routes to cellulosic ethanol: biotechnological solutions for the sustaineble improvement of cell...

54
Routes to cellulosic ethanol: biotechnological solutions for the sustainable improvement of cell wall degradation Marcos Buckeridge Departamento de Botânica Instituto de Biociências – USP [email protected]

Upload: ctbe-brazilian-bioethanol-scitech-laboratory

Post on 28-May-2015

830 views

Category:

Technology


0 download

DESCRIPTION

Presentation of Marcos S. Buckeridge for the Workshop on Hydrolysis Route for Cellulosic Ethanol from Sugarcane. Apresentação de Marcos S. Buckeridge realizada no "Workshop on Hydrolysis Route for Cellulosic Ethanol from Sugarcane" Date / Data : February 10 - 11th 2009/ 10 e 11 de fevereiro de 2009 Place / Local: Unicamp, Campinas, Brazil Event Website / Website do evento: http://www.bioetanol.org.br/workshop1

TRANSCRIPT

Page 1: Routes to Cellulosic Ethanol: biotechnological solutions for the sustaineble improvement of cell wall degradation

Routes to cellulosic ethanol: biotechnological solutions for the sustainable improvement of

cell wall degradation

Marcos BuckeridgeDepartamento de Botânica

Instituto de Biociências – [email protected]

Page 2: Routes to Cellulosic Ethanol: biotechnological solutions for the sustaineble improvement of cell wall degradation

Carbon...............................................45%Oxigen...............................................45%Hidrogen..............................................6%

Nitrogen.............................................1.5% X 6.25 = 9.4% (10%)Potassium..........................................1.0% XCalcium..............................................0.5%Magnesium.........................................0.2%Phosphorous......................................0.2% XSulfur..................................................0.1% XSilicium...............................................0.1%

Boron..................................Manganese.........................Chloride.............................. XIron..................................... XSodium............................... XZinc.................................... XCopper............................... XNickel................................. XMolibdenium.......................... X

96%

3.6%

0.4%

Obtained from CO2 and water

Macronutrients

Micronutrients

Cellulose, hemicelluloses & pectins

96-10%=86%

Pectins = 0.7%

Pectins? = 0.7%

Pectins = traces

Lipids are approximately 15% of plant tissues

Thus, the wall corresponds to ca. 70 % of the plant

In sugarne = leaves contain 68% and stem 50% plus 18% of sucrose

Proteins and Nucleic acids

The wall in the context of plant composition

Page 3: Routes to Cellulosic Ethanol: biotechnological solutions for the sustaineble improvement of cell wall degradation

Cell walls from leaves (left) and root (below) of

legumes

A

B

ML

ML

S1S2

S3

PC

PC

2µm

V

A

PP

C

Buckeridge et al. 2008. Parede Celular, Cap 9 in Kerbauy G.B. Fisiologia Vegetal. Guanabara Koogan

Page 4: Routes to Cellulosic Ethanol: biotechnological solutions for the sustaineble improvement of cell wall degradation

Cellulose: the most abundant polymer on Earth. Photograph by Cesar Gustavo Lisboa e Marcos Buckeridge, 2005

H bridges Glycosidic linkage beta-(1,4)

A B

paper

Page 5: Routes to Cellulosic Ethanol: biotechnological solutions for the sustaineble improvement of cell wall degradation
Page 6: Routes to Cellulosic Ethanol: biotechnological solutions for the sustaineble improvement of cell wall degradation

MANGLC

HOMOGALACTURONNAN

AGA

alpha-(1,4)

methyl

AGA AGA AGAAGA AGA AGAAGA

-

-

-

-

-

-

--

-

Egg boxes divalent ion, maily calcium and magnesium induce the formatio of gels in regions that are not methylated of homogalacturonan

A

B

Buckeridge et al. 2008. Parede Celular, Cap 9 in Kerbauy G.B. Fisiologia Vegetal. Guanabara Koogan

Page 7: Routes to Cellulosic Ethanol: biotechnological solutions for the sustaineble improvement of cell wall degradation

GalA RHA

RHAGalA

GalA RHA

RHAGalA

GalA RHA

GalA

ARA

GAL

GAL

GAL

GAL

GAL

GAL GAL GAL

beta (1,3)

beta (1,6)

alpha (1,6)

alpha (1,5)

alpha (1,2)

alpha (1,4)

arabinogalactan I

beta (1,4)

ARA

Buckeridge et al. 2008. Parede Celular, Cap 9 in Kerbauy G.B. Fisiologia Vegetal. Guanabara Koogan

Page 8: Routes to Cellulosic Ethanol: biotechnological solutions for the sustaineble improvement of cell wall degradation

Polysaccharideo

Lignin

LigninLignin

Page 9: Routes to Cellulosic Ethanol: biotechnological solutions for the sustaineble improvement of cell wall degradation

THE ARCHITECTURE OF THE CELL WALL

Page 10: Routes to Cellulosic Ethanol: biotechnological solutions for the sustaineble improvement of cell wall degradation

Design: Wanderley dos Santos

Page 11: Routes to Cellulosic Ethanol: biotechnological solutions for the sustaineble improvement of cell wall degradation

Type I Type II

microfibril

Hemicellulose strongly likd to cellulose

Hemicelluluse loosely bound to cellulose

Pectins

Proteins

Ferulic acid

Buckeridge et al. 2008. Parede Celular, Cap 9 in Kerbauy G.B. Fisiologia Vegetal. Guanabara Koogan

Page 12: Routes to Cellulosic Ethanol: biotechnological solutions for the sustaineble improvement of cell wall degradation

WALL BIOSYNTHESIS

Page 13: Routes to Cellulosic Ethanol: biotechnological solutions for the sustaineble improvement of cell wall degradation

Biossíntese da celulose: o único polímero feito no

plasmalema

Page 14: Routes to Cellulosic Ethanol: biotechnological solutions for the sustaineble improvement of cell wall degradation

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAA

Page 15: Routes to Cellulosic Ethanol: biotechnological solutions for the sustaineble improvement of cell wall degradation

Com exceção da celulose, os demais polímeros da parede

são feitos no complexo de Golgi

Page 16: Routes to Cellulosic Ethanol: biotechnological solutions for the sustaineble improvement of cell wall degradation

Hemicellulose biosynthesis

Buckeridge et al. 2004, Cereal Chemistry, Vol. 81 pg. 115

Page 17: Routes to Cellulosic Ethanol: biotechnological solutions for the sustaineble improvement of cell wall degradation

PLANT DEVELOPMENT AND WALL DEGRADATION

Page 18: Routes to Cellulosic Ethanol: biotechnological solutions for the sustaineble improvement of cell wall degradation

THE FOUR GENERATIONS OF BIOTHANOL

Cane

Sucrose

Cell Wall

acid

Enzymes

glucose, xylose e arabinose

BIOETHANOL

Cane genome Fungal genome Enzyme structure

1

1

4

4

2, 3 e 42

4

3

Rot

as p

ara

o et

anol

cel

ulós

ico

–M

arco

s B

ucke

ridge

, msb

uck@

usp.

br

Page 19: Routes to Cellulosic Ethanol: biotechnological solutions for the sustaineble improvement of cell wall degradation

National Institute of Science and Technology of BioethanolCNPq, FAPESP

Page 20: Routes to Cellulosic Ethanol: biotechnological solutions for the sustaineble improvement of cell wall degradation

DIANOITE

Buckeridge et al. 2008. Parede Celular, Cap 9 in Kerbauy G.B. Fisiologia Vegetal. Guanabara Koogan

Page 21: Routes to Cellulosic Ethanol: biotechnological solutions for the sustaineble improvement of cell wall degradation

Cell expansion in papaya during development

50µm

50µm

A

BPC

Buckeridge et al. 2008. Parede Celular, Cap 9 in Kerbauy G.B. Fisiologia Vegetal. Guanabara Koogan

Page 22: Routes to Cellulosic Ethanol: biotechnological solutions for the sustaineble improvement of cell wall degradation

A B

ATACKS OF XTH AND EXPANSIN RELINK OF XYG BY XTH AND INTUSSUCEPTION

Mic

rofib

ril 1

Mic

rofib

ril 2

Mic

rofib

ril 1

Mic

rofib

ril 2

New

Mic

rofib

ril

expa

nsin

Buckeridge et al. 2008. Parede Celular, Cap 9 in Kerbauy G.B. Fisiologia Vegetal. Guanabara Koogan

Page 23: Routes to Cellulosic Ethanol: biotechnological solutions for the sustaineble improvement of cell wall degradation

Tiné, Braga, Hahn, Freshhour & Buckeridge, unpublished results

Cotyledons of Hymenaea courbaril (jatobá)

Storage walls can be very complex

M1 antibody binds specifically to fucosylated XGs, which are present only in primary cell walls

Page 24: Routes to Cellulosic Ethanol: biotechnological solutions for the sustaineble improvement of cell wall degradation

Xyloglucan

XGOs

Xyl

Sucrose

Degalactosylated XGOs

XTH

hcbetagal

beta glucosidase

Glc

alpha xylosidase

Gal

P-sugars ?

sucrose synthase

Auxin

DNA

mRNA

auxin-conjugate

LIGHT

NPA treatment

Shoot excision

Sucrose

GROWTH

Starch

P-sugars

sucrose synthase

invertase

Pentose P pathway ?

Starch

coty

ledo

n

hyp

ocot

yl

leaf

phy, cry ?

?

?

??

invertase

Brandão, Del Bem, Vincentz & Buckeridge. Journal of Experimental Botany, 2009 in press

Page 25: Routes to Cellulosic Ethanol: biotechnological solutions for the sustaineble improvement of cell wall degradation

Cotyledons of Lupin: one enzyme does the job

Buckeridge et al. 2005. Annals of Botany, Vol.96:435.

Page 26: Routes to Cellulosic Ethanol: biotechnological solutions for the sustaineble improvement of cell wall degradation
Page 27: Routes to Cellulosic Ethanol: biotechnological solutions for the sustaineble improvement of cell wall degradation
Page 28: Routes to Cellulosic Ethanol: biotechnological solutions for the sustaineble improvement of cell wall degradation
Page 29: Routes to Cellulosic Ethanol: biotechnological solutions for the sustaineble improvement of cell wall degradation
Page 30: Routes to Cellulosic Ethanol: biotechnological solutions for the sustaineble improvement of cell wall degradation

Sugar composition of sugarcane leaves

0

10

20

30

40

50

60

70

fucrham ara gal

glcxyl

0,240,21

12,58

2,32

14,52

69,88

Collaboration with EMBRAPA Bioenergy and INCT do BioetanolMaria Thereza Bazzo Martins, Amanda P. De Souza, Hugo Molinari & Marcos Buckeridge

Page 31: Routes to Cellulosic Ethanol: biotechnological solutions for the sustaineble improvement of cell wall degradation

Parede celular e

senescência foliar

876

5

4

3 2

1

EMBRAPA agroenergiaPlantas de RB867515 coletadasMaria Thereza Bazzo

Page 32: Routes to Cellulosic Ethanol: biotechnological solutions for the sustaineble improvement of cell wall degradation

0,00,10,20,30,40,50,6

+1 +2 +3 +4 +5 +6 +7 +8

Fuc %

0,00,10,10,20,20,30,30,40,4

+1 +2 +3 +4 +5 +6 +7 +8

Rham %

11,011,512,012,513,013,5

+1 +2 +3 +4 +5 +6 +7 +8

Ara %

1,8

2,0

2,2

2,4

2,6

2,8

+1 +2 +3 +4 +5 +6 +7 +8

Gal %

1011121314151617

+1 +2 +3 +4 +5 +6 +7 +8

Glc %

64

66

68

70

72

74

+1 +2 +3 +4 +5 +6 +7 +8

Xyl%

Do composition during leaf senescence?

Collaboration with EMBRAPA Bioenergy and INCT do BioetanolMaria Thereza Bazzo Martins, Amanda P. De Souza, Hugo Molinari & Marcos Bucker

Page 33: Routes to Cellulosic Ethanol: biotechnological solutions for the sustaineble improvement of cell wall degradation

0,00

0,10

0,20

0,30

0,40

Base Middle Tip

Fuc %

0,000,050,100,150,200,250,30

Base Middle Tip

Rham %

1,51,71,92,12,32,52,7

Base Middle Tip

Gal %

11,0

11,5

12,0

12,5

13,0

13,5

Base Middle Tip

Ara %

12,0

13,0

14,0

15,0

16,0

Base Middle Tip

Glc %

64

66

68

70

72

74

Base Middle Tip

Xyl%

Do composition change along the leaf blade?

Collaboration with EMBRAPA Bioenergy and INCT do BioetanolMaria Tereza Bazzo Martins, Amanda P. De Souza, Hugo Molinari & Marcos Buckeridge

Page 34: Routes to Cellulosic Ethanol: biotechnological solutions for the sustaineble improvement of cell wall degradation

From 1999 to 2001, the SUCEST genome program produced 238,000 ESTs from various tissues of the

sugar cane plant.

Since then we found:1) 469 cell wall related genes in different cane tissues

(Lima et al. 2001, GMB)1) Determined the chemical composition and structure of the cell wall

polymers of different sugarcane tissues

Page 35: Routes to Cellulosic Ethanol: biotechnological solutions for the sustaineble improvement of cell wall degradation

How to modify the wall to obtain energy?

Microorganisms

Hydrolytic enzymes

Action on the bagasse wall

Free fermentable sugars

Change polymer structure

Change synthesis

Change wall architecture

Control of hydrolysis

Activation of endogenous hydrolysis

MODIFIED WALL

Ethanol

Fermentation

Increase wall and decrease sucrose

“Papaya Cane”or” Energy cane”Increase accessibility Increase accessibility

Page 36: Routes to Cellulosic Ethanol: biotechnological solutions for the sustaineble improvement of cell wall degradation

THANK YOUMarcos Buckeridge

Departamento de BotânicaInstituto de Biociências – USP

[email protected]

http://bioethanolbrazil.wordpress.com

Hugo MolinariEMBRAPA agroenergia

Page 37: Routes to Cellulosic Ethanol: biotechnological solutions for the sustaineble improvement of cell wall degradation
Page 38: Routes to Cellulosic Ethanol: biotechnological solutions for the sustaineble improvement of cell wall degradation

Sesbania virgata, a galactomannan storing seed

1 2A 2B

3 4

Barr

a=84

µm

Barr

a=34

µm

Barr

a=22

µm

Barr

a=40

µm

ex

me

en

e

ex

me

e e

end

sc

Page 39: Routes to Cellulosic Ethanol: biotechnological solutions for the sustaineble improvement of cell wall degradation

Galactomannan degradation in S. virgata

0 1 2 3 4Time (days)

Page 40: Routes to Cellulosic Ethanol: biotechnological solutions for the sustaineble improvement of cell wall degradation

PhD thesis Patricia Tonini

Page 41: Routes to Cellulosic Ethanol: biotechnological solutions for the sustaineble improvement of cell wall degradation

Microfibrilas: 2-20 nmdiametro e 100 - 40 000 nm de comprimento

Page 43: Routes to Cellulosic Ethanol: biotechnological solutions for the sustaineble improvement of cell wall degradation

A parede celular é composta por

polímero que são uma combinação

de monossacarídeosPode-se comparar

o número de combinações possíveis em

relação a outras macromoléculas

Considerando uma sequência..A-B-C-D-E-

Ácidos Nucléicos:

Quatro pares de bases ......45 = 1024

Proteinas:

Vinte aminoácidos....205 = 3,200,000

Carboidratos:

Dez monossacarídeos.... 105 = 100,000Quatro hidroxilas (hexoses) ou três (pentoses).... x 3.55 = 525

Ligações alfa ou beta... X 25 = 32

NÚMERO TOTAL DE POSSIBILIDADES = 1,680,700,000

Page 44: Routes to Cellulosic Ethanol: biotechnological solutions for the sustaineble improvement of cell wall degradation

Estrutura e conformação da

celulose

cellulose

amilose

dextranos

glucanos

Page 45: Routes to Cellulosic Ethanol: biotechnological solutions for the sustaineble improvement of cell wall degradation

Então, a parede poderia ser como um cristal líquido.....

Page 46: Routes to Cellulosic Ethanol: biotechnological solutions for the sustaineble improvement of cell wall degradation

Microfibrila de celulose

Xiloglucano

Ramnogalacturonano I

Arabinogalactano

Extensina com tetrassacarídeos de arabinose (losangos)

Ponto em que foi proposta ligação covalente entre xiloglucano e pectina

Ponto em que foi proposta ligação covalente entre extensina e pectina

Figura 10 . Modelo de parede celular proposto em 1973 por Peter Albersheim e colaboradores. Neste, as ligações covalentes (exemplos circundados) seriam a principal forma de manter os diferentes polissacarídeos em interação. Note porém, que a interação não covalente entre xiloglucano e celulose já havia sido proposta neste modelo.

Page 47: Routes to Cellulosic Ethanol: biotechnological solutions for the sustaineble improvement of cell wall degradation

MMMMM

MGMGM

MMMMMG

GMMMMM

G

G G GMMMMM

G G

G G GMGMGM

A AMMMMM

A A

Har

dnes

s

Water retention

Coffee, Palms

Legumes, Ferns

Orc

hids

,B

rom

elia

ds

Orc

hids

, B

rom

elia

ds,

Fern

s,

Ast

erac

eae

Legumes, Ferns

GGGG?

(cellulose)

Alp

ha g

alac

tosi

dase

Gal

acto

syl t

ranf

eras

eCesA Csl 3

Csl 4

Galactosyl transferase

Acetyl transferase

XG

XXGG XXXXG

LG

FG XG

SG

JG

XXXG

PP,PT,TP

Cel

lulo

se-X

g bi

ndin

g co

ntro

l ?B

eta

gluc

an

Xylan

(Csl n)

GAX

Ara

tran

(Csl

6)

Evolution of the cellulose-hemicellulose

domain in plants

Epiphytism

(Csl

5)

Page 48: Routes to Cellulosic Ethanol: biotechnological solutions for the sustaineble improvement of cell wall degradation
Page 49: Routes to Cellulosic Ethanol: biotechnological solutions for the sustaineble improvement of cell wall degradation

GLC GLC GLC GLC GLC GLC GLC GLC

beta-(1,4) CELLULOSE A

B

GLC GLC GLC GLC GLC GLC GLC GLC

XYL XYL

XYL

GAL

FUC

alpha (1,6)

beta (1,2) alpha (1,2)

Action of XTH e cellulases

XYL

XYL

XYL

Page 50: Routes to Cellulosic Ethanol: biotechnological solutions for the sustaineble improvement of cell wall degradation

Xyloglucan conformation

Bacterial cellulose

Without Xg With Xg

Page 51: Routes to Cellulosic Ethanol: biotechnological solutions for the sustaineble improvement of cell wall degradation

XYL XYL XYL XYL XYL XYL XYLXYL

GalA

beta-(1,4) ARAARA

GLC

GLC GLC GLC GLC

GLC GLC GLC

beta-(1,4)GLC

beta-(1,3)

GLUCURONOARABINOXYLAN (GAX)

MIXED LINKAGE GLUCAN (MLG)

alpha-(1,3)

alpha-(1,6)

Page 52: Routes to Cellulosic Ethanol: biotechnological solutions for the sustaineble improvement of cell wall degradation

MAN MAN MAN MAN MAN MAN MAN MAN

beta-(1,4) PURE MANNAN

MAN GLC MAN GLC MAN GLC MAN GLC

beta-(1,4) GLUCOMANNAN

acetyl

MAN MAN MAN MAN MAN MAN MAN MAN

GAL

GAL

beta-(1,4)

alpha-(1,6)

GALACTOMANNANO

GAL

Page 53: Routes to Cellulosic Ethanol: biotechnological solutions for the sustaineble improvement of cell wall degradation

Figura 12. Modelo descontínuo da parede celular. Neste desenho a parede é mostrada em “corte transversal” ao eixo das microfibrilas. Ao invés de se sustentar por ligações covalentes, a parede celular primária e composta por três domínios independentes: Pectinas, Celulose-hemicelulose e Proteínas. Os três coexistem independentemente, ou seja sem ligações químicas covalentes, mas por interações fracas (pontes de hidrogênio).

Pectinas Celulose-Hemicelulose Proteínas

DO

MÍN

IOS

PAR

EDE

Page 54: Routes to Cellulosic Ethanol: biotechnological solutions for the sustaineble improvement of cell wall degradation

Cell wall deposition is not uniform

Buckeridge et al. 2004, Cereal Chemistry, Vol. 81 pg. 115