2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

115
Recent advances in nuclear chemistry III School of Energetic and Nuclear Chemistry Biological and Chemical Research Centre University of Warsaw, Poland Konstantin German Frumkin Institute of Physical Chemistry and Electrochemistry of Russian Academy of Sciences (IPCE RAS), Moscow, Russia Medical institute REAVIZ

Upload: konstantin-german

Post on 13-Jul-2015

185 views

Category:

Education


2 download

TRANSCRIPT

Page 1: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Recent advances in nuclear  chemistry

III  School of Energetic and Nuclear Chemistry

Biological and Chemical Research Centre University of Warsaw, Poland

Konstantin German

Frumkin  Institute of Physical Chemistry and Electrochemistry of Russian Academy of Sciences (IPCE RAS), Moscow, RussiaMedical institute REAVIZ

Page 2: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Scope

• Nuclear prospects in Russia

• NMR  for radioactive materials analyses

• Sync Radiation

• Actinide hypothesis verification

Page 3: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Homo sapience sp. was the most efficient one in applying technologies to improving its life  

Economist Kenneth Boulding (1956) : one who believes that exponential growth could be eternal in the limited world is 

either mad or economist

Neand.sp.  sp.

Cosmo sp.

Coal

Oil

Page 4: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Petroleum energeticswiki :

• The modern history of petroleum began in the 19th century with the refining of paraffin from crude oil. The Scottish chemist James Young in 1847 noticed a natural petroleum seepage in the Riddings colliery ‐ Derbyshire. He distilled a light thin oil suitable for use as lamp oil, at the same time obtaining a thicker oil suitable for lubricating machinery.

• In 1848, Young set up a small business refining the crude oil. The new oils were successful, but the supply of oil from the coal mine soon began to fail (eventually being exhausted in 1851). 

• Great sceptisism to petrolium burning was shown by D. Mendeleev…

• Once started it will once stopWHAT  After… ?

Page 5: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Discovery of radioactivity and estimation of its importance

Becquerel• In 1896 found out  that  

Uranium ore is emitting some new kind of rays.

Curie and Sklodowska

• French physicist Pierre Curie and his young Pole assistant (radio)chemist MariaSklodowska in 1898 found out that new Radium samples are more hotcompared to the environments for many months. They concluded : radioactivityis new and very important source of energy and proposed its usage for medical,pharmaceutical , …, purposes.

• Vernadsky in Russia in 1920 predicted that Ra and allied matter could be a very important key for new energetic in the World scale.

Page 6: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

2014  ‐ 60th anniversary of the First World NPP 

• The first NPP was constructed in Obninsk, Russia , the first grid connection on June 26, 1954 providing the new city of Obninsk with electricity. 

• The power plant remained active until April 29, 2002 when it was finally shut down.

• The single reactor unit at the plant, AM‐1had a total electrical capacity of 6 MW and a net capacity of around 5 MWe. Thermal output was 30 MW.

• It was a prototype design using a graphite moderator and water coolant. This reactor was a forerunner of  the RBMK  reactors.

Page 7: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Potential of nuclear• To use the full potential of U (and Pu bred from it) requires fast‐neutron reactors

• The stock of depleted UO2 in the world when  used in fast reactors will provide the energy equivalent to 4X1011 t oil

http://www.world‐nuclear‐news.org

Page 8: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Fast neutron reactors

• Fast neutron reactors are a technological step beyond conventional power reactors.

• They offer the prospect of vastly more efficient use of uranium resources and the ability to burn actinides which are otherwise the long‐lived component of high‐level nuclear wastes.

• Some 20 reactors were operated and 400 reactor‐years experience has been gained in operating them.

• Generation IV reactor designs are largely FNRs, and international collaboration on FNR designs is proceeding with high priority.

Page 9: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Fast reactors with diff. coolants:LLMC (Na), HLMC (Pb, LBE = Pb‐Bi) • FN types:• BN‐60• Brest‐300• BN‐600• Shevchenko• Phoenix• Superphenix• BN‐800• BN‐1200 ‐ project

• FR = the key to really closed nuclear fuel cycle

LBE = Lead‐Bismuth eutectic

Page 10: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Fast reactors in Russia and ChinaBeloyarsk NPP                   CEFR ‐ China

• The single reactor now in operation was a BN‐600 fast breeder reactor, generating 600 MWe. (1980 – 2014)

• Liquid Sodium is a coolant.• Fuel: 369 assemblies, each 

consisting of 127 fuel rods with an enrichment of 17–26% U‐235. 

• It was the largest Fast reactor in service in the world. Three turbines are connected to the reactor. Reactor core ‐ 1.03 m  tall , Diameter =  2.05 m.

• China's experimental fast neutron reactor CEFR has been connected to the electricity grid in 2011

Page 11: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Fast BN‐800 with mixed UO2‐PuO2 fuel and sodium‐sodium coolant started 2014 in Russia.

Fast BN‐1200 reactor with breeding ratio of 1.2 to 1.35 for (U,Pu)O2 fuel and 1.45 for UN (nitride) fuel, Mean burn‐up 120 MWtXdXkg. BN‐1200  is due for construction by 2020  with Heavy Liquid Metallic Coolant (Pb‐Bi) 

http://www.world‐nuclear‐news.org

Page 12: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Generation IVreactor design

• The generation IV lead‐cooled fast reactor features a fast neutron spectrum,  molten Pb or Pb‐Bi eutectic coolant. 

• Options include a range of plant ratings, including a number of 50 to 150 Mwe units featuring long‐life, pre‐manufactured cores. 

• Modular arrangements rated at 300 to 400 MWe, and a large monolithic plant rated at 1,200 MWe. The fuel is metal or nitride‐based containing U  and transuranics.

• A smaller capacity LFR such as SSTAR can be cooled by natural convection, larger proposals (ELSY) use forced circulation in normal power operation, but with natural circulation emergency cooling. 

• The reactor outlet coolant temperature is typically in the range of 500 to 600 °C, possibly ranging over 800 °C. 

Page 13: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

• Develop and demonstrate fast reactor technology that can be commercially deployed

• Focus on sodium fast reactors because of technical maturity

• Improve economics by using innovative design features, simplified safety systems, and improved system reliability

• Advanced materials development• Nuclear data measurements and uncertainty reduction 

analyses for key fast reactor materials• Work at Los Alamos focuses on advanced materials 

development, nuclear data measurements, and safety analyses

Fast Reactors Program in USA

* ‐ Gordon Jarvinen VIII International Workshop ‐ Fundamental Plutonium Properties .  September 8‐12, 2008

Page 14: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Some of the concepts developed in the past or under development nowadays are the following:

• — In the Russian Federation, the small 75–100 MW(e) LBE cooled power fast reactor SVBR˗75/100 

• — In Belgium, the 100 MW(th) multipurpose fast neutron spectrum MYRRHA facility, being designed to  operate in both critical and subcritical mode

• — In Japan, a small power reactor cooled by lead‐bismuth and fuelled with metallic and nitride fuel featuring extra long life time; a 150 MW(e) lead‐bismuth cooled fast reactor concept Pb‐Bi cooled direct boiling water fast reactor (PBWFR)) featuring direct contact steam generators (‘steam‐lift effect’ of lead‐bismuth coolants); and a medium sized lead‐bismuth cooled fast reactor, lower breeding ratios in a Japanese scenario from 2030–2050 on

• — In the USA, the modular lead‐bismuth cooled STAR‐LM concept featuring natural circulation and the lead or lead‐bismuth cooled Small, Sealed, Transportable, Autonomous Reactor(SSTAR) concept rated 10–100 MW(e) 

• — In Japan and the USA, the lead‐bismuth cooled encupsulated nuclear heat source (ENHS) concept, featuring natural circulation in both primary and intermediate circuits

• — In China, a lead‐bismuth cooled and thorium fuelled fast reactor concept • — In the Republic of Korea, a lead cooled fast reactor dedicated to utilization and 

transmutation of long lived isotopes in the spent fuel

Page 15: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Small Modular Reactors (SMRs)• Small Modular Reactors 

(SMRs) are nuclear power plants that smaller in size (300 MWe or less) than current generation base load plants (1,000 MWe or higher).

• These smaller, compact designs are factory‐fabricated reactors that can be transported by truck or rail to where they are in need.

Page 16: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

36

7

6

13

3

65 Reactors for NPPs Under Construction  ‐ by region:

Asia ‐ Far East

Asia ‐Middle East and South

EU 27

Other Europe

America

Sources: IAEA‐PRIS, MSC 2011

Presenter
Presentation Notes
27 China 11 Russia 5 India 5 South Korea 48 (almost ¾ of all 65)
Page 17: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

NMR    ‐ SRtechnics

Page 18: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Nuclear MagneticResonance Spectroscopy

http://en.wikipedia.org/wiki/Nuclear_magnetic_resonance

Superconducting magnets 21.5 T Earth’s magnetic field 5 x 10‐5 T

NMR

Page 19: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture
Page 20: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Now we have both 600 and 300  MHzAvance Brucker NMR spectrometers

in disposition of my laboratory

Avance‐300 BrukerAvance‐600  Bruker

D3‐12 NMR‐600MHz (12.3 AV600_CHEM)

OPERATED BY THE GROUP OF PROF. V.P. TARASOV, DR. G. KIRAKOSYAN AND V.A. IL’IN

Page 21: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Nuclei in operationNucleus Spin γ, MHz/T Natural

AbundanceRelative

Sensitivity1H 1/2 42.576 99.985 1002H 1 6.536 0.015 0.963He 1/2 32.433 .00013 4413C 1/2 10.705 1.108 1.617O 3/2 5.772 0.037 2.919F 1/2 40.055 100 83.4

23Na 3/2 11.262 100 9.331P 1/2 17.236 100 6.639K 3/2 1.987 93.08 .05

99Tc 9/2 0 (99.8)

36Cl 2 0 (30)!

Page 22: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

•Number and type of NMR active atoms 

•Distances between nuclei

• Angles between bonds

• Motions in solution

•Sternheimer const

•QQC

•Etc…

Information obtained by NMR

• Organic substances

• Radioactive materials

• Ga‐complexes

• Etc…

Page 23: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

99gTc‐NMR (TcO4 : O‐16, O‐17, O‐18)

99Tc NMR (67.55MHz) spectrum of 0.2 M NaTcO4 solution in recycled water containing ∼72% H2

18O at 298K.

270 280 290 300 310 320 330 340

0,40

0,41

0,42

0,43

0,44NH4Tc16O3

18O99Tc NMR H0=7.04Tл

Температура, Т К

Изотопный сдвиг Я

МР

99Тс

, м.д

.

Page 24: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

O‐17 NMR

• In water enriched in O‐17

280 300 320 340130,4

130,8

131,2

131,6

132,0 КССВ 17O-99Tc КССВ 99Tc-17O

NH4TcO4

H0=7.04Тл

Температура, Т К

КССВ

, Гц

Page 25: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Tc‐NMR

Chem Shifts in TcO4 ‐ Puce hunting

• Solutions• Ionic pair formation• Receptor Complexes

Others• TcO4 – TcO6• Tc metal• TcO2

Page 26: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

99Tc ЯМР, CDCl3 UV, dichloroethane

Imine-amide macrocycle log(β11) = 3.2 log(β11) = 5.1

Cyclo[8]pyrrole·2(HCl) log(β12) = 3.8 log(β12) = 6.0

99Tc-NMR titration, Bu4N+ 99TcO4– in CDCl3

99Tc-NMR strengths

• Clear signal

• Good correlation with

UV

Kolesnikov G.V., German K.E, Kirakosyan G., Tananaev I.G., UstynyukYu.A., Khrustalev V.N., Katayev E.A. // Org.Biomol.Chem. ‐ 2011.

Page 27: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Кривые обратного 99Tc ЯМР титрования для рецепторов L1 (а)  (экспортированы из программы HYPER NMR 2006. 

О – эксперимент, линии – расчетные кривые, черная – апроксимация константы,  синяя – конц. TBA99TcO4, 

красная – конц. комплекса хозяин – гость).

УФ‐вид

Page 28: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Кривые обратного 99Tc ЯМР титрования для рецепторов L2 (б) (экспортированы из программы HYPER NMR 2006. 

О – эксперимент, линии – расчетные кривые, черная – подгон константы,  синяя – конц. TBA99TcO4, 

красная – конц. комплекса хозяин – гость).

УФ‐вид

Page 29: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Chemical shift

http://www.cem.msu.edu/~reusch/VirtualText/Spectrpy/nmr/nmr1.htm

Page 30: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Chemical shift

δ = (f ‐ fref)/fref

Page 31: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Intramolecular mode

• The Berry pseudorotation is a classical mechanism for interchanging axial and equatorial ligands in molecules with trigonal bipyramidalgeometry

• PF5• IF5

Intermolecular mode

• Tarasov exchange in TcO4‐TcO6 exchange spectra

Exchange spectra

Page 32: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Pseudorotation via the Berry mechanism• Single‐crystal X‐ray studies indicate that the PF5 molecule has two dis nct types of P−F 

bonds (axial and equatorial): the length of an axial P−F bond is 158.0 pm and the length of an equatorial P−F bond is 152.2 pm. Gas‐phase electron diffraction analysis gives similar values: the axial P−F bonds are 158 pm long and the equatorial P−F bonds are 153 pm long.

• Fluorine‐19 NMR spectroscopy, even at temperatures as low as −100 °C, fails to distinguish the axial from the equatorial fluorine environments. 

• The apparent equivalency arises from the low barrier for pseudorotation via the Berry mechanism, by which the axial and equatorial fluorine atoms rapidly exchange positions. The apparent equivalency of the F centers in PF5 was first noted by Gutowsky.[2] The explanation was first described by R. Stephen Berry. 

• Berry pseudorotation influences the 19F NMR spectrum of PF5 since NMR spectroscopy operates on a millisecond timescale. Electron diffraction and X‐ray crystallography do not detect this effect as the solid state structures are, relative to a molecule in solution, static and can not undergo the necessary changes in atomic position.

Page 33: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Berry pseudorotation:  NMR‐31P in PF5

Yellow atoms  are axial Blue atoms are  axial

http://fluorine.ch.man.ac.uk/pics/berry.gifhttp://pubs.acs.org/doi/pdf/10.1021/ed083p336.2

Mechanisms that interchange axial and equatorial atoms in fluxional processes:Illustration of the Berry Pseudorotation, the Turnstile, and the Lever Mechanisms via

Animation of Transition State Normal Vibrational Modes

Page 34: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

E

Page 35: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

NMR‐99Tc in 3 – 13 M H2SO4 [Tc] = 0.001M

-10

40

90

140

190

240

290

340

3 5 7 9 11 13

NM

R-9

9 Tc

shift

, pp

m

c(H2SO4), M0 ppm = 0,05M KTcO4

Page 36: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

99Tc‐NMR Tc(VII) in HClO4разбавление водой

C(HClO4) δ, ppm11,37 124,055

11 88,810,66 6010,33 36,2410,03 9,99,74 3,39,47 -1,449,22 -4,38,97 -6,28,74 -7,38,22 -8,457,33 -8,454,13 -3,463,07 -2,242,07 -1,13

0 0

Page 37: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

99Tc‐NMR Tc(VII) in HClO4разбавление водой

C(HClO4) δ, ppm11,37 124,055

11 88,810,66 6010,33 36,2410,03 9,99,74 3,39,47 -1,449,22 -4,38,97 -6,28,74 -7,38,22 -8,457,33 -8,454,13 -3,463,07 -2,242,07 -1,13

0 0

Page 38: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Solid State NMR Characterization  of the  Structure of  solid

Pertechnic Acid HTcO4

Solid state 99Tc‐NMR of HTcO4(solid)Provide some similarity to Re2O7*2H2OGives evidence for the absence of TcO4 !Charge separated structure favorable

Page 39: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Solid‐State NMR Characterization of Electronic Structure in Ditechnetium Heptoxide

• Herman Cho, W.A. de Jong, A.P. Sattelberger,            F. Poineau, K. R. Czerwinski ‐ J. AM. CHEM. SOC. 

• NMR parameters were computed for the central molecule of a (Tc2O7)17 cluster using standard ZORA‐optimized all‐electron QZ4P basis sets for the central molecule and DZ basis sets for the surrounding atoms. • The magnitudes of the predicted tensor principal values appear to be uniformly larger than those observed  experimentally, but the discrepancies were within the accuracy of the approximation methods used.• The convergence of the calculated and measured NMR data suggests that the theoretical analysis has validity for the quantitative understanding of structural, magnetic, and chemical properties of Tc(VII) oxides in condensed phases.

Page 40: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

• NMR spectrum of Tc metal powder obtained by FT of free induction decay accumulated after excitation of the spin system was recorded and used as a reference for analyses of technetium states supported onto the surfaces and formed in Tc‐Ru alloys/intermetalics. 

• Knight shift of technetium metal is a linear function of temperature, K(ppm) = 7305 ‐ 1.52 x T. nQ(99Tc) = 230 kHz at 293 K, CQ(99Tc) = 5.52 MHz.

Typical NMR‐99Tc spectra of a ‐metal powder ( Ф 80‐150 μm) b – nano‐dimensional Tc metal Ф = 50 nm

Page 41: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

• 99Tc NMR study of bimetallic  Ru‐Tc  samples supported  at different supports  i.e.:  g‐Al2O3 , SiO2, MgO, TiO2 has shown that for all the supports (except for TiO2), there is an intense signal at –30 – 40 ppm arising from the TcO2

Page 42: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Synchrotron Radiation as a Tool

ISTR 2011 Moscow

Electromagnetic radiation generated by ultrarelativisticelectrons/positrons traveling along circular orbits in light charged particles accelerators

Page 43: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Advantages compared to standard X‐ray sources

• Intensity/Brightness higher by 6‐10 orders of magnitude

• Continuum spectrum from IR to hard X‐rays• High natural collimation• Tunable polarization• Partial coherence

Page 44: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture
Page 45: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

EUROPEAN SR

Page 46: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

EUROPEAN SYNCHROTRONS incl. MOSCOW

Page 47: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

European synchrotron Radiation Facility,Grenoble,France

Production of X-rays in synchrotron

Page 48: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture
Page 49: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

European synchrotronESRF

Electron energy:6 Gev

Page 50: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Bending magnets

Undulators

Page 51: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

• Siberian Center for Synchrotron Radiation (BINP, Novosibirsk) since 1970‐ies : Storage rings VEPP‐3 (2 GeV, 120 mA), VEPP‐4 (5 GeV, 40 mA)   – both 1st generation (ε ~300 nm∙rad) 11 beamlines . 

• Kurchatov Synchrotron Radiation Source (Moscow) in operatiion since early 2000‐ies  Siberia‐1 (booster, 450 MeV) – 3 VUV beamlines , Siberia‐2 – dedicated 2nd generation source (2.5 GeV, 300 mA, ε ~75 nm∙rad), 16 beamlines .  

• Zelenograd Synchrotron Rad. Facility (Lukin IPP) – under construction• Dubna Electron Synchrotron DELSI (JINR)  – project development

• International collaboration:• Russian‐German beamline at BESSY II and  Russian involvement in 

ESRF consortium, • Russian part in European XFEL project (X‐ray free‐electron lasers ‐ M. 

Kovalchuk (NRC "Kurchatov Institute", Moscow), A. Svinarenko (OJSC RUSNANO, Moscow) ( 4th generation source)

Synchrotron sources in Russia

Page 52: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

• Basics and typical applications of

‐ EXAFS/XANES‐ SAXS‐ XRD

• Combined application of X‐ray techniques to structural diagnostics of nano/materials

SR sources in Russia 

Page 53: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

SYNCHROTRON DIAGNOSTICS OF Radioactive and Functional Materials

in National Research Center “Kurchatov Institute” 

Department Head ‐ Yan  Zubavichus

10 years in user mode

Page 54: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

ISTR 2011 Moscow

Kurchatov Synchrotron SourceLinac

Booster

Main storagering

Control room

Page 55: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

10.50 10.75 11.00 11.25 11.50 11.75 12.00

Pt L3

Re L2

Fluo

resc

ence

Yie

ld

Photon Energy, keV

Re L3

2. Diffraction

1. Spectroscopy

3. Imaging

Synchrotron techniques include 

Especially proteinstructure solutions

Unique : Structures in solutionsand polymers

Page 56: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

KSRC X-ray stations1 Protein Crystallography

2 Precision X-ray Optics

3 X-ray Crystallography and Physical Materials Science

4 Medical Imaging

6 Energy-Dispersive EXAFS

7 Structural Materials Science (SMS)

8 X-ray Small Angle Diffraction Cinema (bioobjects)

9 Refraction Optics & X-ray Fluorescence Analysis

10 X-ray Topography & Microtomography

VUV stations

11 X-ray Photoelectron Spectroscopy

12 Optical spectroscopy for Condensed Matter

13 Luminescence & Optical Investigations

Technological stations

14 X-ray Standing Waves for Langmuir-Blodgett Films

15 Molecular Beam Epitaxy

16 LIGA

Page 57: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Characteristics of the beamlineType Energy interval, keV ΔE/ESi(111) 5‐19 10‐4Si(220) 8‐35 10‐4Monochromator is driven by stepper motors (1‘‘ discrete steps)

• Ionization chambers + KEITHLEY 6487• Scintillation counter with NaI(Tl) crystals• Linear gas‐filled detector COMBI‐1(“Burevestnik”, St. Petersburg)• 2D‐detector ImagingPlate (FujiFilm BAS2025)• Semiconducting detector (pure Ge)

Maximum 3×3 мм2

Minimum 10×10 μm2

Step of translations ~4 μm

~ 0.5×108 photons/mm2 with energy bandwidth Δλ/λ=10‐4

Monochromators:

Detectors:

Beam dimensions:

Photon flux:

Page 58: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

In‐situ cell for functional materials

3‐component gas mixtures• Inerts: He, N2, Ar• Oxidation and reduction: O2, H2

• Catalytic substrate: CO, CH4, etc.• Vacuum 10 Pa

20‐550oC

Thermostabilization through the heating current & thermocouple feedback

±1oC

4 × 350 W

Cooling down to ‐130oC with a flow of cold N2 gas

Page 59: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

He closed‐cycle refrigerator (SHI, Japan)

Minimum temperature achieved 10.0К + precise termostabilization up to room temperature

Page 60: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Combined use ofXAFS, XRD and SAXS

• XANES ‐ oxidation state of heavy atoms + coordination symmetry

• EXAFS ‐ local neighborhood of a given heavy atom

• XRD ‐ long‐range order, phase composition, size of crystallites

• SAXS ‐ size and shape of nanoparticles or pores in a range of 1‐100 nm

Page 61: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

X‐ray absorption spectroscopy: basics

ISTR 2011 Moscow

Page 62: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

FermilevelHOMO

LUMO

XANES: originVacuum

level

Core electronlevel

Valenceband

Forbidden gap

Conductionband

XANES probes the energy distribution of certain symmetry-allowed MOs or DOS features above the Fermi level

Fermi‘s golden rule:μ ~ |<f | V | i >|2 , f,i – wave functions of the final and initial states, V – dipole moment operator

Page 63: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Photoionized atomNeighbor atom

Photoelectron wave

Back-scattered photoelectronwave

Single scattering

Multiple scattering

EXAFS: origin

Local-structrure parameters of the central atomcan be retrieved from EXAFS

Initial state: electron on the core levelFinal state: outgoing photoelectron wave

Interference

Page 64: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

)(/222

22

))(2sin(),()(

)( krkjjj

j j

j jj eekkrkfkr

NkSk λσϕπχ −−+= ∑

χ - normalized background-subtracted EXAFS-signalk – photoelectron vector modulus (≡2π/λ)S – Extrinsic loss coefficient (0.7-1.0)N – coordination number in the j-th coordination spherer – interatomic distancef – backscattering amplitudeϕ – phase shiftσ– Debye-Waller factorsλ− photoelectron mean-free path

Page 65: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

EXAFS/XANES: implementation at SMS

Detection modes: transmission (ion chambers)fluorescence yield ( NaI(Tl) scintillation counter,  

detection limit down to 0.005 mass.%)

Data processing: IFEFFIT (Athena, Artemis, Hephaestus и др.) with ab initio theoretical phase and amplitude functions from FEFF8, GNXASAb initio XANES spectra simulation with FEFF8 , FDMNES, FitIt, etc.

Absorption edges measured over 2004‐2014

К‐edges:Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Br, Y, Zr, Nb, Mo, Tc, Ru, Pd, Ag, Cd, In, Te

L3‐edges:Ba, La, Ce, Nd, Pr, Sm, Eu, Gd, Hf, Ta, W, Re, Pt, Au, Hg, Pb, Bi, U, Pu

Page 66: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

11525 11550 11575 11600 11625 116500.0

0.5

1.0

1.5

2.0

Nor

mal

ized

Abs

orbt

ion,

a.u

.

Photon Energy, eV

Pt Pt2+

Pt3+

Pt4+

Pt L3

6.53 6.54 6.55 6.56 6.57 6.58 6.59 6.60 6.61

Mn2+ (MnCl2 6H2O)

Mn3+ (Mn2O3)

Mn4+ (MnO2)

Mn7+ (KMnO4)

Photon Energy, keV

Mn K

16350 16400 164500.0

0.6

1.2

Nor

mal

ized

Abs

orpt

ion,

a.u

.

Photon Energy, eV

Bi0

Bi3+ (Bi2O3)

Bi3+ (Bi(NO3)3.2H2O)

Bi5+ (NaBiO3)

Bi L1

XANES

Information retrieved from XANES:• Effective oxidation state• Coordination polyhedron symmetryData analysis: “fingerpring” approach – comparison with reference spectra + theoretical simulations

1s→3d,4p 2p3/2→ 4d 2s→ 6p

Page 67: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Application to TcTc K‐edge XANES

Page 68: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Application to Re 

Re L3‐edge XANES

Page 69: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

0 1 2 3 4 5 6

1.4 Tc-C 1.76Å6.0 Tc-Tc 2.72Å

TcCx

|FT(

k3 χ(k)

)|

R, Å

Tc

12 Tc-Tc 2.72Å

Tc METAL  & Tc CARBIDE

Page 70: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

0 1 2 3 4 5 6

0.3 Re-C 2.14Å1.0 Re-C 2.46Å1.1 Re-Re 2.62Å 3.1 Re-Re 2.73Å

ReCx

|FT(

k3 χ(k)

)|

R, Å

Re

12 Re-Re 2.75Å

Re METAL  & Re  CARBIDE

Page 71: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

PYROMETALLURGY REPROCESSING OF SPENT FUEL

Page 72: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Structures of  Tc halogenides in solutions and melts1) fundamental studies of cluster Tc compounds

2) Analyses of possible species in PRORYV technology (chloride melts)

Tc K‐край k3‐weight EXAFS spectra and its Fourier transform for Tc (+4,  +2,5,  +2) halogenides

(Cl, Br)

Page 73: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

абв

а - Моноядерный бромидный комплекс TcK-край k3-взвешенный EXAFS спектри преобразование Фурье спектра(Me4N)2TcBr6 :

Tc-Br : N=5,8(4), R=2,51(2)Å, σ2=0,004Å2, ΔE0= -16,9(5) eV,

б - Биядерный кластер Tc K-край k3-взвешенный EXAFS и соответствующее преобразование Фурье спектра K3Tc2Cl8 EXAFS структурные параметры K3Tc2Cl8(лучшая из полученных предварительных аппроксимаций):

Tc-Tc N=1,66(3), R=2.20(2) Åσ2=0,0069 Å2 ΔE0= -1.1(9) eV

Tc-Cl N=2,2(4), R=2,46(2) Åσ2=0,0107 Å2,

в - Спектр и Tc K-край k3-взвешенный EXAFS для полиядерного хлоридного кластера (Me4N)3[Tc6(μ-Cl)6Cl6]Cl2, для которого не удалось получить удовлетворительного преобразования Фурье в рамках FEFF-5 приближения

Spectra EXAFS of complex Tc halogenides

Page 74: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

XAFS analysis of electrode surface after corrosionDetermination of eventual Tc oxide: ‐ In 1 M HCl (E= 800 mV)

‐In 1 M NaCl, pH= 2.5 (E= 700 mV)

XAFS measurement of: NH4TcO4, TcO2, Tc metal for comparison

Layer carefully removed and analyzed by XAFS. 

SEM x 50Before After

pH =2.5, 1 M NaCl, E = 700 mV during 1 hour

M. Ferrier, F. Poineau, G.W. Chinthaka Silva, E. Mausolf and K. Czerwinski “Electrochemical Behavior of Metallic Technetium in Aqueous Media” : ISTR-2008. Port Elizabeth, South Africa.

Page 75: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

XANES

No pre‐edge : No TcO4‐ sorbed on electrode. 

No shift of edge for 1M HCl , shifted (~1 eV) at pH = 2.5Product  on electrode after corrosion : mainly Tc metal. 

1 M NaCl, pH = 2.5 1M HCl

First deriv.

Page 76: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

EXAFS analysis also confirm presence of  Tc metal on surface electrode after corrosion . No oxide detected.

EXAFS after corrosion XRD [5]

C.N R (Å) C.N R( Å)

Tc0-Tc1 10 2.72 12 <2.71>

Tc0-Tc2 6 3.83 6 3.85

Tc0-Tc3 8 4.76 8 4.73

pH =2.5

EXAFS

Page 77: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

NEXT :

•SAXS

Page 78: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

X‐ray detector (0D, 1D, 2D)

I(s)

Scattering vector s = k1 ‐ k0s = 4π sin θ / λ = 2π / d

Sample in the transmission geometry

k0

k1

s

Point/Linear collimation

Monochro‐matic X‐ray source

SAXS: Basics

Page 79: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

ISTR 2011 Moscow

Indirect FT

I(s) – experimentalscatteringcurve

P(r) – volumedistribution

of hard spheres

Page 80: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

ISTR 2011 Moscow

SAXS: implementation at SMS

Sample-to-detectordistance, mm

2θmin - 2θmax, ° qmin - qmax, nm-1

E = 25 keVqmin - qmax, nm-1

E = 6 keV

120 0.95 - 45.00 4.2 – 179 1 – 43

500 0.23 - 13.50 1 – 59 0.24 – 14.2

1000 0.11 - 6.84 0.5 – 30 0.12 – 7,1

2390 0.05 - 2.87 0.2 – 12.7 0.05 - 3

Only transmission geometry (no GISAXS for the moment)Scattering vector is oriented vertically;sample‐to‐detector distance up to 2.5 m; Photon energy 5‐30 keV (the possibility to employ anomalous scattering)

Treatment of experimental data: GNOM, MIXTURE, DAMMIN, SAXSFIT, IsGISAXS, Fit2D (for preliminary data processing of 2D images)

Simulation:

Single size distribution of 

spherical particlesR=20±4 Å

IsGISAXS GNOM

Page 81: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

1 . Small‐angle diffraction on mesostructured materials

2 . SAXS application: aqueous colloids  p.e.  ‐ of Tc sulfide nanoparticles

3 . Quantitative interpretation of the SAXS curve for not‐interacting particles and aggregates (DAMMIN)

Page 82: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Examples of combined structural studies

Page 83: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

E

Page 84: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

E

Page 85: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

E

Page 86: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

E

Page 87: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Сдвиг ЯМР сигнала в нанодисперсном образце 20% Tc/g‐ Al2O3 (Рис. 4а) составляет7406 м.д., что на 600 м.д. превышаетзначение сдвига в порошке металлическоготехнеция с диаметром частиц 50–100 μм. Линия с шириной на половине высоты ~1 kHzимеет Лоренцевский вид и не имеет саттелитной структуры, связанной с квадрупольными взаимодействиями первогопорядка, типичными для ГПУ решеток. Для технециевой фольги толщиной 20μм спектр99Tc ЯМР показывает, что позиция центральной 

компоненты очень близка к аналогичной позиции в образце микродисперсного порошка,  хотя 8 саттелитов практически не выражены в результате высокой дефектности решетки кристаллитов фольги, связанной с многократными последовательными механическими обработками (прокаткой). 

Отсутствие квадрупольной структуры в нанодисперсном образце ясно указывает на кубическую решетку фазы металличекого технеция. Значительное увеличение сдвига Найта в нандисперсном образце может отражать изменение плотности состояний на уровне Ферми по сравнению с микродисперсным образцом металлического технеция с ГПУ решеткой [7]. 

Page 88: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

• 99Tc ЯМР спектр образцы 5% Tc/γ‐Al2O3 при 295 K;

• (a) SW 1.7 МГц, число сканов 250000, (b) SW 250 кГц, число сканов 64000 

•99Tc ЯМР спектры: (a) образца 20% Tc/γ‐Al2O3 при 295 K; SW 500 кГц, число сканов191000, D0 0.5s ; (b) порошка металлическогоTc с диаметром частиц 50–100 μм, SW 2.5 мГц, число сканов 50000, D0 0.5s.

Page 89: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture
Page 90: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture
Page 91: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

V.F. Peretrukhin, G.T. Seaborg, N..N. Krot,  LNL, Berkley, 1998

3

Presenter
Presentation Notes
Prof. N. Krot was rarely abroad from Russia and the met Glen Seaborg personally just in 1998 while visiting Berkley (photo). This was an unforgetable exchange of opinions remind Prof. Peretrukhin, who weas also at Berkley then.
Page 92: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Periodic Table and heptavalent state of elements

Period is variable : 2, 8, 8, 18, 18, 32…? 

Zones of implacability exist

For huge part ‐ It works ! ! !VII

Page 93: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

• Interatomic distances in metals/simple matter A.Wells “Struct.Inorg.Chem.”• Lost : P,S, Br, I,  Po, At, Fr, Ra, Ac, Np, Pu, Am, Cm, Bk, Cf

TRU

5

Detailed  fig In: Jarvinen et all

Plutonium

Presenter
Presentation Notes
Important supplimentary understanding could be got from the analizis of the opposite side – the most reduced states of the elements in the Periodic Table. Once more we can see that there is an importants difference in between the lanthanide and actinide series. While the Lanthanides show important increase in the metalic state diameters for the first serie , the the heavy elements from Fr to U and then the transuranic elementsalso follow the typical shape of metallic diameter dependance on the Z within the period. Note that this was already indicated by Jarvinen with co-authors in the Plutonium book (2000), anyhow only the total view allow us to follow precisely this come back by the transuranium elements.
Page 94: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Synthesis and the types of An(VII)• Crystalline compounds of An(VII) can be prepared by deep

oxidation of actinides in strongly alkaline conditions.

• Both interaction of solid components and also conducting theoxidation in alkaline solutions.

• Compounds of An(VII) are stable only in strong alkali, andrapidly decompose in neutral or acidic conditions.

• An(VII) are quite variable in composition: formally they couldbe considered to contain anions AnO6

5-, AnO53-, [AnO4(OH)2]3-

, [An2O8(OH)2]4- and AnO4- but the latter is not supported by

X-ray analyses.

• A short number of the solid compounds containing AnO65-,

and AnO53- anions were isostructural to corresponding ortho-

and meso- rhenates ReO65-, ReO5

3- (but no analogy insolutions).

6

Page 95: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

MAnO4(·nH2O) (M – alkali metal)

• It was estimated by N.N. Krot and the followers that the transuranium(VII) compounds like MAnO4(·nH2O) (M – alkali metal) have the structures similar to uranates(VI) of alkali earth metals.

• They contain shortened linear groups AnO2

3+ and O–bridges collecting all into anionic layers. Structural type of  BaUO4.

(Reis A.H. et al. JINC, 1976).

7

Page 96: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

BaUO4 structural type compounds

• Lattice parameters for different U(VI), Np(VI) (lit. data) and Np(VII) compounds (IPCE data)

• 1 – U compounds• 2 – Np compounds• Chemical properties of  

Np(VI) and Np(VII) compounds are different

• LiReO4*1.5H2O contra LiTcO4*3H2O

8

Presenter
Presentation Notes
Very interesting observation putting the border between transuranium elements and perrhenates-pertechnetates is the dramatic, terrible (!) difference in the solubility values of its Rare Earth Elements salts. While the transuraniums are insoluble, the regular heptavalent metals are very readily soluble in water and aqueous solutions. This difference is due to the very high negative charge localized at the O-atoms at TRUs. The only similar index of such behavior for Re and Tc is the difference in their lithium salts structures and solubilities (LiReO4-1.5H2O and LiTcO4-3H2O) where O from Re=O enter the Lithium inner sphere removing the O-atoms from hydrate water .
Page 97: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

IR spectral data indicates Np‐O and Np=O difference 

Evident splitting at the CsNpO4 spectrum indicates/supports the presence of two types of Np‐O bonds:

• O=Np=O• Np‐O‐Np 

In Li5NpO6 all the Np‐O bonds are of the same nature  

9

Presenter
Presentation Notes
Note that Li5NpO6 is the only case when rhenates and neptunates are isistructural. But the difference is still great – no ortho-rhenates could be precipitated from the alkaline solutions in spite of several years of efforts made by Prof. Krot and some of us (K.G.).
Page 98: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Mossbauer spectra of Np(VII) compounds

• 1 – CsNpO4

• 2 – Na3NpO4(OH)2*nH2O

• 3 – Li5NpO6

• 4 – frozen solution of Np(VII) in 10M NaOH 

• Dots  ‐ experiment, curve –squared plotting

Presenter
Presentation Notes
The Moessbauer spactra indicate the equivalence of the hexa-coordinated species in solid CsNpO4 and the alkaline solution, differing from perrhenates and pertechnetates
Page 99: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

In this way :

Transuranic(VII) MAnO4(·nH2O) compounds are completely different :

fromMXO4

xnH2O (X – elements of the 7th

Group from Periodic Table, Mn, Tc, Re, n= 0, 1, 1.5, 3)

from Tc(VII) acidGerman,Peretrukhin 2003Poineau, German 2010from Re(VII) acidBeyer H. et all.Angew. Chem., 1968

from I(VII) acid

from Cl(VII) acid

Структурный тип BaUO4.(Reis A.H. et al. JINC, 1976).

(Maruk A.Ya. et al. Russ. Coord. Chem.2011)

and from TcO3+ 

Pertechnetyl Fluorosulfate, [TcO3][SO3F] – ZAAC, 2007J.Supeł, U. Abram et all.Berlin, Freie Universität.

11

Page 100: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

100

Isostructural:LiBrO4 ∙ 3H2OLiClO4 ∙ 3H2OLiMnO4 ∙ 3H2O 

LiTcO4 ∙ 6/2H2O 6/2=3

LiReO4 ∙ 1.5H2OLiReO4 ∙ H2O‐Analogous are absent

More diffused  4d electrons in Re compared to 3d electrons in Tc

Page 101: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

101

Isostructural pertechnetate salts withcation : anion = 1:1 

CationAnion

ClO4- MnO4

- ReO4-

[Li · 6/2Н2O]+ + + *

Na+ – * +

K+ – – +

Rb+ – – +

Cs+ – – +

NH4+ – – +

Ag+ – – +

[(CH3)4N]+ + – +

[(C3H7)4N]+ – * +

[(C4H9)4N]+ * * *

[(C6H5)3PNH2]+ * * +

[C7H14N3]+ * * +

[C7H10N3(C3H5)4]+ * * +

[C7H10N3(C6H5)4]+ * * *

[C6H8N]+ – * +

[C4H10NO]+ – * +

[CN3H6]+ + * +

* Not determined. \ doesn’t exists– No similarity to Tc+ Isostructural

Page 102: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Anionic chain [(Np2O8)(OH)2]n4n‐ in the structure

of Li[Co(NH3)6][(Np2O8)(OH)2]∙2H2O

(Burns J., Baldwin W., Stokely J. Inorg. Chem., 1973).

12

Np(VII)  &   I(VII)

• Two types of Np in Np(VII)  compound while only one I in   I(VII)• One bridging O in Np(VII) while two bridging O in I(VII) 

• Np(VII) is stable in alkali while I(VII) – in acids

Neutral chains in HIO4. ( Smith, T. et all. Inorg.Chem., 1968)

Page 103: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

The first Pu(VII)single crystal

13

Page 104: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

14

Page 105: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Na4[AnO4(OH)2](OH)∙2H2O

Np1‐O1  1.891(2) Pu1‐O1 1.8824(15)  Np1‐O2  1.888(2)  Pu1‐O2 1.8805(18)Np1‐O3  1.917(2)  Pu1‐O3 1.9109(15)Np1‐O4  1.880(2) Pu1‐O4 1.8811(19)Np1‐O5  2.315(2)  Pu1‐O5 2.2952(19)Np1‐O6  2.362(2) Pu1‐O6 2.339(2)

An‐OH distances are more sensible to actinide 

contraction than An=O distances

15

Page 106: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Several mixed cation compounds of  Np(VII) and  Pu(VII)NaRb2[NpO4(OH)2]∙4H2O (I): a = 8.2323(2), b = 13.4846(3), c = 9.9539(2) Å, β = 102.6161(12)°,sp. gr. P21/n, Z = 4, R1 [I > 2σ(I)] = 0.0179.

NaRb2[NpO4(OH)2]∙4H2O (II): a = 5.4558(2), b = 12.4478(3), c = 7.9251(2) Å, β = 103.6310(13)°,sp. gr. P21/n, Z = 2, R1 [I > 2σ(I)] = 0.0218.

NaCs2[NpO4(OH)2]∙4H2O (III): a = 15.0048(4), b = 9.1361(2), c = 10.6747(3) Å, β = 129.7361(9)°,sp. gr. C2/c, Z = 4, R1 [I > 2σ(I)] = 0.0148.

NaRb5[PuO4(OH)2]2∙6H2O (IV): a = 6.4571(1), b = 8.2960(1), c = 10.8404(2) Å, α = 105.528(1), β= 97.852(1), γ = 110.949(1)°, sp. gr. P‐1, Z = 2, R1 [I > 2σ(I)] = 0.0189.

NaRb2[PuO4(OH)2]∙4H2O (V): a = 8.2168(2), b = 13.4645(3), c = 9.9238(2) Ǻ, β = 102.6626(12)°,sp. gr. P21/n, Z = 4, R1 [I > 2σ(I)] = 0.0142.

NaCs2[PuO4(OH)2]∙4H2O (VI): a = 11.1137(2), b = 9.9004(2), c =  10.5390(2) Ǻ, β = 101.0946(11)°, sp. gr. C2/c, Z = 4, R1 [I > 2σ(I)] = 0.0138.

Anion of [PuO4(OH)2]3‐

in the structure of  IV

16

Page 107: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Selected  interatomic distances and torsion angles in the structures I – VI :

I II III IV V VIBond (Å)An=O  1.8790(12) 2×1.8690(9)  2×1.8884(9) 1.8695(15) 1.8685(12) 2×1.8868(15)

1.8855(13)  2×1.9138(9) 2×1.8944(9) 1.8724(15) 1.8761(12) 2×1.8876(14) 1.8955(13) 1.8919(15)  1.8897(12) 1.9223(13) 1.8985(16) 1.9144(12) 

An‐O(OH) 2.3259(13) 2×2.3750(9) 2×2.3643(9) 2.3197(16) 2.3083(13) 2×2.3236(15)2.3382(13) 2.3556(15) 2.3229(13)

Angle (º) I II III IV V VI

H‐O…O‐H 145(4) 180 133(4) 39(4) 140(3) 48(5)

17

Page 108: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Recently a new way for Np(VII) compound preparationwas proposed by Fedosseev and co-workers [(2008)]:electrochemical oxidation in acetate solutions.

The new compounds of

МNpO4·nH2O type, where М – unicharged cation ofalkali metal, ammonium, silver, guanidinium ortetraalkylammonium

and

Np(VII) with bicharged cations of alkaline earthmetals, and also Cu, Cd and Zn.

All these compounds have been thoroughlycharacterized by means of chemical analyses, IR andUV-vis spectroscopy. The study confirmed, that…

18

Page 109: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Pu(VII) compounds are close structural and 

chemical analoguesof Np(VII) ones

19

Page 110: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Tc(VII) & Pu(VII), Np(VII)

Pu(VII) and Tc(VII) are different in (cry,ele)‐structure, ligand arrangement, stability and chemical properties !

1000 ppm

Page 111: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Periodic Table and heptavalent state of elements

Period is variable : 2, 8, 8, 18, 18, 32…? 

Zones of implacability exist

For huge part ‐ It works ! ! !VII

4

Page 112: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

An(VII)     ‐ Tc&Re(VII) • Structural and chemical data obtained in recent years by X‐ray‐s‐

c, IR and EXAFS investigations of the new compounds of• heptavalent neptunium and plutonium,• heptavalent technetium and rhenium• confirm the earlier prevailing opinion about the absence of a

deep similarity in physico‐chemical properties between theheptavalent transuranic elements and the elements of Group VIIof the short form of the Periodic table and the formal nature ofsome of the structural similarities among the consideredheptavalent compounds.

• Principally one can attend the formation of Pu(VIII) but it is notthe aqueous media that could stand its oxidizing power.

20

Page 113: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

BessonovPerminov

Krot,Grigoriev

PeretrukhinGerman

CzerwinskiPoineau

Thank you for your Attention!

Page 114: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

ISTR‐2014

Page 115: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Thank you for your attention !