total synthesis of illicium sesquiterpeneskanai/seminar/pdf/lit_a_iwai_b4.pdf · introduction...

58
Total Synthesis of Illicium Sesquiterpenes Literature Seminar 2020/01/23 B4 Atsushi Iwai 1

Upload: others

Post on 14-Oct-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

  • TotalSynthesisofIllicium Sesquiterpenes

    LiteratureSeminar2020/01/23

    B4AtsushiIwai

    1

  • Contents

    1. Introduction

    2. Pseudoanisatin

    3. Majucin

    4. Summary

    2

  • Contents

    1. Introduction

    2. Pseudoanisatin

    3. Majucin

    4. Summary

    3

  • Introduction

    Sesquiterpene

    isoprene

    × 3

    Sesquiterpene

    caryphyllan

    bisabolan germacran

    seco-prezizaane4

  • Introduction

    Sesquiterpene

    isoprene × 3

    Sesquiterpene

    caryphyllan

    bisabolan germacran

    seco-prezizaane

    Illicium(シキミ)

    5

  • Me

    HOO

    OHMe

    OH

    O

    OO

    MeO

    Introduction

    Illiciumsesquiterpene familymembersubtypes

    6

    O

    O

    OO

    O

    O

    seco-prezizaane

    pseudoanisatinoids

    majucinoids

    anisatinoids

    H

    Me

    OH OHMe

    O

    HO

    H

    O

    O

    H

    Me

    OH

    OO

    OHMe

    HOH

    O

    HO

    H

    O

    H

    Me

    HO

    O

    OH

    HOH

    HO

    H

    O

    Me

    O

    O

    pseudoanisatin

    majucin

    anisatin

    jiadifenin

    H

    Me

    OH OHMe

    O

    O

    O

    O

    3-oxo-pseudoanisatin

    H

    Me

    HO

    O

    OH

    HOH

    HO

    H

    O

    COOCH3

    O

    O

    veranisatinsC

  • 7

    Introduction

    Previoustotal-synthesisexample

    Danishefsky,S.J.etal.J.Am.Chem.Soc.2004,126,14358.

    l OxidizedFGwasinstalledatearlystage.l C-Cbond formation reactionmakescoreskeletonofilliciumsesquiterpene.

  • 8

    Introduction

    Maimone’ssynthesisstrategybyoxidation

    H

    Me

    OH OHMe

    O

    HO

    H

    O

    O

    pseudoanisatin

    H

    Me

    OH

    OO

    OHMe

    HOH

    O

    HO

    H

    O

    majucin

    seco-prezizaane

    seco-prezizaane

    DirectC-HorC-Cfunctionalization ofseco-prezizaaneskeletonwouldmakeshortanddiversesynthesisofilliciumsesquiterpene.

  • OPP

    Me

    Me Me

    Me

    Me

    Me Me

    Me

    Me

    Me Me

    MeH

    Me

    Me Me

    Me

    Me

    Me

    MeMe

    Me

    MeMe

    Me

    Introduction

    Proposedbiosyntheticpathway

    9

    cyclase

    alkylshift

    C-Cscission

    -OPP

    seco-prezizaaneskeleton

    H

    H

    Me

    Me

    Me

    Me

    OHH

    (+)-cedrol

    $52USD/kgFukuyama,Y.;Huang, J.-M.BioactiveNaturalProducts (PartL);StudiesinNaturalProductsChemistry;Atta-ur-Rahman,Ed.;2005,Vol.32,p395.

  • Introduction

    Synthesisstrategy

    10

    H

    H

    Me

    Me

    Me

    Me

    OHH

    (+)-cedrol

    $52USD/kg

    l Introduceposition-selectivehydroxylgroupsbasedonnearbyhydroxylgroupsorcarboxylicacids.(Redox-relay)

    l Skeletalrearrangement byringexpansion andC−Ccleavage.

    H

    Me

    OH OHMe

    O

    HO

    H

    O

    O

    (+)-pseudoanisatin

  • Introduction

    Synthesisstrategy

    11

    H

    Me

    OH OHMe

    O

    HO

    H

    O

    O

    H

    Me

    OH

    OO

    OHMe

    HOH

    O

    HO

    H

    O

    (+)-pseudoanisatin (-)-majucin

    Synthesizedifferentlyaccordingtooxidationorderandlocation.

    radical-mediatedC-14methyloxidation

    Fe-catalyzedC-4methineactivation

    C-10andC-12oxidation

    radical-mediatedC-4methineactivation

    H

    H

    Me

    Me

    Me

    Me

    OHH

    HH

    144

    10

    12

  • Contents

    1. Introduction

    2. Pseudoanisatin

    3. Majucin

    4. Summary

    12

  • Pseudoanisatin

    Keyreaction

    13

    H

    H

    Me

    Me

    Me

    Me

    OHH

    HH

    3 4 14

    7

    11

    (1) C-14oxidationbySuarez’s radical-basedmethod.

    (2) Introductionofhydroxylgroup toC-7through acyloxylationwithCuBr2.

    (3) α-Ketolrearrangement.

    (4) Regioselectiveoxidationreactionusing intramolecularcarboxylicacidasdirectinggroupatC-4position.

    Carbontobeoxidized

    H

    Me

    OH OHMe

    O

    HO

    H

    O

    O

    K.Hung,M.L.Condakes,T.Morikawa,T.J.Maimone,J.Am.Chem.Soc.,2016,138,16616

  • Pseudoanisatin

    Synthesisscheme

    14

    FeL L

    NNN

    N

    MeMe

    MeMe

    MeMe

    L = MeCNX = SbF6

    2X

    [Fe]=

    H

    H

    Me

    Me

    Me

    Me

    OHH

    a. PhI(OAc)2, I2, hν73 %

    HMe

    MeH

    OMe

    Me

    H

    HMe

    MeH

    OMe

    Me

    H

    HOOC O

    b. Me3OBF4,proton sponge

    97 %

    c. NaIO4RuCl3・xH2O

    72 %

    H

    O

    Me

    MeH

    OMe

    O

    Me

    O

    d. CuBr2t-BuOH diglyme,∆

    H

    OK

    Me

    MeH

    OMe

    Me

    O

    OK

    OH

    MeOMe

    Me

    OHOOH

    Me

    H

    Oe. KOHKOt-Bu

    45 %(2 steps)

    4:1 dr

    H

    MeOMe

    Me

    OTBSOOH

    Me

    H

    O

    MeOR1

    Me

    OR2O

    Me

    H

    O

    O

    f. NaH, TBSClthen

    aq. HCl88 %

    g. [Fe]TBHP

    37 % combinedC-H [O]

    20 % R1 = Me, R2 = TBS11 % R1 = H, R2 = TBS 6 % R1 = H, R2 = H

  • H

    H

    Me

    Me

    Me

    Me

    OH R

    H

    H

    H

    Me

    Me

    Me

    OH

    H

    H

    HMe

    Me

    Me

    OH

    H

    I I

    HMe

    Me

    Me

    OH

    H

    IH

    Me

    Me

    Me

    HO

    HMe

    Me

    Me

    HO

    HMe

    Me

    Me

    HOO

    MeMe

    MeMe

    HMe

    MeH

    Base

    H

    OMe

    Me

    H

    H

    Pseudoanisatin

    Reactionmechanism

    15

    1,5-hydrogentransfer

    H

    H

    Me

    Me

    Me

    Me

    OHH

    a. PhI(OAc)2, I2, hν73 %

    HMe

    MeH

    OMe

    Me

    H

    b. Me3OBF4,proton sponge

    97 %

    R.Baker,M.A.Brimble,J.A.Robinson,TetrahedronLett.,1985,26,2115.

  • Pseudoanisatin

    Suarez’sradical-basedmethod

    16J.I.Concepcion,C.G.Francisco,R.Hernandez,J.A.Salazar,E.Suarez,TetrahedronLett.,1984,25,1953.

    Entry Alcohol(1eq)

    PhI(OAc)2/I2(eq)

    Time(min.)

    Temperature(℃)

    Product(Yield %)

    1 1 1.1/1.0 50 40 2(90)2 1 1.1/0.0 120 40 Noreaction3 3 1.1/1.0 30 25 4(53)4 6 1.1/0.5 40 40 7(90)

    C8H17

    AcOOH

    H

    C8H17

    AcOO

    H AcO

    H OH

    AcO

    I OH

    AcOH

    O

    HO

    AcOH

    O

    O

    C8H17

    AcOOH

    H

    C8H17

    AcOO

    H

    PhI(OAc)2, I2, hν

    cyclohexane

    AcO

    O

    1. 2. 3. 4.

    5. 6. 7.

  • Pseudoanisatin

    Reactionmechanism

    17[O]wasinstalledtotwodifferentposition by3stepsusingC-6-OH

    HMe

    MeH

    OMe

    Me

    H

    HMe

    MeH

    OMe

    Me

    H

    HOOC Oc. NaIO4

    RuCl3・xH2O72 %

    HMe

    MeH

    OMe

    Me

    H

    RuOO

    O O

    HMe

    MeH

    OMe

    H

    OMe

    O RuO

    O

    HMe

    MeH

    OMe

    Me

    H

    O

    H

    O

    RuOO

    O O

    HMe

    MeH

    OMe

    Me

    H

    OH

    O ORuO

    O O

    HMe

    MeH

    OMe

    Me

    H

    HOOC O

  • HMe

    MeH

    OMe

    Me

    H

    HOOC O

    Br

    HMe

    MeH

    OMe

    MeHOOC O

    HMe

    MeH

    OMe

    MeO

    OHO

    H

    O

    Me

    MeH

    OMe

    O

    Me

    O

    OH

    H

    OK

    Me

    MeH

    OMe

    Me

    O

    OK

    O H

    MeOMe

    Me

    OHOOH

    Me

    H

    O

    Pseudoanisatin

    Reactionmechanism

    18

    electrontransfer

    CuBr2

    HMe

    MeH

    OMe

    Me

    H

    HOOC O

    d. CuBr2t-BuOH

    diglyme,∆H

    O

    Me

    MeH

    OMe

    O

    Me

    O

    e. KOHKOt-Bu

    45 %(2 steps)

    H

    MeOMe

    Me

    OHOOH

    Me

    H

    O

    cf)substratescopeofoxidativelactonization(Maimone,T.J.etal.JACS,2019,141,3083.)

    Stereoselectiveoxidation

  • HMe

    MeH

    OMe

    Me

    H

    HOOC O

    Br

    HMe

    MeH

    OMe

    MeHOOC O

    HMe

    MeH

    OMe

    MeO

    OHO

    H

    O

    Me

    MeH

    OMe

    O

    Me

    O

    OH

    H

    OK

    Me

    MeH

    OMe

    Me

    O

    OK

    O H

    MeOMe

    Me

    OHOOH

    Me

    H

    O

    Pseudoanisatin

    Reactionmechanism

    19

    electrontransfer

    CuBr2

    HMe

    MeH

    OMe

    Me

    H

    HOOC O

    d. CuBr2t-BuOH

    diglyme,∆H

    O

    Me

    MeH

    OMe

    O

    Me

    O

    e. KOHKOt-Bu

    45 %(2 steps)

    H

    MeOMe

    Me

    OHOOH

    Me

    H

    O

    Stereoselectiveoxidation

    Miyake,H.;Nishimura,A.;Yago,M.;Sasaki,M.Chem.Lett.2007,36,332.

  • H

    MeOMe

    Me

    OTBSOOH

    Me

    H

    OH

    MeOMe

    Me

    OTBSOOFeLn

    Me

    H

    OO

    MeOMe

    Me

    OTBSOOFeLn

    Me

    H

    OOH

    OH

    MeOMe

    Me

    OTBSOOH

    Me

    H

    O

    MeOMe

    Me

    OTBSO

    Me

    H

    O

    O

    Pseudoanisatin

    Reactionmechanism

    20

    H

    MeOMe

    Me

    OTBSOOH

    Me

    H

    O

    MeOR1

    Me

    OR2O

    Me

    H

    O

    O

    g. [Fe]TBHP

    37 % combinedC-H [O]

    20 % R1 = Me, R2 = TBS11 % R1 = H, R2 = TBS 6 % R1 = H, R2 = H

    Site-selectiveoxidation

    M.A.Bigi,S.A.Reed,M.C.White,J.Am.Chem.Soc.,2012,134,9721.

  • Pseudoanisatin

    C-Hoxidationbyironcomplexes

    21M.A.Bigi,S.A.Reed,M.C.White,J.Am.Chem.Soc.,2012,134,9721.

    L.Gómez, I.Garcia-Bosch,A.Company,J.Benet-Buchholz,A.Polo,X.Sala,X.Ribas,M.Costas,Angew.Chem.Int.Ed.,2009,48,5720.

    cat3=[Fe(CF3SO3)2((S,S,R)-mcpp)]

  • Pseudoanisatin

    C-Hoxidationbyironcomplexes

    22

    M.A.Bigi,S.A.Reed,M.C.White,J.Am.Chem.Soc.,2012,134,9721.

  • Pseudoanisatin

    C-Hoxidationbyironcomplexes

    23

    M.A.Bigi,S.A.Reed,M.C.White,J.Am.Chem.Soc.,2012,134,9721.

  • MeOMe

    Me

    OTBSO

    Me

    H

    O

    O

    H

    OTBS

    Me

    OMe

    OEt

    O

    Me

    OMe

    H

    OH

    Me

    OMe

    Me

    O

    O

    OH

    Me

    OMe

    Me

    O

    O

    HO OH

    HH

    OH

    Me

    OMe

    Me

    O

    O

    H OH

    HHO

    h. Et3OPF6,proton spongethen, TFA/H2O

    66 %(85 % BRSM)

    i. TMSClNaI

    j. TBAFAcOH64 %

    (2 steps)

    k. OsO4・TMEDA

    l. MsCl, pyr.;NaOH( aq.)

    80 %(2 steps)

    Pseudoanisatin

    Synthesisscheme

    24

    (+)-pseudoanisatin

  • 4

    11

    14Redox-relayC6 →C11,C14

    Redox-relayC11 →C7

    11

    7

    α-ketolrearrangement

    Redox-relayC11 →C4

    Pseudoanisatin

    SummaryofPseudoanisatin synthesis

    Redox-relayC4 →C3

    11

    4

    3

    l (+)-Pseudoanisatinwassynthesizedbyfullyoxidative strategy.l Isthisstrategyapplicableforotherilliciumsesquiterpenes?

    H

    Me

    OH OHMe

    O

    HO

    H

    O

    O

    25

    6

    (+)-pseudoanisatin

  • Contents

    1. Introduction

    2. Pseudoanisatin

    3. Majucin

    4. Summary

    26

  • Majucin

    Keyreaction

    27

    H

    H

    Me

    Me

    Me

    Me

    OHH

    HH

    3 4 14

    7

    11

    (1) C-4selectiveoxidationbySuarez’sradical-basedmethod.

    (2) C-7&C-12oxidationbySeO2 withoutH2O.

    (3) α-ketolrearrangement.

    (4) C-10oxidation.

    Carbontobeoxidized

    10

    12

    H

    Me

    OH

    OO

    OHMe

    HOH

    O

    HO

    H

    O

    M.L.Condakes,K.Hung,S.J.Harwood,T.J.Maimone,J.Am.Chem.Soc.,2017,139,17783

  • 28

    C6 →C11,C14 C11 →C4

    Majucin

    Firsttrial:C6 →C11,C14 →C4

    a. PhI(OAc)2, I2, hν73 %

    b. Me3OBF4,proton sponge

    97 %

    43 %

    34 %

  • 29

    C6 →C11,C14 C11 →C4

    Majucin

    Firsttrial:C6 →C11,C14 →C4

    a. PhI(OAc)2, I2, hν73 %

    b. Me3OBF4,proton sponge

    97 %

    43 %

    34 %

  • Majucin

    Synthesisscheme

    30

    H

    H

    Me

    Me

    Me

    Me

    OHH

    a. PhI(OAc)2, I2, hνthen add

    HMe

    MeH

    OAc

    Me

    H

    Ac2O,H3PO467 %

    b. BH3・THF;

    CrO3・2pyr

    HMe

    MeH

    OAc

    H

    OH

    c. NaBH4 72 %(2 steps)

    d. PhI(OAc)2, I2, hν

    e. RuCl3・xH2OKBrO3

    72 %

    f. SeO2, 4 Å MS;

    g. L-selectride;

    KOH/MeOH

    H

    H

    Me

    Me

    H

    MeH

    OAc

    O

    MeH

    93 %

    HMe

    Me

    OAc

    HMeH

    H

    O

    H

    H

    Me

    Me

    OAc

    O

    O

    MeO

    K2CO3,Me2SO4

    HMe

    Me

    OAc

    O

    O

    O OMe

    O

    HMe

    Me

    O

    O

    O

    OOH

    50 %(2 steps)

  • Majucin

    Reactionmechanism

    e. RuCl3・xH2OKBrO3

    72 %H

    Me

    Me

    OAc

    HMeH

    H

    O

    H

    H

    Me

    Me

    OAc

    O

    O

    MeO

    H

    H

    Me

    Me

    H

    MeO

    OAc

    H

    Ru

    O

    OO

    O

    H

    H

    Me

    Me MeO

    OAc

    HRu

    OH

    OO

    O

    H

    H

    Me

    Me MeO

    OAc

    RuOH

    OO

    HO

    H

    H

    Me

    Me MeO

    OAc

    RuO

    OO

    O

    H

    H

    Me

    Me

    OAc

    O

    O

    MeO

    31

    KBrO3

    A.Tenaglia,E.Terranova,B.Waegel,J.Org.Chem., 1992,57,5523.

  • Majucin

    C-HoxidationbyRuO4

    32

    A.Tenaglia,E.Terranova,B.Waegel,J.Org.Chem., 1992,57,5523.E.McNeillandJ.DuBois,J.Am.Chem.Soc., 2010,132,10202.

  • Majucin

    Reactionmechanism

    33

    H

    H

    Me

    Me

    OAc

    O

    O

    MeO

    HMe

    Me

    OAc

    O

    O

    O OMe

    O

    f. SeO2, 4 Å MS;K2CO3,Me2SO4

    H

    H

    Me

    Me

    OAc

    O

    O

    MeOSeO

    O

    HMe

    Me

    OAc

    O

    O

    OSe

    OH

    O

    HMe

    Me

    OAc

    O

    O

    MeO

    OSe OH

    H

    HMe

    Me

    OAc

    O

    O

    OH Se

    O

    O

    HMe

    Me

    OAc

    O

    O

    OSe

    HO O

    HMe

    Me

    OAc

    O

    O

    OO

    SeOH

    H

    HMe

    Me

    OAc

    O

    O

    OO

    H

    HMe

    Me

    OAc

    O

    O

    OO

    OH

    Base

    SOMe

    O O

    OMe

    HMe

    Me

    OAc

    O

    O

    OO

    OMe

  • Majucin

    Reactionmechanism

    HMe

    Me

    OAc

    O

    O

    O OMe

    OB

    H

    LiH

    Me

    Me

    O

    O

    O

    O OMe

    OLiO

    OHH

    Me

    Me

    O

    O

    O

    O OMe

    OK

    HMe

    Me

    O

    O

    O

    OOH

    H

    H

    HMe

    Me

    O

    O

    O

    OOH

    g. L-selectride;

    KOH/MeOH

    HMe

    Me

    OAc

    O

    O

    O OMe

    O

    HMe

    Me

    O

    O

    O

    OOH

    50 %(2 steps)

    34K.Hung,M.L.Condakes,L.F.T.Novaes,S.J.Harwood,T.Morikawa,Z.Yang,T.J.Maimone,J.Am.Chem.Soc.,2019,141,3083.

  • Majucin

    Synthesisscheme

    h. DMDO,i. PhCF3, Δ

    j, Me4NBH(OAc)3

    64 %(3 steps)

    k. TsOH・H2On-BuOH, Δ

    71 %

    l. LiHMDSMoOPH

    m. [Ru2(PEt3)6(OTf)3][OTf]i-PrOH

    75 %

    HMe

    Me

    O

    O

    O

    OOH

    H

    Me O

    O

    Me

    OO

    OH

    OH

    H

    Me

    Me

    OO

    OH

    O

    O

    65 %

    H

    Me

    Me

    OO

    OH

    O

    OHOH

    H

    Me

    Me

    OO

    OH

    O

    OH

    HOn. OsO4・TMEDA

    61 %

    H

    Me

    Me

    OO

    OH

    O

    OH

    HO

    OHHO

    35

  • Majucin

    Reactionmechanism

    OHMe

    Me

    O

    O

    O

    OOH

    OO

    HMe

    Me

    O

    O

    O

    OOH

    HMe

    MeO

    O

    OO

    OH

    O

    H

    Me O

    O

    Me

    OO

    OH

    OBOAcH

    OAcAcO

    H

    Me O

    O

    Me

    OO

    OH

    OH

    O B(OAc)2

    H

    O

    h. DMDO,i. PhCF3, Δ

    j, Me4NBH(OAc)3

    64 %(3 steps)

    HMe

    Me

    O

    O

    O

    OOH

    H

    Me O

    O

    Me

    OO

    OH

    OH

    36

  • Majucin

    Reactionmechanism

    H

    Me O

    O

    Me

    OO

    OH

    OH

    HH2O

    H

    Me HO

    Me

    OO

    OH

    OH

    O

    OH

    H

    Me HO

    Me

    OO

    OH

    O

    OH

    H

    Me H2O

    Me

    OO

    OH

    O

    O

    HH

    Me

    Me

    OO

    OH

    O

    O

    k. TsOH・H2On-BuOH, Δ

    71 %

    H

    Me O

    O

    Me

    OO

    OH

    OH

    H

    Me

    Me

    OO

    OH

    O

    O

    37

  • Majucin

    Reactionmechanism

    H

    Me

    Me

    OO

    OH

    O

    O

    H

    NSi

    Si

    Li

    H

    Me

    Me

    OO

    OH

    O

    OLi

    O

    OMo

    O

    O

    O

    APMH Py

    H

    Me

    Me

    OO

    OH

    O

    OHOH

    H

    Me

    Me

    OO

    OH

    O

    O

    H

    Me

    Me

    OO

    OH

    O

    OHOHl. LiHMDS

    MoOPH

    65 %

    38

  • Majucin

    Reactionmechanism

    RuLn

    RuLnO H

    RuLnH

    RuLnHO

    OH

    OH

    O O

    39

    H

    Me

    Me

    OO

    OH

    O

    OHOH

    H

    Me

    Me

    OO

    OH

    O

    OH

    HO

    m. [Ru2(PEt3)6(OTf)3][OTf]i-PrOH 75 %

    OH

    or

    O

    orO

    or

    OHor

    Almeida,M.L.S.,Beller,M.,Wang,G.,Backvall,J.,Chem.Eur.J.,1996,1533.

  • Majucin

    TransferhydrogenationbyRutheniumcomplex

    40Hill,C.K.;Hartwig,J.F.Nat.Chem.2017,9,1213.

    Oxidation Reduction

    Ru-2=[Ru2(PEt3)6(OTf)3][OTf]

    Results and discussionDevelopment of catalysts and conditions for the selectiveoxidation of hindered secondary alcohols. Several sequentialphases of catalyst development described in the SupplementaryInformation led to a new ruthenium complex (Fig. 1a andSupplementary Section 2). The precursor Ru(DMSO)4(OTf)2(DMSO, dimethylsulfoxide; OTf, SO2CF3) was generated inacetone solvent and treated with various phosphine ligands to givepotential catalysts. The complexes that result from the addition ofunhindered alkylphosphines PEt3, PMePh2 and PEt2(p-Me2N–Ph)all gave active catalysts for the dehydrogenation of the hinderedmodel alcohol diisopropylcarbinol. Thereafter, a synthesis of aseries of catalyst precursors lacking DMSO ligands was developed(Ru-1, Ru-2 and Ru-3), and the activity of these complexes wasfound to be an order of magnitude greater than that of the systemgenerated in situ. The initial results of the oxidation of a modelhindered alcohol are shown in Fig. 1b. In contrast to priortransition-metal catalysts that do not oxidize such hinderedsecondary alcohols, this ruthenium complex converteddicyclohexylcarbinol into the corresponding ketone at roomtemperature in only three hours. The same oxidation alsooccurred when 1,4-cyclohexanedione or trifluoroacetophenone

    was used as a stoichiometric oxidant and the reaction was run intrifluoroethanol solvent.

    The reactions of a series of primary and secondary alcohols andmixtures of primary and secondary alcohols with acetone as thehydrogen acceptor and Ru-2 as the catalyst are shown in Fig. 1c.These results show that the oxidation of secondary alcoholsoccurs over the oxidation of primary alcohols. The individual reac-tions of primary alcohols occur to a low conversion over a time thatleads to the full conversion of secondary alcohols, and reactions witha mixture of primary and secondary alcohols preferentially convertthe secondary alcohol into the ketone.

    Selective oxidation of polyol natural products to ketonederivatives. Figure 2 summarizes the transfer dehydrogenation of13 polyol natural products and three methyl esters of naturalproducts. This figure shows the products from the oxidationreactions and the configuration of the alcohol unit that underwentoxidation. These reactions occur with several classes of naturalproducts, including steroids, diterpenoids, sesquiterpenoids,iridoids, carbohydrates, alkaloids and macrolides, which shows thebroad applicability of the catalyst system. The ruthenium catalystswe developed display a remarkable selectivity for the oxidation of

    OH

    OH

    Selectivity

    OH

    OH

    11.5 (7.8)

    OH

    OH OH

    OH OH

    OH

    *10 min reaction*4% loading

    *8% loading *8% loading,65 °C

    64% (64%)

    15% (16%)

    *69% (70%)

    *6% (9%)

    *82% (82%)*88% (91%)

    *(2%)

    *10 min reaction

    *51% (54%)

    *24% (58%)

    *75% (77%)

    *(13%)*13% (27%)

    4.3 (4.0)6.3 (3.0)

    (45.5) 2.1 (0.9) (5.9)

    OH OH

    OHOH OH

    98% (98%)84% (85%)7% (16%) 5% (12%) (2%)

    0.5% Ru-2, 1% NMM

    r.t., Me2CO (0.2 M, 65 equiv.), 45 minR R'

    OHR" OHand/or

    R R'

    OR" Oand/or

    0.1% Ru-2r.t., 1:1 Me2CO:TFE, 3 h

    Cy Cy

    O

    Cy Cy

    OH

    99%

    cis-Ru(DMSO)4Cl2 + PR3CH3OH

    r.t. to 65 °C[Ru2(PR3)6Cl3]Cl

    PR3 Catalyst

    PMePh2 Ru-1PEt3 Ru-2PEt2(p-Me2N-Ph) Ru-3

    [Ru2(PR3)6(OTf)3][OTf] AgOTf, TFE

    r.t.

    Reaction yields for oxidation of individual alcohols

    Reaction yields for competitive oxidation of pairs of alcohols

    a

    b

    c

    d

    or

    0.1% Ru-2, 0.2% NMMr.t., 1.1 equiv. acceptor, TFE, 4 h

    Stoichiometric ketone acceptors

    CF3

    O

    OO

    tBu Me

    O 0.2% Ru-2, 0.4% NMM

    1:1 iPrOH:TFE, 45 °C, 3 h tBu Me

    OH

    99%

    Ru-2

    NMM

    O N

    Figure 1 | Model alcohol oxidation and catalyst synthesis. a, Synthesis of the ruthenium catalyst for alcohol-transfer dehydrogenation. b, Mild oxidation of ahindered secondary alcohol is enabled by the catalyst Ru-2. c, Reactions of primary and secondary alcohols show the selectivity for the oxidation ofsecondary alcohols over primary alcohols. Conversions are shown in parentheses. d, The mild reduction of a hindered ketone is enabled by Ru-2 with iPrOHas the reductant. r.t., room temperature. NMM; N-methylmorpholine.

    ARTICLES NATURE CHEMISTRY DOI: 10.1038/NCHEM.2835

    NATURE CHEMISTRY | VOL 9 | DECEMBER 2017 | www.nature.com/naturechemistry1214

    © 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

    Results and discussionDevelopment of catalysts and conditions for the selectiveoxidation of hindered secondary alcohols. Several sequentialphases of catalyst development described in the SupplementaryInformation led to a new ruthenium complex (Fig. 1a andSupplementary Section 2). The precursor Ru(DMSO)4(OTf)2(DMSO, dimethylsulfoxide; OTf, SO2CF3) was generated inacetone solvent and treated with various phosphine ligands to givepotential catalysts. The complexes that result from the addition ofunhindered alkylphosphines PEt3, PMePh2 and PEt2(p-Me2N–Ph)all gave active catalysts for the dehydrogenation of the hinderedmodel alcohol diisopropylcarbinol. Thereafter, a synthesis of aseries of catalyst precursors lacking DMSO ligands was developed(Ru-1, Ru-2 and Ru-3), and the activity of these complexes wasfound to be an order of magnitude greater than that of the systemgenerated in situ. The initial results of the oxidation of a modelhindered alcohol are shown in Fig. 1b. In contrast to priortransition-metal catalysts that do not oxidize such hinderedsecondary alcohols, this ruthenium complex converteddicyclohexylcarbinol into the corresponding ketone at roomtemperature in only three hours. The same oxidation alsooccurred when 1,4-cyclohexanedione or trifluoroacetophenone

    was used as a stoichiometric oxidant and the reaction was run intrifluoroethanol solvent.

    The reactions of a series of primary and secondary alcohols andmixtures of primary and secondary alcohols with acetone as thehydrogen acceptor and Ru-2 as the catalyst are shown in Fig. 1c.These results show that the oxidation of secondary alcoholsoccurs over the oxidation of primary alcohols. The individual reac-tions of primary alcohols occur to a low conversion over a time thatleads to the full conversion of secondary alcohols, and reactions witha mixture of primary and secondary alcohols preferentially convertthe secondary alcohol into the ketone.

    Selective oxidation of polyol natural products to ketonederivatives. Figure 2 summarizes the transfer dehydrogenation of13 polyol natural products and three methyl esters of naturalproducts. This figure shows the products from the oxidationreactions and the configuration of the alcohol unit that underwentoxidation. These reactions occur with several classes of naturalproducts, including steroids, diterpenoids, sesquiterpenoids,iridoids, carbohydrates, alkaloids and macrolides, which shows thebroad applicability of the catalyst system. The ruthenium catalystswe developed display a remarkable selectivity for the oxidation of

    OH

    OH

    Selectivity

    OH

    OH

    11.5 (7.8)

    OH

    OH OH

    OH OH

    OH

    *10 min reaction*4% loading

    *8% loading *8% loading,65 °C

    64% (64%)

    15% (16%)

    *69% (70%)

    *6% (9%)

    *82% (82%)*88% (91%)

    *(2%)

    *10 min reaction

    *51% (54%)

    *24% (58%)

    *75% (77%)

    *(13%)*13% (27%)

    4.3 (4.0)6.3 (3.0)

    (45.5) 2.1 (0.9) (5.9)

    OH OH

    OHOH OH

    98% (98%)84% (85%)7% (16%) 5% (12%) (2%)

    0.5% Ru-2, 1% NMM

    r.t., Me2CO (0.2 M, 65 equiv.), 45 minR R'

    OHR" OHand/or

    R R'

    OR" Oand/or

    0.1% Ru-2r.t., 1:1 Me2CO:TFE, 3 h

    Cy Cy

    O

    Cy Cy

    OH

    99%

    cis-Ru(DMSO)4Cl2 + PR3CH3OH

    r.t. to 65 °C[Ru2(PR3)6Cl3]Cl

    PR3 Catalyst

    PMePh2 Ru-1PEt3 Ru-2PEt2(p-Me2N-Ph) Ru-3

    [Ru2(PR3)6(OTf)3][OTf] AgOTf, TFE

    r.t.

    Reaction yields for oxidation of individual alcohols

    Reaction yields for competitive oxidation of pairs of alcohols

    a

    b

    c

    d

    or

    0.1% Ru-2, 0.2% NMMr.t., 1.1 equiv. acceptor, TFE, 4 h

    Stoichiometric ketone acceptors

    CF3

    O

    OO

    tBu Me

    O 0.2% Ru-2, 0.4% NMM

    1:1 iPrOH:TFE, 45 °C, 3 h tBu Me

    OH

    99%

    Ru-2

    NMM

    O N

    Figure 1 | Model alcohol oxidation and catalyst synthesis. a, Synthesis of the ruthenium catalyst for alcohol-transfer dehydrogenation. b, Mild oxidation of ahindered secondary alcohol is enabled by the catalyst Ru-2. c, Reactions of primary and secondary alcohols show the selectivity for the oxidation ofsecondary alcohols over primary alcohols. Conversions are shown in parentheses. d, The mild reduction of a hindered ketone is enabled by Ru-2 with iPrOHas the reductant. r.t., room temperature. NMM; N-methylmorpholine.

    ARTICLES NATURE CHEMISTRY DOI: 10.1038/NCHEM.2835

    NATURE CHEMISTRY | VOL 9 | DECEMBER 2017 | www.nature.com/naturechemistry1214

    © 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

    3

    3

    11

  • the catalyst to generate acetal 2o in an 84% yield. Treatment of theacetal product with Ir-1 and ammonium formate salts (NH3RO2CHfor R = H, Ph) led to N-substituted lactam derivatives 2p and 2q in78 and 77% yields, respectively.

    Epimerization of alcohol units in polyol natural products. Oursystem not only catalyses the transfer of hydrogen from hinderedalcohols to acetone with isopropanol as the by-product, but italso catalyses the reverse transfer of hydrogens from isopropanolto hindered ketones, such as pinacolone (Fig. 1d). This resultsuggested the potential to epimerize a single hydroxy group incomplex polyols with a single catalyst. For example, the ketonegenerated from the dehydrogenation of fusidic acid methyl esterwas reduced by catalytic Ru-2 and isopropanol to give 3-epi-fusidic acid methyl ester (4a) in an 80% yield, with theremaining material identified as the parent fusidic acid methylester (Fig. 5a). Similarly, ouabain, which was oxidized selectivelywith acetone, was reduced with isopropanol catalysed by Ru-2 toform 1-epi-ouabain (4b) in 90% yield. With other polyols, such

    as D-glucal and andrographolide, reduction of the ketoneregenerated the starting natural product.

    A one-step epimerization also occurred in some cases. Forexample, the site-selective epimerization of fusidic acid methylester at the C3 position catalysed by Ru-2 occurred in an 84%yield, whereas that of ouabain occurred at the C1 position in a60% yield (Fig. 5b and Supplementary Section 4). AlthoughShvo’s catalyst, which is widely used for dynamic kinetic resol-utions15, also catalysed the epimerization of fusidic acid methylester at 70 °C to give 84% of the C3 epimer, it did not react withouabain up to the decomposition temperature of 100 °C. The com-bination of (Ph5Cp)Ru(CO)Cl and KO

    tBu, which also has been usedto epimerize simple alcohols16,17, did not react with either of thesemolecules (Supplementary Section 4).

    Comparison with alternative methods for alcohol oxidationapplied to polyol natural products. Although the catalyticoxidation of alcohols has been the subject of much research, fewstudies targeted the oxidation of complex polyols. Instead, moststudies focused on the reactions of unhindered benzylic andallylic alcohols, linear alkanols or cyclohexanols18–22. In the mostrecent and arguably most impressive example, a series ofpolyglycosides were oxidized by Waymouth’s catalyst in 30–60%yields at the terminal sugar23. Prior to this study, the polyketideantibiotic mupirocin methyl ester was oxidized by thecombination of TEMPO ((2,2,6,6-tetramethylpiperidin-1-yl)oxyl),NaOCl and KBr to give only a 31% yield of a monooxidationproduct24, and the labdane diterpene forskolin was oxidized bystoichiometric CrO3/pyridine in an 80% yield25, whereas anotherlabdane diterpene, andrographolide, was oxidized to the 3-ketonein only a 5% yield under the optimized conditions26. Thesestudies illustrate that the conditions developed for the reaction ofone structure do not translate into the oxidation of anotherstructure of the same or different class, and some molecules haveresisted selective oxidation under all known conditions27–29.

    To assess in more detail the suitability of known procedures withclassical stoichiometric reagents and modern catalysts for the selec-tive oxidation of a broader range of polyols, we conducted reactionson several representative densely functionalized structures shown inFig. 3: andrographolide, ouabain, mupirocin methyl ester andkirenol (Supplementary Section 5). Each of these four natural pro-ducts gave mixtures of products with classical reagents, and no con-ditions gave a significant yield of the ketone product obtained fromthe reaction with Ru-1 or Ru-2 as the catalyst and acetone as thehydrogen acceptor. The reactions we conducted with simple pub-lished substrates occurred as described with both classical reagents.However, the reactions under these conditions with the four selectednatural products gave complex mixtures. Andrographolide reactedwith Dess Martin periodinane (DMP) to oxidize the primaryalcohol over the secondary alcohols to generate a mixture of 49%aldehyde, 35% keto-aldehyde and only 3% of the ketone. N-bromo-succinimide in acetone, tested because of the selective oxidation ofsimple bile acids28, gave a complex mixture. Swern oxidationconverted 65% of andrographolide into an unknown structurethat lacks a ketone or aldehyde, and Oppenhauer conditions withtrifluoroacetone catalysed by AlEt2OEt gave little to no conversion.The oxidation of mupirocin, ouabain methyl ester and kirenolalso gave mixtures of products with these oxidation systems. Thereaction of mupirocin with DMP gave an unselective oxidation toa complex mixture of products (at least five), the 1H NMR spectrumof which contained multiple new olefin resonances that signalledelimination processes. The reaction of the same substrate withAlEt2OEt/trifluoroacetone or the Swern reagent formed a mixtureof many products with a low selectivity. The oxidation of ouabainwith DMP formed one or more aldehyde products in 45% yieldfrom the oxidation of the primary alcohol, along with multiple

    Me

    Me

    MeHO

    HOH

    H

    H OAcOMe

    O

    Me

    Me

    Me80% (84%)

    (14%)

    +

    3-epi-fusidic acid methyl ester

    fusidic acid methyl ester

    90% (95%)1-epi-ouabain

    2% Ru-2, 4% NMM

    O

    HO OHOH

    Me

    OO

    H

    OH

    HOH

    OOH

    HOOH

    H

    3:1 TFE:iPrOH, 65 °C, 1 h

    Me

    Me

    MeHO

    HOH

    H

    H OAcOMe

    O

    Me

    Me

    Me80% (84%)

    3-epi-fusidic acid methyl ester

    Fusidic acidmethyl ester

    1-epi-ouabain

    Ouabain

    4% Ru-2, 8% NMM

    O

    HO OHOH

    Me

    OO

    HMe

    OH

    HOH

    OOH

    HO OH

    H

    TFE, 70 °C, 11 h

    + S.M.

    (60%)

    (35%)

    a

    b

    3a

    3b

    2% Ru-2, 4% NMM

    3:1 TFE:iPrOH, 65 °C, 1 h

    6% Ru-2, 12% NMM

    TFE, 70 °C, 11 h

    1f

    1e

    1

    1

    3

    3

    Figure 5 | The reduction of complex ketones and one-step epimerization ofcomplex alcohols. a, Reduction of complex ketones with isopropanol enablessite-selective epimerization within polyol natural products. b, Site-selectiveepimerization of complex polyols is achieved in one step with Ru-2 as thecatalyst in the absence of an acceptor. S.M., starting material. NMM;N-methylmorpholine.

    NATURE CHEMISTRY DOI: 10.1038/NCHEM.2835 ARTICLES

    NATURE CHEMISTRY | VOL 9 | DECEMBER 2017 | www.nature.com/naturechemistry 1219

    © 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

    Majucin

    TransferhydrogenationbyRutheniumcomplex

    41Hill,C.K.;Hartwig,J.F.Nat.Chem.2017,9,1213.

    HO

    OH

    3

    1

    Ru-2=[Ru2(PEt3)6(OTf)3][OTf]

  • Majucin

    Reactionmechanism

    O OsO

    ON

    O

    N

    O OOs

    O

    O

    NN

    OH

    HH

    Me

    Me

    OO

    O

    O

    OH

    HO

    H

    Me

    Me

    OO

    OH

    O

    OH

    HO

    H H

    Me

    Me

    OO

    OH

    O

    OH

    HO

    OHHO

    H

    Me

    Me

    OO

    OH

    O

    OH

    HOn. OsO4・TMEDA

    61 %H

    Me

    Me

    OO

    OH

    O

    OH

    HO

    OHHO

    42Donohoe, T.J.;Moore,P.R.;Waring,M.J.;Newcombe,N.J.TetrahedronLett.1997,38,5027.

  • H

    H

    Me

    Me

    Me

    MeOH

    [O]

    [O]

    H

    H

    Me

    Me

    HMe

    OAc

    OH

    H

    H

    Me

    Me

    OAc

    O

    O

    MeO

    [O][O]

    [O]

    H

    Me O

    O

    Me

    OO

    OH

    OH[O]

    H

    Me

    Me

    OO

    OH

    O

    O

    H

    Me

    Me

    OO

    OH

    O

    OH

    HO

    OHHO

    [O]

    43

    Majucin

    SummaryofMajucinsynthesis

    Redox-relayC6 →C11,C14

    Redox-relayC11 →C4

    Redox-relayC11 →C10

    Redox-relayC4 →C3

    Redox-relayC6 →C7,C12α-ketol

    rearrangement

    l (-)-Majucinwassynthesizedbyfullyoxidative strategy.l Thestrategyofpseudoanisatin isapplicableformajucin.

    (-)-majucin

    6

    11

    14

    11

    4

    6

    7

    12

    4

    3

    1110

  • Contents

    1. Introduction

    2. Pseudoanisatin

    3. Majucin

    4. Summary

    44

  • Summary

    45

    H

    Me

    OH OHMe

    O

    HO

    H

    O

    O

    H

    Me

    OH

    OO

    OHMe

    HOH

    O

    HO

    H

    O

    (+)-pseudoanisatin

    (-)-majucin

    H

    H

    Me

    Me

    Me

    Me

    OHH

    14steps

    12steps

    l Introduceposition-selectivehydroxylgroupsbyRedox-relay.l Skeletalrearrangementbyα-ketolrearrangement.(onlyonestep)l Twocompounds couldbesynthesizedusing thesamestrategy.

    13oxidations

    7oxidations

    (+)-cedrol

  • 46

  • Appendix

    47

  • Pseudoanisatin

    Reactionmechanism

    48

    H

    MeOMe

    Me

    OHOOH

    Me

    H

    O

    HH

    H

    MeOMe

    Me

    OOO

    Me

    H

    O TBS Cl

    H

    MeOMe

    Me

    OOO

    Me

    H

    O TBS Cl H

    MeOMe

    Me

    OTBSOOH

    Me

    H

    O

    H

    MeOMe

    Me

    OHOOH

    Me

    H

    O f. NaH, TBSClthen

    aq. HCl

    88 %

    H

    MeOMe

    Me

    OTBSOOH

    Me

    H

    O

  • Pseudoanisatin

    Reactionmechanism

    49H

    MeOMe

    Me

    OTBSO

    Me

    H

    O

    OBase

    OEtEt

    Et

    OTBS

    Me

    OMe

    OEt

    O

    Me

    OMe

    H

    MeOMe

    Me

    OTBSO

    Me

    H

    O

    EtO H

    MeOMe

    Me

    OTBS

    O

    Me

    H

    O

    EtO

    H

    H

    H

    OTBS

    Me

    OMe

    OEt

    O

    Me

    OMe

    H

    H

    MeOMe

    Me

    OTBSO

    Me

    H

    O

    O

    H

    OTBS

    Me

    OMe

    OEt

    O

    Me

    OMe

    h. Et3OPF6,proton spongethen, TFA/H2O

    66 %(85 % BRSM)

  • Pseudoanisatin

    Reactionmechanism

    50

    H

    OTBS

    Me

    OMe

    OEt

    O

    Me

    OMe

    H

    OTBS

    Me

    OMe

    OEt

    O

    Me

    OTMS

    H

    O

    Me

    OMe

    Me

    O

    O

    H

    OTBS

    Me

    OMe

    Me

    O

    O

    TMS I

    IMe

    I

    H

    OTBS

    Me

    OMe

    OEt

    O

    Me

    O

    FTBS F

    H2O

    TMS

    H

    OH

    Me

    OMe

    Me

    O

    O

    H

    OTBS

    Me

    OMe

    OEt

    O

    Me

    OMe

    H

    OH

    Me

    OMe

    Me

    O

    O

    i. TMSClNaI

    j. TBAFAcOH64 %

    (2 steps)

  • Pseudoanisatin

    Reactionmechanism

    51

    H

    OH

    Me

    OMe

    Me

    O

    O

    k. OsO4・TMEDA

    OH

    Me

    OMe

    Me

    O

    O

    HO OH

    HH

    H

    O

    Me

    OMe

    Me

    O

    O

    O OsO

    ON

    O

    N

    OH

    Me

    OMe

    Me

    O

    O

    O OOs

    O

    O

    NN

    HOH

    Me

    OMe

    Me

    O

    O

    HO OH

    HHO

    H

    H

    Donohoe, T.J.;Moore,P.R.;Waring,M.J.;Newcombe,N.J.TetrahedronLett.1997,38,5027.

  • Pseudoanisatin

    Reactionmechanism

    52OH

    Me

    OMe

    Me

    O

    O

    H OH

    HHO

    SO

    Cl CH2

    O H N

    OH

    Me

    OMe

    Me

    O

    O

    HO OH

    HH

    SO

    CH2

    OOH

    Me

    OMe

    Me

    O

    O

    MsO OH

    HH

    OH

    OH

    Me

    OMe

    Me

    O

    O

    HO OH

    HH

    l. MsCl, pyr.;NaOH( aq.)

    80 %(2 steps)

    OH

    Me

    OMe

    Me

    O

    O

    H OH

    HHO

  • Pseudoanisatin

    AcyloxylationwithCuBr2

    53K.Hung,M.L.Condakes,L.F.T.Novaes,S.J.Harwood,T.Morikawa,Z.Yang,T.J.Maimone,J.Am.Chem.Soc.,2019,141,3083.

  • Pseudoanisatin

    C-Hoxidationbyironcomplexes

    54

    K.Hung,M.L.Condakes,L.F.T.Novaes,S.J.Harwood,T.Morikawa,Z.Yang,T.J.Maimone,J.Am.Chem.Soc.,2019,141,3083.

  • H

    H

    Me

    Me

    Me

    Me

    OH R

    H

    H

    H

    Me

    Me

    Me

    OH

    H

    H

    HMe

    Me

    Me

    OH

    H

    I I

    HMe

    Me

    Me

    OH

    H

    IH

    Me

    Me

    Me

    HO

    HMe

    Me

    Me

    HO

    HMe

    MeH

    HMe

    MeH

    OAc

    Me

    H

    H

    HOH

    O

    O OMe

    Majucin

    Reactionmechanism

    1,5-hydrogentransfer

    H

    H

    Me

    Me

    Me

    Me

    OHH

    a. PhI(OAc)2, I2, hνthen add

    HMe

    MeH

    OAc

    Me

    H

    Ac2O,H3PO467 %

    55

    R.Baker,M.A.Brimble,J.A.Robinson,TetrahedronLett.,1985,26,2115.

  • Majucin

    Reactionmechanism

    HMe

    MeH

    OAc

    Me

    H b. BH3・THF;

    Cro3・2pyrH

    H

    Me

    Me

    H

    MeH

    OAc

    O

    c. NaBH4

    72 %(2 steps)

    HMe

    MeH

    OAc

    H

    OH

    MeH

    HMe

    MeH

    OAc

    Me

    H

    H2B H

    HMe

    MeH

    OAc

    Me

    H

    BH2H CrO

    OO

    pyr

    pyr

    HMe

    MeH

    OAc

    Me

    H

    BH

    OHOO

    HMe

    MeH

    OAc

    Me

    H

    OH

    B

    OH

    OHCrO

    OO

    pyr

    pyr

    HMe

    MeH

    OAc

    Me

    H

    OH

    B

    OH

    OHCr

    O

    O

    pyr

    pyrHO

    H

    H2O

    HMe

    MeH

    OAc

    Me

    H

    HO

    BH3H

    HMe

    MeH

    OAc

    Me

    H

    OHH

    56

  • Majucin

    OxidationbySe2OundernoH2Ocondition

    57K.V.Chuang,C.Xu,S.E.Reisman,Science,2016,353,912.

    K.Hung,M.L.Condakes,L.F.T.Novaes,S.J.Harwood,T.Morikawa,Z.Yang,T.J.Maimone,J.Am.Chem.Soc.,2019,141,3083.

  • Majucin

    Stereochemicalconsiderationsfortheα-Ketolrearrangement

    58

    M.L.Condakes,K.Hung,S.J.Harwood,T.J.Maimone,J.Am.Chem.Soc.,2017,139,17783.