towards monolithic quantum processors in production fdsoi

49
Towards Monolithic Quantum Processors in Production Towards Monolithic Quantum Processors in Production FDSOI CMOS Technology FDSOI CMOS Technology Sorin P. Voinigescu, S. Bonen, U. Alakusu, M. Gong, M.S. Dadash, Y. Duan, L. Wu IEEE SSCS Chapter Irvine, CA, November 15, 2019 1

Upload: others

Post on 03-Oct-2021

9 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Towards Monolithic Quantum Processors in Production FDSOI

Towards Monolithic Quantum Processors in Production Towards Monolithic Quantum Processors in Production

FDSOI CMOS Technology FDSOI CMOS Technology

Sorin P. Voinigescu, S. Bonen, U. Alakusu, M. Gong, M.S. Dadash, Y.

Duan, L. Wu

IEEE SSCS Chapter Irvine, CA, November 15, 2019

1

Page 2: Towards Monolithic Quantum Processors in Production FDSOI

Outline

o Introduction

o Quantum Processor SoCs

o Cryogenic characterization of 22nm FDSOI CMOSTechnology

o Conclusions

2 Monolithic QPs in FDSOIVoinigescu

Page 3: Towards Monolithic Quantum Processors in Production FDSOI

Two-level quantum system

Voinigescu Monolithic QPs in FDSOI 3

[R. Gross, et al. Ch.9, “Physics of superconducting quantum circuits,” 2001-2018]

|1>

|0> i ℏd | ψ(t )>dt

=H (t) | ψ(t)>=E (t )| ψ(t )>

Page 4: Towards Monolithic Quantum Processors in Production FDSOI

Control of two-lvel system

Voinigescu Monolithic QPs in FDSOI 4

o Qubit is pseudo spin– Independent of qubit realization

– Methods from nuclear magnetic resonance

o Basic idea– Coherently rotate spins by static or oscillating

magnetic fields

– Static fields parallel to quantization axis => free

precession, changes φ on Bloch sphere

– Oscillating fields perpendicular to quantization axis

=> change population, changes θ on Bloch sphere

Bloch sphere

θ

φy

x

z

|↑>

|↓>

|Ψ>

Page 5: Towards Monolithic Quantum Processors in Production FDSOI

Spin ½ hamiltonian in a rotating magnetic field

Voinigescu Monolithic QPs in FDSOI 5

B1(t) = rotating ac field, with quadrature componentsalong x,y axes and with B1 << Bdc=B0

ω0= qubit (Larmor) frequency, ωR= Rabi frequency

i ℏ ddt

Χ(t)= g2

μB [ Bz Bx−i B yBx+iB y −Bz ]Χ(t ) Χ(t)=[a (t )b(t)]

B (t )=Bdc+B1(t)=(B1 cos ω t , B1 sin ω t , B0)

ω0=ωL≝g2

μBℏBdc ωR≝

g2

μBℏB1≪ω0

P |1>(t )=∣a(t )∣2

[I.I. Rabi, Phys. Rev.1937]

H= g2

μB [ B0 B1e− jωt

B1 ejω t −B0

]=ℏ2 [ ω0 ωRe

− jω t

ωRejω t −ω0

][R. Gross, et al. Appendix 10,” 2001-2018]

θ(t )=θ= constant in time. ϕ(t)=ϕ+ω0 t

U=e−i H t | Ψ(t)>=cos θ2e−i (ψ+ω0 t )/2 | ↑ >+sin θ

2ei (ψ+ω0 t )/2 | ↓ >

H S=gμB

2σ⋅B=

gμB2 [ Bz Bx−iB y

B x+iB y −B z ]

describes spin evolution in time

Page 6: Towards Monolithic Quantum Processors in Production FDSOI

Superconducting qubits: most common today

6

[M.B. Ritter, IEDM 2018 short course]

Voinigescu Monolithic QPs in FDSOI

Page 7: Towards Monolithic Quantum Processors in Production FDSOI

Google’s Josephson junction transmon qubit

7Voinigescu Monolithic QPs in FDSOI

J. Bardin et al., JSSC, Nov. 2019

Page 8: Towards Monolithic Quantum Processors in Production FDSOI

Google’s 54-qubit superconducting processor: 10 mK

8Voinigescu Monolithic QPs in FDSOI

F. Arute et al., Nature 574, 505 (2019)

Page 9: Towards Monolithic Quantum Processors in Production FDSOI

Semiconductor quantum dot qubits

o Qubits formed in QDs where electrons/holes are confined by an energy potential well created in

the conduction/valence band of a semiconductor structure: Si, Si/SiGe MOSFET, FDSOI, FinFET

o QDs placed in close proximity to enable coupling which is a function of barrier height/thickness

o Two adjacent (usually lowest) energy levels in QD used to create basis states |0> and |1>Voinigescu Monolithic QPs in FDSOI 9

[L. Hutin, VLSI 2016][D.M. Zajec, Science 2018]

[W.Huang, Nature 2019]

[Intel, IEDM 2018]

Page 10: Towards Monolithic Quantum Processors in Production FDSOI

Our approach and goals

10 Monolithic QPs in FDSOIVoinigescu

Foundry FDSOI CMOS-based QD qubits

– SiGe p-MOSFET with channel/S-D heterojunction for hole spin qubit

Investigate same and new spin control and readout techniques as SC qubits

mm-wave AMS circuits for spin manipulation and readout on the same die

with the qubits

2-4 K operation now, (maybe) 77 K in 15 years

Page 11: Towards Monolithic Quantum Processors in Production FDSOI

The SiGe p-MOSFET is the SiGe hole-spin qubit

Voinigescu11

Monolithic QPs in FDSOI

o L=18 nm; W = 50 nmo source/drain-to-channel

heterojunction: ΔEV = 35-40 meVo toxe= 1 nm => larger fR than thick

oxide/semiconductor qubits

Si0.7

Ge0.3

/Si0.75

Ge0.25

|0>|1>

with Bdc

B=(0 ,0,Bdc)z

xy

Bdc

B(t)

E1—E0= 6-9meV>>10kT

[S.Bonen et al. EDL 2018]

Page 12: Towards Monolithic Quantum Processors in Production FDSOI

Electron- and hole-spin DQD concept in FDSOI

Voinigescu12

Monolithic QPs in FDSOI

Double quantum-dot (DQD) qubit = 2-gate MOSFET cascode

Quantum dot (QD) under each top gate

Individual gate control of each QD

Potential barrier between dots

Back gate for entanglement control (needs special mask)

mm-wave E-field applied on gate and z-axis dc magnetic field

Page 13: Towards Monolithic Quantum Processors in Production FDSOI

Charge qubit concept in FDSOIo Similar to charge coupled deviceso Gates control barriers (tunnel coupling, t) between QDso Degree of freedom is position of electron in DQDo Voltage applied between dots creates detuning: EP1≠EP2

o Rabi frequency from probability oscillation

Voinigescu Monolithic QPs in FDSOI 13

[P. Giounanlis et al. IEEE Access 2019]

H=[E P 1 tt E P 2

]|ψ(t ) > =a(t) |10>+b(t) |01>

f R=2 t

2π ℏ

Page 14: Towards Monolithic Quantum Processors in Production FDSOI

Equivalent circuit of Double Quantum Dot

Voinigescu Monolithic QPs in FDSOI 14

Page 15: Towards Monolithic Quantum Processors in Production FDSOI

Comparison to other qubit families

>20x fL, fR compared to SC qubits:

– > 202x smaller readout resonators, > 20x higher operation temp.

Larger g, fR than vertically stacked SiGe/Si/SiGe FinFET qubit

Backgate control for circuit VT adjustment at low temperature

Potential selective fast backgate for CNOT gate

All spin control/readout schemes from SC qubits can be used

15 Monolithic QPs in FDSOIVoinigescu

Page 16: Towards Monolithic Quantum Processors in Production FDSOI

Outline

o Introduction

o Quantum Processor SoCs

o Cryogenic characterization of 22nm FDSOI CMOSTechnology

o Conclusions

16 Monolithic QPs in FDSOIVoinigescu

Page 17: Towards Monolithic Quantum Processors in Production FDSOI

Classical controller

Voinigescu 17 Monolithic QPs in FDSOI

o Three functions– Initialization

– Manipulation

– Read-out

o Phenomena employed – Coulomb blockade

– Pauli spin blockade

– Quantum capacitance reflectometry

[L. Hutin, IMS 2019]

Page 18: Towards Monolithic Quantum Processors in Production FDSOI

Readout schemes

Voinigescu 18 Monolithic QPs in FDSOI

Nondemolition, dispersive (non-resonant) mm-wave reflection meas. (phase, amp)

narrow band needs inductors (large area) needs precision ADC

Charge, current or voltage amplifier SET/capacitive coupling needed Broadband Noisy, 1/f noise sensitive

Page 19: Towards Monolithic Quantum Processors in Production FDSOI

Hole-spin monolithic quantum processor

Voinigescu 19 Monolithic QPs in FDSOI

o Qubit array – 0.5 pW (10pA/50mV) per qubit

– 1010 qubits = 5 mW

o Spin manipulation – low phase noise (OFDM) signal at fL

– 60-100 GHz for 3-5 K operation

– 140-240 GHz for 8-12 K operation

– n-MOSFET switch+phase pulse modulators

o SRAM stores digital pulse sequences (gate operations)

Control/readout circuits dominate consumption. Integration limited by cryostat lift

Pdc=0 ; P=f R2C⋅V DD

2Note: qubit bias scheme not shown

Page 20: Towards Monolithic Quantum Processors in Production FDSOI

Equal1.lab 22nm FDSOI QPU for 4 K Operation

Voinigescu Monolithic QPs in FDSOI 20

Fully-integrated SoC

Quantum

Analog

Mixed-signal

Digital

Equal1.lab

Page 21: Towards Monolithic Quantum Processors in Production FDSOI

Equal1.lab 22nm FDSOI Quantum Core

Voinigescu Monolithic QPs in FDSOI 21

Quantum structure & tightly integrated control & interface

Patented quantum structuresin customized GlobalFoundries FDX process

2D structure allowsTopological quantum computer

[D. Leipold, et al. 2019]

Page 22: Towards Monolithic Quantum Processors in Production FDSOI

Photon-enhanced interaction/entanglement

Voinigescu Monolithic QPs in FDSOI 22

[P. Giounanlis et al. Appl.Sci. 2019]

Page 23: Towards Monolithic Quantum Processors in Production FDSOI

Outline

o Introduction

o Quantum Processor SoCs

o Cryogenic characterization of 22nm FDSOICMOS Technology

o Conclusions

23 Monolithic QPs in FDSOIVoinigescu

Page 24: Towards Monolithic Quantum Processors in Production FDSOI

Measurement set-up at 2 K

24 Monolithic QPs in FDSOIVoinigescu

Page 25: Towards Monolithic Quantum Processors in Production FDSOI

Die QPU testing limited by padframe, cryostat lift

Voinigescu 25 Monolithic QPs in FDSOI

Page 26: Towards Monolithic Quantum Processors in Production FDSOI

Quantum behavior at low VDS and 2 K

26 Monolithic QPs in FDSOI

-800 -600 -400 -200 0 200 400 600 8001E-13

1E-12

1E-11

1E-10

1E-9

1E-8

1E-7

1E-6

1E-13

1E-12

1E-11

1E-10

1E-9

1E-8

1E-7

1E-6

2 KNMOSPMOS

2 K

300 K

VBG

= +/- 0.5 VV

DS= -/+ 1 mV

I SD, I

DS (

A)

VG (mV) [M. Gong et al. RFIC 2019]

Voinigescu

Page 27: Towards Monolithic Quantum Processors in Production FDSOI

Energy level spacing tuneable from backgate

Voinigescu 27 Monolithic QPs in FDSOI

ΔVGS

increases (doubles) at +/-2V back gate voltage as Cgs

decreases

[S.Bonen et al. EDL 2018]

Page 28: Towards Monolithic Quantum Processors in Production FDSOI

18nmx70nm p-MOSFET: IDS vs VGS and VDS

28 Monolithic QPs in FDSOI

-40

-30

-20

-10

0

10

20

30

40

50

-550 -525 -500 -475 -450 -425 -400

6.2 KV

BG = FLT

|IDS

| (A)

VGS

(mV)

VD

S (

mV

)

1E-13

1E-12

1E-11

1E-10

1E-09

1E-08

Sign of IDS

follows VDS

Operates like a single hole transistor (single electron transistor)

Regions of no current indicate bias regimes with integer numberof trapped holes in the QD

“Diamonds” with large ΔVDS

indicate large E

2 – E

1. Estimate

~15 meV for this device

E2 – E

1 limited by W = 70 nm

ΔVDS

ΔVGS

Voinigescu

Page 29: Towards Monolithic Quantum Processors in Production FDSOI

18nmx70nm p-MOSFET vs Temperature

29 Monolithic QPs in FDSOI

Resonant tunnelling current

peaks widen over VGS

and

decrease in |IDS

| height as

temperature increases

More thermionic emission

overboth barriers of the QD

as temperature increases

Voinigescu

-600 -560 -520 -480 -4401E-15

1E-14

1E-13

1E-12

1E-11

1E-10

1E-9

1E-8

VDS

= -10 mV

VBG

= FLT

6 K 8 K 10 K 20 K 30 K 40 K 50 K

I SD (

A)

VGS

(mV)

Page 30: Towards Monolithic Quantum Processors in Production FDSOI

Qubit operation temperature scaling

fL, T increase ~ L-2, W-2 (very favourable scaling law)

fL, T increase linearly with dc magnetic field Bdc

– Bdc=2.9T => ΔEm=0.33meV, fL=80.4 GHz, T=4 K, 22-nm FDSOI

– Bdc=8.6T => ΔEm=1meV, fL=241.2 GHz, T=12 K, 12-nm feature?

– Bdc=17.3T => ΔEm=2meV, fL=582.4 GHz, T=24 K, SiGe BiCMOS?

Magnetic field and double-dot coupling energy limit T, fL

– Higher gyromagnetic factor helps => hole spin in SiGe channel

30 Monolithic QPs in 22nm FDSOIVoinigescu

Page 31: Towards Monolithic Quantum Processors in Production FDSOI

“Classical” MOSFET behaviour in saturation

Voinigescu 31 Monolithic QPs in FDSOI

40x20nmx590nm SG,1x

Page 32: Towards Monolithic Quantum Processors in Production FDSOI

Peak fT, fMAX current densities invariant with temp.

Voinigescu 32 Monolithic QPs in FDSOI

40x20nmx590nm SG, 1x nslvt

40x20nmx590nm SG, 1x pslvt

[M. Gong et al. RFIC 2019]

Page 33: Towards Monolithic Quantum Processors in Production FDSOI

Rpoly does not change over temperature

Voinigescu 33 Monolithic QPs in FDSOI

[M. Gong et al. RFIC 2019]

Page 34: Towards Monolithic Quantum Processors in Production FDSOI

Parameter extraction at 2-3 K

Voinigescu 34 Monolithic QPs in FDSOI

[M.J. Mecca et al. RFIC 2019]

o Need on-die calibration in 2 K mm-wave probe station (with magnetic field)o Source/drain resistance confirms different barriers for p- and n-MOSFET

Page 35: Towards Monolithic Quantum Processors in Production FDSOI

Thick and Thin-Oxide Varactors: Q degrades

Voinigescu 35 Monolithic QPs in FDSOI

Page 36: Towards Monolithic Quantum Processors in Production FDSOI

MoM Cap does not change but Q improves at 3 K

Voinigescu 36 Monolithic QPs in FDSOI

[M. Gong et al. RFIC 2019]

Page 37: Towards Monolithic Quantum Processors in Production FDSOI

Monolithic integration of qubits and readout TIA

Voinigescu 37 Monolithic QPs in FDSOI

Challenges: Large gain, low power Bandwidth, noise Drive 50 Ω off chip with minimum size 1x18nmx70nm MOSFET Design kit models valid at 2-4 K

[S.Bonen et al. EDL 2018]

Page 38: Towards Monolithic Quantum Processors in Production FDSOI

TIA and n-qubit+readout circuit vs. temperature

Voinigescu 38 Monolithic QPs in FDSOI

300 K n-qbit withTIA

TIA [S.Bonen et al. EDL 2018]

Page 39: Towards Monolithic Quantum Processors in Production FDSOI

Specification and optimal TIA design for readout

Voinigescu 39 Monolithic QPs in FDSOI

Amplify 1pA...1nA to 10 mV

=> Z21

> 110 dBΩ

Lowest possible noise

BW > fL /20 (f

L = 60-160 GHz)

Zout

= 50 Ω

PDC

< 5 mW

-500 -400 -300 200 300 4001E-13

1E-12

1E-11

1E-10

1E-9

1E-8

1E-7

VBG

= +/- 2 VV

DS= -/+ 1 mV

PMOS2 K

NMOS2 K

VG (mV)

I SD,

I DS (

A)

R3 L3L1R2R1 L2

Vbgp Vbgp Vbgp Vbgp VbgpQ1

Q2

Q3

Q4

Q5

Q6

Q7

Q8

Q9

Q10

1x340nm

1x270nm

2x590nm

2x430nmVbgn Vbgn Vbgn Vbgn Vbgn

5x590nm

5x430nm

13x590nm

13x430nm

32x590nm

32x430nm

Vout

VDD0.8V

VDD0.8V

VDD0.8V

VDD0.8V

VDD0.8V

Gate length = 18nm

30k 2.1k 600pH 400pH 150 800pH

Vsource

I source

Vg1

Vg2

Vbgnq

Electron Spin Qubit

1(10)x70nm

Page 40: Towards Monolithic Quantum Processors in Production FDSOI

Meas. output spectra of 1x p-DQD+TIA at 300K

Voinigescu 40 Monolithic QPs in FDSOI

Output spectrum measured with variable-amplitude sinusoidal signals applied to the gate of the DQD.

At -110dBm output power, the 4GHz sinusoidal signal is clearly visible above the noise floor. Based on the 251 kΩ

TIA gain, this corresponds to 3pArms

current at the input of the TIA.

RBW=1HzRBW=2.5kHz

Page 41: Towards Monolithic Quantum Processors in Production FDSOI

Challenges Qubit fidelity << transistor fidelity => Tradeoff: T vs. fidelity

Spin readout, qubit-to-qubit isolation

Gyromagnetic-factor engineering for high-temp scaling

Wf <= 50 nm (limits operation temperature today)

CNOT Gate (or other 2 qubit logic gate)

– (Minor) process/mask changes still needed

Entanglement across multiple qubits41 Monolithic QPs in 22nm FDSOIVoinigescu

Page 42: Towards Monolithic Quantum Processors in Production FDSOI

Conclusions Monolithic integration of CMOS spin control/readout circuits and qubits

SiGe hole-spin qubit in p-MOSFET channel

• > 60GHz spin-manipulation/readout low-noise, AMS circuits needed

At 2-4 K, minimum-size 22nm FDSOI MOSFET can be used as qubit in the

subthreshold and as “classical” transistor in saturation

100-qubit processor < 2 W, probable now at 2-4 K in 22-nm FDSOI

Future scaling to 10nm qubit gate length and 15nm width => 77 K operation?

42 Monolithic QPs in 22nm FDSOIVoinigescu

Page 43: Towards Monolithic Quantum Processors in Production FDSOI

In a nut shell: The Trinity

43 Monolithic QPs in 22nm FDSOIVoinigescu

Page 44: Towards Monolithic Quantum Processors in Production FDSOI

Acknowledgments

44 Monolithic QPs in 22nm FDSOIVoinigescu

Prof. P. Asbeck, UC San Diego

Dr. A. Muller, Dr. M. Iordanescu, Dr. G. Adam, Dr. D. Daughton, N. Messaoudi

Prof. R. Mansour, Dr. D. Harame, Dr. Nigel Cave

Dr. D. Leipold, Dr. G. Maxim

NSERC and EU Horizon2020 IQubits project for funding

GlobalFoundries for technology access and chip donations

IMT Bucharest, Lakeshore, Keysight, and U Waterloo for cryo measurements

Integrand for EMX software

CMC and Jaro Pristupa for CAD tools and support

Page 45: Towards Monolithic Quantum Processors in Production FDSOI

Acknowledgments

45 Monolithic QPs in 22nm FDSOIVoinigescu

Prof. P. Asbeck, UC San Diego

Dr. A. Muller, Dr. M. Iordanescu, Dr. G. Adam, Dr. D. Daughton, N. Messaoudi

Prof. R. Mansour, Dr. D. Harame, Dr. Nigel Cave

Dr. D. Leipold, Dr. G. Maxim

NSERC and EU Horizon2020 IQubits project for funding

GlobalFoundries for technology access and chip donations

IMT Bucharest, Lakeshore, Keysight, and U Waterloo for cryo measurements

Integrand for EMX software

CMC and Jaro Pristupa for CAD tools and support

Page 46: Towards Monolithic Quantum Processors in Production FDSOI

Multi site measurementso IMT Bucharest: November 2017 to present

– Custom-built cryostat DC-67 GHz, 6 K – 300 K– DC and non-calibrated GSG 2-port S-params w/o B-field: TIA,

transistors, quantum dots, passives

o University of Waterloo, Ontario, Canada: March 2018– Lakeshore CPX 3.3 K commercial system– DC and calibrated GSG 2-port S-params: Transistors, passives

o Lake Shore Cryotronics, Westerville, Ohio, USA: June 2018)– Lakeshore CPX 2K commercial system– DC and calibrated GSG 2-port S-params: Single and double QDs, TIA

46 Monolithic QPs in 22nm FDSOIVoinigescu

Page 47: Towards Monolithic Quantum Processors in Production FDSOI

Information encoded in particle spin or charge location

Satisfies

Basis states

|↑> = |0>; |↓> = |1>

Superposition states

|Ψ> = a|↑> + b|↓>

a and b are complex numbers

a = cos(θ/2), b = eiφsin(θ/2)

|a|2 + |b|2 =1

Only two deterministic real variables: φ, θ => coherent phase modulation

Semiconductor qubits

Voinigescu Monolithic QPs in FDSOI 47

Bloch spherei ℏd | ψ(t )>dt

=H (t) | ψ(t)>=E (t )| ψ(t )>

θ

φy

x

z

|↑>

|↓>

|Ψ>

tan θ≝√Δ2+Δ2

ϵ with 0≤θ≤π tan ϕ≝ΔΔ with 0≤ϕ≤2π

Page 48: Towards Monolithic Quantum Processors in Production FDSOI

10 coupled double QD qubits with TIA readout

Voinigescu 48 Monolithic QPs in FDSOI

Improved gain and bandwidth

[M. Gong et al. RFIC 2019]

0 10 20 30 40 50 60-25-20-15-10-505

10152025

pqubit 1x S21 pqubit 10x S21 nqubit 10x S21

S21

,S22

(d

B)

Frequency (GHz)

pqubit 1x S22 pqubit 10x S22 nqubit 10x S22

Page 49: Towards Monolithic Quantum Processors in Production FDSOI

SiGe HBT performance improves at 6-80 K

49 Monolithic QPs in 22nm FDSOIVoinigescu

0.1x4.5µm CBEBC