the primitive graphs of dual — resonance models

3
Volume 31B, number 9 PHYSICS LETTERS 27 April 1970 THE PRIMITIVE GRAPHS OF DUAL - RESONANCE MODELS* D. J. GROSS, A. NEVEU **, J. SCHERK ***, J.H. SCHWARZ Joseph Henry Laboratories, Pmnceton University, Princeton, N.J. 08540, USA Received 17 March 1970 We show that the problem of constructing and, if necessar~ renormahzmg general dmgrams m dual-res- onance models can be reduced to the study of only four pmm~tlve graphs, three of which are tadpoles, the last one being a self-energy graph. We discuss consequences and appheatlons of this reduction. The process of umtarizmg a faetorlzable dual- resonance model requires constructing Feynman- hke diagrams compatible with duahty and factor~- zaUon [1,2]. As was shown m ref. 1, there exist different Feynman-hke diagrams which are con- nected by duahty. For instance, any planar dia- gram can be reduced to the lteratmn of a single planar tadpole. This reduction sxmphfles the problem of renormahzing planar dtagrams: one has just to renormalize the planar tadpole oper- ator, and to check that the lteratmn of this re- normahzed operater does not create new inflm- t~es. It ~s thus interesting to look for a similar reduction of non-planar diagrams. The set of all Feynman-hke dmgrams related by duahty form an equivalence class, called a duality diagram. In ref. 2 the enumeratmn of duahty dmgrams was shown to be eqmvalent to the clasmflcatmn of compact two-dlmenmonal manifolds with boundaries [e.g. 3]. By using the propernes of these manifolds, we show that any duahty diagram can be built up by attaching to a tree diagram, one or more times, only four graphs: a seK energy graph and three tadpoles (fig. 1). In other words the four graphs m fig. 1 (la) (ib) (Ic) (id) Ftg. 1. The four primitive graphs of a dual theory. represent all the proper n-point functions m a dual theory, all other graphs being one particle reducible. * Supported m part by the Air Force Office of Smen- tllm Research, under contract AF-49(638)1545. ** Procter Fellow. *** NATO Fellox~, on leave of absence from Labora- tmre de Physique Theorlque, Orsay, France. 592 Any duahty diagram [2] can be put m a one- to-one correspondence with either a sphere or a connected sum of for1, or a connected sum of projective planes with windows and points on it. Some of the points demarcate redes of the w~n- dows, while the others correspond to closed loops of related Feynman-hke d~agrams. The redes of the windows correspond to the external legs of the duality diagram. A given triangula- tion of the surface is related to a well-defined Feynman-like diagram [2]?. In the case of a planar diagram (sphere with one window and points), it is known that there exists a triangu- lation which corresponds to the iteration of a planar tadpole. We show that m the other cases a special triangulation can be found with mmflar properties. We start from a surface with windows and N points. Let us first reduce the number of points: a point can be brought near a given side of a window, and we can absorb it together with that rode by the tmangulatlon of fig. 2a. This trmngu- (~ a Q3 (2a) (2b) Fig. 2a) Trlangulatton of a point and the rode of a wm- dow. b) The corresponding Feynman-hke diagram. latmn means that a pianar tadpole has bee., in- serted on the external leg corresponding to the rode of the window that we have used (fig. 2b). We are now brought back to the case of the same surface, w~th the same type of window, but with N-1 points. By repeating this process N times, we can get rid of all the points, and insert N planar tadpoles on external lines. Notice that ? See footnote ? on next page

Upload: dj-gross

Post on 25-Aug-2016

215 views

Category:

Documents


3 download

TRANSCRIPT

Volume 31B, number 9 P H Y S I C S L E T T E R S 27 April 1970

T H E P R I M I T I V E G R A P H S O F D U A L - R E S O N A N C E M O D E L S *

D . J . G R O S S , A . N E V E U **, J . S C H E R K ***, J . H . SCHWARZ Joseph Henry Laborator ies , Pmnceton Universi ty , Princeton, N.J. 08540, USA

Received 17 March 1970

We show that the problem of construct ing and, if necessar~ r e n o r m a h z m g general dmgrams m d u a l - r e s - onance models can be reduced to the study of only four pmm~tlve graphs, three of which are tadpoles, the last one being a se l f -energy graph. We discuss consequences and appheat lons of this reduction.

T h e p r o c e s s of u m t a r i z m g a f a e t o r l z a b l e d u a l - r e s o n a n c e m o d e l r e q u i r e s c o n s t r u c t i n g F e y n m a n - h k e d i a g r a m s c o m p a t i b l e w i t h d u a h t y and f a c t o r ~ - z a U o n [1,2] . As w a s s h o w n m r e f . 1, t h e r e e x i s t d i f f e r e n t F e y n m a n - h k e d i a g r a m s w h i c h a r e c o n - n e c t e d by d u a h t y . F o r i n s t a n c e , any p l a n a r d i a - g r a m can be r e d u c e d to t he l t e r a t m n of a s i n g l e p l a n a r t a d p o l e . T h i s r e d u c t i o n s x m p h f l e s t he p r o b l e m of r e n o r m a h z i n g p l a n a r d t a g r a m s : one h a s j u s t to r e n o r m a l i z e t he p l a n a r t a d p o l e o p e r - a t o r , and to c h e c k t h a t t he l t e r a t m n of t h i s r e - n o r m a h z e d o p e r a t e r d o e s no t c r e a t e new i n f l m - t~es. It ~s t h u s i n t e r e s t i n g to look f o r a s i m i l a r r e d u c t i o n of n o n - p l a n a r d i a g r a m s .

T h e s e t of a l l F e y n m a n - h k e d m g r a m s r e l a t e d by d u a h t y f o r m an e q u i v a l e n c e c l a s s , c a l l e d a d u a l i t y d i a g r a m . In r e f . 2 the e n u m e r a t m n of d u a h t y d m g r a m s w a s shown to be e q m v a l e n t to t he c l a s m f l c a t m n of c o m p a c t t w o - d l m e n m o n a l m a n i f o l d s w i th b o u n d a r i e s [e .g . 3]. By u s i n g t he p r o p e r n e s of t h e s e m a n i f o l d s , we show t h a t any d u a h t y d i a g r a m c a n be b u i l t up by a t t a c h i n g to a t r e e d i a g r a m , one o r m o r e t i m e s , only fou r g r a p h s : a s eK e n e r g y g r a p h a n d t h r e e t a d p o l e s (fig. 1). In o t h e r w o r d s t he fou r g r a p h s m f ig . 1

(la) (ib) (Ic) (id)

Ftg. 1. The four pr imi t ive graphs of a dual theory.

r e p r e s e n t a l l t h e p r o p e r n - p o i n t f u n c t i o n s m a dua l t h e o r y , a l l o t h e r g r a p h s b e i n g one p a r t i c l e r e d u c i b l e .

* Supported m par t by the Air Force Office of Smen- t l lm Research, under contract AF-49(638)1545.

** P r o c t e r Fellow. *** NATO Fellox~, on leave of absence from Labora-

tmre de Physique Theorlque, Orsay, France .

592

Any d u a h t y d i a g r a m [2] can b e pu t m a o n e - t o - o n e c o r r e s p o n d e n c e w i th e i t h e r a s p h e r e o r a c o n n e c t e d s u m of for1, o r a c o n n e c t e d s u m of p r o j e c t i v e p l a n e s w i th w indows a n d p o i n t s on i t . S o m e of the p o i n t s d e m a r c a t e r edes of the w~n- dows , w h i l e t h e o t h e r s c o r r e s p o n d to c l o s e d l o o p s of r e l a t e d F e y n m a n - h k e d ~ a g r a m s . T h e r e d e s of t he w i n d o w s c o r r e s p o n d to t he e x t e r n a l l e g s of t he dua l i t y d i a g r a m . A g i v e n t r i a n g u l a - t i on of t he s u r f a c e i s r e l a t e d to a w e l l - d e f i n e d F e y n m a n - l i k e d i a g r a m [ 2 ] ? . In t he c a s e of a p l a n a r d i a g r a m ( s p h e r e w i th one window and p o i n t s ) , i t i s known t h a t t h e r e e x i s t s a t r i a n g u - l a t i o n w h i c h c o r r e s p o n d s to t h e i t e r a t i o n of a p l a n a r t a d p o l e . W e show t h a t m the o t h e r c a s e s a s p e c i a l t r i a n g u l a t i o n can b e found w i t h m m f l a r p r o p e r t i e s .

We s t a r t f r o m a s u r f a c e w i th w i n d o w s and N p o i n t s . Le t us f i r s t r e d u c e t h e n u m b e r of p o i n t s : a po in t c an be b r o u g h t n e a r a g i v e n s i d e of a window, and we can a b s o r b i t t o g e t h e r w i th t h a t rode by the t m a n g u l a t l o n of f ig . 2a. T h i s t r m n g u -

(~ a Q3

(2a) (2b) Fig. 2a) Trlangulat ton of a point and the rode of a wm- dow. b) The corresponding Feynman-hke diagram.

l a t m n m e a n s t h a t a p i a n a r t a d p o l e h a s bee . , i n - s e r t e d on t he e x t e r n a l l eg c o r r e s p o n d i n g to t he rode of the window t h a t we h a v e u s e d (fig. 2b). W e a r e now b r o u g h t b a c k to t he c a s e of t he s a m e s u r f a c e , w~th t he s a m e t y p e of window, but w i th N - 1 p o i n t s . By r e p e a t i n g t h i s p r o c e s s N t i m e s , we c a n ge t r i d of a l l t h e p o i n t s , and i n s e r t N p l a n a r t a d p o l e s on e x t e r n a l l i n e s . N o t i c e t h a t

? See footnote ? on next page

Volume 31B, number 9 P H Y S I C S L E T T E R S 27 April 1970

t h e s e N t a d p o l e s c an be d i s t r i b u t e d in a n a r b i t r a - r y f a s h i o n on t he e x t e r n a l l e g s .

L e t us now r e d u c e the n u m b e r of s i d e s of a g i v e n window. Th~s i s done by the t r m n g u l a t l o n of f ig . 3a, w h i c h m e a n s t h a t we h a v e a r r a n g e d

Br

(3a) (3b) Fig. 3 a) Tr iangula t ion of a window.

b) The cor responding Feynm an- hke diagram.

t he e x t e r n a l l i n e s c o r r e s p o n d i n g to t he s i d e s of t he window in a m u l t l p e r i p h e r a l t r e e - c o n f i g u r a - t ion (fig. 3b). W e c a r r y out thxs p r o c e d u r e f o r a l l t h e w i n d o w s of t he s u r f a c e , and t h u s a r e l e f t w i th the s a m e s u r f a c e , w~th t he s a m e n u m b e r of w i n d o w s , e a c h of t h e m h a v i n g now only one rode (/39 m f ig . 3a).

W e s h a l l now r e d u c e the n u m b e r of o n e - r e d e d w i n d o w s . We b r i n g two of t h e m t o g e t h e r and p e r - f o r m the t r i a n g u l a t m n of f ig . 4a. L i n e s y l and

J,) ,.

(4a) (4b)

fig. 4 a) Triangulation of two one-sided windows. b) The corresponding Feynman-hke dlagram

2 correspond elther to external lines or to hnes a n a l o g o u s to ~ (fig. l b ) o r / 3 9 (fig" 3b). T h e two h n e s 7 3 a n d y 4 ( f i g . 4b) a r e t w l s t e d t . We e n - c o u n t e r h e r e t he s e c o n d t ype of i r r e d u c i b l e g r a p h , a s e l f - e n e r g y c h a g r a m wi th t w i s t e d h n e s . A f t e r t h i s t m a n g u l a t l o n , t he two w i n d o w s h a v e b e e n a b s o r b e d in to a new l a r g e r o n e - s i d e d w i n - dow.

We r e p e a t t h i s p r o c e s s by a b s o r b i n g t h i s new window wi th a t h i r d one . If t he w i n d o w s a r e on a s p h e r e , they can a l l be o b s e r b e d , a n d t he t r i - a n g u l a h o n i s c o m p l e t e d . It g i v e s a c h a i n of s e l f - e n e r g y g r a p h s i n s e r t e d b e t w e e n m u l t l - p e m p h e r a l t r e e s o r on e x t e r n a l l e g s , p l u s p l a n a r t a d p o l e s w h i c h a r e h o o k e d m a r b i t r a r y p l a c e s on t h e t r e e s .

We reca l l that to each t r iangle of fig. 2a, 3a, 4a, 5a, 6a cor responds a ver tex in fig. 2b, 3b, 4b, 5b, 6b, respect ively . For the re la t ion between a twist and the or ienta t ion of a t r iangle , see ref. 2.

If t he s u r f a c e i s no t a s p h e r e , t h i s p r o c e s s of t r i a n g u l a t i o n s t o p s when we a r e l e f t w i th on ly one window. So, we now c o n s i d e r t he two o t h e r p o s - rub le t y p e s of s u r f a c e s , i . e . , a c o n n e c t e d s u m of t o m wi th one o n e - r e d e d wmdov¢ o r a c o n n e c t e d s u m of p r o j e c t i v e p l a n e s wi th one o n e - s i d e d w i n - dow. In the h r s t c a s e we u s e the c a n o n i c a l p o l y - gon r e p r e s e n t a h o n of t he c o n n e c t e d s u m of n t o m wi th one window w [3].

4)1~ 1(~ ; 1~ l l w 0 2 ~ 2 (~21~21 . . . . . ~nt2nC~;l~n-1 A tmangulatlon of the surface for the par t icu lar c a s e n = 3 i s s h o w n in f ig . 5a. T h e F e y n m a n - h k e

(5a) (5b) Fig. 5 a) Triangulat ion of a sum of tom with one-s ided

window. b) The corresponding Feynman-l ike diagram

d i a g r a m c o r r e s p o n d i n g to t h i s t r l a n g u l a h o n i s s h o w n m f ig . 5b. A s m u l a r t r i a n g u l a t i o n e x i s t s f o r a l l n. T h i s c a n o n i c a l t r i a n g u l a t i o n g i v e s a F e y n m a n - h k e d i a g r a m w h i c h i s an i t e r a t i o n of o u r t h i r d one p a r t i c l e i r r e d u c i b l e g r a p h , a n o n - p l a n a r o r i e n t a b l e t a d p o l e wi th two loops .

T h e r e m a i n i n g t ype of s u r f a c e ~s a s u m of m p r o j e c t i v e p l a n e s wi th one o n e - s i d e d window w ' . T h e c a n o m c a l po lygon r e p r e s e n t a h o n of t h i s s u r - f a c e i s

X1X1 w' X2X 2 X3X 3 . . . . . XmX m.

T h e c a s e rn = 4 i s d r a w n m h g . 6a, t o g e t h e r w i th

X ~ 4 X3 X4

X~_~X~ W'

(6a~ (6b) Fig. 6 a) Triangulat ion of a sum of project ive planes

with one one-s ided window. b) The cor responding Feynman- l ike d iagram.

a t r i a n g u l a t i o n of t he s u r f a c e . T h i s t m a n g u l a t l o n i s e a s i l y g e n e r a h z e d to a l l m. I t g i v e s a F e y n - m a n - l i k e c h a g r a m (fig. 6b), w h i c h i s an i t e r a t i o n of the f o u r t h and l a s t one p a r t i c l e i r r e d u c i b l e

593

Volume 31B. number 9 DHYSICS L E T T E R S 27April 1970

graph, the non-planar non-or len tab le one- loop tadpole.

We have now proved the following theorem: any dual dmgram can be reduced to the inser t ion on a t r e e of the four p r imi t i ve one -pa r t i c l e i r - reducible graphs of fig. 1. The tadpoles can be moved to any place on the t r ee , and there may be any number of them. Non-planar s e l f - ene rgy graphs a r e locked between t r e e s or on ex te rna l hnes , and there a r e at most L - 1 of them if t he re a re L externa l legs . The two tadpoles m fig. l c and ld never occur together in this reductmn: ~f the dmgram is non-or len tab le , only lc occurs , ~f it is or lentable , only ld occurs . The ~dentlty of fig. 7b shows that a F e y n m a n - h k e d m g r a m

(7a)

(Tb) F~g. 7. Two identities between Feynman-like diagrams.

containing tadpoles l c and ld can in fact be drawn by using only the tadpole l c . The re is a one - to - one cor respondence between these reduced graphs and the set of duahty d i ag rams as defined m [2], so that no two of these reduced graphs a r e r e - ducible to each other by a duahty t rans format ion .

This reduct ion of F e y n m a n - h k e d iag rams to a canomcal fo rm is vahd for any dual mode l s and has two impor tant appl ica tmns.

1) The r eno rmahzabHl ty of a dua l - r e sonance model reduces to the study of the renormal izab~-

It ~s evident that, due to its topological nature, thls theorem will remaln valid in the presence of inter- nal quantum numbers. The irreducible operators that appear in fig. 1 will however carry additional labels referrlng to the quantum numbers of the one particle states of the model.

lity of the four i r r educ ib l e ope ra to r s c o r r e s p o n d - mg to the graphs in fig. l a -d , and of the i r i t e r a - t ion. Notice that the non-planar s e l f - e n e r g y graph m hg. l a need not be i t e ra t ed if the i t e r a - tion runs over planar and non-planar tadpoles . On the other hand, thanks to the identify of hg . 7a, the i t e ra t ion of planar tadpoles can be turned ~nto the ~terat~on of s e l f - ene rgy graphs, if the re is at l eas t one of them. It is r e m a r k a b l e that the r e n o r m a h z a t m n of dua l - r e sonance models can be exp re s sed only as a mass r eno rmahza t lon .

In the pa r t i cu la r case of the gene ra l i zed Venezlano model, we have a l ready found [4,5] that the planar tadpole of fig. lb and the non- or len tab le tadpole of fig. lc can be r e n o r m a l i z e d by using elhpt~c functions. However , we have found that graph l a exhibits pecul ia r branch points due to the fact that i ts d ive rgence depends on its momentum. It is worth noting that, if we include in terna l quantum numbers or draw quark hnes , this graph occurs only in channels w~th vacuum quantum numbers . If the P o m e r a n - chuk ~s to appear in the model, it is c l ea r that new s ingu la r i t i e s would be expected to occur in this graph, but it is not c l ea r that the ones we have found a re physical ly acceptable .

2) Another apphcat ion of the reduct ion of dual d m g r a m s ~s the poss lb lh ty of a fo rma l s u m m a - tion of the whole per turbat ion s e r i e s . In ref . 5, we show that the set of one-loop d m g r a m s sa t l s - h e s pe r tu rba t ive uni tar l ty in second o rde r if each i r r educ ib l e d iag ram is counted once. If the same counting p rob lem can be solved for m o r e comphca t ed d i ag rams , the pe r tu rbanon s e r i e s could be fo rmal ly summed.

Rcfe~'ences 1. K. Kikkawa, B. Sakita, M. A. Vlrasoro, Phys. Rev.

184 (1969) 1701. 2. K. K1kkawa. S. Klein, B. Saklta, M. A. Virasoro,

Wmconsin Preprint C00-268. 3. W.S. Massey, Algebralc topology, (Harcourt, Brace

and World, Inc., New York) 1967. 4. A. Neveu and J. Scherk, Phys. Rev., to be publlshed

T. H. Burnett, D. J. Gross, A. Neveu, J. Scherk and J. H. Schwarz, Princeton preprint.

5. D.J. Gross. A. Neveu, J. Scherk and J. H. Schwarz. to be pubhshed.

594