structural shielding design for fff linacs (ncrp-151) · from a flattening filter free clinical...

34
STRUCTURAL SHIELDING DESIGN FOR FFF LINACS (NCRP-151) David Sánchez Artuñedo 30/11/2017

Upload: others

Post on 23-Oct-2020

2 views

Category:

Documents


2 download

TRANSCRIPT

  • STRUCTURAL SHIELDING DESIGN FOR

    FFF LINACS (NCRP-151)

    David Sánchez Artuñedo

    30/11/2017

  • Index

    1. Introduction

    2. Workload, Use factor, Occupancy factors

    3. Calculation methods (primary and secondary barriers)

    4. FFF vault shielding

    5. Examples

    6. Conclusions

  • Basic principles:

    Distance

    Time

    Shielding

    Shielding design goal:

    Controlled Areas 100 µSv/week (5 mSv/year)

    Uncontrolled Areas 20 µSv/week ( 1mSv/year)

    HUVH: CA 20 µSv/week; UCA 10 µSv/week

    Conservative assumptions

    1.Introduction

  • Time integral of the absorbed-dose rate

    determined at the depth of the maximum

    absorbed dose.

    NCRP 151

    2.Workload (W)

    W=1000 Gy/week E10 MV

  • 2.Workload (W) IMRT, VMAT

  • 2.Use factors

  • 2.Occupancy factors

  • 3. Primary barriers

  • 3. Secondary barriers (patient scattered)

  • 3. Secondary barriers (leakeage)

  • 3. Doors and Mazes (Low-Energy linacs)

    LTPSLSS HHHH

  • 3. Doors and Mazes (Low-Energy linacs)

    ncgLTPSLSS HHHHHH

  • KRY, Stephen F., et al. Treatment vault shielding

    for a flattening filter-free medical linear

    accelerator. Physics in medicine and biology, 2009,

    54.5: 1265.

    4. FFF vault shielding

    PDD (6MV FFF) ≈ PDD(4MV)

    BEAMnrc

    6, 10, 18 MV

    FF and FFF scaled to match FF NCRP data

  • 4. FFF Primary beam

  • 4. FFF Patient scattered radiation

  • 4. FFF Patient scattered radiation

  • 4. FFF Head-leackage

    VASSILIEV, Oleg N., et al. Dosimetric properties of photon beams

    from a flattening filter free clinical accelerator. Physics in medicine

    and biology, 2006, 51.7: 1907.

    5 NCRP

    Prostate, lung, spineliver

    and head and neck plans

    “The same TVL for head leakage was used with and without the flattening filter because the flattening filter produces or interacts with only a portion of head leakage.”

  • 4. FFF Head-leackage

    5

    1.11 6MV

    1.40 18MV

  • 4. FFF Neutron production

    KRY, Stephen F., et al. Energy spectra, sources, and shielding

    considerations for neutrons generated by a flattening filter‐free Clinac. Medical physics, 2008, 35.5: 1906-1911.

    •Clinac 21EX 18 MV 5000 MU

    •Gold foild activation in Bonner spheres

    •MCNPX V2.5

    FF FFF

    Fluence

    (isocenter)(n/cm2/MU)

    1.06 e05 7.47e04

    (Fluence 18 MV FFF)= Fluence 18 MV FF/3.7

  • 5. Example 2:HUVH Single Energy (SE)

    Muelle de carga

    Pasillo RT

    Pa

    sillo

    R

    T

    Ascensores

    Hormigón 2.3 g/cm3

    6m

    1.45m

    1.5m

    1.45m

    1.51m

    1m

    4.7

    2m

    2.36

    m

    2.3

    6m

    3.5m 0.62m

    0.32m

    1.2m

    1m

    5.68m

    1m

    6.05m

    0.35m

    1m

    1.94m

    1

    2

    4 5

    6

    7 8

    9

    11

    10

    W=1000 Gy/week 6 MV

    WL=3000 Gy/week 6 MV

  • 5. Example 2:HUVH SE-Primary

    Location 1

    corridor

    Location 2 drop

    off area

    Location 3 roof

    P(µSv/week) 20 µSv/sem 10 µSv/sem 10 µSv/sem

    Concrete

    thickness (cm)

    190 180 220

    80% FF 20% FFF -3cm concrete

    50% FF 50% FFF -9 cm concrete

    100% FFF - 30 cm concrete

    nTVL≈ 5-6

  • 5. Example 2:HUVH SE-Primary

    Location 1 corridor

    W

    (1000 Gy/week)

    0% FFF 20%FFF 50%FFF 100% FFF

    H(µSv/week) 12.176 9.866 6.401 0.625

  • 5. Example 2:HUVH SE-Secondary

    Location 4

    corridor

    Location 6

    control room

    Location 5

    elevator

    P (µSv/week) 20 µSv/week 20 µSv/week 20 µSv/week

    Concrete

    thickness (cm)

    100 110 110

    80% FFF 20% FF 1 cm concrete

    50% FFF 50% FF 3 cm concrete

    100% FFF 7 cm concrete

    nTVL≈ 3-4

  • 5. Example 2:HUVH SE-Secondary

    0% FFF 20%FFF 50%FFF 100%FFF

    W (Gy/week)

    6

    1000 800 500 0

    WL(Gy/week)

    6

    3000 2400 1500 0

    W (Gy/week)

    6 FFF

    0 200 500 1000

    WL(Gy/week)

    6 FFF

    0 340 850 1700

    80% FFF 20% FF 1 cm concrete

    50% FFF 50% FF 3 cm concrete

    100% FFF 7 cm concrete

  • 5. Example 2:HUVH SE-Secondary

    Location 4 corridor

    W 0% FFF 20%FFF 50%FFF 100% FFF

    H(µSv/week) 8.78 8.019 6.877 4.974

  • 5. Example 3:HUVH Dual Energy (DE)-

    Primary

    W=1000 Gy/week 6 MV

    WL=3000 Gy/week 6 MV

    W=500 Gy/week 18 MV

    WL=500 Gy/week 18 MV*

  • 5. Example 3:HUVH DE-Primary

    0% FFF 80%FF

    20%FFF

    50%FF

    50% FFF

    100% FFF

    Concrete

    thickness (cm)

    (11.2 µSv/week)

    (cm)

    245 242 237 223

    0% FFF 80%FF

    20%FFF

    50%FF

    50% FFF

    100% FFF

    H (µSv/week)(245

    cm concrete)

    11.247 9.683 5.572 3.425

  • 5. Example 3:HUVH DE-Primary

    0% FFF 100% FFF

    Concrete

    thickness (cm)

    (11.2 µSv/week)

    (cm)

    245 223

    0% FFF 100% FFF

    H (µSv/week)(245

    cm concrete)

    11.247 3.425

  • 5. Example 3:HUVH DE-secondary

  • 5. Example 3:HUVH -Secondary

    0% FFF 80%FF

    20%FFF

    50%FFF

    50% FFF

    100% FFF

    Concrete

    thickness (cm)

    (12.854 µSv/week)

    (cm)

    110 109 108 105

    0% FFF 80%FF

    20%FFF

    50%FFF

    50% FFF

    100% FFF

    H (µSv/week)(135

    cm concrete)

    12.854 12.091 10.995 9.042

  • 5. Example 3:HUVH DE-maze-door

    W=1000 Gy/week 6 MV T=1/8

    WL=3000 Gy/week 6 MV P=20 µSv/week

    W=500 Gy/week 18 MV

    WL=500 Gy/week 18 MV*

  • 5. Example 3:HUVH CF3-Primary

    0% FFF 80%FF

    20%FFF

    50%FFF

    50% FFF

    100% FFF

    Paraffin (mm)

    (16.71 µSv/week)

    80 75 75 65

    Lead (mm)

    (16.71µSv/week) 35 35 25 15

    0% FFF 80%FF

    20%FFF

    50%FFF

    50% FFF

    100% FFF

    H (µSv/week)

    ( paraffin 80mm&

    35mm lead)

    16.71 14.90 12.18 7.66

  • FF shielding > FFF shielding

    FFF new vault designs

    Conservative assumption FF

    6. Conclusions