the positive-parity states in17o and17f

14
IL N UOVO CIMENTO VOL. 60 A, N. 1 1 Novembrc 1980 The Positive-Parity States in 170 and 1717. W. H. CHU~'G (*) and Y. ~I. StIIN Saskatchewan Accelerator I, aborato~'y, University o/ Saskatchewan, Saskatoon, Canada S7N OWO (riccvuto 1'11 Agosto 1980) Summary. -- The intermediate-coupling unified model has been applied to the (~ closed shell plus one ~ nuclei, ~0 and 17F. The energy levels, the electromagnetic-transition rates and the static moments have been calculated and compared with the experimental results. A satisfactory agreement with the experimental data is obtained. 1. - Introduction. According to the simple shell model one would expect positive-parity spectra of the ld~, 2si and ld~ single-particle states in 170 and 17F. The spectroscopy of 170 and 17F looks fine in that the positive-parity spins of the three lowest states are just what is expected from the simple shell model, i.e. these levels presumably correspond in the simple picture to placing an odd extra nucleon outside the 160 core in the ld:, 2s and ld~ levels of the 2s-ld major shell. ttowever~ the whole observed spectra (1) show many levels beyond the second- excited states as well as many negative levels between the normal-parity states. The group of three negative-parity levels, ~- and ~-, between 3 and 5 MeV of excitation would be easily produced by breaking up the 1~O core. The ob- served E2 transition rates (~.3) from the first-excited to the ground state are also obviously too large to fit the simple shell model picture. (*) Present address: Department of Physics, Busan National University, Busan, South Korea. (1) F. AJZI~NBERG-SELoVE: ~Vr Phys. A, 281, 1 (1977). (2) J. A. B~C~E~ and D. H. WILKInSOn: Phys. l~ev. Sect. B, 134, 1200 (1964). (3) S.J. SKORKA, J. H]~RT~L and T. W. R~Tz-ScHMII)T: ~Vq~cl. Data A , 2, 347 (1966). 27

Upload: w-h-chung

Post on 21-Aug-2016

216 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The positive-parity states in17O and17F

IL N UOVO CIMENTO VOL. 60 A, N. 1 1 Novembrc 1980

The Positive-Parity States in 170 and 1717.

W. H. CHU~'G (*) and Y. ~I. StIIN

Saskatchewan Accelerator I, aborato~'y, University o/ Saskatchewan, Saskatoon, Canada S7N OWO

(riccvuto 1'11 Agosto 1980)

S u m m a r y . - - The intermediate-coupling unified model has been applied to the (~ closed shell plus one ~ nuclei, ~ 0 and 17F. The energy levels, the electromagnetic-transition rates and the static moments have been calculated and compared with the experimental results. A satisfactory agreement with the experimental data is obtained.

1 . - I n t r o d u c t i o n .

According to the simple shell model one would expect pos i t ive-par i ty spectra of the ld~, 2si and ld~ single-particle s ta tes in 170 and 17F. The spectroscopy of 170 and 17F looks fine in t ha t the pos i t ive-par i ty spins of the three lowest s ta tes are jus t wha t is expected f rom the simple shell model, i.e. these levels p r e sumab ly correspond in the simple picture to placing an odd ex t ra nucleon outside the 160 core in the l d : , 2s�89 and ld~ levels of the 2s-ld major shell. t towever~ the whole observed spectra (1) show m a n y levels beyond the second- excited s ta tes as well as m a n y negat ive levels be tween the normal -pa r i ty states. The group of three nega t ive-par i ty levels, �89 ~- and ~-, be tween 3 and 5 MeV of exci ta t ion would be easily produced b y breaking up the 1~O core. The ob- served E2 t rans i t ion ra tes (~.3) f rom the first-excited to the ground s ta te are also obviously too large to fit the simple shell model picture.

(*) Present address: Department of Physics, Busan National University, Busan, South Korea. (1) F. AJZI~NBERG-SELoVE: ~Vr Phys. A, 281, 1 (1977). (2) J. A. B~C~E~ and D. H. WILKInSOn: Phys. l~ev. Sect. B, 134, 1200 (1964). (3) S . J . SKORKA, J. H]~RT~L and T. W. R~Tz-ScHMII)T: ~Vq~cl. Data A, 2, 347 (1966).

27

Page 2: The positive-parity states in17O and17F

2 8 W. II . C H U N G a n d Y. M. S H I N

To underst .md the bulk of the low-lying states we may need to take into

account multipartic]e-multihole configurations and core deformations. Recently, several theoretical calculations (4-s) have been performed on the ~( closed shell plus one )) nuclei, ~70 and ~TF. B~ow~ and GREE.~ ~ (4) have described the low-

lying positive-parity spectra of ~70 and ~TF by mixing the usual states in the spherical-shell model with deformed states obtained by exciting particles out

of a deformed core, i.e. 3p-2h and 5p-4h excitations in the Nilsson diagram. In this work they have tried to reproduce several experimentally observed �89 and 23+ states in 170 and 17F above 5 MeV of excitation which are not pro-

duced by the spherical-shell model. A weak-coupling calculation on ~70 has been reported by BElC~STEIN (5), using the low-lying multiparticle-multiho]c

states up to 5p-4h states. BERNSTEIN has interpreted some of the low-lying states in 170 as mixtures of spherical-shell model configurations and deformed multi-

particle-multiho]e configurations in a Weak-coupling approximation. ENGELAb~D and ELLIS (6) have calculated gamma-transi t ions and spectroscopic factors

for the low-lying states of ~70 and ~TF by using a weak-coupling model ap-

proach. In this work they have considered excitations from the l p to the

2s-ld shell, assuming tha t excitations involving the shells ]s and 1]-2p are of minor importance. There also exist a few calculations (7,s) on the negative- par i ty stas in 170 and ~TF.

In this theoretical situation it may be interesting to investigate the low- lying states in ~70 and ~TF based on the unified model. I n the present work

we have calculated level properties of the low-lying posit ive-parity states in ~70 and ~F within the framework of the intermediate-coupling approach in the unified model, assuming tha t the last odd nucleon is coupled to a quadru-

pole vibrational core. To our knowledge, there exists as yet no such a t rea tment

dealing with positive-parity states in these nuclei. The basic formulae used ~re briefly described in sect. 2. The calculated

results are given in sect. 3 and are compared with the recent experimental

results. Finally, conclusions and discussions are presented in sect. 4.

2 . - T h e m o d e l .

The intermediate-coupling unified model was first introduced by Bomr and MOTT~LSO~ (~) and further developed by C ~ O U D ~ Y (~o). Since detailed

(4) G. E. BgOWN and A. M. GRn~N: .Yucl. Phys., 75, 401 (1966). (5) A. ~-~. BERNSTEIN: Ann. Phys. (N. Y.), 69, 19 (1972). (~) T. ENGELAND and P. J. ELLIS: -Natl. Phys. A, 181, 368 (1972). (7) S.T. HSIEH, K. T. KN6PFLt:, G. MAIgL~ and G. J. WAGing: ~Yucl. Phys. A, 243, 380 (1975). (8) P. J. ELLIS and T. EN~ELAND: Nucl. Phys. A, 144, 161 (1970). (9) A. BOtI~ and B. R. MOTT~LSON : ,~lat. tZys. Medd. Dan. Vid. Selsk., 27, No. 16 (1953).

Page 3: The positive-parity states in17O and17F

T I t E P O S I T I V E - P A R I T Y S T A T E S I N 1 7 0 A N D *7F 29

descript ions of the intermediate-coupl ing unified model have been repor ted elsewhere (~-n), we shall only outline the model and give the basic formulae

used in our calculations. The to ta l Hami l ton ian for the core-particle sys tem is given as

(1) H = H -b Hp -[- Hi= t ,

where H is the core Hami l ton ian , Hp the particle Hami l ton ian and Hi= t the core-part icle interact ion t Iami] ton ian :

(2) Htn ~ = - - ~ t / (o (~) ~ ~ (b. @ (--)'b+_,) Y~,(0, 99), /z

where b, and b~, are the annihi lat ion and creation operators, ~r is the spherical- ha rmonic opera tor and ~ is the dimensionless coupling pa rame te r :

(3) ~ = K ,

where the coupling constant K ~ <k(r)> is t aken to be 40 MeV and C is the nuclear deformabil i ty .

The basis eigenvectors of the coupled sys tem are denoted b y

[J; 2r IM> = ~, (jRmm'ljRIM) Ijm>INR' m'> , ~rt,m'

where ( jRmm'I jRIM) axe the Clebseh-Gordan coefficients, j the single-particle angula r m o m e n t u m , N the num ber of phonons of the core angular mo- m e n t u m R and I the to ta l angular m o m e n t u m of the nucleus.

Each energy mat r ix of spin -r I is diagonalized according to

(5) HIE; IM> = EIE; IM> ,

where E is the energy eigenvalue associated with H.

(6) ]E; IM> = ~ A~,w(E)Ij ; N R ; IM> i ,NR

is the wave funct ion represent.ing the s tate of the nucleus and A~,sa(E)* are the expansion coefficients of the eigenvector which are obta ined b y diagonalizing the to ta l Hami l ton ian H.

(10) 1). C. CIIOUDtIUI~Y: Mat. Fys. Medd. Dan. Vid. Selsk., 28, No. 4 (1954). (11) W. tI. (]Hu~r~: Z. Phys., 266, 1 (1974).

Page 4: The positive-parity states in17O and17F

30 w . H . C~tUNG and Y. M. SHIN

The wave f u n c t i o n s o b t a i n e d b y d i agonu l i z ing t h e t o t a l H a m i l t o n i a n a r e

used t o ca l cu l a t e t h e r e d u c e d t r a n s i t i o n p r o b a b i l i t i e s a n d n u c l e a r m o m e n t s .

3 . - R e s u l t s .

3"1. E n e r g y levels. - I n t he p r e s e n t work , i t is a s s u n l e d t h a t t h e l a s t o d d

nuc l eons of 170 a n d 17F h a v e t h e ld+, 2s�89 a n d ld+ s t a t e s a v a i l a b l e to t h e m

a n d a re c o u p l e d to t h e q u a d r u p o l e su r face v i b r a t i o n s (up to N--~ 3) of t h e

d o u b l y even core, 160, of t h e nucle i . The e f fec t ive s p a c i n g p a r a l n e t e r s ,

e 1 = s�89 a n d e2- - - -d~--d~, t h e p h o n o n e n e r g y hw a n d t h e coup l ing p ~ r a -

m e t e r ~, wh ich e n t e r t h e ca l cu la t ions , a re c ons ide r e d to be a d j u s t a b l e p a r a -

me t e r s . T h e b e s t fi t was d e t e r m i n e d b y c o m p a r i s o n w i t h a l l t h e a v a i l a b l e

e x p e r i m e n t a l d a t a ( ' ) , as shown in t a b l e I . The n u m b e r of p h o n o n s is a s s u m e d

Lu

- - ' 0

Fig. 1. Fig. 2.

Fig. 1. - Plot of E as a function of the coupling parameter ~ for 170.

Fig. 2. - Plot of E as a function of the coupling parameter ~ for 1T.

Page 5: The positive-parity states in17O and17F

TIIE P O S I T I V E - P A R I T Y STATES IN 170 AND 17F

TABLE I. -- Parameters used iu the calculations.

31

Nucleus e 1 = s�89 d$ (MeV) e 2 = d~ -- d~ (MeV) he) (MeV) $

170 2.10 6.20 6.20 1.250

17F 1.50 5.10 6.10 1.200

to be N < 3 . The total Hamil tonian is diagonalized for the final values of el, e2 ~ < I < - z �9 Table I I provides a tabulat ion of the computed and $ for each I , 1 1

and experimental energy levels in 170 and 17F. The energy eigenvMues are

plot ted as a function of the coupling parameter in fig. 1 and 2 and the predicted energy spectra are compared with the experimental data (~) and with other

theoretical results (~,5) in fig. 3 and 4.

9.0

MeV

8.0

7.0

6.0

5.0

4.0

3.0

2.0

1.0

3 2 7

2 - - 1 3 3 2 2

- - ' ~ - L 2

5 1 7 2

_ _ 2 2 5 2 "...3_ - - . $ 3 2 1

2 2

1 2 7 2 - - 2 2 3 2 5 / 9 3

2 2 2

3 3 2 - - ~ L . 5_ 3

2 3 2

3 2 2

1 1 1 2 2 2 1

--f.

5 5 5 5 2 2 2 2

exper imen t pres en t Bern stein B r o w n

Fig. 3. - Compar ison of t he p r ed i c t ed pos i t ive -pa r i ty levels in 170 wi th the exper i - m en t a l spec t rum, along w i t h o the r predic t ions .

Page 6: The positive-parity states in17O and17F

32 w.H. CHU~-G and Y. ~. SH~N

J

10.0

MeV

9.0

8.0

7.0 L

6.0

5.0

4.0

3

2 7

5 - - 2 1

2 3

3 2 - - 2

- - 1

3

2

3 2

3 2 1 2--3

i ~ - 2 2 5

- - ' 7 )- 2 9 2

3 2

1

2 3

i ( -s 2

3 2

30 2.0

1 .0~_

0

1 1 1 2 2 2 5 5 5 2 2 2

exper/ment present 1grown

Fig. 4. - Comparison of the predicted positive-parity levels in I~F with the experi- mental spectrum, along with other predictions.

As can be seen in fig. 3 and 4, the agreement between the experimental and predicted energies in both 170 and 17F is relatively good compared to other theo- retical calculations. It is noted in the figures that the first- and second-excited states observed experimentally in 170 and 17F are well predicted theoretically, although the predicted second-excited states are located at slightly lower posi- tions. In the higher region in 170, the predicted levels with spins 23 at 7.035 MeV,

at 7.142 MeV, �89 at 7.430 MeV and 2 a at 8.272 3leV would correspond to the

Page 7: The positive-parity states in17O and17F

Ttt]~ POSITIVE-PARITY STATES IN 170 AND 17F

TABLE I I . - E~ergy levels in 1~0 and I~F.

3 3

5 1_ ~ 9 7 2 2 2 2 2

Experi- Calcu- Experi- Calcu- Experi- Calcu- Experi- Calcu- Experi- Calcu- mental l~ted mental luted menta l luted mental luted mental luted

17 O

0 0 0.871 0.871 5.086 4.620 5.721 6.160

6.499 6.357 5.870 8.474

7.383 7.142 7.956 7.430 7.202 7.035

8.410 8.352 8.070 8.272

8.898

0 0.495 0.495 5.103 3.997 5.640 6.078

6.355 5.682 5.817 9.91 11.948 8.416 9.520

6.686 6.556 6.774 6.737

8.075 7.750 7.116 7.356

8.750 7.479 7.539

8.760

e x p e r i m e n t a l l y o b s e r v e d levels 7.202 MeV (~), 7.383 MeV (25), 7.956 5IeV (�89 a n d

8.070 MeV (~), r e s p e c t i v e l y . The s i t uu t i on in 17F is s imi la r , b u t t h e o rde r of

t h e leve ls is s o m e w h a t c h a n g e d . N e a r 5.8 MeV of e x c i t a t i o n , howeve r , t h e

e x p e r i m e n t a l l y o b s e r v e d 1 a n d ~ levels in b o t h nuc le i a re n o t p r e d i c t e d in t h e

t h e o r y , whi le t h e y a re r e p r o d u c e d b y B]~ow~ a n d GREE~ (4).

3"2. Elec t romagne t i c - t rans i t i on rates and nuclear m o m en t s . - The r e d u c e d

t r a n s i t i o n p r o b a b i l i t i e s , B ( E 2 ) a n d B ( M 1 ) , were c a l c u l a t e d b y u s i n g t h e w a v e

f u n c t i o n s o b t a i n e d a b o v e b y d i a g o n a l i z i n g t h e e n e r g y m a t r i c e s . The ca lcula-

t i o n s were p e r f o r m e d w i t h t h e f r e e -pa r t i c l e gs f ac to r , i.e. gs ~- 5.5856 for p r o t o n

{17F) a n d g~ z - 3.8263 for n e u t r o n (170), a n d a n ef fec t ive cha rge for t h e

o d d nuc l eon in each nuc leus , i .e. e: u ~ - e ~ - 0.5 e, as u sed for a p o l a r i z a t i o n

cha rge in 170 a n d 17F b y ENGELAS~D a n d ELLIS (6). Va lues of o t h e r p a r a m e t e r s

u sed in t he ca l cu l a t i ons a r e g~ ~ 1 a n d gR ~ Z / A ~ 0.5294 for 17F; g~ ~ 0.0

a n d g , ---- Z / A ~- 0.4706 for ~70; K ---- 40 MeV a n d R0 --~ 1 . 1 8 A t f m .

T h e ca l cu ln t ed r e su l t s for t h e t r a n s i t i o n r a t e s a r e c o m p a r e d w i th a v a i l a b l e

e x p e r i m e n t a l d a t a in t a b l e I I I . U n f o r t u n a t e l y , a t p r e s e n t t h e r e is n o t enough

e x p e r i m e n t a l d n t a a v a i l a b l e on r e d u c e d t r a n s i t i o n p r o b a b i l i t i e s of 170 ~nd 17F

w h i c h can be c o m p a r e d w i t h t h e t h e o r e t i c a l va lues . I t o w e v e r , t a b l e I I I shows

t h a t t h e p r e d i c t e d B(E2) v a l u e of 12 .9e2 fm ~ for t h e �89 g.s. iu ~70 is up-

3 - II Nuovo Cirne~to A.

Page 8: The positive-parity states in17O and17F

~ W . H . CIIUNC- a n d Y. M. SHIN

T a b l c I I I . - Reduced transition probabilities in ~70 and I~F.

T r a n s i t i o n s B(E2) (e ~ fm 4) B ( M 1 ) (n.m.) ~

E xpe r i - Calcu- Expe r i - Calcu- m e n t a l (a) l a t e d m e n t a l l a t e d

17 0

�89 g.s. 6.5 12.9 0.0

~1--~ g.s. 3.25 1.68 -+�89 7.34 0.013

~ - + g.s. 2.59 0 .00004 --~ �89 2.69 0.059

~a--~ g,s. 0.014 0.014 -+ �89 7.01 0.0

�89 g.s. 2.93 0.0

~3--~ g.s. 0.29 0.48 -~ �89 1.39 0.022

17 F

�89 g.s. 65 13.5 0.0

2al--~ g.s. 2.99 2.64 --~ �89 7.50 0.006 5

~ - -~ g.s. 3.12 0.011 --~ �89 3.06 0.047

TABLE IV. - :~lixing ,ratios and lifetimes in JTO and 17F.

Mixing r a t i o s L i fe t imes

T r a n s i t i o n s E x p e r i m e n t a l Ca lcu la ted Sta tes E x p e r i m e n t a l ( 1 ) Ca lcu la ted

170 xT0

~ l -+g . s . - - 0.054 �89 (258.6 4- 2.6) ps 126 lOS --~�89 + 0.540 31 0.34 fs

~ - -~ g.s. -~- 14.7 22a 0.018 ps --~�89 - - 0.35 ~a 0.011 ps

.~.~--~ g.s.' - - 0.059 �89 0 .012ps

~a--~g.s. - - 0 . 0 5 4 2 3 3 0.21 fs --~ 11 ~- 0.49

17 F 17 F

3 .~x-~g.s. + 0.035 �89 (412 4- 9) ps 2030 p s -+�89 - - 0.99 eal 0.34 fs

~2-~g.s . -- 0.94 ~2 8.83 fs --+ �89 -+- 0.42

Page 9: The positive-parity states in17O and17F

' f i fe PO,qlTIWE-I'ARITY STATE8 IN :70 AND JTb~ 35

prox ima te ly twice the observed value, 6.5e~-fm% while the predicted B(E2), 13.5 e-~ fro% for the same t ransi t ion in '7F is approxima.tely five t imes smaller t han the ( .xperimental value, 65 c-'fm*.

The calculated lifetimes and mixing ratios for ~"O and '7F are compared with av%ilable exper imenta l da ta (') in table IV. Unfor tunate ly , there is not enough exper imenta l da ta avai lable on mixing ratios and lifetimes of ~70 and 'VF to be compared with the predicted values. I lowevcr , it is also noted, in table IV, theft the observed l ifetime, (258.6 :t: 2.6) ps, for the �89 s tate in '70 is app rox ima te ly twice the predicted value, 126 ps, while the predicted life- t ime, 2030 ps, for the same s ta te in 'TF is approx imate ly five t imes larger than the exper imenta l value, (412 _-:' 9)ps.

TAm,~- V. - ,Vuclear ,re,amen, is in ~70 and ~71,~.

Nuclei Magnetic-dipole moment/~g.,. (n.,n.)

Electric-quadrupole moment Qg.,. (b)

Experimental (~) Calculated Experimental Calculated

170 -- 1 .89379 ~ 0 . 0 0 0 0 9 - - 1.95 - - 0 . 0 2 5 7 8 ( l e ) - - 0 . 0 4 4

I~F +4.7223 -]=0.0012 +4.50 --- 0.10 + 0.02 ( l a ) --0.045

The calculated and exper imenta l nuclear moment s for ~K) and ~TiF are com- pared with each other in table V. I t is seen fl 'om the table t h a t the calculated magnet ic-dipole m om en t s and electr ic-quadrupole momen t s for the ground s tates of ~vO and ~ F are in good agreement with the available exper- imenta l da ta (~.~,~3).

4 . - C o n c l u s i o n s a n d d i s c u s s i o n s .

We m a y conclude f rom the preceding section t h a t the in termediate-coupl ing v ibra t ional model provides a reasonably good description of the proper t ies of the low-lying states in ~70 and ~TF.

As can be seen in the energy level d iagrams (fig. 3 and 4), agreement exists in general between theory and exper iment . For example , the predicted �89 anti ~ levels in both nuehq are in good agreement with the exper imenta l data. In ~TO, the exper imenta l ly observed levels 7.202 MeV a (~), 7.383 MeV (~), 7.956 MeV (�89 and 8.070 MeV (~) wouhl be predicted theoretically a t proper energy locations. However , there are certain discrepancies between theory and exper iment . For example , in the middle region near 6 MeV of exci tat ion three higher spins,

(12) It. F. SOnAEH.m I I I and R. A. ]~LEMN: Phys..Rev., 1111, 137 (1969). (13) I ' . ~IINAMISONO, Y. NAJIRI, A. ~IIZO:BUCItl a n d K . SUGIMOTO: Nucl . Phys. A, 236, 416 (1974).

Page 10: The positive-parity states in17O and17F

36 w . H . CHUNG and v. )~. StIIN

TABLE VI. - Expansion coefficients corresponding to states [E (MeV); I~> of 170.

Basi~ [o;6> IO.871;~> 15.086;~> [7.202;6> 17.383;6> [7.956;�89 [8.070;~) states [NR; j> 100; 6> 0.9319 --0.2222

12;6> --0.2714 0.4731 0.4436 --0.7879 0.0046 0.7594 --0.3412

20;6> 0.0473 0.1859

22; ~> 0.0211 --0.1055 --0.1103 --0.0257 0.3421 --0.3427 0.2451

24;~> 0.0523 --0.2602 --0.2196 0.2885 0,3331

30;6> --0.0052 --0.0447

32;~> --0.0100 0.0251 0.0197 --0.0076 --0.0410 0.1021 --0.0249

33; ~> --0.0002 --0.0035 --0.0150 --0.0549 0.0750 --0.0287 0.0662

34; 6> --0.0082 0.0594 0.0101 --0.0549 --0.0766

36; ~>

00;6> 0.6484 0.0548 0.6950

12;~> --0.0693 0.1898 --0.1786 0.0028 0.0203 --0.0822 --0.1985

20; ~> 0.0806 0.0058 --0.0595

22; 6> 0.0131 --0.0415 0.0472 0.1591 0.0839 --0.0443 --0.0639

24; ~> 0.0396 0.1950

30; ~} --0.0143 --0.0021 0.0188

32;6> --0.0028 0.0140 --0.0168 0.0028 --0.0101 0.0452 0.0107

33;~> --0.0010 0.0009 0.0387 0.0290 --0.0109

34; ~> --0.0088 --0.0370

36;~>

I00;�89 0.8474 --0.4793

]12;�89 0.2080 --0.4946 --0.5237 0.8040 0.4062

]20;�89 0.0904 0.2241

[22;~> --0.0470 0.1057 --0.1466 --0.0039 --0.0215

124; ~>

]30;�89 --0.0156 --0.0618

[32;�89 0.0110 --0.0441 --0.0403 0.0965 0.0710

133; �89 0.0017 0.0000

134; �89

[36; �89

Page 11: The positive-parity states in17O and17F

T I I E P O S I T I V E - P A R I T Y S T A T E S I N 170 A N D 17F 37

TABLE VII . - Expansio~ coej/icie~ts corres'pondi~g to states ]E (MeV); I.n> o/ 17F.

Basic ]0 ;~) ]0.495;�89 ]5.103;-~> ]6.556;�89 16.774;~> 17.356;~> 18.416;~> states I~v~;j>

[00; ~-> 0.9334

[12; ~> - -0 .2614 0.4347 0.3620 0.7861 0.7644 - -0 .4648 0.1065

[20; -}> 0.0452

122; ~} 0.0220 - -0 .0915 - -0 .0868 - -0 .3300 0.0377 0.2244 0.2610]

]24; ~> 0.0499 - -0 .2216 0.2180 0.3176 0.2018

]30; -~> - -o .oo5o

132; ~> - -0 .0092 o.o214 o.0156 0.0987 0.0074 - -0 .0256 - -o .o146

I33; ~) o.ooo0 - -0 .0026 - -o .0111 - -0 .0255 0.0554 0.0489 0.0369

134; ~> - -0 .0078 0.0475 - -0 .0088 - -0 .0751 - -0 .0934

]36; ..~> - - 0.2208

]00; ~> 0.7270 0.0386 0.6251

112; ~> - -0 .0726 0.1953 - -0 .1920 --0 .0711 - -0 .0360 - -0 .1643 0.7161

]20; 23-> 0.0742 - -0 .0070 - -0 .0734

122; .23-> 0.0131 - -0 .0403 0.0482 - -0 .0496 - -0 .1675 - -0 .0564 - -0 .0589

]24; ~-) 0.0411 - -0 .2063

130; ~> - -0 .0123 0.0028 0.0198

]32; ~> - -0 .0028 0.0127 - -0 .0148 0.0473 0.0034 0.0146 0.0676

]33; ~) - -0 .0008 0.0015 --0 .0401 - -0 .0060 - -0 .0221

134; ~> --o.oo87 0.0292

[36; ~>

00; -~> 0.8690 - - 0.4408

~12; ~-) 0.2141 - -0 .4757 0.5529 0.4349

20; �89 0.0829 0.2349

22;�89 - -0 .0456 0.0917 0.1536 - -0 .0588

24; �89 - -0 .4980

30; �89 - -0 .0135 - -0 .0597

32; ~> 0.0107 - -0 .0371 0.0410 0.0667

33; �89 0.0015 - -0 .0474

134; �89 0.0756

[36; �89

Page 12: The positive-parity states in17O and17F

~ ~V. ] [ . CIIU~NG a n d Y. ~I. SHI:N

~ ~ a n d -~-, a p p e a r in t h e t h e o r e t i c a l s p e c t r u m which a r e no t o b s e r v e d expe r -

i m e n t a l l y .

The e l e c t r o m a g n e t i c p r o p e r t i e s of t h e l ow- ly ing s t a t e s in 370 a n d ~TF whose

e x c i t a t i o n energ ies a re wel l r e p r o d u c e d b y t h e m o d e l h a v e been c a l c u l a t e d

in t h i s w o r k a n d c o m p a r e d w i t h e x p e r i m e n t s in t a b l e s I I I - V . T h e r e is n o t

e n o u g h e x p e r i m e n t a l i n f o r m a t i o n a v a i l a b l e , a t p r e s e n t , on m i x i n g rnt ios , life-

t i m e s a n d r e d u c e d t r a n s i t i o n p r o b a b i l i t i e s for t h e l o w - l y i n g s t a t e s in ~:O a n d 'TF

for c o m p a r i s o n w i th t h e t h e o r e t i c a l p r e d i c t i ons . H o w e v e r , t h e c a l c u l a t e d

m a g n e t i c - d i p o l e m o m e n t s a n d e l e c t r i c - q u a d r u p o l e m o m e n t s for t h e g r o u n d

s t a t e s of ~70 a n d 17F ~re in good a g x e e m e n t w i t h t h e e x p e r i m e n t a l va lue s

in t a b l e V.

T h e w a v e f u n c t i o n s for s eve ra l l o w - l y i n g levels in ~70 and 17F a re l i s t ed

in t a b l e s V I a n d V I I . I n t hese t ab l e s , t h e squa re of t h e e x p a n s i o n coeff icients

of t h e b a s i c s t a t e s c o r r e s p o n d i n g to t h e h i g h e s t p h o n o n s t a t e s is n e a r l y negl i -

g ib le as c o m p a r e d to u n i t y , i n d i c a t i n g t h e v a l i d i t y of on ly i n c l u d i n g s t a t e s of

u p to t h r e e p h o n o n s in t h e p r e s e n t ca l cu la t ions .

TABLE VIII . - Values o/ C1, ~, ]or some states in, 170 a n d 17F.

1 X

0 1 2 3

J7 0

~1 0.8684 0.1217 0.0094 0.00041

�89 0.718 1 0.259 8 0.0210 0.001 1

0.420 4 0.473 3 0.099 8 0.006 6 21

0.0030 0.895 1 0.095 7 0.006 3 23

~2 0.049 37 0.646 8 0.279 9 0.023 94

• 0.229 7 0.583 4 0.169 6 0.017 11 23

~4 0.483 0 0.3214 0.1791 0.016 50

17 F

~1 0.8712 0.1194 0.0089 0.00037

�89 0.7552 0.227 1 0.0169 0,00081

0.528 5 0.394 2 0.072 9 0.004 37 21

�89 0.1943 0.6230 0.1665 0.0162

3 0.00145 0.891 3 0.1006 0.00651 ~23

0.390 8 0.432 2 0.163 3 0.013 78 ~4

-'~'1 0.000 0.524 1 0.402 9 0.072 92

Page 13: The positive-parity states in17O and17F

THE FOSITIV:E-PA]~ITY STATES IN 170 AND 17F 3~

The structure of the lowest states in 1:O and 17F is schematically shown in

table V I I I with the quantit ies defined as

ar 2 (7) c . = Z (A,,~..), j,R

which are the total weights of the ZT-phonon components in each eigenfunction

of the coupled system. As seen from table V I I I , the ~4 state in both nuclei contains 0-phonon and 1-phonon of almost equal strength. We also note tha t

the ground state I~1) has a very large particle component (87 % for both nuclei) and the first excited state I1~) contains a particle component of about 75 %, i.e. 7 2 ~ (170) and 76% (~TF) and a 1-phonon component of about 25%,

i.e. 26% (~70) and 23% (~TF). I t is also noted from table V I I I tha t beyond 3-phonons vibrat ional components are negligible in all the low-lying states of 170 and 17F.

In the vibrational model, the root-mean-square deformation (~4), fir ..... , is given by

�89 ]~<o

in terms of the intermediate-coupling parameters. The calculated values,

fl ...... = 0.34 and 0.32, for ~70 and 17F, respectively, are in the range of the experimental values (15) in this mass region, suggesting tha t the parameters used in the present calculations fall in the correc$ range.

In conclusion we believe tha t the present calculations hel l) in understanding many of the interesting features of the experimental results pertaining to the

proI)erties of the low-lying levels in ~70 and ~T.

The authors wish to thank Mr. L. CUSTEAD for assistance in using the U:NIX computer system at the Saskatchewan Accelerator Laboratory.

(14) D. M. BRINK: Prog. 5fuel. Phys. , 8, 99 (1960). (15) 1:~. C. RITTER, 1 ). H . STELSON, F . K . McGowA~ " and R. L. Ronlxso~: Phys. .Rev. , 128, 2320 (1962).

�9 R I A S S U N T 0 (*)

I1 inodello unifieato di accoppiamcnto intcrmedio ~ stato applicato ai nuclei (< dello strato chiuso pih uno ~, 170 e 17F. I livelli di energia, i valori di transizione elettromagnetica e gli impulsi statici sono stati calcolati e confrontati con i risultati sperimentali. Si ottiene un accordo soddisfacente con i dati sperimentali.

(*) Traduzio~e a cura della •edazione.

Page 14: The positive-parity states in17O and17F

40 W. H. Ct tU~) a n d Y. M. SHIN

COCTOEtHllE[ C HOdlO~HTe.rlbHOH qeTHOCTblO B 170 H 17F.

Pe3mMe (*). - - M o a e a b c rlpOMe~KyTOqHOfi CBII3btO npnMeH~eTca i~ fl~IpaM, IaMeIO/J~I/IM 3alIO.rlHeHHyIO O6OYlOqKy n.rllOC O,~HH HyKIIOH, 170 H lyE. BblqHC.rD:IIOTC~q 3Hepre'rH,aecKlae

ypOBHH, BepO~ITHOCTH 3J/eKTpOMaFHHTHblX rIepexo~IoB ]4 CTaTrt,aecKHe MOMeHTbI. I~oJ'ly-

'leI-IHble pe3y.rlbTaTbI cpaBHHBaIOTC:~ C 3KcHeplaMeHTaYibHb]MH pe3y.rIbTaTaMH. I lo .nyqaeTca

y~oBneTBOpI~TeJlbHoe coraacHe.

(*) Hepese3eno pec)amlueft.