spatial channel model

39
Spatial Channel Model for Link Level Simulations

Upload: tranmanhphu

Post on 06-Apr-2018

225 views

Category:

Documents


1 download

TRANSCRIPT

8/2/2019 Spatial Channel Model

http://slidepdf.com/reader/full/spatial-channel-model 1/39

8/2/2019 Spatial Channel Model

http://slidepdf.com/reader/full/spatial-channel-model 2/39

8/2/2019 Spatial Channel Model

http://slidepdf.com/reader/full/spatial-channel-model 3/39

NOT for distribution, confidential  

2

Channel Models for Multiple Antennas

The spatial properties of channels are extremelyimportant in determining the performance of multipleantenna systems

Diversity scheme may correspond to its own channel model

Need to consider Time delay spread

 Angular spread

 Adaptive array antenna geometries

 Angular spread depends on

Local scattering environment  Antenna heights

Time variability of spatial channel is the function of UEspeed. (movement)

8/2/2019 Spatial Channel Model

http://slidepdf.com/reader/full/spatial-channel-model 4/39

NOT for distribution, confidential  

3

Properties of Spatial Correlation

Lower correlation with Larger angular spread

Larger element spacing

To get low correlation UE: 0.2 wavelength due to the larger angular spread BS: 40 wavelength due to the small angular spread

 Assumptions: Long-term properties of the channel remain

unchanged over time (time-invariant) It is a slow varying effect similar to shadow fading

Independence between different taps

8/2/2019 Spatial Channel Model

http://slidepdf.com/reader/full/spatial-channel-model 5/39

NOT for distribution, confidential  

4

SCM Generation Method

Spatially correlated multiple channels can begenerated by the linear transformation of thesame number of uncorrelated channels

(t)gT(t)h

HTTR Correlation matrix:

(t)g

(t)g

(t)g

 (t)g

L

2

1

Uncorrelated channels:

8/2/2019 Spatial Channel Model

http://slidepdf.com/reader/full/spatial-channel-model 6/39

NOT for distribution, confidential  

5

Block Diagram for SCM Generation

Multiple

channelgeneration

Linear

transformationwith T

)(1 t g)(1 t h

)(t g L

)(2 t g

)(t h L

)(2

t h

Matrix squareroot

computation

 H T T  R

Spatial correlationcoefficients

(t)gt(t)hL

1 j

 jiji

8/2/2019 Spatial Channel Model

http://slidepdf.com/reader/full/spatial-channel-model 7/39

NOT for distribution, confidential  

6

 Alternative Implementationfor Rx Diversity Simulations 

When spatial covariance matrices are equal foreach tap

Equivalent simulation method without changethe channel impulse responses by transformationof 

Received signal before AWGN

 Antenna weightwTv and 

r

r

r

T

s

s

s

L

2

1

L

2

1

8/2/2019 Spatial Channel Model

http://slidepdf.com/reader/full/spatial-channel-model 8/39

NOT for distribution, confidential  

7

Examples of Spatial Correlation Matrix

Spatial correlation matrix for 4 antenna case

Spatially uncorrelated channels: a=b=c=0 Recommended correlation coefficients

[TSGR1#17(00)1358]

1*a*b*c

a1*a*b

ba1*a

cba1

R

8/2/2019 Spatial Channel Model

http://slidepdf.com/reader/full/spatial-channel-model 9/39

NOT for distribution, confidential  

8

Recommended Correlation Parameters[TSGR1#17(00)1358]

Environment ParametersRecommended path

model Angular spread

Macro cell

(Rural area)

a=0.97 exp(-0.8 j)

b=0.94 exp(-1.6 j)c=0.88 exp(-2.4 j)

1-path Rayleigh

 Vehicular A 

10° AS

15° AoA 

Micro cell

(Urban area)

a=0.7 exp(-2.2 j)

b=0.1 exp(-1.2 j)

c=0.2 exp(-3.0 j)

Pedestrian A 45° AS

60° AoA 

Pico cell oruncorrelated

a, b, c = 0 Pedestrian A Large angular

spread

8/2/2019 Spatial Channel Model

http://slidepdf.com/reader/full/spatial-channel-model 10/39

NOT for distribution, confidential  

9

What Next?

Rx or Tx Diversity schemes have been simulated withthose correlation matrices.

Is it Reliable? Reasonable? Enough?

Need verification of the recommended SCM

Need some basics of array signal processing

Rx signal model to array antenna

Steering vector Power Spectrum Density (PSD)

Eigenbeam pattern

8/2/2019 Spatial Channel Model

http://slidepdf.com/reader/full/spatial-channel-model 11/39

NOT for distribution, confidential  

10

Received Signal Model

(t)nθas(t)

(t)nαs(t)

(t)nαs(t)

(t)nαs(t)

(t)ns(t)

(t)r

L1-L

32

21

1

Steering vector is the function of AOA dependent on the antenna geometry

      A     o

      An

 

Node B

s(t)

Rx signal with coherent assumption

1-L

1

α

α

1

θa

8/2/2019 Spatial Channel Model

http://slidepdf.com/reader/full/spatial-channel-model 12/39

NOT for distribution, confidential  

11

Steering Vector of Uniform Linear Array

1

2

1

1

 L

 L

a

 

 

 

 

    sin~

2exp d  j

Phase Differencebetween twoadjacent antenna

Steering vector of ULA: 

Plane wave

)sin( d 

Boresight

AoA

8/2/2019 Spatial Channel Model

http://slidepdf.com/reader/full/spatial-channel-model 13/39

NOT for distribution, confidential  

12

Discrete Uniform Distribution Model

      A     o

      A

 n 

Node B

UE

(t)nθa1Q

1s(t)(t)r

Q

0q

q

 Angle of sub-paths:

HQ

0q

qq θaθa1)(Q

1R

σ2

1

Q

qθθq

 

  

 

Correlation Matrix:

Rx Signal:

8/2/2019 Spatial Channel Model

http://slidepdf.com/reader/full/spatial-channel-model 14/39

NOT for distribution, confidential  

13

More Basic Definitions

θaRθaθPH

1

Power Spectrum Density

θawwθa

wθaθP

HH

2H

2

Beam pattern of antenna weight

H

LLL

H

222

H

111 wwλ wwλ wwλ R

Eigenvalue decomposition

8/2/2019 Spatial Channel Model

http://slidepdf.com/reader/full/spatial-channel-model 15/39

NOT for distribution, confidential  

14

-80 -60 -40 -20 0 20 40 60 80-20

-10

0

10Angular PSD of correlation matrix

Angle (degree)

   G  a   i  n   (   d   B   )

-80 -60 -40 -20 0 20 40 60 80-30

-20

-10

0Dominant Eigenbeam Pattern

Angle (degree)

   G  a   i  n   (   d   B   )

PSD of Macro Cell Model: 70 AoA, 10 AS

Long-term average power

profile according toangle

Beam pattern of thedominant eigenvector

Dominant eigenvector isassociated with 99.9%power

 AoA is around 15° 

 AS = 10° 

8/2/2019 Spatial Channel Model

http://slidepdf.com/reader/full/spatial-channel-model 16/39

NOT for distribution, confidential  

15

-50 0 50-40

-30

-20

-10

0

Angle (degree)

   G  a   i  n   (   d   B   )

Dominent Eigenbeam Pattern

-50 0 50-40

-30

-20

-10

0

Angle (degree)

   G  a   i  n   (   d   B   )

2nd Eigenbeam Pattern

-50 0 50-40

-30

-20

-10

0

Angle (degree)

   G  a   i  n

   (   d   B   )

3rd Eigenbeam Pattern

-50 0 50-40

-30

-20

-10

0

Angle (degree)

   G  a   i  n

   (   d   B   )

4th Eigenbeam Pattern

Eigenbeam Patterns of Macro Model

0 %0 %

99.9% 0.1%

8/2/2019 Spatial Channel Model

http://slidepdf.com/reader/full/spatial-channel-model 17/39

NOT for distribution, confidential  

16

-80 -60 -40 -20 0 20 40 60 80-30

-20

-10

0

10Angular PSD of correlation matrix

Angle (degree)

   G  a   i  n   (   d   B   )

-80 -60 -40 -20 0 20 40 60 80-40

-30

-20

-10

0Angular PSD of dominant eigenvector

Angle (degree)

   G  a   i  n   (   d

   B   )

PSD of Micro Cell Model: 60 AoA, 45 AS

Dominant eigenvector isassociated with 57%of total power

60 AoA

45 AS

8/2/2019 Spatial Channel Model

http://slidepdf.com/reader/full/spatial-channel-model 18/39

NOT for distribution, confidential  

17

-50 0 50-40

-30

-20

-10

0

Angle (degree)

   G  a   i  n   (   d   B   )

Dominent Eigenbeam Pattern

-50 0 50-40

-30

-20

-10

0

Angle (degree)

   G  a   i  n   (   d   B   )

2nd Eigenbeam Pattern

-50 0 50-40

-30

-20

-10

0

Angle (degree)

   G  a   i  n   (   d

   B   )

3rd Eigenbeam Pattern

-50 0 50-40

-30

-20

-10

0

Angle (degree)

   G  a   i  n   (   d

   B   )

4th Eigenbeam Pattern

Eigenbeam Patterns of Micro Cell

0.4 %3.7 %

57.2% 38.7%

8/2/2019 Spatial Channel Model

http://slidepdf.com/reader/full/spatial-channel-model 19/39

NOT for distribution, confidential  

18

Need Common Correlation Model

 Very limited simulation environments can beconsidered

Eigenbeamformer scheme has adopted this spatialchannel model

Uniformly distributed power on an angular region

Common & more reliable simulation spatial

channel model is required Need specific descriptions of more channel

parameters, AOA, PAS, AS, etc

8/2/2019 Spatial Channel Model

http://slidepdf.com/reader/full/spatial-channel-model 20/39

NOT for distribution, confidential  

19

Spatial Channel Model by AHG

Text description: SCM-077 11/2002 Recommended to use MIMO physical layer channel

model proposed

SCM AHG (AH-62) from 3GPP & 3GPP2

Develop and specify parameters and methodsassociated with Link level spatial channel model

For calibration only

System level spatial channel model Define physical parameters and system evaluation

methodology

8/2/2019 Spatial Channel Model

http://slidepdf.com/reader/full/spatial-channel-model 21/39

NOT for distribution, confidential  

20

Link level channel model

Developed and specified by 3GPP-3GPP2 SCM AH

Only for calibration purposes

Reflect only one snapshot of the channel behavior

Do not account for system attributes such asscheduling and HARQ

Only for comparison of performance results fromdifferent implementation of a given algorithm

Status: 95% completed

Distribution is not defined yet

8/2/2019 Spatial Channel Model

http://slidepdf.com/reader/full/spatial-channel-model 22/39

NOT for distribution, confidential  

21

System level channel model

Required for the final algorithm comparison Define the methodology for generating the

spatial channel coefficients between BS and MS

95% completed Will not be covered here but later

8/2/2019 Spatial Channel Model

http://slidepdf.com/reader/full/spatial-channel-model 23/39

NOT for distribution, confidential  

22

Terminologies MS = UE = terminal

= subscriber unit

BS = Node-B = BTS

 AS = angle spread

= azimuth spread

Path = Ray Path component

= Sub-ray

PAS = power azimuthspectrum

DoT = direction of travel

 AoA = angle of arrival

 AoD = angle of departure

PDP = power delay profile

      A     o

      A

 n

 

0 BS

UE

  D o  T

8/2/2019 Spatial Channel Model

http://slidepdf.com/reader/full/spatial-channel-model 24/39

NOT for distribution, confidential  

23

Parameters of Link Level SCM

Model Case I Case II Case III Case IV 

3GPP Case B Case C Case D Case A 

3GPP2 Model A, D, E Model C Model B Model F

PDP Mod. Pedestrian A Vehicular A Pedestrian B Single path

Speed (Km/h)1) 3

2) 30, 1203, 30, 120 3, 30, 120 3

# of paths1) 4 + 1 (LOS on, K=6 dB)

2) 4 (LOS off)6 6 1

Relative pathpower (dB)

& Delay (ns)

LOS on

0.0

-6.51

-16.21

-25.71

-29.31

LOS off 

 –Inf 

0.0

-9.7

-19.2

-22.8

0

0

110

190

410

0.0

-1.0

-9.0

-10.0

-15.0

-20.0

0

310

710

1090

1730

2510

0.0

-0.9

-4.9

-8.0

-7.8

-23.9

0

200

800

1200

2300

3700

0 0

Multipath fading propagation conditions

8/2/2019 Spatial Channel Model

http://slidepdf.com/reader/full/spatial-channel-model 25/39

NOT for distribution, confidential  

24

Parameters of Link Level SCM… 

Model Case I Case II Case III Case IV 

Topology Reference: ULA with 0.5, 4, 10 spacing N/A 

PASLaplacian distribution with

RMS angle spread of 2 or 5 degrees per path

depending on AoA/AoD

N/A 

 AoD/AoA 

(degrees)

50 for 2 RMS AS per path

20 for 5 RMS AS per pathN/A 

 Antenna gainpattern

3 or 6 sector antenna pattern

(For diversity oriented applications rather than beamforming applications)

Spatial parameters for NodeB

8/2/2019 Spatial Channel Model

http://slidepdf.com/reader/full/spatial-channel-model 26/39

NOT for distribution, confidential  

25

Parameters of Link Level SCM… 

Model Case I Case II Case III Case IV 

Topology Reference 0.5 N/A 

PAS

1) LOS on: Fixed AoA forLOS component, remainingpower has 360 degree

uniform PAS. ( RMS anglespread of 104 degrees)

2) LOS off: Laplaciandistribution with RMS anglespread of 35 degrees perpath

Laplacian distributionwith RMS anglespread of 35 degreesper path

OR 

360 degree uniformPAS ( RMS anglespread of 104degrees)

Laplacian distributionwith RMS anglespread of 35 degreesper path

N/A 

DoT

(degrees) 0 22.5 -22.5 N/A 

 AoA 

(degrees)

22.5 (LOS component)

67.5 (all other paths)67.5 (all paths)

22.5 (odd paths)

-67.5 (even paths)N/A 

 Antenna gainpattern

Omni directional with -1 dBi gain

Spatial parameters for UE

8/2/2019 Spatial Channel Model

http://slidepdf.com/reader/full/spatial-channel-model 27/39

NOT for distribution, confidential  

26

 Assumptions of Link Level SCM

Spatial channel parameters per path Each resolvable path is characterized by spatial

channel parameters: AS, AoA, PAS

 All paths are assumed independent

 Array Topologies

 Allow any type of antenna configuration, but must be

shared to reproduce and verify the results ULA with element spacing of 0.5, 4, 10 wavelengths

8/2/2019 Spatial Channel Model

http://slidepdf.com/reader/full/spatial-channel-model 28/39

NOT for distribution, confidential  

27

 Antenna Gain Patterns

UE: -1 dBi gain omni-direction Node B uplink/downlink 

Only for diversity oriented implementations (large spacing)

Need different antenna patterns for beamforming applications 

3 sector cell Bandwidth 70°, Maximum attenuation 20 dB, 14 dBi gain

6 sector cell

Bandwidth 35°, Maximum attenuation 23 dB, 17 dBi gain

Sector antenna formula in dB scale

180θ180,A,θ

θ12-minθA m

3dB

 

  

 

O f di ib i fid i l

8/2/2019 Spatial Channel Model

http://slidepdf.com/reader/full/spatial-channel-model 29/39

NOT for distribution, confidential  

28

Sector Antenna Patterns at NodeB

-120 -100 -80 -60 -40 -20 0 20 40 60 80 100 120-25

-20

-15

-10

-5

0Antenna Pattern for 3 sector cell

Azimuth in Degrees

   G  a   i  n   i  n   d   B

BW = 70 degreeBW = 70 degree

maximum attenuation (Am)

3 sector antenna pattern

NOT f di t ib ti fid ti l

8/2/2019 Spatial Channel Model

http://slidepdf.com/reader/full/spatial-channel-model 30/39

NOT for distribution, confidential  

29

Sector Antenna Patterns at NodeB… 

-120 -100 -80 -60 -40 -20 0 20 40 60 80 100 120-25

-20

-15

-10

-5

0Antenna Pattern for 6 sector cell

Azimuth in Degrees

   G  a   i  n   i  n   d   B

BW = 35 degreeBW = 35 degree

maximum attenuation (Am)

6 sector antenna pattern

NOT f di t ib ti fid ti l

8/2/2019 Spatial Channel Model

http://slidepdf.com/reader/full/spatial-channel-model 31/39

NOT for distribution, confidential  

30

 Average Received Power

θGσ

θθ2expNθP 0

dθθPNπ

π

1

0

 /10θA10θG

Laplacian distributed PAS

Normalization factor

Gain pattern in linear scale

θ  Angle of Arrival

θEθEσ22 RMS angle spread

NOT f di t ib ti fid ti l

8/2/2019 Spatial Channel Model

http://slidepdf.com/reader/full/spatial-channel-model 32/39

NOT for distribution, confidential  

31

 Average Received Power at NodeB

-50 -40 -30 -20 -10 0 10 20 30 40 500

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2Avaerage received power

Angle (degree)

   P   A   S

  v  a   l  u  e   P   (            )

3 sectored antenna with AoA = 20 and RMS AS = 5

NOT f di t ib ti fid ti l

8/2/2019 Spatial Channel Model

http://slidepdf.com/reader/full/spatial-channel-model 33/39

NOT for distribution, confidential  

32

 Average Received Power at UE

Laplacian distributed PAS with omni-directional gain 1θG

σ

θθ2expNθP 0

NOT for distribution confidential

8/2/2019 Spatial Channel Model

http://slidepdf.com/reader/full/spatial-channel-model 34/39

NOT for distribution, confidential  

33

 Average Received Power at UE… 

22.5 AoA & 35 RMS AS

-150 -100 -50 0 50 100 1500

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02Avaerage received power

Angle (degree)

   P   A   S

  v  a   l  u  e   P   (            )

NOT for distribution confidential

8/2/2019 Spatial Channel Model

http://slidepdf.com/reader/full/spatial-channel-model 35/39

NOT for distribution, confidential  

34

 Average Received Power at UE… 

22.5 AoA & 104 RMS AS (uniform over 360 degree PAS)

-150 -100 -50 0 50 100 1500

1

2

3

4

5

6

7

8x 10

-3 Avaerage received power

Angle (degree)

   P   A   S

  v  a   l  u  e   P   (            )

NOT for distribution confidential

8/2/2019 Spatial Channel Model

http://slidepdf.com/reader/full/spatial-channel-model 36/39

NOT for distribution, confidential  

35

Doppler Spectrum at UE

Dependent on DoT

PAS

 AoA 

      A     o

      A

 n

 

0 BS

UE

  D o  T

NOT for distribution confidential

8/2/2019 Spatial Channel Model

http://slidepdf.com/reader/full/spatial-channel-model 37/39

NOT for distribution, confidential  

36

Generation of link level channel model

 Average received power  Angle theta represents path components

Its distribution is TBD Uniformly distribution over [-180 180] degrees

Channel implementation techniques Correlation based

Ray based

Details are TBD Reference correlation values are provided

Nokia to provide formulas for computing correlationmatrices

NOT for distribution confidential

8/2/2019 Spatial Channel Model

http://slidepdf.com/reader/full/spatial-channel-model 38/39

NOT for distribution, confidential  

37

Future Plan

Link-level SCM generation and verification MatLab, SPW, etc

Continual study of system-level models

Using these models for performance testing invarious development projects (TDD, FDD, EV-DV,

TD-SCDMA)

NOT for distribution confidential

8/2/2019 Spatial Channel Model

http://slidepdf.com/reader/full/spatial-channel-model 39/39

NOT for distribution, confidential  

References

Old 3GPP Model: TSGR1#14(00)0867

TSGR1#15(00)1067

TSGR1#16(00)1187

TSGR1#17(00)1358 Tx Div Model:

TSGR1#26(02)

0765, 770

TSGR1#29(02)1139,1419,1440

1441 (TR25.869)

MIMO Model: TSGR1#22(01)1132

TSGR1#22(01)1136

TSGR1#23(01)1179 TSGR1(02)0141

SCM-077,November 2002

by 3GPP-3GPP2