sayısal kontrol sistemleri dr. uğur hasırcı düzce...

29
Sayısal Kontrol Sistemleri Dr. Uğur Hasırcı Düzce Üniversitesi 1 Hatırlanacağı gibi, analog kontrol sistemlerinde tüm sistemler diferansiyel denklemlerle modelleniyordu. Bu diferansiyel denklem “Laplace Dönüşümü” yoluyla s karmaşık değişkeninin cebirsel bir denklemine dönüştürülüp, verilen bir giriş sinyali için sistemin geçici durum cevabı, kararlılığı ve kalıcı durum cevabı inceleniyordu. Benzer bir modelleme ve kontrol yaklaşımı sayısal kontrol sistemlerinde de mevcuttur. Sayısal kontrol sistemleri “Fark Denklemleri” ile modellenir. Daha sonra bu fark denklemleri “z- Dönüşümü” yoluyla z karmaşık değişkeninin cebirsel bir denklemine dönüştürülerek, verilen bir giriş sinyali için sistemin analizi yapılır. Bu nedenle sayısal kontrol sistemlerinin analizi ve tasarımında “z-Dönüşümü” önemli bir araçtır ve analog kontrol sistemlerinde Laplace Dönüşümünün sahip olduğu rolü, sayısal kontrol sistemlerinde üstlenir. Bu derste ilk önce z-dönüşümü tanıtılacak ve daha sonra sırasıyla Ters z-Dönüşümü ve fark denklemlerinin z-dönüşümü yoluyla çözümü anlatılacaktır. Ayrık-zamanlı sinyaller, bir sürekli-zaman sinyalinde örnekleme işlemi olduğunda ortaya çıkar. T örnekleme periyodunu göstermek üzere, örneklenmiş sinyal x(0), x(T), x(2T), x(3T), …… şeklinde bir dizi ile ifade edilir ve bu dizinin genel ifadesi x(kT) şeklindedir. Bu ifade bazen örnekleme periyodu T yazılmaksızın x(k) şeklinde de gösterilir. z-DÖNÜŞÜMÜ Ayrık-zamanlı sinyallerle çalışmak için z-dönüşümü oldukça güçlü bir yöntemdir. Zamanın bir fonksiyonu olan x(t) fonksiyonunun z-dönüşümü hesaplanırken, bu fonksiyonun sadece her bir T örnekleme anındaki örneklerini temsil eden x(0), x(T), x(2T), x(3T), …… dizisi göz önünde bulundurulur. Bir x(t) fonksiyonunun (ya da onun örneklenmiş halini temsil eden x(kT) dizisinin) z-dönüşümü, 0 () () ( ) ( ) k k Xz xt x kT x kT z ile tanımlanır. Burada , z-dönüşüm operatörüdür. Dikkat edilirse yukarıdaki serinin açılımı, 1 2 () (0) () (2 ) .... ( ) .... k Xz x xTz x Tz x kT z şeklindedir.

Upload: others

Post on 09-Jan-2020

18 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Sayısal Kontrol Sistemleri Dr. Uğur Hasırcı Düzce Üniversitesiakademik.duzce.edu.tr/Content/Dokumanlar/... · Sayısal Kontrol Sistemleri Dr. Uğur Hasırcı Düzce Üniversitesi

Sayısal Kontrol Sistemleri Dr. Uğur Hasırcı Düzce Üniversitesi

1

Hatırlanacağı gibi, analog kontrol sistemlerinde tüm sistemler diferansiyel denklemlerle modelleniyordu. Bu diferansiyel denklem “Laplace Dönüşümü” yoluyla s karmaşık değişkeninin cebirsel bir denklemine dönüştürülüp, verilen bir giriş sinyali için sistemin geçici durum cevabı, kararlılığı ve kalıcı durum cevabı inceleniyordu.

Benzer bir modelleme ve kontrol yaklaşımı sayısal kontrol sistemlerinde de mevcuttur. Sayısal kontrol sistemleri “Fark Denklemleri” ile modellenir. Daha sonra bu fark denklemleri “z-Dönüşümü” yoluyla z karmaşık değişkeninin cebirsel bir denklemine dönüştürülerek, verilen bir giriş sinyali için sistemin analizi yapılır.

Bu nedenle sayısal kontrol sistemlerinin analizi ve tasarımında “z-Dönüşümü” önemli bir araçtır ve analog kontrol sistemlerinde Laplace Dönüşümünün sahip olduğu rolü, sayısal kontrol sistemlerinde üstlenir.

Bu derste ilk önce z-dönüşümü tanıtılacak ve daha sonra sırasıyla Ters z-Dönüşümü ve fark denklemlerinin z-dönüşümü yoluyla çözümü anlatılacaktır.

Ayrık-zamanlı sinyaller, bir sürekli-zaman sinyalinde örnekleme işlemi olduğunda ortaya çıkar. T örnekleme periyodunu göstermek üzere, örneklenmiş sinyal x(0), x(T), x(2T), x(3T), …… şeklinde bir dizi ile ifade edilir ve bu dizinin genel ifadesi x(kT) şeklindedir. Bu ifade bazen örnekleme periyodu T yazılmaksızın x(k) şeklinde de gösterilir.

z-DÖNÜŞÜMÜ

Ayrık-zamanlı sinyallerle çalışmak için z-dönüşümü oldukça güçlü bir yöntemdir. Zamanın bir fonksiyonu olan x(t) fonksiyonunun z-dönüşümü hesaplanırken, bu fonksiyonun sadece her bir T örnekleme anındaki örneklerini temsil eden x(0), x(T), x(2T), x(3T), …… dizisi göz önünde bulundurulur.

Bir x(t) fonksiyonunun (ya da onun örneklenmiş halini temsil eden x(kT) dizisinin) z-dönüşümü,

0

( ) ( ) ( ) ( ) k

k

X z x t x kT x kT z

ile tanımlanır. Burada , z-dönüşüm operatörüdür.

Dikkat edilirse yukarıdaki serinin açılımı,

1 2( ) (0) ( ) (2 ) .... ( ) ....kX z x x T z x T z x kT z

şeklindedir.

Page 2: Sayısal Kontrol Sistemleri Dr. Uğur Hasırcı Düzce Üniversitesiakademik.duzce.edu.tr/Content/Dokumanlar/... · Sayısal Kontrol Sistemleri Dr. Uğur Hasırcı Düzce Üniversitesi

Sayısal Kontrol Sistemleri Dr. Uğur Hasırcı Düzce Üniversitesi

2

Temel Bazı Fonksiyonların z-Dönüşümü

Birim Adım Fonksiyonu: Zaman domenindeki ifadesi

1( ), 0( )

0, 0

t tx t

t

şeklinde olan birim adım fonksiyonunun z-dönüşümünü hesaplayalım.

0 0

1 2 3

( ) [1( )] 1

1 ........

k k

k k

X z t z z

z z z

Dizilerden hatırlayacağımız üzere, 1+r+r2+r

3+… serisi, 1/(1-r) değerine yakınsar (|r|>1 için).

Dolayısıyla yukarıdaki seri 1/(1-z-1

)’e yakınsar. Yani,

1

1( ) [1( )]

1 1

zX z t

z z

Birim Rampa Fonksiyonu: Zaman domenindeki ifadesi

, 0( )

0, 0

t tx t

t

şeklinde olan birim rampa fonksiyonunun z-dönüşümünü hesaplayalım. Dikkat edilirse, x(kT)=kT dir.

t

Page 3: Sayısal Kontrol Sistemleri Dr. Uğur Hasırcı Düzce Üniversitesiakademik.duzce.edu.tr/Content/Dokumanlar/... · Sayısal Kontrol Sistemleri Dr. Uğur Hasırcı Düzce Üniversitesi

Sayısal Kontrol Sistemleri Dr. Uğur Hasırcı Düzce Üniversitesi

3

0 0 0

1 2 3

( ) [ ] ( )

2 3 ........

k k k

k k k

X z t x kT z kTz T kz

T z z z

Dizilerden hatırlayacağımız üzere, r+2r2+3r

3+… serisi, r/(1-r)

2 değerine yakınsar (|r|>1 için).

Dolayısıyla yukarıdaki seri 1/(1-z-1

)’e yakınsar. Yani,

1

2 21

( ) [ ]11

z zX z t T T

zz

Polinomial Fonksiyon ak: Genel ifadesi

, 0, 1, 2, 3,...( )

0, 0

ka kx k

k

(a sabit) şeklinde olan polinomial fonksiyonun z-dönüşümünü hesaplayalım.

0 0

1 2 2 3 3

( ) ( )

1 ........

k k k k

k k

X z a x k z a z

az a z a z

Dizilerden hatırlayacağımız üzere, 1+r+r2+r

3+… serisi, 1/(1-r) değerine yakınsar (|r|>1 için).

Dolayısıyla yukarıdaki seri 1/(1-az-1

)’e yakınsar. Yani,

1

1( ) [1( )]

1

zX z t

az z a

Page 4: Sayısal Kontrol Sistemleri Dr. Uğur Hasırcı Düzce Üniversitesiakademik.duzce.edu.tr/Content/Dokumanlar/... · Sayısal Kontrol Sistemleri Dr. Uğur Hasırcı Düzce Üniversitesi

Sayısal Kontrol Sistemleri Dr. Uğur Hasırcı Düzce Üniversitesi

4

Üstel Fonksiyon: Zaman domenindeki ifadesi

, 0( )

0, 0

ate tx t

t

(a sabit) şeklinde olan üstel fonksiyonun z-dönüşümünü hesaplayalım. Dikkat edilirse, x(kT)=e-akT

dir

0 0

1 2 2 3 3

( ) ( )

1 ........

at k akT k

k k

aT aT aT

X z e x kT z e z

e z e z e z

Dizilerden hatırlayacağımız üzere, 1+r+r2+r

3+… serisi, 1/(1-r) değerine yakınsar (|r|>1 için).

Dolayısıyla yukarıdaki seri 1/(1-e-aT

z-1

)’e yakınsar. Yani,

1

1( )

1

at

aT aT

zX z e

e z z e

Sinüsoidal Fonksiyon: Zaman domenindeki ifadesi

sin , 0( )

0, 0

t tx t

t

şeklinde olan sinüsoidal fonksiyonun z-dönüşümünü hesaplayalım. Bunun için önce Euler’in kulaklarını çınlatalım:

cos sin

cos sin

j t

j t

e t j t

e t j t

Bu durumda

1sin

2

j t j tt e ej

olur. Üstel fonksiyonun z-dönüşümünün

Page 5: Sayısal Kontrol Sistemleri Dr. Uğur Hasırcı Düzce Üniversitesiakademik.duzce.edu.tr/Content/Dokumanlar/... · Sayısal Kontrol Sistemleri Dr. Uğur Hasırcı Düzce Üniversitesi

Sayısal Kontrol Sistemleri Dr. Uğur Hasırcı Düzce Üniversitesi

5

1

1

1

at

aTe

e z

olduğunu zaten biliyoruz. Bu durumda sinüsoidal fonksiyonun z-dönüşümü şu şekilde bulunur:

1 1

1

1 2

1

1 2 2

1( ) [sin ]

2

1 1 1

2 1 1

1

2 1

sin sin[sin ]

1 2 cos 2 cos 1

j t j t

j T j T

j T j T

j T j T

X z t e ej

j e z e z

e e z

j e e z z

z T z Tt

z T z z z T

Ör: Zaman domenindeki ifadesi

cos , 0( )

0, 0

t tx t

t

olarak verilen kosinüs fonksiyonunun z-dönüşümünü hesaplayınız.

C: Sinüsoidal fonksiyonun z-dönüşümünün hesaplanmasına benzer bir yaklaşım kullanırsak:

1 1

1

1 2

1 2

1 2 2

1( ) [cos ]

2

1 1 1

2 1 1

21

2 1

1 cos sin[cos ]

1 2 cos 2 cos 1

j t j t

j T j T

j T j T

j T j T

X z t e e

e z e z

e e z

e e z z

z T z z Tt

z T z z z T

olarak bulunur.

Page 6: Sayısal Kontrol Sistemleri Dr. Uğur Hasırcı Düzce Üniversitesiakademik.duzce.edu.tr/Content/Dokumanlar/... · Sayısal Kontrol Sistemleri Dr. Uğur Hasırcı Düzce Üniversitesi

Sayısal Kontrol Sistemleri Dr. Uğur Hasırcı Düzce Üniversitesi

6

Ör: Frekans domenindeki ifadesi

1( )

( 1)X s

s s

olarak verilen fonksiyonun z-dönüşümünü hesaplayınız.

C: Frekans domenindeki ifadesi verilmiş bir fonksiyonun z-dönüşümünü bulmak için gennellikle bu frekans domeni ifadesi önce zaman domenine çevrilir ve daha sonra bu zaman domenindeki fonksiyonun z-dönüşümünü hesaplanır. Soruda verilen fonksiyonun zaman domeni ifadesi

( ) 1 tx t e

şeklindedir. Zaman domenindeki bu fonksiyonun z-dönüşümünü ise

1 1

1 1

1 1

1 1( ) 1

1 1

1

1 1

1

1

t

T

T

T

T

T

X z ez e z

e z z

z e z

e z

z z e

olarak bulunur.

Tıpkı Laplace Dönüşümü için, yaygın olarak kullanılan bazı fonksiyonların Laplace dönüşümlerini

içeren bir “Laplace Dönüşüm Tablosu” oluşturulduğu gibi, benzer şekilde z-dönüşümü için de,

yaygın olarak kullanılan bazı fonksiyonların z-dönüşümünü gösteren bir “z-Dönüşümü Tablosu”

oluşturulabilir. Aşağıda bu tablo görülmektedir. Tabloda ayrıca bazı fonksiyonların hem Laplace

Dönüşümü hem de z-Dönüşümü gösterilmiştir.

Page 7: Sayısal Kontrol Sistemleri Dr. Uğur Hasırcı Düzce Üniversitesiakademik.duzce.edu.tr/Content/Dokumanlar/... · Sayısal Kontrol Sistemleri Dr. Uğur Hasırcı Düzce Üniversitesi

Sayısal Kontrol Sistemleri Dr. Uğur Hasırcı Düzce Üniversitesi

7

Page 8: Sayısal Kontrol Sistemleri Dr. Uğur Hasırcı Düzce Üniversitesiakademik.duzce.edu.tr/Content/Dokumanlar/... · Sayısal Kontrol Sistemleri Dr. Uğur Hasırcı Düzce Üniversitesi

Sayısal Kontrol Sistemleri Dr. Uğur Hasırcı Düzce Üniversitesi

8

Page 9: Sayısal Kontrol Sistemleri Dr. Uğur Hasırcı Düzce Üniversitesiakademik.duzce.edu.tr/Content/Dokumanlar/... · Sayısal Kontrol Sistemleri Dr. Uğur Hasırcı Düzce Üniversitesi

Sayısal Kontrol Sistemleri Dr. Uğur Hasırcı Düzce Üniversitesi

9

z-Dönüşümünün Bazı Önemli Özellikleri ve Teoremleri

Bir Sabitle Çarpma: X(z), x(t)’nin z-dönüşümü ve a bir sabit olmak üzere,

( ) ( ) ( )ax t a x t aX z

Doğrusallık: X(z), x(k)’nın (ya da x(t)’nin) z-dönüşümü ve a ve b bir sabit olmak üzere, x(k)

fonksiyonu

( ) ( ) ( )x k af k bg k

şeklinde 2 (ya da daha fazla) fonksiyonun toplamı şeklinde bir fonksiyon olsun. Bu durumda,

( ) ( ) ( )X z aF z bG z

olur. Burada F(z) ve G(z), sırasıyla f(k) ve g(k) fonksiyonlarının (dizilerinin) z-dönüşümleridir.

ak ile Çarpma: X(z), x(k)’nın z-dönüşümü ve a bir sabit olmak üzere,

İspat: 1 1

0 0

( ) ( ) ( )k

k k k

k k

a x k a x k z x k a z X a z

Reel Öteleme Teoremi: X(z), x(t)’nin z-dönüşümü ve n bir pozitif tamsayı ya da sıfır olmak üzere,

( ) ( )nx t nT z X z

ve

1

0

( ) ( ) ( )n

n k

k

x t nT z X z x kT z

Bu teoremin ispatını yapabilir misiniz?

1( )ka x k X a z

Page 10: Sayısal Kontrol Sistemleri Dr. Uğur Hasırcı Düzce Üniversitesiakademik.duzce.edu.tr/Content/Dokumanlar/... · Sayısal Kontrol Sistemleri Dr. Uğur Hasırcı Düzce Üniversitesi

Sayısal Kontrol Sistemleri Dr. Uğur Hasırcı Düzce Üniversitesi

10

X(z), x(kT)’nin z-dönüşümünü göstermek üzere, X(z)’i z ile çarpmak, x(kT)’yi bir örnekleme

periyodu ileriye taşımak demektir. Benzer şekilde X(z)’i z-1 ile çarpmak, x(kT)’yi bir örnekleme

periyodu geciktirmek demektir. Buna ilişkin basit bir örneğe bakalım:

Ör: Birim adım fonksiyonunun aşağıdaki şekilde görüldüğü gibi sırasıyla 1 örnekleme periyodu ve 4

örnekleme periyodu geciktirilmiş formunun z-dönüşümünü bulunuz.

C: Birim adım fonksiyonunun z-dönüşümünün

1

1[1( )]

1 1

zt

z z

olduğunu biliyoruz. Bu fonksiyonu 1 örnekleme periyodu geciktirmek demek, örnekleme periyodu

T’nin değerinden bağımsız olarak fonksiyonun z-dönüşümünü z-1 ile çarpmak demektir. Yani,

11 1

1 1

1[1( )] [1( )]

1 1

zt T z t z

z z

olur. 4 örnekleme periyodu kaydırıldığında ise

44

1[1( 4 )] [1( )]

1

zt T z t

z

Page 11: Sayısal Kontrol Sistemleri Dr. Uğur Hasırcı Düzce Üniversitesiakademik.duzce.edu.tr/Content/Dokumanlar/... · Sayısal Kontrol Sistemleri Dr. Uğur Hasırcı Düzce Üniversitesi

Sayısal Kontrol Sistemleri Dr. Uğur Hasırcı Düzce Üniversitesi

11

Ör: Aşağıda verilen fonksiyonun z-dönüşümünü bulunuz.

1, 1, 2, 3,...( )

0, 0

ka kf k

k

C: Polinomial fonksiyonun z-dönüşümünün

1

1

1

kaaz

olduğunu biliyoruz. Soruda verilen fonksiyon, bu fonksiyonun 1 örnekleme periyodu geciktirilmiş

halidir. Bu nedenle

11 1

11

k k za z a

az

Kompleks Öteleme Teoremi: X(z), x(t)’nin z-dönüşümü olmak üzere,

( )at aTe x t X ze

İspat: 0 0

( ) ( ) ( )k

at akT k aT aT

k k

e x t x kT e z x kT ze X ze

Ör: sinate t ve cosate t fonksiyonlarının z-dönüşümünü bulunuz.

C: sin t fonksiyonunun z-dönüşümünün

1

1 2

sin[sin ]

1 2 cos

z Tt

z T z

olduğunu biliyoruz. Soruda verilen fonksiyon, bu fonksiyonun e-at ile çarpılmış halidir. Bu nedenle

1

1 2 2

sinsin

1 2 cos

aTat

aT aT

e z Te t

e z T e z

ve benzer şekilde

1

1 2 2

1 coscos

1 2 cos

aTat

aT aT

e z Te t

e z T e z

Alıştırma: atte fonksiyonunun z-dönüşümünü bulunuz.

Page 12: Sayısal Kontrol Sistemleri Dr. Uğur Hasırcı Düzce Üniversitesiakademik.duzce.edu.tr/Content/Dokumanlar/... · Sayısal Kontrol Sistemleri Dr. Uğur Hasırcı Düzce Üniversitesi

Sayısal Kontrol Sistemleri Dr. Uğur Hasırcı Düzce Üniversitesi

12

Başlangıç Değer Teoremi: X(z), x(t)’nin z-dönüşümü ve x(0) ise x(t)’nin veya x(k)’nın başlangıç

koşulu olmak üzere,

(0) lim ( )z

x X z

İspat: z-dönüşümünün tanımına göre;

1 2

0

( ) ( ) (0) (1) (2) .....k

k

X z x k z x x z x z

Yukarıdaki denklemde z yerine sonsuz konursa sadece x(0) terimi kalır ve diğer bütün terimler sıfıra

eşit olur. x(0) ise X(z)’in başlangıç değeridir.

Ör: Aşağıda verilen X(z) fonksiyonunun başlangıç değerini bulunuz.

1

1 1

1( )

1 1

T

T

e zX z

z e z

C: Başlangıç Değer Teoremi kullanılırsa;

1

1 1

1(0) lim 0

1 1

T

Tz

e zx

z e z

Dikkat edilirse soruda verilen X(z) fonksiyonu, daha önce bir örnekte zaman domenindeki

( ) 1 tx t e fonksiyonunun z-dönüşümü olarak elde ettiğimiz fonksiyondur. Zaman domenindeki

bu ( ) 1 tx t e fonksiyonunun başlangıç değeri (t=0 için) sıfıra eşittir. Sonucun doğruluğu bu

şekilde de test edilebilir. Diğer bir önemli ayrıntı, Başlangıç Değer Teoreminin ancak ve ancak

lim ( )z

X z

limitinin mevcut olması durumunda kullanılabilmesidir.

Page 13: Sayısal Kontrol Sistemleri Dr. Uğur Hasırcı Düzce Üniversitesiakademik.duzce.edu.tr/Content/Dokumanlar/... · Sayısal Kontrol Sistemleri Dr. Uğur Hasırcı Düzce Üniversitesi

Sayısal Kontrol Sistemleri Dr. Uğur Hasırcı Düzce Üniversitesi

13

Son Değer Teoremi: X(z), x(t)’nin z-dönüşümü ve x(∞) ise x(t)’nin veya x(k)’nın son değeri olmak

üzere,

1

1lim ( ) ( ) lim 1 ( )k z

x k x z X z

Teoremin ispatı öğrenciye bırakılmıştır. Bu teorem ancak ve ancak X(z)’in bütün kutuplarının birim

çember (yarıçapı 1 birim olan çember) içersinde olması ve yukarıdaki limitin mevcut olması

durumunda uygulanabilir.

Ör: Aşağıda verilen X(z) fonksiyonunun son değerini bulunuz.

1 1

1 1( ) , 0

1 1 aTX z a

z e z

C: Son Değer Teoremi kullanılırsa;

1

1

1

1 11

1

11

( ) lim 1 ( )

1 1lim 1

1 1

1lim 1 1

1

z

aTz

aTz

x z X z

zz e z

z

e z

Dikkat edilirse soruda verilen X(z) fonksiyonu, zaman domenindeki ( ) 1 atx t e fonksiyonunun z-

dönüşümü olan fonksiyondur. Zaman domenindeki bu ( ) 1 atx t e fonksiyonunun son değeri

(t=∞ için) sıfıra eşittir. Sonucun doğruluğu bu şekilde de test edilebilir.

Tıpkı Laplace Dönüşümünün önemli özelliklerinin ve teoremlerinin bir tabloda toplu halde

gösterilmesi gibi, z-dönüşümünün de önemli özellikleri ve teoremleri aşağıdaki gibi bir tabloda

toplu halde gösterilebilir.

Page 14: Sayısal Kontrol Sistemleri Dr. Uğur Hasırcı Düzce Üniversitesiakademik.duzce.edu.tr/Content/Dokumanlar/... · Sayısal Kontrol Sistemleri Dr. Uğur Hasırcı Düzce Üniversitesi

Sayısal Kontrol Sistemleri Dr. Uğur Hasırcı Düzce Üniversitesi

14

Page 15: Sayısal Kontrol Sistemleri Dr. Uğur Hasırcı Düzce Üniversitesiakademik.duzce.edu.tr/Content/Dokumanlar/... · Sayısal Kontrol Sistemleri Dr. Uğur Hasırcı Düzce Üniversitesi

Sayısal Kontrol Sistemleri Dr. Uğur Hasırcı Düzce Üniversitesi

15

TERS z-DÖNÜŞÜMÜ

Ters z-Dönüşümü, verilen bir X(z) için x(k) ya da x(kT)’yi bulmaya yarar. Dikkat edilirse Ters z-

Dönüşümü zaman domeni sinyali olan x(t)’yi bulmaz, sadece onun örnekleme anlarındaki değerleri

olan x(kT)’yi bulur. Aşağıdaki grafikten de görüleceği üzere birbirinden oldukça farklı iki sinyal,

örnekleme anlarında aynı değerlere sahip olabilir.

Hatırlanacağı üzere Ters Laplace Dönüşümü hesaplanırken, ilgili fonksiyon kısmi kesirlerine ayrılıp

her bir terim, Laplace Dönüşüm Tablosundaki terimlere benzetilmek suretiyle, verilen fonksiyonun

Ters Laplace Dönüşümü bulunuyordu. Benzer bir yaklaşım Ters z-Dönüşümünü hesaplarken de

kullanılabilir. Ancak z-domenindeki fonksiyon karmaşıklaştıkça bu yöntemi kullanmak da zorlaşır,

bazen kullanılamaz. Bu nedenle Ters z-Dönüşümünü hesaplamak için ek bazı yöntemlere ihtiyaç

vardır Bu alt bölümde bu yöntemler tanıtılacaktır. Ancak bu yöntemlerin tanıtılmasından önce,

kısaca z-domeninde kutuplar ve sıfırlardan bahsedelim.

Page 16: Sayısal Kontrol Sistemleri Dr. Uğur Hasırcı Düzce Üniversitesiakademik.duzce.edu.tr/Content/Dokumanlar/... · Sayısal Kontrol Sistemleri Dr. Uğur Hasırcı Düzce Üniversitesi

Sayısal Kontrol Sistemleri Dr. Uğur Hasırcı Düzce Üniversitesi

16

Mühendislik uygulamalarında X(z) genellikle z’in pozitif üstleri cinsinden

0 1 2

1 1

( )m

n

b z z z z z zX z

z p z p z p

şeklinde ifade edilir. Burada zi’ler (i=1, 2, 3, …… , m) X(z)’in sıfırları ve pj’ler (j=1, 2, 3, …… , n) X(z)’in

kutuplarıdır. Sinyal işleme ve kontrol mühendisliği uygulamalarında ise X(z) genellikle z’in negatif

üstleri cinsinden

( ) ( 1)

0 1

1 2

1 2

( )1

n m n m n

m

n

n

b z b z b zX z

a z a z a z

şeklinde yazılır, zira z-1 bir örnekleme periyodu geciktirme operatörü olarak yorumlanır. Bu ders

boyunca biz her iki gösterim türünü de kullanacağız. Çünkü her bir gösterim türünün belli işlemler

için avantajları ve dezavantajları mevcuttur. Örneğin X(z)’in kutuplarını ve sıfırlarını bulmak için z’in

pozitif üstlerini kullanmak daha uygundur. Bunun nedenini basit bir örnekle açıklayalım:

Aşağıdaki fonksiyonu göz önünde bulunduralım;

2

2

0.5 ( 0.5)( )

3 2 ( 1)( 2)

z z z zX z

z z z z

Açıkça görüleceği üzere X(z) z=-1 ve z=-2 noktalarında kutuplara ve z=0 ile z=-0.5 noktalarında

sıfırlara sahiptir. Şimdi aynı fonksiyonu z’in negatif üstleri cinsinden yazalım. Payı ve paydayı z-2 ile

çarparsak,

1 1

1 2 1 1

1 0.5 1 0.5( )

1 3 2 1 1 2

z zX z

z z z z

elde ederiz. Bu denklemden de X(z)’in z=-1 ve z=-2 noktalarında kutuplara sahip olduğunu buluruz.

Ancak bu denklemde görülebilen tek sıfır, z=-0.5 noktasındaki sıfırdır. Yani z=0 noktasındaki sıfır bu

denklemden bulunamaz. Bu durum tasarım hatasına sebep olabilir. Bu nedenle kutuplar ve sıfırlar

bulunurken, X(z)’i z’in pozitif üstleri cinsinden yazmak gerekir.

Bu kısa açıklamadan sonra, şimdi Ters z-Dönüşümünün bulunması için kullanılan yöntemlere

geçebiliriz.

Page 17: Sayısal Kontrol Sistemleri Dr. Uğur Hasırcı Düzce Üniversitesiakademik.duzce.edu.tr/Content/Dokumanlar/... · Sayısal Kontrol Sistemleri Dr. Uğur Hasırcı Düzce Üniversitesi

Sayısal Kontrol Sistemleri Dr. Uğur Hasırcı Düzce Üniversitesi

17

Genel olarak, Ters z-Dönüşümünün hesaplanması için 4 farklı yöntemden bahsedilebilir:

Doğrudan Bölme Yöntemi

Hesaplamalı Yöntem

Kısmi Kesirlere Ayrıma Yöntemi

Ters İntegral Yöntemi

Doğrudan Bölme Yöntemi: Bu yöntem, verilen bir X(z) fonksiyonunun Ters z-Dönüşümü olan

x(k)’nın sadece ilk birkaç terimini bulmak gerektiği zaman kullanışlıdır, x(k)’nın genel ifadesini

bulmak için genelde pek kullanılmaz. Yöntemi uygulayabilmek için, verilen X(z) fonksiyonunun payı

ve paydası z’in negatif üstlerine göre yazılır. Daha sonra fonksiyonun payı paydasına bölünür!

Bölme işlemi sonucu elde edilen ifadenin terimleri x(0), x(1), x(2), …… değerlerini verir.

Örnek olarak aşağıdaki fonksiyonu göz önünde bulunduralım:

10 5

( )( 1)( 0.2)

zX z

z z

Doğrudan Bölme Yöntemi ile bu fonksiyonun Ters z-Dönüşümünü bulmak için, önce fonksiyonun

payını ve paydasını z’in negatif kuvvetleri cinsinden yazalım:

1 2

1 2

10 5( )

1 1.2 0.2

z zX z

z z

Sonra da aşağıdaki gibi klasik bölme işlemi yapalım:

Page 18: Sayısal Kontrol Sistemleri Dr. Uğur Hasırcı Düzce Üniversitesiakademik.duzce.edu.tr/Content/Dokumanlar/... · Sayısal Kontrol Sistemleri Dr. Uğur Hasırcı Düzce Üniversitesi

Sayısal Kontrol Sistemleri Dr. Uğur Hasırcı Düzce Üniversitesi

18

Bölme işleminin sonucunda elde edilen ifadeye göre;

1 2 3 4( ) 10 17 18.4 18.68 ......X z z z z z

şeklindedir. Şimdi z-dönüşümünü tanımlayan seriyi hatırlayalım:

1 2

0

( ) ( ) (0) (1) (2) ...... ( ) ......k k

k

X z x k z x x z x z x k z

Dolayısıyla son iki denklem karşılaştırıldığında,

(0) 0

(1) 10

(2) 17

(3) 18.4

(4) 18.68

x

x

x

x

x

olduğu görülür. Yani zaman domenindeki sinyalin örneklenmiş halini temsil eden dizide ilk beş

terimin değeri bulunuş olur. Daha önce de vurgulandığı gibi yöntem, sadece belli sayıda örneğin

değerini hesaplamak yoluyla Ters z-Dönüşümü yapar. Serinin bütün terimlerinin değerlerini bulmak

için, bazı özel durumlar dışında, pek kullanılmaz.

Ör: Aşağıda verilen fonksiyonun Ters z-Dönüşümünü doğrudan bölme yöntemi ile bulunuz.

1

( )1

X zz

C: Verilen fonksiyonu z’in negatif üstlerine göre yazıp, doğrudan bölme işlemi yaparsak;

1

1 2 3 4

1( ) ..........

1

zX z z z z z

z

elde ederiz. Yine bu seriyi, X(z)’in seri açılımı olan 0

( ) ( ) k

k

X z x k z

serisi ile karşılaştırırsak;

(0) 0

(1) 1

(2) 1

(3) 1

(4) 1

.

.

.

x

x

x

x

x

Page 19: Sayısal Kontrol Sistemleri Dr. Uğur Hasırcı Düzce Üniversitesiakademik.duzce.edu.tr/Content/Dokumanlar/... · Sayısal Kontrol Sistemleri Dr. Uğur Hasırcı Düzce Üniversitesi

Sayısal Kontrol Sistemleri Dr. Uğur Hasırcı Düzce Üniversitesi

19

olduğunu görürüz. Dolayısıyla bu fonksiyonun Ters z-Dönüşümünü, grafiği aşağıda görülen bir

alternatif sinyaldir.

Alıştırma: Aşağıda verilen fonksiyonun Ters z-Dönüşümünü bulunuz.

1 2 3( ) 1 2 3 4X z z z z

Hesaplamalı Yöntem: Bir sistemin transfer fonksiyonunun

1 2

1 2

( ) 0.4673 0.3393( )

( ) 1 1.5327 0.6607

Y z z zG z

X z z z

olduğunu düşünelim. z-domenindeki bir transfer fonksiyonunun Ters z-Dönüşümünü hesaplamalı

yöntemle bulmak için giriş, X(z), olarak Kronecker Delta Fonskiyonu 0( )kT kullanılır. Bu

fonksiyonun genel ifadesi

0

1, 0( )

0, 0

kkT

k

şeklindedir. Bu fonksiyonun z-dönüşümü ise

( ) 1X z

şeklindedir. Dolayısıyla bu durumda çıkış,

1 2

1 2 2

0.4673 0.3393 0.4673 0.3393( )

1 1.5327 0.6607 1.5327 0.6607

z z zY z

z z z z

olur. Bu noktadan itibaren, Ters z-Dönüşümünün hesaplanması için 2 alternatif söz konusudur:

Page 20: Sayısal Kontrol Sistemleri Dr. Uğur Hasırcı Düzce Üniversitesiakademik.duzce.edu.tr/Content/Dokumanlar/... · Sayısal Kontrol Sistemleri Dr. Uğur Hasırcı Düzce Üniversitesi

Sayısal Kontrol Sistemleri Dr. Uğur Hasırcı Düzce Üniversitesi

20

a. MATLAB

b. Fark Denklemi Yaklaşımı

a. MATLAB ya da başka herhangi bir paket program kullanılarak Ters z-Dönüşümü şu şekilde

hesaplanır (sarı zeminli satırlar MATLAB kodlarını ve onların çıktılarını göstermektedir): Öncelikle

Kronecker Delta Fonksiyonu, MATLAB ortamında aşağıdaki gibi tanıtılır:

x=[1 zeros(1,N)]

Burada N, örnek sayısıdır. Yani çıkışın ters z-dönüşümünün kaç örnek için hesaplanacağını belirler.

Daha sonra ters z-dönüşümü alınacak fonksiyonun pay ve payda polinomları tanıtılır.

pay = [0 0.4673 -0.3393]

payda = [1 -1.5327 0.6607]

“filter” fonksiyonu ise, çıkışın ters z-dönüşümünü, x tanımlanırken belirtilen örnek sayısı kadar

hesaplar.

filter(pay,payda,x)

Örneğin aşağıdaki kod parçası, yukarıda verilen Y(z) fonksiyonunun ters z-dönüşümünü 40 örnek

için hesaplar:

x=[1 zeros(1,40)] ; % Kronecker Delta girisinin tanımlanması

pay = [0 0.4673 -0.3393] ; % pay polinomunun tanımlanması

payda = [1 -1.5327 0.6607] ; % payda polinomunun tanımlanması

filter(pay,payda,x) % ters z-dönüşümünün hesaplanması

Bu kod çalıştırıldığında, aşağıdaki çıktıyı üretir:

Page 21: Sayısal Kontrol Sistemleri Dr. Uğur Hasırcı Düzce Üniversitesiakademik.duzce.edu.tr/Content/Dokumanlar/... · Sayısal Kontrol Sistemleri Dr. Uğur Hasırcı Düzce Üniversitesi

Sayısal Kontrol Sistemleri Dr. Uğur Hasırcı Düzce Üniversitesi

21

Yani Y(z) fonksiyonunun ters z-dönüşümü,

(0) 0

(1) 0.4673

(2) 0.3769

(3) 0.2690

.

.

.

(40) 0.0001

y

y

y

y

y

şeklindedir.

y(k)’nın, k’ya göre değişimi çizdirilmek istenirse, koda aşağıdaki satır eklenir ve sonuçta şekildeki

gibi bir grafik elde edilir.

plot(y,k)

Page 22: Sayısal Kontrol Sistemleri Dr. Uğur Hasırcı Düzce Üniversitesiakademik.duzce.edu.tr/Content/Dokumanlar/... · Sayısal Kontrol Sistemleri Dr. Uğur Hasırcı Düzce Üniversitesi

Sayısal Kontrol Sistemleri Dr. Uğur Hasırcı Düzce Üniversitesi

22

b. Fark Denklemi Yaklaşımı

Daha önce örnek olarak verilen

2

( ) 0.4673 0.3393( )

( ) 1.5327 0.6607

Y z zG z

X z z z

denklemi, içler-dışlar çarpımı yoluyla aşağıdaki şekilde yazılabilir:

2 1.5327 0.6607 ( ) 0.4673 0.3393 ( )z z Y z z X z

Dersin başlarında, z-1’in bir örnekleme periyodu geciktirme operatörü, z’in ise bir örnekleme

periyodu ileri öteleme operatörü olarak yorumlandığını söylemiştik. Dolayısıyla bu denklem,

aşağıdaki gibi “Fark Denklemi” formunda yazılabilir:

( 2) 1.5327 ( 1) 0.6607 ( ) 0.4673 ( 1) 03393 ( )y k y k y k x k x k

Giriş Kronecker Delta fonksiyonu olduğu için, (0) 1x ve 0k için ( ) 0x k dır. Çıkış için ise 0k

için ( ) 0y k dır. Giriş ve çıkış için bu hatırlatmalar göz önünde bulundurularak, (0)y ve (1)y

değerleri, k’ya değer verilerek kolaylıkla bulunabilir. Eğer bu denklemde 2k değeri verilirse,

(0) 1.5327 ( 1) 0.6607 ( 2) 0.4673 ( 1) 0.3393 ( 2)y y y x x

olur. ( )x k ve ( )y k için yukarıda hatırlatılan bilgiler göz önünde bulundurulduğunda

(0) 0y

bulunur. Eğer bu denklemde 1k değeri verilirse,

(1) 1.5327 (0) 0.6607 ( 1) 0.4673 (0) 0.3393 ( 1)y y y x x

olur. ( )x k ve ( )y k için yukarıda hatırlatılan bilgiler göz önünde bulundurulduğunda

(1) 0.4673y

bulunur. Artık bundan sonra ( )y k ’nın diğer değerleri, herhangi bir programlama dili ya da paket

program kullanılarak bir for döngüsü içinde (ya da el ile) hesaplanabilir. Program yazılırken

kullanılacak denklem ve gerekli başlangıç koşulları aşağıda özetlenmiştir.

( 2) 1.5327 ( 1) 0.6607 ( ) 0.4673 ( 1) 03393 ( )y k y k y k x k x k

(0) 0, (1) 0.4673, (0) 1, ve 0 için ( ) 0.y y x k x k

Page 23: Sayısal Kontrol Sistemleri Dr. Uğur Hasırcı Düzce Üniversitesiakademik.duzce.edu.tr/Content/Dokumanlar/... · Sayısal Kontrol Sistemleri Dr. Uğur Hasırcı Düzce Üniversitesi

Sayısal Kontrol Sistemleri Dr. Uğur Hasırcı Düzce Üniversitesi

23

Kısmi Kesirlere Ayırma Yöntemi: Tıpkı Ters Laplace Dönüşümünde olduğu gibi, Ters z-

Dönüşümünde de Kısmi Kesirlere Ayırma Yöntemi oldukça yaygın olarak kullanılır. Ancak metodun

uygulanabilmesi için, z-domenindeki fonksiyonun, z-dönüşüm tablosundaki çiftlere benzetilebilir

olması gerekmektedir. Kısmi Kesirlere Ayırma Yöntemi, Ters Laplace Dönüşümü anlatılırken

detaylandırıldığı için burada tekrar detaylarıyla açıklanmayacaktır. Ancak Laplace Dönüşümündeki

detaylara ek olarak, z-dönüşümünde kısmi kesirlere ayırma yönteminin kullanılmasına ilişkin ek bir

detay, z-domenindeki fonksiyonun orijinde bir sıfır içermesi halinde ortaya çıkar. Genellikle z-

domeninde orijinde bir ya da birden çok sıfır içeren X(z) gibi bir fonksiyonun Ters z-Dönüşümü

hesaplanırken önce ( )X z

z kısmi kesirlerine ayrılır, daha sonra elde edilen ifade z ile çarpılarak

X(z)’in kısmi kesirlere ayrılmış hali elde edilir. Bu yaklaşım çoğu zaman kısmi kesirlere ayırma

işlemini kolaylaştırmakla beraber, uygulanması bir zorunluluk değildir.

Ör: a bir sabit ve T örnekleme periyodu olmak üzere, aşağıda verilen fonksiyonun ters z-

dönüşümünü bulunuz.

1

( )1

aT

aT

e zX z

z z e

C: Fonksiyonun kısmi kesirlere ayrılmış hali:

( ) 1 1

1 aT

X z

z z z e

Bu durumda,

1 1

1 1( )

1 1 aTX z

z e z

Her bir terimin ters z-dönüşümü:

1

1

11

1 z

ve 1

1

1

1

akT

aTe

e z

Sonuç olarak, verilen fonksiyonun ters z-dönüşümü:

( ) 1 , 0, 1, 2,.....akTx kT e k

Bu örnekte verilen fonksiyonun kısmi kesirlere ayrılmış halini, z-dönüşümü tablosundaki çiftlere

benzetmek kolaydı. Bir de şunu deneyin:

2

2

2( )

( 1) 1

z zX z

z z z

.

Page 24: Sayısal Kontrol Sistemleri Dr. Uğur Hasırcı Düzce Üniversitesiakademik.duzce.edu.tr/Content/Dokumanlar/... · Sayısal Kontrol Sistemleri Dr. Uğur Hasırcı Düzce Üniversitesi

Sayısal Kontrol Sistemleri Dr. Uğur Hasırcı Düzce Üniversitesi

24

Ters İntegral Yöntemi: Verilen bir ( )X z fonksiyonunun ters z-dönüşümünü bulmak için kullanılan

integral

1 11( ) ( ) ( ) ( )

2

k

CX z x kT x k X z z dz

j

şeklindedir. Burada C, merkezi z-düzleminin orijininde olan ve 1( ) kX z z ’in tüm kutuplarını

çevreleyen çemberdir. Bu integralin doğrudan hesabı yerine, kompleks değişkenli fonksiyonlar

teorisinin argümanları kullanılarak, aşağıdaki gibi hesaplanır:

1 2

1

1

( ) ( )

( ) 'in kutbundaki rezidüleri

m

mk

i

i

x kT x k K K K

X z z z z

Burada 1 2, , ............, mK K K değerleri, 1( ) kX z z çarpımının 1 2, , ............, mz z z kutuplarındaki

rezidüleridir. Yani kaç tane kutup varsa o kadar rezidü vardır.

Rezidülerin nasıl bulunacağını aslında Kısmi Kesirlere Ayırma yönteminden biliyoruz. Örneğin 1( ) kX z z ’in iz z noktasında katlı olmayan bir kutbu varsa, bu kutba ilişkin rezidü

1lim ( )i

k

iz z

K z z X z z

formülüyle bulunur. Eğer 1( ) kX z z ’in jz z noktasında q katlı bir kutbu varsa, bu kutba ilişkin

rezidü ise

11

1

1lim ( )

1 ! j

qq

k

jqz z

dK z z X z z

q dz

formülüyle hesaplanır. Tüm bu denklemlerde k, negatif olmayan bir tam sayıdır.

Verilen herhangi bir ( )X z fonksiyonunun ters z-dönüşümü hesaplanırken, eğer 1( ) kX z z , orijinde

yani z=0 noktasında bir kutup içermiyorsa, bu ( )X z fonksiyonunun ters z-dönüşümü Ters İntegral

Metodu ile daha kolay bulunabilir. Ancak eğer 1( ) kX z z , orijinde katlı ya da katlı olmayan kutup

içeriyorsa bu durumda Ters İntegral Metodu aşırı hesap yükü gerektirir ve Kısmi Kesirlere Ayırma

yöntemi daha kolay ve görece daha az zahmetli sonuç verir.

Örneklere bakalım:

Page 25: Sayısal Kontrol Sistemleri Dr. Uğur Hasırcı Düzce Üniversitesiakademik.duzce.edu.tr/Content/Dokumanlar/... · Sayısal Kontrol Sistemleri Dr. Uğur Hasırcı Düzce Üniversitesi

Sayısal Kontrol Sistemleri Dr. Uğur Hasırcı Düzce Üniversitesi

25

Ör: a bir sabit ve T örnekleme periyodu olmak üzere, aşağıda verilen fonksiyonun ters z-

dönüşümünü Ters İntegral Yöntemi ile bulunuz.

1

( )1

aT

aT

e zX z

z z e

C: Öncelikle 1( ) kX z z ifadesine bakalım:

11

( )1

aT k

k

aT

e zX z z

z z e

k=0, 1, 2, …. için X(z)zk-1 ifadesi iki adet katlı olmayan kutba sahiptir: z=1 ve z=e

-aT. Dolayısıyla iki

tane de rezidü olacaktır. Bunları bulalım:

1 2

2

1

( )

1'in kutbundaki rezidüleri

1

aT k

iaTi

x k K K

e zz z

z z e

Birinci rezidü:

1

1

1 noktasındaki rezidü

1lim ( 1) 1

1

aT k

aTz

K z

e zz

z z e

İkinci rezidü:

2 noktasındaki rezidü

1lim

1aT

aT

aT k

aT aT

aTz e

K z e

e zz e e

z z e

Bu durumda, verilen fonksiyonun ters z-dönüşümü:

1 2( ) ( ) 1 , 0, 1, 2, 3,......aTx k x kT K K e k

(Aynı örneği kısmi kesirlere ayırma yöntemi ile de çözmüştük).

Page 26: Sayısal Kontrol Sistemleri Dr. Uğur Hasırcı Düzce Üniversitesiakademik.duzce.edu.tr/Content/Dokumanlar/... · Sayısal Kontrol Sistemleri Dr. Uğur Hasırcı Düzce Üniversitesi

Sayısal Kontrol Sistemleri Dr. Uğur Hasırcı Düzce Üniversitesi

26

Ör: Aşağıda verilen fonksiyonun ters z-dönüşümünü Ters İntegral Yöntemi ile bulunuz.

2

2( )

1 aT

zX z

z z e

C: Öncelikle 1( ) kX z z ifadesine bakalım:

11( )

1

kk

aT

zX z z

z z e

k=0, 1, 2, …. için X(z)zk-1 ifadesi: z=z1= e-aT noktasında bir adet katlı olmayan kutba ve z=z2=1

noktasında iki katlı bir kutba sahiptir. Dolayısıyla iki tane rezidü olacaktır. Bunları bulalım:

1 2

12

1

( )

'in kutbundaki rezidüleri1

k

iaTi

x k K K

zz z

z z e

Birinci rezidü:

1

1 ( 1)

2

noktasındaki rezidü

lim1 1

aT

aT

k a k TaT

aT aTz e

K z e

z ez e

z z e e

İkinci rezidü:

2

12

1

1

1

1

2 21

1 noktasındaki iki katlı rezidü

1lim 1

(2 1)! 1

lim

( 1)lim

1 1

k

aTz

k

aTz

k aT k aT

aTz aT aT

K z

d zz

dz z z e

d z

dz z e

k z z e zd k e

dz ez e e

Bu durumda, verilen fonksiyonun ters z-dönüşümü:

( 1)

1 2 2 2( ) ( ) , 0, 1, 2, 3,......

11 1

a k T aT

aTaT aT

e k ex k x kT K K k

ee e

Page 27: Sayısal Kontrol Sistemleri Dr. Uğur Hasırcı Düzce Üniversitesiakademik.duzce.edu.tr/Content/Dokumanlar/... · Sayısal Kontrol Sistemleri Dr. Uğur Hasırcı Düzce Üniversitesi

Sayısal Kontrol Sistemleri Dr. Uğur Hasırcı Düzce Üniversitesi

27

Fark Denklemlerinin z-Dönüşümü ile Çözümü

Daha önce vurgulandığı gibi sürekli zamanda sistemler Diferansiyel Denklemler ile modellenir.

Örneğin u(t) giriş ve y(t) çıkış olmak üzere, bir sistemin diferansiyel denklemi

2 ( ) ( )2 5 ( ) 1.4 ( )

d y t dy ty t u t

dt dt

olsun. Bu diferansiyel denklemi çözmek demek, verilen bir u(t) girişi için, y(t)’nin ifadesini bulmak

demektir. Laplace Dönüşümü Yöntemi, yukarıdaki gibi doğrusal diferansiyel denklemlerin çözümü

için oldukça yaygın olarak kullanılır.

Benzer şekilde, ayrık zaman sistemleri Fark Denklemleri ile modellenir. Örneğin u(k) giriş ve x(k)

çıkış olmak üzere, ayrık zamanlı bir sistemi modelleyen fark denkleminin genel ifadesi

1 0 1( ) ( 1) ......... ( ) ( ) ( 1) ........ ( )n nx k a x k a x k n b u k bu k b u k n

şeklindedir. Bu fark denklemini çözmek demek, verilen bir u(k) girişi için, x(k) çıkışının k’ıncı

iterasyondaki değerini bulmak demektir. Herhangi bir programlama dilinde ya da paket programda

yazılmış bir kod ile, bu x(k) değeri bulunabilir. Ancak bilgisayar programı ile x(k)’nın genel ifadesini

bulmak, bazı özel durumlar haricinde, pek mümkün değildir. z-Dönüşümü Yöntemi, ayrık zamanlı

doğrusal sistemleri modelleyen fark denklemlerini çözmek için yaygın olarak kullanılır. Bu yöntem

çıkışın genel ifadesini de verir.

Daha önce yaptığımız gibi,

( ) ( )x k X z

olarak gösterelim. Bu durumda ( 1), ( 2), ( 3),.....x k x k x k terimleri ve

( 1), ( 2), ( 3),.....x k x k x k terimleri X(z) cinsinden, başlangıç koşulları da göz önünde

bulundurularak, ifade edilebilir. Bu terimlerin z-dönüşümleri, daha önce z-Dönüşüm Tablosunda

verilmişti, aşağıda tekrar hatırlatılmıştır.

Tablonun hemen ardından, fark denklemlerinin z-dönüşümü ile çözülmesine ilişkin bir örnek

sunulmuştur.

Page 28: Sayısal Kontrol Sistemleri Dr. Uğur Hasırcı Düzce Üniversitesiakademik.duzce.edu.tr/Content/Dokumanlar/... · Sayısal Kontrol Sistemleri Dr. Uğur Hasırcı Düzce Üniversitesi

Sayısal Kontrol Sistemleri Dr. Uğur Hasırcı Düzce Üniversitesi

28

Ör: Aşağıda verilen fark denklemini z-dönüşümü yöntemiyle çözünüz.

( 2) 3 ( 1) 2 ( ) 0, (0) 0, (1) 1x k x k x k x x

C: Terimlerin her birinin z-dönüşümünü yazalım:

2 2( 2) ( ) (0) (1)

( 1) ( ) (0)

( ) ( )

x k z X z z x zx

x k zX z zx

x k X z

Verilen fark denkleminin her iki tarafının z-dönüşümü alınırsa:

2 2( ) (0) (1) 3 ( ) 3 (0) 2 ( ) 0z X z z x zx zX z zx X z

Başlangıç koşulları için verilen değerler yerine yazılırsa:

2 1 1

1 1( )

3 2 ( 1)( 2) 1 2 1 1 2

z z z zX z

z z z z z z z z

Page 29: Sayısal Kontrol Sistemleri Dr. Uğur Hasırcı Düzce Üniversitesiakademik.duzce.edu.tr/Content/Dokumanlar/... · Sayısal Kontrol Sistemleri Dr. Uğur Hasırcı Düzce Üniversitesi

Sayısal Kontrol Sistemleri Dr. Uğur Hasırcı Düzce Üniversitesi

29

Ters z-dönüşümü alınırsa:

1

1

1

1

1( 1)

1

1( 2)

1 2

k

k

z

z

olduğundan, soruda verilen fark denkleminin çözümünün genel ifadesi,

( ) ( 1) ( 2) , 0, 1, 2,.....k kx k k

şeklinde olur.