songchaikul metin

101
i Nonlinear Control System Design using a Gain Scheduling Technique A Thesis Presented to The Faculty of the College of Engineering and Technology Ohio University In Partial Fulfillment of the Requirements for the Degree Master of Science by Metin - Songchai kul) ,/ March, 1993

Upload: harsh-vardhan-somani

Post on 14-Apr-2015

65 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Songchaikul Metin

i Nonlinear C o n t r o l S y s t e m Des ign

u s i n g a Gain Schedu l i ng Techn ique

A T h e s i s P resen ted t o

The F a c u l t y o f t h e Co l lege o f Eng ineer ing and Techno logy

Ohio U n i v e r s i t y

I n P a r t i a l F u l f i l l m e n t

o f t h e R e q u i r e m e n t s f o r t h e Degree

M a s t e r o f Sc ience

b y

M e t i n - Songcha i ku l ) ,/

March, 1993

Page 2: Songchaikul Metin

iii

Table of contents

Page

... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Acknowledgements ..... i v

........... ..................................................................................... Abstract ... v

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Chapter 2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1 Basics of Lyapunov S t a b i l i t y Theory 3

... , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 . 2 Linear Contro l ler Design .... 13

.... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 . 3 Gain Scheduling .... 29

... . . . . . . . . . ..... Chapter 3 Missile Flight Control Problem .. 3 2

........... 3 .1 Mathematical Descr ip t ion of M i s s i l e Mode1 3 3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 . 2 Design Object ives 3 6

Chapter 4 Design Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 8

4.1 Equi l ibr ium Point Select ion .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

......... 4 . 2 L inear izat ion around each Equ i l ib r ium Point 41

4.3 Linear Contro l ler Designs .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4 Scheduling the Set o f Linear Cont ro l le rs .. . . . . . . . . . . . . . . 60

Chapter 5 Summary and Conclusions ................................ 77

References ........... ....... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Appendix A Computer programs .................................................. A1

Page 3: Songchaikul Metin

Acknow ledaement

1 w ishes t o express s incere appreciat ion t o my advisor Dr.

Douglas Lawrence, f o r h i s support and guidance throughout the

course of t h i s study, w i t h o u t wh ich the complet ion o f t h i s thes is

would not have been possible.

Apprec ia t ion i s extended to the member o f the examinat ion

commi t tee f o r sac r i f i c i ng the i r f ree t ime, and g iv ing t h e i r valuable

c r i t i c i s m s : Dr. Aysin Yeltekin , Dr. Dennis I r w i n and Dr. Bra in Fabien.

Special appreciat ion i s extended to my fami l y : Pramot, Arunee

and Nutharin Songchaikul, f o r t he i r encouragement and support which

I have been able t o depend on.

Also, thanks t o Sr ikasem's f a m i l y who a lways help and care

throughout the years of my academic i n Ohio Univers i ty .

F ina l ly , deepest thanks to my special f r i end Nuthaya f o r her

help i n typing.

Page 4: Songchaikul Metin

Abst rac t

Real i s t i c models o f engineering sys tems of ten are nonl inear .

As a consequence, t he dynamical behav io r o f a s y s t e m t o be

cont ro l led changes w i t h the operat ing region. In recent years, one

design methodology t o cont ro l t h i s e f f e c t , ca l l ed Gain Scheduling,

has proven t o be successful . The basic idea o f gain scheduling i s t o

break the cont ro l design process i n to t w o steps. The f i r s t s tep i s t o

l inear ize the model about one or more operat ing po in ts . Then l inear

design methods are applied t o the l inear ized model a t each operat ing

p o i n t i n order t o ob ta in the s t a b i l i z e d sys tem w i t h i n the design

object ives. The f i na l step, the actual gain scheduling, i s obtained by

schedul ing o r i n te rpo la t i ng the gains of the loca l operat ing po in ts

designs i n o rder to handle the non l inear aspec ts o f t he design

problem.

In t h i s thes is , a nonl inear cont ro l le r w i l l be designed using a

gain schedul ing technique f o r a hypo the t i ca l m i s s i l e model. The

m i s s i l e considered here i s the same as discussed i n recent papers on

ga in schedul ing. Here, a nonl inear au top i l o t i s designed us ing

c lass ica l servomechanism theory and s t a t e f e e d b a c k k t a t e observer

based techniques.

Page 5: Songchaikul Metin

C h a ~ t e r 1

Introduction

I t i s a we l l - known f a c t t h a t a r e a l i s t i c sys tem model f o r

eng ineer ing app l i ca t i ons i s non l inear . As a consequence, t he

dynamical behavior of a system t o be con t ro l l ed changes w i t h the

operat ing region. One design method t o handle t h i s e f f e c t i s ca l led "

Gain Scheduling " . Recently, several papers have descr ibed studies

of gain schedul ing i n cont ro l sys tem design both i n l inear sys tem

aspects and nonl inear sys tem aspects, and of those studies, many

have focused on the appl icat ion of gain scheduling i n f l i g h t cont ro l

problems as publ ished i n [5] , [9], [ I 01, [ I 11, [ I 21, and [ 131. These

s tud ies have demonstrated tha t ga in scheduling can be a successful

design methodology f o r many appl icat ions o f engineering. The design

process f o r gain scheduling involves 2 basic steps.

1 . The sys tem t o be c o n t r o l l e d i s l i n e a r i z e d a t severa l

e q u i l i b r i u m po in ts (The equi 1 i b r i u m po in ts should be se lec ted t o

cover the desired operat ing range). Then, f o r each 1 inear ized plant, a

l inear t ime- inva r ian t design technique i s appl ied t o c rea te a loca l

c o n t r o l l e r w h i c h s a t i s f i e s the design o b j e c t i v e s f o r t h e sys tem

when operat ing su f f i c i en t l y close t o the given equ i l i b r i um po in t .

2 . The ac tua l gain schedul ing i s obta ined by "schedu l ing" or

Page 6: Songchaikul Metin

2 in terpo la t ing the gains of the cont ro l le rs i n step 1 between the

equil ibrium points. In th is way, a nonlinear control ler f o r a nonlinear

system w i l l be obtained.

Despite i t s populari ty, the gain scheduling method s t i l l has

some rest r ic t ions. For example, the operating condition i s normally

specif ied by the value of one or more exogenous variables and the

scheduled gain depends on the instantaneous values o f these

variables. The studies described in [ I 31 show that current gain

schedul ing i s necessar i ly l i m i t e d t o s low va r i a t i ons i n the

scheduling variables. Previously, th i s l im i t a t i on was jus t i f i ed only

through implementation and simulation, but [ l 11, [13], and a recent

paper 151 shows a mathematical formula to j us t i f y th is res t r ic t ion.

In t h i s thesis, the author w i l l use the gain scheduling

technique to design a nonlinear control ler fo r a hypothetical m iss i le

model, The miss i le considered here i s the same as discussed in [9-

101, but, instead of using an H- inf in i ty contro l ler as done in 191, the

author w i l l employ type- 1 servo system as the control ler.

Chapter 2 explains the theory that w i l l be used throughout th is

thesis. Chapter 3 describes the miss i le model. The design process

and s imulat ion resu l ts w i l l be discussed in Chapter 4. Chapter 5

w i l l set fo r th the conclusions of th is design work.

Page 7: Songchaikul Metin

C h a ~ t e r 2

Theory

In th is chapter the theory that related to th is thesis w i l l be

reviewed. Fi rst , the basics of the Lyapunov s tab i l i t y theory w i l l be

given. The detai l i n th is section w i l l include the theory of nonlinear

system, equi l ibr ium point, s tab i l i t y i n the sense of Lyapunov and

l inearizat ion. Next, the theory of l inear control design, type- 1 servo

system w i l l be described. Last, the technique fo r gain scheduling

w i 1 1 be considered.

2.1 Basics of Lva~unov Stabi l i tv Theory

For a given contro l system, the f i r s t and most important

aspect t o be determined i s i t s s tab i l i t y . A system i s described as

stable i f when we s t a r t the system somewhere around a desired

operating point, the system w i l l operate around t h i s point fo r all

fu tu re t ime. I f the system i s l inear and t ime- invar iant , many

c r i t e r i a are available fo r determining s tab i l i t y such as the Nyquist

S tab i l i t y C r i t e r i a and Routh's S tab i l i t y Cr i ter ia. I f the system i s

nonlinear, or t ime-varying, one cannot apply these c r i te r ia , The

most useful theory fo r determining the s t a b i l i t y of a nonlinear

Page 8: Songchaikul Metin

4 and/or t ime-varying system i s Lyapunov S tab i l i t y Theory.

Lyapunov's work, The General Problem o f Plot ion Stabil ity.,

together w i t h t w o methods fo r s tab i l i t y analysis (the l inearizat ion

method and the di rect method) was published i n 1892 by the Russian

mathematician Alex Mi khai louich Lyapunov. However, th i s theory did

not rece ive much a t t en t i on u n t i l the ear ly 1960 's when the

publ icat ion of the work of Lure's and a book by La Sal le and

Lefschetz brought Lyapunov's work t o the fore f ront o f the control

engineering community. Today, Lyapunov's 1 inearizat ion method has

come t o represent the theoret ical j u s t i f icat ior l of l inear control,

wh i le Lyapunov's d i rect method has become the most important tool

for nonlinear system analysis and design [ 141.

The Theory of Lyapunov also plays an important ro le i n the

design o f a contro l ler fo r a nonlinear system. In order t o provide

foundational informat ion regarding Lyapunov Theory, the fo l low ing

terms are defined and explained:

- Nonlinear System

A nonlinear dynamic system can be represented by a se t of

nonlinear d i f ferent ia l equation of the form

x = f(x,u,t)

Page 9: Songchaikul Metin

where

X - 1 i. ,n x 1 state vector

U = , m 1 input or control vector

In the case where the system does not e x p l i c i t l y contain

control input variables, the system i s described by the fo l lowing

equation.

x = f(x,t)

The number of states n i s cal led the order of the system. A

so lu t ion x ( t ) of Equation (2.1-2) i s re fe r red t o as the system

, p x 1 output or measurement vector Y =

Y1 -

Y2

... - YP -

Page 10: Songchaikul Metin

t ra jec tory in the state space for t 2 0

- Equilibrium Point

Def in i t ion: A s t a t e x u i s an equi l ibr ium s ta te (or

~ q u i l i b r i u m point) of the system i f once x ( t l is equal to x u , i t

remains equal to xu for a i l future time.

Mathemat ical ly , t h i s de f in i t i on means that an equi l ib r ium

point of the system i s a t r i p l e (xo,uo,yo of a constant state, input

and output such that

f(~g,uo,t) " 0

Many s t a b i l i t y problems are na tu ra l l y f o rmu la ted w i t h

respected to equi l ibr ium points.

- Stabi l i ty in the sense of Lyapunov

Definition: The Equil ibr ium s ta te xo = 0 i s said to be

stable i f , for any R>U, there exist r>U,, such that i f I/ x(UI //< r,

then /' x f t l I/< R for a l l t>U. Otherwise, the equil ibrium point i s

Page 11: Songchaikul Metin
Page 12: Songchaikul Metin

8

system t ra jec tor ies , which s ta r t closely t o the equi l i br ium point,

actual ly converge to the equi l ibr ium point as t ime goes to in f in i t y .

Also, i t i s necessary t o know how fast the system tra jector ies w i l l

converge t o the equi l ibr ium point. The fo l lowing def in i t ions address

these concepts.

Definition: An equil ibr ium point xu = U i s as,ymptotical/y

stable i f i t i s stable,, and i f in addition there ~ . x i s t s some r > 0

such that If x(UI If < r implies that x(tl 7' U as t 7' a,.

Definition: .An equil ibrium point xu = 0 i s e.xponential1,~

stable i f there exist two s t r i c t l y positive numbers a and A such

that

V t > 0 , 11 x(t) 11 I a Ilx(0) lle-At

for a1 1 x(Ul in some ha l l Br around the origin.

These s tab i l i t y def in i t ions are formulated to characterize the

loca l behavior of systems when the system operates near an

equi l ibr ium point. Local properties do not describe the behavior of

the system when the i n i t i a l s tate i s some distance away f rom the

equil ibr ium point. The fo l lowing def in i t ion describes a concept o f

Page 13: Songchaikul Metin

s tab i l i t y i n th is case.

Definition: I f asymptotic (or e.xponential) s tab i l i t y holds

f o r any i n i t i a l state,, the equi l ibr ium point i s said to be

asymptotical ly (or e.xponentially) stable in the large. I t is also

called globally asymptotically (or e.xponentiall,~) stable.

- Linearization

The las t s tab i l i t y theorem that w i l l be given i s the important

theorem fo r th is gain scheduling technique. This theorem give the

idea of the s tab i l i t y f o r nonlinear systems w i t h s l ow ly varying

inputs. I t i s used to guarantee nonlocal performance of the nonlinear

system. The t3eorem and the detai ls of the proof are discussed in

[S]. Here, the theorem in [51 w i l l be given again as;

For the system described as

~ ( t ) = f(x(t), u(t)) , x(b) =xo , t 2 to

assume

( H I ) f: R* x ~ m - + i s t w i c e continuously d i f ferent iable

(H2) there i s bounded, open set r c R~ and a continuously

Page 14: Songchaikul Metin

10

d i f f e ren t i ab le func t ion x:;- R" such tha t f o r each constant

input value u E r, ~(x(u), U) =O,

(H3) there i s a A > Osuch tha t f o r each u E r, the eigenvalues

of (~V~X)(X(U),U) have real pa r t s no greater than -A .

Theorem: Suppose the sys tem ( 1 . 1 ) s a t i s f i e s ( t i 1 ), (H2), and (H3) .

Then there i s a p* > o such tha t given any p E (0, p*] and T > 0, there

e x i s t 6,(p), B2(p, T)> 0 f o r wh ich the f o l l o w i n g proper ty holds. I f a

cont inuously d i f f e ren t i ab le input u ( t ) s a t i s f i e s 11 xo - x(u(to)) 11 <a1 f o r

~ ( t ) E r, t 2 to and

then the corresponding so lut ion o f the system given above s a t i s f i e s

II x(t> - x(u(t)) II < P , t 2 to.

Now the l i nea r i za t i on method w i 1 1 be discussed. Lyapunov's

l i n e a r i z a t i o n method i s concerned w i t h the l oca l s t a b i l i t y o f a

Page 15: Songchaikul Metin

11

nonlinear system. The idea of th is approach comes f rom the we l l -

known fac t that a nonlinear system, when operated in a suf f ic ient ly

small neighborhood of an equil ibrium point, may behave much l ike a

l inear system. This method involves l inearizing the given system in

the neighborhood of an equi l ib r ium point and determin ing the

behavior of the nonlinear system's t r a j ec to r i es by studying t h i s

1 inearized system using 1 inear system techniques.

Mathematically, the idea i s to expand the nonlinear funct ions

in to a Taylor series around the equil ibrium point and re ta in only the

l inear term, neglecting the higher-order terms provided they are

small compared to the l inear term. Consider the nonlinear dynamics

system described below;

Recal l an equ i l i b r ium po in t of the system i s a t r i p l e

( x ~ ~ u ~ ~ Y o 1 of constant state, input, and output such that

Page 16: Songchaikul Metin

f(xo,uo,t) = 0 for all t 2 to

Define Jacobian matr ices

By Taylor Series Expansion of f and g, the funct ions f and g

can be expanded around the equil ibrium state and input (xo,uo) as

f (x ,~ , t ) = f(x0,u0,t) + A(x0,uO,t) (x - xo)+ B(xO,uO,t) (u - uo) + hot's (2.1-6)

g(x,u,t) = g(q,uo,t) + C(xo,uO,t) (X - xo)+ D(%,u0,t) (U - uo) + hot's (2.1-7)

where hot's means higher-order terms

Assuming that the higher-order terms are smal l enough t o be

neglected one can approximate these functions as

f(x,u,t) = A(xg,uo,t) (x - xo)+ B(xo,~o,t) (u - uo)

Page 17: Songchaikul Metin

then def ine deviat ion var iables

x6 = x - xo u6 = u - uo Ya = Y - Yo,

Since x( t ) i s a constant vec tor

Using the l inear approximat ion of f and g around equ i l i b r i um

s t a t e and inpu t one can then descr ibe a l i n e a r s y s t e m t h a t

approximates the behavior of the nonl inear system (2.1-3) near the

equ i l ib r ium po in t as

y6(t) = C(xo,uO,t) xa(t) + D(xo,uo,t>uij(t) (2.1-8)

Based on the l inear ized sys tem (2.1-8>, one can apply l inear

design techniques t o guarantee the s t a b i l i t y of tP~is sys tem.

2.2 Linear Controller Desian

The design o f the cont ro l le r , wh ich regulates the given m i s s i l e

i n t h i s thes is problem, employs a type- l servo sys tem based on the

pole placement approach and s t a t e observers . Theorems re la ted t o

t h i s des ign inc lude po le p lacement des ign and t h e des ign o f

observers.

Page 18: Songchaikul Metin

- P o l e P l a c e m e n t

Consider SISO system

x = A x + B u

where x = s ta te vector (n x 1 vec tor )

Y = output s ignal (scalar)

u = contro l signal (sca la r )

A = n x n constant m a t r i x

B = n x 1 constant m a t r i x

C = 1 x n constant m a t r i x

The cont ro l s ignal w i l l be

u s - K x .

The 1 x n vector K i s ca l led the s ta te feedback gain vec tor .

Subs t i t u t i ng Equation (2.2-3) i n to Equation (2.2-1 ), w e obta in

The so lu t ion o f Equation (2.2-4) i s given by

Page 19: Songchaikul Metin

The s tab i l i t y of th is system i s determined by the eigenvalues

of the matr ix (A-BK). By choosing a proper K, one can construct the

mat r i x (A-BK) such that i t i s asymptot ical ly stable. This problem

of placing the closed-loop poles a t the desired location i s called the

pole placement problem. The technique used to solve t h i s problem

cons t ruc t s an asymp to t i ca l l y s tab le c losed- loop sys tem by

speci fy ing the desired locat ions f o r the closed-.loop poles. By

assuming the contro l law t o be u = -Kx, one can determine the

feedback gain vector K such that the closed-loop system as shown i n

FIGURE 2.2- 1 w ill have a desired characterist ic equation.

FIGURE 2.2-1 Block diagram w i t h u = -Kx

Page 20: Songchaikul Metin

16 When using t h i s technique, one must meet the necessary and

s u f f i c i e n t c o n d i t i o n t h a t t h e s y s t e m s t a t e i s c o m p l e t e l y

contro l lab le. Algebra ica l ly , t h i s i s equivalent t o nonsingular i ty of

t h e n x n c o n t r o l l a b i l i t y m a t r i x C ( A P B ) = [ B A B . - - A " - ~ B ] - Note, a l l

s t a t e var iab les are assumed to be avai lab le and measurable f o r

feedback. De ta i l ed i n f o r m a t i o n concern ing t h i s technique i s

explained i n [61. An approach f o r the determinat ion o f the s t a t e

feedback ga in m a t r i x K presented n e x t w a s developed by

J.E.Ackermann. This approach i s known as Ackermann's formula.

Ackermann's formula

The s ta te equation f o r th i s system i s given by

x = A x + B u .

Assume that the system i s completely s ta te contro l lab le .

Ackermann's formula i s given as

K = [0 0 ... 0 11 [B f AB f A*B f . . . i B ] - ' a ( ~ ) (2.2-6)

and

a (s) = ( s - ~ i ) ( s - ~ 2 ) . . . ( s - c I ~ )

= sn+ a 1 s n - l + . . . +a,.ls + an

where p 1 .p2, ... .pn = the desired closed-loop poles.

Page 21: Songchaikul Metin

- Design of State Observers

I n the pole placement approach, one assumes t h a t a l l s t a t e

var iables are avai lab le f o r feedback. For a f i r -s t o r second order

sys tem, f u l l s t a t e feedback i s not an unreasonable expecta t ion .

However, f o r most high order systems, a l l s t a t e var iab les are not

avai lable f o r feedback; t o implement pole-placement design i n these

sys tems, i t i s necessary t o e s t i m a t e these unava i lab le s t a t e

var iab les f r o m the measurements tha t can be made on the system.

The method used to es t ima te the unavai lable s t a t e s i s commonly

ca l l ed a s t a t e observer A s t a t e observer e s t i m a t e s t h e s t a t e

va r iab les based on the measurements o f the output and con t ro l

var iables w i t h a r b i t r a r i l y speci f ied er ror dynamics, bu t can only do

so on the condi t ion that the system i s completely observable. Also,

[6] has provided proof of t h i s fac t

A fu l l -o rder s t a t e observer i s one tha t es t ima tes a l l s ta tes

va r iab les o f the sys tem regardless o f whe the r o r n o t they are

d i r e c t l y measurable. A minimum-order s t a t e observer i s def ined as

an observer t h a t e s t i m a t e s only the m i n i m u m number of s t a t e

var iables.

Th is thesis w i l l only consider the f u l l order s t a t e observer t

Use ? t o designate the observed s ta te vector f o r

Page 22: Songchaikul Metin

Assume that state x i s to be approximated by the state ? of

the dynamic model as show in FIGURE 2.2-2

From FI GURE (2.2-2),

+ X

; = A ? + B U + L ( ~ - G ) (2.2-9)

which represents the state observer w i t h y and u as input and - x as output.

1/s

A

b Y + 2

X -

U

-

C B => q +

-

: l/s ,

C A ,

2

B u u -

3

+ +

X, > + - - 4 +

L 4

FIGURE 2.2-2 Block diagram o f system w i t h ful l-order s ta te observer

Page 23: Songchaikul Metin

19 To obta in the observer e r ro r equation, subt rac t Equation (2 .2 -

9) f r o m Equation (2 .2 -7)

x - 2 = Ax+Bu - Ax?-Bu-L(Cx-Cs = (A-LC) (x - x) (2.2- 10)

Define the d i f fe rence between x and ii as the e r ro r vec to r or

e = X-ii and Equation (2.2- 10) becomes

e = (A-LC) e . (2.2- 1 1)

Th is i l l u s t r a t e s t h a t t he eigenvalues of t h e m a t r i x A-LC

determine the dynamic behavior of the e r ro r vec tor .

I f the eigenvalues of m a t r i x A-LC are chosen i n such a way

t h a t t he e r r o r s y s t e m 2 2 - I i s exponen t ia l l y s t a b l e w i t h

acceptable r a t e o f decay, then any e r r o r vec to r w i l l tend t o zero

w i t h adequate speed.

Since the problem o f designing a fu l l -o rder observer requi res

t h a t the observer gain m a t r i x L be such t h a t A-LC has desi red

eigenvalues, t h i s problem resembles the pole p lacement problem.

Thus, using the Pr inc ip le of Dual i ty, l e t

z = A*Z + C*V (2.2- 12)

and assume the contro l s ignal y t o be

v = -L*z

Page 24: Songchaikul Metin

20

L e t I J ~ . I J ~ . .Pn be the des i red eigenvalues o f t he s t a t e

observer m a t r i x , and assume the dual sys tem i s complete ly s t a t e

con t ro l lable. Fur thermore, tak ing the same p i ' s as the desi red

eigenvalues o f the s ta te feedback gain mat r ix , one can w r i t e :

Is1 - (A* - C8L*)I = (s - pl)(s- pZ) ...( s - p,)

* * Since (A*-c L 1 has the same eigenvalues as (A-LC), one

can determine the observer gain L by f i r s t de termin ing L* i n the

pole placement approach

A c k e r m a n n ' s F o r m u l a

Consider Equation (2.2- 12) and Equation (2.2- 13)

The Ackermann Formula f o r pole placement can be w r i t t e n as

L* = [O 0 ... 0 11 [C* A'C* I . . . (A*)"-~c*]" a(A)

Taking transposes, one w i l l obta in Ackermann's Formula f o r

the s t a t e observer gain as

Page 25: Songchaikul Metin

and

where P ~ . P ~ . ... .Pn = the desired eigenvalues of observer e r ro r

dynamics.

I n the pole placement design process, w e assumed t h a t the

actual s t a t e x ( t ) was avai lab le f o r feedback; however, the actual

s t a t e x ( t ) may not be measurable. Therefore, w e need t o design an

observer and use the observed s t a t e G(t ) f o r feedback. Thus, the

design step involves a two-stages, f i r s t determine the feedback gain

m a t r i x K t o y i e l d the desi red closed-loop c h a r a c t e r i s t i c equat ion

assuming s t a t e feedback and second determine the observer gain

m a t r i x L t o y i e l d the desired observer cha rac te r i s t i c equat ion. The

e f f e c t o f using g(t) instead of the actual s t a t e x(t) on the closed-

loop contro l system i s discussed i n [ 6 ] . Thus, only the conclusion o f

t h i s e f f e c t w i l l be mentioned.

Page 26: Songchaikul Metin

22

Since the character is t ic equation that described the dynamics

of the observed-state feedback control system i s given as

I sI-A+BK I 1 sI-A+LC I = 0

Obviously, i t shows that the closed-loop poles of the combined

observer-state feedback system comprise the poles due to the pole

placement design together w i t h the poles due to the observer design.

This means that the pole placement design and the observer design

can be done separately and combined together to form the observer-

state feedback control system.

- Servo system

FIGURE 2.2-3 Block diagram of Type-1 servp system

In the discussion of pole placement and the design of a state

observer, only a closed-loop system wh ich has no input was

considered. The purpose of such a design Is t o re tu rn a l l s ta te

variables f rom the i r i n i t i a l values t o values of zero when the states

Page 27: Songchaikul Metin

23 have been perturbed. Such a system i s ca l led a regulator . However,

many con t ro l sys tems, inc lud ing the con t ro l sys tem discussed i n

t h i s thes is , requi re the system output t o t rack an external reference

inpu t . I n such cases, t h i s necess i ta tes m o d i f y i n g t h e design

equation of the pole placement and the s t a t e observer. These types

o f s y s t e m s are known as servo sys tems and are i l l u s t r a t e d i n

FI GURE 2.2-3.

Servo system design involves cons t ruc t ing compensators and

feedback l a w s tha t y i e l d a s table (BIB0 and /o r asympto t ic ) closed-

loop system able t o t rack a speci f ied c lass of re ference signals. In

FIGURE 2.2-3, the in tegra tor , together w i t h s t a t e feedback scheme,

i s used t o s t a b i l i z e the sys tem and a s y m p t o t i c a l l y t r a c k s tep

reference inputs w i t h zero steady-state e r ro r .

Since the g iven p lan t ( m i s s i l e problem) does no t invo lve an

in tegrator , t h i s thes is w i l l consider only the design theory o f a type

1 servo sys tem where the p lan t has no i n teg ra to r . As ment ioned

e a r l i e r , i n m o s t cases, no t a l l s t a t e va r iab les can be d i r e c t l y

measured, theref ore t h i s considerat ion of servo sys tem design w i l l

a lso inc lude a d iscuss ion o f the s t a t e observer. A type- 1 servo

sys tem where the p lant has no in tegra tor i s shown i n FIGURE 2.2-4.

Page 28: Songchaikul Metin

FIGURE 2.2-4 Block dlagram o f type- 1 servo system w i t h s t a t e observer

F r o m this f igure, we have

x(t) = Ax(t) + Bu(t)

The c o n t r o l l aw i s descr ibed as

Page 29: Songchaikul Metin

where u( t ) = contro l s ignal (sca la r )

y ( t ) = p lant output signal (scalar)

r(t) = reference input signal

c ( t ) = output of in tegra tor ( s ta te var iab le o f t he system)

I t w i l l be assumed tha t :

1 . The p lant i s contro l lab le and observable

2. The plant has no pole a t s=O

3. The p lant has no zero a t s=O

Assume t h a t the re fe rence input (r(t) = s t e p func t i on ) i s

appl ied a t t = 0. As a consequence of the e f f e c t of the add i t ion of

the observer on a closed-loop system, the pole placement design and

the observer design can be design separately and combined together

t o fo rm the observer-state feedback system. Thus, f r o m FIGURE 2.2-

4, we w i l l use the pole placement approach t o design gain K and K i

t o s tab i l i ze the system. Then the observer design f o r gain L w i l l be

app 1 i ed.

Assuming the actual s t a t e s x ( t ) are ava i lab le f o r feedback,

one can fo rm the dynamic equation of type- 1 servo sys tem as

Page 30: Songchaikul Metin

An asympto t ica l l y s table system w i l l be designed such tha t f o r

r(t) = r, t 2 0 as t -> m, x(t), f(t), and u(t) approach cons tan t

values, denoted xss, fss, and us, respect ive ly . Further, f(t) -> 0 and

A t steady state, one has

Since r(t) i s a s tep input , thus r(t) = r (cons tan t ) . By

subtract ing Equation (2.2-22) f r om Equation (2.2-21) and def in ing

x(t) - xss = xe(t>

E(t> - ESS = Ee(t)

w e have

Page 31: Songchaikul Metin

where ue(t> = -Q(t) + KiEe(t>

Define a new (n+ 1 ) th-order error vector e( t ) by

then Equation (2.2-23) becomes

$(t) = &t) + Bue(t)

where

The control signal u,(t) becomes

where K = [ K I -Ki]

The idea of f i r s t design stage i n type-1 servo system i s to

design a stable (n+ l ) th-order regular system that w i l l b r ing the

new error c(t) to zero. And the s ta te error equation of t h i s system

can be found by put t ing Equation (2.2-25) into Equation (2.2-24)

$(t) = (i - BK) a t )

Therefore, i f the desired eigenvalues o f ma t r i x X - B K are

Page 32: Songchaikul Metin

28

specif ied as pl , p2 , ..., pn + I in order to have the zero steady state

er ror , the s ta te feedback gain m a t r i x K and the in tegra l gain

constant K i can be determined by the pole placement approach.

Now consider the s ta te observer t o design the gain L. To

obtain the observer er ror equation, subtract ing Equation (2 .2-20)

from Equation (2.2- 16), we have

x - i? = Ax+Bu - Ax--Bu-L(Cx-C%) = (A-LC) (x - 2) (2.2-26)

Define the difference between x and ii as the error vector e or

e = (A-LC)e (2.2-27)

From Equation (2.2-27), we see that the dynamic behavior of

the er ror vector i s determined 5y the eigenvalues of mat r i x A-LC.

I f the eigenvalues o f mat r ix A-LC are chosen in such a way that the

dynamic behavior of the error vector i s asymptot ical ly stable and i s

adequately fast , then any error vector w i l l tend t o zero w i t h an

adequate speed. Since we assumed that th is system i s completely

observable, the gain L of state observer approach can be chosen by

- speci f icat ion of the desired eigenvalues F1 , F2 , .... pn of the matr ix

A-LC. At th is point, one can f ind the gain K, Ki and L which makes

th i s type-1 servo system have z e r o steady state error.

Next the closed-loop s ta te equation o f t h i s type-1 servo

Page 33: Songchaikul Metin

29

system in FIGURE 2.2-4 w i l l be developed for future reference i n the

design steps.

Consider Equation (2.2- 1 6 ) - Equation (2.2-20);

Put Equati on(2.2- 1 9) into Equation (2.2- 16) t o obtain

~ ( t ) = Ax(t) + B ( - E ( t ) + Kic(t) )

Put Equation (2.2- 17) into Equation (2.2- 18) t o obtain

Putting Equation (2.2- 17), (2.2- 19)) and (2.2-28) into Equation (2.2-

20) yields f inal ly,

Thus, the combination of Equation (2.2-28), (2.2-29)) and (2.2-

30) gives the closed-loop system as

A -BK BKi LC A-BK-LC 13Ki ] - C 0 0

? - x(t)

%t)

- SO) , + [H ] d t )

Page 34: Songchaikul Metin

2-3 Gain Schedulinq

Rea l i s t i c models of engineering systems are t y p i c a l l y

nonlinear. In studying control system design, an important e f fec t of

th i s kind o f system emerges: the dynamic behavior of a system t o be

cont ro l led changes w i t h the operat ing region. An approach to

handling th is e f fec t i s called "Gain Scheduling".

As f i r s t noted, current gain scheduling pract ice i s l im i t ed to

s low var ia t ion of exogenous scheduling var iables. Thus i n the

considered model, the operating condition had to be arranged so that

i t would be spec i f ied by the value of one o r more exogenous

var iables, then the gains w i l l be scheduled according t o the

instantaneous values of the exogenous variable. The model of the

system w i l l resemble as shown in FIGURE 2.3-1.

Page 35: Songchaikul Metin

w( t),exogenous (scheduling) variables

FIGURE 2.3- 1 System for applying gain scheduling

r( t ) r

The application of gain scheduling t o the contro l ler design i s

divided into 4 steps:

1 , select a set of equil ibrium points to cover desired operating

range

2. l inearize the plant around each equil ibrium point

3. design a l inear control ler for each l inearizat ion

4. schedule the set of l inear control lers

To determine an equil ibrium point (step I ) , set f(x,u,t)=O and

Nonlinear u ( t ) Nonlinear Control ler plant

The l inearizat ion about an equi l ibr ium point i n step 2 involves

expanding f and g i n a Taylor series at the equi l ibr ium point and

neglecting the higher order terms.

Page 36: Songchaikul Metin

32 The type 1 servo system w i l l be designed fo r each l inear

contro l ler in step 3 as previously described.

Scheduling or interpolat ing the set of l inear control lers in the

las t step has the basic idea to interpolate the l inear cont ro l le r a t

intermediate operating conditions. That is, a scheme i s devised fo r

changing the gains i n the con t ro l le rs based on the operat ing

condit ion of the system. The detai ls of scheduling techniques used

i n t h i s thesis w i l l be discussed in chapter 4.4.

Page 37: Songchaikul Metin

C h a ~ t e r 3

Missi le Fl iaht Control Problem

Consider m i s s i l e -a i r f rame con t ro l problem i l l u s t r a t e d i n

FI GURE 3- 1 .

F in defect ion Ve loc i t y vec to r

attack

FIGURE 3- 1 M iss i l e Fl ight contro l problem

When the vehic le i s f l y i n g w i t h an angle of a t tack ( a ) , l i f t i s

developed. T h i s l i f t may be represented as a c t i n g a t a cen t ra l

loca t ion (center o f pressure). The vehic le w i l l be s t a t i c a l l y s tab le

o r uns tab le ( w i t h o u t co r rec t i ve t a i 1 de fec t ions) depending on the

loca t ioh of the center of pressure re la t i ve t o the center of mass [21.

The problem focused on i n t h i s t hes i s i s t h a t o f c o n t r o l l i n g t h i s

vehic le t o t rack commanded normal accelerat ion by generat ing a t a i l

f i n defect ion angle. The au top i lo t wh ich needs t o be designed w i l l

Page 38: Songchaikul Metin

34 accept a normal accelerat ion command f rom some ou te r guidance

system. The f i r s t par t of t h i s chapter w i l l introduce the descr ip t ion

of a hypothet ica l m i s s i l e model tha t w i l l be used i n the f o l l o w i n g

design discussion. Some of the m i s s i l e ' s var iab le are measured by

gyros and accelerometers. The las t par t of t h i s chapter w i l l show

the requirements of the autopi lo t design. The process o f t h i s design

w i l l be discussed i n the next chapter.

3.1 Mathematical D e s c r i ~ t i o n of Missile Model

The m i s s i l e f l i g h t contro l problem used i n the thes is design i s

shown i n FIGURE 3.1-1.

FIGURE 3.1 - 1 The block diagram of m i s s i l e model

M ( t )

Air f rame Dynamics

h(t> = &M(t)G[a(t>,6(t),M(t)lcos(a(t>>+q(t)

6 b actuator

6 b a i r f r ame

-b accel erome t o r -b p i t c h r a t e

Page 39: Songchaikul Metin

Actuator Dynamics

Output

Var iables

a(t) = angle of attack, range -20'1 a 5 20'

M(t) = Mach number, range 2 M 4

q(t) = pitch rate.

GC(t) = commanded tail fin deflection angle

6(t) = actual tail fin deflection angle.

qc(t) = commanded normal acceleration.

qz(t) = actual normal acceleration.

note : The angles a re measured i n degrees.

The acce le ra t i on i s measured i n gees

Simulation Variable

Page 40: Songchaikul Metin

36 F o r simulation purposes, a state equation for Mach number i s

defined as

Aerodynamic Coefficients

Constants

K, = (0.7) PoS/mv,

Ax = (0.7) PoSCa/m

where Po = stat ic pressure at 20,000 f t = 973.3 lbs / f t2

s = surface area = 0.44 f t 2

m = mass = 13.98 slugs

Page 41: Songchaikul Metin

37 vs = speed of sound at 20,000 f t = 1036.4 f t /sec

d = diameter =0.75 f t

IY = pitch moment of inert ia = 182.5 slug-ft2

Ca = drag coefficient = -1.5

=0.7

3.2 Desian Obiectives

The requirements of the design are as fol lows:

( 1 ) Obtain robust s tab i l i t y over the operating range. The

operating range i s specif ied by the angle of at tack a and Mach

number M and consists of those points (a,M) such that -200sas200

and 2 s M s ( alt itude = 20,000 f t . ) .

Page 42: Songchaikul Metin

38 ( 2 ) Track step normal accelerat ion commands w i t h t i m e

constants of approximately 0.25 second or less.

( 3 ) Maintain greater than 30 dB attenuation at 300 rad/sec for

the open-loop l inearized t ransfer funct ion w i t h the loop broken at

the actuator input. This requirement seeks t o avoid exc i t ing the

unmodelled structural dynamics.

Page 43: Songchaikul Metin

Chapter 4

Gain Schedulina Desian

I n t h i s chapter t he non l inear sys tem design us ing a ga in

schedul ing technique w i l l be discussed. An a u t o p i l o t w i l l be

designed i n o rder t o c o n t r o l the m i s s i l e p rob lem discussed i n

chapter 3. By using the gain schedul ing technique the a u t o p i l o t

design i s div ided i n t o 4 steps as

1 , equ i l ib r ium point se lect ion

2. l inear iza t ion around each equ i l ib r ium po in t

3, l i near contro l l e r designs

4. schedclling the set o f l inear cont ro l le rs .

Each o f these des'ign s teps w i l l be d iscussed n e x t A f t e r

obta in ing the au top i lo t f rom the design method, the local s t a b i l i t y

of the m i s s i l e w i l l be checked. And a t the end o f t h i s chapter the

s i m u l a t i o n by SIMULAB w i l l be appl ied t o the m i s s i l e i n order t o

check the m i s s i 1 e 's performance.

4.1 Eauilibrium Point Selection

From the mathemat ica l descr ip t ion i n Chapter 3, the m i s s i l e

model i s w r i t t e n as a set o f nonlinear d i f f e r e n t i a l equations as

Page 44: Songchaikul Metin

where

x = a 4 X 1 s tate vector so that

Thus,

= K,M(t)G[a(t),G(t),M(t)lcos (a(t)) + q(t) =, f l(x(t),u(t),w(t))

To determine the equi l ib r ium po in ts of t h i s system, by

def ini t ion,we set f(x,u,y) = 0. Thus the set of equi l ibr ium poirlts

i s calculated and shown as fo l lows:

Page 45: Songchaikul Metin

6(t) = - Isgn(a(t))laJa(t)13 + bmla(t)12 + G,($M(~) -7)la(t)ll , and dm

f~(x(t),u(t),w(t)) = 0, imp ly ing tha t

a n d q(t) = KaM(t)C,[a(t),6(t),M(t)lcos (a(t)) = 0:

q(a,M) = -K,MCJa,G(a,M),Mlcos ( a )

and the constant operating point o f the output func t ion i s ca lcu lated

as

Page 46: Songchaikul Metin

g(x(t),u(t> ,w(t>) = y

and rl,(t) = KzM2(t)G[a(t),G(t),M(t)l:

rlz(a,M) = KzM2G[a,G(a,M),Ml

4.2 Linearization around each eauilibrium point.

The nonlinear plant i s given as

where

To l inearize the nonlinear system, we use the Taylor series

expansion of f and g around an equi l ibr ium s ta te and neglecting the

higher-order term of order greater than 2, which are assumed t o be

small, we have

Page 47: Songchaikul Metin

where

Z(t) = x(t) - x(a,M)

G(t) = 1Z(t) - rlz(a,M)

The Jacoblan mat r ices A(a,M), B(a,M), C(a,M)are calculated as

I-

Page 48: Songchaikul Metin

44

The coe f f i c i en t ma t r i ces of the 1 inear i zed p lan t are ca lcu la ted

v i a PROGRAMftl shown i n appendix f o r any e q u i l i b r i u m p o i n t

spec i f ied by (a,M).

4.3 Linear Controller Desians

As ment ioned ear l ier , i n order t o design a con t ro l l e r t o cont ro l

nonl inear plants, i t i s necessary t o break the cont ro l design process

i n t o t w o steps. F i rs t , one must design local l inear con t ro l l e rs based

on 1 i n e a r i z a t i o n o f t he non l inear p l a n t s a t seve ra l d i f f e r e n t

operat ing condi t ions. Second, one must in te rpo la te the gains of the

local designs. The process o f a l inear cont ro l le r design i s described

be low.

In designing these cont ro l le rs , the p lan t t h a t w e consider i s

t h e l i n e a r i z e d p l a n t c a l c u l a t e d f rorn S e c t i o n 4.2, s i n c e i t i s

necessary t o design a cont ro l le r f o r the l inear ized p lan t a t several

d i f f e r e n t opera t ing p o i n t s . Here, consider 3 d i f f e r e n t opera t ing

po in ts a t a ; 1 2 , 3 and (1;,4). I t was prev iously observed i n

[9] t ha t the so lut ions are a f fec ted by var ia t ions i n Mach numbers and

on ly weak ly a f f e c t e d by changes i n angle o f a t tack ; t he re fo re , 0

se lec t ing an angle o f a t tack a t 10 f o r each o f th ree Mach numbers

represents a reasonable compromise i n tha t t h i s va lue represents

the m i d po in t of the desired operat ing range. The f i r s t ob jec t ive f o r

Page 49: Songchaikul Metin

45 t h i s s tep is , f o r f i xed Mach number, the con t ro l l e r mus t s tab i l i ze a l l

p lan t l inear iza t ions corresponding t o a l l values of angle o f a t tack

be tween -200 < a < 200 By s y m m e t r y p r o p e r t i e s o f the p l a n t

descr ip t ion, one need consider only $ < a < 2$

The type 1 servo system based on pole placement i s u t i l i z e d i n

order t o design the desired cont ro l le r . Since some o f s t a t e var iab les

are not avai lable f o r measurement, the s t a t e observer i s placed in to

t h i s servo system. De ta i l s about t h i s type-1 servo sys tem were

given i n Sect ion 2.2 f rom wh ich the closed -loop system i s described

In order t o meet the design ob jec t ive , the open-loop t r a n s f e r

f unc t i on of the l inear ized system requi res the loop t o be opened a t

the input t o the ac tua tor . Before going f u r t h e r t o t h e c o n t r o l l e r

Page 50: Songchaikul Metin

46 design step, the open-loop system i s developed here. FIGURE 4.3- 1

shows a blclck diagram of the open-loop system which i s developed

f rom FIGURE 2.2-4.

FIGURE 4 3 - 1 B l o c k d 1 2 c r w - g f o a e n - l o g p 5ys:en

The dynamics o f the open-loop system i s described as

r

A 0 0 LC A-LC 0 -C 0 O J

- 1

d t i 1

%(ti +[E3]ul(t)

- f(t) J

Page 51: Songchaikul Metin

I n Chapter 2.2, a method t o f i n d the ga in K o f the po le

placement design and the gain L of the s t a t e observer was given by

using Ackermann's formula. However, i n t h i s cont ro l le r design step

these can be found d i r e c t l y by using the "PLACE" command i n the

Control System Toolbox of MATLAB.

The f i r s t design i s calculated i n PROGRAM #2. The p lan t used

i s the l i nea r i zed p l a n t f r o m PROGRAMXl. I n de te rm in ing the

s u i t a b l e ga in v e c t o r K t h a t g i ves the bes t o v e r a l l sys tem

performance, the several d i f f e r e n t ma t r i ces K are examined v i a

computer s imu la t i on t o ob ta in the response charac te r i s t i cs o f the

s y s t e m The m a t r i x K i s based on the se lec t ion o f the eigenvalues

wh ich give the desired charac ter is t i c equation. I n our design, a f t e r

several s imu la t ions to check the system charac ter is t i cs , i t i s found

t h a t the e i genvalues a t [ -36 .3 , - 3 6 . 9 6 + 0 . 6 6 i , - 3 6 . 9 6 - 0 . 6 6 i , -

37.62+1.32 i , -37.62- 1 .32 i l g ive the bes t gain m a t r i x K t h a t i s

su i table f o r the design object ives.

The observer gain m a t r i c e s L are considered i n the same

Page 52: Songchaikul Metin

48 manner as the gain K . The best gain matr ix L which gives the

suitable response for the design objectives is defined by placing the

eigenvalues for states observer technique at [-6 16+ 1 1 i, -61 6-1 1 i, -

627+22i, -627-2213.

In addition, PROGRAM "2 simulates the closed-loop system

step response and the frequency response of the open-loop system

From PROGRAM #2, the gain K, K i and L for the controller a t 0 0 0

the constant equi l ibr ium point (a,M); ( 10,2), ( 1 0,3), and ( 10,4) are

given respectively as

at f ixed Mach number 2:

KK2 = [ -5.7 137e+00, -4.56 13e-0 1 , -4.0079e-0 1 , - 1 . 1 296e-031

Ki2 = 6.3689e+O 1

KL2'= [-7.7941 e+02, -7.6420e+04, 2.0806e+03, -2.5828e+051

at f ixed Mach number 3:

KK3 = [-2.2529e+00, - 1.7727e-0 1 , -4.0539e-0 1 , - 1 . 1 405e-031

Ki3 = 1.4099e+01

KL3'= [-4.0547e+02, -3.9609e+04, 9.19 1 8e+02, - 1.1657e+05]

at f ixed Mach Number 4:

KK4 = [ - 1.3009e+00, -9.5867e-02, -4.0555e-0 1 , - 1 . 1 457e-031

Ki4 = 5.0734e+00

Page 53: Songchaikul Metin

where KK2=the gain K design a t f i xed Mach number 2

Ki2=the gain K i design a t f i xed Mach number 2

KL2=the gain L design a t f i xed Mach number 2

and KK3, Ki3, KL3, KK4, K i 4 and KL4 are defined i n the same but a t

the f i xed Mach number 3 and 4 respect ive ly .

The step response of the closed-loop l i nea r sys tem a t th ree

cons tan t ope ra t i ng p o i n t s a re p i c t u r e d i n FIGURE4.3-2, w h i c h

i l l u s t r a t e s t h a t the ou tpu t t racks the s tep command w i t h t i m e

constants less than 0 .25 sec. FIGURE 4.3-3 descr ibes the frequency

response of the open-lcop system a t those equ i l ib r ium points; w i t h a

frequency of 3 0 0 rad/sec, a l l the magnitude are less than -30 dB.

Both graphs demonstrate t h a t the prev iously spec i f i ed eigenvalues

y i e l d gains K, K i and L wh ich achieve the design object ives.

Page 54: Songchaikul Metin

0 FIGURE 4.3-2 Step Response of closed-loop system at M=2, 3 , and 4 ,alfa= 10

Frequency (radlsec) 0

FIGURE 4.3-3 Frequency Response of open loop system at M=2, 3, and 4 ,alfa= 1 0

Page 55: Songchaikul Metin

51 As prev iously noted, a con t ro l l e r a t a f i xed Mach number must

s a t i s f y the design ob jec t ives over the range o f an angle of a t tack

between 6 t o 200 Thus PROGRAM "3 i s created in order t o check

the s t a b i l i t y o f the sys tem as the angle o f a t t a c k va r ies . Th i s

program uses the constant gain K, K i and L found e a r l i e r a t each

f i x e d cons tan t ope ra t i ng po in ts . The same p l a n t c o e f f i c i e n t s

ma t r i ces a t those points are use t o be the c o e f f i c i e n t s ma t r i ces of

the s t a t e observer i n the considered system.

For convenience i n represent ing the design s tep and output, the

author now w i l l f i r s t consider the c o n t r o l l e r design s tep a t the

f i x e d Mach number 2. The f i x e d Mach number 3 and 4 w i l l be

addressed la te r .

The s i m u l a t i o n are app l ied t o the c o n t r o l l e r w h i c h are

designed i n PROGRAMs3 t o check the s t a b i l i t y of the sys tem as the

angle of a t t a c k vary between t o 26 We s imu la ted PROGRAMz3

w i t h a l l the angle of a t tack i n the range of i n te res t . Around the

0

constant operat ing design po in t (a,M) = (10,2), the c o n t r o l l e r can

s a t i s f y a l l the design object ives, but when the angles of a t tack are

changed, the con t ro l l e r performance i s degraded. I t means t h a t the

c o n t r o l l e r i s able t o s t a b i l i z e the sys tem only a t t h e va lues o f

0

at tack wh ich do not d i f f e r much f r o m the design point , a = l o . When

the angle o f a t t a c k changes s i g n i f i c a n t l y , the c o n t r o l l e r cannot

Page 56: Songchaikul Metin

52 s t a b i l i z e t h e s y s t e m . A t t e m p t s t o s e l e c t d i f f e r e n t des ign p o i n t s

cor responding t o d i f f e r e n t angle o f a t t ack y i e l d comparab le r e s u l t s .

The l i n e a r s i m u l a t i o n s a t d i f f e r e n t ang le o f a t t a c k a r e shown

i n FIGURE 4 . 3 - 4 and FIGURE 4 .3 -5 . FIGURE 4 . 3 - 4 s h o w s t he s t e p

responses o f the c losed- loop sys tem a t the cons tan t Mach number 2 0 0 0

and t h e angle o f a t t a c k 0 , 10, and 20 . The f requency responses o f

the open-loop sys tem a t the same design p o i n t s va lues a re d isp layed

i n FIGURE 4.3-5. The p rob lem o f t he c o n t r o l l e r w h i c h ment ioned a re

c l e a r l y shown f r o m these graphs

Now consider the design s tep a t t he f i x e d Mach number 3 and 4.

We a l so s i m u l a t e the sys tem a t these f i x e d Mach number w i t h a l l the 0 0

angle o f a t t a c k f r o m 0 t o 20. The p rob lem encountered a t the f i x e d

Mach numbers 3 and 4 resemble as shown t h a t faced a t f i x e d Mach

number 2 . W i t h s i g n i f i c a n t changes o f t h e ang le o f a t t a c k , t he

c o n t r o l l e r per formance i s degraded. FIGURE 4 .3 -6 - FIGURE 4 .3 -9 are

man ipu la ted as t he same as FIGURE 4.3-4, and FIGURE 4.3-5. FIGURE

4 .3 -6 , and FIGURE 4.3-8 show s t e p response o f t h e c losed- loop

s y s t e m a t f i x e d Mach number 3 and 4 r e s p e c t i v e l y . I n t hese graph 0 0 0

the d i s t i n c t angle o f a t t a c k a t 0, 10 and 20 a re chosen. FIGURE 4.3-

7, and FIGURE 4 . 3 - 9 i l l u s t r a t e the open- loop 's f requency responses

a t the same angle o f a t t a c k va lues f o r f i x e d Mach number 3 and 4.

Page 57: Songchaikul Metin

Frequency (radlsec)

FIGURE 4.3-5 Frequency Response of open loop system at M=2.

L

1.5

1

......... : ado

- : a-10' - ++++ : a -20'

-

- - a +++** n. - a 0

-

-

-0.5 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

time(sec)

FIGURE 4.3-4 Step Response of closed-loop system at M=2.

Page 58: Songchaikul Metin

time(sec)

FIGURE 4.3-6 Step Response of closed-loop system at M=3.

Frequency (radiscc)

FIGURE 4.3-7 Frequency Response of open loop system a t N=3.

Page 59: Songchaikul Metin

time(sec)

FIGURE 4.3-8 Step Response of closed-loop system at M=4.

Frequency (radlsec)

FIGURE 4.3-9 Frequency Response of open loop system a t W-4.

Page 60: Songchaikul Metin

56 We redesign the con t ro l l e r again as ca lcu late i n PROGRAM #4.

Once again, f i r s t consider the design s tep a t the f i x e d Mach number 2

and then a t the f i xed Mach numbers 3 and 4.

In the new design, use the same gain K, Ki , and L but l e t the

l inear ized p lant coe f f i c i en t mat r ices used i n the s t a t e observer vary

w i t h angle o f a t tack as ind ica ted i n Sec t ion 4.2. By l e t t i n g the

coe f f i c i en t ma t r i ces of the observer depend on angle o f a t tack, step

response and frequency response o f the 1 i near ized m i s s i le model

w i t h type- 1 servo system a t f i xed Mach number 2 meet the design 0 0

ob jec t ives a t a l l angle o f a t tack between 0 t o 20. Three d i f f e r e n t 0

angle of a t tack 6 1; and 2 0 are chosen t o v e r i f y these r e s u l t s as

shown i n FIGURE 4.3- 10 and FIGURE 4.3- 1 1 .

Next, consider the con t ro l l e r design a t the f i xed Mach numbers

3 and 4 by us ing the same considerat ion bu t changing the gains (K,

K i , and L). The s imu la t ion resu l t s are also the same as w e discuss

i n design a t f i xed Mach number 2 f o r a l l the angle o f a t tack between 0 0

0 t o 20. The closed-loop s tep responses and open-loop frequency

responses are shown i n FIGURE 4.3- 12 and FIGURE 4.3-1 3 f o r f i xed

Mach number 3 and i n FIGURE 4 .3 -14 and FIGURE 4 .3-15 f o r f i x e d

Mach number 4 , respec t ive ly . The s i m u l a t i o n response a t t h ree

d i f f e r e n t angles o f a t tack are shown in these graphs.

Thus w e can conclude t h a t t he l i n e a r c o n t r o l l e r w h i c h i s

Page 61: Songchaikul Metin

57 designed by the chosen eigenvalues g iven e a r l i e r and l e t t i n g the

c o e f f i c i e n t s m a t r i c e s of the observer p a r t of the con t ro l l e r depend

on angle o f a t tack as w e l l as Mach number, the l inear ized closed-

loop sys tem f o r f i xed Mach number (M=2,3,4) and a l l angle of a t tack

i s s table and meets the design speci f icat ions.

Page 62: Songchaikul Metin

time(sec)

FIGURE 4.3- 10 Step Response of closed-loop system at M=2.

Page 63: Songchaikul Metin

tirne(sec)

FIGURE 4.3- 1 2 Step Response of closed-loop system at M=3.

Frequency (radlsec)

FIGURE 4.3- 13 Frequency Response of open loop system at M=3.

Page 64: Songchaikul Metin

FIGURE 4.3- 1 5 Frequency Response of open loop system at M=4.

Page 65: Songchaikul Metin

4.4 Schedulina the Set of Linear Controllers

Gain schedul ing i s broken i n t o t w o s teps . The f i r s t s tep

involves designing a local cont ro l l e r based on 1 i near iza t ion of the

nonl inear p lan t a t several d i f f e r e n t equ i l i b r i um po in ts . Th i s was

accompl ished i n the prev ious sec t ion . The loca l c o n t r o l l e r was 0 0

designed a t three d i f f e r e n t equi l i b r i u m po in ts (( a,M)=( 10,2), ( 10,3), 0

1 0 4 Each equ i l ib r ium point gives a spec i f ied gain wh ich makes

the con t ro l l e r capable of sa t i s f y ing the system requi rements loca l l y

around each design point .

The second step, t o be discussed i n t h i s chapter, requ i res

in te rpo la t ing , or "schedul ing" , the qains of the l i nea r designs t o

ob ta in a nonl inear con t ro l l e r . The three spec i f i ed gains f r o m the

local con t ro l l e r are r e w r i t t e n as fo l l ows :

A t f i xed Mach number 2:

A t f i xed Mach number 3 :

KK3 = [-2.2529e+00, - 1.7727e-0 1 , -4 .0539e-0 1 , - 1.1 405e-031

K i 3 = 1.4099e+O 1

Page 66: Songchaikul Metin

At f ixed Mach Number 4:

KK4 = [ - 1.3009e+00, -9.5867e-02, -4.0555e-0 1 , - 1 . 1 457e-031

K i4 = 5.0734e+00

KL4'= [-2.7506e+02, -2.68 1 3e+04, 5.1287e=02, -6.6569e+041

It i s known from the linear control ler analysis that the gains

at each f ixed Mach number can stabi l ize the l inearized plant at the

f i xed number and over the ent i re range of the angle of at tack 0 0

between 0 to 20. In considering th is problem, an attempt i s made to

schedule a l l these gains when the Mach nurriber i s d i f ferent from the

f ixed point. This means that the gain i s defined when the value of

the Mach number l i es between the Mach numbers 2 and 3 or the

Mach numbers 3 and 4, or outside the range 2 5 M i 4.

Fo r the gain scheduling method, K i i s considered f i r s t . At the

f ixed Mach numbers 2, 3 and 4, the values of the gain K i are known.

To fac i l i ta te an understanding of the discussion that fo l lows, these

3 values a r e shown in the FIGURE 4.4- 1 .

From th is figure, one can see that a t each f ixed Mach number

2, 3, and 4, the gain K i i s set a t the known values. Thus, when the

Mach number i n the considered system l i es a t one of these f ixed

Page 67: Songchaikul Metin

63 points, the appropriate gain K i w i l l be used in the control ler.

2 3 4 Mach number

FIGURE 4.4- 1 Scheduling the gain Ki

Now consider the points between the f i xed Mach numbers 2

and 3 and draw a l ine between these two points. An equation can

then be created fo r t h i s l ine. The same can be done between the

f ixed Mach numbers 3 and 4.

Recall now, the equation of the l ine jo in ing between t w o

poi n t s P(xi,y 1) and P(x2,yz):

Using th i s t w o equations, one can obtain the gain K i as a

funct ion of Mach number, w r i t t e n Ki(M). Therefore, when the Mach

number i s given between either the two f ixed points 2 and 3 or the

Page 68: Songchaikul Metin

64 t w o f ixed points 3 and 4, one can f ind the gain K i re lated to the

corresponding Mach number.

One can schedule the gains K and the gain L, i n the same

manner t o obtain K(M) and L(M).

Gain "scheduling" i s the most important component of the

nonlinear contro l ler design and w i 1 1 be u t i l i zed f o r the remainder of

t h i s thesis. The M- f i le f rom MATLAB i s w r i t t e n to calculate th is.

The M-f i le i s named "schedu1ing.m" and i s described i n PROGRAM

#5.

Using PROGRAM l f5 the gain scheduling i s created f o r the

nonl inear control ler. With the gain scheduling, i t i s expected that

our nonlinear contro l ler w i 11 s tabi l ize the nonlinear p lant over the

ent i re operating range. In order t o conf i rm t h i s expectation, the

local s tab i l i t y around any equil ibrium point i n the desired range w i l l

be examined f i r s t and then the overall performance of the nonlinear

system w i t h the designed contro l ler w i l l be examined by means of

s imulat ion using SIMULAB.

- Checking the local stabil i ty of the linearized system.

For the discussion of local s tab i l i t y , consider the nonlinear

control ler, the "Autopi lot ". F i rst , connect the autopi lot to the plant

Page 69: Songchaikul Metin

65 and close t h i s loop. The block diagram i s i l l u s t r a t e d i n FIGURE 4.4-

FIGURE 4.4- 2 Block diagram of the missi le model w i t h nonlinear contro l ler

n c nz

The closed-loop dynamic system i s given as

where

-

t = n , - n z

6, = -K(M)Z + Ki(M)t

where f a n d g a r e t h e n o n l i n e a r f u n c t i o n o f t h e m i s s i l e m o d e l

miss i le /actuator Au top i lo t . )

Page 70: Songchaikul Metin

66

A t the cons tan t opera t ing po in t fc, (x,:,f,h,~) = o w h i c h i m p l i e s t h a t

Thus, a t any c losed- loop constant opera t ing po in t , w e have

?(a,M) = x(a,M)

so t h a t Sz(a,M) = nz(a,M)

f (a ,M) = &[Wa,M) - K(M)x(a,M)I .

Next , 1 i nea r i za t i on o f the non l inear c losed- loop s y s t e m around

t h i s s e t o f cons tan t ope ra t i ng p o i n t s y i e l d s a s e t o f l i n e a r i z e d

s y s t e m s whose p rope r t i es w i 1 1 be analyzed. The Jacob ian m a t r i c e s

f o r t h i s l i n e a r i z a t i o n method are g iven as f o l l o w s .

F rom t h e c losed- loop sys tem:

De f ine

G = %a3+bna2+cn (2-$M)a, G, = 3%a2+2ba+c , (2-$M)

Page 71: Songchaikul Metin

The Jacobian m a t r i c e s t h a t descr ibe the l i n e a r i z a t i o n of the

non l i nea r c losed- loop s y s t e m i n FIGURE 4.4-2 a re c r e a t e d i n

PROGRAMlt6, Inc luded i n t h i s p rogram i s t h e s i m u l a t e d s t e p

response of the l inear ized closed-loop sys tem i n order t o check the

local s t a b i l i t y of the system. For the l oca l s t a b i l i t y , t h e l inear ized

sys tems w h i c h are s i m u l a t e d a t any cons tan t ope ra t i ng p o i n t s

should provide s table response i n the en t i re range o f in te res t .

As f i r s t men t ion f o r the l o c a l s t a b i l i t y check, m o r e than

hundred po in ts o f the f i x e d Mach number and the angle o f a t tack i n

Page 72: Songchaikul Metin

68 the interested range are simulated and checked. Each step response

f rom those simulat ions show the ab i l i t y to track the step command

which indicated the local s tab i l i t y of the l inearized system. Also,

these step responses sat is fy the design object ives of t ime constant

less than 0.25 second.

To ver i f y the conclusion, the simulat ion a t the angle of attack 0 00 and 2 0 w i t h the f ixed Mach number 2.3, 2.3, 3.3, and 3.7 are

examined. The step response which provided the s t a b i l i t y of the

l inear ized system w i t h t i m e constant ly than 0 .25 second are

i l l u s t r a t e d i n FIGURE 4.4-3 and FIGURE 4.4-5. The frequency

response of the open-loop system which less than -30 dB a t 300

radian/second are shown in FIGURE 4.4-4 and FIGURE 4.4-6.

Page 73: Songchaikul Metin

time(sec) 0

FIGURE 4.4-3 Step Response of the linearized system at alfa=O.

Frequency (radlsec) 0

FIGURE 4.4-4 Frequency Response of open loop linearized system at alfa=O.

Page 74: Songchaikul Metin

FIGURE 4.4-5 Step Response of the l inearized system at alfa.26

Frequency (rad/sec) 0

FIGURE 4.4- 6 Frequency Response of open loop l inear ized system a t a l fa=20.

Page 75: Songchaikul Metin

71 - Checking Performance of the Nonlinear Controller

Previously, a nonl inear au top i lo t i s created by scheduling the

gains of the 1 inear con t ro l l e rs designed a t 3 d i f f e r e n t equ i l i b r i um

points . A t the conclusion o f t ha t chapter, local s t a b i l i t y around any

e q u i l i b r i u m p o i n t o f t h e s y s t e m w a s checked. The r e s u l t s

demonstrated tha t the autopi l o t can s t a b i l i z e the nonl inear system

loca l l y around any operating point i n the desired range.

Since w e r e q u i r e t h a t t he a u t o p i l o t s t a b i l i z e the sys tem

throughout the e n t i r e operat ing range, a program f o r s i m u l a t i n g

nonl inear dynamic systems, SIMULAB, w i 1 1 be employed i n order t o

v e r i f y t h i s s t a b i l i t y .

For s i m u l a t i o n purpose, t h e a u t o p i l o t i s connected t o the

m i s s i l e as shown i n FIGURE 4 .4 -7 . The va r iab les i n t h i s b lock

diagram tha t are fedback are the actual v e r t i c a l acce le ra t ion (e ta )

and the Mach number (M). Note; the Mach number generated in t h i s

program i s not p roper ly p a r t o f t h e p l a n t bu t i t i s inc luded f o r

s imu la t i on purposes. PROGRAMZ7 and *8 conta in the M-f i l e s o f the

s - func t ions i l l u s t r a t e i n FIGURE 4.4-7. "Au top i 1ot .m" i s an M - f i l e

wh ich descr ibes the autopi l o t , the designed con t ro l l e r . " M iss i le .mn

also, i s an M- f i l e wh ich i s used t o describe the m i s s i l e and ac tua tor

dynamics.

Page 76: Songchaikul Metin
Page 77: Songchaikul Metin

73

To obtain the response of th is system over the ent i re range of

the Mach number 2 and 4, the Mach number are consider as 4 range;

4.0-3.5, 3.5-3.0, 3.0-2.5, and 2.5-2.0. The simulat ions are designed

t o s imulate each of these range. The f i r s t s imulat ion output are

shown in FIGURE 4.4-8. The graph shows the response of the system

compared to the step command. I t show that the response of the

system can track the step command w i t h t ime constant less than

0.25 second which i s the requirement of the design objectives. Also,

in FIGURE 4.4-8 , the Mach number pro f i le (s tar t ing a t Mach number

= 4) i s shown.

In FIGURE 4.4-9 - FIGURE 4.4-1 1 i l l u s t r a t e the s imula t ion

output as the same as in FIGURE 44-8 . The difference i n these graph

i s the range of the Mach number. From these graphs, one obviously

sees tha t no ma t te r what the range of the Mach number are

considered, the system i s able to track the step command w i t h t ime

constant less than 0.25 second. Thus , w i t h these data, i t i s clearly

show that the dynamic contro l ler y ie lds stable and well-behaved

response which sat is f ies the design objectives.

Page 78: Songchaikul Metin

time(sec)

FIGURE 4.4-8 Step Response o f the miss i le model s tar t ing at M=4.

40

.----- step command - acceleration

time(sec)

Mach number fo r simulat ion i n FIGURE 4.4-8,

i ..

I

I ,

-

-

-

-10

-20

- -

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Page 79: Songchaikul Metin

FIGURE 4.4-9 Step Response of the miss i le model s tar t ing at M=3.5

- - - - - - step command - - acceleration

-

-

-

time(sec)

Mach number fo r simulat ion i n FIGURE 4.4-9.

-10 - -

-20. 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Page 80: Songchaikul Metin

time(sec)

FIGURE 4.4- 10 Step Response of the miss i le model s tar t ing at M=3.

time(scc)

Mach number for simulation in FIGURE 4.4- 10.

Page 81: Songchaikul Metin

time(sec)

FIGURE 4.4- 1 1 Step Response of the miss i le model s tar t ing at M=2.5.

time(sec)

Mach number fo r simulat ion in FIGURE 4.4- 1 1 .

Page 82: Songchaikul Metin

Chapter 5

Summary and Conclusions

In t h i s thesis, we study the design o f an au top i lo t by applying

gain schedul ing, new cont ro l l e r design technique, t o the example of

non l inear sys tem. As w e ment ioned e a r l i e r , a l though t h e gain

s c h e d u l i n g i s a s u c c e s s f u l techn ique i n many e n g i n e e r i n g

appl icat ion, i t has a r e s t r i c t i o n on the exogenous var iab le wh ich had

t o vary s l o w l y . I n the example problem o r m i s s i l e f i g h t con t ro l

p rob lem, the Mach number i s considered t o be t h i s exogenous

var iable.

In Chapter 3, a l l tne matheniat ics desc r ip t i on of the m i s s i l e

problem together w i t h a s t a t e equat ion o f the Mach number were

def ined ( A s t a t e equation f o r the Mach number was no t a proper pa r t

o f t h e m i s s i l e sys tem but t h i s equat ion w a s necessary i n the

s imu la t ion p a r t f o r checking the performance o f the autopi lo t . ) .

The de ta i l s o f the design procedure were discussed i n Chapter

4. F i r s t , the l inear cont ro l le rs were designed f r o m l inear ized p lant

data a t 3 d i f f e r e n t constant operat ing po in ts . Since the cont ro l le rs

designed there used 1 inear t ime- invar iant technique, our con t ro l l e rs

can guarantee only local performance and nominal s t a b i l i t y o f the

m i s s i l e . The open-loop frequency response of the 1 inear ized system

Page 83: Songchaikul Metin

79 shows t h a t a t 300 radian/second the magnitude was l ess than -30

dB. That i s one o f the designed requi rements t h a t seeks t o avoid

e x c i t i n g the unmodel led s t r u c t u r a l dynamics. Last , the gains o f

those con t ro l l e r are scheduled, and the autopi lo t w i t h the scheduled

gains was s i m u l a t e d t o check f o r the m i s s i l e per formance. The

r e s u l t f r o m t h e s i m u l a t i o n show the a b i l i t y o f the a u t o p i l o t t o 0 0

s tab i l i ze the system w i t h i n the operat ing range (-20 5 a_< 20 and 2 5

M 3 4 ). Th is resu l t i s also sa t i s f i es the design object ives.

Since the m i s s i l e ' s performance m e t a l l design ob jec t ives , i t

i s concluded tha t the autopi lo t , the cont ro l le r , designed by us ing a

gain scheduling i s achieved.

Page 84: Songchaikul Metin

References

[ I ] . Doebel in, E. O., " C o n t r o l Sys tem P r i n c i p l e s and Des ign " . John

W i l ey & Sons, Inc., 1985 .

[2 ] . Dragoslav, D. S., "Non l inear S y s t e m s " . John W i l ey & Sons, Inc . ,

1969 .

[ 3 ] . K a i 1 a t h , T. , " L i n e a r S y s t e m s " . P r e n t i c e - H a l 1, I n c . ,New

Je rsey , 1 9 8 0 .

[4]. Kha l i l , H. K.,and Kokotov ic , P. V., "On S t a b i l i t y P r o p e r t i e s o f

Non l inear Sys tems w i t h S l o w l y Vary ing I n p u t s " , l EEE T ransac t i ons

on A u t o m a t i c Control , vo l . 36, no. 2, pp. 229 , 199 1 .

151. Lawrence, D. A,, and Rugh, W. J., "On a S t a b i l i t y Theorem f o r

Nonl i nea r Sys tems w i t h S l o w l y Vary ing I n p u t s " . l EEE T ransac t i ons

on A u t o m a t i c Cont ro l , vo l 35, no, 7, pp. 860-864 , 1990 .

[61. Ogata, K., "Modern Cont ro l Engineer ing " . P ren t i ce-Hal l , I nc. ,New

Jersey , 1990 .

t

171. P h i l l i p s , C. L., and Harbor, R. D., "Feedback Con t ro l S y s t e m s "

P ren t i ce-Hal 1, Inc. ,New Jersey, 1988.

[81. Ph i l l i p s , C. L.,and Nagle, H. T., " D i g i t a l Con t ro l S y s t e m Ana l ys i s

and Des ign " . P ren t i ce-Hall , I nc. ,New Jersey, 1 9 9 0 .

Page 85: Songchaikul Metin

81

[9]. Re icher t , R., T., "Dynamic Schedul ing o f Modern-Robust-Control

A u t o p i l o t Des igns f o r M i s s i l e " . IEEE C o n t r o l S y s t e m Magazine,

oc tober , pp.35-42, 1992 .

[ 101. Reichert ,R. T., "Gain Schedul ing f o r H - l n f i n i t y C o n t r o l l e r s : A

F l i g h t C o n t r o l E x a m p l e " . T e c h n i c a l Repo r t ,The J o h n H o p k i n s

Un i ve rs i t y , ECE, 92 -93 .

[ 1 11. Rugh, W. J., " A n a l y t i c a l F ramework f o r Gain Schedu l ing" , IEEE

con t ro l Sys tems Magazine, vo l . 1 1 , no. 1 , pp. 79-84, 1 9 9 1 .

[ 1 2 ] . Shamma, J. S.,and Athans, M., " A n a l y s i s o f Gain Scheduled

C o n t r o l f o r Non l i nea r P l a n t s " , l EEE T r a n s a c t i o n s on A u t o m a t i c

Cont ro l , vo l . 35, no. 8, pp. 898-907 , 1990.

[ 13 ] . Shamma, J. S.,and Athans, M., "Ga in Schedu l i ng P o t e n t i a l

Hazards and Poss ib le Remedies " . l EEE con t ro l Sys tems Magazine, v o l .

12, no. 3, pp. 10 1 - 107,1992.

[ 141. S lo t i ne , J.-J., E., " A p p l i e d Non l inear Con t ro l " . P ren t i ce -Ha l l ,

Inc . ,New Jersey, 199 1

[ 151. V i dyasagar, M., "Nonl i near S y s t e m A n a l y s i s " . P r e n t i ce -Ha l l ,

Inc . , New Jersey, 1978.

Page 86: Songchaikul Metin

% PROGRAM # 1 % Linearization of nonlinear system

m=input('The value of Mach number (m)=') alfa=input('The value of the angle of attack (alfa) = ' )

% Airframe and actuator constants % Kalfa=0.02069; Kq=l. 23196; Kz121.4432; Ax=32.1648; damp=0.7; Wa=150;

% Some constants that change from degree to radian % alfan= alfa*pi/l80; Kalfan= 1.18587; Kzn= 0.6661697; Kqn=70.586;

% Aerodynamic coefficients % an=0.000103; bn=-0.00945; cn=-0.1696; dn=-0.034; am-0.000215; bm=-0.0195; cm=0.051; dm=-0.206; Cn=an*alfaA3+bn*alfaA2+cnf(2-m/3)*alfa; ~m=am+alfa~3+bm*alfa^2+cm*(8*m/3-7)*alfa;

% Differential values % cnd=3*an*alfaA2+2*bn*alfa+cnt(2-m/3); ~md=3*am*alfa~2+2*bm+alfa+cmt(8fm/3-7); delta=-cm/dm; .

% Jacobian matrices 8 all=~alfan*m*(Cnd*cos(alfan)-(Cn+dnfdelta)*sin(alfan)*pi/l80); a12=1; al3=Kalfan*m*dn*cos(alfan); a14=0; a21=Kqn*mA2*Cmd; a22=O; a23=Kqn*mA2*dm; a24=0; a31=0; a32=0; a33=0; a34=1; a4 1-0; a42=O; a4 3=-WaA2; a44=-2 *damp*Wa;

% The the linearized system % aa=[all,al2,a13,a14;a21,aZZ,a22Ia23,a24;a31la32,a33la34;a4lla42la43la44] bb=[bll;b21;b31;b41] cc=[cll,c12,~13,~14]

Page 87: Songchaikul Metin

% PROGRAM # 2 % ~inearization of nonlinear system A2

m=input ('The value of Mach number (m) = ' ) alfa=input('The value of the angle of attack (alfa) = ' I % % Airframe and actuator constant

Kalfa=0.02069; Kq=1.23196; Kz=21.4432; Ax=32.1648; damp=O. 7; Wa=150; % % Some constant that change from degree to radian

alfan= alfa*pi/l80; Kalfan= 1.18587; Kzn= 0.6661697; Kqn=70.586; % % Aerodynamic coefficients

% % Some differential value

% % Jacobian matrix

ades=[all,al2,al3,al4;a21,a22,a23,a24;a3l,a32,a33,a34;a4l,a42,a43,a44]; bdes=[bll;b21;b31;b41] ; cdes=[cll,cl2,cl3,cl4]; % sk=pole locatin

% % Controller design step % % Finding the gain K for poles placement % sk=the desired eigenvalues

Page 88: Songchaikul Metin

q=[0;0;0;01; sk=[-36.3,-36.96+0.66*i,-36.96-0.66*i,-37.62+1.32*i,-37.62-1.32*il;

A3 abar=[ades,q;-cdes,OI; bbar= [bdes; 01 ; kk=place(abar,bbar,sk);

% Finding the gain L for states observer % sl=the desired eigenvalues

% Finging the step response for the closed-loop system

aclose=[ades -bdesek bdes*ki;l*cdes ades-l*cdes-bdes*k bdes*ki;-cdes q' 01; bclose= [q;q; 11 ; cclose= [cdes q' 0 I ; dclose=O;

t=linspace(O, . 5 ) ; [yclose,xclose] =step(aclose,h~1ose,cclose,dclose, 1, t) ; plot it, yclose) ,grid title(' GRAPH-? Step response for closed-loop system ' ) xlabel('time(sec) '),ylabel('output') pause

% Finding the frequency response of the open-loop system

qs=[s#q.q#sl; aopen=[ades,qq,q;l*cdes,ades,ades-l*cdes,q;-cdes,q',O]; bopen=[bdes;bdes;Ol; copen= [q' , -k, ki j ; dopen=O; [mag, phase, w] =bode (aopen, bopen, copen, dopen, 1) ; semilogx(w, 20*log (mag) ) ,grid title('GFAPH-? Frequency response of the open-loop system') xlabel('Frequency (rad/sec) ');ylabel('Magnitude (dB) ' ) ;

Page 89: Songchaikul Metin

% PROGRAM # 3 % Design the Type 1 servo system(use the coefficients matrices 8 of the state observer the same as the plant coefficients % matrices at design point. % m= 2 alfa=input('The value of the angle of attack (alfa) = I )

% Airframe and actuator constants % Kalfa=0.02069; Kqi1.23196; Kz=21.4432; Ax=32.1648; damp=O. 7 ; Wa-150;

% Some constants that change from degree to radian % alfans alfa*pi/l80; Kalfan= 1.18587; Kzn= 0.6661697; Kqnz70.586;

% Aerodynamic coefficients % an=0.000103; bn=-0.00945; cn=-0.1696; &I=-0. 034; am=O.000215; bm=-0.0195; cm=O. 051; dm=-0.206; ~n=an*alfa^3+bn*alfa*Z+cn+(2-m73)+alfa; ~m=am*alfa~3+brn*alfa~2+cm*(8*m/3-7)Palfa;

% Some differential values % Cnd=3*an*alfaA2+2+bn*alfa+cn+(2-m/3); Cmd=3*am*alfaA2+2*bm*a1fa+cm*(8*m/3-7); delta=-cm/dm;

% Jacobian matrices coefficients % all=~alfan*m*(Cnd*cos(alfan)-(Cn+dn+delta)*sin(alfan)*pi/l80); a1231; al3=Kalfan*m*dn*cos(alfan); a14=0; a21=Kqn*mA2+Cmd; a22-0; a23=Kqn*mA2*dm; a24=O; a3 1=0; a32=0; a33=0; a34=1; a41=0; a4 2=O ; a43=-WaA2; a44=-2 *damp*Wa;

% Controller's design step % % The gain K from poles placement % k=[-5.7137e+00,-4.5613e-01,-4.0079e-01,-1.1296e-03]; ki=6.3689e+01:

Page 90: Songchaikul Metin

% The gain L from states observer % 1=[-7.7941e+02;-7.6420e+04;2.0806e+03;-2.5828e+05];

% 0 8 % The gains are changed for the difference constant m as 8 % at m=3; k=[-2.2529e+00,-1.7727e-01,-4.0539e-01,-1.1405e-03] % % ki=1.4099e+01 % % 1= [ -4 .0547e+02, -3 .9609e+04I9 .1918e+02, -1 . l657e+O5] % % % % at m=4; k=[-1.3009e+00,-9.5867e+02-4.0555e-01,-1.1457e-O3] % % ki=5.0734e+00 % % 1=[-2.7506e+02,-2.6813e+04,5.1287e+02,-6.6596e+O4] % %

% Finging the step response for the closed-loop system % aclose=[aa -bb*k bb*ki;l*cc aa-l*cc-bb*k bb*ki;-cc q f 01; bclose=[q;q; 11 ; cclose=[cc q' 01; dclose=O;

t=linspace(0,.5); [yclose,xclose]=step(acloseIbclosetcclosetdclosetltt); plot(t,yclose),grid title(' GRAPH-? Step response for closed-loop system ' ) xlabel('time(sec)'),ylabel('output(y(t))') pause

% Finding the frequency response of the open-loop system 8 qqr[q!qlqlql; aopen=[aa,qq,q;ltcc,aa-l*cc,q;-ccIq'IO]; bopen=[bb;bb;O]; copen=[qt, -k,ki]; dopen-0 ; [mag,phase,w]=bode(aopenIbopen,copen~dopenll); semilogx(wt20*log(mag)),grid title('GRAPH-? Frequency response of the open-loop system') xlabel('Frequency (rad/sec)');ylabel('Magnitude (dB)');

Page 91: Songchaikul Metin

o PROGRAM # 4 % Design Type 1 servo System (let the plant coefficient used % in the state observer vary with angle of attack and Mach % number)

m= 2 alfa=input('The value of the angle of attack (alfa) = ' )

0 Airframe and actuator constants % Kalfa-0.02069; Kq=1.23196; Kz=21.4432; kx=32.1648; damp=O .7 ; Wa=150;

0 Some constants that change from degree to radian % alfan=alfa+pi/l80; Kalfan= 1.18587; Kzn= 0.6661697; Kqn=70.586;

% Aerodynamic coefficients % an=0.000103; bn=-0.00945; cn=-0.1696; dn=-0.034; arn=0.000215; bm=-0.0195; cm=O. 051; dm=-0.206; Cn=an*alfaA3+bn+alfa^2+cn*(2-m/3)talfa; Cm=am+alfaA3+bm+alfa^2+cmt(8*m/3-7)talfa;

% Some differential values % Cnd=3*an*alfaA2+2+bn+alfa+cn*(2-m/3); Cmd=3*am*alfaA2+2*bm+alfa+cm+(8fm/3-7); delta=-cm/dm;

% Jacobian matrices coefficient % all=Kalfan+m*(Cndfcos(alfan)-(Cn+dn*delta)*sin(alfan)*pi/l8O); a12=1; al3=Kalfan*m+dn*cos(alfan); a14=0; a21=Kqn+mA2*Cmd; a22=0; a23=Kqn+mA2*dm; a24=0; a3 1-0; a32=0; a33=0; a34=1; a41=0; a42=0; a43=-Waa2; a44=-2*damp+Wa;

% Controller's design step % % The gain K from poles placement % k=[-5.7137e+00,-4.5613e-01,-4.0079e-01,-1.1296e-03]; ki=6.3689e+Ol;

Page 92: Songchaikul Metin

% The gain L from states observer % 1=[-7.7941e+02;-7.6420e+04;2.0806e+03;-2.5828e+05];

% % 8 % The gains are changed for the difference constant m as 8% at m=3; k=[-2.2529e+00,-1.7727e-01,-4.0539e-01,-1.1405e-03] % % ki=1.4099e+01 % % 1= [ -4 .0547e+02, -3 .9609e+04I9 .1918e+02, - l . l 657e+O5] % 0 % % at m=4; k=[-1.3009e+00,-9.5867e+O2-4.0555e-01,-1.1457e-O3] % % ki=5.0734e+00 % % 1 = [ - 2 . 7 5 0 6 e + 0 2 , - 2 . 6 8 1 3 e + O 4 , 5 . 1 2 8 7 e + O 2 I - 6 . 6 5 9 6 e + O 4 ] % %

% Finging the step response for the closed-loop system % aclose=[aa -bb*k bb*ki;l*cc ades-ltcdes-bdes*k bdes*ki;-cc q r 01; bclose=[q;q;l]; cclose=[cc q' 0] ; dclose=O ;

t=linspace(0,.5); [yclose,xclose]=step(acloseIb~loserccloseldcloserllt); plot(t,yclose),grid title(' GRAPH-? Step response for closed-loop system ' ) xlabel('time(sec)'),ylabel('output(y(t))') pause

% Finding the frequency response of the open-loop system 8 ~¶~[SrSrSr¶l; aopen=[aa,qq,q;l*ccIades-l*~deslq;-~~Iq'rO]; bopen=[bb;bdes;O]; copen=[q',-k,ki]; dopens0 ; [mag,phase,w]=bode(aopenIbopen,dopen,l); sem~logx(w,20*log(mag)),grid title('GRAPH-? Frequency response of the open-loop system') xlabel('Frequency (rad/sec)');ylabel('Magnitude (dB)');

Page 93: Songchaikul Metin

% Program # 5 % Scheduling the gains for nonlinear controller

% Gains from the constant operating points % kk2=[-5.7137e+00,-4.5613e-01,-4.0079e-01,-1.1296e-03]; ki2=-6.3689e+01; k12=[-7.7941e+02,-7.6402e+04I2.0806e+03,-2.5828e+05]; kk3=[-2.2529e+00,-1.7727e-01,-4.0539e-01,-1.1405e-03]; ki3=-1.4099e+01; k13=[-4.0547e+02,-3.9609e+04I9.1918e+02,-1.1657e+05]; kk4=[-1.3009e+00,-9.5867e-02,-4.0555e-01,-1.1457e-03]; ki4=-5.0734e+00; k14=[-2.7506e+02,-2.6813e+04,5.1287e+02,-6.6596e+04]; kdata=[kk2;kk3;kk4] ldata=[kl2;kl3;kl4] kidata=[ ki2, ki3, ki4] .

% Calculate the line equation between two fixed Mach numbers % skil=kidata(2)-kidata(1); bkil=kidata(l)-skil*2; kil=skil*m+bkil; skim=kidata(3)-kidata(2); bkim=kidata( 2 ) -skirn+3; kim=skim*rn+bkim:

% "scheduling" gains % if (m<3),

ki=kil; k=kl; 1=ll1;

else ki=kim; k = h ; 1=lmt;

end

Page 94: Songchaikul Metin

% Program # 6 % Linearization of the system with nonlinear controller

m=input('The value of m=') alfa=input('The value of alfa ='I

% Using the gain'Schedulingm % scheduling

% Airframe and actuator constants % Kalfa=0.02069; Kq=1.23196; Kz=21.4432; danp=O. 7 ; Wa=150;

% Some constants that change from degree to radian % alfan=alfatpi/180; Kalfan=1.18587; Kzrk0.6661697; Kqn=70.585;

% Aerodynamic coefficients % an=0.000103; bn=-0.00945; cn=-0.1696; dn=-0.034; am=O. 000215; bm=-0.0195; cm=0.051; dm=-0.206; ~n=an*alfa~3+bn*alfa^2+cnf(2-m/3I*alfa; ~m=am*alfa~3+bm*alfa"2+cm*(8*m/3-7)'alfa;

% Some differential values % Cnd=3*an*alfaA2+2*bn*alfa+cn*(2-m/3); Cmd=3*am*alfaA2+2*bm'alfa+cm* (8*m/3-7) ; delta=-cm/dm;

% Jacobion matrices at an equilibrium points

Page 95: Songchaikul Metin
Page 96: Songchaikul Metin

$ Finding the step response of this linearized system % t=linspace(0,.6); [y,x] =step(aln,bln, cln, O , l , t) ; plot(t,y) ,grid title('GRAPH-? Step Response for the linearized system') xlabel('time(sec)'),ylabel('output(y(t))')

Page 97: Songchaikul Metin

% PROGRAM 1 7 % SIMULAB M-file = autopil0t.m % This SIMULAB M-file describes the nonlinear controller % which used gain scheduling technique. % function (sys,xOl=autopilot (t,x,u,flag) % % Input: (1) u(t) (2) eta (3) M % outputs: (1) delta-c % States: (1) aiphaB (2) qB (3) deltaB (4) delta-dotB ( 5 ) integral % if abs(flag)==l, % %The gain ( k ,ki and 1 ) for gain scheduling % kk2=[-5.7137e+00,-4.5613e-01,-4.0079e-01,-1.1296e-031; k12=[-7.7941e+02,-7.6420e+04,2.0806e+03,-2.5828e+05]; ki2=6.3689e+Ol; kk3=[-2.2529e+00,-1.7727e-01,-4.0539e-01,-1.1405e-031; k13=[-4.0547e+02,-3.9609+04,9.1918e+02,-1.1657e+05]; ki3=1.4099e+Ol; kk4=[-1.3009e+00,-9.5867e-02,-4.0555e-01,-1.1457e-031; k14=[-2.7506e+02,-2.6813e+04,5.1287e+02,-6.6596e+04]; ki4=5.0734e+00;

kdata=[kk2;kk3;kk4]; ldata= [k12; k13; k141; kidata=[ki2,ki3,ki4]; % % Line equation between two constant operating points % skil=kidata(2)-kidata(1); bkil=kidata(l)-skil*2; kil=skil*u(3)+bkil; skim=kidata (3) -kidata (2) ; bkim=kidata(2) -skim*3; kim=skim*u (3 ) +bkim;

if (u(3)<3), ki=-kil; k=kl; l=1lt ;

else ki=-kim; k=km; l=lml ; end

% % Airframe and actuator constants pi=3.14159; Kalpha=1.18587; Kc~70.586;

Page 98: Songchaikul Metin

Kz=0.6661697; Wa=150; damp=O . 7; % % ~erodynamic coefficient constants an=.000103; bn=-. 00945; cn=-.1696; dn=-. 034; am=.000215; bm=-,0195; cm=.051; dm=- .206; % % Definitions M=u(3); ar=x(l)*(pi/l80); aar =abs (ar ; aa=abs (x ( 1 ) ) ; % % Aerodynamic coefficients (afac and dfac are used for the % perturbation analysis) afac=l; df ac=l; Cn=sign ( ~ ( 1 ) ) (an*aa^3+bn*aa%cnV2-M/3) *aa) +dn*x(3) ; Cm=sign(x(l) ) *afac* (am*aaa3+bm*aaA2+cm* (-7+ (813) *M) *aa) +dfac*dm*x(3) ; deltac=-k(1) *x(l)-k(2) * ~ ( 2 ) - k ( 3 ) * ~ ( 3 ) - k ( 4 ) * ~ ( 4 ) -ki*.x(S); % % Plant state derivatives % sys(l)=(~alpha*~*Cn*cos(aar)+x(2) )+(1(1)*(u(2)-Kz*MA2*Cn) ) ; sys (2) = (~q*M^2*Cm) + (1 (2) '(~(2) - K z * M W n ) ) ; sys(3)=(~(4))+(1(3)*(~(2)-Kz*M^2*Cn)); s y s ( 4 ) = ( - ~ a ~ 2 * x ( 3 ) - ~ 2 * d a m p * W a * x ( 4 ) + W a ^ 2 f d e l t a c ~ + ~ l ~ 4 ~ * ~ ~ ~ 2 ~ - K z * M ~ 2 * C n ~ ) ; sys(5)=u(l)-u(2); % elseif flag==3 % % The gain (K,Ki and L) for gain scheduling % kk2=[-5.7137e+00,-4.5613e-01,-4.0079e-01,-1.1296e-03]; k12=[-7.7941e+02,-7.6420e+04,2.0806e+03,-2.5828e+05]; ki2=6.3689e+01; kk3=[-2.2529e+00,-1.7727e-01,-4.0539e-01,-1.1405e-03]; k13=[-4.0547e+02,-3.9609+04,9.1918e+02,-1.1657e+051; ki3=1.4099e+01; kk4=[-1.3009e+00,-9.5867e-02,-4.0555e-01,-1.1457e-03]; k14=[-2.7506e+02,-2.6813e+04,5.1287e+02,-6.6596e+04]; ki4=5.0734e+00; kdata=[kk2;kk3;kk4]; ldata= [ k12 ; k13 ; k14 I ; kidata=[ki2,ki3,ki4]; % % line equation between two constant operating points % skil=kidata(2)-kidata(1); bkil=kidata(l)-skil*2; kil=skil*u(3)+bkil; skim=kidata(3)-kidata(2); bkim=kidata(2)-skiin*3; kim=skimtu (3 ) +bkim;

Page 99: Songchaikul Metin

if (u(3)<3), ki=-kil; k=kl; 1=ll1 ;

else ki=-kim; k=km; l=lm' ;

end % % Autopilot outputs % sys (l)=-k(l) *x(l)-k(2) * x ( 2 ) - k ( 3 ) * ~ ( 3 . ) - k ( 4 ) * ~ ( 4 ) -kltx(5); % elseif flag==O % sys=[5;0;1;3;0;0]; x0=[0;0;0;0;01; else sys=[l; % end %

Page 100: Songchaikul Metin

% PROGRAM 11 8 % SIMULAB M-file = missi1e.m % This SIMULAB M-file describes the nonlinear missile. % % For simulation purposes the Mach number is generated here % though it is not properly part of the missile. % function [sys,xO]=missile(t,x,u,flag) % % Input: (1) delta-c % Outputs: (1) eta (2) M % States: (1) alpha (2) q (3) delta (4) delta-c (5) M % if abs (flag) ==l, % % Airframe and actuator constants pi=3.14159; Kalpha=1.18587; Kq=70.586; Kz=0.6661697; Wa=150; damp=O. 7; % % Aerodynamic coefficient constants an=.000103; bn=-. 00945; cn=-.1696; dn=-. 034; am=.000215; bm=-.0195; cm=.051; dm=-. 206; % % Definitions M=x(5) ; ar=x(l) (pi/l80) ; aar=abs (ar) ; aa=abs ( ~ ( 1 ) ) ; % % Aerodynamic coefficients (afac and dfac are used for the % perturbation analysis) afac=l; df ac=l ; Cn=sign(x(l) ) * (an*a-bn*aa%cn* (2-M/3) *aa) +dn*x(3) ;

% plant state derivatives sys (1) =KalphatM*Cn*cos (aar) +x(2) ;

' SYS (2 ) =Kq*MA2 *Cm; sys(3)=x(4); sys ( 4 ) = - ~ a ~ 2 * ~ ( 3 ) - 2 * d a m p * W a * x ( 4 ) + W a * 2 * ~ ( 1 ) ; % % Mach state derivative used for simulation purposes sys (5) =-0. 0207*MA2*abs (Cn) *sin(aar) -0. 0062*MA2*cos (aar) ; % % elseif flag==3 % % Airframe constant Kz=0.6661697; % % Aerodynamic coefficient constants an=.000103; bn=-. 00945; cn=-.1696; dn=-,034;

Page 101: Songchaikul Metin

% % Definitions M=x(5); aa=abs ( x ( 1) ) ; % % Aerodynamic coefficient Cn=sign(x(l))*(an*aaA3+bn*aa^2+cn*(2-M/3)*aa)+~*x(3); % % Plant outputs SYS (1) =Kz*MA2 *Cn; % % Mach output used for simulation purposes % sys (2 ) =M; % elseif flag==O % sys=[5;0;2;1;0;01; x0=[0;0;0;0;2.51; else sys=[I; % end % %