comparison of fuel cell based hybrid vehicles with other alternative systems

Download comparison of fuel cell based hybrid vehicles with other alternative systems

Post on 21-Jul-2015

116 views

Category:

Automotive

2 download

Embed Size (px)

TRANSCRIPT

<ul><li><p>Comparison of Fuel-Cell-Vehicles with Other Alternative Systems</p><p>Dr. Johannes Tpler, Deutscher Wasserstoff- und Brennstoffzellenverband (DWV)</p></li><li><p>05000</p><p>10000</p><p>15000</p><p>20000</p><p>25000</p><p>1920 1960 2000 2040 2080</p><p>Coal</p><p>Nat.Gas</p><p>Oil</p><p>Nuclear Energy </p><p>Wind</p><p>PV</p><p>SOT</p><p>Biomass</p><p>Mtoe [Millions of Tons of Oil Equivalent]</p><p>Quelle: LBST Alternative World Energy Outlook 2005</p><p>Jahr</p><p>A possible Scenario of World Energy</p><p>Solarthermal Electricity</p><p>Geothermal Heat </p><p>Geothermal Electricity</p><p>PV Electricity</p><p>Water Power</p><p>Wind Power</p><p>Solarthermal Heat </p></li><li><p>Future primary energy supply</p></li><li><p>Supply cannot satisfy demand</p><p>Supply outreaches demand by far</p><p>Vertical load curve and feed-in of wind power in E.ON grid</p><p>Vertical load</p><p>Wind power 2007</p><p>Estimated wind power 2020</p><p>Date</p><p>Fluctuating renewable electricity</p></li><li><p>HydrogenElectricity</p><p>or:</p><p>Hydrogen as secondary energy carrier</p></li><li><p>Comparison of netto-storage capacities</p><p>0</p><p>2000</p><p>4000</p><p>6000</p><p>8000</p><p>0 2 4 6 8 10 12 14 16 18 20Zeit in d</p><p>W</p><p>i</p><p>n</p><p>d</p><p>L</p><p>e</p><p>i</p><p>s</p><p>t</p><p>u</p><p>n</p><p>g</p><p>i</p><p>n</p><p>M</p><p>W</p><p>AA CAES</p><p>Pumpspeicher</p><p>H2 (GuD)</p><p>Bei einem Speichervolumen von V = 8 Mio. m</p><p>8 Mio. m3 correspond to the biggest German natural gas caverne fieldFor comparison: Pump storage Goldisthal has a Volume of 12 Mio. m3</p><p>Pump storage5 GWh</p><p>AA CAES23 GWh</p><p>H2 Gas /vapor turbineca. 1.300 GWh (1.3 TWh)</p><p>Time (days)</p><p>W</p><p>i</p><p>n</p><p>d</p><p>P</p><p>o</p><p>w</p><p>e</p><p>r</p><p>i</p><p>n</p><p>M</p><p>W</p><p>Storage volume of V = 8 Mio. m3</p><p>Source: KBB UT</p></li><li><p>Electric Drive</p><p>System Module</p><p>Fuel Cell Stack</p><p>Power Distribution Unit (PDU)</p><p>Hydrogen Storage</p><p>Cooling System</p><p>Daimler, FCell Packaging</p><p>Battery</p></li><li><p>Fuel Cell vehicleMercedes-Benz B-Class</p><p>Lithium-Ionbattery</p><p>Electric motor</p><p>Air module</p><p>Hydrogen tank</p><p>Hydrogen module</p><p>Fuel Cell</p><p>Hydrogen module</p><p>Essential Facts</p><p>1) Vehicle is constructed,fabricated and approvedunder serial condititions.</p><p>2) It was tested by a turn of 125 days around the world with 30.000km</p><p>3) Start of serial productionin 2017</p></li><li><p>B-Class F-Cell</p><p>Next generation of the fuel cell-power train:</p><p> Higher stack lifetime (&gt;2000h)</p><p> Increased power Higher reliability Freeze start ability Li-Ion Battery</p><p>Size- 40%</p><p>[</p><p>l</p><p>/</p><p>1</p><p>0</p><p>0</p><p>k</p><p>m</p><p>Consumption- 16%</p><p>[</p><p>k</p><p>W</p><p>]</p><p>Power+30%</p><p>[</p><p>k</p><p>m</p><p>]</p><p>Range+135%Technical Data</p><p>Vehicle Type Mercedes-Benz A-Class (Long)</p><p>Fuel Cell System PEM, 72 kW (97 hp)</p><p>Engine</p><p>Engine Output (Continuous / Peak):45 kW / 65 kW (87hp)Max. Torque: 210 Nm</p><p>Fuel Hydrogen (35 MPa / 5,000 psi)Range 105 miles (170 km / NEDC)</p><p>Top Speed 88 mph (140 km/h)</p><p>BatteryNiMh, Output (Continuous / Peak): 15 kW / 20 kW (27hp); Capacity: 6 Ah, 1.2 kWh</p><p>Technical DataVehicle Type Mercedes-Benz B-Class</p><p>Fuel Cell System PEM, 90 kW (122 hp)</p><p>Engine</p><p>IPT Engine Output (Continuous/ Peak) 70kW / 100kW (136hp)Max. Torque: 290 Nm</p><p>Fuel Compressed Hydrogen (70 MPa / 10,000 psi)Range ca. 250 miles (400 km)</p><p>Top Speed 106 mph (170 km/h)</p><p>BatteryLi-Ion, Output (Continuous/ Peak): 24 kW / 30 kW (40hp); Capacity 6.8 Ah, 1.4 kWh</p><p>A-Class F-Cell</p><p>Progress Fuel Cell TechnologyNext Generation FCVs</p></li><li><p>Concept of Honda</p></li><li><p>After 2015, with lowered vehicle production costs and further developed hydrogen infrastructure, Hyundai will begin manufacturing hydrogen fuel cell vehicles for </p><p>consumer retail sales. </p><p>The ix35 Fuel Cell Specifications</p><p>The Hyundai Strategy, published on Feb. 27th 2013</p><p>Hyundai plans to build 1,000 ix35 Fuel Cell vehicles by 2015 for lease to public and private fleets, primarily in Europe, where the European Union has established a </p><p>hydrogen road map and initiated construction of hydrogen fueling stations. </p></li><li><p>Phileas-Bus in Colognein daily use in public trafic</p><p>Source: HyCologne -Wasserstoff Region Rheinland </p></li><li><p>Source: Vossloh</p></li><li><p>Anode: H2 2 H+ + 2 e-Cathode: 2 H+ + O2 + 2 e- H2O---------------------------------------------------------------------------------------------------</p><p>Sum: H2 + O2 H2O</p><p>CnH2(n+1) + (3n+1)/2 O2 nCO2 + (n+1)/2 H2O</p><p>Comparison of Power-Trains IGasoline/ Diesel- Vehicles</p><p>H2/FC- vehicles</p><p>Battery-Vehicles</p><p>(double range) I</p><p>Cathode: LixCn nC + x Li+ + x e-Anode: Li1-xMn2O4+ xLi +xe- LiMn2O4------------------------------------------------------------------------------------------------------------------------------------------------------</p><p>---------</p><p>Batt.: Li1-xMn2O4+ LixCn LiMn2O4 + nC</p></li><li><p>Electricity-Management</p><p>Powertrain of a H2/FC-hybrid-vehicle</p></li><li><p>Market segments for battery-and fuel cell vehicles</p><p>Original-Source: Coalition Study</p><p>Annual range</p><p>(1000 km) </p><p>&lt; 10</p><p>&gt; 20</p><p>10- 20</p><p>Compakt Class Medium Class Comfort-Classc l a s s o f v e h i c l e s</p><p>Fuel cell vehicles</p><p>hybridised</p><p>Battery-Vehicles</p><p>Plug-in-VehiclesFC- Vehicles</p></li><li><p>As personal mobility, EV is viable for inner-city travel, and FCHV for inter-city travel.</p><p>Cover Area of FCHV and EV EV: inner-city</p><p>FCHV: inter-city travelSmall</p><p>Middle</p><p>Large</p><p>Short-range Middle-range Long-range</p><p>CommuterTown use</p><p>Long-distance trucksExpressway buses</p><p>Middle &amp; large passenger cars</p><p>City busCourier vehicles</p><p>EV</p><p>FCHV</p><p>PHV(Biofuel)</p><p>Concept of TOYOTA</p></li><li><p>Number of passenger vehicles (hybrid) which can be supplied per ha</p><p>0</p><p>10</p><p>20</p><p>30</p><p>40</p><p>50</p><p>60</p><p>70</p><p>80</p><p>Biodie</p><p>sel (R</p><p>ME)</p><p>Ethan</p><p>ol wh</p><p>eat</p><p>Ethan</p><p>ol sho</p><p>rt rota</p><p>tion f</p><p>orestr</p><p>yBio</p><p>-meth</p><p>ane</p><p>BTL</p><p>CGH2</p><p> short</p><p> rotat</p><p>ion fo</p><p>restry</p><p>LH2 s</p><p>hort r</p><p>otatio</p><p>n fore</p><p>stry</p><p>CGH2</p><p> PV</p><p>LH2 P</p><p>VCG</p><p>H2 w</p><p>indpo</p><p>wer</p><p>LH2 w</p><p>indpo</p><p>wer</p><p>[</p><p>P</p><p>a</p><p>s</p><p>s</p><p>e</p><p>n</p><p>g</p><p>e</p><p>r</p><p>v</p><p>e</p><p>h</p><p>i</p><p>c</p><p>l</p><p>e</p><p>s</p><p>/</p><p>h</p><p>a</p><p>] Diesel engineOtto engineFuel cell</p><p>Bandwidth</p><p>Annual mileage passenger vehicle: 12,000 km</p><p>Reference vehicle: VW Golf</p><p>*) *)</p><p>*) more than 99% of the land area can still be used for other purposes e.g. agriculture</p><p>Source: LBST</p></li><li><p>Comparison of Fuel Cell System and Internal Combustion Engine</p><p>Power in %</p><p>E</p><p>f</p><p>f</p><p>i</p><p>c</p><p>i</p><p>e</p><p>n</p><p>c</p><p>y</p><p>i</p><p>n</p><p>%</p><p>Medium PowerPassenger Car Bus /Truck</p><p>with HydrogenFuel Cell Systems</p><p>Source: IBZ</p></li><li><p>50 ltr. E 105 ltr. Ethanol=^</p><p>12,5 kg Wheat106 MJ (29,4 kWh)</p><p>80 MJ (22,2 kWh)</p><p>9,5 kg Wheat</p><p>22 kg WheatNecessary area of farmland: 39 m2</p><p>Consumption: 6l/100 km 2,5 kg Bread /100 km</p><p>E10-Balance</p><p>External EnergyNot CO2-free !</p><p>Alternative</p><p>Annual range :15 000km 375 kg Bread = 585 m2 Farmland^</p></li><li><p>J.Tpler</p><p>(%) </p><p>100</p><p>70 </p><p>54 </p><p>30</p><p>12 </p><p>Comparison hydrogen Wind-Gas for mobile application</p><p>Efficiencies: (elektrolysis) = 70%</p><p> (Sabatier) = 78%</p><p> (NEDC, ICE) = 22%</p><p> (NEDC, FC) = 42%</p><p>Electricity from</p><p>Wind&amp;PVElektrolysis Methani-</p><p>sation(Sabatier)</p><p>Transport</p><p>Distribution</p><p>Fuel Cell</p><p>Combustion</p></li><li><p>J.Tpler</p><p>Eprim</p><p>8,3</p><p>4,5 </p><p>2,4</p><p>1</p><p>Electricity from</p><p>Wind&amp;PV</p><p>Elektrolysis Methani-sation</p><p>(Sabatier)</p><p>Transport</p><p>Distribution</p><p>Fuel Cell</p><p>Combustion</p><p>3,4</p><p>5,8</p><p>Efficiencies: (elektrolysis) = 70%</p><p> (Sabatier) = 78%</p><p> (NEDC, ICE) = 22%</p><p> (NEDC, FC) = 42%</p><p>Comparison hydrogen Wind-Gas for mobile application</p></li><li><p>Optiresource (Daimler AG)</p><p>See:</p><p>http://www2.daimler.com/sustainability/optiresource/index.html</p></li><li><p>Thank you very much for your attention!</p><p>And see us occasionally at</p><p>www.dwv-info.de!</p><p>Which are the questions I can answer at first?</p></li></ul>

Recommended

View more >