skp w10n60a rev2 4g neu

14
SKP10N60A SKW10N60A 1 Rev. 2.4 12.06.2013 Fast IGBT in NPT-technology with soft, fast recovery anti-parallel Emitter Controlled Diode 75% lower E off compared to previous generation combined with low conduction losses Short circuit withstand time – 10 s Designed for: - Motor controls - Inverter NPT-Technology for 600V applications offers: - very tight parameter distribution - high ruggedness, temperature stable behaviour - parallel switching capability Very soft, fast recovery anti-parallel Emitter Controlled Diode Pb-free lead plating; RoHS compliant Qualified according to JEDEC 1 for target applications Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/ Type V CE I C V CE(sat) T j Marking Package SKP10N60A 600V 10A 2.3V 150C K10N60 PG-TO-220-3-1 SKW10N60A 600V 10A 2.3V 150C K10N60 PG-TO-247-3 Maximum Ratings Parameter Symbol Value Unit Collector-emitter voltage V CE 600 V DC collector current T C = 25C T C = 100C I C 20 10.6 A Pulsed collector current, t p limited by T jmax I Cpuls 40 Turn off safe operating area V CE 600V, T j 150C - 40 Diode forward current T C = 25C T C = 100C I F 21 10 Diode pulsed current, t p limited by T jmax I Fpuls 42 Gate-emitter voltage V GE 20 V Short circuit withstand time 2 V GE = 15V, V CC 600V, T j 150C t SC 10 s Power dissipation T C = 25C P tot 92 W Operating junction and storage temperature T j , T stg -55...+150 C Soldering temperature wavesoldering, 1.6 mm (0.063 in.) from case for 10s T s 260 °C 1 J-STD-020 and JESD-022 2 Allowed number of short circuits: <1000; time between short circuits: >1s. PG-TO-220-3-1 G C E PG-TO-247-3

Upload: others

Post on 13-Nov-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

SKP10N60ASKW10N60A

1 Rev. 2.4 12.06.2013

Fast IGBT in NPT-technology with soft, fast recovery anti-parallel Emitter ControlledDiode

75% lower Eoff compared to previous generationcombined with low conduction losses

Short circuit withstand time – 10 s Designed for:

- Motor controls- Inverter

NPT-Technology for 600V applications offers:- very tight parameter distribution- high ruggedness, temperature stable behaviour- parallel switching capability

Very soft, fast recovery anti-parallel Emitter ControlledDiode

Pb-free lead plating; RoHS compliant Qualified according to JEDEC

1for target applications

Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/

Type VCE IC VCE(sat) Tj Marking Package

SKP10N60A 600V 10A 2.3V 150C K10N60 PG-TO-220-3-1

SKW10N60A 600V 10A 2.3V 150C K10N60 PG-TO-247-3

Maximum Ratings

Parameter Symbol Value Unit

Collector-emitter voltage VC E 600 V

DC collector current

TC = 25C

TC = 100C

IC

20

10.6

A

Pulsed collector current, tp limited by Tjmax IC p u l s 40

Turn off safe operating area

VCE 600V, Tj 150C

-40

Diode forward current

TC = 25C

TC = 100C

IF

21

10

Diode pulsed current, tp limited by Tjmax IF p u l s 42

Gate-emitter voltage VG E 20 V

Short circuit withstand time2

VGE = 15V, VCC 600V, Tj 150C

tS C10

s

Power dissipation

TC = 25C

P t o t92

W

Operating junction and storage temperature T j , T s t g -55...+150 C

Soldering temperature

wavesoldering, 1.6 mm (0.063 in.) from case for 10s

T s260

°C

1J-STD-020 and JESD-022

2Allowed number of short circuits: <1000; time between short circuits: >1s.

PG-TO-220-3-1

G

C

E

PG-TO-247-3

SKP10N60ASKW10N60A

2 Rev. 2.4 12.06.2013

Thermal Resistance

Parameter Symbol Conditions Max. Value Unit

Characteristic

IGBT thermal resistance,

junction – case

R t h J C 1.35 K/W

Diode thermal resistance,

junction – case

R t h J C D 2.4

Thermal resistance,

junction – ambient

R t h J A PG-TO-220-3-1PG-TO-247-3-21

6240

Electrical Characteristic, at Tj = 25 C, unless otherwise specified

Parameter Symbol ConditionsValue

Unitmin. Typ. max.

Static Characteristic

Collector-emitter breakdown voltage V ( B R ) C E S VG E=0V, IC=500A 600 - - V

Collector-emitter saturation voltage VC E ( s a t ) VG E = 15V, IC=10A

T j=25C

T j=150C

1.7

-

2

2.3

2.4

2.8

Diode forward voltage VF VG E=0V, IF=10A

T j=25C

T j=150C

1.2

-

1.4

1.25

1.8

1.65

Gate-emitter threshold voltage VG E ( t h ) IC=300A,VC E=VG E 3 4 5

Zero gate voltage collector current IC E S VC E=600V,VG E=0V

T j=25C

T j=150C

-

-

-

-

40

1500

A

Gate-emitter leakage current IG E S VC E=0V,VG E=20V - - 100 nA

Transconductance g f s VC E=20V, IC=10A - 6.7 - S

Dynamic Characteristic

Input capacitance C i s s VC E=25V,

VG E=0V,

f=1MHz

- 550 660 pF

Output capacitance Co s s - 62 75

Reverse transfer capacitance C r s s - 42 51

Gate charge QG a t e VC C=480V, IC=10AVG E=15V

- 52 68 nC

Internal emitter inductance

measured 5mm (0.197 in.) from case

LE PG-TO-220-3-1

PG-TO-247-3-21

-

-

7

13

-

-

nH

Short circuit collector current2) IC ( S C ) VG E=15V, tS C10s

VC C 600V,T j 150C

- 100 - A

2)Allowed number of short circuits: <1000; time between short circuits: >1s.

SKP10N60ASKW10N60A

3 Rev. 2.4 12.06.2013

Switching Characteristic, Inductive Load, at Tj=25 C

Parameter Symbol ConditionsValue

Unitmin. typ. max.

IGBT Characteristic

Turn-on delay time td ( o n ) T j=25C,VC C=400V, IC=10A,VG E=0/15V,RG=25 ,L

1 )=180nH,

C1 )

=55pF

Energy losses include“tail” and diodereverse recovery.

- 28 34 ns

Rise time t r - 12 15

Turn-off delay time td ( o f f ) - 178 214

Fall time t f - 24 29

Turn-on energy Eo n - 0.15 0.173 mJ

Turn-off energy Eo f f - 0.17 0.221

Total switching energy E t s - 0.320 0.394

Anti-Parallel Diode Characteristic

Diode reverse recovery time t r r

tS

tF

T j=25C,

VR=200V, IF=10A,

diF /d t=200A/s

-

-

-

220

20

200

-

-

-

ns

Diode reverse recovery charge Q r r - 310 - nC

Diode peak reverse recovery current I r r m - 4.5 - A

Diode peak rate of fall of reverserecovery current during tb

di r r /d t - 180 - A/s

Switching Characteristic, Inductive Load, at Tj=150 C

Parameter Symbol ConditionsValue

Unitmin. typ. max.

IGBT Characteristic

Turn-on delay time td ( o n ) T j=150CVC C=400V, IC=10A,VG E=0/15V,RG=25L

1 )=180nH,

C1 )

=55pF

Energy losses include“tail” and diodereverse recovery.

- 28 34 ns

Rise time t r - 12 15

Turn-off delay time td ( o f f ) - 198 238

Fall time t f - 26 32

Turn-on energy Eo n - 0.260 0.299 mJ

Turn-off energy Eo f f - 0.280 0.364

Total switching energy E t s - 0.540 0.663

Anti-Parallel Diode Characteristic

Diode reverse recovery time t r r

tS

tF

T j=150C

VR=200V, IF=10A,

diF /d t=200A/s

-

-

-

350

36

314

-

-

-

ns

Diode reverse recovery charge Q r r - 690 - nC

Diode peak reverse recovery current I r r m - 6.3 - A

Diode peak rate of fall of reverserecovery current during tb

di r r /d t - 200 - A/s

1)Leakage inductance L and Stray capacity C due to dynamic test circuit in Figure E.

SKP10N60ASKW10N60A

4 Rev. 2.4 12.06.2013

I C,

CO

LLE

CT

OR

CU

RR

EN

T

10Hz 100Hz 1kHz 10kHz 100kHz0A

10A

20A

30A

40A

50A

TC=110°c

TC=80°c

I C,

CO

LLE

CT

OR

CU

RR

EN

T

1V 10V 100V 1000V

0,1A

1A

10A 15s

DC

1ms

200s

50s

tp=5s

f, SWITCHING FREQUENCY VCE, COLLECTOR-EMITTER VOLTAGE

Figure 1. Collector current as a function ofswitching frequency(Tj 150C, D = 0.5, VCE = 400V,VGE = 0/+15V, RG = 25)

Figure 2. Safe operating area(D = 0, TC = 25C, Tj 150C)

Pto

t,P

OW

ER

DIS

SIP

AT

ION

25°C 50°C 75°C 100°C 125°C0W

20W

40W

60W

80W

100W

120W

I C,

CO

LLE

CT

OR

CU

RR

EN

T

25°C 50°C 75°C 100°C 125°C0A

5A

10A

15A

20A

25A

TC, CASE TEMPERATURE TC, CASE TEMPERATURE

Figure 3. Power dissipation as a functionof case temperature(Tj 150C)

Figure 4. Collector current as a function ofcase temperature(VGE 15V, Tj 150C)

Ic

Ic

SKP10N60ASKW10N60A

5 Rev. 2.4 12.06.2013

I C,

CO

LLE

CT

OR

CU

RR

EN

T

0V 1V 2V 3V 4V 5V0A

5A

10A

15A

20A

25A

30A

35A

15V

13V

11V

9V

7V

5V

VGE

=20V

I C,

CO

LLE

CT

OR

CU

RR

EN

T

0V 1V 2V 3V 4V 5V0A

5A

10A

15A

20A

25A

30A

35A

15V

13V

11V

9V

7V

5V

VGE

=20V

VCE, COLLECTOR-EMITTER VOLTAGE VCE, COLLECTOR-EMITTER VOLTAGE

Figure 5. Typical output characteristics(Tj = 25C)

Figure 6. Typical output characteristics(Tj = 150C)

I C,

CO

LLE

CT

OR

CU

RR

EN

T

0V 2V 4V 6V 8V 10V0A

5A

10A

15A

20A

25A

30A

35A

+150°C

Tj=+25°C

VC

E(s

at),

CO

LLE

CT

OR

-EM

ITT

ER

SA

TU

RA

TIO

NV

OLT

AG

E

0°C 50°C 100°C 150°C1,5V

2,0V

2,5V

3,0V

3,5V

IC=20A

IC=10A

IC=5A

VGE, GATE-EMITTER VOLTAGE Tj, JUNCTION TEMPERATURE

Figure 7. Typical transfer characteristics(VCE = 10V)

Figure 8. Typical collector-emittersaturation voltage as a function of junctiontemperature(VGE = 15V)

SKP10N60ASKW10N60A

6 Rev. 2.4 12.06.2013

t,S

WIT

CH

ING

TIM

ES

0A 5A 10A 15A 20A 25A10ns

100ns

tr

td(on)

tf

td(off)

t,S

WIT

CH

ING

TIM

ES

0 20 40 60 8010ns

100ns

tr

td(on)

tf

td(off)

IC, COLLECTOR CURRENT RG, GATE RESISTOR

Figure 9. Typical switching times as afunction of collector current(inductive load, Tj = 150C, VCE = 400V,VGE = 0/+15V, RG = 25,Dynamic test circuit in Figure E)

Figure 10. Typical switching times as afunction of gate resistor(inductive load, Tj = 150C, VCE = 400V,VGE = 0/+15V, IC = 10A,Dynamic test circuit in Figure E)

t,S

WIT

CH

ING

TIM

ES

0°C 50°C 100°C 150°C10ns

100ns

tr

td(on)

tf

td(off)

VG

E(t

h),

GA

TE-E

MIT

TE

RT

HR

ES

HO

LD

VO

LT

AG

E

-50°C 0°C 50°C 100°C 150°C1,0V

1,5V

2,0V

2,5V

3,0V

3,5V

4,0V

4,5V

5,0V

5,5V

typ.

min.

max.

Tj, JUNCTION TEMPERATURE Tj, JUNCTION TEMPERATURE

Figure 11. Typical switching times as afunction of junction temperature(inductive load, VCE = 400V, VGE = 0/+15V,IC = 10A, RG = 25,Dynamic test circuit in Figure E)

Figure 12. Gate-emitter threshold voltageas a function of junction temperature(IC = 0.3mA)

SKP10N60ASKW10N60A

7 Rev. 2.4 12.06.2013

E,

SW

ITC

HIN

GE

NE

RG

YLO

SS

ES

0A 5A 10A 15A 20A 25A0,0mJ

0,2mJ

0,4mJ

0,6mJ

0,8mJ

1,0mJ

1,2mJ

1,4mJ

1,6mJ

Eon

*

Eoff

Ets*

E,

SW

ITC

HIN

GE

NE

RG

YLO

SS

ES

0 20 40 60 800,2mJ

0,4mJ

0,6mJ

0,8mJ

1,0mJ

Ets*

Eon

*

Eoff

IC, COLLECTOR CURRENT RG, GATE RESISTOR

Figure 13. Typical switching energy lossesas a function of collector current(inductive load, Tj = 150C, VCE = 400V,VGE = 0/+15V, RG = 25,Dynamic test circuit in Figure E)

Figure 14. Typical switching energy lossesas a function of gate resistor(inductive load, Tj = 150C, VCE = 400V,VGE = 0/+15V, IC = 10A,Dynamic test circuit in Figure E)

E,

SW

ITC

HIN

GE

NE

RG

YLO

SS

ES

0°C 50°C 100°C 150°C0,0mJ

0,2mJ

0,4mJ

0,6mJ

0,8mJ

Ets*

Eon

*

Eoff

Zth

JC,

TR

AN

SIE

NT

TH

ER

MA

LIM

PE

DA

NC

E

1µs 10µs 100µs 1ms 10ms 100ms 1s10

-3K/W

10-2

K/W

10-1

K/W

100K/W

0.01

0.02

0.05

0.1

0.2

single pulse

D=0.5

Tj, JUNCTION TEMPERATURE tp, PULSE WIDTH

Figure 15. Typical switching energy lossesas a function of junction temperature(inductive load, VCE = 400V, VGE = 0/+15V,IC = 10A, RG = 25,Dynamic test circuit in Figure E)

Figure 16. IGBT transient thermalimpedance as a function of pulse width(D = tp / T)

*) Eon and Ets include lossesdue to diode recovery.

*) Eon and Ets include lossesdue to diode recovery.

*) Eon and Ets include lossesdue to diode recovery.

C1=1/R1

R1 R2

C2=2/R2

R , ( K / W ) , ( s ) 0.4287 0.03580.4830 4.3*10-3

0.4383 3.46*10-4

SKP10N60ASKW10N60A

8 Rev. 2.4 12.06.2013

VG

E,

GA

TE-E

MIT

TE

RV

OLT

AG

E

0nC 25nC 50nC 75nC0V

5V

10V

15V

20V

25V

480V

120V

C,

CA

PA

CIT

AN

CE

0V 10V 20V 30V10pF

100pF

1nF

Crss

Coss

Ciss

QGE, GATE CHARGE VCE, COLLECTOR-EMITTER VOLTAGE

Figure 17. Typical gate charge(IC = 10A)

Figure 18. Typical capacitance as afunction of collector-emitter voltage(VGE = 0V, f = 1MHz)

t sc,

SH

OR

TC

IRC

UIT

WIT

HS

TA

ND

TIM

E

10V 11V 12V 13V 14V 15V0 s

5 s

10 s

15 s

20 s

25 s

I C(s

c),

SH

OR

TC

IRC

UIT

CO

LLE

CT

OR

CU

RR

EN

T

10V 12V 14V 16V 18V 20V0A

50A

100A

150A

200A

VGE, GATE-EMITTER VOLTAGE VGE, GATE-EMITTER VOLTAGE

Figure 19. Short circuit withstand time as afunction of gate-emitter voltage(VCE = 600V, start at Tj = 25C)

Figure 20. Typical short circuit collectorcurrent as a function of gate-emitter voltage(VCE 600V, Tj = 150C)

SKP10N60ASKW10N60A

9 Rev. 2.4 12.06.2013

t rr,

RE

VE

RS

ER

EC

OV

ER

YT

IME

100A/s 300A/s 500A/s 700A/s 900A/s0ns

100ns

200ns

300ns

400ns

500ns

IF

= 5A

IF

= 10A

IF

= 20A

Qrr,

RE

VE

RS

ER

EC

OV

ER

YC

HA

RG

E

100A/s 300A/s 500A/s 700A/s 900A/s0nC

200nC

400nC

600nC

800nC

1000nC

1200nC

1400nC

IF

= 5A

IF

= 10A

IF

= 20A

diF /d t , DIODE CURRENT SLOPE diF /d t , DIODE CURRENT SLOPE

Figure 21. Typical reverse recovery time asa function of diode current slope(VR = 200V, Tj = 125C,Dynamic test circuit in Figure E)

Figure 22. Typical reverse recovery chargeas a function of diode current slope(VR = 200V, Tj = 125C,Dynamic test circuit in Figure E)

I rr,

RE

VE

RS

ER

EC

OV

ER

YC

UR

RE

NT

100A/s 300A/s 500A/s 700A/s 900A/s0A

4A

8A

12A

16A

20A

IF

= 5A

IF

= 20A

IF

= 10A

di r

r/d

t,D

IOD

EP

EA

KR

AT

EO

FF

ALL

OF

RE

VE

RS

ER

EC

OV

ER

YC

UR

RE

NT

100A/s 300A/s 500A/s 700A/s 900A/s0A/s

200A/s

400A/s

600A/s

800A/s

1000A/s

diF /d t , DIODE CURRENT SLOPE diF/dt, DIODE CURRENT SLOPE

Figure 23. Typical reverse recovery currentas a function of diode current slope(VR = 200V, Tj = 125C,Dynamic test circuit in Figure E)

Figure 24. Typical diode peak rate of fall ofreverse recovery current as a function ofdiode current slope(VR = 200V, Tj = 125C,Dynamic test circuit in Figure E)

SKP10N60ASKW10N60A

10 Rev. 2.4 12.06.2013

I F,

FO

RW

AR

DC

UR

RE

NT

0.0V 0.5V 1.0V 1.5V 2.0V0A

5A

10A

15A

20A

150°C

-55°C

25°C

100°C

VF,

FO

RW

AR

DV

OLT

AG

E

-40°C 0°C 40°C 80°C 120°C1.0V

1.5V

2.0V

VF, FORWARD VOLTAGE Tj, JUNCTION TEMPERATURE

Figure 25. Typical diode forward current asa function of forward voltage

Figure 26. Typical diode forward voltage asa function of junction temperature

Zth

JC

D,

TR

AN

SIE

NT

TH

ER

MA

LIM

PE

DA

NC

E

1µs 10µs 100µs 1ms 10ms 100ms 1s10

-2K/W

10-1K/W

100K/W

0.01

0.02

0.05

0.1

0.2

single pulse

D=0.5

tp, PULSE WIDTH

Figure 27. Diode transient thermalimpedance as a function of pulse width(D = tp / T)

IF = 10A

IF = 20A

C1=1/R1

R1 R2

C2=2/R2

R , ( K / W ) , ( s ) 0.759 5.53*10-2

0.481 4.28*10-3

0.609 4.83*10-4

0.551 5.77*10-5

SKP10N60ASKW10N60A

11 Rev. 2.4 12.06.2013

SKP10N60ASKW10N60A

12 Rev. 2.4 12.06.2013

SKP10N60ASKW10N60A

13 Rev. 2.4 12.06.2013

Ir r m

90% Ir r m

10% Ir r m

di /dtF

tr r

IF

i,v

tQS

QF

tS

tF

VR

di /dtr r

Q =Q Qr r S F

+

t =t tr r S F

+

Figure C. Definition of diodesswitching characteristics

p(t)1 2 n

T (t)j

11

2

2

n

n

TC

r r

r

r

rr

Figure D. Thermal equivalentcircuit

Figure E. Dynamic test circuitLeakage inductance L =180nHand Stray capacity C =55pF.

Figure A. Definition of switching times

Figure B. Definition of switching losses

SKP10N60ASKW10N60A

14 Rev. 2.4 12.06.2013

Published byInfineon Technologies AG,

Published byInfineon Technologies AG81726 Munich, Germany© 2013 Infineon Technologies AGAll Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or

characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or

any information regarding the application of the device, Infineon Technologies hereby disclaims any and all

warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual

property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearestInfineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on thetypes in question, please contact the nearest Infineon Technologies Office.The Infineon Technologies component described in this Data Sheet may be used in life-support devices orsystems and/or automotive, aviation and aerospace applications or systems only with the express writtenapproval of Infineon Technologies, if a failure of such components can reasonably be expected to cause thefailure of that life-support, automotive, aviation and aerospace device or system or to affect the safety oreffectiveness of that device or system. Life support devices or systems are intended to be implanted in thehuman body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonableto assume that the health of the user or other persons may be endangered.