soil moisture, snow, and vegetation sensing using gps...

38
Soil Moisture, Snow, and Vegetation Sensing Using GPS Receivers Kristine M. Larson Department of Aerospace Engineering Sciences University of Colorado Eric Small (CU), John Braun (UCAR), Valery Zavorotny (NOAA), Mark Williams (CU), Felipe Nievinski (CU)

Upload: others

Post on 27-Jul-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Soil Moisture, Snow, and Vegetation Sensing Using GPS ...congress.cimne.com/gnss-r10/frontal/presentaciones/102.pdf · 235˚ 240˚ 245˚ 250˚ 255˚ 260˚ 265˚ 270˚ 275˚ 280˚

Soil Moisture, Snow, and Vegetation Sensing

Using GPS ReceiversKristine M. Larson

Department of Aerospace Engineering SciencesUniversity of Colorado

Eric Small (CU), John Braun (UCAR), Valery Zavorotny (NOAA), Mark Williams (CU), Felipe Nievinski (CU)

Page 2: Soil Moisture, Snow, and Vegetation Sensing Using GPS ...congress.cimne.com/gnss-r10/frontal/presentaciones/102.pdf · 235˚ 240˚ 245˚ 250˚ 255˚ 260˚ 265˚ 270˚ 275˚ 280˚

Outline

• Multipath in geodetic applications• Multipath signature in geodetic data• Multipath results using geodetic

receivers:– Soil Moisture– Snow Depth – Vegetation Water Content

Page 3: Soil Moisture, Snow, and Vegetation Sensing Using GPS ...congress.cimne.com/gnss-r10/frontal/presentaciones/102.pdf · 235˚ 240˚ 245˚ 250˚ 255˚ 260˚ 265˚ 270˚ 275˚ 280˚

235˚ 240˚ 245˚ 250˚ 255˚ 260˚ 265˚ 270˚ 275˚ 280˚ 285˚ 290˚25˚

30˚

35˚

40˚

45˚

50˚

0 500

km

Continuously-Operating Geodetic GPS Receivers ~2 years ago

Page 4: Soil Moisture, Snow, and Vegetation Sensing Using GPS ...congress.cimne.com/gnss-r10/frontal/presentaciones/102.pdf · 235˚ 240˚ 245˚ 250˚ 255˚ 260˚ 265˚ 270˚ 275˚ 280˚

180˚

180˚

240˚

240˚

300˚

300˚

60˚

60˚

120˚

120˚

180˚

180˚

80˚ 80˚60˚ 60˚

40˚ 40˚

20˚ 20˚

0˚ 0˚

20˚ 20˚

40˚ 40˚

60˚ 60˚80˚ 80˚

.

Page 5: Soil Moisture, Snow, and Vegetation Sensing Using GPS ...congress.cimne.com/gnss-r10/frontal/presentaciones/102.pdf · 235˚ 240˚ 245˚ 250˚ 255˚ 260˚ 265˚ 270˚ 275˚ 280˚

152004 2008200720062005 20102009

source: PBO website

Results for plate motions: no multipath modeling

Page 6: Soil Moisture, Snow, and Vegetation Sensing Using GPS ...congress.cimne.com/gnss-r10/frontal/presentaciones/102.pdf · 235˚ 240˚ 245˚ 250˚ 255˚ 260˚ 265˚ 270˚ 275˚ 280˚

Larson, Bilich, and Axelrad, Improving high-rate GPS precision, JGR. 2007

but if you look at higher temporal sampling

Page 7: Soil Moisture, Snow, and Vegetation Sensing Using GPS ...congress.cimne.com/gnss-r10/frontal/presentaciones/102.pdf · 235˚ 240˚ 245˚ 250˚ 255˚ 260˚ 265˚ 270˚ 275˚ 280˚

use “yesterday” to correct “today”

Choi et al., Geophysical Research Letters, 2004.

Page 8: Soil Moisture, Snow, and Vegetation Sensing Using GPS ...congress.cimne.com/gnss-r10/frontal/presentaciones/102.pdf · 235˚ 240˚ 245˚ 250˚ 255˚ 260˚ 265˚ 270˚ 275˚ 280˚

but is yesterday really like today?

Page 9: Soil Moisture, Snow, and Vegetation Sensing Using GPS ...congress.cimne.com/gnss-r10/frontal/presentaciones/102.pdf · 235˚ 240˚ 245˚ 250˚ 255˚ 260˚ 265˚ 270˚ 275˚ 280˚

the question:

• Data collected from geodetic-quality GPS receivers are clearly sensitive to reflected signals.

• Can those same GPS receivers be used to measure soil moisture, snow, and vegetation changes?

9

Page 10: Soil Moisture, Snow, and Vegetation Sensing Using GPS ...congress.cimne.com/gnss-r10/frontal/presentaciones/102.pdf · 235˚ 240˚ 245˚ 250˚ 255˚ 260˚ 265˚ 270˚ 275˚ 280˚
Page 11: Soil Moisture, Snow, and Vegetation Sensing Using GPS ...congress.cimne.com/gnss-r10/frontal/presentaciones/102.pdf · 235˚ 240˚ 245˚ 250˚ 255˚ 260˚ 265˚ 270˚ 275˚ 280˚

Figures courtesy of Felipe Nievinski

Right-Hand Circularly Polarized Left-Hand Circularly Polarized

the difficulty

Page 12: Soil Moisture, Snow, and Vegetation Sensing Using GPS ...congress.cimne.com/gnss-r10/frontal/presentaciones/102.pdf · 235˚ 240˚ 245˚ 250˚ 255˚ 260˚ 265˚ 270˚ 275˚ 280˚

11 12 13 14 15 1630

35

40

45

50

55Observed Composite Signal

dBH

z

hours (UTC)

instead of pseudorange or carrier phase observables (or residuals), use Signal Power (SNR)

Page 13: Soil Moisture, Snow, and Vegetation Sensing Using GPS ...congress.cimne.com/gnss-r10/frontal/presentaciones/102.pdf · 235˚ 240˚ 245˚ 250˚ 255˚ 260˚ 265˚ 270˚ 275˚ 280˚

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.550

40

30

20

10

0

10

20

30

40

50Observed Multipath Signal

sine(elevation angle)

SNR

(V)

the “reflected” signal

Changes in these oscillations (frequency, amplitude) are related to changes in the ground.

Page 14: Soil Moisture, Snow, and Vegetation Sensing Using GPS ...congress.cimne.com/gnss-r10/frontal/presentaciones/102.pdf · 235˚ 240˚ 245˚ 250˚ 255˚ 260˚ 265˚ 270˚ 275˚ 280˚

three scientific applications

vegetationsnowsoil moisture

Page 15: Soil Moisture, Snow, and Vegetation Sensing Using GPS ...congress.cimne.com/gnss-r10/frontal/presentaciones/102.pdf · 235˚ 240˚ 245˚ 250˚ 255˚ 260˚ 265˚ 270˚ 275˚ 280˚

• We buried 10 time domain reflectometers - 5 at 2.5cm and 5 at 7.5 cm

• And collected GPS SNR data from L2C satellites using a Trimble NetRS (geodetic) receiver and choke-ring antenna.

soil moisture

Page 16: Soil Moisture, Snow, and Vegetation Sensing Using GPS ...congress.cimne.com/gnss-r10/frontal/presentaciones/102.pdf · 235˚ 240˚ 245˚ 250˚ 255˚ 260˚ 265˚ 270˚ 275˚ 280˚

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.550

40

30

20

10

0

10

20

30

40

50Observed Multipath Signal

sine(elevation angle)

SNR

(V)

GPS data TDR data

SNR: fixed frequency; estimated amplitude and phase

offset

Page 17: Soil Moisture, Snow, and Vegetation Sensing Using GPS ...congress.cimne.com/gnss-r10/frontal/presentaciones/102.pdf · 235˚ 240˚ 245˚ 250˚ 255˚ 260˚ 265˚ 270˚ 275˚ 280˚

We later demonstrated that “reflector height” also corresponds well with VWC

Page 18: Soil Moisture, Snow, and Vegetation Sensing Using GPS ...congress.cimne.com/gnss-r10/frontal/presentaciones/102.pdf · 235˚ 240˚ 245˚ 250˚ 255˚ 260˚ 265˚ 270˚ 275˚ 280˚

initial results

Larson, Small, Gutmann, Braun, Zavorotny, and Bilich, Use of GPS receivers as a soil moisture network for water cycle studies, Geophys. Res. Lett., 2008

Page 19: Soil Moisture, Snow, and Vegetation Sensing Using GPS ...congress.cimne.com/gnss-r10/frontal/presentaciones/102.pdf · 235˚ 240˚ 245˚ 250˚ 255˚ 260˚ 265˚ 270˚ 275˚ 280˚

GPS Snow Sensing

Page 20: Soil Moisture, Snow, and Vegetation Sensing Using GPS ...congress.cimne.com/gnss-r10/frontal/presentaciones/102.pdf · 235˚ 240˚ 245˚ 250˚ 255˚ 260˚ 265˚ 270˚ 275˚ 280˚

0.1 0.2 0.3 0.460

30

0

30

60

sin(elevation angle)

B.

volts

/vol

ts

Modeled GPS SNR Data

0.1 0.2 0.3 0.460

30

0

30

60Observed GPS SNR Data

volts

/vol

ts

A. no snow

35 cm ofnew snow

Larson, Gutmann, Braun, Zavorotny, Williams, and Nievinski, Can we measure snow depth with GPS receivers?, Geophys. Res. Lett., 2009

295 297 299 301 303 305 307 3095

0

5

10

15

20

25

30

35

40

45

50hand measurements

GPS satellitesultrasonic snow sensors

day of year (2009)

snow

dep

th (c

m)

Plate Boundary Observatory Site P041

Page 21: Soil Moisture, Snow, and Vegetation Sensing Using GPS ...congress.cimne.com/gnss-r10/frontal/presentaciones/102.pdf · 235˚ 240˚ 245˚ 250˚ 255˚ 260˚ 265˚ 270˚ 275˚ 280˚

Plate Boundary Observatory Site P360

2009.8 2009.9 2010 2010.1 2010.2 2010.3 2010.40.2

0

0.2

0.4

0.6

0.8

1

1.2

snow

dep

th (m

)

PBO site P360

SNOTEL is 15 km from GPS siteGPS 1858 mSNOTEL 1917 m

Page 22: Soil Moisture, Snow, and Vegetation Sensing Using GPS ...congress.cimne.com/gnss-r10/frontal/presentaciones/102.pdf · 235˚ 240˚ 245˚ 250˚ 255˚ 260˚ 265˚ 270˚ 275˚ 280˚

100 50 0 50 100 150 2000.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

days since Jan 1, 2010

snow

dep

th

met

ers

Niwot Ridge GPS Snow Experiment

SS GPS tracks

avggpspole16pole06pole05laser

Page 23: Soil Moisture, Snow, and Vegetation Sensing Using GPS ...congress.cimne.com/gnss-r10/frontal/presentaciones/102.pdf · 235˚ 240˚ 245˚ 250˚ 255˚ 260˚ 265˚ 270˚ 275˚ 280˚

GPS Vegetation Sensing

PBO site in Parkfield, CA

Page 24: Soil Moisture, Snow, and Vegetation Sensing Using GPS ...congress.cimne.com/gnss-r10/frontal/presentaciones/102.pdf · 235˚ 240˚ 245˚ 250˚ 255˚ 260˚ 265˚ 270˚ 275˚ 280˚

in addition to SNR data, multipath can also be observed in the geodetic observables - i.e. MP1

Page 25: Soil Moisture, Snow, and Vegetation Sensing Using GPS ...congress.cimne.com/gnss-r10/frontal/presentaciones/102.pdf · 235˚ 240˚ 245˚ 250˚ 255˚ 260˚ 265˚ 270˚ 275˚ 280˚

2007 2007.5 2008 2008.5 20090.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

years

cmMP1 P070

how do geodesists typically use mean RMS

Page 26: Soil Moisture, Snow, and Vegetation Sensing Using GPS ...congress.cimne.com/gnss-r10/frontal/presentaciones/102.pdf · 235˚ 240˚ 245˚ 250˚ 255˚ 260˚ 265˚ 270˚ 275˚ 280˚
Page 27: Soil Moisture, Snow, and Vegetation Sensing Using GPS ...congress.cimne.com/gnss-r10/frontal/presentaciones/102.pdf · 235˚ 240˚ 245˚ 250˚ 255˚ 260˚ 265˚ 270˚ 275˚ 280˚

Foothill, Idaho P422

2007 2008 2009 2010

44

40

36

32

28

MP1

(cm

)p422

2007 2008 2009 20100.1

0.3

0.5

0.7

0.9

ND

VI

Small, Larson, and Braun, Sensing Vegetation Growth With Reflected GPS Signals, Geophys. Res. Lett., 2010.

Page 28: Soil Moisture, Snow, and Vegetation Sensing Using GPS ...congress.cimne.com/gnss-r10/frontal/presentaciones/102.pdf · 235˚ 240˚ 245˚ 250˚ 255˚ 260˚ 265˚ 270˚ 275˚ 280˚

Battle Mountain, Nevada P085

58

54

50

46

42

38

MP1

(cm

)

p085

0.1

0.3

0.5

ND

VI

2007 2008 2009 20100

50

100

perc

ent

average

annual accumulated precipitation

year

Page 29: Soil Moisture, Snow, and Vegetation Sensing Using GPS ...congress.cimne.com/gnss-r10/frontal/presentaciones/102.pdf · 235˚ 240˚ 245˚ 250˚ 255˚ 260˚ 265˚ 270˚ 275˚ 280˚

Munson Farm Experiment

Page 30: Soil Moisture, Snow, and Vegetation Sensing Using GPS ...congress.cimne.com/gnss-r10/frontal/presentaciones/102.pdf · 235˚ 240˚ 245˚ 250˚ 255˚ 260˚ 265˚ 270˚ 275˚ 280˚

50

45

40cm

MP1 (low elevation only)

140 160 180 200 220 2400

1

2

3

4

kg/m

/m

Vegetation Water Content

day of year

comparison with in situ data

Small et al., 2010.

Page 31: Soil Moisture, Snow, and Vegetation Sensing Using GPS ...congress.cimne.com/gnss-r10/frontal/presentaciones/102.pdf · 235˚ 240˚ 245˚ 250˚ 255˚ 260˚ 265˚ 270˚ 275˚ 280˚

Conclusions

• expand the use of an existing GPS network to new communities (hydrology, ecology, atmospheric sciences, cryosphere, water management)

• provide data products to improve weather prediction and climate studies

• potential validation network for new environmental satellite missions, especially SMOS, SMAP, Desdyni.

Page 32: Soil Moisture, Snow, and Vegetation Sensing Using GPS ...congress.cimne.com/gnss-r10/frontal/presentaciones/102.pdf · 235˚ 240˚ 245˚ 250˚ 255˚ 260˚ 265˚ 270˚ 275˚ 280˚

Acknowledgements

• NSF AGS and EAR (0740515 and 0935725)• CU Seed Grants• Andria Bilich, Penina Axelrad, and Bob Munson • Plate Boundary Observatory• UNAVCO, esp. Mike Jackson, Fred Blume, Chuck

Meertens, Jim Normandeau, Dave Maggert, Lou Estey, and Sarah Doelger.

Page 33: Soil Moisture, Snow, and Vegetation Sensing Using GPS ...congress.cimne.com/gnss-r10/frontal/presentaciones/102.pdf · 235˚ 240˚ 245˚ 250˚ 255˚ 260˚ 265˚ 270˚ 275˚ 280˚

11 12 13 14 15 160

50

100

150

200

250

300

350

400Observable S2 Linear Scale

SNR

(V)

hours (UTC)

SNR - Linear Scale

Page 34: Soil Moisture, Snow, and Vegetation Sensing Using GPS ...congress.cimne.com/gnss-r10/frontal/presentaciones/102.pdf · 235˚ 240˚ 245˚ 250˚ 255˚ 260˚ 265˚ 270˚ 275˚ 280˚
Page 35: Soil Moisture, Snow, and Vegetation Sensing Using GPS ...congress.cimne.com/gnss-r10/frontal/presentaciones/102.pdf · 235˚ 240˚ 245˚ 250˚ 255˚ 260˚ 265˚ 270˚ 275˚ 280˚

What can we compare MP1 variations to?

ratio of spectral reflectance in the near-infrared and red regions, i.e. how green it is.

NDVI: Normalized Difference Vegetation Index

NDVI MODIS: every 16 days, 250 m by 250 m pixel

Page 36: Soil Moisture, Snow, and Vegetation Sensing Using GPS ...congress.cimne.com/gnss-r10/frontal/presentaciones/102.pdf · 235˚ 240˚ 245˚ 250˚ 255˚ 260˚ 265˚ 270˚ 275˚ 280˚

!! !" !# $ # " !!"

!#

$

#

"

%&'()*&+,()-./)'&+01(*

,'

2344)35&6&+78)29*&1&9+)-*1&'71(*)!):951;

Larson, unpublished 1-Hz GPS records from the Parkfield earthquake

example:

Page 37: Soil Moisture, Snow, and Vegetation Sensing Using GPS ...congress.cimne.com/gnss-r10/frontal/presentaciones/102.pdf · 235˚ 240˚ 245˚ 250˚ 255˚ 260˚ 265˚ 270˚ 275˚ 280˚

!! !" !# $ # " !!"

!#

$

#

"

%&'()*&+,()-./)'&+01(*

,'

2344)456&7&(6)8&6(9(:;;<)=&;1(9(6)>?:&+)!)@591A

Agnew and Larson, Finding the Repeat Times of the GPS Constellation, GPS Solutions, 2007

1-hz time series with multipath removed

Page 38: Soil Moisture, Snow, and Vegetation Sensing Using GPS ...congress.cimne.com/gnss-r10/frontal/presentaciones/102.pdf · 235˚ 240˚ 245˚ 250˚ 255˚ 260˚ 265˚ 270˚ 275˚ 280˚

Water Content Reflectometers GPS

Larson, Small, Gutmann, Braun, Zavorotny, and Bilich, GPS Multipath and Its Relation to Near-Surface Soil Moisture Content, IEEE J-STARS, 2010