2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

127
Recent advances in nuclear chemistry III School of Energetic and Nuclear Chemistry Biological and Chemical Research Centre University of Warsaw, Poland Konstantin German Frumkin Institute of Physical Chemistry and Electrochemistry of Russian Academy of Sciences (IPCE RAS), Moscow, Russia Medical institute REAVIZ

Upload: konstantin-german

Post on 12-Jul-2015

174 views

Category:

Education


0 download

TRANSCRIPT

Page 1: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Recent advances in nuclear  chemistry

III  School of Energetic and Nuclear Chemistry

Biological and Chemical Research Centre University of Warsaw, Poland

Konstantin German

Frumkin  Institute of Physical Chemistry and Electrochemistry of Russian Academy of Sciences (IPCE RAS), Moscow, RussiaMedical institute REAVIZ

Page 2: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

First : THANKS to WARSAW UNIV. my lecture given here last year  leads with approx. 2000 readings =3 times more popular than the best followers

Visit of Russian Academy delegation to Polska Academia Nauk in 1957

Ac. Tadeusz Marian Kotarbiński – President PANAc. Viktor Spitsyn – Director IPC  ( the left)

Page 3: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Scope

• Nuclear prospects in Russia

• NMR  for radioactive materials analyses

• Sync Radiation

• Actinide hypothesis verification

Page 4: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Homo sapience sp. was the most efficient one in applying technologies to improving its life  

Economist Kenneth Boulding (1956) : one who believes that exponential growth could be ethernal in the limited world is 

either mad or economist

Neand.sp.sp.

Cosmo sp.

Coal ‐Steamengin

Oil –ess engin

T  E  C  H  N  O  L  O  G  Y

Page 5: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Petroleum energeticswiki :

• The modern history of petroleum began in the 19th century with the refining of paraffin from crude oil. The Scottish chemist James Young in 1847 noticed a natural petroleum seepage in the Riddings colliery ‐ Derbyshire. He distilled a light thin oil suitable for use as lamp oil, at the same time obtaining a thicker oil suitable for lubricating machinery.

• In 1848, Young set up a small business refining the crude oil. The new oils were successful, but the supply of oil from the coal mine soon began to fail (eventually being exhausted in 1851). 

• Great sceptisism to petrolium burning was shown by D. Mendeleev…

• Once started it will once stopWHAT  After… ?

Page 6: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

World state and preferences in energetic development

Oil Gas           Coal  Bio 

Nuclear Hydro/Thermal Wind/Sun

Page 7: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Discovery of radioactivity and estimation of its importance

Becquerel• In 1896 found out  that  

Uranium ore is emitting some new kind of rays.

Curie and Sklodowska

• French physicist Pierre Curie and his young Pole assistant (radio)chemist MariaSklodowska in 1898 found out that new Radium samples are more hotcompared to the environments for many months. They concluded : radioactivityis new and very important source of energy and proposed its usage for medical,pharmaceutical , …, purposes.

• Vernadsky in Russia in 1920 predicted that Ra and allied matter could be a very important key for new energetic in the World scale.

Page 8: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

2014  ‐ 60th anniversary of the First World NPP 

• The first NPP was constructed in Obninsk, Russia , the first grid connection on June 26, 1954 providing the new city of Obninsk with electricity. 

• The power plant remained active until April 29, 2002 when it was finally shut down.

• The single reactor unit at the plant, AM‐1had a total electrical capacity of 6 MW and a net capacity of around 5 MWe. Thermal output was 30 MW.

• It was a prototype design using a graphite moderator and water coolant. This reactor was a forerunner of  the RBMK  reactors.

Page 9: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Potential of nuclear• To use the full potential of U (and Pu bred from it) requires fast‐neutron reactors

• The stock of depleted UO2 in the world when  used in fast reactors will provide the energy equivalent to 4X1011 t oil

http://www.world‐nuclear‐news.org

Page 10: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Fast neutron reactors

• Fast neutron reactors are a technological step beyond conventional power reactors.

• They offer the prospect of vastly more efficient use of uranium resources and the ability to burn actinides which are otherwise the long‐lived component of high‐level nuclear wastes.

• Some 20 reactors were operated and 400 reactor‐years experience has been gained in operating them.

• Generation IV reactor designs are largely FNRs, and international collaboration on FNR designs is proceeding with high priority.

Page 11: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Fast reactors with diff. coolants:LLMC (Na), HLMC (Pb, LBE = Pb‐Bi) 

• FN types:• BN‐60• Brest‐300• BN‐600• Shevchenko• Phoenix• Superphenix• BN‐800• BN‐1200 ‐ project

• FR = the key to really closed nuclear fuel cycle

LBE = Lead‐Bismuth eutectic

Page 12: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Fast reactors in Russia and ChinaBeloyarsk NPP                   CEFR ‐ China

• The single reactor now in operation was a BN‐600 fast breeder reactor, generating 600 MWe. (1980 – 2014)

• Liquid Sodium is a coolant.• Fuel: 369 assemblies, each 

consisting of 127 fuel rods with an enrichment of 17–26% U‐235. 

• It was the largest Fast reactor in service in the world. Three turbines are connected to the reactor. Reactor core ‐ 1.03 m  tall , Diameter =  2.05 m.

• China's experimental fast neutron reactor CEFR has been connected to the electricity grid in 2011

Page 13: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Fast BN‐800 with mixed UO2‐PuO2 fuel and sodium‐sodium coolant started 2014 in Russia.

Fast BN‐1200 reactor with breeding ratio of 1.2 to 1.35 for (U,Pu)O2 fuel and 1.45 for UN (nitride) fuel, Mean burn‐up 120 MWtXdXkg. BN‐1200  is due for construction by 2020  with Heavy Liquid Metallic Coolant (Pb‐Bi) 

http://www.world‐nuclear‐news.org

Page 14: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Generation IVreactor design

• The generation IV lead‐cooled fast reactor features a fast neutron spectrum,  molten Pb or Pb‐Bi eutectic coolant. 

• Options include a range of plant ratings, including a number of 50 to 150 Mwe units featuring long‐life, pre‐manufactured cores. 

• Modular arrangements rated at 300 to 400 MWe, and a large monolithic plant rated at 1,200 MWe. The fuel is metal or nitride‐based containing U  and transuranics.

• A smaller capacity LFR such as SSTAR can be cooled by natural convection, larger proposals (ELSY) use forced circulation in normal power operation, but with natural circulation emergency cooling. 

• The reactor outlet coolant temperature is typically in the range of 500 to 600 °C, possibly ranging over 800 °C. 

Page 15: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Some ofChina’s NPP are based on Fast Reactors

Page 16: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

• Develop and demonstrate fast reactor technology that can be commercially deployed

• Focus on sodium fast reactors because of technical maturity

• Improve economics by using innovative design features, simplified safety systems, and improved system reliability

• Advanced materials development• Nuclear data measurements and uncertainty reduction 

analyses for key fast reactor materials• Work at Los Alamos focuses on advanced materials 

development, nuclear data measurements, and safety analyses

Fast Reactors Program in USA

* ‐ Gordon Jarvinen VIII International Workshop ‐ Fundamental Plutonium Properties .  September 8‐12, 2008

Page 17: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Some of the concepts developed in the past or under development nowadays are the following:

• — In the Russian Federation, the small 75–100 MW(e) LBE cooled power fast reactor SVBR˗75/100 

• — In Belgium, the 100 MW(th) multipurpose fast neutron spectrum MYRRHA facility, being designed to  operate in both critical and subcritical mode

• — In Japan, a small power reactor cooled by lead‐bismuth and fuelled with metallic and nitride fuel featuring extra long life time; a 150 MW(e) lead‐bismuth cooled fast reactor concept Pb‐Bi cooled direct boiling water fast reactor (PBWFR)) featuring direct contact steam generators (‘steam‐lift effect’ of lead‐bismuth coolants); and a medium sized lead‐bismuth cooled fast reactor, lower breeding ratios in a Japanese scenario from 2030–2050 on

• — In the USA, the modular lead‐bismuth cooled STAR‐LM concept featuring natural circulation and the lead or lead‐bismuth cooled Small, Sealed, Transportable, Autonomous Reactor(SSTAR) concept rated 10–100 MW(e) 

• — In Japan and the USA, the lead‐bismuth cooled encupsulated nuclear heat source (ENHS) concept, featuring natural circulation in both primary and intermediate circuits

• — In China, a lead‐bismuth cooled and thorium fuelled fast reactor concept • — In the Republic of Korea, a lead cooled fast reactor dedicated to utilization and 

transmutation of long lived isotopes in the spent fuel

Page 18: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Small Modular Reactors (SMRs)• Small Modular Reactors 

(SMRs) are nuclear power plants that smaller in size (300 MWe or less) than current generation base load plants (1,000 MWe or higher).

• These smaller, compact designs are factory‐fabricated reactors that can be transported by truck or rail to where they are in need.

Page 19: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

36

7

6

13

3

65 Reactors for NPPs Under Construction  ‐ by region:

Asia ‐ Far East

Asia ‐Middle East and South

EU 27

Other Europe

America

Sources: IAEA‐PRIS, MSC 2011

Page 20: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

NMR    ‐ SRtechnics

Page 21: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Nuclear MagneticResonance Spectroscopy

http://en.wikipedia.org/wiki/Nuclear_magnetic_resonance

Superconducting magnets 21.5 T Earth’s magnetic field 5 x 10‐5 T

NMR

Page 22: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture
Page 23: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Now we have both 600 and 300  MHzAvance Brucker NMR spectrometers

in disposition of my laboratory

Avance‐300 BrukerAvance‐600  Bruker

D3‐12 NMR‐600MHz (12.3 AV600_CHEM)

OPERATED BY THE GROUP OF Prof. Valery P. TARASOV, Dr. G. KIRAKOSYAN AND V.A. IL’IN

Page 24: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Nuclei in operationNucleus Spin Natural

AbundanceRelative

Sensitivity1H 1/2 99.985 1002H 1 0.015 0.963He 1/2 .00013 4413C 1/2 1.108 1.617O 3/2 0.037 2.919F 1/2 100 83.4

23Na 3/2 100 9.331P 1/2 100 6.639K 3/2 93.08 .05

99Tc 9/2 0 ( = 99.8 !) high

36Cl 2 0 (30) high!

Page 25: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

•Number and type of NMR active atoms 

•Distances between nuclei

• Angles between bonds

• Motions in solution

•Sternheimer const

•QQC

•Etc…

Information obtained by NMR

• Organic substances

• Radioactive materials

• Ga‐complexes

• Etc…

Page 26: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

99gTc‐NMR (TcO4 : O‐16, O‐17, O‐18)

99Tc NMR (67.55MHz) spectrum of 0.2 M NaTcO4 solution in recycled water containing ∼72% H2

18O at 298K. V. Tarasov, G.Kirakosyan, K.German, 

Phys.Chem.Russ, 2015.#1.

270 280 290 300 310 320 330 340

0,40

0,41

0,42

0,43

0,44NH4Tc16O3

18O99Tc NMR H0=7.04Tл

Температура, Т К

Изотопный сдвиг Я

МР

99Тс

, м.д

.

Page 27: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

O‐17 NMR

• In water enriched in O‐17

280 300 320 340130,4

130,8

131,2

131,6

132,0 КССВ 17O-99Tc КССВ 99Tc-17O

NH4TcO4

H0=7.04Тл

Температура, Т К

КССВ

, Гц

Page 28: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Tc‐NMR

Chem Shifts in TcO4 – “Puce hunting”

• Solutions• Ionic  pair  formation• Receptor Complexes

Others

• TcO4 – TcO6• Tc metal• TcO2

Page 29: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Changes in the 1H NMR spectrum of an equimolarmixture 1 + 2 in CD3OD after addition of one equiv. 

of HCl (26% aqueous solution). 

The  first spectrum 

represents the spectrum of 

dialdehyde 1. Green signals 

belong to diamine 2, violet signals belong to dialdehyde 1 and 

red signals belong to 

complex L1∙2HCl.

MEANS for RECEPTOR SYNTHESIS  CONTROL

Page 30: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Macrocyclic receptor for pertechnetate and perrhenate anions by NMR and crystal structure

G. Kolesnikov, K. German, G. Kirakosyan, I. Tananaev, Yu. Ustynyuk, V. Khrustalev and E. Katayev

DOI: 10.1039/c1ob05873h

Page 31: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

99Tc NMR titration of (Bu4N+)(TcO4 ‐) with L1 (a) and 1H NMR titration of L1 with (Bu4N+)(ReO4 ‐) (b) in CDCl3 at 25 ◦C.

Macrocyclic receptor for pertechnetate and perrhenate anions by NMR and crystal structure

G. Kolesnikov, K. German, G. Kirakosyan, I. Tananaev, Yu. Ustynyuk, V. Khrustalev and E. Katayev

Page 32: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

99Tc ЯМР, CDCl3 UV, dichloroethane

Imine-amide macrocycle log(β11) = 3.2 log(β11) = 5.1

Cyclo[8]pyrrole·2(HCl) log(β12) = 3.8 log(β12) = 6.0

99Tc-NMR titration, Bu4N+ 99TcO4– in CDCl3

99Tc-NMR strengths

• Clear signal

• Good correlation with

UV

Kolesnikov G.V., German K.E, Kirakosyan G., Tananaev I.G., UstynyukYu.A., Khrustalev V.N., Katayev E.A. // Org.Biomol.Chem. ‐ 2011.

Page 33: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Back titration with 99Tc NMR detection for the receptor L1  ( HYPER NMR 2006. О – experiment, lines – calculated, black – Kb,blue  –TBA99TcO4 concentration, red – complex concentration ).

L1

UV‐vis

Page 34: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Back titration with 99Tc ЯМР detection for the receptor L2( HYPER NMR 2006. О – experiment, lines – calculated, black – Kb,blue  –TBA99TcO4 concentration, red – complex concentration ).

L2

UV‐vis

Page 35: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Chemical shift

http://www.cem.msu.edu/~reusch/VirtualText/Spectrpy/nmr/nmr1.htm

Page 36: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Intramolecular mode

• The Berry pseudorotation is a classical mechanism for interchanging axial and equatorial ligands in molecules with trigonal bipyramidalgeometry

• PF5• IF5

Intermolecular mode

• Tarasov exchange in TcO4‐TcO6 exchange spectra

Exchange spectra

Page 37: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Pseudorotation via the Berry mechanism• Single‐crystal X‐ray studies indicate that the PF5 molecule has two dis nct types of P−F 

bonds (axial and equatorial): the length of an axial P−F bond is 158.0 pm and the length of an equatorial P−F bond is 152.2 pm. Gas‐phase electron diffraction analysis gives similar values: the axial P−F bonds are 158 pm long and the equatorial P−F bonds are 153 pm long.

• Fluorine‐19 NMR spectroscopy, even at temperatures as low as −100 °C, fails to distinguish the axial from the equatorial fluorine environments. 

• The apparent equivalency arises from the low barrier for pseudorotation via the Berry mechanism, by which the axial and equatorial fluorine atoms rapidly exchange positions. The apparent equivalency of the F centers in PF5 was first noted by Gutowsky.[2] The explanation was first described by R. Stephen Berry. 

• Berry pseudorotation influences the 19F NMR spectrum of PF5 since NMR spectroscopy operates on a millisecond timescale. Electron diffraction and X‐ray crystallography do not detect this effect as the solid state structures are, relative to a molecule in solution, static and can not undergo the necessary changes in atomic position.

Page 38: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Berry pseudorotation:  NMR‐31P in PF5

Yellow atoms  are axial Blue atoms are  axial

http://fluorine.ch.man.ac.uk/pics/berry.gifhttp://pubs.acs.org/doi/pdf/10.1021/ed083p336.2

Mechanisms that interchange axial and equatorial atoms in fluxional processes:Illustration of the Berry Pseudorotation, the Turnstile, and the Lever Mechanisms via

Animation of Transition State Normal Vibrational Modes

Page 39: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

TcO4 ‐‐‐ TcO6 Intermolecular spectra 

Page 40: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

NMR‐99Tc in 3 – 18 M H2SO4 [Tc] = 0.001M

Page 41: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

99Tc‐NMR Tc(VII) in HClO4разбавление водой

C(HClO4) δ, ppm11,37 124,055

11 88,810,66 6010,33 36,2410,03 9,99,74 3,39,47 -1,449,22 -4,38,97 -6,28,74 -7,38,22 -8,457,33 -8,454,13 -3,463,07 -2,242,07 -1,13

0 0

Page 42: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

99Tc‐NMR Tc(VII) in HClO4разбавление водой

C(HClO4) δ, ppm11,37 124,055

11 88,810,66 6010,33 36,2410,03 9,99,74 3,39,47 -1,449,22 -4,38,97 -6,28,74 -7,38,22 -8,457,33 -8,454,13 -3,463,07 -2,242,07 -1,13

0 0

Page 43: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Solid State NMR Characterization  of the  Structure of  solid

Pertechnic Acid HTcO4

Solid state 99Tc‐NMR of HTcO4(solid)Provide some similarity to Re2O7*2H2OGives evidence for the absence of TcO4 !Charge separated structure favorable

Page 44: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Solid‐State NMR Characterization of Electronic Structure in Ditechnetium Heptoxide

• Herman Cho, W.A. de Jong, A.P. Sattelberger,            F. Poineau, K. R. Czerwinski ‐ J. AM. CHEM. SOC. 

• NMR parameters were computed for the central molecule of a (Tc2O7)17 cluster using standard ZORA‐optimized all‐electron QZ4P basis sets for the central molecule and DZ basis sets for the surrounding atoms. • The magnitudes of the predicted tensor principal values appear to be uniformly larger than those observed  experimentally, but the discrepancies were within the accuracy of the approximation methods used.• The convergence of the calculated and measured NMR data suggests that the theoretical analysis has validity for the quantitative understanding of structural, magnetic, and chemical properties of Tc(VII) oxides in condensed phases.

Page 45: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

EFG  at anionic (Х) and cationic (М) positions in МХО4 crystals  as a = f ( 1/V(cell) )

Page 46: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

LINE SHAPE FOR  99Tc‐ and 133Cs‐NMR   = f(T) in CsTcO4

Page 47: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Temperature dependencies of assimetry parameter QCC Tc-99, tensor components EFG; qyy; qxx CsTcO4

Page 48: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Temperature dependencies of chemical shifts and QCC Cs-133 at the positions Cs(1) and Cs(2) in CsTcO4

Scheme of the potential in Cs region at different temperature

Page 49: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

• NMR spectrum of Tc metal powder obtained by FT of free induction decay accumulated after excitation of the spin system was recorded and used as a reference for analyses of technetium states supported onto the surfaces and formed in Tc‐Ru alloys/intermetalics. 

• Knight shift of technetium metal is a linear function of temperature, K(ppm) = 7305 ‐ 1.52 x T. nQ(99Tc) = 230 kHz at 293 K, CQ(99Tc) = 5.52 MHz.

Typical NMR‐99Tc spectra of a ‐metal powder ( Ф 80‐150 μm) b – nano‐dimensional Tc metal Ф = 50 nm

Page 50: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

• 99Tc NMR study of bimetallic  Ru‐Tc  samples supported  at different supports  i.e.:  g‐Al2O3 , SiO2, MgO, TiO2 has shown that for all the supports (except for TiO2), there is an intense signal at –30 – 40 ppm arising from the TcO2

Page 51: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Temperature dependence of Knight shift forbulk (b) and nano‐dimensial (a) metallic Tc

S Kn

Page 52: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Численная оценка сдвигов Найта для качественной слоевой модели.

• NTotal = NT(m) + NS(m+1) NT(m)=10/3m3‐5m2+11/3 m‐ 1. NS = 10m2+2 

Kn ‐ K∞ = (K0 ‐ K∞) exp ((‐n/m)

K∞ =7350 м.д. – предельный сдвиг технеция для объёмного образца.

K0 =7430 м.д. – сдвиг для технеция на поверхности частицы данного диаметра

Page 53: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Спектр ЯМР Тс‐99 катализатора 2%Тс/γ‐Al2O3

Результаты расчета для 5‐ти слоевой частицы составили при m=5K1= 7417 м.д.K2 = 7410 м.д.K3 = 7397 м.д.K4 = 7384 м.д.K5 = 7365 м.д.

Page 54: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Спектр ЯМР Тс‐99 бинарного катализатора 1%Ru‐3%Tc/TiO2

Page 55: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

36Cl‐NMR study 36Cl‐NMR Parameters for Molten Salt Reprocessing Analyses: 

Quadrupole Moment, Spin‐Lattice Relaxation and Sternheimer Antishielding Factor for Chloride and 

Perchlorate Ions.

FROM: Tarasov V., Guerman K., Simonoff G., Kirakosyan G., Simonoff M.   NRC5: 5‐th International Conference on Nuclear and Radiochemistry. Pontresina, Switzerland, September 3‐8, 2000. Extended Abstracts, Vol. 2, p. 641‐ 644.

36Cl is one of long‐lived b‐active isotopes with a half‐life of 3.105 years and rare nuclear structure – its odd‐odd nuclei contain 19 neutrons and 17 protons. 

Being an artificial isotope, 36Cl  is not today an environmental hazard because of its low abundance..

However, some of the scenarios for the development of atomic power, p.e. involving the use of molten chloride reactor systems for destruction of weapons plutonium and pyrochemicalreprocessing of spent nuclear fuel, may result in accumulation of 36Cl due to 35Cl(n,γ)36Cl reaction (s = 100 barn) in amounts that cannot be ignored as radioactive waste.

Page 56: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Nuclear characteristics of the isotope 36Cl were reported: I = 2, μ = 1.31 μB, electric quadrupolemoment Q = ‐ 0.017 barn.  

36Clmagnetic moment μ(36Cl) = 1.2838 nm was determined from the ratio of the resonance frequencies ν(36Cl)/ν(2H) = 0.74873 ± 3. The magnetic moment was assigned the positive sign.

The Sternheimer antishielding factor (1 + γ∞) was known only for Cl‐ions, but not for ClO4 ‐ ions.

36Cl‐NMR study 

NMR spectra (B = 4.6975 T) of an aqueous solution of KClO4 + KCl at 300K: (a) 35Cl‐SI 8K, 0.24 Hz/pt, NS = 1070 (ClO4)and 2200 (Cl); (b) 36Cl—SI 32K, 0.03 Hz/pt, NS = 2800 (ClO4) and 2300 (Cl); (c) 37Cl‐‐SI 16K 0.06 Hz/pt, NS = 6400 (ClO4) and 15488 (Cl). 

Tarasov V., Guerman K., Simonoff G., Kirakosyan G., Simonoff M.   NRC5: 5‐th International Conference on Nuclear and Radiochemistry. Pontresina, Switzerland, September 3‐8, 2000. Extended Abstracts, Vol. 2, p. 641‐ 644.

Page 57: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

36Cl‐NMR study 

Tarasov V., Guerman K., Simonoff G., Kirakosyan G., Simonoff M.   NRC5: 5‐th International Conference on Nuclear and Radiochemistry. Pontresina, Switzerland, September 3‐8, 2000. Extended Abstracts, Vol. 2, p. 641‐ 644.

3.3 M Bu4NClO4 in CH3CN of at 300 K: 

(a) 35Cl—SI 4K, SW = 300 Hz, and NS  = 8; 

(b) 37Cl‐‐SI 16K, SW = 300 Hz, and NS = 16;

(c) 36Cl—SI 16K, SW = 100 Hz, and NS = 8.

With the parameters determined in this study, the low level detectable for 36Cl is 0.5 ppm forconcentrated samples, 15 ppm in 0.1 M chloride solutions; LLD for 36Cl could be decreased by a factor of approx. 10 by addition of microamountsof paramagnetic ions (Cu2+, Ni2+).

Page 58: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

36Cl‐NMR study 

Page 59: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

14N‐, 77Se, 187Re‐,    NMR study applied to radioeco & biotechnology tests control 

NitrogenN‐14

SeleniumSe‐77

RheniumRe‐187

… and also U, Mn, Cs,  etc…

etc…

Page 60: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Synchrotron Radiation as a Tool

ISTR 2011 Moscow

Electromagnetic radiation generated by ultrarelativisticelectrons/positrons traveling along circular orbits in light charged particles accelerators

Page 61: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Advantages compared to standard X‐ray sources

• Intensity/Brightness higher by 6‐10 orders of magnitude

• Continuum spectrum from IR to hard X‐rays• High natural collimation• Tunable polarization• Partial coherence

Page 62: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture
Page 63: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

EUROPEAN SR

Page 64: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

EUROPEAN SYNCHROTRONS incl. MOSCOW

Page 65: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

European synchrotron Radiation Facility,Grenoble,France

Production of X-rays in synchrotron

Page 66: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture
Page 67: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

European synchrotronESRF

Electron energy:6 Gev

Page 68: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Bending magnets

Undulators

Page 69: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

• Siberian Center for Synchrotron Radiation (BINP, Novosibirsk) since 1970‐ies : Storage rings VEPP‐3 (2 GeV, 120 mA), VEPP‐4 (5 GeV, 40 mA)   – both 1st generation (ε ~300 nm∙rad) 11 beamlines . 

• Kurchatov Synchrotron Radiation Source (Moscow) in operatiion since early 2000‐ies  Siberia‐1 (booster, 450 MeV) – 3 VUV beamlines , Siberia‐2 – dedicated 2nd generation source (2.5 GeV, 300 mA, ε ~75 nm∙rad), 16 beamlines .  

• Zelenograd Synchrotron Rad. Facility (Lukin IPP) – under construction• Dubna Electron Synchrotron DELSI (JINR)  – project development

• International collaboration:• Russian‐German beamline at BESSY II and  Russian involvement in 

ESRF consortium, • Russian part in European XFEL project (X‐ray free‐electron lasers ‐ M. 

Kovalchuk (NRC "Kurchatov Institute", Moscow), A. Svinarenko (OJSC RUSNANO, Moscow) ( 4th generation source)

Synchrotron sources in Russia

Page 70: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

• Basics and typical applications of

‐ EXAFS/XANES‐ SAXS‐ XRD

• Combined application of X‐ray techniques to structural diagnostics of nano/materials

SR sources in Russia 

Page 71: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

SYNCHROTRON DIAGNOSTICS OF Radioactive and Functional Materials

in National Research Center “Kurchatov Institute” 

Department Head ‐ Yan  Zubavichus

10 years in user mode

Page 72: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

ISTR 2011 Moscow

Kurchatov Synchrotron SourceLinac

Booster

Main storagering

Control room

Page 73: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

10.50 10.75 11.00 11.25 11.50 11.75 12.00

Pt L3

Re L2

Fluo

resc

ence

Yie

ld

Photon Energy, keV

Re L3

2. Diffraction

1. Spectroscopy

3. Imaging

Synchrotron techniques include 

Especially proteinstructure solutions

Unique : Structures in solutionsand polymers

Page 74: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

KSRC X-ray stations1 Protein Crystallography

2 Precision X-ray Optics

3 X-ray Crystallography and Physical Materials Science

4 Medical Imaging

6 Energy-Dispersive EXAFS

7 Structural Materials Science (SMS)

8 X-ray Small Angle Diffraction Cinema (bioobjects)

9 Refraction Optics & X-ray Fluorescence Analysis

10 X-ray Topography & Microtomography

VUV stations

11 X-ray Photoelectron Spectroscopy

12 Optical spectroscopy for Condensed Matter

13 Luminescence & Optical Investigations

Technological stations

14 X-ray Standing Waves for Langmuir-Blodgett Films

15 Molecular Beam Epitaxy

16 LIGA

Page 75: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Characteristics of the beamlineType Energy interval, keV ΔE/ESi(111) 5‐19 10‐4Si(220) 8‐35 10‐4Monochromator is driven by stepper motors (1‘‘ discrete steps)

• Ionization chambers + KEITHLEY 6487• Scintillation counter with NaI(Tl) crystals• Linear gas‐filled detector COMBI‐1(“Burevestnik”, St. Petersburg)• 2D‐detector ImagingPlate (FujiFilm BAS2025)• Semiconducting detector (pure Ge)

Maximum 3×3 мм2

Minimum 10×10 μm2

Step of translations ~4 μm

~ 0.5×108 photons/mm2 with energy bandwidth Δλ/λ=10‐4

Monochromators:

Detectors:

Beam dimensions:

Photon flux:

Page 76: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

In‐situ cell for functional materials

3‐component gas mixtures• Inerts: He, N2, Ar• Oxidation and reduction: O2, H2

• Catalytic substrate: CO, CH4, etc.• Vacuum 10 Pa

20‐550oC

Thermostabilization through the heating current & thermocouple feedback

±1oC

4 × 350 W

Cooling down to ‐130oC with a flow of cold N2 gas

Page 77: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

He closed‐cycle refrigerator (SHI, Japan)

Minimum temperature achieved 10.0К + precise termostabilization up to room temperature

Page 78: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Combined use ofXAFS, XRD and SAXS

• XANES ‐ oxidation state of heavy atoms + coordination symmetry

• EXAFS ‐ local neighborhood of a given heavy atom

• XRD ‐ long‐range order, phase composition, size of crystallites

• SAXS ‐ size and shape of nanoparticles or pores in a range of 1‐100 nm

Page 79: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

X‐ray absorption spectroscopy: basics

ISTR 2011 Moscow

Page 80: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

FermilevelHOMO

LUMO

XANES: originVacuum

level

Core electronlevel

Valenceband

Forbidden gap

Conductionband

XANES probes the energy distribution of certain symmetry-allowed MOs or DOS features above the Fermi level

Fermi‘s golden rule:μ ~ |<f | V | i >|2 , f,i – wave functions of the final and initial states, V – dipole moment operator

Page 81: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Photoionized atomNeighbor atom

Photoelectron wave

Back-scattered photoelectronwave

Single scattering

Multiple scattering

EXAFS: origin

Local-structrure parameters of the central atomcan be retrieved from EXAFS

Initial state: electron on the core levelFinal state: outgoing photoelectron wave

Interference

Page 82: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

)(/222

22

))(2sin(),()(

)( krkjjj

j j

j jj eekkrkfkr

NkSk λσϕπχ −−+= ∑

χ - normalized background-subtracted EXAFS-signalk – photoelectron vector modulus (≡2π/λ)S – Extrinsic loss coefficient (0.7-1.0)N – coordination number in the j-th coordination spherer – interatomic distancef – backscattering amplitudeϕ – phase shiftσ– Debye-Waller factorsλ− photoelectron mean-free path

Page 83: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

EXAFS/XANES: implementation at SMS

Detection modes: transmission (ion chambers)fluorescence yield ( NaI(Tl) scintillation counter,  

detection limit down to 0.005 mass.%)

Data processing: IFEFFIT (Athena, Artemis, Hephaestus и др.) with ab initio theoretical phase and amplitude functions from FEFF8, GNXASAb initio XANES spectra simulation with FEFF8 , FDMNES, FitIt, etc.

Absorption edges measured over 2004‐2014

К‐edges:Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Br, Y, Zr, Nb, Mo, Tc, Ru, Pd, Ag, Cd, In, Te

L3‐edges:Ba, La, Ce, Nd, Pr, Sm, Eu, Gd, Hf, Ta, W, Re, Pt, Au, Hg, Pb, Bi, U, Pu

Page 84: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

11525 11550 11575 11600 11625 116500.0

0.5

1.0

1.5

2.0

Nor

mal

ized

Abs

orbt

ion,

a.u

.

Photon Energy, eV

Pt Pt2+

Pt3+

Pt4+

Pt L3

6.53 6.54 6.55 6.56 6.57 6.58 6.59 6.60 6.61

Mn2+ (MnCl2 6H2O)

Mn3+ (Mn2O3)

Mn4+ (MnO2)

Mn7+ (KMnO4)

Photon Energy, keV

Mn K

16350 16400 164500.0

0.6

1.2

Nor

mal

ized

Abs

orpt

ion,

a.u

.

Photon Energy, eV

Bi0

Bi3+ (Bi2O3)

Bi3+ (Bi(NO3)3.2H2O)

Bi5+ (NaBiO3)

Bi L1

XANES

Information retrieved from XANES:• Effective oxidation state• Coordination polyhedron symmetryData analysis: “fingerpring” approach – comparison with reference spectra + theoretical simulations

1s→3d,4p 2p3/2→ 4d 2s→ 6p

Page 85: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Application to TcTc K‐edge XANES

Page 86: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Application to Re 

Re L3‐edge XANES

Page 87: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

0 1 2 3 4 5 6

1.4 Tc-C 1.76Å6.0 Tc-Tc 2.72Å

TcCx

|FT(

k3 χ(k)

)|

R, Å

Tc

12 Tc-Tc 2.72Å

Tc METAL  & Tc CARBIDE

Page 88: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

0 1 2 3 4 5 6

0.3 Re-C 2.14Å1.0 Re-C 2.46Å1.1 Re-Re 2.62Å 3.1 Re-Re 2.73Å

ReCx

|FT(

k3 χ(k)

)|

R, Å

Re

12 Re-Re 2.75Å

Re METAL  & Re  CARBIDE

Page 89: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

PYROMETALLURGY REPROCESSING OF SPENT FUEL

Page 90: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Structures of  Tc halogenides in solutions and melts1) fundamental studies of cluster Tc compounds

2) Analyses of possible species in PRORYV technology (chloride melts)

Tc K‐край k3‐weight EXAFS spectra and its Fourier transform for Tc (+4,  +2,5,  +2) halogenides

(Cl, Br)

Page 91: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

абв

а - Моноядерный бромидный комплекс TcK-край k3-взвешенный EXAFS спектри преобразование Фурье спектра(Me4N)2TcBr6 :

Tc-Br : N=5,8(4), R=2,51(2)Å, σ2=0,004Å2, ΔE0= -16,9(5) eV,

б - Биядерный кластер Tc K-край k3-взвешенный EXAFS и соответствующее преобразование Фурье спектра K3Tc2Cl8 EXAFS структурные параметры K3Tc2Cl8(лучшая из полученных предварительных аппроксимаций):

Tc-Tc N=1,66(3), R=2.20(2) Åσ2=0,0069 Å2 ΔE0= -1.1(9) eV

Tc-Cl N=2,2(4), R=2,46(2) Åσ2=0,0107 Å2,

в - Спектр и Tc K-край k3-взвешенный EXAFS для полиядерного хлоридного кластера (Me4N)3[Tc6(μ-Cl)6Cl6]Cl2, для которого не удалось получить удовлетворительного преобразования Фурье в рамках FEFF-5 приближения

Spectra EXAFS of complex Tc halogenides

Page 92: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Proryv = Breakthrough http://www.atomvestnik.ru/content‐log/104‐redkomonopolnyj‐element.html

• Since 2011, at SCC Rosatom implements one of its most ambitious projects “PRORYV (Breakthrough)". Until 2020, it is planned to send 100 billion rubles. Its main goal ‐ the development of fourth generation reactors, high power fast neutron, creating a closed nuclear fuel cycle technology, new types of nuclear fuel.

• ... Is the fuel carries the dream of mankind in a closed fuel cycle• The current generation of reactors 3 and 3+ does not work closed cycle, that is, the 

fuel is fulfilled, then it is stored. There is a partially closed loop when after unloading fuel processed, but not entirely ‐ a significant portion enters the storage of radioactive waste. "Breakthrough" is to open the technology of the future ‐ a vicious cycle: the production of fuel, energy recovery, recycling and re‐loading into the reactor.

• Closed cycle, it is important to be near‐station, that is for fuel processing does not need to be transported. In general, the "Breakthrough" must solve several important problems for the nuclear industry.

• According to the doctor of technical sciences, professor, chairman of the technical committee of the project "Breakthrough" Evgeny Adamov, “ is security, which does not lead to such accidents that require evacuation and resettlement of the population even more so, is to use the full potential of raw materials, not only uranium‐235 this final urgent solution to the problems of spent nuclear fuel.

Page 93: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

UN fuelhttp://www.atomvestnik.ru/content‐log/104‐redkomonopolnyj‐element.html

• The Siberian Chemical Combine is already running process chain to create the newest nitride fuel, the first assembly designed to be loaded into the reactor BN‐600 at Beloyarsknuclear power plant.

• Scientists and Energy see how they manifest themselves in action, on this basis, it is decided whether to use nitride fuel in the reactors of the 4th generation.

• Dmitriy Zozulya, project manager for the industrial production of dense fuel: "Two full assembly, filling nitride fuel: TVS‐4 prototype fuel assembly BN‐1200 and TVS‐5 ‐ a prototype reactor" Brest ". This fuel carries the dream of mankind's closed fuel cycle with reprocessing of spent fuel, there is a need supplements only 238 uranium, plutonium in it remains almost the same with respect to the primary boot. "

Page 94: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

XAFS analysis of electrode surface after corrosionDetermination of eventual Tc oxide: ‐ In 1 M HCl (E= 800 mV)

‐In 1 M NaCl, pH= 2.5 (E= 700 mV)

XAFS measurement of: NH4TcO4, TcO2, Tc metal for comparison

Layer carefully removed and analyzed by XAFS. 

SEM x 50Before After

pH =2.5, 1 M NaCl, E = 700 mV during 1 hour

M. Ferrier, F. Poineau, G.W. Chinthaka Silva, E. Mausolf and K. Czerwinski “Electrochemical Behavior of Metallic Technetium in Aqueous Media” : ISTR-2008. Port Elizabeth, South Africa.

Page 95: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

XANES

No pre‐edge : No TcO4‐ sorbed on electrode. 

No shift of edge for 1M HCl , shifted (~1 eV) at pH = 2.5Product  on electrode after corrosion : mainly Tc metal. 

1 M NaCl, pH = 2.5 1M HCl

First deriv.

Page 96: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

EXAFS analysis also confirm presence of  Tc metal on surface electrode after corrosion . No oxide detected.

EXAFS after corrosion XRD [5]

C.N R (Å) C.N R( Å)

Tc0-Tc1 10 2.72 12 <2.71>

Tc0-Tc2 6 3.83 6 3.85

Tc0-Tc3 8 4.76 8 4.73

pH =2.5

EXAFS

Page 97: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

NEXT :

•SAXS

Page 98: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

X‐ray detector (0D, 1D, 2D)

I(s)

Scattering vector s = k1 ‐ k0s = 4π sin θ / λ = 2π / d

Sample in the transmission geometry

k0

k1

s

Point/Linear collimation

Monochro‐matic X‐ray source

SAXS: Basics

Page 99: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

ISTR 2011 Moscow

Indirect FT

I(s) – experimentalscatteringcurve

P(r) – volumedistribution

of hard spheres

Page 100: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

ISTR 2011 Moscow

SAXS: implementation at SMS

Sample-to-detectordistance, mm

2θmin - 2θmax, ° qmin - qmax, nm-1

E = 25 keVqmin - qmax, nm-1

E = 6 keV

120 0.95 - 45.00 4.2 – 179 1 – 43

500 0.23 - 13.50 1 – 59 0.24 – 14.2

1000 0.11 - 6.84 0.5 – 30 0.12 – 7,1

2390 0.05 - 2.87 0.2 – 12.7 0.05 - 3

Only transmission geometry (no GISAXS for the moment)Scattering vector is oriented vertically;sample‐to‐detector distance up to 2.5 m; Photon energy 5‐30 keV (the possibility to employ anomalous scattering)

Treatment of experimental data: GNOM, MIXTURE, DAMMIN, SAXSFIT, IsGISAXS, Fit2D (for preliminary data processing of 2D images)

Simulation:

Single size distribution of 

spherical particlesR=20±4 Å

IsGISAXS GNOM

Page 101: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

1 . Small‐angle diffraction on mesostructured materials

2 . SAXS application: aqueous colloids  p.e.  ‐ of Tc sulfide nanoparticles

3 . Quantitative interpretation of the SAXS curve for not‐interacting particles and aggregates (DAMMIN)

Page 102: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

V.F. Peretrukhin, G.T. Seaborg, N..N. Krot 

LNL, Berkley, 1998

Page 103: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Periodic Table and heptavalent state of elements

Period is variable : 2, 8, 8, 18, 18, 32…? 

Zones of implacability exist

For huge part ‐ It works ! ! !VII

Page 104: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

• Interatomic distances in metals/simple matter A.Wells “Struct.Inorg.Chem.”• Lost : P,S, Br, I,  Po, At, Fr, Ra, Ac, Np, Pu, Am, Cm, Bk, Cf

TRU

5

Detailed  fig In: Jarvinen et all

Plutonium

Page 105: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Synthesis and the types of An(VII)• Crystalline compounds of An(VII) can be prepared by deep

oxidation of actinides in strongly alkaline conditions.

• Both interaction of solid components and also conducting theoxidation in alkaline solutions.

• Compounds of An(VII) are stable only in strong alkali, andrapidly decompose in neutral or acidic conditions.

• An(VII) are quite variable in composition: formally they couldbe considered to contain anions AnO6

5-, AnO53-, [AnO4(OH)2]3-

, [An2O8(OH)2]4- and AnO4- but the latter is not supported by

X-ray analyses.

• A short number of the solid compounds containing AnO65-,

and AnO53- anions were isostructural to corresponding ortho-

and meso- rhenates ReO65-, ReO5

3- (but no analogy insolutions).

6

Page 106: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

MAnO4(·nH2O) (M – alkali metal)

• It was estimated by N.N. Krot and the followers that the transuranium(VII) compounds like MAnO4(·nH2O) (M – alkali metal) have the structures similar to uranates(VI) of alkali earth metals.

• They contain shortened linear groups AnO2

3+ and O–bridges collecting all into anionic layers. Structural type of  BaUO4.

(Reis A.H. et al. JINC, 1976).

7

Page 107: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

BaUO4 structural type compounds

• Lattice parameters for different U(VI), Np(VI) (lit. data) and Np(VII) compounds (IPCE data)

• 1 – U compounds• 2 – Np compounds• Chemical properties of  

Np(VI) and Np(VII) compounds are different

• LiReO4*1.5H2O contra LiTcO4*3H2O

8

Page 108: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

IR spectral data indicates Np‐O and Np=O difference 

Evident splitting at the CsNpO4 spectrum indicates/supports the presence of two types of Np‐O bonds:

• O=Np=O• Np‐O‐Np 

In Li5NpO6 all the Np‐O bonds are of the same nature  

9

Page 109: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Mossbauer spectra of Np(VII) compounds

• 1 – CsNpO4

• 2 – Na3NpO4(OH)2*nH2O

• 3 – Li5NpO6

• 4 – frozen solution of Np(VII) in 10M NaOH 

• Dots  ‐ experiment, curve –squared plotting

Page 110: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

In this way :

Transuranic(VII) MAnO4(·nH2O) compounds are completely different :

fromMXO4

xnH2O (X – elements of the 7th

Group from Periodic Table, Mn, Tc, Re, n= 0, 1, 1.5, 3)

from Tc(VII) acidGerman,Peretrukhin 2003Poineau, German 2010from Re(VII) acidBeyer H. et all.Angew. Chem., 1968

from I(VII) acid

from Cl(VII) acid

Структурный тип BaUO4.(Reis A.H. et al. JINC, 1976).

(Maruk A.Ya. et al. Russ. Coord. Chem.2011)

and from TcO3+ 

Pertechnetyl Fluorosulfate, [TcO3][SO3F] – ZAAC, 2007J.Supeł, U. Abram et all.Berlin, Freie Universität.

11

Page 111: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

111

Isostructural:LiBrO4 ∙ 3H2OLiClO4 ∙ 3H2OLiMnO4 ∙ 3H2O 

LiTcO4 ∙ 6/2H2O 6/2=3

LiReO4 ∙ 1.5H2OLiReO4 ∙ H2O‐Analogous are absent

More diffused  4d electrons in Re compared to 3d electrons in Tc

Page 112: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

112

Isostructural pertechnetate salts withcation : anion = 1:1 

CationAnion

ClO4- MnO4

- ReO4-

[Li · 6/2Н2O]+ + + *

Na+ – * +

K+ – – +

Rb+ – – +

Cs+ – – +

NH4+ – – +

Ag+ – – +

[(CH3)4N]+ + – +

[(C3H7)4N]+ – * +

[(C4H9)4N]+ * * *

[(C6H5)3PNH2]+ * * +

[C7H14N3]+ * * +

[C7H10N3(C3H5)4]+ * * +

[C7H10N3(C6H5)4]+ * * *

[C6H8N]+ – * +

[C4H10NO]+ – * +

[CN3H6]+ + * +

* Not determined. \ doesn’t exists– No similarity to Tc+ Isostructural

Page 113: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Anionic chain [(Np2O8)(OH)2]n4n‐ in the structure

of Li[Co(NH3)6][(Np2O8)(OH)2]∙2H2O

(Burns J., Baldwin W., Stokely J. Inorg. Chem., 1973).

12

Np(VII)  &   I(VII)

• Two types of Np in Np(VII)  compound while only one I in   I(VII)• One bridging O in Np(VII) while two bridging O in I(VII) 

• Np(VII) is stable in alkali while I(VII) – in acids

Neutral chains in HIO4. ( Smith, T. et all. Inorg.Chem., 1968)

Page 114: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

The first Pu(VII)single crystal

13

Page 115: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

14

Page 116: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Na4[AnO4(OH)2](OH)∙2H2O

Np1‐O1  1.891(2) Pu1‐O1 1.8824(15)  Np1‐O2  1.888(2)  Pu1‐O2 1.8805(18)Np1‐O3  1.917(2)  Pu1‐O3 1.9109(15)Np1‐O4  1.880(2) Pu1‐O4 1.8811(19)Np1‐O5  2.315(2)  Pu1‐O5 2.2952(19)Np1‐O6  2.362(2) Pu1‐O6 2.339(2)

An‐OH distances are more sensible to actinide 

contraction than An=O distances

15

Page 117: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Several mixed cation compounds of  Np(VII) and  Pu(VII)NaRb2[NpO4(OH)2]∙4H2O (I): a = 8.2323(2), b = 13.4846(3), c = 9.9539(2) Å, β = 102.6161(12)°,sp. gr. P21/n, Z = 4, R1 [I > 2σ(I)] = 0.0179.

NaRb2[NpO4(OH)2]∙4H2O (II): a = 5.4558(2), b = 12.4478(3), c = 7.9251(2) Å, β = 103.6310(13)°,sp. gr. P21/n, Z = 2, R1 [I > 2σ(I)] = 0.0218.

NaCs2[NpO4(OH)2]∙4H2O (III): a = 15.0048(4), b = 9.1361(2), c = 10.6747(3) Å, β = 129.7361(9)°,sp. gr. C2/c, Z = 4, R1 [I > 2σ(I)] = 0.0148.

NaRb5[PuO4(OH)2]2∙6H2O (IV): a = 6.4571(1), b = 8.2960(1), c = 10.8404(2) Å, α = 105.528(1), β= 97.852(1), γ = 110.949(1)°, sp. gr. P‐1, Z = 2, R1 [I > 2σ(I)] = 0.0189.

NaRb2[PuO4(OH)2]∙4H2O (V): a = 8.2168(2), b = 13.4645(3), c = 9.9238(2) Ǻ, β = 102.6626(12)°,sp. gr. P21/n, Z = 4, R1 [I > 2σ(I)] = 0.0142.

NaCs2[PuO4(OH)2]∙4H2O (VI): a = 11.1137(2), b = 9.9004(2), c =  10.5390(2) Ǻ, β = 101.0946(11)°, sp. gr. C2/c, Z = 4, R1 [I > 2σ(I)] = 0.0138.

Anion of [PuO4(OH)2]3‐

in the structure of  IV

16

Page 118: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Selected  interatomic distances and torsion angles in the structures I – VI :

I II III IV V VIBond (Å)An=O  1.8790(12) 2×1.8690(9)  2×1.8884(9) 1.8695(15) 1.8685(12) 2×1.8868(15)

1.8855(13)  2×1.9138(9) 2×1.8944(9) 1.8724(15) 1.8761(12) 2×1.8876(14) 1.8955(13) 1.8919(15)  1.8897(12) 1.9223(13) 1.8985(16) 1.9144(12) 

An‐O(OH) 2.3259(13) 2×2.3750(9) 2×2.3643(9) 2.3197(16) 2.3083(13) 2×2.3236(15)2.3382(13) 2.3556(15) 2.3229(13)

Angle (º) I II III IV V VI

H‐O…O‐H 145(4) 180 133(4) 39(4) 140(3) 48(5)

17

Page 119: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Recently a new way for Np(VII) compound preparationwas proposed by Fedosseev and co-workers [(2008)]:electrochemical oxidation in acetate solutions.

The new compounds of

МNpO4·nH2O type, where М – unicharged cation ofalkali metal, ammonium, silver, guanidinium ortetraalkylammonium

and

Np(VII) with bicharged cations of alkaline earthmetals, and also Cu, Cd and Zn.

All these compounds have been thoroughlycharacterized by means of chemical analyses, IR andUV-vis spectroscopy. The study confirmed, that…

18

Page 120: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Pu(VII) compounds are close structural and 

chemical analoguesof Np(VII) ones

19

Page 121: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Tc(VII) & Pu(VII), Np(VII)

Pu(VII) and Tc(VII) are very different in (cryst, electr)‐structure, ligand arrangement, stability and chemical properties !

1000 ppm

Poineau, German, Czerwinski

Page 122: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Periodic Table and heptavalent state of elements

Period is variable : 2, 8, 8, 18, 18, 32…? 

Zones of implacability exist

For huge part ‐ It works ! ! !VII

4

Page 123: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

An(VII)     ‐ Tc&Re(VII) • Structural and chemical data obtained in recent years by X‐ray‐s‐

c, IR and EXAFS investigations of the new compounds of• heptavalent neptunium and plutonium,• heptavalent technetium and rhenium• confirm the earlier prevailing opinion about the absence of a

deep similarity in physico‐chemical properties between theheptavalent transuranic elements and the elements of Group VIIof the short form of the Periodic table and the formal nature ofsome of the structural similarities among the consideredheptavalent compounds.

• Principally one can attend the formation of Pu(VIII) but it is notthe aqueous media that could stand its oxidizing power.

20

Page 124: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

8th International Symposium on Technetium and Rhenium: Science and Utilization. September 29th to October 3rd 2014. Proceedings and 

selected lectures. La Baule ‐ Pornichet, France. Eds. K.German, F.Poineau, M. Fattahi., Ya. Obruchnikova, A. Safonov. Nantes –Moscow – Las Vegas : Granica Publishing Group, 2014. 561 p.

WHAT SHOULD WE KNOW ABOUT TECHNETIUM AND RHENIUM :

Page 125: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

BessonovPerminov

Krot,Grigoriev

PeretrukhinGerman

CzerwinskiPoineau

Thank you for your Attention!

Page 126: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

PAN ‐ RAN• Россия‐ Русская академия наук (РАН)12.07.2002 р. ‐

Русская академия сельскохозяйственных наук (RANR)12.07.2002 р. ‐ Русская академия медицинских наук (Ранма)12.07.2002 р. ‐ Русская академия наук (соглашение награды)16.10.2001. ‐Русская академия наук (соглашение о научном сотрудничестве в области фундаментальных исследований космоса)14.03.2005 р.

Тадеуш Котарбинский, 

Page 127: 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

Thank you for your attention !