wear resistant and low friction nanocomposite coatings dr tomasz suszko

36
Wear resistant and low friction nanocomposite coatings Dr Tomasz Suszko

Upload: fadey

Post on 11-Jan-2016

58 views

Category:

Documents


0 download

DESCRIPTION

Wear resistant and low friction nanocomposite coatings Dr Tomasz Suszko. Lecture outline. Plasma sputtering – short description DC-, triode-, RF-, magnetron sputtering Nonreactive and reactive mode Low friction nanocomposite coatings - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Wear resistant and low friction nanocomposite coatings Dr Tomasz Suszko

Wear resistant and low frictionnanocomposite coatings

Dr Tomasz Suszko

Page 2: Wear resistant and low friction nanocomposite coatings Dr Tomasz Suszko

2International Student Summer School „Nanotechnologies in materials engineering”

Warsaw - Koszalin 2006

Tomasz [email protected]

http://www.balticnet-plasmatec.org

• Plasma sputtering – short description• DC-, triode-, RF-, magnetron sputtering• Nonreactive and reactive mode

• Low friction nanocomposite coatings

• Chosen results: Mo2N/Cu nancristaline films– structure, mechanical and tribological properties

• Structure, hardness• Friction & wear mechanisms in temperature range

RT-400°C

Lecture outline

Page 3: Wear resistant and low friction nanocomposite coatings Dr Tomasz Suszko

3International Student Summer School „Nanotechnologies in materials engineering”

Warsaw - Koszalin 2006

Tomasz [email protected]

http://www.balticnet-plasmatec.org

http://fusedweb.pppl.gov/CPEP

Plasma - the 4th

state of matter

Page 4: Wear resistant and low friction nanocomposite coatings Dr Tomasz Suszko

4International Student Summer School „Nanotechnologies in materials engineering”

Warsaw - Koszalin 2006

Tomasz [email protected]

http://www.balticnet-plasmatec.org

Fundamentals of plasma sputtering– DC sputtering (diode sputtering)

-+

Cathode

Anode+ substrate

Pressure~10 Panoble gas(e.g. Ar)

Voltage~1.5 kV

• Electron emission

• Sputtering

• Implantation

• Defects generation

• E-m radiation

Ionis

ati

on c

oeff

cient

Electron energy [eV]

10 100 10000.01

0.1

1

10

Disadvantages:

• Low ion current density (low sputtering rate)

• High working gas pressure resulting in scattering (low deposition rate)

• Dielectric materials can not be sputtered

• High voltage is needed

Page 5: Wear resistant and low friction nanocomposite coatings Dr Tomasz Suszko

5International Student Summer School „Nanotechnologies in materials engineering”

Warsaw - Koszalin 2006

Tomasz [email protected]

http://www.balticnet-plasmatec.org

-+ 100 V

Target

0.5 kV-

+

Substrate Ionis

ati

on c

oeff

cient

Electron energy [eV]

10 100 10000.01

0.1

1

10

+Lower working gas pressure – 0.1 Pa (higher deposition rate)

+Higher ion current density (higher sputtering rate)

– Dielectric materials can not be sputtered

Fundamentals of plasma sputtering– triode sputtering

Page 6: Wear resistant and low friction nanocomposite coatings Dr Tomasz Suszko

6International Student Summer School „Nanotechnologies in materials engineering”

Warsaw - Koszalin 2006

Tomasz [email protected]

http://www.balticnet-plasmatec.org

Ionis

ati

on c

oeff

cient

Electron energy [eV]

10 100 10000.01

0.1

1

10

+Lower working gas pressure – 0.1 Pa (higher deposition rate)

+Higher ion current density (higher sputtering rate)

– Dielectric materials can not be sputtered

Fundamentals of plasma sputtering – microwave assisted sputtering

Target

0.5 kV–

+

Substrate

Microwave antenna

Page 7: Wear resistant and low friction nanocomposite coatings Dr Tomasz Suszko

7International Student Summer School „Nanotechnologies in materials engineering”

Warsaw - Koszalin 2006

Tomasz [email protected]

http://www.balticnet-plasmatec.org

Substrate

Fundamentals of plasma sputtering – RF sputtering

RF

MatchboxThe differce in:• mobility of

electrons and ions• areas of

electrodes

results in

negative target selfbias

thus,

dielectric materials can be sputtered

Page 8: Wear resistant and low friction nanocomposite coatings Dr Tomasz Suszko

8International Student Summer School „Nanotechnologies in materials engineering”

Warsaw - Koszalin 2006

Tomasz [email protected]

http://www.balticnet-plasmatec.org

ca thode

vd

R L

ve

vR E B

Fundamentals of plasma sputtering – motion of the electron in electromagnetic

field

RL

ve cos

veve sin

ve c o s

ve c o s

ve

LLR

sin

eL m

eB

Page 9: Wear resistant and low friction nanocomposite coatings Dr Tomasz Suszko

9International Student Summer School „Nanotechnologies in materials engineering”

Warsaw - Koszalin 2006

Tomasz [email protected]

http://www.balticnet-plasmatec.org

Page 10: Wear resistant and low friction nanocomposite coatings Dr Tomasz Suszko

10

International Student Summer School „Nanotechnologies in materials engineering”

Warsaw - Koszalin 2006

Tomasz [email protected]

http://www.balticnet-plasmatec.org

Page 11: Wear resistant and low friction nanocomposite coatings Dr Tomasz Suszko

11

International Student Summer School „Nanotechnologies in materials engineering”

Warsaw - Koszalin 2006

Tomasz [email protected]

http://www.balticnet-plasmatec.org

There is a possibility to control the substrate ion current and the energy of the ions as well

– unbalanced magnetron sputtering

Substrate

Fundamentals of plasma sputtering– magnetron sputtering

DC or pulsed power supply

Ion

isati

on

coeff

cien

t

Electron energy [eV]

10 100 10000.01

0.1

1

10

+ Low working gas pressure – 0.1 Pa

+ Very high ion current density is possible (high sputtering rate)

Page 12: Wear resistant and low friction nanocomposite coatings Dr Tomasz Suszko

12

International Student Summer School „Nanotechnologies in materials engineering”

Warsaw - Koszalin 2006

Tomasz [email protected]

http://www.balticnet-plasmatec.org

What materials can be sputtered and deposited?

Whatever one need?

It must be kept in mind that:

• Compounds, targets are made of, are decomposed to the atomic form and only then can react again on the substrate (not always getting appropriate conditions)

• Sputtered atoms are scattered along their way towards substrate (the lighter the more intense thus the stoichiometry can change)

• A sputtered compound can not to easily evaporate (sufficient vacuum can not be obtain)

Page 13: Wear resistant and low friction nanocomposite coatings Dr Tomasz Suszko

13

International Student Summer School „Nanotechnologies in materials engineering”

Warsaw - Koszalin 2006

Tomasz [email protected]

http://www.balticnet-plasmatec.org

End of part one

Page 14: Wear resistant and low friction nanocomposite coatings Dr Tomasz Suszko

14

International Student Summer School „Nanotechnologies in materials engineering”

Warsaw - Koszalin 2006

Tomasz [email protected]

http://www.balticnet-plasmatec.org

•Mean free path•Secondary electron emmision•Ion implantation •Sputtering•Charging effect •Thermoemission•Magnetic mirror and trap •Larmor frequency and radius•Magnetron source (gun)

From yesterday

Page 15: Wear resistant and low friction nanocomposite coatings Dr Tomasz Suszko

15

International Student Summer School „Nanotechnologies in materials engineering”

Warsaw - Koszalin 2006

Tomasz [email protected]

http://www.balticnet-plasmatec.org

Fundamentals of plasma sputtering – reactive sputtering

Compounds of the target and gas elements For poorly conducting

or insulator deposits pulsed power supply is very usefull

Pumping system

Inert gas (e.g. Ar)Reactive gas (N2, O2, CH4 etc.)

Optical signal(optical emission spectroscopy)

• Gas pressure• Gas flows• Discharge power• (Substrate bias –

energy of the ions)• (Substrate ion

current density)

Control unit

Page 16: Wear resistant and low friction nanocomposite coatings Dr Tomasz Suszko

16

International Student Summer School „Nanotechnologies in materials engineering”

Warsaw - Koszalin 2006

Tomasz [email protected]

http://www.balticnet-plasmatec.org

What I won’t speak about is...

•Plasma enhanced chemical vapour deposition

•Laser ablation•Plasma spraying•Ion implantation (clasical orplasma immersion)

•Plasma nitriding orcarburazing

etc.

Page 17: Wear resistant and low friction nanocomposite coatings Dr Tomasz Suszko

17

International Student Summer School „Nanotechnologies in materials engineering”

Warsaw - Koszalin 2006

Tomasz [email protected]

http://www.balticnet-plasmatec.org

Plasma maintained by:• DC or pulsed discharge

(magnetron),• Vacuum arc, RF e-m waves

Plasma maintained by:• DC or pulsed discharge

(magnetron),• Vacuum arc, RF e-m waves

Working gases:• Ar (inert gas),• N2 (for nitrides),• O2 (for oxides),• CH4, C2H2 (for carbides and

DLC)

Working gases:• Ar (inert gas),• N2 (for nitrides),• O2 (for oxides),• CH4, C2H2 (for carbides and

DLC)

Targets made of:• Ti, Al, Mo, V, Ag, Cubut also• Fe, Ni, Coand• Si

Targets made of:• Ti, Al, Mo, V, Ag, Cubut also• Fe, Ni, Coand• Si

What we use for deposition is...

Page 18: Wear resistant and low friction nanocomposite coatings Dr Tomasz Suszko

18

International Student Summer School „Nanotechnologies in materials engineering”

Warsaw - Koszalin 2006

Tomasz [email protected]

http://www.balticnet-plasmatec.org

Coils supply

Pulsed powersupply

Substratebias

and heating

Pulsed powersupply

Spectrometer

Pumping system

Optical signal

GasesValve unit

Magnetron sources

What we develop for process control and data acquisition is...

Page 19: Wear resistant and low friction nanocomposite coatings Dr Tomasz Suszko

19

International Student Summer School „Nanotechnologies in materials engineering”

Warsaw - Koszalin 2006

Tomasz [email protected]

http://www.balticnet-plasmatec.orgF

L

What we interest in is...

Continuous looking for novel anti-wear coatings and development of their deposition methods

Phenomena in the tribolgical contact between hard coated surface and a counterpart

• Structure, elemental and phase composition of the coatings in the initial state (after deposition)

• Stress, adhesion, hardness of the coatings• Friction during tribological tests (especially in elevated

temperatures)• Tribomutation - chemical and physical changes of the „third

body” – elemental and phase composition, structure etc. of that

• The role of oxides in friction process

Page 20: Wear resistant and low friction nanocomposite coatings Dr Tomasz Suszko

20

International Student Summer School „Nanotechnologies in materials engineering”

Warsaw - Koszalin 2006

Tomasz [email protected]

http://www.balticnet-plasmatec.org

Where can we look for hard compounds?

Page 21: Wear resistant and low friction nanocomposite coatings Dr Tomasz Suszko

21

International Student Summer School „Nanotechnologies in materials engineering”

Warsaw - Koszalin 2006

Tomasz [email protected]

http://www.balticnet-plasmatec.org

Chemical sythesis ( DLC, c-BN, AlMgB, C3N4 )

Forming proper physical microstructure

• Nitride or carbide multilayers(TiN/CrN, TiN/TiAlN i in.)

• Compositesnc-MexN/a-Si3N4 nc-MexC/a-C:H np. nc-TiN/a-Si3N4

• Composites MexN/M np. (ZrN/Cu, Cr2N/Cu, TiN/Ag)

How to obtain hard films

Page 22: Wear resistant and low friction nanocomposite coatings Dr Tomasz Suszko

22

International Student Summer School „Nanotechnologies in materials engineering”

Warsaw - Koszalin 2006

Tomasz [email protected]

http://www.balticnet-plasmatec.org

L

A

L

F

Shear strength and hardness depend on each other thus friction coefficients are comparable for various izotropic materials.

Shear strength and hardness depend on each other thus friction coefficients are comparable for various izotropic materials.

Hardness is not all - there is friction also!

Shear strengthHardness

HAH

A

F

L

A AA

large small small large

Softmaterials

F

L

Hardmaterials

A

Page 23: Wear resistant and low friction nanocomposite coatings Dr Tomasz Suszko

23

International Student Summer School „Nanotechnologies in materials engineering”

Warsaw - Koszalin 2006

Tomasz [email protected]

http://www.balticnet-plasmatec.org

F

L

Self-lubricating materials

• As a result of rubbing, a thin low-shear--strengh layer should appear

• The material should be hard (what ensures small contact area)

Composite materials:

guaiac wood

PTFE impregnated bronzes

bearing metals with graphite or MoS2

inclusions

ceramic/carbon fiber composites

Izotropic materils:

diamond

Page 24: Wear resistant and low friction nanocomposite coatings Dr Tomasz Suszko

24

International Student Summer School „Nanotechnologies in materials engineering”

Warsaw - Koszalin 2006

Tomasz [email protected]

http://www.balticnet-plasmatec.org

RTDinfo - Mag. Europ. Res., 39, 2003

Self-lubricating FILMS

Hard coating

Enviromentalgas

Lubricating film

Page 25: Wear resistant and low friction nanocomposite coatings Dr Tomasz Suszko

25

International Student Summer School „Nanotechnologies in materials engineering”

Warsaw - Koszalin 2006

Tomasz [email protected]

http://www.balticnet-plasmatec.org

Mo2N as a hard coating

MoO3 as a solid lubricant

Cu additive as a mean for hardness enhancement

An attempt - Mo2N/Cu coatings

Page 26: Wear resistant and low friction nanocomposite coatings Dr Tomasz Suszko

26

International Student Summer School „Nanotechnologies in materials engineering”

Warsaw - Koszalin 2006

Tomasz [email protected]

http://www.balticnet-plasmatec.org

Mo2N/Cu nanocrystalline films – structure, mechanical

and tribological properties

Suszko et al., Surf. Coat. Tech., 200, 2006, pp. 6288-6292Suszko et al., Surf. Coat. Tech., 194, 2005, pp. 319-324

Outline

1. Deposition method2. Some remarks on the structure3. Hardness of the films4. Friction & wear in temperature range RT-400°C5. Conclusions

Page 27: Wear resistant and low friction nanocomposite coatings Dr Tomasz Suszko

27

International Student Summer School „Nanotechnologies in materials engineering”

Warsaw - Koszalin 2006

Tomasz [email protected]

http://www.balticnet-plasmatec.org

Deposition method:unbalanced magnetron sputtering

pulsed powersupply

pulsed powersupply

sample

external coils

pumps

Ar, N2

Mo Cu

optical signal

30 cm

Temperature: 200 °CBias: -30 V

Page 28: Wear resistant and low friction nanocomposite coatings Dr Tomasz Suszko

28

International Student Summer School „Nanotechnologies in materials engineering”

Warsaw - Koszalin 2006

Tomasz [email protected]

http://www.balticnet-plasmatec.org

Structure – XRD spectra

0

2

4

6

8

10

12

14

16

18

Inte

nsi

ty [

a.u

.]

Fe (substrate)

0% at. Cu

1% at. Cu

6% at. Cu9% at. Cu

21% at. Cu

40 45 50 55 60 65Diffraction angle 2ϑ [°]

← γ-Mo2N (111)

γ-Mo2N (200)→

← Cu (111)

Cu (200)→

Co Kα radiation

Page 29: Wear resistant and low friction nanocomposite coatings Dr Tomasz Suszko

29

International Student Summer School „Nanotechnologies in materials engineering”

Warsaw - Koszalin 2006

Tomasz [email protected]

http://www.balticnet-plasmatec.org

Cu content (at. %)0 5 10 15 20 25

5

6

7

8

9

10

11

12

13

Cry

stalli

te s

ize [

nm

]

Mo2N (200)

Crystallite size obtained from Scherrer’s formula AFM image of the pure

γ–Mo2N nitride

The influence of copper content on crystalite size

cos

Kt

Page 30: Wear resistant and low friction nanocomposite coatings Dr Tomasz Suszko

30

International Student Summer School „Nanotechnologies in materials engineering”

Warsaw - Koszalin 2006

Tomasz [email protected]

http://www.balticnet-plasmatec.org

StructureCrystallite size and film hardness

Cu content (% at.)0 5 10 15 20 25

5

6

7

8

9

10

11

12

13

Cry

stalli

te s

ize (

nm

)

Mo2N (111)

Mo2N (200)

0 5 10 15 20 2510

15

20

25

30

35

40

Cu content (% at.)

H (

GPa)

Load-depthsensitive method

DUH 202 (FN 20 mN)

Load-depthsensitive methodHysitron (FN 2mN)

Traditional method(FN 100—1000 mN)

Page 31: Wear resistant and low friction nanocomposite coatings Dr Tomasz Suszko

31

International Student Summer School „Nanotechnologies in materials engineering”

Warsaw - Koszalin 2006

Tomasz [email protected]

http://www.balticnet-plasmatec.org

0 100 200 300 4000.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Temperature [°C]

Fric

tion

coeffi

cien

t

0 % at. Cu

3 % at. Cu

7 % at. Cu

22 % at. Cu

• Fixed and scannedtemperature

TiN

Friction coefficient

• Ball on discconfiguration

• Counterpart: alumina ball

• Speed: 5 cm/s

• Normal force:1 N

Page 32: Wear resistant and low friction nanocomposite coatings Dr Tomasz Suszko

32

International Student Summer School „Nanotechnologies in materials engineering”

Warsaw - Koszalin 2006

Tomasz [email protected]

http://www.balticnet-plasmatec.org

J

m

2

22

)(

3

111

n

ii

n

iii

n

iii

s

F

nL

A

nLr

rA

sF

rA

dssF

Vk

Wear rate coefficient - a definition

Worn volume of the sample per work unit done against friction force

-1.5-1

-0.50

0.5b) 100°C

0 100 200 300 400 500 600 700μm

μm

0 1000 2000 3000 4000 50000

0.2

0.4

0.6

0.8

1

Revolution number

Fri

ctio

n c

oeffi

cient

Page 33: Wear resistant and low friction nanocomposite coatings Dr Tomasz Suszko

33

International Student Summer School „Nanotechnologies in materials engineering”

Warsaw - Koszalin 2006

Tomasz [email protected]

http://www.balticnet-plasmatec.org

Wear behavior: 20-400°C

0 5 10 15 20 25

10 -15

10 -14

10 -13

10 -12

Copper content (at. %)

Wear rate( m3/J )

10 -16

400°C

300°C

RT, 200°C

100°C

Wear rate

for TiN

RT – 0.8·10-14

200°C – 1.5·10-14

400°C – 3·10-15

Page 34: Wear resistant and low friction nanocomposite coatings Dr Tomasz Suszko

34

International Student Summer School „Nanotechnologies in materials engineering”

Warsaw - Koszalin 2006

Tomasz [email protected]

http://www.balticnet-plasmatec.org

Wear behavior – "100°C effect"

RT: kF ~10-16 m3/

100°C: kF ~2·10-14 m3/J !200°C: kF ~10-16 m3/J0 200 400 600 800 1000

0

0.5

1

Raman shift [cm-1]

OutIn

0 200 400 600 800 10000

0.5

1

Raman shift [cm-1]

OutIn

0 200 400 600 800 10000

0.5

1

Raman shift [cm-1]

OutIn

Mo2N 0% Cu

Page 35: Wear resistant and low friction nanocomposite coatings Dr Tomasz Suszko

35

International Student Summer School „Nanotechnologies in materials engineering”

Warsaw - Koszalin 2006

Tomasz [email protected]

http://www.balticnet-plasmatec.org

6 at. % Cu

50 m

9 at. % Cu

50 m

50 m

22 at. % Cu

0 at. % Cu

50 m

1 at. % Cu

50 m

50 m

2.5 at. % Cu

Wear behavior – the influence of Cu addtion (100°C friction test)

kF ~10-16 m3/JkF ~2·10-14 m3/J

Page 36: Wear resistant and low friction nanocomposite coatings Dr Tomasz Suszko

36

International Student Summer School „Nanotechnologies in materials engineering”

Warsaw - Koszalin 2006

Tomasz [email protected]

http://www.balticnet-plasmatec.org

Conclusions

Relatively low friction coefficient against alumina is observed in room temperature.

1-3 at. % of Cu additive increases hardness of Mo2N coatings.

Low wear rate is registered in temperatures bellow 250°C.

"The 100°C effect" is observed for samples with low content of copper. This effect is eliminated when films contain >6 at. % Cu .

Coatings gradually oxidize in temperature over 300°C.