tgc.ifas.ufl.edutgc.ifas.ufl.edu/vol7/vol7.pdfroot-knot nematodes. a study was made of fl' f2,...

32
REPORT of the T01~TO GENETICS COOPERATIVE Number 7 January, 1957 "Department of Vegetable Crops University of California Davis, California Cover design prepared by Carl Clayberg Contents Foreword . ........... . . . . . . . . . . . . . . . .. page 1 Assignment' of linkage groups . . . . .. . ... . .. . ... . . 2 Part I. Research notes . . . ... . . . . . . . . . .. . . . :3 Part II. Directory of members . . . . . .. .. . . . . . . . . 17 Part III. List of available or desired stocks . ....... . . 24 Part IV. Bibliography of papers on tomato genetics and breeding published in 1955 . ... . . . . . . . . 25 Part V. Financial statement . . . . .............. 30

Upload: others

Post on 06-Aug-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: tgc.ifas.ufl.edutgc.ifas.ufl.edu/vol7/vol7.pdfroot-knot nematodes. A study was made of Fl' F2, F3, and backcross progenies derived from the hybridization of two parental lines. One

REPORT

of the

T01~TO GENETICS COOPERATIVE

Number 7 January, 1957

"Department of Vegetable CropsUniversity of California

Davis, California

Cover design prepared byCarl Clayberg

Contents

Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 1

Assignment' of linkage groups . . . . . . . . . . . . . . . . . . . 2

Part I. Research notes . . . . . . . . . . . . . . . . . . . . :3

Part II. Directory of members . . . . . . . . . . . . . . . . . 17

Part III. List of available or desired stocks . . . . . . . . . . 24

Part IV. Bibliography of papers on tomato genetics andbreeding published in 1955 . . . . . . . . . . . . 25

Part V. Financial statement . . . . . . . . . . . . . . . . . . 30

Page 2: tgc.ifas.ufl.edutgc.ifas.ufl.edu/vol7/vol7.pdfroot-knot nematodes. A study was made of Fl' F2, F3, and backcross progenies derived from the hybridization of two parental lines. One
Page 3: tgc.ifas.ufl.edutgc.ifas.ufl.edu/vol7/vol7.pdfroot-knot nematodes. A study was made of Fl' F2, F3, and backcross progenies derived from the hybridization of two parental lines. One
Page 4: tgc.ifas.ufl.edutgc.ifas.ufl.edu/vol7/vol7.pdfroot-knot nematodes. A study was made of Fl' F2, F3, and backcross progenies derived from the hybridization of two parental lines. One

TGC Report No. 7 1957 RESEARCHNOTES 3

RESEARCH~

Tomato breeding lines receivedfrom Gilbert and McGuire of

the Hawaii Station and from

Harrison of the Texas Station

were found resistant to 4 species of root-knot nematodes. Gilbert's conclu-sion that resistance to ¥.eloido~e inco!nl:i.tais monofactoral was confirmed;

however, it has been concluded that resistance is incompletely dominant. In

addition, resistance to !1. iavanica, M. arenaria, and M. incoe1lita acr.i:t.a was found

to be controlled by the same gene. It is concluded that even though thisfactor is incompletely dominant, the level of resistance of hybrids resulting

from crosses between homozygous resistant and homozygous susceptible tomato

lines is sufficient to warrant the use of such Fl hybrids in tomato produc-tion in soils infested with one or more of these four nematode species.

Barham. W. S. and N. N. Winstead.

Inheritance of resistance to

root-knot nematodes.

A study was made of Fl' F2,

F3, and backcross progeniesderived from the hybridization

of two parental lines. One of

these lines had small, two-loculed, prolate-shaped fruits while the other hadmuch larger, many-loculed, oblate-shaped fruits. In addition, the two par-

ents introduced marker genes linked with major known fruit-size loci. It was

found that in this cross there was segregation at two such loci. Linkagestudies indicated that the two loci were probably £ and !.

The effects of segregation at what is assumed to be .2. and ! appeared tobe qualitatively very similar; it was concluded that in both cases the geno-

types determining larger fruits probably also determined a larger number of

fruit 10cu1es and a more oblate shape. Hence, in these progenies fruit size,

locule number, and shape index ( equatorial diameter jpolar diameter) all

increased together.Locule number was found to be the most satisfactory character for indi-

cating segregation at .2.and at!. Therefore it alone was measured as theindex character for more detailed investigation. A logarithmic transforma-tion of the locule number data was shown to be desirable in order to reduce

metrical bias. Segregation at ! was found to account for about 50 per cent

of the locule number variation among these progenies, while segregation at.2.accounted for about 30 per cent of such variation. The remainingvaria-tion is presumably due to minor genes. Evidence for the segregation of suchminor genes was noted.

There were no indications of epistasis involving the two major segre-gating loci, but evidence was found for epistatic interactions involving theminor genes.

Dominance at ! was considerable for few locules, while at .2.there was

almost no dominance from the arithmetic data and a little dominance for many

locules following the logarithmic transformation. Potence as calculatedfrom the non-segregatinggenerations(thetwo parents and the Fl) agreed

Bere:h.B. O. The inheritance of fruit

size differences. (summary of doctoraldissertation)

Page 5: tgc.ifas.ufl.edutgc.ifas.ufl.edu/vol7/vol7.pdfroot-knot nematodes. A study was made of Fl' F2, F3, and backcross progenies derived from the hybridization of two parental lines. One

TGCReport No. 7 1957 RESEARCH NOTES 4

closely with potence calculated only from the dominance relationships at 2and!. Average dominance of the segregating genes was calculated by twomethods. The first of these had been introduced by Fisher, Immer and Tedin(1932). From the data of the present progenies, this method resulted inhighly variable and statistically tmreliable values. The second method wassuggested by Comstock and Robinson (1952). Applied to the data of theseprogenies this method appeared to be an efficient way of estimating averagedominance. The values obtained agreed closely with analogous values calcu-lated from the dominance ratios estimated earlier for 2 and for !.

Burdick. A. B. A scheme for screening At the present time there aremutations for linkage group and at least 15 genetical andchromosome. cytological entities knocking

. around tomato genetics. Theseinclude the 6 chromosomes that Rick and Barton tied to linkage groups (1, 2,7, S, 9, and 10). Chromosomes 3 and 6 must include the }: g and ! 11J1Jragegroups. In addition, we have chromosomes 4, 5, 11 and 12 upon which no geneshave been located. The ~ and :Y: linkage groups have not yet been assignedto chromosomes. Over and above this there are numerous new mutations thathave not yet received either linkage group or chromosome assignment.

A conclusion arising out of Rick and Barton's original work indicatesthat three linkage groups, namely £, g, and ! must be assigned to only twochromosomes, 3 and 6. Neither 3 nor 6 is any good as a trisomic, but we dohave a translocation between chromosome 3 and S which could serve to identifyone of these two chromosomes. I have undertaken the crossing of an £-£-!,tester to this translocation and should have results within two years.

The accompanying table indicates a scheme which may be used tor assoc-iating mutants with specific chromosomal entities. Only two trisomies arenecessary in this scheme and these happen to be the two best trisomies fromthe point of view of transmission. There is no way at present tor testingfor chromosome 6, but this situation should be remedied as soon as the }:, gand ! situation has cleared up.

SCHEl FOR SCREENING

Chromosome 1 2 7 S 9 10 3-6 3-6 3-6 - - 4 5 11 12

Linkage Group y d wt al wd H r c a e tf

Tester 244 \It r c a-hl-jTester 253 d 1 u-H cTester 260 m eTester 273 y a1 tRick LA 309 Wom tfT(7-9) III x xT(3-8) 109 x '1 ? '1T(5-7) 110 x xT(9-12) 108 x xTriplo';'4 xTriplo-11 x

Page 6: tgc.ifas.ufl.edutgc.ifas.ufl.edu/vol7/vol7.pdfroot-knot nematodes. A study was made of Fl' F2, F3, and backcross progenies derived from the hybridization of two parental lines. One

TGCReport No. 7 1957 RESEARCHNOTES 5

Endlich. J.Mutanten.

Drei eintriebige MUtanten,ETR I, II und III, die sichphanotypisch sehr !bneln,

traten bei der Sorte "Rheinlands Ruhm" 1951 in der X2-Generation auf. AIleMutanten erwiesen sich im Nachbau nicht konstant, sondern spalteten stets innormale Pflanzen und eintriebige Typen auf.

Die Variant en sind erst ab Ende Juni baim Feldanbau von den normalenIndividuen zu unterscheiden. Ausgewachsene Mutanten erreichen eine H8he von20-40 em, sind eintriebig im \oluchs, h8chstens mit ein oder zwei winzigenSei tensprossen versehen, und zeigen verkleinerte BlAtter bzw. Fiedern. Siesind stark anthocyanhaltig und violett gef!rbt. Bis zu 2 BlUtenstande werdenausgebildet. Die sonst normalen Blftten besitzen schmale Antheren mit sehrwenig Pollen. Berei ts 3 bis 4 Wochen frtlher als normale Pflanzen sterbendiese Typen ab. Hind und wieder erscheinen auch Y~!ftiger verzweigte Mutanten,die als "intermedi!r" bezeicbnet werden. Die Manifestierung der Wuehsformhangt v8llig von der Umwelt ab. Bei der Kultur im Gew!ehshaus sind dieseTypen nicht von normalen Pflanzen zu unterscheiden, wlibrend sie 1m Feldanbauv8llig eindeutige Aufspal tungen erge ben. Untersuchungen zur Kl!rung diesesPh!nomens sind im Gange.

Die 3 lfu.tanten unterscheiden sich nicht nur morphologisch, sondern auehin ihren Erbg!ngen. Selbstungen erbraehten folgende, in Prozentzahlenangegebenen Aufspaltungen:

Spaltende eintriebige(submitted by H. Stubbe)

(Die Werte wurden von tiber 1000 Individuen je Fall gewonnen.)

Nach Kreuzungen von Mutanten mit normalen Pflanzen erschienen in denFl-Generationen bei ETR I in beiden Richtungen klare l:l-Aufspaltungen. Dieg1eichen Ergebnisse wurden in den Kombinationen Rh.R. x Mutante bei ETR IIund ETR III gefunden, w!hrend die reziproken Kreuzungen, in denen die lhtantenals Mutterpflanzen benutzt wurden, nie Samen ansetzten.

Im Fall ETR I treten neben wenigen intermedi!ren Typen nur eintriebigeund normale Pflanzen auf. l.J!hrend der Anzueht und in den Saatschalen wurclenkeine abweichenden Formen bemerkt. Bei ETR II und ETR III lassen sich durchkritische Beobachtung in den Saatt8pfen bis zu 20% KeiI:lpflanzen erkennen, dieauf der Unterseite der Kotyledonen und PrimArbl!tter einen violetten Scbimmeraufweisen. Diese Pflanzen bleiben etwas im Wachstum zurtick, veri!rben sichnaeh einigen Woehen stark violett und verharren schlie ssJi ch. in diesem Stadium.Sie sind dann noeh einige Wochen lebensf!hig, dabei k8nnen die Prim!rbl!tterleieht ergrUnen. Das Auftreten dieser nur 2 bis 3 cm hohen Zwergpflanzenh!ngt stark von !usseren Faktoren ab, denn in einigen Jahren waren die Typensehr schwer und nur bis zu 10% zu erkennen. Werden diese Keimpflanzen aufnormale Unterlagen gepfropft, so entwickeln. sie sieh v81lig normal und dieFrt1chte haben guten Samenansatz. Die Nachkommenschaften solcher zu normalentwickelten Reiser ergeben einhei tlich und deutlieh erkennbare, violett

Etr I Etr II Etr IIInorm. Pfl. Hilt. norm. Pfl. Jlfut. norm. Pfl. l.fut.

1954 47,7 52,3 33,9 66,1 30,7 69,3

1955 48,8 51,2 38,9 61,1 32,8 67,2

1956 45,4 54,6 30,1 69,9 31,1 68,9

Page 7: tgc.ifas.ufl.edutgc.ifas.ufl.edu/vol7/vol7.pdfroot-knot nematodes. A study was made of Fl' F2, F3, and backcross progenies derived from the hybridization of two parental lines. One

TGC Report No. 7 1957 RESEARCHNOTES 5

Endlich. J.Mutanten.

Spaltende eintriebige(submitted by H. Stubbe)

Drei eintriebige Mutanten,ETR I, II unci III, die sichph!notypisch sehr Ahneln,

traten bei der Sorte "Rheinlands Ruhm" 1951 in der X2-Generation auf. AileMltanten erwiesen sieb 1m Nachbau nicht konstant, sondern spalteten stets innormale Pflanzen und eintriebige Typenauf. .

Die Varianten sind erst ab Ende Juni beim Feldanbau von den normalenIndividuen zu unterscheiden. Ausgewaebsene Mutanten eITeichen eine H8he von20-40 em, sind eintrie big 1mt-luchs, h8chstens mit ein oder zwei winzigenSeitensprossen versehen, und zeigen verkleinerte BJ11tter bzy. Fiedern. Siesind stark anthocyanhaltig und Violett gef!rbt. Bis zu 2 Bltltenst!nde werdenausgebildet. Die sonst normalen Bll1ten besi tzen schmale Antheren mit sehrwenig Pollen. Barei ts 3 bis 4 Woeben frtlher als normale Pflanzen sterbendiese Typen ab. Hind und wieder erscheinen auch kr!ftiger verzyeigte lhtanten,die' als "intermedilr" bezeichnet werden. Die Manifestierung der WuchsformhAngt v8llig von der Umwelt ab. Bei der Kultur 1m Gew!chshaus sind dieseTypen nicht von normalen Pflanzen zu unterscheiden, w!brend sie 1m Feldanbauv8llig eindeutige Aufspaltungen ergeben. Untersuchungen zur Klllrung diesesPhIlnomens sind 1m Gange.

Die 3 !.futanten unterscheiden sich nicht nur morphologisch, sondern auchin ihren Erbg!ngen. Selbstungen erbrachten folgende, in Prozentzahlenangegebenen Aufspaltungen:

(Die Werte wrden von 1lber 1000 Indi viduen je Fall gewonnen.)

Nach Kreuzungen von Mutanten mit normalen Pflanzen erschienen in denFl-Generationen bei ETR I in beiden Riebtungen klare l:l-Aufspaltungen. Diegleichen Ergebnisse wurden in den Kombinationen Rh.R. x Mltante bei ETR IIunci ETR III gefunden, wlhrend die reziproken Kreuzungen, in denen die Mltantenals Mutterpflanzen benutzt wurden, nie Samen ansetzten.

1mFall ETRI treten neban wenigen intermedilren Typan nur eintriebigeunci norma1e Pflanzen auf. t.Jlhrend der Anzucht und in den Saatschalen wurdenkeine abweichenden Forman bemerkt. Bei ETR II und ETR III lassen sich durchkri tische Beobachtung in den Saatt8pfen bis zu 20% Kei.I:lpflanzen erkennen, dieauf der Unterseite der Kotyledonen unci Pr:im!irbl!tter einen violetten Schimmeraufweisen. Diese Pflanzen bleiben etwas 1mWachstum zurflck, verfllrben siehnaeh einigen Wochen stark violett und verharren sch1iessJich. in diesem Stadium.Sie sind dann noeb einige Woehen lebensflhig, dabei k8nnen die Primlrbl!tterleicht ergrilnen. Das Auftreten dieser nur 2 bis 3 em hohen Zwergpflanzenhlngt stark von !usserenFaktoren ab, denn in einigen Jahren waren die Typensehr schwer und nur bis zu 10% zu erkennen. Werden diese Keimpflanzen aufnormale Unterlagen gepfropft, so entwickeln. sie sieb v8llig normal und dieFrtlchte haben guten Samenansatz. Die Nachkommensehatten solcher zu normalentwic~elten Reiser ergeben einhei tlieb und deutlich erkennbare, violett

Etr I Etr II Etr IIInorm. Pfl. lobt. norm. Pfl. MIt. norm. Pfl. lfut.

1954 47,7 52,3 33,9 66,1 30,7 69,3

1955 48,8 51,2 38,9 61,1 32,8 67,2

1956 45,4 54,6 30,1 69,9 31,1 68,9

Page 8: tgc.ifas.ufl.edutgc.ifas.ufl.edu/vol7/vol7.pdfroot-knot nematodes. A study was made of Fl' F2, F3, and backcross progenies derived from the hybridization of two parental lines. One

TGCReport No. 7 1957 RESEARCHNO'rES 6

gef!irbte Pflanzen, die oft etwas krllttiger und gr6sset" sein k6nnen. Kreuzungenzwischen normalen Pflanzen und den gepfropften Re!sern wurden in beidenRiehtungen erfolgreich durchgeftllirt.

In alIen untersuchten FAllen betrug die Chromosomenzahl 2n=24. Besondersdie eintriebigen Mutanten ETR II und ETR III haben St6rungen im Ablauf der}~iosis. Die Chromosomen zeigen hAufig ein desynaptisches Verhalten, und dergesamte Spindelapparat ist stark gehemmt. Noch bevor die Bivalente in derAquatorialebene angeordnet sind, fallen sie auseinander, und die 1tquation-steilung der Chramosomen findet dann regellos im Zellraum statt. Als Folgedieses Verhaltens bilden sich dann die Gonen zufallsge~s.mitallen denkbarenChromosomenzahlen. Auch die tripolare und z. T. multipolare Spindel ftlhrt zusolchen Verteilungsanomalien. In den Nachkommenschaften dieser l~tantentraten insgesamt 5 tetraploide Individuen auf. Sie hatten aIle keinenSamenansatz. Cytologische Untersuchungen lieaSEm einen v6llig gest6rtenSpindelapparat erkennen. Eine andere, stark gestauchte Pflanze erwies sichals eine h6herploide, naeh dem cytologischen Bild wahrscheinlich hexaploideForm. Die cytologischen Arbeiten wurden auf die Untersuchung des PachytAnaausgedehnt.

~dlich. J. Trisome Mutanten.(submitted by H. Stubbe)

Aus einer X2-Generation vondiploiden Tomaten der Sorte"Rheinlands Ruhm" gingen vier

buschf6rmige und leicht sterile Typen hervor, die sich als trisome Mutantenerwiesen. Die vier Formen liessen sich beim Freilandanbau nicht nur von dennormalen Pflanzen, sondern auch untereinander habituell unterscheiden.Bisherige Untersuchungen der PachytAnchromosomen ergaben, dass es sich indrei FAllen um prim!re Trisome handelt. Erst naeh Abschluss einer genauenStrukturanalyse der Chromosomenk6nnen diese Typen naeh der Nomenklatur vonRICK und BARTON(1952, 1954) eingeordnet werden. Dabei kann die bestehendembrphologische Einteilung der trisomen Pflanzen nicht berftcksichtigt werden,da die habituellen Merkmale bei der vorhandenen Sorte etwas abweichend sind.

In alIen FAllen wurde das tlberzAhlige Chromosomviel seltener als . . .

erwartet auf die Nachkommentlbertragen. Die einzelnen Trisome verhieltensieh hier sehr unterschiedlich. Besonders fiber den Pollen war die Weitergabestark gehemmt bzw. ganz verhindert. Die cytologischen Untersuchungen befassensieh mit den meiotischen St6rungen, welche die UnregelmAssigkeiten hervorrufen,mit denen das zusAtzliche Chramosom durch den Pollen tlbertragen wird.

Das vorliegende Materialgeh6rt zur Sorte "RheinlandsRuhm" von Lye. esculentum undstammt von einigen Buschformen

ab, die in den Jahren 1950 und 1951 aus X2-Generationen selektioniert wurden.Die genetischen Untersuchungen begannen 1955.

Unter der Bezeichnung rrtThergangstypenll wird eine Gruppe von MutantengetUhrt, deren verschiedene Typen bisher nicht rsin gezogen werden konnten,und die in den Nachkommenschatten v6llig regelwidPige Aufspaltungen zeigten.In alIen Generationen traten neben normalen Pflanzen die Varianten in einerkontinuierlichen Reihe gemeinsam auf. Es lassen sich zwischen den Pflanzenkeine Abstufungen erkennen, aIle Formen gehen ineinander fiber. Die Typenwrden in 8 Klassen aufgeteilt und mit A-H bezeichnet:

Endlich. J. iThergangstypen, VlUtantenmit abweichenden Erbg!n~en.(submitted by H. Stubbe)

- ---

Page 9: tgc.ifas.ufl.edutgc.ifas.ufl.edu/vol7/vol7.pdfroot-knot nematodes. A study was made of Fl' F2, F3, and backcross progenies derived from the hybridization of two parental lines. One

TOOReport No. 7 1957 7

A Normale Pflanze der Sorte "Rheinlands Ruhm".

B Leicht buschf8rmig; 4/5 der normalen H6he, Internodien etwas kUrzer,BlU,tter und Blaten normal.

C '!;ylinderf8rmiger Busch; etwas 3/4 der normalen Hehe, Internodienstarker gestaucht, Seitensprosse verkUrzt und einen kleineren Winkelmit dem Hauptspross bildend, B:U1tter etwas feiner und die Blattendenabw!rts gekrUmmt, Blllten und Bll1tenst!nde normal.

D Scbmaler ~ylinderbusch; Seitensprosse noch stflrker verldlrzt als beiTyp C, sonst diesem Ahnlich.

E Spindelf'8rmiger Buscb; 1/2 der normalen H6he, nur noch eingestauchter Hauptspross mit vielen kleinen Seitensprossen, die derHauptachse dichter anliegen, klein£iedrige und leicht gelbgrUneBllitter, amHauptspross wenige Infloreszenzen m::Lt stark erh5hterBlatenanzahl.

F Aufgelockerter Spindelbusch; Hauptspross mit weDigen stark ver1d1rztenSeitensprossen, sonst dem Type E lihnlich.

G Eintriebige Pflanze; etwa 25 em bocb, Hauptspross oOOeSeitensprosse,Stengel ort anthocyanha1tig, BlU,tter sehr klein, doch in der Formnormal, h6chstens 2 Blt1tenst!nde mit normalen Blaten.

H Kleine eintriebige Pflanzs; sehr stark anthocyanhaltig, das Wachstumvird meist nach dem dritten PrimArblatt eingestellt, keinBlt1tenansatz.

Werden diese morpbologisch unterschiedlichen MUtanten geselbstet, sotreten in den einzelnen Nacbkommenschaften, neben normalen Pflanzen, illevorhandenen Typen wieder auf. Auch 1m Nacbbau von normal erscheinendenIndividuen sind abweicbende Pflanzen zu verzeichnen. Nur etwa 50%illernormalen Typen vererben konstant wei ter, d.b., sie sind genotypisch normal.Je extremer die Elternpflanze von der Kontrolle abweicht, desto gr5sser wirdder Anteil iller abweichenden Typen, besonders der extremen Typen, wlhrenddie normalen Pflanzen vermindert werden. Da.s bearbei tete }{aterial bestehtaus 2 LiDien, die sieb darin unterscheiden, dass bei Linie II in allenAufspaltungen der Anteil der normalen Pf'lanzen h8her liegt als bei LiDie I.Aus den bisherigen Unterschungen llisst sicb ein Einfluss der El ternpflanzeauf die Haufigkeit, mit der bestimmte Typen vorherrscbend auftreten kennen,nocb Dicbt gesicbert feststellen. Doch der Anteil aller 1Intanten zusammenwird in den Aufspaltungsgenerationen 1m Verhl!ltnis zu den normalen Pflanzenvom Elterntyp eindeutig bestimmt. Die folgenden Werte in % wurden von ca.7000 Indi viduen aus Feldaufspal tungen gewonnen:

LinieI

Elterntyp1955

normale Prr:--l-htanten1956

normale Pfl. MUtanten

A 95,0 5,0 89,3B -- x)C - - 24,7D -- -- 30;5E 54,5 45,5 40,0F 46,3 53,7 30,0G . 21,2 78,8 9,9

x) In diesen Fu.nen wurden keine Nachkommenschaftenangebaut.

10,7---

75,369,560,070,090,1

Page 10: tgc.ifas.ufl.edutgc.ifas.ufl.edu/vol7/vol7.pdfroot-knot nematodes. A study was made of Fl' F2, F3, and backcross progenies derived from the hybridization of two parental lines. One

RESEARCHNOTES 8

1222normale Pfl. l1utanten

60,045,023,0--37,.3

40,055,077,0---62,7

Das Auftreten der einzelnen Typen ist stark umweltabh!ngig. Unter derfeuchten und kfthlen Witterung im Sammer 1956 wurden die Aufspa1tungsverhMltnissezugunsten der abweichenden Typen verschoben. Baim Anbau im Gew!chshaus wurdendie Wuchsformen sehr verdeckt.

Einige BUsche zeigten neben den gestauchten Sprossen auch Triebe mitv6llig normalen B1!ttern und Internodien. Die Nachkommenschaften von solchenverschiedenen Sprossen einer Pflanze ergaben aber keine gesicherten ~ ~ .Unterschiede in den Aufspa1tungen und in der Verteilung der Typen. .

Kreuzungen der einzelnen Typen mit norma1en Pflanzen brachten in beidenRichtungen v5llig einheitlich nor.ma1e Fl-Generationen. Nur in 2 F!1len tratje eine abweichende Pf.1anze auf.

AIle Typen wiesen Chromosomenzahlen von 2n=24 auf. Die genetischenArbeiten werden in verschiedenen Richtungen fortgeffthrt. Umfangreichecyto1ogische Untersuchungen wurden begonnen. Von den Stadien der Meiosiswird besonders das Pachyt!n untersucht.

A tendency to escape infectionby tobacco-mosaic virus,formerly available only inplants that were heterozygous

for a dominant gene that confers this resistance, now has been incorporatedin a line of tomato that bears the controlling gene in homozygous condition.A stock of seeds has been deposited under the Plant Introduction number235673 at the North Central Regional ~eed Storage, Regional Plant Intro-duction Station, Ames, Iowa. Fruits in the resistant line are large, redwhen ripe, resistant to cracking, and somewhat variable in depth. Dominanceof the gene for resistance permits its use in Fl hybrids. Plants of theresistant line vary moderately in fruit type; this may permit Fl crosses tobe made between susceptible varieties and individual resistant plants thattend to resemble them. Resistant seedlings show dwarfish characteristicsbut when set in the field they grow with apparently normal vigor.

Holmes. Francis O. True-breedingresistance to infection by tobacco-mosaic virus.

Jenkins. J. A. and G. Iv!a.ckinnev.Carotenoids of lutescent tomatoes.

Crosses were made betweenlutes cent lines and a numberof homozygous carotenoid types~

tangerine, beta orange, yellow-apricot and tangerine-apricot. It is onlywhen the lutes cent gene is homozygous that it has any effect on chlorophylland carotenoid content. Homozygous lutes cent plants have normal greenleaves when young, but as the plants age the leaves turn yellow. Lutescent,

--

TGC Report No. 7 1957

Linie y1222

Elterntyp normale Pfl. Mltanten

A 96,7 .3,3BC 87,0 13,0D 90,9 .9,1E 76,5 23,5F 70,1 29,9G 55,S 44,2

Page 11: tgc.ifas.ufl.edutgc.ifas.ufl.edu/vol7/vol7.pdfroot-knot nematodes. A study was made of Fl' F2, F3, and backcross progenies derived from the hybridization of two parental lines. One

TGC Report No. 7 1957 RESEARCHNOTES 9

when homozygous, has no apparent effect, even on immature fruits, on thecontent of B-carotene. Lycopene formation, on the other hand, is definitelydelayed. Furthermore, there is some indication that the level of lycopenedoes not reach the level characteristic of normal red-fruited plants. Thisdifferential behaviour of lycopene and B-carotene is in keeping with earlierfindings that these two carotenoids may ~.. independently.

During the year 1956 we tested42 strains on their resistanceto late blight (Phrlophtora

infe!3t.ans). The straiIl.s were received from scientific workers engaged inbreeding for resistan~e.

Growing was carr:i.ed out in the open and the plants were left to naturalinfection, which occ1L.-red in a heavy degree, partly due to the very rainysummer we had.

None of the strains showed the slightest degree of resistance. Mostlikely a different physiologic race of Phvtophtora is prevailing in theNetherlands. .

Thanks are due to the following persons, who kindly supplied us withthe seeds: Currence, Vii.nnesota; Odland, Pennsylvania; Raleigh, NorthCarolina; Walter, Florida; Conover, Florida; Galleghy, West Virginia;Schroeder, NewYork; Ferguson, Canada.

Jensma. J. R. Lateblight resistance.

The two genes hE1 and he2have been incorporated inseveral lines being bred forhigh ascorbic acid content.

After the 1956 assays had been made it was noted that some of the plants withthe highest ascorbic acid content also had the high pigmentation. About halfof the plants had been destroyed because of inferior horticultural character-istics. Hence it was too late to get the complete record on any of the lines.The data on the survivors of the F2 populations segregating for high pigmentare given in Table I. The ascorbic acid content of the ~ plants isabout 24% higher than that of the normal segregants. This probably is apleiotropic effect rather than linked genes since high pigment and highascorbic acid are in repulsion. Eight segregating F3 lines and six green-house line~ also support this conclusion. The association between ascorbicacid content and an easily identified plant characteristic may expeditebreeding for this vitamin.

The high pigment plants were a little later in maturity and less pro-ductive than the normals. As reported by Thompson, high pigmentation isassociated with firm fruit. Firmness is also characteristic of most lineswith high ascorbic acid content. Previous observations have indicated thatthe segregants having high pigmentation or the highest ascorbic acid alsohave smaller fruit size than average. The 1956 data in Table I however donot confirm this. Possibly the selection .tor superior hortici1ltural charac-teristics eliminated the plants with the smaller fruit.

When lutescent lines are segregating for high pigmentation the 1m plantscan be distinguished from + plants by their greater anthocyanin content. Thehigh pigment plants also have more chlorophyll than normal as 1m ! plants aredarker than + !. plants. Hence the high pigment genes exert their influenceon the .following biochemical systems: ascorbic acid, ant,hocyanin, lycopene,beta-carotene and chlorophyll.

Kerr. E. A. The effect of the highpigment genes 1ml and ~ on certainplant constituents.

Page 12: tgc.ifas.ufl.edutgc.ifas.ufl.edu/vol7/vol7.pdfroot-knot nematodes. A study was made of Fl' F2, F3, and backcross progenies derived from the hybridization of two parental lines. One

A single variegated mutantwas found in R2 from a non-variega ted, normal lookingRl plant from a seed of the

variet~r Canary Export which had been soaked for 5 days in a solution of theisotope P32 with an initial dose of 10.8 microcuries. The leaves of themutant were green irregularly splashed with small white areas. A few leaf-lets were distorted and nearly white, especially at the edges, some fruitswere striped with two shades of green. Occasional well defined non-pubescentareas appear. These vary from spots to a few leaves or even a weak sterileshoot and are non-variegated. The original mutant 54 27 Gl was dwarfed andhad a few buds which contained a few pollen mother cells. This unpromisingvariegated (V) mutant was selfed and gave one non-variegated (NV) plant verymuch like the parent in appearance and fertility. The Fl of 54 27 Gl xnormal looked normal. F2 from two Fl plants contained 30 NVand 2 V. AnNVF2 plant selfed gave 3 V, two I-TVmutants and one almost normal fruitfulplant. An NVF3 selfed gave 7 NV. An NVF2 backcrossed to 54 27 GI (V) gave7 V and 4 NVmut.ants and one normal NV. The most normal looking plant wasfrui tful. Two other NVplants had a good many fruits which were small andoften seedless. Both in F2 and backcross V plants were less fruitful thanNVbut some V plants had decidedly more buds and more P.M.C. than 54 27 Gl.The non-pubescent tissue was found in V plants of FJ and in the backcross.In several cases NVprogeny resulted from open po1l1nation of variegatedplants but the evidence from controlled pollination indicates that variegationis recessive.

The sibs of 54 27 Gl were pale and varied in fertility. !'vo were pollensterile and had. green anthers in mature flowers. All of them had 12 pairs of

Ies1ev. Har~aret M. and J. "1. Leslev.A variegated chromosomal mutant inR2 from treatment with P32.

TGC Report No. 7 1957 RESEARCH NOTES 10

Table I Association of the high pigment genes bEl hE2 withhigh ascorbic acid content in F2 populations.

Hi£h pient Normal pimentNo. of *Average **Av. No. of *Average **Av.

Line lants ascorbic size lants ascorbic size

H 2C 1 49.8 2.21 13 40.3 1.82 23.6H4B 4 44.4 2.34 15 35.9 2.25 23.6H 4C 2 53.5 2.25 19 43.6 2.28 22.7H4D 4 53.6 2.24 23 42.2 2.17 27.7H4H 4 42.2 2.35 21 34.6 2.37 22.0H4I 2 52.3 2.10 24 44.4 2.18 17.8

H 9A 5 50.8 1.77 13 43.5 1.74 16.8H 9B 2 59.9 2.05 32 39.7 2.00 50.9HlOA 2 47.8 2.28 24 39.5 2.29 21.0HlOC 3 46.5 2.20 26 43.3 2.06 7.4H12A 2 48.1 2.25 17 35.1 2.18 37.0H12B 5 40.2 2.28 39 34.4 2.32 16.9

* Mg. % ascorbic acid by a modification of the indophenol titration method..

** Size index = (polar + equatorial diameters in inches)/2

Page 13: tgc.ifas.ufl.edutgc.ifas.ufl.edu/vol7/vol7.pdfroot-knot nematodes. A study was made of Fl' F2, F3, and backcross progenies derived from the hybridization of two parental lines. One

TGC Report No. 7 1957 RESEARCHNOTES 11

chromosomes. In one pollen sterile sib, one pair of chromosomeswas oftendissociated and non-conjunction of all or manypairs occurred frequently.

The original V plant 54 27 Gl contained 12 pairs of chromosomesplusa tiny fragment, or more orten the samenumberbut with two trivalents ofchromosomesof normal size and a third consisting of the fragment and oneof the smaller pairs. Once a ring of six was seen. Unpaired chromosomesoccur at Ml and lag at AI and A2. Both simple and complex bridges werefound. The single V plant from selling 54 27 Gl had 12 pairs plus a tinyfragment. All three F3 V plants had the tiny fragment, one of them wastrisomic and bridges were found in two. The NVplants studied included onawith 12 pairs and normal meiosis and one trisomic.

All the V plants from the NVF2 backcrossed to 54 27 Gl had the tinyfragment but, as in F3, both V and NVplants may be trisomic or have 12 pairsand normal meiosis or 12 pairs including a tetravalent. The tetravalentconsists of a chain; only very rarely an apparent ring was found. One of theNVplants had a tiny fragment; the rest lacked it. The most normal lookingplant had 10 pairs and a tetravalent.

Longi tudinal sections of root tips of 54 27 Gl show infrequent bridgeformation and an occasional lagging chromosome. The laggard is usuallysmall but may be of normal size.

The original V plant occurred in R2 from a normally green Rl plant andFI plants also look normal. It therefore seems unlikely that the tiny frag-ment is the cause of the variegated or splashed appearance. What looked likea spindle fiber has been seen on the fragment, and it is often found on themetaphase pla.te in meiosis. It is possible that the fragment and the chromo-some from which it cameboth have a parti-al attachment construction and thussometimes fail to divide normally in mitosis. The nature of the somaticinstability is being studied further.

Seed of autodiploid (2n ex-haploid) and highly inbredlines was X-irradiated and Rlplants were backcrossed to

unirradiated control plants of the same line. The resulting backcross pro-genies were grown together with control plants in a replicated experiment.Individual plants were scored for three different measures of earliness, atrai t which shows a dominance type of heterosis (Burdick, Genetics 29(1954):488-505).

Induced mutations that have a beneficial effect on growth rate in heter-ozygous condition should stand a good chance of being included in gametes ofthe Rl plant. Deleterious mutations might well be eliminated by "intrasomaticselection". Backcrossing the Rl to an unirradiated control increases thefrequency of the induced beneficial gene, so that it is more readily detect-able. This technique is sui table for detecting physiologically beneficialmutations having an effect in the heterozygous condition.

Two backcross progenies were produced that appear to be earlier thantheir respective controls:

Mertens. T. R. The X-ray production of"beneficial" mutations in quantitativetrai ts.

Page 14: tgc.ifas.ufl.edutgc.ifas.ufl.edu/vol7/vol7.pdfroot-knot nematodes. A study was made of Fl' F2, F3, and backcross progenies derived from the hybridization of two parental lines. One

TGCReport No. 7 1957 RESEARCH NOTES 12

018-1018-21

!65.161.1

Trai t Heasured#II III

69.6 100.166.2 96..3

Dose

Control (Red Cherry inbred)6,000 r X-ray

Control (1.. EiDlPine1lifoliumautodip10id) 228-1 67.248,000 r X-ray 228-8 62.8*

# I ¥san days to first flower, first inf10resenceII Mean days to first flower, second inflorescence

III ~an days to first ripe fruit* Significantly different from control by Duncan-Bonnertest, 5% level.** Highly significantly different from control by Duncan-Bonner test,

1%level.

BackcrossFroe-eny

74.070.0**

100..3

96.8*

Line 018-21 was included in a large experiment involving 59 entries sothat the chance of finding statistical significance was very low. However,the fact that the plot means (data not given) of li~e 21 were earlier thanany of the 18 control plot means in the experiment indicated that this lineis actually earlier. The two earlyprogenies recovered in these experimentswere extracted from .3% of the 65 R1 plants from which backcross progenieswere obtained and tested.

Rick. C. M. Another collectionfrom the Galapagos Islands.

Seeds of this accession(LA292) were received recentlyfrom Hr. Alf Kastda1en, who

had collected them from a single plant growing along a trail above thesettlement at Academy Bay, Indefatigable Island. Unlike the material pre-viously obtained, this accession has red oblate fruits, 1.5-2.5 em. indiameter ~~th 2-4 locules, tending to become irregular with increasing loculenumber. 1.1so in contrast with the other accessions, it grows well in thefield and produces seeds of normal size which germinate satisfactorily with-out special treatment. Flowers self-pollinate well without aid except inthe greenhouse, and all cultures have been very uniform. An unusual featureof LA292 is the complete absence of the large epidermal hairs characteristicof Hand the complete or nearly complete lack of tomato odor in the herbage.A search of herbarium material reveals that a specimen collected by Howell(,1857.3) at Wreck Bay, Chatham Island, April 17, 19.32, corresponds fairly wellwith LA292.

The following points hint that LA292might have escaped from cultivationinsteadof being an indigenous type: (1) the presence of this form apparentlyonly close to humanhabitation, (2) the manydifferencesbetweenit andtheother Galapagos tomatoes. Support for this proposal also comes from the factthat the most widely cultivated tomato of the Ecuadorean coast has the samelack of hairs and odor. I have not encounteredany coastaltomato, however,with such small fruits, the typical ones being very large and severelyfasciated. It is entirely possible, of com-se, that LA292 might have been

derived from hybridization between the large-fruited coastal type and thecoastal!!..pimpinellifo1ium or some other tiny-fruited tomato.

Page 15: tgc.ifas.ufl.edutgc.ifas.ufl.edu/vol7/vol7.pdfroot-knot nematodes. A study was made of Fl' F2, F3, and backcross progenies derived from the hybridization of two parental lines. One

TGCReport No. 7 1957 RESEARCH NOTES 13

Eine Tomatenmutante der SorteLukullus mit grtln-weis sgescheCkten Blattern bildetebei N1lhrstoffarmut, dann, wenn

die Pflanzen lange nicht umgetopft waren, anormal eine Folge von rein grUnenBl!ttern. Bei Zugabe von neuer Erde vergr6sserten sich die eimDal beiHungerbedingungen grUn angelegten Blatter auf etwa das Vierfache und bliebenrein grUn, ihr Chlorophyllgehalt verm.ehrte sich um ca. das Sechsfache.JUngere Blatter, die zum Zeitpunkt des Umtopfens noch nicht v6lligausgewachsen waren, wurden an den Stellen normal grUn-weiss gescheckt, andenen starkes Blat twachstum mit . der Bildung von neuen Zellen stat tfand,w!lhrend die Blatteile, die 1m wesentlichen nur Zellstreckungen erfuhren,rein grt1n blieben. Dadurch entstanden BJl1tter, deren !1teste Blattfiedernrein grUn waren, wllhrend ihre unteren j11ngeren keilfermige, grtlnweiss-gescheckte Blattareale auf\desen. Blatter, die erst nach dem Umtopfenangelegt wurden, waren ganz und gar grUn-weiss gescbeckt, wie diejenigen dernormal kultivierten Pflanzen der l-htante. Danach ist nur eine kurzeEntwicklungsphase des Blattes fUr die F!rbung der Chloroplasten dieser Mutanteentscheidend. Stehen die Pflanzen in diesem Zei tpunkt unter Hungerbedingungen,so werden die Chlorop1asten normal grtln und b1eiben es auch 1m sp!teren Alter.Ausreichende Nllhrstofrversorgung dagegen in diesem empfindlichen Stadium hatdie Unf'Wrlgkeit der Chlorop1asten, gr6ssere Chlorophyllmengen zu fnbren, zurFolge, vor allem in den von den Blattnerven weiter entfernten Zellen, so dassdie Blatter grtln-weiss gescheckt werden.

Sa2romskv. H. Zur Chlorophy11bi1dung beieiner Tomatenmutante. (submitted byH. Stubbe)

Soost. R. K. Another allele of H2 I believe this allele has notbeen previously noted. I

received the seed from Paul Schilling, a graduate student of Dr. EltonPaddock, in 1951. He indicated that it had been found in 1950 as a singleplant in the variety Rutgers. Dr. Paddock had been designa ting it as theVan Wert Woo1y because it had been growing in a planting near Van Wert, Ohio.For convenience I have therefore designated this allele WOve Like Wo it isalso a homozygous lethal but phenotypically Wov/+ plants are more woollythan ~+ plants. Progenies from crossing tOhetero;ygous H2. ~egregate I H2/+: 1 llil'"1+ : 1 +1+. Progenies from crossing to homozygous Hg;Dlsegregate1: 1for an extremely woolly type (H2v~) and for the slightly woolly type'tJs.v1+. The three alleles .term a. series for woolliness which has increasing

wo~~~ess in the following order: '!!.!fl+,~1YkP, 1'!2/+,~v/+, Hg/W..£m,andWoI'!!cr-.- -Soost. R. K. Newmutants. Although this virescent mutant

(reported in TGCReport No. 6page 28) is not strictly virescent, since it never develops f'ul1 green color,its characteristics are so similar to !:! it seems: best to give ita genesymbol that indicates its likeness to !:I. Therefore it is proposed to desig-nate it !!!,--netted virescent. A small F2 (repulsion) of H£ and !!! segregated105 1'!2/+ : 27 HQ/!!I : 39 1+ : +/!:!. Chi square for linkage falls just shortof significance.

ti.--ramiried inf'lorescence--characterized by excessively branched in-florescences, pedicels joint1ess with tendency toward indeterminate growth.Segregated in breeding stock 7 mutants : 20 normals. F1 plants are normal.Pollen.appears normal but fruits have been set only atter persistant pollin-ation. Relation to §. and .1 is being tested.

Page 16: tgc.ifas.ufl.edutgc.ifas.ufl.edu/vol7/vol7.pdfroot-knot nematodes. A study was made of Fl' F2, F3, and backcross progenies derived from the hybridization of two parental lines. One

TGC Report No. 7 1957 RESEARCH NOTES 14

In 1951, Dr. J. P. McCollummade a selection of a reddish-orange fruited tomato fromPI 125831 growing in the NorthCentral Region tomato collec-

tion at Wooster, Ohio. A description of this material and and explanationfor its inheritance was published by Dr. P. A. Young in TGC6:33. Crosseshad been made with this material at Illinois in 1954 and the F2 populationsanalyzed in 1955. Results of these crosses confirm Dr. Young's findings andgive evidence of the allelic nature of ~ and r..

Four crosses were made with the following types: Webb Special, a hi~hpigment red variety (r+r+t+t+); Garden State, a normal red variety (r+r+t t+);U. of I. Acc. 34, apricot (r+r+t+t+ at at) and U. of I. Acc. 36, yellow-tangerine (~). The latter two accessions were obtained from Dr. J. A.Jenkins in 1953. The following table presents the essential data derived ffrom these crosses.

It did not prove possible to visually separate the various genotypeswithin the yellow and tangerine classifications with any degree of accuracy.No F3 or backcross progenies have been analyzed. The cross involving Acc.36 (yellow-tangerine) provides the evidence that r. and a are allelic.Further information will be needed to establish this point with certainty.The symbol a as proposed by Dr. Young should be retained until this situationis clarified.

The cross involving Webb Special gave high pigment segreBates in boththe red and yellow classifications, but did not give a good fit to either a3:1 or 15:1 ratio. The normal and high pigment classes were combined in thetable.

Thompson. A. E. Additional information onon the inheritance of a, a modifiergene for red color in yellow tomatofrui ts .

The second table presents the relative carotenoid pigment content ofthe parents involved in the above reported crosses with some additionalstrains for comparison.

Expected1.2Parents Genotype F, Phenotype F2 Phenotype Ratio

Red Yellow Tangerine

UI Acc. 29 x Webb Special red 174 60 -- 3:1 .0513!2 !2 r,+r.+

Garden State x UI Acc. 29 red 168 56 -- 3:1 Exact fitr.+r,+ U!2

UI Ace. 34 x UI Acc. 29 red 116 109 -- 9:7 1.9948!! r,+r.+ at+at+ !:Z

UI Acc. 29 x UI Acc. 36 yellow --- 169 57 12:4 .0059!:Z !Z !:.+1:.+

Page 17: tgc.ifas.ufl.edutgc.ifas.ufl.edu/vol7/vol7.pdfroot-knot nematodes. A study was made of Fl' F2, F3, and backcross progenies derived from the hybridization of two parental lines. One

l002-hp is a yellow, high pigment selection trom a cross involving WebbSpecial and Golden Qv.een, l005-hp is a yellow, high pigment selection fromWebb Special x Snowball. It should be noted that Acc. 29 has a significantlyhigher production of both total pigments and beta carotene than any otheryellow strain tested. The beta carotene content appears to be in the samerange as normal red tomatoes. It does, however, have the characteristicreduction in total pigment production of the!: allele when compared to I+.

Within. a' .1956 planting of thevariety Sioux a single plantwas found that fits the des-

cription of the green flesh (sf) mutant reported by E. A. Kerr in TGC6:17.It is currently being tested by Kerr for allelism.

Pigment analyses indicate that the total production of carotenoid pig-ments is not impaired. Only one sample has been currently analyzed forcarotenoid pigment content. A hexane extract of tully ripe fruits contained140 lLg/gram total pi£ment and 4.2 &!g/grambeta carotene. The total pigmentcontent was act1JBl:'y lArgel. than expected in normal red tomatoes, and waswithin the range of the high pigment types. Absorption spectra of the hexaneextract indicated tnat a higher content of intermediate type of pigments maybe present than is usually found in fully ripe fruits of normal red tomatoes.

Thompson.A. E. and J. P. J.tcCollum.A new green neshed mutant.

Pollen was exchanged by usthrough the mails early in1956 in order to make early

allele tests between these independently occurring mutants reported in TGC 6.Polle~ of fh/ih and gh/+ was sent to Urbana and pollen of !!¥!£ was sent to

Thompson. A. E. and C. 1-1.P.ick.Allele tests between gh B!ld ~.

TGCReport No. 7 1957 RESEARCH NOTES 15

Carotenoid Content

Probable J.I.E!'/g:ram

Strain Genotme Total Piement Beta Carotene

Acc. 29 U D' i+1+ 9.7 1.56

Acc. 34 r+.r+t.+t+srt, 14.6 3.20

Acc. 36 rr tt 12.3

Garden State r+r+1+'!!+ 117.6 1.68

Webb Special r+!'++i+ Iml 2 146.4 3.82

Golden Queen rr :t.++ 2.0 0.24

1002-hp rr +'!!+lml l m>2 tm2 4.6 0.36

Snowball rr ++ 2.0 *

lOO5-hp rr ++ l l 2 2 2.6 0.16

* none detected

Page 18: tgc.ifas.ufl.edutgc.ifas.ufl.edu/vol7/vol7.pdfroot-knot nematodes. A study was made of Fl' F2, F3, and backcross progenies derived from the hybridization of two parental lines. One

TGCReport No. 7 1957 RESEARCHNOTES 16

Davis. Crosses succeeded at both places and the progeny tests are summarizedin the following table.

+/-

Additional seedlingsthat died in early stages;

likely gh/ ghTests at Urbana

!!!V!2xgS/gh~ab x gb/+

o40

197

53

Tests at Davis

flJ/+ x ~!!1 10 9

These tests leave no doubt that ~ and &l are allelic, although they donot decide whether or not they are different alleles. The weakness of someof the chlorotic seedlings suggests that the deficiency of gh segregants inthe ~ab x gh/+ lot may have been caused by inviability. Ue propose thatthe symbol gh (ghost) be recognized for this locus.

Puffing (empty locules) intomato fruits usually is dueto faulty pollination or

fertilization without parthenocarpy. It was described in literature reviewsin Texas Agr. Exp. Sta. Bul. 541 and Circ. 113. Some varieties are more sus-ceptible than others to puffing. Adequate calcium nutrition gives tomatoesmaximumresistance to it. In contrast, e::treme superpuff abnormality is aninherited character (T.A.E.S. Bul. 698). Like bell peppers, each affectedtomato fruit has a small central mass of seeds with air spaces 1/4 to 1/2 inch"dde between the seeds and outer locule valls in 2 or more locules. The airspaces are usually larger in plum-shaped fruits than in oblate fruits.

Ovita tomato (P.I. 110946 listed in Ohio A.E.S. Res. Bul. 765; C. F.Andrus T1l62) segregated into two dissimilar kinds of fruits: (1) red oblatelobed fruits with exserted carpels like those described in TGC6:33:1956, ~dpink bell-shaped fruits that were hollow like bell peppers. A pink-bell seg-regate was labeled G166l and used in 5 crosses with Urbana, 1-1anasota and S1556tomatoes that bear green-wrap fruits. No distinct differences appeared intheir segregations. Most of the Fl fruits resembled their normal parents.However, many of the ripe fruits of G1695 and G1725-hybrids were superpuffed.

The 248 plants of the F2 generation of the 5 crosses segregated asfollows: 192 plants (77%) had one or more superpurfed bell or plum-shapedfruits per plant; 31 plants (1.3%)had oblate lobed superpurfed fruits; 16plants (6%) had mildly purfed fruits; and 9 plants (4%) showed only solidfruits. A plant with 5 to 15 fruits usually had only one or a few superpuffedfruits, especially on the lower two trusses. Thus, some of the above percen-tages may not be exact due to the difficulty in classifying some plants.

The centers ripened first in the superpuffed fruits. Superpuffing wasassociated with very severe core rot (physiological) in 1955. The F2 segre-gation showed an average of 90% of the plants with superpuffed fruits indi-cating dominance of superpuffing. Probably superpuffing is determined by morethan one gene. Extensive tests may be needed to identify these genes.Superpufr pink bell tomato is a distinct new kind.

Youn~. P. A. Superpuffedlocules in tomato fruits.

Page 19: tgc.ifas.ufl.edutgc.ifas.ufl.edu/vol7/vol7.pdfroot-knot nematodes. A study was made of Fl' F2, F3, and backcross progenies derived from the hybridization of two parental lines. One
Page 20: tgc.ifas.ufl.edutgc.ifas.ufl.edu/vol7/vol7.pdfroot-knot nematodes. A study was made of Fl' F2, F3, and backcross progenies derived from the hybridization of two parental lines. One
Page 21: tgc.ifas.ufl.edutgc.ifas.ufl.edu/vol7/vol7.pdfroot-knot nematodes. A study was made of Fl' F2, F3, and backcross progenies derived from the hybridization of two parental lines. One
Page 22: tgc.ifas.ufl.edutgc.ifas.ufl.edu/vol7/vol7.pdfroot-knot nematodes. A study was made of Fl' F2, F3, and backcross progenies derived from the hybridization of two parental lines. One
Page 23: tgc.ifas.ufl.edutgc.ifas.ufl.edu/vol7/vol7.pdfroot-knot nematodes. A study was made of Fl' F2, F3, and backcross progenies derived from the hybridization of two parental lines. One
Page 24: tgc.ifas.ufl.edutgc.ifas.ufl.edu/vol7/vol7.pdfroot-knot nematodes. A study was made of Fl' F2, F3, and backcross progenies derived from the hybridization of two parental lines. One
Page 25: tgc.ifas.ufl.edutgc.ifas.ufl.edu/vol7/vol7.pdfroot-knot nematodes. A study was made of Fl' F2, F3, and backcross progenies derived from the hybridization of two parental lines. One
Page 26: tgc.ifas.ufl.edutgc.ifas.ufl.edu/vol7/vol7.pdfroot-knot nematodes. A study was made of Fl' F2, F3, and backcross progenies derived from the hybridization of two parental lines. One

TGC Report No. 7 1957 LIST OF STOCKS 24

g§1 QE AVAILABLEQ!i DESIREDSTOCKS

(Amendments to list in Report No.6)

STOCKS AVAILABLE

Source No. of Stock Description

Frazier, W. A. (Replaces list in report #6)OSC lines 250, 251, 284, 373, 405. Wide calyx. Crackresistance, but lacking many other desirable characteristics.

OSClines 262, 263. Crack resistance. Dwarfs.

ose 252 selections. Earliness.

OSC256 and others. Determinates derived from continuedbackcrossing to Stokesdale.

OSC286 and others. Determinates derived from crosses toQueens.

Jacoby, D. S. One line: determinate, resistant to fusarium wilt, heavyyield in clusters of 6 to 8.

Late blight resistant variety (replaces list in report 116)Yeager, A. F.

NewHampshire Sure crop - similar to Victor but nearlyimmune to the strains of lateblight in NewHampshire; considerableresistance to early blight.

de Zerpa, Dora M. (Replaces list in report fI6)56-1 Tester: d c a 1 r v56-2 Tester: I nc-- - -56-3 Tester: ~~ l:2!:al ~ f If .i !!56-4 Lycopersicon ~\tum56-8 Lycopersiccn perUV3.anumvar. dentatum56-10 1. esculentum - Philippine Is. (wild tomato)56-28 1. esculentum var. ~ Harbor

STOCKS DESIRED

Frazier, 1-1.A. Early, determinate, large fruit lines resistant to cracking.Firm fruit lines.

Page 27: tgc.ifas.ufl.edutgc.ifas.ufl.edu/vol7/vol7.pdfroot-knot nematodes. A study was made of Fl' F2, F3, and backcross progenies derived from the hybridization of two parental lines. One

TGC neport No. 7 1957 B!BLIoGRAPHY 25

BIBLIOGRAPHY OF PAPEP.s ON TOl1.~TOGENETICS AND BREEDING PUBLISHED IN 19';5- - - --Aleksandrov, S. V. and A. I. Karaulova, 1955 (Tomato varieties for culti-

vation under glass). Sad ~ Ogorod (Gdn. &Veg. Gdn.) No. 2:20-23.(Russian).

Alexander, L. J. and M. M. Hoover (editors), 1955 Disease resistance in the. wild species of tomato. Res. Bull. Ohio Agric. Expt. 8ta. No. 752. 76pp.

Alpatjev, A. V., 1955 (New tomato varieties). Sad i Ogorod (Gdn. & Veg.Gdn.) No. 6:10-11. (Russian).

Anonymous, 1955 Seven flovers and two vegetables. 8th. Seedsman 17(12) :54-55.I.;

Baida, H. S., 1955 (Growing grafted plants in a dark room). Agrobio1ogija(Agrobiology) No. 6:65-73. (Russian).

Barton, D. W., L. Butler, J. A. Jenkins, C. 1-1.Rick, and P. A. Young, 1955Rules for nomenclature in tomato genetics, including a list of knowngenes. Jour. Hered. 46:22-26.

Bateman, A. J., 1955 Grafting experiments between the tomato varieties,Golden Apple and Oxheart. Nature, Lond. l75:1118-1120.

BreZnev, D. D. and J. S. Aizenstat, 1955 (Variability of tomato hybridscultivated in different physioclimatic zones). Agrobio1ogija(Agrobiology) No. 1:46-54. (Russian).

Burdick, A. B. and T. R. Mertens, 1955 Imdfold effects of the gene :2!. inthe tomato. J. Hered. 46:267-270.

Butler, L., 1955 A recessive lethal closely linked with wooly in the tomato.Genetics 40:565. (Abst.).

Choudhury, Bishvajit, 1955 Inducing polyploidy in Lycopersicon esculentumMill. Indian Jour. Hort. 12(1) :15-18.

Clarke, E. J., 1955 Some aspects of tomato breeding at the Albert College.Sci. Hort. 11:140-149.

EvdoJdmov, M. M., 1955 (Introduction of new standard varieties). Sad iOgorod (Gdn. & Veg. Gdn.) No. 6:6-8:. (Russian).

Gallegly, Me E. and M. E. Marvel, 1955 Inheri tance of resistance to tomatorace 0 of Phvtophthora infestans. Phytopath. 45(2) :103-109.

Gorter, C. J., 1955 (Increase of the number of flowers in beans and tomatoesby means of 2.3.5-triiodobenzoic acid (T.I.B.A.) ).(In Dutch with Englishsumm.). Medede1. Directeur TuinboU\l 18 :35-~.

Page 28: tgc.ifas.ufl.edutgc.ifas.ufl.edu/vol7/vol7.pdfroot-knot nematodes. A study was made of Fl' F2, F3, and backcross progenies derived from the hybridization of two parental lines. One

TGC Report No. 7 1957 BIBLIOGRAPHY 26

Gothaspar, S. S., R. P. Scheffer, M. A. Stabmann, and J. C. Walker, 1955Further studies on the nature of Fusarium resistance in tomato.

Phytopath. 45 :303-307.

Haskell, G. and A. Gavin Brown, 1955 Hybrid vigour in cultivated tomatoes.Euphytica, Wageningen 4:147-162.

Hohes, F. 0., 1955 Additive resistances to specific viral diseases inplants. Ann. app1. Bio1. 42:129-139.

Hoover, M. M., L. J. Alexander, E. F. Paddock, R. A. Crum, and A. F. Dodge,1955 Horticultural characters and reaction to two diseases of theLvcopersicon accessions in the North Central Region. Bull. Ohio Agric.Expt. Sta. No. 765: Pp. 19.

I1an, B., 1955 ("Tamar" - a new variety of tomatoes for industry). Sadeh(Fie1d)/ Hassadeh 35:702. (Hebrew).

Jenkins, J. A. and G. Hackinney, 1955 Carotenoids of the apricot tomato andits hybrids with yellow and tangerine. Genetics 40(5):715-720.

Kennerly, A. B., 1955 New tomatoes from Texas. Sth. Seedsman 18:(6): p. 27.

Kerr, E. A., 1955 Some factors affecting earliness in the tomato. Canad.J. agric. Sci. 35:300-308.

Korneev, A. P., 1955 (The new tomato variety Spartak). Sad i Ogorod (Gdn.& Veg. Gdn.) No. 12:28-29. (Russian).

Kryzanovskii, F. D., 1955 (Intergeneric hybridization in the Solanaceae).Priroda (Nature), Leningrad No.1: 55-60. (Russian).

Kulckova, M. F., 1955 (Utilization of heterosis in Bulgarian horticulture).Sad i Ogorod (Gdn. & Veg. Gdn.) No. 11:26-28. (Russian).

Lehmann,C. 0., 1955 (The morphological system of cultivated tomatoes, !!.esculentum). Der Ziichter 3. Sonderheft 1-64. nlus. Pr. m.f15.

Lewis, D., 1955 Gene interaction, environment and hybrid vigour. Froc. roy.Soc. Sere B:144:178-185.

Lewis, D., 1954 (1955) (Report on tomato breeding). Forty-fifth annualreport of the John Innes Horticultural Institution: pp. 12-17.

Magelli, E., 1955 11 vero San Marzano. (The true San 1>farzano). Sementie1ette1: No. 2:10-16.

Pimenova, A. S. and A. I. Kamenskaja, 1955 (Improving the resistance oftomatoes to streak). Sad i Ogorod (Gdn. &Veg. Gdn.) No. 2 :27-30.(Russian).

Pollack, B. L. and R. E. Larson, 1955 Factors affectingembryo size, andthe influenceof embryo size on germination,time to maturity, andproductivity in F2 generation tomatoes. Penn. Agri. Exp. Sta. Bull.606, 34PP.

Page 29: tgc.ifas.ufl.edutgc.ifas.ufl.edu/vol7/vol7.pdfroot-knot nematodes. A study was made of Fl' F2, F3, and backcross progenies derived from the hybridization of two parental lines. One

-- +--- ------------ u_ _ ._ _ . +____. --- - --- -- . - -

TGC Report No. 7 1957 BIBLIOGRAPHY 27

Powers, L., 1955 Componentsot variance method and partioning method otgenetic analysis applied to weight per tru:i t ot tomato hybrid and parentalpopulations. Tech. Bull. U.S. Dept. Agric. No. 1131:6~.

Quadt, F., 1955 Beobachtungen an den Nacbkommentetrap10ider Tomatenbastarde.(Observations on the progeny ot tetraploid tomato hybrid). Ztichter 25: .241-245.

Rick, C. M. and R. Lamm, 1955 Biosystematic studies on the status otLvcopersicon chi1ense. Amer. J. Bot. -'2:663-675.

Rozin, G. Ja., 1955 (Horticulture in the People's Republic ot Bulgaria).Sad i Ogorod (Gdn. &Veg. Gdn.) No. 7:26-29. (Russian).

Singh, H. B. and S. MeSikka, 1955 Pusa.has some outstanding tomatoes.Indian Fmg. 5(3) :18-25.

Snyder, R. J. and R. E. Larson, 1955 Quantitative inheritance ot seed sizein a cross between Lvcopersicon esculentum and 1. ~ne1litolium.Penn. Agri. Exp. Sta. Bull. 607, 2~p.

vSuin, K. A., 1955 (Characteristics ot tomato seed depending on the position

where it developed on the mother plant). Sad i Ogorod (Gdn. & Veg. Gdn.)No. 6:19-20. (Russian).

Thompson, A. E., 1955 Inheritance ot high total carotenoid pigments intomato trui ts. Science 121:896-897.

Troni~kova - P01Skova, E., 1955 (Data on breeding and cultivation ot tomatoesin Bulgaria). Za socialist. Zemed. 5:439-442.

Visnevsld1, S. I., 1955 (Newtomato varieties tor the processing industry).Sad i Ogorod (Gdn. &Veg. Gdn.) No. 7:16-18. (Russian).

Young, P. A., 1955 Curl, a mutant teratism ot the tomato. J. Hered. 46:243-244.

Zaharova, G. }~., 1955 (The inheritance ot characters in maize and tomatoplants, pollinated with mixed pollen). Izv. Akad. Nauk SSSR (New Acad.Sci. USSR). No. 1:32-44. (Russian).

L.'Zukov, P. V., 1955 (Hybrid tomatoes). Sad i Ogorod (Gdn. & Veg. Gdn.)

No. 4:74. (Russian).

PAPERS OMrTTEDmPRECEDING BIBLIOGPJ.PHIES

Bilint, A., 1951 (The theory, importance and results ot heterosis in tomatobreeding). Agrartud. Egy. kert- sy818Tud. Kar Evk6n. 2:239-269. (Hungarian~

Marinkov, E., 1952 (Studying heterosis in tomatoes in connection with poss-ibili ties tor selection at early stages ot development). Naucn. Trud.Se1skostopan. Akad. Georgi Dimitrov Agronom. Fak. (Sci. Trans. G. DimitrovAgric. Acad. Agron. Fac.) 1:43-56. (Bulgarian).

Page 30: tgc.ifas.ufl.edutgc.ifas.ufl.edu/vol7/vol7.pdfroot-knot nematodes. A study was made of Fl' F2, F3, and backcross progenies derived from the hybridization of two parental lines. One

TGC Report No.7 1957 BIBLIOGRAPHY 28

Medenec, V. D., 1952 (Maternal inheritance or characters in the light orthe theory or vegetative hybridization). Uspehi Sovrem. BioI. (Advanc.in Mod. BioI.) 33:273-286.

Anonymous, 1954 Sixty-seventh annual report or the director, Purdue

Agricultural Experiment Station. (Report on tomato breeding).

Anonymous, 1954 Report or the minister or Azriculture, Province or Ontario.(Tomato breeding).

Aizenstat, Ja. S. and Z. A. Volkova, 1954 (Characteristics or the behaviour

or the progeny or tomato hybrids after supplementary pollination VIithpollen of other genera and Vlith immature pollen of the maternal variety).

Trud. priklad. Bot. Genet. Se1ekc. (Bull. apple Bot. Gen. Pl.-Breed.)

3lEl) :136-143. (Russian).

Breznev, D. D. and T. B. Batygina, 1954 (Methods or overcoming the incom-patibility of the cultivated tomato, 1. ~~£u1entum, with the wild species1. hirsutum and 1. peruvianum). Trud. priklad. Bot. Genet. Selekc.(Bull. apple Bot. Gen. Pl.-Breed.) 31(1):125-135. (Russian).

Bre~nev, D. D., 1954 (l-1'odernclassification of the genus Lycopersicon TournTourn.). Trud. priklad. Bot. Genet. Selekc. (Bull. apple Bot. Gen.Pl.-Breed.) 31(1):5-50. (Russian).

Doolittle, S. P., 1954 The use or vdld Lvcopersicon species ror tomatodisease control. Phytopathology 44:409-414.

Gottschalk, W. and N. Peters, 1954 Die chromosomenstruktur als KriteriumfUr Abstammungsfragen bei Tomate und Kartorfel. Z. Plfanzenz. 34:71-84.

Ivanovskaja, E. V., 1954 (Crossing the tomato with C:vphomandra). Bjull.Glavnogo Bot. Sada (Bull. Brinc. Bot. Gdn.), Moskva-Leningrad. No. 19:57-63. (Russian).

Ivanova, K. V., 1954 (iii1d species or tomato and their importance forbreeding). Trud. priklad.Bot. Genet. Selekc. (Bull. apple Bot. Gen.Pl.-Breed.) 3lEl):95-124. (Russian).

Johnson, S. P. and 1-1.C. Hall, 1954 Parthenocarpy in the tomato. Proc.Amer. Soc. hort.Sci. 63:329-332.

Kuzdowicz, A., 1954 (Experiments on the use of pollenmixtures ror the pur-pose or evoking heterosis in tomatoes). Acto Agrobot. 2 :109-135.

Maklakova, G. F., 1954 (Determining the resistance or Solanaceae toPhrlophthora). Zemledelie (Agriculture) No. 9:111-113. (Russian).

MeLoren,A. and D. Michie, 1954 Current trends of genetical research inHungary. Nature, Lond. 174:390-391.

l.fisro, B., 1954 The experimental production of chimeras in plants. Sci.and Cult. 20:95-97.

Page 31: tgc.ifas.ufl.edutgc.ifas.ufl.edu/vol7/vol7.pdfroot-knot nematodes. A study was made of Fl' F2, F3, and backcross progenies derived from the hybridization of two parental lines. One

TOO Report No. 7 1957 BIBLIOGRAPHY 29

Moore, E. L., 1954 Some results with crosses of a tomato from Costa Ricaand North American varieties. Proc. 51st Annual Convention Assoc. ofSouthern Agricultural ~lorkers, Dallas, Texas. (Abst. pp. 118-119.).

Van Der ney, F. I., 1954 Male sterility and its importance in breedingheterosis varieties. Euphytica 3(2):117-124.

'lonic, I. and J. Dumanovic, 1954 (Heterosis in the yield of the Fl genera-tion of tomatoes (Lvcopersicon esculentum». Zborn. Rad. po1joprivred.Fak./Rev. Res. vlk. Fac~ A~ic. 2. No. 2 :145-157. (Serbian).

Page 32: tgc.ifas.ufl.edutgc.ifas.ufl.edu/vol7/vol7.pdfroot-knot nematodes. A study was made of Fl' F2, F3, and backcross progenies derived from the hybridization of two parental lines. One