chapter8 b

5
Chapter 8 - Section B - Non-Numerical Solutions 8.12 (a) Becau se Eq. (8.7) for the efcienc y η Diesel includes the expansion ratio , r e V  B / V  A , we relate this quantity to the compression ratio , r V C / V  D , and the Diesel cutoff ratio , r c V  A / V  D . Since V C = V  B , r e = V C / V  A . Whence, r r e = V C / V  D V C / V  A = V  A V  D = r c or 1 r e = r c r Equation (8.7) can therefore be written: η Diesel = 1 1 γ  (r c /r ) γ (1/r ) γ r c /r 1/r  = 1 1 γ (1/r ) γ 1/r  r γ c 1 r c 1 or η Diesel = 1 1 r  γ 1 r γ c 1 γ (r c 1) (b) We wish to sho w that: r γ c 1 γ (r c 1) > 1 or more simply  x a 1 a(  x 1) > 1 Taylor’s theorem with remainder, taken to the 1st derivative, is written: g = g(1) + g (1) · (  x 1) + R where, R g [1 + θ (  x 1)] 2! · (  x 1) 2 (0 < θ < 1) Then, x a = 1 + a · (  x 1) + 1 2 a · (a 1) · [1 + θ (  x 1)] a2 · (  x 1) 2 Note that the nal term is R. For a > 1 and x > 1, R > 0. Therefore:  x a > 1 + a · (  x 1) x a 1 > a · (  x 1) and r γ c 1 γ (r c 1) > 1 (c) If γ = 1.4 and r = 8, then by Eq. (8.6): η Otto = 1 1 8 0.4 and η Otto = 0.5647 r c = 2 η Desiel = 1 1 8 0.4 2 1.4 1 1.4(2 1) and η Diesel = 0.4904 r c = 3 η Desiel = 1 1 8 0.4 3 1.4 1 1.4(3 1) and η Diesel = 0.4317 670

Upload: nic-blando

Post on 14-Apr-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Chapter8 B

7/30/2019 Chapter8 B

http://slidepdf.com/reader/full/chapter8-b 1/4

Chapter 8 - Section B - Non-Numerical Solutions

8.12 (a) Because Eq. (8.7) for the efficiency ηDiesel includes the expansion ratio, r e ≡ V  B / V  A, we relate

this quantity to the compression ratio, r  ≡ V C / V  D, and the Diesel cutoff ratio, r c ≡ V  A/ V  D. Since

V C  = V  B , r e = V C / V  A. Whence,

r e=

V C / V  D

V C / V  A=

V  A

V  D= r c or

1

r e=

r c

Equation (8.7) can therefore be written:

ηDiesel = 1 −1

γ 

(r c/r )γ 

− (1/r )γ 

r c/r  − 1/r 

= 1 −

1

γ 

(1/r )γ 

1/r 

γ c − 1

r c − 1

or ηDiesel = 1 − 1

γ −1r 

γ c − 1

γ (r c − 1)

(b) We wish to show that:

r γ c − 1

γ (r c − 1)> 1 or more simply

 x a− 1

a( x − 1)> 1

Taylor’s theorem with remainder, taken to the 1st derivative, is written:

g = g(1) + g(1) · ( x − 1) +R

where, R ≡g[1 + θ ( x − 1)]

2!

· ( x − 1)2 (0 < θ < 1)

Then, x a= 1 + a · ( x − 1) +

12

a · (a − 1) · [1 + θ ( x − 1)]a−2· ( x − 1)2

Note that the final term is R. For a > 1 and x > 1, R > 0. Therefore:

 x a > 1 + a · ( x − 1) x a− 1 > a · ( x − 1)

andr 

γ c − 1

γ (r c − 1)> 1

(c) If γ  = 1.4 and r  = 8, then by Eq. (8.6):

ηOtto = 1 −

1

8

0.4

and ηOtto = 0.5647

• r c = 2 ηDesiel = 1 −

1

8

0.421.4

− 1

1.4(2 − 1)and ηDiesel = 0.4904

• r c = 3 ηDesiel = 1 −

1

8

0.431.4

− 1

1.4(3 − 1)and ηDiesel = 0.4317

670

Page 2: Chapter8 B

7/30/2019 Chapter8 B

http://slidepdf.com/reader/full/chapter8-b 2/4

8.15 See the figure below. In the regenerative heat exchanger, the air temperature is raised in step B → B∗,

while the air temperature decreases in step D → D∗. Heat addition (replacing combustion) is in step

 B∗→ C .

By definition, η ≡−W  AB − W C D

Q B∗C 

where, W  AB = ( H  B −  H  A) = C P (T  B − T  A)

W C D = ( H  D −  H C ) = C P (T  D − T C )

Q B∗C  = C P (T C  − T  B∗ ) = C P (T C  − T  D)

Whence, η =T  A − T  B + T C  − T  D

T C  − T  D= 1 −

T  B − T  A

T C  − T  D

By Eq. (3.30b),

T  B = T  A P B

P A

(γ −1)/γ 

and T  D = T C  P D

PC 

(γ −1)/γ 

= T C  P A

P B

(γ −1)/γ 

Then, η = 1 −

T  A

P B

P A

(γ −1)/γ 

− 1

T C 

1 −

P A

P B

(γ −1)/γ 

Multiplication of numerator and denominator by (P B / P A)(γ −1)/γ  gives:

η = 1 −

T  A

T C 

P B

P A

(γ −1)/γ 

671

Page 3: Chapter8 B

7/30/2019 Chapter8 B

http://slidepdf.com/reader/full/chapter8-b 3/4

8.21 We give first a general treatment of paths on a P T  diagram for an ideal gas with constant heat capacities

undergoing reversible polytropic processes. Equation (3.35c), p. 78, may be rewritten as

P = K T δ/(δ−1) ln P = ln K  +δ

δ − 1ln T 

d P

P=

δ

δ − 1

d T 

d P

d T =

δ

δ − 1

P

T ( A) Sign of d P/d T  is that of δ − 1, i.e., +

Special cases

δ = 0 −→ d P/d T  = 0 Constant P

δ = 1 −→ d P/d T  = ∞ Constant T 

By Eq. ( A),d 2 P

d T 2=

δ

δ − 1

1

d P

d T −

P

T 2

=

δ

δ − 1

1

δ

δ − 1

P

T −

P

d 2 P

d T 2=

δ

(δ − 1)2

P

T 2( B) Sign of d 2 P/d T 2 is that of δ, i.e., +

For a constant-V  process, P varies with T  in accord with the ideal-gas law: P = RT / V  or P = K T 

With respect to the initial equation, P = K T δ/(δ−1), this requires δ = ∞. Moreover, d P/d T  = K 

and d 2 P/d T 2 = 0. Thus a constant-V  process is represented on a P T  diagram as part of a straight

line passing through the origin. The slope K  is determined by the initial P T  coordinates.

For a reversible adiabatic process (an isentropic process), δ = γ . In this case Eqs. ( A) and ( B) become:

d P

d T =

γ 

γ  − 1

P

d 2 P

d T 2=

γ 

(γ  − 1)2

P

T 2

We note here that γ/(γ  − 1) and γ/(γ  − 1)2 are both > 1. Thus in relation to a constant-V  process

the isentropic process is represented by a line of greater slope and greater curvature for the same T and P . Lines characteristic of the various processes are shown on the following diagram.

 

T

P

δ = 1

δ = 0

δ = γ  

δ = ∞

00

The required sketches appear on the following page. (Courtesy of Prof. Mark T. Swihart, State Uni-

versity of New York at Buffalo.)

672

Page 4: Chapter8 B

7/30/2019 Chapter8 B

http://slidepdf.com/reader/full/chapter8-b 4/4

 

T

P

00

Figure 1: The Carnot cycle

 

T

P

00

Figure 2: The Otto cycle

 

T

P

00

Figure 3: The Diesel cycle

 

T

P

00

Figure 4: The Brayton cycle

8.23 This is a challenging and open-ended problem for which we offer no solution. Problem 8.21 may offer

some insight.

673