-13

sprons.jncO Wcsolowsb and Palmer (1994)

20 40 60 80 100

T(°C)

Fig. D.I3: Logarithm of the equilibrium constant for the reaction AJ3+ + 2 HjO* A1(OH)2

+ t 2 H * between 0 and 100°C at 1 bar.

-10

-12

-14

-16

-18 -

; AI + 3H^O = Al(OH) (aq) + 3H+

-20

-22

X)

O

O

G 5prons.|ncO Wesolowski and Palmer (1994)

20 40 60 80 100

T

Fig. D.I 4: Logarithm of the equilibrium constant for the reaction A13+ + 3 HiOM(OH)iCaqJ + 3 H+ between 0 and 100°C at 1 bar.

_ Appendix D:7

- 2 6 3 -

JNCTN8400 99-079

O

o

T(°C)

Fig. D.I 5: Logarithm of the equilibrium constant for the reaction Al3+ + 4 H2O «*AJ(OH)4- + 4 H+ between 0 and 100°C at 1 bar.

M g2+ + H O = MgOH+ + H+

-10

-11

-12 - 0••

- sprons.PalmerMcGee

Hosted

nc

and Wesolowsand Hosteller

er (1963)

kf (1997)(1975)

50 100 150

T

Fig. D.16: Logarithm of the equilibrium constant for the reaction Mg2+ + H2O **MgOH+ + H+ between 0 and 150°C at Psat.

_Appendix D.8

- 2 6 A -

JNCTN8400 99-079

-5

-7.5

bo

o

-12.5

-15

= CaOH+ + H+

o•oA

- sprons.|nc (Psar)- sprons.jnc (0.5 kb)- sprons.|nc (1 kb)

0.5 kb; Seewald and Seyfned (1991)1 kb; Seewild and Seyfried (199 L)*Bates etal. (1959)Gimbletc and Monk (1954)

* - reinterpretation of data of WaJther (1986)i i i i I * i i i I 1

100 200 300 400

Fig. D.17: Logarithm of the equilibrium constant for the reaction Ca2+ + H2OCaOH+ + H + between 0 and 450°C and pressures from Psat to 1 kb.

CUDO

-0.8

-0.9

-1

-1.1

-1.2

-1.3

-1.4 -

-1.5

CaHCO3+ = Ca2+ + HCCT

• sprons.jncPlummer and Busenberg (1982!

20 40 60 80 100

Fig. D.18: Logarithm of the equilibrium constant for the reaction CaHCC>3+

» Ca2+ + HCO3- between 0 and 100°C at 1 bar.

_Appendix D 9

2 6 5 -

JNCTN8400 99-079

-3

60O

-3.4

-3.6

-3.8

-4

-4.2

CaCO3(aq) = Ca'+

_J 1 L_

20

2 _

T T

sprons.|ncO Plummer and Busenberg (19821• Reardon and Langmuir (1974)

40 60 80 100

Fig. D.I 9: Logarithm of the equilibrium constant for the reaction CzCO^(aq) •Ca2+ + CO3

2- between 0 and 100°C at 1 bar.

-2.4

-2.6 -

-2.8 -

o- -3.2

-3.4 -

-3.6

-3.820

. . . . . . . . .

- I -L -1.28 (Hasegavraetal., 1970)

~ SrCO3(aq) = Sr2+ + CO^2 "

1 . 1 1 , . 1 . . 1

1 1 1 1 1 1 1

sprons.jnc• Busenberg et al. (1984)

-

40 60 80 100

T

Fig. D.20: Logarithm of the equilibrium constant for the reactionSr + + CO32- between 0 and 100°C at 1 bar.

_Appendix D:10

- 2 6 6 -

JNCTN8400 99-079

-2.8

w. -3

-3.2

-3.4

-3.6

o

BaCO^aq) = Ba2

• ~ sprons |nc• Busenberg and Plummer (1986

O Palmer and Van Eldik (1983)

j

Y

- 3.78 (Benes and Selecka, 1973)

20 40 60

T

80 100

Fig. D.21: Logarithm of the equilibrium constant for the reactionBa2+ + CO3

2" between 0 and 100°C at 1 bar.

o

-2.6

-2.1

-3

-3.2

-3.4 -

-3.6

MgCO3(aq) = Mg~

6

A

1

0•

u0A

s

1

- sprons.jncSiebert and Hosteller {1977)Reardon and Langmuir (1974)Greenwald (1941)Raaflaub (1960)Garrels et al. (1961)Nakayama (1971b)Larson et al. (1973)

20 40 60 80 100

Fig. D.22: Logarithm of the equilibrium constant for the reactionMg2+ + CO 3'- between 0 and 100°C at 1 bar.

_Appendix D 11

- 2 6 7 -

JNCTN8400 99-079

-9

-10

-11

: Sr2+ + H,O = SrOH+ + H+

-13

-14

-15

I ' ' ' I I 1 ' ' I " ' | " ' I ' " I 1 " I

sprons.jncO Gimblett and Monk (1954)

i , I , , , I , i , I i i

25 50 75 100 125 150

T

Fig. D.23. Logarithm of the equilibrium constant for the reaction Sr2+ -t- HjOSrOH+ + H+ between 0 and 150°C at Psat.

-4

-5

-6

"7

-8

-9

-10

-11

F t + H O = FeOH+ + H

_, I

•nOA

- sprons.jncSweecon and Baes (L970)Tremaine and LeBlanc (1980)Mesmer (1971)Johnson and Bauman (1978)

50 100 150 200 250 300 350

Fig. D.24: Logarithm of the equilibrium constant for the reaction Fe2+ + H2OFeOH+ + H+ between 0 and 35O°C at Psat.

_AppendixD 12

— <L 0 O

JNCTN8400 99-079

MlO

-10

-12

-14

-16

-18

-20 -

-22

-24

1 Fe 2 +

: JFe2+ + 2

i .

. .

i .

i .

i i

, ,

i

-" I I I i

i i i i | i i i i | i i i

+ H 2 O = FeO(aq) + 2 H +

H 2 O = Fe(OH) 2 (aq) + 2H+}

T , , , , , ,

O

•o

, 1 . ,

1 1 ] 1 1 1 1 1 1 1 1 1

o \ o

1

II

I.

,1

> 1

1 1

t 1

1 1

1 1

1 1

- sprons.jnc

Sweeton and Baes (1970)

Tremaine and LeBlanc (1980)

-

-

, , 1 , , , , 1 , , , ,

50 100 150 200 250 300 350

T

Fig. D.25: Logarithm of the equilibrium constant for the reaction Fe2+ + 2H2OFe(OH)2(aq) + 2H+ becween 0 and 350°C at Psat.

-16

-18

-20

-22 -

to -240

-26 \-

-28

-30

-32

-

: fFe2+ +

-

-

-

-

A1 1 1

| 1 1 1

2H2O =

3H2O = ]

//

i , , ,

> I i i

HFeCT i

Fe(OH)3"

D

, i , , ,

i i i i i

-3H*

+ 3H+(

D

, i , , ,

1 i '

n

n. i ,

i i i 1 i

^ ^

n

i i - i | i i i i

• ~ — — '

D :

-

— sprons.jncSweeton and Baes (1970)Tremaine and LeBlanc (1980)

. i i 1 i

-

-

50 100 150 200 250 300 350

Fig. D.26: Logarithm of the equilibrium constant for the reaction Fe + + 3 H2OFe(OH) v + 3 H+ between 0 and 350°C at Psat.

_Appendix D:13

- 2 6 9 -

JNCTN8400 99-079

X,00O

NaCl(aq) = Na+

Pearson et al. (1963), Psat

Oelkers and Helgeson (1988); 0.5 kb

Oelkers and Helgeson (1988); 1.0 kb

Oelkers and Helgeson (1988); 1.5 kb

Oelkers and Helgeson (1988); 2.0 kb

Oelkers and Helgeson (1988); 2.5 kb

Oelkers and Helgeson (1988); 3.0 kb

Oelkers and Helgeson (1988); 3.5 kb

Oelkers and Helgeson (1988); 4.0 kb

500 600

T(°C)

Fig. D.27: Logarithm of the equilibrium constant for the reaction ~NaC\(aq)Na+ + Q- between 0 and 600°C and pressures from Psat to 4 kb.

1.5

O

1 -

0.5 -

0 -

-0.5 -

-1

-

_-—

•o

1 1 1 1

i

— sprons.jncMiller andButler andRichardson

* dissociation constanti , i i , 1 , ,

i i | i i i i | —r—

\

Kester (1976)*Huston (1970)*and Holland (1979)

5 retrieved by Richardson and, 1 , , , , 1 ,

-i 1 r-

\

Holland

1 ' ' ' ' 1

NaF(aq) =

(1979)1 i i , , 1

—i—i—i—i—

Na+ + F -

r

-

•V' \ :

50 100 150T(°C)

200 250 300

Fig. D.28: Logarithm of the equilibrium constant for the reactionNa+ + F- between 0 and 300°C at Psat,

_Appendix D:14

- 2 7 0 -

JNCTN8400 99-079

-0.5 -

-1

-1.5 -

-2.5 -

-3

—r r i

i .

. ,

,

-

- o

-

1

I T

- sprons.jncOscaison ec aJPokrovski et a

i I , , ,

i '

(1988a). (1995)

l i i

1 ' 1 ' ' '

o

. i l l , !

1 1

, |

NaSO " =4

\

, I I 1 1 I

1 1

Na+

' ! ' '.

f SO " 2 -4

-

, i X ^

50 100 150

T (

200 250 300

Fig. D.29: Logarithm of the equilibrium constant for the reaction NaSO/fNa+ + SO42- between 0 and 330°C at Psat.

O

-0.1

-0.2

-0.3

-0.4

-0.5

-0.6

-0.7 -

-0.8 -

-0.9

NaB(OH)4(aq) = Na+ +• B(OH)4' j

• sprons.jnc

Pokrovski et al. (1995)

_J I I I [_ _J I L_

\ "

50 100

T (°

150 200

Fig. D.30: Logarichm of the equilibrium constant for the reaction NiB(OH)^(aq) •Na+ + B(OH)<- between 0 and 200°C at Psat.

.Appendix D;15

- 2 7 1 -

JNCTN8400 99-079

0.5

O

-0.5

-1

-1.5

-2 • sprons.jnc; 0.1 kb*Oscarson et al. (1988b)

0.128 kb at 320°Ci , , I , , , i I

1 r—i 1

Na(CH COO)(aq) =

270 280 290 300

T

310 320

Fig. D.31: Logarithm of the equilibrium constant for the reactionNa+ + CH3COO- between 270 and 320°C at Psat.

330

-0.8

-1

-1.2

-1.4 -

-1.6 -

-1.8 -

-2 -

-2.2

1 ' ' ' ' 1 '

T INaHSiO-^aq) = Na+ ^ HSiO3"]

'_ ^ ^ (

/

; /

/ , , , , i , , , , i , , ,

i • •

, «

, i , , . i ,

• i . | i

\

sprons.jnc• Seward (1974)

, , , 1 i i , ,

50 100 150 200

T ( ° C )

250 300

Fig D.32: Logarithm of the equilibrium constant for the reaction« Na+ + H3SiO4" berween 0 and 300°C at Psat.

_AppendixD:16

- 2 7 2 -

JNCTN8400 99-079

-0.6

-0.8

-1

-1.2 -

O

~ -1.4

-1.6

-1.8 -

0

- v

o

1 ,

, ,

1 , ,

- ooV

1 I 1 ' 1 1 1

<

sprons jncRighellato and Davies (1930)Jenkins and Monk (1950)Quistetal. (1963)Truesdell and Hostetier (1968)

1 i

1 ' '

1

1 1 1

K S O ; = K-

\N

1

i i i

1 _

4

-

-

N50 100 150 200

Fig. D.33: Logarithm of the equilibrium constant for the reaction KSO4- ** K+ +SO42- between 0 and 200°C at Psat.

0.5

0

-0.5

-1

-1.5

_2

-2.5

-3 P

sprons.jncGillespic et al. (1992)'Johnson and P^Tkowicz (1978)Majerand Stulifc (1982)

°

+ = Mg+2 + c r j

• P (bar) = 103 at 25O°C; 110 at 275 and 300 °C; and 132 at 325 °C

, , I , I , I I I , I , I I , , , [ I I , I I , , , , I

0 50 100 150 200 250 300 350 400

Fig. D.34: Logarithm of the equilibrium constant for the reaction MgCI+

+ Cl- between 0 and 350°C at Psat.

_Appendix D:17

- 2 7 3 -

JNCTN8 400 99-079

60 -6o

-10

-12

o•

• sprons.jnc: 0.5 kb• sprons.jnc: 1,0 kb• sprons.jnc: 1.5 kb• sprons.jnc: 2.0 kb• sprons.jnc: 3.0 kb• sprons.jnc: 4 kb

Franrz and Marshall (1982): 0.5 kbFranc and Marshall (1982): 1.0 kbFranrz and Marshall (1982): L.5 kbFrantz and Marshall (1982): 2,0 kbFrantz and Marshall (1982): 3.0 kbFrantz and Marshall (1982): 4.0 kbSaccocia and Seyfried (1990): 0.5 kb

_L JL _1 I I I I I l_

300 350 400 450 500 550

T

Fig. D.35: Logarithm of the equilibrium constant for the reaction MgCl+

+ Cl- between 300 and 600°C and pressures from 0.5 to 4 kb.

600

Mg2+

-3

-3.5

-4.5

- l 1 1 ] 1 1 1 r T 1 1 1 1 1 r~ -T 1 1 1 1 i r-

M g F+ = Mg+" + F -

•To

- sprons.jncCadekctal. (1971)*Tanner er al, (1968)*

Richardson and Holland (1979)Majer and Stulik (1982)

* Dissociation constants retrieved by Richardson and Holland (1979). . . I i i , i I i i L _ I I I

50 100 150 200 250 300

Fig. D.36: Logarithm of the equilibrium constant for the reaction MgF+

+ F- between 0 and 300°C at Psat.

.Appendix D 18

- 2 7 4 -

JNCTN8400 99-079

-1

-3

-4

V

V

••fflo

- sprons.jnc

Williams-Jones and Seward (1989)Allakhverdov (1985)Ramecte (1986)

Majer and Stulik (1982)Johnson and Pytkowicz (1978)Gillespie et al. (1992)*

CaCI+ = Ca*~ t Cf

P (bar) = 103 at 250°C; 110 at 275 and 300°C; and 132 at 325*C-J- 1 1 1 1 I I 1 I 1 I I I I I I I L _ _ l L _ J 1 I I 1 I I

50 100 150 200 250 300 350

T

Fig. D.37: Logarithm of the equilibrium constant for the reaction CaCI+ rt Ca + •CI- between 0 and 35O°C at Psat.

1

0

-1

14bD

•S -3

-4 1

-5 -

-6

O

sprons.|nc

Ramette (1986)

Williams-Jones and Seward (1989)

50 100 150 200 250 300 350 400

Fig. D.38: Logarithm of the equilibrium constant for the reaction CaCljfaf) a Ca2+

+ 2 Cl- between 0 and 35O°C at Psat.

_Appendix D.19

- 2 7 5 -

JNCTN8400 99-079

MlO

-4

-6 -

-12

1 1 1 1 1

° •B= • _f*(kl — — ri

O

- sprons.jnc:- • - sprons.jnc:

- - - - - sprons.jncsprons.jnc:

— — - sprons.jnc:

, i i , 1

—•

"•• —

0.5 kb1.0 kb

1.5 kb2.0 kb3.0 kb

4.0 kb

: . : _ ; ;

o•D

•o•

1 ' '

•-£

. - • • ^

Frantz andFrantz andFranrz andFrantz andFrantz andFranrz and

1 , 1

1 ' 1

CaCl+

~ —©-

- _"."L •-

~" * — - -. p

Marshall (1982)Marshall (1982Marshall (1982)Marshall (1982)Marshall (1982)Marshal] (1982)

1

= Ca+2 + Cl" -

• 0.5: 1,0

: 1.5. 2.0:3.0: 4.0

i

-

— - — -<>

~ " - • - . _ .11

-

kbkb

kbkbkbkb

,

-

_-•

400 450 500 550 600

T

Fig. D.39: Logarithm of the equilibrium constant for the reaction CaCl+ ** Ca2+

+ Cl- between 400 and 600°C and pressures from 0.5 to 4 kb.

.1 (L

•2 -4

-6

—I 1 1— - i 1 r~ - i 1 1 j I 1 V

CaCL,(aq) = CaCT

sprons.jnc: 0.5 kb. . . _ sprons.jnc: 1.0 kb

- - - - - sprons.jnc. 1.5 kbsprons.jnc- 2.0 kb

— — - sprons.jnc. 3 kbsprons.jnc: 4 kb

©

Franrz and Marshall (1982): 0.5 kbFrantz and Marshall (1982): 1.0 kbFrantz and Marshall (1982): 1.5 kbFranrz and Marshall (1982): 2.0 kbFranrz and Marshall (1982): 3.0 kbFranti and Marshall (1982): 4.0 kb

400 450 500 550 600

Fig. D.40: Logarithm of the equilibrium constant for the reactionCaCl+ + Cl- between 400 and 600°C and pressures from 0.5 to 4 kb.

_ Appendix D 20

- 2 7 6 -

JNCTN8400 99-079

-0.5

-1

-1-5

-2.5

-3

-3.5 -

noAO

— sprons.jncTanner et aJ. (1968)'Cadeketal. (1971)*Aziz and Lyle (1969)*Richa/dson and HoJIand (1979)Majer and Stulik (1982)

CaF+ = Ca2+ + F

* Dissociation constants retrieved by Richardson and Holland (1979). i , . I . , , . I i . i , I . . , . I , .

50 100 150 200

T (°C)

250 300

Fig. D.41: Logarithm of the equilibrium constant for the reaction CaF+ ** Ca2+

between 0 and 300°C at Psat.

0.8

0 -

-0.2

sprons|nc

Majer and Stulik (1982)

= Ba2+ + Cl"

20 40

Fig. D.42: Logarithm of the equilibrium constant for the reaction BaCl+ ° Ba2+ +Cl- between 0 and 100°C at 1 bar.

_Appendix D:21

- 2 1 1 -

JNCTN8400 99-079

60

o

0.3

0.2

0.1

0

-0.1

-0.2

-0.3

-0.4

sprons.jncMajer and Stulik (19821

BaF+ = Ba2+ + F

40 60 80 100T

Fig. D.43: Logarithm of the equilibrium constant for the reaction BaF*- s Ba2+ + F-between 0 and 100°C at 1 bar.

S i d * = Sr"+ + CX

sprons |ncMaiec and Sculik (1982)

-0.320 40 60 80 100

T

Fig. D.44: Logarithm of the equilibrium constant for the reaction SrCl+ ** Sr2+ + Cl"between 0 and 100°C at 1 bar.

.Appendix D 22

- 2 7 8 -

JNCTN8400 99-079

0

-0.1

-0.2

-0.3

to -0.4

-0.5

-0.6 '-

-0.7 -

-0.8

sprons.jnc• Majer and Stulik (1982)

20 40 60 80 100

Fig. D.45: Logarithm of the equilibrium constant for the reaction SrF4- ** Sr2+

between 0 and 100°C at 1 bar.

-2

-2 -4

-6

FeCI* = Fe/+ + Cl" -

o

- - —— —I J

A

sprons.|nc; Psat- sprons.|nc; 0.5 kb- sprons./nc; 1 kb- sprons.jnc; 2 kb

Heinrich and Seward (1990)PaJmer and Hyde (1993)

VbHU•o

Crerar anCrerar etFein et alFein et alFein et al

d Barnes (1976)al. (1978)(1992); 0,5 kb(1992); 1 kb(1992); 2 kb

100 200 300 400 500 600

Fig. D.46: Logarithm of the equilibrium constant for the reaction FeCl+ :

Cl" between 0 and 600°C and pressures from Psat to 2 kb.

_Appendix D:23

- 2 7 9 -

JNCTN8400 99-079

o

-1.5

_2

-2.5

-3

-3.5

-4

—i—i—i—

-

-

-

_

- o* - errors

i i i i

—i 1 r

- sprons.jncPalmer andPalmer and

approximatelyi i i

—i 1 1 1 1 1

Drummond (1988)*Hyde (1993)

the same as indicate;, 1 , , , ,

—i 1—r~i 1 1 1 1—

Fe(CH3COO)+ = Fc

\

[ for the data of Palmer and

— i — i i—i—1 i i i

1 1

;2 + +

X 4

Hyde

, |

i i i i |

CH3COO' :

-

-

-

(1993) 2V

50 100 150

T (°

200 250 300

Fig. D.47: Logarithm of the equilibrium constant for the reaction Fe(CH3COO)+

Fe2+ + CH3COO- between 0 and 300°C at Psat.

-3

-4

-5

-6

-7

-R

, , . . 1 ,

-

-

-

-

-sprons.

• Palmer

1 1 1 1 1

" —.

incand

. | , ,

Drummond

i 1 > i

Fe(CH

(1988)

i - 1 •

3COO)2(aq)

1 ' ' 1

= Fe + 2 + 2

i

, , , . |

CH3COO":

-

-

-

\ -• \ :

I •

50 100 150

T (°

200 250 300

Fig. D.48: Logarithm of the equilibrium constant for the reactionFe(CH3COO)2(%) » Fe^^ + 2 CH3COO- between 0 and 300°C at Psat.

_Appendix D:24

- 2 8 0 -

JNCTN8400 99-079

0

1

2

3

4

5

- 1 1

• o<

-

sprons.|ncC> Wheac and Carpenter (1988)0 Gammons and Seward (1996)

1 1

i i

-

> ^ ^ ^ '-

1 1 1

-

» -

-

50 100 150

T (°

200 250 300

Fig. D.49: Logarithm of the equilibrium constant for the reaction MnClCl- between 0 and 300°C at Psat.

14too

- i. .J

-2.5

-3

-3.5

-4

- O

o

1 1 '

oo

5prons.jncWheat and Carpenter (1988)

1

1

o.

1

MnSO4

^ \

o

(aq)

o

1 1 1 1 1

= M n 2 + + S O 2 " "

4

-

-

,'N

1 , , i ,

50 200 250

T

200

Fig. D.50: Logarithm of the equilibrium conscant for the reaction MnSO^aq) •Mn2^ + SO42- between 0 and 200°C at Psat.

_Appendix D:25

- 2 8 1 -

JNCTN8400 99-079

Appendix E: Calculation Examples:

1- Apparent conventional partial molal Gibbs freeenergy of formation of SiO2fe<7Jat100°Cand 1 bar

2- Apparent molal Gibbs free energy of formation ofquartz at 1 bar and the temperature of transitionbetween a- and /3-quartz

JNCTN8400 99-079

Introduction

To illustrate how equations in the SUPCRT model are evaluated as functions oftemperature and pressure, we calculate the apparent conventional partial molalGibbs free energy of formation of SiOiCuq) at 100°C and 1 bar, and theapparent molal Gibbs free energy of formation of quartz at 574.85°C and 1 barrepresenting P-Tconditions at which a-quartz is converted to /J-quartz (Helgesonetal., 1978).

Example #1: Calculation of AGSiO Jaq), 1 bar , 100°C

The appropriate equation is (Section 4.1):

AGPj = AG°f + {GPT - (7 f t7>),

where,

-1(T-

[T-Q

, ( 11 U-e

"Ia3(P-

1 Ty r

1

Tr-Q

Pr) + a4h

-T+Tr

Q-T

0

IT/ r n

+^;(P

r0 2

i

-P)

Tr(T-Q)

T(Tr-Q)

L

11

. Pr. Tr

1

(4.2.2_20)

and parameters are as defined in Sections 4.1 and 4.2.2. Evaluating the right-hand-side of the latter equation term-by-term using thermodynamic data for

from Appendix A, and conventions in Table 5.1_3, gives:

first term;

-S^Tr(T- r , ) = - 18.0 (cal mor'K"1) (373.15 (K)- 298.15(K) ) = -1350 (cal mol"11,

second term;

-c,

-29.1 (calmolK )

-254.01 (cal mol"1),

373.15(K)ln... f373.15(K)

298.15(K)-373.15(K)+298.15(K) =

_Appendix E. 1

3 -

JNCTN8400 99-079

third term;

a,(P-Pr)=19.0(cal

fourth term;

1.013 (bar) - l(bar) ) = 0.25(cal raol"1),

[2600 (bar) + 1.013 (bar)= 170 (cal moP) In " v " \ — —

[ 2600 (bar) + 1.0 (bar)= 8.5xlO'4(cal mol"1),

(where *F is a pressure- and temperature-independent coefficient = 2600 bar, seeSection 4.2.2.2)

fifth term;

7-0 T-Q

Q-T

0 0 2In

r(r-e)j{rr-e)_

1 1

373.15 (K) - 228 (K) J (298.15 (K) - 228 (K)

228(K)-373.15(K)1 373.15 (K) [ 298.15 (K) (373.15 (K) -228 (K)_[]228 (K) '" ' '

563.2 (cal mol'1),

228(K)2 " [ 373.15 (K) (298.15 (K) -228 (K)) j

(where 0 is a pressure- and temperature-independent coefficient = 228°K, seeSection 4.2.2.2)

sixth term;

T-Q

1

373.15 (K)-228 (K)

2 0 ( c a l K m o r W ) (1.013 (bar) -1.0 (bar)

-2.7xlO4(cal Kmor')ln

9xlO~4 (cal mol'1),

seventh term;

2600 (bar)+ 1.013 (bar)2600 (bar) + 1.0 (bar)

CO = 0.1291xl05(calmor55.58

-1 =-12677.72 (cal mol"1),

[noting that to = cuft rr at temperatures less than 448°K (Tanger and Helgeson,1988), and that values of £, the dielectric constant of H T O ^ (dimensionless) istaken from Weast (1979)]

_Appendix E 2

- 2 8 4 -

JNCTN8400 99-079

eighth term;

.Tv —^— -1 1= -0.1291xl05 (cal mol"-ft, Tr 78.36

-1 U 12745-25 (cal mol"-CQr.

and,

ninth term;

[O.1291xl05(cal mor1)][-5.81xl0"5(K"')](373.15 (K)-298.

-56.25 (cal mol'1),

where the solvent born function, Ypr< jT, at the reference pressure and tempera-ture equals -5.81 x 10-5 K-l (Tanger and Helgeson, 1988).

Adding the results calculated above for the nine terms on the right-hand-side of

Eqn. (4.2.2_20) gives:

G°P.T-G°KTT = -1029 cal mol"1.

Substituting this value into Eqn. (4.1_1) with AG°-SiO2( , from Appendix A givesthe apparent partial molal Gibbs free energy of SiO 2( *7) formation at 100°Cand 1 bar:

AGp T= AG°f+ (G°PiT- G°n. Tr)= - 199190 (cal mol"1) - 1029 (cal mol"1)

= -200219 calmol"1

This agrees closely with the value calculated using SUPCRT and SPRONSJNC(-200229 cal mol-1)- The minor discrepancy may be due to differences inprecision between the two calculation approaches, and/or to differences in thedielectric constant of J-^OfT) at 25 and 100°C as calculated in SUPCRT vs. dievalues reported by "Weast (1979).

Example #2: Calculation of AG° u a r t z l b a r S748SOC

The appropriate equation is (Section 4.1):

= AGf + {GPT

where,

.Appendix E: 3

5 -

JNCTN8400 99-079

Gpj-Gl.TrT

T.

hK.AP-pr)

T

(4.2.1_6)

and parameters are as defined in Sections 4.1 and 4.2.1. The right-hand-side ofthe latter equation can be evaluated term-by-term using thermodynamic datafor quartz from Appendix A, conventions specified in Table 5.1_2, and theconstraints 7*/ = Tr = 298.15°K and T1 + i = 848°K (i.e., 574.85°C - thetemperature of transition from a-quartz to /3-quartz at 1 bar):

first term;

r) = -9.88(cal mol'lK'J) (848(K)-298.15(K) ) =-5432.4 (cal mol'1),

second term;

(T.

T.

11.22(calmor1K-1)^848(K)-298.15(K)-848(K)ln

= -3776.1 (cal mol'1),

848(K)298.15(K)

[noting that although <pj = 1 in this example, the second summation implicit inthis term does not apply because 7"/+i then equals T; (i.e., 848°K)],

third term;

J(2.7xl05-8.2xlQ-3x848(K)x298.15(K)2)(848(K)-298.15(K))1

{ 2x848(K)x298.15(K)

698.1 (cal mol"1),

_Appendix E: 4

6 -

JNCTN8400 99-079

[noting that units for ct and bt are cal K mol"1 and cal mol"1 K-2, respectively,and that although (p j = 1, che second summation in this term does not applybecause Tl+\ then equals T, (i.e., 848°K)],

fourth term;

= 0,

(because the pressure at the transition temperature in this example is equal to Pr)

fifth term;

J AVJt.iT

(because the pressure at the transition temperature in this example is equal to Pr), and

sixth term;

Ar AH

T•=[ t . i

(because T = Ttij).

Adding the results calculated above for the six terms on the right-hand-side ofEqn. (4.2.1_6) gives:

G'P.T-G'KT, = -9907 cal mol"1.

Substituting this value into Eqn. (4.1_1) with AGf iura from Appendix A gives theapparent standard molal Gibbs free energy of formation quartz at 574.85°C and1 bar:

AG" i T= kG°f+[G°pr-G°^Tr)= -204646 (cal mol"1)-9907 (cal mol"1)

= -214553 cal mol'1,

which is in exact agreement with the value calculated using SPRONS.JNC andSUPCRT.

Appendix E 5

- 2 8 7 -