välkommen till det 7:e nätverksmötet kring högfluorerade ämnen · pdf...

86
Välkommen till det 7:e Nätverksmötet kring högfluorerade ämnen

Upload: haquynh

Post on 10-Feb-2018

225 views

Category:

Documents


3 download

TRANSCRIPT

Välkommen till det 7:e Nätverksmötet kring

högfluorerade ämnen

Agenda för det 7:e Nätverksmötet kring högfluorerade ämnen

10.00 Välkommen, och en kort presentation av deltagarna

10.20 Hur optimera PFAS terminologin för alla PFAS på marknaden? Stefan Posner, Swerea

10.45 Mass flows of per- and polyfluoroalkyl substances (PFASs) in Uppsala’s wastewater network and sewage treatment plant. Lutz Ahrens, SLU

11.10 Total organofluorine analysis of sewage samples from Swedish sewegetreatment plants. Leo Yeung, Örebro universitet

11.40 Är per- och polyfluorerade etrar nästa miljöproblem? Robin Vestergren, IVL12.10 Lunch

13.00 Vad händer på lagstiftningsområdet, samt information om ’myndighetsplattformen’. Jenny Ivarsson, Kemikalieinspektionen

13.15 Information om Naturvårdsverkets nya regeringsuppdrag om miljöövervakning. Karl Lilja, Naturvårdsverket

13.30 Naturvårdsverkets arbete med vägledning om PFAS. Jonny Riise, Naturvårdsverket

14.00 Presentation PFAS-problematiken i Barkarby, Anneli Åstebro & Kjersti Wik, Järfälla kommun

14.30 Fika

15.00 Diskussion utifrån Barkarbyfallet.

Hur optimera PFAS terminologin för alla PFAS på marknaden?

[email protected] Posner

3

Overview of the current PFAS chemistry and terminology of polymers and non polymers

4

OECD/UNEP Global PFC Group, Synthesis paper on per- and polyfluorinated chemicals (PFCs) (2013)

A PFAS regulatory terminologyInvestigation for KEMIWHAT

• Broader understanding• A more “regulatory friendly” PFAS terminology

NOT• Fully revise the whole current terminology• At least revise “abnormalities” to be as consistent as possible to the

"traditional” organic and polymer chemistry.

HOW• An assessment of structural similarities and differences compared to

scientific and legal definitions

5

PFAS; chemicals that contain one or more perfluoroalkyl moieties, –CnF2n+1 (linear or branched) or CnF2n (cyclic)NOTE: In the past, PFASs were often referred to as “PFCs” (per- and polyfluorinated chemicals)

A minor part of the family of PFAS:

• PFAA; Perfluoroalkyl acids• PFCA; Perfluoroalkyl carboxylic acid• PFSA; Perfluoroalkane sulfonic acids• Compounds derived from perfluoroalkane sulfonyl fluoride (PASF) • Fluorotelomer (FT)-based compounds• Per- and polyfluoroalkyl ether (PFPE)-based compounds

6

Abbreviations and genericsPer and polyfluorinated substances

(PFAS)

The fluoro chemistryStructures

• Diverse uses in industrial and consumer products for a vast number of substances with various chemical structures and technical performance

• The carbon–fluorine bond is the strongest in organic chemistry

PFAS if • the perfluoroalkyl moiety, –CnF2n+1, linear and branched or• CnF2n for cyclic PFAS

NOT PFAS if• not contain any perfluorinated moiety but instead partly fluorinated (e.g

–CHF-) or moieties without covalently bound fluorine

7

• Surfactants• extremely low surface tension

• Side chain fluorinated polymers • extremely low surface energy

• Fluoropolymers e.g PTFE - another chemistry

8

The fluoro chemistryLong/short/oligomers/polymers/…….

Fluorinated ”tail” Spacer Hydrofilicgroup

Perfluorinated polymer chain (extremely long chains)

F

F F

F F F

F F F F

F FF

FS

F F

O3-

F

F F

FF

F

F

F

F

F FFFFF

FFFFFF

H(CH2)nSO2F (n = 4, 6, 8 , 10)

F(CF2)nSO2F

F(CF2)nSO2NH2

F(CF2)nSO3M

F(CF2)nSO2N(R)CH2CH2OH

F(CF2)nSO2N(R)CH2CH2CH2N(CH3)2

ECFe- + HF

Perfluoroalkyl sulfonyl fluoride

Perfluoroalkyl sulfonamide

Perfluoroalkyl sulfonate

N-Alkyl Perfluoroalkyl sulfonamido alcohol

Surfactants• Amide• Ethoxylate• Oxazolidinone• Phosphate• Silane• Sulfate

(Meth)acrylate monomer

OligomericSurfactants

Surfactants• Betaine• Sulfobetaine• Cationic

R = H, Me, Et, Bu

M = H, NH4, K, Na, …

F(CF2)nSO2NH2Perfluoroalkyl sulfonamide

Surfactants• Adipate• Fatty acid ester• Phosphate

F(CF2)nSO2N(R)CH2CH2OC(O)CR=CH2

R = H, CH3

Transor

mation

Output PFAS

Input PFAS

Final degradation productsare perfluorinated sulfonic acids (PFSA)

n = 4 formation to PFBSn = 6 formation to PFHxSn = 8 formation to PFOSn = 10 formation to PFDS

9

Electrochemical fluorination - ECF

Current definitionsn > =6 so called long chainn < 6 so called short chain

Transfor

mation

(n = 4, 6, 8, 10, …)

F(CF2)nCH2CH2OH

F(CF2)nCH2CH2SO2N(R)CH2CH2CH2N(CH3)2

Perfluoroalkyl iodide

Surfactants• Ethoxylate• Phosphate• Sulfate

(Meth)acrylatemonomer

OligomericSurfactants

Surfactants• Betaine• Sulfobetaine• Cationic

CF3CF2-I + CF2=CF2

F(CF2)nI F(CF2)n-1CO2M

F(CF2)nCH2CH2I

Fluorotelomer iodide

Fluorotelomer alcohol

F(CF2)nCH=CH2

F(CF2)nCH2CH2SO2Cl

Fluorotelomer olefin

F(CF2)nCO2M

Silane

Fluorotelomer sulfonyl chloride

F(CF2)nCH2CH2Si(OR)3

M = H, NH4, K, Na, …

F(CF2)nCH2CH2OC(O)CR=CH2

R = H, CH3

Input PFAS Output PFAS

Final degradation productsare perfluorinated carboxylic acids (PFCA)

n = 4 formation to PFBAn = 6 formation to PFHxAn = 8 formation to PFOAn = 10 formation to PFDA

10

Telomerization

Current definitionsn > =7 so called long chainn < 7 so called short chain

11

Sector Use Type of alternative

Metal plating (hard metal plating) only in closed-loop systems

Anti –corrosion treatment 6:2 Fluorotelomer sulfonate (6:2 FTS) 3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluorooctane-1-sulphonate potassium salt 1,1,2,2,-tetrafluoro-2-(perfluorohexyloxy)-ethane sulfonate 2-(6-chloro-1,1,2,2,3,3,4,4,5,5,6,6-dodecafluorohexyloxy)-1,1,2,2-tetrafluoroethane sulfonate Non chemical: Physical covers (netting, balls) for metal plating baths (Cr VI) to diminish hydrogen burst and reduce misting need to be further investigated

Fire fighting foams

(Class B, flammable liquids fires)

Fire fighting Dodecafluoro-2-methylpentan-3-one

C6 fluorotelomer-based surfactants. Carboxymethyldimethyl-3-[[(3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl)sulfonyl]amino]propylammonium hydroxide

Chemically driven oil and mining production

Oil and mineral extraction in the bedrock PFBS derivatives, fluorotelomer-based fluorosurfactants, perfluoroalkyl-substituted amines, acids, amino acids, and thioether acids.

Carpets, leather and apparel, textiles and upholstery.

Standard performance requirements (e.g. standard clothing)

Short-chain fluorinated products (e.g. C6-based); Non-fluorine containing products (e.g. paraffins); Non-chemical alternatives

High performance requirements (e.g. protective textiles)

Not available

Polymer manufacturing Polymerization processing aid Substances with ether linkage(s) between perfluoroalkyl moieties (e.g. ADONA)

Fire-fighting foams Fighting against liquid fires Short-chain fluorinated products (e.g. C6-based)

Paper and food packaging Food packaging Short-chain fluorinated products (e.g. C6-based); Non-fluorine containing products (e.g. high-density paper)

Imaging and printing industry Manufacture of conventional photographic products

No information

Semiconductor industry Constituent in process chemical formulations (e.g. for photolithographic applications)

Telomer-based products of various perfluoroalkyl chain length C3- and C4-perfluorinated compounds. Hydrocarbon surfactants, Silicon products, Non chemical: Digital techniques Digital techniques

Numerous uses with (sometimes) unspecific alternatives

The original purpose of PFAS Extremely efficient surfactants

• Can lower aqueous surface tension to less than 16 dynes/cm and function at very low concentrations (e.g., 100–500 mg/L).

• Effective in both basic and acidic aqueous media, organic solvents including esters, alcohols, ethers, and solvent-based resin systems.

• The critical micelle concentration (CMC) of a fluorinated surfactant is close to that of an ordinary hydrocarbon surfactant whose chain length is about 1.5 times longer than a fluorocarbon chain.

• Fluorinated surfactants with longer fluorinated hydrophobic/oleophobic chains (i.e. >8 fluorinated carbon atoms) have reduced water solubility which limits their reduction.

• This means that eight perfluorinated carbons have optimal functionality from a surfactant perspective on low surface tension, where the critical CMC is at its minimum with the best stability.

12

γSA γSL

So called short versus long chain PFAS

13

5

10

15

20

25

0 2 4 6 8 10 12 14

γc (

mN

/ m

)

n ( chain length of fluorochemical backbone )

Surface energy of fluorochemical acrylic polymers with variable chain length

Current view on PFAS• C6 better than C8.(telomerization) • C4 better than C8 (ECF)

BUT

NO from a performance perspective

Short chain are claimed by the industry to have less impact on environment (B and T) than the long chain BUT recent research gives a different view.

AND

All are: Persistence (P) is extreme, whether these are so called short or longchain.

Polymers that contain fluorineAre all PFAS really polymers?

Polymers are in general exempted from regulatory actions.

Criteria that are discussed• Scientific polymer defintion

• Including “Normal foreseeable use/conditions” from a legal perspective• Legal polymer defintion according to REACH

Three categories of PFAS are discussed• Fluoropolymers• Side chain fluorinated polymers• Polyfluorinated ethers

14

Polymer defintions

• A high relative molecular mass where the addition or removal of one or a few of the units has a negligible effect on the molecular properties.

• Multiple repetitions of monomer units, either the same monomer units (homo polymer) or different monomer units (co polymers).

• Not bioavailable• Not mobile in environment• Transformation under normal foreseeable conditions e.g waste phase

15

Possible polymers that contain fluorine

16

Fluoropolymers AbbreviationPolytetrafluoreethylene PTFEPerfluoroalkoxy polymer PFACo-polymer of tetrafluoroethylene TFAPerfluoromethylvinylether (PMVE) MFAFluorinated ethylenepropylene polymer FEPEthylenetetrafluoroethylene copolymer ETFEEthylene chlorotrifluoroethylene copolymer ECTFECo-polymer of ethylene (E), tetrafluoroethylene (TFE) and hexafluoropropylene (HFP)

EFEP

Terpolymer of Tetrafluoroethylene TFE3,3,3-TriFluoroPropylene TEHHexafluoropropylene (HFP) and Vinylidene Fluoride (VF2/VDF)

THV

Polychlorotri- fluoroethylene PCTFEPolyvinylidene fluoride PVDFPolyvinyl fluoride PVF

Normal foreseeable use/conditions in a life cycle perspective?

17

Polymer Typical meltingtemperature

(ºC)

Typical continuous use temperature (ºC)

Typical processing temperature (ºC)

Starting decomposition

temperature (ºC)

PTFE 330 260 380 450PFA 305 260 380 400MFA 280 249 360 N/AFEP 260 205 360 400ETFE 220-270 150 310 350ECTFE 230 140-150 280-310 500THV 120-230 70-130 171-310 400TEH 160-210 105-150 200-290 N/AEFEP 158-195 100-150 220-260 400PCTFE 215 120 265 250PVDF 170 150 232 375PVDF co-polymer

115-170 100-150 232-249 375

Possible polymers that contain fluorineSide chain fluorinated polymers

• Scientific: fluorinated side chains are probably lost and consequentlytheir to liquid repellent properties (ageing, environmental….)*

• Legal: fulfilled, more than three units (monomers)

18

Fluorocarbons(FCs)

Attack

*Russel et al, 2010*Washington et al, 2009*SUPFES, www.SUPFES.eu

Coming slides indicate an

PFSAs4, 6, 7, 8

F

S

F

F

F

F

F F

F F F FF F

F FF F O

O

OH

PFCAs4-14

F

F

F

F

F

F

F F F

F

F

F FF

F

C

O

OH

F

S

F

F

F

F

F F

F F F FF F

F FF F O

O

NH2

FOSA(n:2) FTSAs4:2, 6:2, 8:2

F

S

F

F

F

F

F F

F F H HF F

F HF H O

O

OH

PFASs analysed before and after ageing in textile samplesIonic PFASs Volatile PFASs

Department Environment and Health

(n:2) FTOHs 4:2, 6:2, 8:2, 10:2

F

F

F F

F

F F

F F

H

F F

FF

H H

H

OH

(n:2) FTACs6:2, 8:2, 10:2

F

F

F

F

F

F

F F FF

F FF O

O

(n:2) FTMACs6:2, 8:2, 10:2

F

F

F

F

F

F

F F FF

F FF O

O

CH3

SUPFES

PFASs detected in textile samples before ageing

Department Environment and Health

SUPFES

Results in µg/m2

before after

before after

Effect of ageing on concentration of PFASs

Ionic PFASs

Volatile PFASs

Department Environment and Health

SUPFES

Polyfluorinated etherspolymers or non polymers?

22

•Per- and poly- fluorinated ether-based fluorinated surfactants (PFECAs) , typically have 1, 2, or 3 perfluorinated carbon atoms separated by an ether oxygen. •Unclear if polymers, oligomers or non polymers

•Perfluoropolyethers (PFPEs), in whose backbone -CF2-, -CF2CF2-, and possibly -CF(CF3)CF2- units are separated by oxygen atoms.• Currently considered as polymers

•It is still unclear due to lack of specific structural information from chemicals producers whether polyfluorinated ethers are covered by the current scientific and legal definitions of polymers or not.

Cyclic PFAS

23

Chemical name Abbreviation CAS No Relative Content (%)

Potassium perfluroethyl cyclohexyl sulfonate

PFECHS 67584-42-3 66 - 70

Potassium perfluoromethyl cyclohexyl sulfonate

PFMeCHS 68156-07-0 18 - 22

Potassium perflurocyclohexyl sulfonate

68156-01-4 9 - 13

Potassium perfluorocyclohexyl sulfonate

3107-18-4 1 - 3

Residual organic fluorochemicals Mixture 0.1 - 0.5

3M, FC-98, a mix of cyclic perfluorinated surfactants used asan erosion inhibitor in aircraft hydraulic fluids

Generic formula CnF2n , that bypass EU regulation (REACH, POP) and the Stockholm Convention on PFOS

Cyclic PFAS

• Perfluoro (cycloaliphatic methyleneoxyalkylene) carbonyl fluoride and derivatives.

• Patents until late 1980s and were (or are) considered as useful intermediates for the preparation of many derivatives

• They have been (or is) used utility for various applications, such as surfactants, elastomers, coatings, lubricants, heat transfer and cooling fluids, hydraulic fluids, vapor phase heating, and in the treatment of fibrous substrates to impart oil and water repellency theretof.

• If still used, they bypass EU regulation (REACH) due to their generic formulaCnF2n .

24

Conclusions• So called short chain PFAS versus so called long chain PFAS• Are less effective than so callled the long chain C8 PFAS as surfactants• Have critical health and environmental properties and are likely not ”good” in this

perspective compared to so called long chain PFAS

• Fluoropolymers• Unclear ; normal forseeable use/conditions in context to the polymer defintions on

their stability and consequently emissions of degradation products in a life cycleperspective.

• Side chain fluorinated polymers• Probably lose side chains and repellent properties through ageing and environmental

degradation. Therefore doubts if these are polymers.

• Per- and poly- fluorinated ether-based fluorinated surfactants (PFECAs) and Perfluoropolyethers (PFPEs)

• Polymers or non polymers is unclear due to lack of specific structural information from chemicals producers.

• Cyclic PFAS• If still used, they bypass EU regulation (REACH) due to

their generic formula CnF2n

25

Polytetrafluoroethylene (PTFE),Polyvinylidene fluoride (PVDF),Fluorinated ethylene propylene (FEP),Perfluoroalkoxyl polymer (PFA),Polyvinyl fluoride (PVF), etc

Fluorinated (meth)acrylate polymers*Fluorinated urethane polymers*Fluorinated oxetane polymers

*These polymers are basedon monomers derived from PASFs or fluorotelomer-based raw materials

PFAS

Withoutfunctionalgroups

PolymersFluoropolymers (FPs)

Side-chain fluorinatedpolymers

Perfluoropolyethers (PFPEs) e.g. HOCH2O-[CmF2mO-]nCH2OH, n>2

Perfluoroalkyl acids(PFAAs) CnF2n+1-R

Perfluoroalkyl carboxylic acids (PFCAs), CnF2n+1-COOH

Perfluoroalkyl sulfonic acids (PFSAs), CnF2n+1-SO3H

Perfluoroalkyl phosphonic acids (PFPAs), CnF2n+1-PO3H2

Perfluoroalkyl phosphinic acids (PFPiAs), (CnF2n+1)(CmF2m+1)-PO2H

Withfunctionalgroups

Perfluoroalkane sulfonylfluoride (PASF)

CnF2n+1SO2F

PASF-based substancesCnF2n+1SO2-R, R=NH, NHCH2CH2OH, etc

Perfluoroalkyl iodides(PFAIs) CnF2n+1I

Fluorotelomer iodides(FTIs)

CnF2n+1CH2CH2I

Fluorotelomer-based substancesCnF2n+1CH2CH2-R, R=NH,

NHCH2CH2OH, etc

Per- and polyfluoroalkyl ether-based substances

Per- and polyfluorether carboxylic acids (PFECAs), e.g. C2F5OC2F4OCF2COOH

Per- and polyfluorether sulfonic acids (PFESAs), e.g. C6F13OCF2CF2SO3H

Per- and poly-fluorinated polyether-based fluorinated surfactants (PFECAs)

Cyclic PFASCnF2n

Perfluorocyclohexanesulfonates

Perfluoro (cycloaliphatic methyleneoxyalkylene) carbonyl fluoride and derivativesLinear (CnF2n+1) , branched (CnF2n+1) and/or cyclic (CnF2n)

Non-polymers …

Mono-ethers

Poly-ethers

Suggested PFAS terminology

27

http://chm.pops.int/Implementation/NationalImplementationPlans/Guidance/GuidancefortheinventoryofPFOS/tabid/3169/Default.aspx : inventering

http://chm.pops.int/Implementation/NationalImplementationPlans/Guidance/GuidanceonBATBEPforPFOS/tabid/3170/Default.aspx : BAT BEP

http://chm.pops.int/Implementation/NIPs/Guidance/guidanceonsampling,screeningetcofPOPs/tabid/5333/Default.aspx : analys av POPs såsom PFOS

MASS FLOWS OF PER- AND POLYFLUOROALKYL SUBSTANCES (PFASs) IN UPPSALA’s WASTEWATER NETWORK AND SEWAGE TREATMENT PLANTLinda Glimstedt1, Jesper Olsson2, Lutz Ahrens1

1Department of Aquatic Sciences and Assessment, SLU, Uppsala, Sweden2 Uppsala Vatten

Objectives1) To examine the mass flow

of PFASs in a wastewater network

2) To investigate the mass flow and removal efficiency of PFASs in a wastewater treatment plant

3) To assess the fate of PFASs in Lake Mälaren and a drinking water treatment plant

12

3

Lutz Ahrens

x

FF

FF F

SO

NC

OR

COH

H H

H H

n

FF

FF F

SO

NH

OR

Perfluorooctane sulfonamidoethanols(FOSEs)

Perfluorooctane sulfonamides (FOSAs)

CF2 CF

FF

OH

On

CF2 SF

FF

O

OOH

n

Perfluoroalkyl carboxylic acids(PFCAs) Perfluoroalkane sulfonic acids (PFSAs)

n:2Fluorotelomersulfonicacids(FTSAs)F

FF

F F

SO

OOH

H H

HH

n

n

FF

FF F

SO

NC

OR

C

H HOH

O

Perfluoroalkane sulfonamidoacetic acids (FOSAAs)

Per- and Polyfluoroalkyl Substances (PFASs)

n:2Fluorotelomersulfonicacids(FTSAs)

x

FF

FF F

SO

NC

OR

COH

H H

H H

n

FF

FF F

SO

NH

OR

Perfluorooctane sulfonamidoethanols(FOSEs)

Perfluorooctane sulfonamides (FOSAs)

CF2 CF

FF

OH

On

CF2 SF

FF

O

OOH

n

Perfluoroalkyl carboxylic acids(PFCAs) Perfluoroalkane sulfonic acids (PFSAs)

Per- and Polyfluoroalkyl Substances (PFASs)

FF

FF F

SO

OOH

H H

HH

n

n

FF

FF F

SO

NC

OR

C

H HOH

O

Perfluoroalkane sulfonamidoacetic acids (FOSAAs)

PFBSPFHxSPFOSPFDS

FOSAAN-MeFOSAAN-EtFOSAA

6:2 FTSAFOSAN-MeFOSAN-EtFOSA

N-MeFOSEN-EtFOSE

PFBAPFPeAPFHxAPFHpA

PFOAPFNAPFDAPFUnDA

PFDoDAPFTriDAPFTeDAPFHxDA

PFOcDA

Sampling Locations

1. STP Kungsängsverket2. Flogsta PST3. Seminaregatan PST4. Sågargatan PST5. Norra Librobäck PST6. Bärby hage PST7. Ekeby bruk PST8. Skarholmen PST9. Sävja PST10. Seglarvägen PST11. Kumlagatan PST12. Falebro PST13. Ultuna PST14. Sundby PST15. Tullgarn PST16. Strandbod-gatan PST

© Lantmäteriet [I2014/00764]

Uppsala

Summary Point sources were identified in Uppsala’s wastewater

network ⇨ 6:2 FTSA (north of Uppsala) ⇨ PFPeA, PFHxA, PFHpA, PFOA (Sågargatan PST)

PFASs are not removed in the wastewater treatment plant⇨ Accumulation of Long-chained PFCAs and PFOS in

sludge⇨ Increase of PFASs after biological treatment

Tranport of PFASs into the drinking water source area of Lake Mälaren PFASs are not removed in the drinking water treatment

plant

Lutz Ahrens

TACK!

Contact: [email protected]

Diskussion utifrån Barkarbyfallet.

Hur rena länshållningsvatten resp. ytvatten? Rena till vilken nivå och hur förhålla sig till

riktvärden? Hur balansera kostnad mot nytta? Vilka PFAS ska analyseras? Vilken ny kunskap behövs?

Hur påverkas spridningen av PFAS vid olika markarbeten och vattenförändringar?

Total organofluorine analysis of sewagesamples from Swedish sewage treatment plants

Leo W.Y. YEUNGMTM Research Centre

Örebro University

1Yeung et al., 2006 ES&T 40: 715 2Yeung et al., 2008 ES&T 42: 8140

Not very long time ago…

39

Japan – National Institute ofAdvanced Industrial Science and Technology (AIST) -Prototype

Canada – University of Toronto – Commercialized

Sweden – MTM Research Centre – first CIC in Sweden for environmental analysis

Combustion ion chromatography (CIC)

IFUOFNEOF PFASs

TF

TF = IF + OF

OF

EOF

TF - Total Fluorine:

OF - Organic Fluorine

EOF - Extractable Organofluorine

PFASs

UOF - Unidentified Organofluorine

NEOF - Non Extractable Organofluorine

IF - Inorganic Fluorine

Mass balance analysis of fluorine

Combustion ion chromatography (CIC) for TF and EOF.

MTM Research Centre

Combustion module• Sample is set onto the

quartz boat• Two stage processes

• Pyrolysis between1000-1100oC with Ar

• Followed by thermaloxidation with O2

• Solid, liquid, paste-like and viscous samples

Acquity UPLC (Waters) and Waters XeVo-TQ S MS-MS for PFASs

Total organofluorine Combustion ion chromatography (TOF-CIC) for TF and EOF.

IFUOFNEOF PFASs

TF

TF = IF + OF

OF

EOF

TF - Total Fluorine:

OF - Organic Fluorine

EOF - Extractable Organofluorine

PFASs

UOF - Unidentified Organofluorine

NEOF - Non Extractable Organofluorine

IF - Inorganic Fluorine

Mass balance analysis offluorine

Extractable organofluorine(EOF)

Ion pair extraction Solid phase extraction(SPE)

S

OO

N

R

FF

F

F F

F F

F F

F F

F F

F F

F F OH

O

SO

OF

F F

OHx

OF

F F

OHx

-

-

Total fluorine• Organofluorine

• PFASs• Inorganic fluoride

CIC

IC

CICLC-MS/MS

Conversion of data - ng/mL to ng F/mL

ng/mLSample Code PFOS

SC03-1 23SC03-2 21

PFOSMW 499

the number of F 17Fluorine content (-) 0.647294589

ng-F/mL ng-F/mLResults from LC-MSMS Results from CIC

PFOS EOF % PFOS/EOFSC03-1 15.1 108 14.0SC03-2 13.7 108 12.7

Cf = 17 x 19 x 23499

=15.1

Conversion of data - ng/mL to ng F/mL

ng/g

1.

2.

3.

4.

2017-05-23 47

48

Münster Halle

1982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009

0 20 40 60 80 100 0 20 40 60 80 100

24.823.815.912.314.817.328.0

20.110.6

16.79.42

11.010.9

18.024.019.021.039.314.925.9

32.533.6

29.3

30.8

23.424.1

42.5

23.3

21.128.127.021.515.1

23.414.519.115.822.619.7

23.5

13.0

14.0

ng F/mL ng F/mL

%%

PFOS precursor PFCA precursor PFCA PFPiAPFSA Unidentified

Our interestsSewage treatment plants have been suggested to be one of the major sources of poly- and perfluoroalkyl substances (PFASs) to the aquatic environment (Filipovic & Berger 2015).

Analysis of sewage samples1. influent

• may indicate how much unidentified PFAS humans are using2. effluent

• may provide an estimate how much unidentified PFAS are released into the environment.

3. sludge • may be applied to agricultural field as fertilizer; may enter the

environment. 4. analysis of archived samples

• may provide data on temporal usage of unidentified PFAS.

2017-05-23 49Filipovic & Berger, 2015 Chemosphere 129,74

Sewage treatment plant location, size and source

2017-05-23 50

Prof Peter Haglund, Umeå UniversityMiljöövervakning av utgående vatten and slam från svenska avloppsreningsverkEnvironmental monitoring of outgoing water and sludge from Swedish sewage treatment plants

Sewage treatment plant location, size and source

2017-05-23 51

• The Ön WWTP serves 92,000 people (129,000 p.e.) and a hospital.

• The Henriksdal WWTP serves 737 000 people (656 000 p.e.) receives municipal wastewater from industries and hospitals.

• The Gässlösa WWTP serves 82,000 people (73,000 p.e.) and has textile and chemical industries as well as a hospital connected.

Population equivalent (p.e.), in waste-water treatment is the number expressing the ratio of the sum of the pollution load produced during 24 hours by industrial facilities and services to the individual pollution load in household sewage produced by one person in the same time.

All three WWTPs have mechanical, chemical, biological, and anaerobic digestion treatment.

Presentatör
Presentationsanteckningar
Sludge samples were collected as composite samples during one day in October 2016 from all three WWTPs. Influent and effluent samples were collected in October 2016; and they were collected as composites of seven consecutive days.

Perfluoroalkyl/polyfluoroalkyl substances (PFASs)

F

F F

SO

O OHx

OF

F F

OHx P

O

HOF

F F

OHx

PO

HOF

F F

x F

FFy

SO

OF

F F

OHx

Fluorotelomer sulfonates (FTSAs)

Perfluorinated phosphinates (PFPiAs)

Perfluorinated phosphonates (PFPAs)

Perfluorinated carboxylates (PFCAs)

Perfluoroalkane sulfonates (PFSAs)

F

F

F F

F F

F F

F F

O

O

PO

OH

x

y

Polyfluoroalkyl phosphate esters (PAPs)

F

F F

F F

O

HO

P

O

OH

x

OS

O

N P

O

O

OO

SON

OF

F

FF F

FF

F F

FF

F F

FF

F FF F

FF

F F

FF

F F

FF

F FF

FF

S

OO

N

R

FF

F

F F

F F

F F

F F

F F

F F

F F OH

O

S

OO

N

R

FF

F

F F

F F

F F

F F

F F

F F

F F OH

O

Perfluorooctanesulfonamidoacetate (FOSAA)

Perfluorooctanesulfonamide (FOSA)

N-ethyl perfluorooctanesulfonamideoetha

nol-based polyfluoroalkylphosphate diester (SAmPAP)

52

Perfluoroalkyl/polyfluoroalkyl substances (PFASs)

F

F F

SO

O OHx

OF

F F

OHx P

O

HOF

F F

OHx

PO

HOF

F F

x F

FFy

SO

OF

F F

OHx

Fluorotelomer sulfonates (FTSAs)

Perfluorinated phosphinates (PFPiAs)

Perfluorinated phosphonates (PFPAs)

Perfluorinated carboxylates (PFCAs)

Perfluoroalkane sulfonates (PFSAs)

F

F

F F

F F

F F

F F

O

O

PO

OH

x

y

Polyfluoroalkyl phosphate esters (PAPs)

F

F F

F F

O

HO

P

O

OH

x

OS

O

N P

O

O

OO

SON

OF

F

FF F

FF

F F

FF

F F

FF

F FF F

FF

F F

FF

F F

FF

F FF

FF

S

OO

N

R

FF

F

F F

F F

F F

F F

F F

F F

F F OH

O

S

OO

N

R

FF

F

F F

F F

F F

F F

F F

F F

F F OH

O

Perfluorooctanesulfonamidoacetate (FOSAA)

Perfluorooctanesulfonamide (FOSA)

N-ethyl perfluorooctanesulfonamideoetha

nol-based polyfluoroalkylphosphate diester (SAmPAP)

53

A total of 75 PFASs included for target analysis

MethodsFor sludge samples1-3

• freeze-dried• digested with NaOH, • followed by MeOH extraction.• cleanup

• SPE-WAX - samples collected from 2016

• Ion pair - samples collected between 2004 and 2015

For water samples1

• were filtered with GF/B glass fiber filters before extraction (Whatman)

• SPE using WAX sorbents, according to ISO/DIS 25101 (ISO, 2009) with some modifications.

2017-05-23 541ISO, 2009. ISO25101. Water quality — Determination of perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) — Method for unfiltered samples using solid phase extraction and liquid chromatography/mass spectrometry.2Yeung, et al. 2013. Environ. Int. 59, 389–397.3Yeung and Mabury, 2016. Environ. Chem. 13, 102.

Quality control and assurance (QA/QC)

PFAS• Procedural blank and a spike QA sample; samples were extracted in

duplicate;• Quantified using internal calibration with mass-labelled standards.

2017-05-23 55

RecoveriesSewage

Water sludgePFCA 25-85 20-81PFSA 47-87 31-81FTCA/FTUCA 30-87 52-79FTSA 46-78 41-93FOSAAs 21-115 36-115FOSAs/FOSEs 27-73 25-76diPAP 22 36-115

PFCA: C4-C12, C14; PFSA: C4, C6, C8; FTUCA: 6:2, 8:2, 10:2, FTSA: 6:2, 8:2; FOSAA: Ethyl-, Methyl-; FOSA/FOSE: Ethyl-, Methyl-; diPAP: 6:2, 8:2

Quality control and assurance (QA/QC)

TOF• Combustion of procedural blank• Combustion of a QA sample; Combustion of 100 ng and 500 ng of SRM

2143 – p-Fluorobenzoic (NIST) resulted in recoveries of between 90 -98%.

• Combustion of 500 ng of PFOS resulted in recoveries ranging from 89 to 92% and combustion 500 ng of PFOA resulted in 85 to 90% recoveries.

• Quantification of sample was based on the external calibration curve after the peak area of the sample had been subtracted from the previous combustion blank and extraction blank.

2017-05-23 56

Quality control and assurance (QA/QC)

TOF• Prior to actual sample analysis, removal of inorganic fluoride

experiment on SPE was performed. • The washing step using 20 mL 0.01% NH4OH in MilliQ

followed by 30 mL of Milli-Q water showed 100% removal of 1000 ng F during SPE.

• Attempt to measure inorganic fluoride using capillary electrophoresis (CE) was also made to ensure no inorganic fluoride present in the sample extract for TOF analysis.

• Due to the presence of significant amounts of other ions that inferred with the fluoride signal during CE analysis, identification and quantification of fluoride ion in sample extracts could not be made.

2017-05-23 57

2017-05-23 58

Ön (Umeå)Medium, hospital

Henriksdal(Stockholm)Large, Industrial

Gässlösa(Borås)medium, Hospital, Industrial (textile, chemicals)

24.6

49.5

51.2

51.8

82.0

126.9

Conc.ng/LComposition %

PFCA PFSA FTSA FTCA FTUCA FOSA FOSAA diPAP PFPA PFPiA

Composition (%) and concentration (ng/L) in influent (I) and effluent (E) samples

Samples collected in 2016

2017-05-23 59

Ön (Umeå)Medium, hospital

Henriksdal(Stockholm)Large, Industrial

Gässlösa(Borås)medium, Hospital, Industrial (textile, chemicals)

Composition (%) and concentration (ng/g d.w.) in sludge samples

PFCA PFSA FTSA FTCA FTUCA FOSA FOSAA diPAP PFPA PFPiA

Conc.ng/gComposition %

145.9

162.1

166.0

Samples collected in 2016

2017-05-23 60

Ön (Umeå)Medium, hospital

Henriksdal(Stockholm)Large, Industrial

Gässlösa(Borås)medium, Hospital, Industrial (textile, chemicals)

268

484

217

819

473

345

Conc.ng F/LComposition %

Composition (%) and concentration (ng F/L) in influent (I) and effluent (E) samples

I

E

I

E

I

E

Targeted Unidentified

96

96

91

98

93

87

Samples collected in 2016

2017-05-23 61

Ön (Umeå)Medium, hospital

Henriksdal(Stockholm)Large, Industrial

Gässlösa(Borås)medium, Hospital, Industrial (textile, chemicals)

Composition (%) and concentration (ng F/g d.w.) in sludge samples

Conc.ng F/gComposition %

<50

154

55.7

Targeted Unidentified

58

82

42

Samples collected in 2016

Temporal study on PFAS in sludge samplescollected from Henriksdal

2017-05-23 62

0

50

100

150

200

250

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2004 2005 2007 2008 2009 2010 2011 2012 2013 2014 2015

Con

cent

ratio

n(n

g/g

d.w.

)C

ompo

sitio

n(%

)

PFCAPFSAFTSAFTCAFTUCAFOSAFOSAAdiPAPPFPAPFPiA

Henriksdal(Stockholm)Large, Industrial

Temporal study on PFAS in sludge samplescollected from Henriksdal

2017-05-23 63

Henriksdal(Stockholm)Large, Industrial

Com

posi

tion

(%)

0%

20%

40%

60%

80%

100%

2004

2005

2007

2008

2009

2010

2011

2012

2013

2014

2015

81 87 88 87 90 92 91 91 92 9093

TargetedU

nidentified

Temporal study on PFAS in sludge samplescollected from Henriksdal

2017-05-23 64

Con

cent

ratio

n(n

gF/

g d.

w.)

0

200

400

600

800

1000

1200

020406080

100120140160

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

Target PFAS

Unidentified PFAS

Henriksdal(Stockholm)Large, Industrial

Current projects

• Sewage samples• Influent and effluent• Sludge

• Human blood sample• Drinking water sample

2017-05-23 65

Acknowledgements

2017-05-23 66

Dr. Karl Lilja and Dr. Linda Linderholm

Prof. Peter Haglund

Dr. Ylva Lind

Mr. Ezra Tibbelin

Är per- och polyfluorerade etrar nästa miljöproblem?

Robin Vestergren

ÖverblickIntroduktion till per- och polyfluorerade eterämnen

PBT egenskaper

Förekomst i miljön

Slutsatser och rekommendationer

Övergripande trender i produktion och användning av PFAS

Långkedjiga perfluoroerade sulfonsyror (PFHxS och längre), karboxylsyror (PFOA och längre) och deras precursors har till stor del fasats ut i EU, Nordamerika och Japan

Kortkedjiga PFAS har i många fall använts som ersättningsämnen

Ökande produktion och användning av PFAS i Ryssland, Kina och Sydostasien

PFOA PFHxA

PFBS

8:2 FTOH

PFOS

6:2 FTOH

Alternativ till långkedjiga PFAS

Bland ersättningsämnena för PFOA och PFOS finns också en mängd olika perfluorerade syror med eter bindningar

Många syntesprocesser och patent är över 30 år gamla

Vad vet vi om miljöriskerna med dessa ämnen?

Wang et al. Environ Int 2016, 60, 242-248

Hög persistens (OECD 301D)

Toxisk i sötvattensorganism (OECD 203)

Relativt höga halter i ytvatten kring förkromningsanläggningar

Wang et al. Environ. Sci. Technol. 2013, 47, 10163-10170

Bioackumulationsfaktor och vävnadsfördelning av F-53B i fisk (Carassius carassius)

F-53B kunde detekteras i 100% av alla fiskprover från två vitt skilda provtagningsplatser i Kina

Mediankoncentrationer i blod var 20.9 ng/ng (Tangxun Lake) och 41.9 (Xiaoqing river)

Liknande vävnadsfördelning som PFOS

Shi et al. Environ. Sci. Technol. 2015, 49, 14156-14165.

Bioackumulationsfaktor och vävnadsfördelning av F-53B i fisk (Carassius carassius)

F-53B är ackumuleras effektivt i fisk

BAF är signifikant högre än PFOS

Shi et al. Environ. Sci. Technol. 2015, 49, 14156-14165.

Förekomst av F-53B homologer i human serum från KinaDe två vanligaste F-53B homologerna kunde detekteras i >98% av alla blod- och serumprover (n=72) från Kina

Höga halter i högkonsumenter av fisk och anställda vid en förkromningsfabrik

OS

O-

F

FF

F

F

F

FF

F

F

F

F

F

FF

FO

O

F

F

F

Cl

F

OS

O-F

Cl

FF

F

F

F

FF

F

F

F

F

F

FF

FO

O

Halveringstider i människa (år)

Study population ReferenceMean Median Min Max Mean Median Min Max17,2 14,3 9,4 52,5 7,2 6,2 2,8 17,8 Predominantly male (58 m/14 f) This study

5,4 4,6 2,4 21,7 Predominantly male (24 m/2 f) Olsen et al. 20075,5 Male Wong et al. 20144,9 Female Wong et al. 2014

445 280 7,1 4230 46,7 81,9 4,5 696 Predominantly male (58 m/14 f) This study6,7 6,6 3,1 11 Young females (<50 years) Zhang et al. 201134 25 1,5 182 Males and older females (>50 yeaZhang et al. 201222 44 6 2183 Predominantly male Gao et al. 2015

C8 Cl PFESA n-PFOS

Total elimination

Renal clearence

Olsen et al. 2007 EHP 115, 1298-1305, Wong et al. 2014 ES&T 48, 8807−8814, Zhang et al. 2013 ES&T 47, 10619−10627, Gao et al. 2015 ES&T 49, 6953−6962

Shi et al. Environ. Sci. Technol. 2016, 50, 2396-2404.

Cl-PFESAs i naglar, hår och urin från Kina

Wang et al. unpublished

Liknande halter av F-53B och PFOS i bakgrundsbefolkningen från Hebei provinsen

Cl-PFESAs i nyföddaDe två vanligaste F-53B homologerna kunde detekteras i >92% av blodproverna från nyfödda spädbarn från Wuhan provinsen

Cl-PFESAs överförs till fostret med på liknande sätt som PFOS

Pan et al. Environ. Sci. Technol. 2017, 51, 634-644.

Cl-PFESAs i Arktis

Har påträffats säl, isbjörn och späckhuggare från Grönland

Betydligt lägre halter än PFOS

De globala transportmekanismerna är inte kartlagda

Gebbink et al. Chemosphere 2016, 144, 2384–2391

PFECAs i fluoropolymerproduktion

Gen-X är en av de främsta ersättarna till PFOA i produktion av PTFE/PVDF

Höga halter har påträffats i ytvatten nedströms från produktionsanläggningar i USA och Nederländerna

Heydebreck et al. Environ. Sci. Technol. 2015, 14, 8386–8395Sun et al. Environ. Sci. Technol. Lett. 2016, 3, 415-419

Gen-X i Kina

Stora utsläpp av HFPO-DA ”Gen-X” (5 kol), men även HFPO-TrA (7 kol, 2 eterbindningar)

PFCAs och PFECAs har använts tillsammans med PFCAs vid produktion av PTFE/PVDF

Troligtvis stora historiska utsläpp av både HFPO-DA och HFPO-TrA

Song et al. unpublished

PFECAs/PFESAs med okända användningsområden

Strynar et al. Environ. Sci. Technol. 2015, 49, 11622-11630

Persistens och bioackumulerbarhet skiljer sig inte nämnvärt från PFCAs/PFSAs av motsvarande kedjelängd

Troligtvis liknande toxicitet

Miljöövervakning från Kina visar relativt höga halter och emissioner av PFECAs/PFESAs

Vi vet fortfarande inte så mycket om spridningen av PFECAs/PFESAs i Europa

Det finns troligtvis en mängd per- och polyfluorerade eter ämnen som vi inte lyckats identifiera än

Är per- och polyfluorerade etrar nästa miljöproblem?

Presentatör
Presentationsanteckningar
Produktionen och användningen av PFEAAs i Europa och NA verkar skilja sig från Kina

Diskussion & rekommendationer

Forskning och miljöövervakning på kända PFECA/PFESAs

Utökad non-target screening

Identifiera ämnen som uppfyller kriterier för POPs och påskynda den regleringsprocessenMinska användningen och utsläppen av PFAS som grupp och arbeta mot en total utfasning i icke-essentiella tillämpningar

Anamma ett livscykelperspektiv på produkter som importeras från Asien och sätt mer press på nedströms användare av t.ex. PTFE/PVDF

Presentatör
Presentationsanteckningar
F-53B troligtvis kommer att hanteras tillsammans med utfasningen av PFOS i Kina

Stort tack tillFormas (mobilitetsstöd 2015-914)

Yali Shi, Yaqi Cai, Yuan Wang, Song Xiaowei, Ian Cousins och Zhanyun Wang

Tack för uppmärksamheten!

[email protected]