cellulosic bio nanocomposite

Download Cellulosic Bio Nanocomposite

Post on 15-Apr-2017




0 download

Embed Size (px)



CELLULOSIC BIONANOCOMPOSITESSubmitted byAvin GanapathiProduct Design and ManufacturingNIE Mysore



IntroductionLiterature survey Advantages Application Conclusion Reference



Fig.1 Plant cellulose

Cellulose Fibers

4Fig.2 Structural constitution of natural fiber cell

Chemistry of Cellulose5

Fig.3 Cellulose Structure

Source - Wikipedia

Cellulose fibers are being used as potential reinforcing materials because of-Abundantly available Low weight.Biodegradable. Non-toxic.Cheaper.Renewable.6Cellulose Fibers

Cellulose Nanofibers7NameSourceProcessCellulose nanowhiskersRamieH2SO4 hydrolysisMCC(wood pulp)H2SO4 hydrolysisMCCH2SO4 hydrolysisGrass fiberH2SO4 hydrolysisMCCLiCl:DMAcCellulose NanocrystalsCotton Whatman filter paperH2SO4 hydrolysisBacterial celluloseH2SO4 hydrolysisCotton (cotton wool)H2SO4 hydrolysisMCCH2SO4 hydrolysisMCCSonicationCellulose nanowhiskersCotton lintersHCl hydrolysisWhiskersCellulose fibersH2SO4 hydrolysisNanofibersWheat strawHCl + Mechanical TreatmentNanocrystalline celluloseMCCH2SO4 hydrolysisMicrofibrillated CellulosePulp GaulinHomogenizerPulp Daicel-Pulp Daicel-Nanofibrillated cellulose Cellulose nanofibrilsSulfite pulpMechanicalMicrocrystalline celluloseAlpha-cellulose fibersHydrolysisCellulose CrystallitesCotton Whatman filter paperH2SO4 hydrolysisNanocelluloseSisal fibersH2SO4 hydrolysisCellulose MicrocrystalCotton Whatman filter paperHCl hydrolysisNanofibersSoybean podsChemical treatment + high pressure defibrilator

Table 1. The different terminologies used to describe cellulose nanoparticles.

8ManufacturingFig.4.1 Cellulose extraction processes CELLULOSE NANOFIBRILSCELLULOSE NANO CRYSTALS


Fig 4.2 Fiber extraction



11Figure 4.4: Isolation of nanofibers by chemomechanical treatment.

Properties The properties of cellulosic fibers are influenced by factors like - Chemical compositionInternal fiber structureMicro fibril angleCell dimensions 12

matrixfibreBC coated fibre

BCFig. 5. Schematic showing the different types of hierarchical composites. Left: conventional bre reinforced polymer composites, middle: BC coated bre reinforced hierarchical composites and right: BC coated bre reinforced hierarchical nanocomposites. (For interpretation of the references to colour in this gure legend, the reader is referred to the web version of this article.)


Fig. 6. Scanning electron micrographs showing (a) neat sisal bres, (b), densely BC coated sisal bres at low magnication, and (c) hairy BC coated sisal bres. The insets show the bre morphology at high magnication, where BC network could still be observed.

15Table 2BET surface area, single bre tensile modulus and tensile strength of neat and BC coated sisal bres; dense layer and hairy bres, respectively.SampleBET surface area (m2 g-1)Single bre tensile propertiesTensile modulus (GPa)Tensile strength (MPa)Neat sisal bres DCNS bres HNSF bres0.10 0.01

0.77 0.03

0.49 0.0324.1 3.1

12.5 1.3

22.9 2.2535 69

253 27

456 50

Source-K.-Y. Lee et al. / Composites: Part A 43 (2012) 20652074

16SampleET (GPa)rT (MPa)e (%)Wc (MJ m-3)EF (GPa)rF (MPa)Neat PLLA0.97 0.0262.6 1.07.2 0.72.7 0.63.70 0.0486.1 6.9PLLAsisal1.28 0.0358.7 1.06.5 0.42.4 0.24.85 0.10105.6 1.5PLLADCNS1.35 0.0357.3 1.35.2 0.22.1 0.55.19 0.0799.2 2.8PLLAHNSF1.29 0.0357.8 1.65.7 0.31.9 0.24.96 0.16102.0 2.5PLLAsisalBC1.46 0.0260.9 1.94.8 0.41.6 0.35.74 0.05100.0 2.2PLLADCNSBC1.63 0.0467.8 1.24.9 0.21.8 0.26.19 0.0895.5 2.3PLLAHNSFBC1.59 0.0569.2 1.25.1 0.31.9 0.25.77 0.1396.8 2.0

Table 3Summary of mechanical properties of neat PLLA and its composites. ET, rT, e, Wc, EF, rF indicate tensile modulus, tensile strength, engineering elongation at break, engineering work of fracture, exural modulus and exural strength, respectively.Source-K.-Y. Lee et al. / Composites: Part A 43 (2012) 20652074 5060 506070

PLLA PLLA-NSPLLA-DCNS PLLA-HNSFStress (MPa)0.04Engineering Strain

PLLAPLLA-NS-BC PLLA-DCNS-BC PLLA-HNSF-BCStress (MPa)0.04Engineering StrainFig. 7. Characteristic tensile stress strain curves of neat PLLA and its hierarchical composites.

Literature survey18Sl no.TITLEAUTHORCONCLUSION1 Cellulosic Bionanocomposites: A Review of Preparation, Properties and Applications Gilberto Siqueira, Julien Bras and Alain Dufresne Major studies have shown that cellulose nanoparticles could be used as fillers to improve mechanical and barrier properties of biocomposites. 2A Review on Potentiality of Nano Filler/Natural Fiber FilledPolymer Hybrid CompositesNaheed Saba , Paridah Md Tahir and Mohammad JawaidThis review article intended to presentinformation about diverse classes of natural fibers, nanofiller, cellulosic fiber basedcomposite, nanocomposite, and natural fiber/nanofiller-based hybrid composite withspecific concern to their applications.3Short sisal fibre reinforced bacterial cellulose polylactide nanocompositesusing hairy sisal fibres as reinforcementKoon-Yang Lee, Puja Bharadia, Jonny J. Blaker, Alexander BismarckThese fibres were used to produce hierarchical sisal fibrereinforced BC polylactide (PLLA) nanocomposites.

AdvantagesLow density Renewable natureWide variety of filler available through the world Low energy consumption High specific properties Modest abrasivity during processingBiodegradability.



Fig. 8 Application in automobile

ApplicationElectronic IndustryDigital DisplaysAerospaceElectricalAutomobile Industry21


The mechanical properties such as high strength and stiffness, the surface reactivity, the specific organization as well as the small dimensions of nanocellulose may well impart useful properties to (nano)composite materials reinforced with fibers .22

ReferenceCellulosic Bionanocomposites: A Review of Preparation, Properties and Applications Gilberto Siqueira 1,2, Julien Bras 1 and Alain Dufresne 1, Division of Manufacturing. A Review on Potentiality of Nano Filler/Natural Fiber FilledPolymer Hybrid Composites Naheed Saba , Paridah Md Tahir and Mohammad Jawaid Polymers 2014, 6, 2247-2273;

Short sisal fibre reinforced bacterial cellulose polylactide nanocomposites using hairy sisal fibres as reinforcement Koon-Yang Lee, Puja Bharadia, Jonny J. Blaker, Alexander Bismarck 2012 Elsevier Ltd Composites: Part A 43 (2012) 20652074