scientist of the month - december

8
Tiago Santos University of Coimbra, Portugal Scientist of the Month

Upload: st-johns-laboratory-ltd

Post on 14-Apr-2017

1.884 views

Category:

Science


1 download

TRANSCRIPT

Page 1: Scientist of the Month - December

Tiago SantosUniversity of Coimbra, Portugal

Scientist of the Month

Page 2: Scientist of the Month - December

 What are the highlights of your career so far?

I graduated from the University of Coimbra, Portugal, with a Master’s degree in Biochemistry and I

am currently concluding my Ph.D. studies in Biosciences, minor in Neurosciences, in the same university and in

the University of Beira Interior. My Ph.D. studies have focused on the pro-neurogenic effect of a novel patent-

protected retinoic acid-loaded nanoparticle formulation that was recognized by the Pulido Valente for Science

Award and Abcam’s 15 best discoveries award of 2013. Additionally, this formulation was further optimized to

become light-responsive, thereby enabling a controlled release of retinoic acid. This work, supervised by Dr.

Liliana Bernardino, was developed in close collaboration with Dr. Lino Ferreira. During this period, I generated

a mounting number of important results in the area of neurogenesis and biomaterials that culminated in high

impact publications.

Page 3: Scientist of the Month - December

After a period at the University of Southern California, USA, I further explored the application of

nanomaterials in biological systems, this time focusing on carbon nanotube-induced hyperthermia for glioma

cancer treatment under the supervision of Dr. Thomas Chen and Dr. Florence Hofman (in collaboration with Dr.

Chongwu Zhou). Presently, I have submitted my Ph.D. thesis and my future expectations are to continue

developing a strong background in the development of brain repair therapies, in particular for cerebrovascular

and neurodegenerative disorders.

 What are the highlights of your career so far?

Page 4: Scientist of the Month - December

 

What are your current research projects?

The main aim of my current research project is to develop a safer and more efficient therapeutic

platform based on retinoic acid-loaded nanoparticles (RA-NP) to induce neurogenesis from the resident neural

stem cells (NSC) present in the adult brain. Understanding how to efficiently trigger NSC differentiation is crucial

to devise new cellular therapies aimed at repairing the damaged brain. Of note, retinoic acid (RA) is a potent

differentiating factor critical for neurogenesis for both the developing and adult brain. Unfortunately, concerns

related to solubility, stability, concentration or spatial and temporal positioning can hinder its desirable effects.

The use of biomaterials emerges as the ideal support to overcome these limitations and consequently boost NSC

differentiation.

Page 5: Scientist of the Month - December

 

What are your current research projects?

We reported the use of RA-loaded polymeric nanoparticles as a potent tool to induce the neuronal

differentiation of subventricular zone (SVZ; the main adult neurogenic niche) cells. Importantly, this work reported

for the first time a nanoparticle formulation able to modulate the SVZ neurogenic niche in vivo with a concentration

2500-fold lower than the one needed with free solubilized RA. Additionally, when comparing the dynamics of initial

stages of differentiation, RA-NP led to a more robust expression of proneurogenic genes (Mash1 and Neurogenin1)

by SVZ cells.Figure 1: RA-NP induces a more robust gene expression (Mash1 and Ngn1) by SVZ cells than solubilized RA, both in vitro and in vivo (image from Santos et al. 2012 DOI: 10.1021/nn304541h).

Page 6: Scientist of the Month - December

 

What are your current research projects?

However, the balance between biomaterials and differentiating factors must be well established, since bioaccumulation in off-target areas and the uncontrolled release can generate undesired side-effects. For that reason, we further optimized our formulation to be remotely controllable. Accordingly, we developed a light-responsive nanoparticle formulation to control the release of RA while delivering it intracellularly with spatial and temporal precision. This combinatory therapy induced an amplified neurogenic effect while allowing a temporal and spatial remote control of RA release.

The protection of RA from degradation, intracellular delivery and spatial and temporal precision accomplished by RA-loaded nanoparticles may be the grounds for the development of an innovative therapy for brain regeneration.

Figure 2: Combinatorial treatment of light-responsive RA-NP and laser light induces neural differentiation.

Page 7: Scientist of the Month - December

 

Do you have any bench tips for other researchers in your field?

Taking some time to read product datasheets and equipment user manuals can actually save you a lot

of time and money! This tip is nothing new, but we generally end up doing our research in time trial mode and

inevitably some details are missed. But when using a new product, you will find that its manual covers a great

deal of valuable information that can save your samples from waste, your time, money and even some of your

precious patience.

Publications:

https://scholar.google.pt/citations?user=2n-aYTYAAAAJ&hl=en-EN

Lab Website: https://brainrepairgroup.wordpress.com/

Page 8: Scientist of the Month - December

 

Want to be our Scientist of the Month?

Contact: [email protected]

@StJohnsLabsSt John's Laboratory Ltd

St John's Laboratory Ltd St John's Laboratory Ltd