a simple size-based model of phytoplankton communities reveals size-scaling of phytoplankton growth...

15
AMEMR Symposium June 30, 2014 S. Lan Smith S. Lan Smith 1,2 , Markus Pahlow 3 , Chisato Yoshikawa 4 + Agostino Merico 5,6 , Esteban Acevedo-Trejos 5,6 , Yoshikazu Sasai 1 , Kosei Sasaoka 7 , Tetsuichi Fujiki 1 , and Kazuhiko Matsumoto 8 1 Marine Ecosystem Dynamics Research Group, RCGC, JAMSTEC, Yokohama, Japan 2 CREST, Japan Science and Technology Agency, Tokyo, Japan 3 GEOMAR, Helmholtz Centre for Ocean Research, Kiel, Germany 4 Institute of Biogeosciences, JAMSTEC 5,6 Systems Ecology, ZMT and Jacobs University, Bremen, Germany 7 Global Chemical and Physical Oceanography Group, JAMSTEC 8 Development of Environmental Geochemical Cycle Research, JAMSTEC A simple size-based model of phytoplankton communities reveals size-scaling of phytoplankton growth traits in terms of observed allometries Combining traits & trade-offs (Smith et al. JPR Horizons 2014) Sunlight Nutrient Supply α V max μ max chl α V max μ max chl

Upload: jamstec

Post on 08-Dec-2023

0 views

Category:

Documents


0 download

TRANSCRIPT

AMEMR Symposium June 30, 2014S. Lan Smith

S. Lan Smith1,2, Markus Pahlow3, Chisato Yoshikawa4 + Agostino Merico5,6, Esteban Acevedo-Trejos5,6, Yoshikazu Sasai1,

Kosei Sasaoka7, Tetsuichi Fujiki1, and Kazuhiko Matsumoto8

1 Marine Ecosystem Dynamics Research Group, RCGC, JAMSTEC, Yokohama, Japan2 CREST, Japan Science and Technology Agency, Tokyo, Japan

3 GEOMAR, Helmholtz Centre for Ocean Research, Kiel, Germany 4 Institute of Biogeosciences, JAMSTEC

5,6 Systems Ecology, ZMT and Jacobs University, Bremen, Germany 7 Global Chemical and Physical Oceanography Group, JAMSTEC

8 Development of Environmental Geochemical Cycle Research, JAMSTEC

A simple size-based model of phytoplankton communities

reveals size-scaling of phytoplankton growth traits

in terms of observed allometries Combining traits & trade-offs (Smith et al. JPR Horizons 2014)

Sunlight

Nutrient Supply

αVmax

μmax

chl

α

Vmax

μmax

chl

AMEMR Symposium June 30, 2014S. Lan Smith p. 2

‘Leaving mis-leading legacies behind in plankton ecosystem modelling’ Smith, Merico, Wirtz and Pahlow (J. Plankton Res. 2014)

Typical small cell adapted to high-light, low-nutrients

Typical large cell adapted to low-light, high-nutrients

Overall Approach to Modelling Adaptive Response

Combine Traits and Trade-offs

We encourage combining traits with trade-offs based on fundamental principles, more exploratory modelling studies.

AMEMR Symposium June 30, 2014S. Lan Smith p. 3

Combining Traits with a Trade-off for Nutrient Uptake Recent theoretical models of nutrient uptake kinetics (Aksnes & Cao, MEPS 2011; Fiksen et. al. L&O 2013) account explicitly for combined effects of: 1. phytoplankton cell size 2. extra-celleluar diffusion * but not for adaptive response

Optimal Uptake kinetics (Smith et al. MEPS 2009) accounts for adaptive response

* but not for cell size, nor diffusion log NO3 (in seawater)

log

K NO

3

-2.5 -1.0 0.0

-3

-2

-1

0

n = 61 data pts.

0 200 400 600 800 1000

0.0

0.2

0.4

0.6

0.8

1.0

0 200 400 600 800 1000 0 200 400 600 800 1000

Upt

ake

Rat

e

NO3 in incubation expts.

Adaptive Response

Smith et al. (MEPS 2009)

Trade-off

V max

α

�L�o�w��N�u�t�r�i�e�n�t��C�o�n�c�.�����������������H�i�g�h��N�u�t�r�i�e�n�t��C�o�n�c�. New model explains: 1. overall pattern observed by ship-board expts., 2. variability, in terms of size.

data from ship-board expts.Collos et al. (2005)Harrison et al. (1996)McCarthy et al. (1999)

r = 100 μm

r = 20 μm

r = 2 μm

r = 0.2 μm

r = 100 μm

r = 20 μm

r = 2 μm

r = 0.2 μm

New modelSize-only model

K NO

3 (m

icro

mol

L-1

)

NO3 (micromol L-1)

0.001

0.01

0.1

1

10

0.001 0.01 0.1 1.0 10

�N�u�t�r�i�e�n�t��u�p�t�a�k�e��k�i�n�e�t�i�c�s��b�a�s�e�d��o�n��c�e�l�l��s�i�z�e��a�n�d��t�r�a�d�e�-�o�f�f�

Smith et al. MEPS (in press)

These concepts are indeed compatible!

AMEMR Symposium June 30, 2014S. Lan Smith p. 4

�B�a�l�a�n�c�e�d� �G�r�o�w�t�h� �A�s�s�u�m�p�t�i�o�n� �(�B�u�r�m�a�s�t�e�r� �A�m�.� �N�a�t�.� �1�9�7�9�)

V� �=� μQ

�A� �s�i�n�g�l�e�,� �e�x�p�l�i�c�i�t� �e�q�u�a�t�i�o�n�:� μ� �=� �f�(�N�,� �I�)

�i�n�c�l�u�d�i�n�g� �a�d�a�p�t�i�v�e� �r�e�s�p�o�n�s�e�* �*�a�s�s�u�m�i�n�g� �i�n�s�t�a�n�t�a�n�e�o�u�s� �o�p�t�i�m�a�l� � � �r�e�s�o�u�r�c�e� �a�l�l�o�c�a�t�i�o�n

Vmax

α

�O�p�t�i�m�a�l� �U�p�t�a�k�e� �k�i�n�e�t�i�c�s� �(�P�a�h�l�o�w�.� �M�E�P�S�,� �2�0�0�5�;� �S�m�i�t�h� �e�t� �a�l�.� �M�E�P�S�,� �2�0�0�9�)�a�f�f�i�n�i�t�y� �(α�)� � �v�s�.� �m�a�x�.� �u�p�t�a�k�e� �r�a�t�e� �(Vmax�)

� � ∝ fA� � � � � �v�s�.� � � � � � � � � � � � � � � � � � � � ∝ �(1 − fA�)� � � � � � � � � � �.

1 fA 0

�O�p�t�i�m�a�l� �G�r�o�w�t�h� �m�o�d�e�l� �(�P�a�h�l�o�w� �a�n�d� �O�s�c�h�l�i�e�s�.� �M�E�P�S�,� �2�0�1�3�)

� � � � �N� �u�p�t�a�k�e� �(V�^ �)� � �v�s�.� � � � � �C� �f�i�x�a�t�i�o�n� �(μ�^ �I�)� � � � � � � � � � � � � ∝� fV ∝� �(�1� −� �

Qs� − fV�)� � QN

0.5 fV 0

New Simple, Adaptive Phytoplankton model: AdaPFT

Just 1 diff. eqn. for dynamics of C biomass.

+ can easliy calc. chl:C & N:C

AMEMR Symposium June 30, 2014S. Lan Smith p. 5

Non-Adaptive vs. Adaptive models

How do changing env. conditions impact:

Overal ecosystem response to, e.g., climate change or human nutrient inputs?

Realized (modelled) biodiversity?

AMEMR Symposium June 30, 2014S. Lan Smith p. 6

Different Response: Standard PFT vs. Adaptive PFT

both shown for l = 0 (ESD = 1 mm)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 10 20 30 40 50

Monod curves at different Light levels

μ (d

-1)

N (mol m-3)

AdaPFTPFT

I = 100

I = 50

I = 10

I = 1E m-2 d-1 0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 10 20 30 40 50

N = 100N = 10

N = 1

N = 0.1

mol m-3

P-I curves at different Nutrient levels

μ (d

-1)

I (E m-2 d-1)

Parameters for the PFT model were tuned to match the AdaPFT model at high I and high N.

AdaPFT: Inter-dependentm = S(I)Z(I,N)

PFT: Independent Responsem = S(I)f(N)

�O�p�t�i�m�a�l� �G�r�o�w�t�h� �t�r�a�d�e�-�o�f�f�(�P�a�h�l�o�w� �a�n�d� �O�s�c�h�l�i�e�s� �2�0�1�3�)

�r�e�s�o�u�r�c�e� �a�l�l�o�c�a�t�i�o�n�:� � � � �N� �u�p�t�a�k�e� �(V�^ �)� � �v�s�.� � � � � �C� �f�i�x�a�t�i�o�n� �(μ�^ �I�)� � � � � � � � � � � � � ∝� fV ∝� �(�1� −� �

Qs� − fV�)� � QN

0.5 fV 0

AdaPFT grows faster when either resource

becomes limiting.

Optimal use of resources subject to the trade-off

AMEMR Symposium June 30, 2014S. Lan Smith p. 7

0-D (box) model of the mixed layer at stns. K2 & S1

Non-Adaptive PFT vs. AdaPFTa single PFT for each (NPD model), respectively

embedded in the same physical modelFitted to Obs. Data for NO3, chl and PP

AMEMR Symposium June 30, 2014S. Lan Smith p. 8

Tim

e (d

ays)

fV

2010

201

1

201

220

10

2

011

2

012

0.5 0.4 0.3 0.2 0.1 0.0

0

200

400

600

800

1000Ti

me

(day

s)

0

200

400

600

800

1000

Tim

e (d

ays)

fV

2010

201

1

201

220

10

2

011

2

012

0.5 0.4 0.3 0.2 0.1 0.0

0

200

400

600

800

1000

Tim

e (d

ays)

0

200

400

600

800

1000

Non-Adaptive PFT vs. AdaPFT

Turn off Optimization:

constant fAconstant fV

Optimal Resource Allocation

optimize fA | N

optimize fV | N, I

stn. K2

stn. S1

stn. K2

stn. S1

more allocation to light gathering at stn. K2

=> lower fV (lower in winter)

more allocation to nutrient uptake at stn. K2 higher fV <=

(higher in summer)

Applied in a 0-D (box) model of the mixed layer for two time-series stns.

AMEMR Symposium June 30, 2014S. Lan Smith p. 9

Standard PFT vs. Adaptive PFT applied to stns. K2 & S1

More Difference at N-poor stn. S1 only AdaPFT captures early bloom

Less Difference at N-rich stn. K2 Seasonal cycle of chl differs greatly

0

10

20

30

40

0

5

10

15

20

25

0.2

0.4

0.6

0.8

1.0

1.2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.5

1.0

1.5

2.0

2.5

0.07

0.08

0.09

0.10

0.11

Time (days) Time (days)

P. P

rod.

(mg

C m

-3 d

-1)

N (m

mol

L-1

)

chl (

mg

m-3

)

chl:C

(g m

ol-1

)

Bio

mas

s (m

mol

C m

-3)

Q (m

ol N

(mol

C)-1

)

stn K2

0 200 400 600 800 10000 200 400 600 800 1000

P. Production

chl

DIN

Phy C Biomass

chl:C ratio

Q (N:C ratio)

AdaPFT in colorsNon-adaptive PFT (grey) 0

2

4

6

8

10

12

0.0

0.5

1.0

1.5

0.0

0.2

0.4

0.6

0.8

0.10.20.30.40.50.60.7

0.1

0.2

0.3

0.4

0.5

0.6

0.04

0.06

0.08

0.10

Time (days) Time (days)

P. P

rod.

(mg

C m

-3 d

-1)

N (m

mol

L-1

)

chl (

mg

m-3

)

chl:C

(g m

ol-1

)

Bio

mas

s (m

mol

C m

-3)

Q (m

ol N

(mol

C)-1

)

stn S1

0 200 400 600 800 10000 200 400 600 800 1000

P. Production

chl

DIN

Phy C Biomass

chl:C ratio

Q (N:C ratio)

Each model was fitted to data (red dots) using the Adaptive Metropolis algorithm (Smith JGR 2011)

AMEMR Symposium June 30, 2014S. Lan Smith p. 10

New size-based PhyEFT model Size scaling of Traits (input parameters)

as in Wirtz (Mar. Biol. 2013)Dark Light

Adaptive Response to env. (light & N)

Big is better at high N

Small is better at low N

(esp. at high light)0

1

2

3

4

0.2 0.5 2 5 20 50

N = 10 mmol m-3

N = 1 mmol m-3

N = 0.1 mmol m-3

Effe

ctiv

e m

ax. (

Mon

od) g

row

th ra

te

μm

ax (d

-1)

Strong Light Limitation, S(I) = 0.2

0

1

2

3

4

0.2 0.5 2 5 20 50

Effe

ctiv

e m

ax. (

Mon

od) g

row

th ra

te μ

max

(d-1

)

Light Replete, S(I) = 1.0

empirical allometriesLitchman et al. (Ecol. Lett. 2007) Edwards et al. (L&O 2007) Marañon et al. (Ecol. Lett. 2013)

�B�a�l�a�n�c�e�d� �G�r�o�w�t�h� �A�s�s�u�m�p�t�i�o�n� �(�B�u�r�m�a�s�t�e�r� �A�m�.� �N�a�t�.� �1�9�7�9�)

V� �=� μQ

�A� �s�i�n�g�l�e�,� �e�x�p�l�i�c�i�t� �e�q�u�a�t�i�o�n�:� μ� �=� �f�(�N�,� �I�)

�i�n�c�l�u�d�i�n�g� �a�d�a�p�t�i�v�e� �r�e�s�p�o�n�s�e�* �*�a�s�s�u�m�i�n�g� �i�n�s�t�a�n�t�a�n�e�o�u�s� �o�p�t�i�m�a�l� � � �r�e�s�o�u�r�c�e� �a�l�l�o�c�a�t�i�o�n

Vmax

α�O�p�t�i�m�a�l� �U�p�t�a�k�e� �k�i�n�e�t�i�c�s�

�(�P�a�h�l�o�w�.� �M�E�P�S�,� �2�0�0�5�;� �S�m�i�t�h� �e�t� �a�l�.� �M�E�P�S�,� �2�0�0�9�)�a�f�f�i�n�i�t�y� �(α�)� � �v�s�.� �m�a�x�.� �u�p�t�a�k�e� �r�a�t�e� �(Vmax�)

� � ∝ fA� � � � � �v�s�.� � � � � � � � � � � � � � � � � � � � ∝ �(1 − fA�)� � � � � � � � � � �.

1 fA 0

�O�p�t�i�m�a�l� �G�r�o�w�t�h� �m�o�d�e�l� �(�P�a�h�l�o�w� �a�n�d� �O�s�c�h�l�i�e�s�.� �M�E�P�S�,� �2�0�1�3�)

� � � � �N� �u�p�t�a�k�e� �(V�^ �)� � �v�s�.� � � � � �C� �f�i�x�a�t�i�o�n� �(μ�^ �I�)� � � � � � � � � � � � � ∝� fV ∝� �(�1� −� �

Qs� − fV�)� � QN

0.5 fV 0

Cell Size (ESD, mm) Cell Size (ESD, mm)

AMEMR Symposium June 30, 2014S. Lan Smith p. 11

Effective Monod (growth) params. vs. MM params.Burmaster (Am. Nat. 1979) MM kinetics (uptake) + Droop model (Growth) => Monod kinetics (growth)Similarly, we combine OU kinetics (uptake) + Optimal Growth (OG) model => Effective Monod Params.

where

or, equivalently

Now, observed size-scalings for MM & Droop parameters can be used to predict size-scalings for Monod parameters.

AMEMR Symposium June 30, 2014S. Lan Smith p. 12

New size-based PhyEFT model -- with Dynamic N:C ratio

Size scaling of Traits (input parameters)

as in Wirtz (Mar. Biol. 2013)

�B�a�l�a�n�c�e�d� �G�r�o�w�t�h� �A�s�s�u�m�p�t�i�o�n� �(�B�u�r�m�a�s�t�e�r� �A�m�.� �N�a�t�.� �1�9�7�9�)

V� �=� μQ

�A� �s�i�n�g�l�e�,� �e�x�p�l�i�c�i�t� �e�q�u�a�t�i�o�n�:� μ� �=� �f�(�N�,� �I�)

�i�n�c�l�u�d�i�n�g� �a�d�a�p�t�i�v�e� �r�e�s�p�o�n�s�e�* �*�a�s�s�u�m�i�n�g� �i�n�s�t�a�n�t�a�n�e�o�u�s� �o�p�t�i�m�a�l� � � �r�e�s�o�u�r�c�e� �a�l�l�o�c�a�t�i�o�n

Vmax

α�O�p�t�i�m�a�l� �U�p�t�a�k�e� �k�i�n�e�t�i�c�s�

�(�P�a�h�l�o�w�.� �M�E�P�S�,� �2�0�0�5�;� �S�m�i�t�h� �e�t� �a�l�.� �M�E�P�S�,� �2�0�0�9�)�a�f�f�i�n�i�t�y� �(α�)� � �v�s�.� �m�a�x�.� �u�p�t�a�k�e� �r�a�t�e� �(Vmax�)

� � ∝ fA� � � � � �v�s�.� � � � � � � � � � � � � � � � � � � � ∝ �(1 − fA�)� � � � � � � � � � �.

1 fA 0

�O�p�t�i�m�a�l� �G�r�o�w�t�h� �m�o�d�e�l� �(�P�a�h�l�o�w� �a�n�d� �O�s�c�h�l�i�e�s�.� �M�E�P�S�,� �2�0�1�3�)

� � � � �N� �u�p�t�a�k�e� �(V�^ �)� � �v�s�.� � � � � �C� �f�i�x�a�t�i�o�n� �(μ�^ �I�)� � � � � � � � � � � � � ∝� fV ∝� �(�1� −� �

Qs� − fV�)� � QN

0.5 fV 0

N:C ratio depends on

N supply (directly)

Light (inversely) High Ligh => low N:C

Cell Size (inversely) Larger => lower N:C

AMEMR Symposium June 30, 2014S. Lan Smith p. 13

Size-Scaling of Traits => Size-Scaling of Growth Empirical

Size-scalingsResponse depends on both cell size and EnvironmentNew modelling

framework to relate lab. measurements to the dynamic response of phytoplankton communities.

Km < KV

(growth) (uptake)

and the size-scaling for Km depends on light and nutrient environment.

�B�a�l�a�n�c�e�d� �G�r�o�w�t�h� �A�s�s�u�m�p�t�i�o�n� �(�B�u�r�m�a�s�t�e�r� �A�m�.� �N�a�t�.� �1�9�7�9�)

V� �=� μQ

�A� �s�i�n�g�l�e�,� �e�x�p�l�i�c�i�t� �e�q�u�a�t�i�o�n�:� μ� �=� �f�(�N�,� �I�)

�i�n�c�l�u�d�i�n�g� �a�d�a�p�t�i�v�e� �r�e�s�p�o�n�s�e�* �*�a�s�s�u�m�i�n�g� �i�n�s�t�a�n�t�a�n�e�o�u�s� �o�p�t�i�m�a�l� � � �r�e�s�o�u�r�c�e� �a�l�l�o�c�a�t�i�o�n

Vmax

α�O�p�t�i�m�a�l� �U�p�t�a�k�e� �k�i�n�e�t�i�c�s�

�(�P�a�h�l�o�w�.� �M�E�P�S�,� �2�0�0�5�;� �S�m�i�t�h� �e�t� �a�l�.� �M�E�P�S�,� �2�0�0�9�)�a�f�f�i�n�i�t�y� �(α�)� � �v�s�.� �m�a�x�.� �u�p�t�a�k�e� �r�a�t�e� �(Vmax�)

� � ∝ fA� � � � � �v�s�.� � � � � � � � � � � � � � � � � � � � ∝ �(1 − fA�)� � � � � � � � � � �.

1 fA 0

�O�p�t�i�m�a�l� �G�r�o�w�t�h� �m�o�d�e�l� �(�P�a�h�l�o�w� �a�n�d� �O�s�c�h�l�i�e�s�.� �M�E�P�S�,� �2�0�1�3�)

� � � � �N� �u�p�t�a�k�e� �(V�^ �)� � �v�s�.� � � � � �C� �f�i�x�a�t�i�o�n� �(μ�^ �I�)� � � � � � � � � � � � � ∝� fV ∝� �(�1� −� �

Qs� − fV�)� � QN

0.5 fV 0

AMEMR Symposium June 30, 2014S. Lan Smith p. 14

Summary & Conclusions

Adaptive Plankton Functional Type: AdaPFT Optimization of specific growth rate subject to 2 trade-offs: 1. Optimal Uptake (OU) kinetics 2. C (energy) vs. N aquisition

AdaPFT responds quite differently vs. Non-Adaptive PFTs Variable chl & N content => more dynamic Greater variability esp. for chl (observable)

Framework for scaling from obs.-based allometries of Traits to Net Response: Growth! => Effective values of Monod parameters & their size-scalings depend on both: Traits, and Environmental Conditions (through adaptive response)

AMEMR Symposium June 30, 2014S. Lan Smith

Position Available!

Project Scientist or Postdoc@ JAMSTEC

funded for 3.5yrs. by JST